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Abstract

We show that many machine-learning algorithms are specific instances of a single algo-
rithm called the Bayesian learning rule. The rule, derived from Bayesian principles, yields
a wide-range of algorithms from fields such as optimization, deep learning, and graphical
models. This includes classical algorithms such as ridge regression, Newton’s method, and
Kalman filter, as well as modern deep-learning algorithms such as stochastic-gradient de-
scent, RMSprop, and Dropout. The key idea in deriving such algorithms is to approximate
the posterior using candidate distributions estimated by using natural gradients. Different
candidate distributions result in different algorithms and further approximations to natural
gradients give rise to variants of those algorithms. Our work not only unifies, generalizes,
and improves existing algorithms, but also helps us design new ones.

Keywords: Bayesian methods, optimization, deep learning, graphical models.

1. Introduction

1.1 Learning-Algorithms

Machine Learning (ML) methods have been extremely successful in solving many challeng-
ing problems in fields such as computer vision, natural-language processing, and artificial
intelligence. The main idea is to formulate those problems as prediction problems and learn
a model on existing data to predict the future outcomes. For example, to recognize objects
in images, we collect N images xi ∈ RD and object labels yi ∈ {1, 2, . . . ,K}, and learn
a model fθ(x) with parameters θ ∈ RP to predict the label for a new image. Learning
algorithms are often employed to estimate θ by Empirical Risk Minimization (ERM),

θ∗ = arg min
θ

¯̀(θ) where ¯̀(θ) =

N∑
i=1

`(yi, fθ(xi)) +R(θ). (1)

Here, `(y, fθ(x)) is a loss function that encourages the model to predict well and R(θ) is
a regularizer that prevents it from overfitting. A wide-variety of such learning-algorithms
exist in the literature to solve a variety of learning problems, for example, ridge regression,
Kalman filters, gradient descent, and Newton’s method. These algorithms play a key role
in the success of modern ML.
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Learning-algorithms are often derived by borrowing and combining ideas from a diverse
set of fields, such as statistics, optimization, and computer science. For example, the field of
probabilistic graphical models (Koller and Friedman, 2009; Bishop, 2006) uses popular algo-
rithms such as ridge-regression (Hoerl and Kennard, 1970), Kalman filters (Kalman, 1960),
the Viterbi algorithm for Hidden Markov Models (Stratonovich, 1965), and Expectation-
Maximization (EM) (Dempster et al., 1977). The field of approximate inference builds upon
such algorithms to perform inference on complex graphical models, for example, algorithms
such as Laplace’s method (Laplace, 1986; Tierney and Kadane, 1986; Rue and Martino,
2007; Rue et al., 2009, 2017), stochastic variational inference (SVI) (Hoffman et al., 2013;
Sato, 2001), Variational message passing (VMP) (Winn and Bishop, 2005) etc. Similarly,
the field of continuous optimization has its own popular methods such as gradient de-
scent (Cauchy, 1847), Newton’s method, and mirror descent (Nemirovski and Yudin, 1978),
and deep-learning (DL) methods use them to design new techniques that work with massive
models and data sets, for example, stochastic-gradient descent (Robbins and Monro, 1951),
RMSprop (Tieleman and Hinton, 2012), Adam (Kingma and Ba, 2015), Dropout regulariza-
tion (Srivastava et al., 2014), and Straight-Through Estimator (STE) (Bengio et al., 2013).
Such mixing of algorithms from diverse fields is a strength of the ML community, and our
goal here is to provide common principles to unify, generalize, and improve such algorithms.

1.2 The Bayesian Learning Rule

We show that a wide-range of well-known learning-algorithms from a variety of fields are
all specific instances of a single learning algorithm derived from Bayesian principles. The
starting point is to extend Eq. 1 by using the variational formulation of Zellner (1988), where
we optimize over a well-defined candidate distribution q(θ), and for which the minimizer

q∗(θ) = arg min
q(θ)

Eq

[
N∑
i=1

`(yi, fθ(xi))

]
+ DKL[q(θ) ‖ p(θ)] (2)

defines a generalized posterior (Zhang, 1999; Catoni, 2007; Bissiri et al., 2016) in lack of a
precise likelihood. We can rewrite the objective in terms of entropy H(q) = Eq[− log q(θ)]
by expanding the Kullback-Leibler Divergence (KLD) as follows,

DKL[q(θ) ‖ p(θ)] = Eq
[
log

q(θ)

p(θ)

]
= Eq [R(θ)]−H(q),

where we chose the prior to be p(θ) ∝ exp(−R(θ)). Plugging this in Eq. 2, we get

q∗(θ) = arg min
q(θ)

Eq
(
¯̀(θ)

)
−H(q).

When exp(−`(yi, fθ(xi))) is proportional to the likelihood of yi for all i, then q∗(θ) is the
posterior distribution (Zellner, 1988); see App. A for a proof.

We use two components to derive learning algorithms from this Bayesian formulation,

1. A (sub-)class of distributions Q to optimize over. In our discussion, we will assume
Q to be the set of a regular and minimal exponential family

qλ(θ) = h(θ) exp [〈λ,T (θ)〉 −A(λ)] ,
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where λ ∈ Ω ⊂ RM are the natural (or canonical) parameter in a non-empty open
set Ω. The cumulant (or log partition) function A(λ) is finite, strictly convex and
differentiable over Ω. Further, T (θ) is the sufficient statistics, 〈·, ·〉 is an inner product
and h(θ) is some function. The expectation parameter µ(λ) = Eqλ [T (θ)] ∈ M
is a (bijective) function of λ. Examples later will include the multivariate Normal
distribution and the Bernoulli distribution (see Table 2 for a list).

2. An optimizing algorithm, called the Bayesian learning rule (BLR), that locates the
best candidate qλ∗(θ) in Q, by updating the candidate qλt(θ) with natural parameter
λt at iteration t using a sequence of learning rates ρt > 0:

λt+1 ← λt − ρt∇̃λ
[
Eqλt

(
¯̀(θ)

)
−H(qλt)

]
. (3)

The updates use the natural-gradients (Amari, 1998), denoted by ∇̃λ, and defined as

∇̃λEqλt (·) = F (λt)
−1
[
∇λEqλ(·)|λ=λt

]
= ∇µEqλ(·)|µ=∇λA(λt)

, (4)

which rescale the vanilla gradients ∇λ with the Fisher information matrix (FIM)
F (λ) = ∇2

λA(λ) to adjust for the geometry in the natural-parameter space Ω. The
second equality follows from the chain rule to express natural-gradients as vanilla gra-
dients with respect to µ = ∇λA(λ) (Malagò et al., 2011; Raskutti and Mukherjee,
2015). Throughout, we will use this property to simplify natural-gradient computa-
tions. These details are discussed in Sec. 2, where we show that the BLR update
can also be seen as a mirror descent algorithm, where the geometry of the Bregman
divergence is dictated by the chosen exponential-family. Throughout, we will assume
λt ∈ Ω for all t, which in practice might require a line-search or a projection step.

The main message of this paper is that many well-known learning-algorithms – such as
those used in optimization, deep learning, and machine learning in general – can be derived
directly following the above scheme via a single algorithm (BLR) that optimizes Eq. 2.
Different exponential families Q give rise to different algorithms, and within those, various
approximations to natural-gradients that are needed, give rise to many variants. These
results are extended to mixture-candidates in Sec. 3.2, and we expect them to hold in
general for other classes of candidate distributions.

Our use of natural-gradients here is not a matter of choice. In fact, natural-gradients
are inherently present in all solutions of the Bayesian objective in Eq. 2. For example, the
natural parameter λ∗ of a solution qλ∗(θ) is a fixed point of Eq. 3, and at convergence

λ∗ = λ∗ − ρ∗∇̃λ
[
Eqλ∗

[
¯̀(θ)

]
−H(qλ∗)

]
=⇒ λ∗ = ∇̃λEqλ∗

[
−¯̀(θ)

]
. (5)

In the second equality, we assume that h(θ) is a constant, so that ∇̃λH(qλ) = −λ (see
App. B). The equality states that the natural parameter λ∗ must be equal to the natural
gradient of Eqλ∗

[
−¯̀(θ)

]
, therefore estimation of qλ∗(θ) is tightly coupled to computation

of natural gradients. Depite this, the importance of natural-gradients is entirely missed in
the Bayesian/variational inference literature, including textbooks, reviews, tutorials on this
topic (Bishop, 2006; Murphy, 2012; Blei et al., 2017; Zhang et al., 2018a) where natural-
gradients are often put in a special category. Our work fixes this issue.
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We will show that natural gradients retrieve essential higher-order information about
the loss landscape which are then assigned to appropriate natural parameters using Eq. 5.
The information-matching is due to the presence of the entropy term there, which is an
important quantity for the optimality of Bayes in general (Jaynes, 1982; Zellner, 1988)
and generally absent in non-Bayesian formulations, for instance, Eq. 1. The entropy term
in general leads to exponential-weighting in Bayes’ rule (Littlestone and Warmuth, 1994;
Vovk, 1990). In our context, it gives rise to natural-gradients and, as we will soon see,
automatically determines the complexity of the derived algorithm through the complexity
of the class of distributions Q, yielding a principled way to develop new algorithms.

Overall, our work demonstrates the importance of natural-gradients and information
geometry for algorithm design in ML. This is similar in spirit to Information Geometric
Optimization (Ollivier et al., 2017) which focuses on the optimization of black-box, deter-
ministic functions. In contrast, we derive generic learning algorithms by using a Bayesian
objective where an additional entropy term is added.

The BLR we use is a generalization of the method by Khan and Lin (2017); Khan and
Nielsen (2018), proposed specifically for variational inference. Here, we establish it as a
general learning rule to derive many old and new learning algorithms. These include both
Bayesian and non-Bayesian algorithms, going way beyond its original proposal. We do not
claim that these successful algorithms work well because they are derived from the BLR.
Rather, we use the BLR to simply unravel the inherent Bayesian nature of these “good”
algorithms. In this sense, the BLR can be seen as a variant of Bayes’ rule, useful for generic
algorithm design.

1.3 Examples

To fix ideas, we will now use the BLR to derive three classical algorithms: gradient descent,
Newton’s method, and ridge regression. Such derivations are repeated throughout the paper
to recover various algorithms in different fields. A full list of the learning algorithms derived
in this paper is given in Table 1. We not only unify and generalize existing algorithms but
also derive new ones. These includes: (i) a new multimodal optimization algorithm, (ii)
new uncertainty estimation algorithms (OGN and VOGN), (iii) the BayesBiNN algorithm
for binary neural networks, and (iv) non-conjugate variational inference algorithms.

For notational simplicity, we will write qλt as qt in the rest of the paper. Throughout
this section, we choose Q to be the set of multivariate Gaussians and use the following
simplified form of the BLR,

λt+1 ← (1− ρt)λt − ρt∇µEqt
[
¯̀(θ) + log h(θ)

]
, (6)

This is obtained by using ∇µH(q) = −λ−∇µEq(log h(θ)); see the derivation in App. B.

1.3.1 Gradient Descent

The gradient descent algorithm uses the following update

θt+1 ← θt − ρt∇θ ¯̀(θt),

using only the first-order information ∇θ ¯̀(θt) (the gradient evaluated at θt). We choose
q(θ) = N (θ|m, I), a multivariate Gaussian with unknown mean m and known covariance
matrix set to I for simplicity; a more general case is given in Eq. 35.
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We can now simply plug in the definition of λ,µ, and h(θ) in Eq. 6. For q(θ) =
N (θ|m, I), we have λ = µ = m (Table 2). We also have log h(θ) = −1

2P log(2π)− 1
2θ

Tθ.
Using these in Eq. 6, the update follows directly:

mt+1 ←mt − ρt ∇mEN (θ|m,I)

[
¯̀(θ)

]∣∣
m=mt

. (7)

This is gradient descent but over the expected loss Eq
[
¯̀(θ)

]
. We can remove the expectation

by using the first-order delta method (Dorfman, 1938; Ver Hoef, 2012) (App. C) where we
approximate the expectation of a function by its value at the mean,

∇mEq
[
¯̀(θ)

]
≈ ∇θ ¯̀(θ)

∣∣
θ=m

.

With this, the BLR equals the gradient descent algorithm with mt as the iterate θt. The
two choices, first of the distribution Q and second of the delta method, give us gradient
descent from the BLR.

The delta method allows us to interpret non-Bayesian solutions as crude approximations
of Bayesian ones. By approximating the expectation in the BLR with a greedy approxima-
tion, we are back to minimizing a deterministic (non-Bayesian) objective. This observation
suggests that Eq. 7 should perform better than gradient descent. In Sec. 4.4, we will revisit
this point and see that averaging in fact leads to improved uncertainty and better robust-
ness properties. Using the Dirac’s-delta distribution instead of the delta method is not
advisable, as their use in this context is fundamentally flawed. This is because the entropy
goes to −∞, making the Bayesian objective meaningless (Welling et al., 2008).

1.3.2 Newton’s Method

Newton’s method is a second-order method

θt+1 ← θt −
[
∇2
θ

¯̀(θt)
]−1 [∇θ ¯̀(θt)

]
. (8)

which too can be derived from the BLR by expanding the class Q to q(θ) = N (θ|m,S−1)
with an unknown precision matrix S. This example illustrates a property of the BLR: the
complexity of the derived algorithm is directly related to the complexity of the exponential
family Q. Fixed covariances previously gave rise to gradient-descent (a first-order method)
and by increasing the complexity where we also learn the precision matrix, the BLR reduces
to a (more complex) second-order method.

We use the simplified form of the BLR given in Eq. 6. The function h(θ) is a constant,
and the natural and expectation parameters divide themselves into natural pairs

λ(1) = Sm,

λ(2) = −1
2S,

µ(1) = Eq[θ] = m,

µ(2) = Eq[θθ>] = S−1 +mmT .
(9)

The natural gradients can be expressed in terms of the gradient and Hessian of ¯̀(θ). To show
this, we use the chain-rule to first write gradients with respect to µ in terms of (m,S−1)
(first equality below) and then use Bonnet’s and Price’s theorem respectively (Bonnet, 1964;
Price, 1958; Rezende et al., 2014) to get the second equality (full derivation is in App. D),

∇µ(1)Eq[¯̀(θ)] = ∇mEq[¯̀(θ)]− 2
[
∇S−1Eq[¯̀(θ)]

]
m = Eq[∇θ ¯̀(θ)]− Eq[∇2

θ
¯̀(θ)]m, (10)

∇µ(2)Eq[¯̀(θ)] = ∇S−1Eq[¯̀(θ)] =
1

2
Eq[∇2

θ
¯̀(θ)]. (11)
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The expressions show that the natural gradients contain the information about the first and
second-order derivatives of ¯̀(θ).

The BLR now turns into an online variant of Newton’s method where the precision
matrix contains an exponential-smoothed Hessian average, used as a pre-conditioner to
update the mean,

mt+1 ←mt − ρtS−1
t+1Eqt

[
∇θ ¯̀(θ)

]
and St+1 ← (1− ρt)St + ρtEqt

[
∇2
θ

¯̀(θ)
]
. (12)

We can recover the classical Newton’s method in three steps. First, apply the delta method
(see Eqs. 65 and 66 in App. C),

Eq
[
∇θ ¯̀(θ)

]
≈ ∇θ ¯̀(θ)

∣∣
θ=m

and Eq
[
∇2
θ

¯̀(θ)
]
≈ ∇2

θ
¯̀(θ)

∣∣
θ=m

. (13)

Second, set the learning rate to 1 which is justified when the loss is strongly convex or the
algorithm is initialized close to the solution. Finally, treat the mean mt as the iterate θt.

1.3.3 Ridge Regression

Why do we get a second-order method when we increase the complexity of the Gaussian?
This is due to the natural gradients which, depending on the complexity of the distribution,
retrieve essential higher-order information about the loss landscape. We illustrate this now
through the simplest non-trivial case of Ridge regression. Denote input matrix by X ∈
RN×D and output by y ∈ RN . The loss is quadratic: ¯̀(θ) = 1

2(y−Xθ)>(y−Xθ)+ 1
2δθ

>θ
with δ > 0 as the regularization parameter, and the solution is available in closed-form:

θ∗ = (X>X + δI)−1X>y.

Natural gradients for this case are extremely easy to derive. We first note that the expected-
loss is linear in µ, that is,

Eq
[
¯̀(θ)

]
= −y>Xµ(1) + Tr

[
1

2

(
XTX + δI

)
µ(2)

]
+

1

2
y>y,

and therefore the natural-gradients are simply the coefficients in front of µ(1) and µ(2):

∇µ(1)Eq
[
¯̀(θ)

]
= −XTy and ∇µ(2)Eq

[
¯̀(θ)

]
=

1

2

(
XTX + δI

)
. (14)

These already contain parts of the solution θ∗ which we can recover by using Eq. 5

λ∗ = ∇µEqλ∗
[
−¯̀(θ)

]
=⇒ S∗m∗ = XTy, S∗ = XTX + δI.

and solving to get the mean m∗ = θ∗. By increasing the complexity of Q, natural-gradients
can retrieve appropriate higher-order information, which are then assigned to the corre-
sponding natural parameters using Eq. 5. This is the main reason why different algorithms
are obtained when we change the class Q. We discuss this point further in Sec. 3 when
relating Bayesian principles to those of optimization.
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Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.

Optimization Algorithms

Gradient Descent Gaussian (fixed cov.) Delta method 1.3.1

Newton’s method Gaussian —–“—– 1.3.2

Multimodal optimiza-
tion (New)

Mixture of Gaussians —–“—– 3.2

Deep-Learning Algorithms

SGD Gaussian (fixed cov.) Delta method, stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal
cov.)

Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

4.2

Dropout Mixture of Gaussians Delta method, stochastic approx.,
responsibility approx.

4.3

STE Bernoulli Delta method, stochastic approx. 4.5

Online Gauss-Newton
(OGN) (New)

Gaussian (diagonal
cov.)

Gauss-Newton Hessian approx. in
Adam & no square-root scaling

4.4

Variational OGN (New) —–“—– Remove delta method from OGN 4.4

BayesBiNN (New) Bernoulli Remove delta method from STE 4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes Exponential family Set learning rate ρt = 1 5.1

Laplace’s method Gaussian Delta method 4.4

Expectation-
Maximization

Exponential Family
+ Gaussian

Delta method for the parameters 5.2

Stochastic Variational
Inference (SVI)

Exponential family
(mean-field)

Stochastic approx., local ρt = 1 5.3

Variational Message
Passing (VMP)

—–“—– ρt = 1 for all nodes 5.3

Non-Conjugate VMP —–“—– —–“—– 5.3

Non-Conjugate Varia-
tional Inference (New)

Mixture of Exponen-
tial family

None 5.4

Table 1: A summary of learning algorithms derived from the BLR, along with the required
approximations to the posterior and natural gradients. New algorithms are marked with
“New”. Abbreviations: cov. → covariance, STE → Straight-Through-Estimator.
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1.4 Outline of the Rest of the Paper

The rest of the paper is organized as follows. In Sec. 2, we give two derivations of the BLR
by using natural-gradient descent and mirror descent, respectively. In Sec. 3, we summarize
the main principles for the derivation of optimization algorithms, and give guidelines for
the design of new multimodal-optimization algorithms. In Sec. 4, we discuss the derivation
of existing deep-learning algorithms, and design new algorithms for uncertainty estimation.
In Sec. 5, we discuss the derivation of algorithms for Bayesian inference for both conjugate
and non-conjugate models. In Sec. 6, we conclude.

2. Derivation of the Bayesian Learning Rule

This section contains two derivations of the BLR. First, we interpret it as a natural-gradient
descent using a second-order expansion of the KLD, which strengthens its intuition. Sec-
ond, we do a more formal derivation specifically for exponential-family, where we use a
mirror-descent algorithm leveraging the connection to Legendre-duality. This derivation is
more direct and obtained without the second-order approximation. It reveals that certain
parameterizations are preferable for natural-gradient descent over Bayesian objectives.

2.1 Bayesian Learning Rule as Natural-Gradient Descent

By expanding the KLD term and collecting the log-prior term with the loss functions, we
can write the objective in Eq. 2 as follows,

L(λ) = Eq[¯̀(θ) + log q(θ)].

The classical gradient-descent algorithm to minimize L(λ) performs the following update,

λt+1 ← λt − ρt∇λL(λt). (15)

The insight motivating natural-gradient algorithms, is that Eq. 15 solves the following:

λt+1 ← arg min
λ
〈∇λL(λt),λ〉+

1

2ρt
‖λ− λt‖22, (16)

which reveals the implicit Euclidean penalty of changes in the parameters. The parameters
λt parameterize probability distributions, and therefore their updates should be penal-
ized based on the distance in the space of distributions. Distance between two parameter
configurations might be a poor measure of the distance between the corresponding distribu-
tions. Natural-gradient algorithms (Amari, 1998; Martens, 2020) use instead an alternative
penalty, and using the KLD, we get

λt+1 ← arg min
λ
〈∇λL(λt),λ〉+

1

ρt
DKL[q(θ) ‖ qt(θ)]. (17)

A closed form update can be obtained with a second-order expansion of the KLD-term
which is obtained by using the fact that the Hessian of the KLD with respect to λ is equal
to the FIM F (λ) of q(θ) (Pascanu and Bengio, 2013), that is,

DKL[q(θ) ‖ qt(θ)] ≈ 1

2
(λ− λt)>F (λt)(λ− λt)

8
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Using this, we get
λt+1 ← λt − ρtF (λt)

−1 ∇λL(λt). (18)

The descent direction F (λt)
−1 ∇λtL(λt) in this case is referred to as the natural-gradient.

When λt is the natural parameter of qt(θ), the above coincides with the BLR update Eq. 3.
We stress that our use of natural-gradient method is more general than the more pop-

ular use for maximum-likelihood estimation (Amari, 1998; Martens, 2020). There, a log-
likelihood of the form log p(y;θ) is maximized by using the fisher F (θ) of p(y;θ),

θt+1 ← θt − ρtF (θt)
−1∇θ[− log p(y;θ)]. (19)

This update uses the same distribution p(y;θ) to define both the objective and the Fisher,
which is in contrast to Eq. 3 where we are free to use any loss ¯̀(θ) in the objective and the
distribution q(θ) can also be chosen freely, irrespective of the objective. The BLR update
is more general and the above maximum-likelihood update can be obtained as a special
instance by using q as a Gaussian distribution, as shown in Sec. 4.4.

2.2 Bayesian Learning Rule as Mirror-Descent

The previous derivation holds for a general q(θ). In this section, we will do a derivation
specifically for exponential-family distribution by using a mirror-descent formulation, simi-
larly to Raskutti and Mukherjee (2015), but for a Bayesian objective. A mirror-descent step
defined in the space of µ is shown to be equivalent to a natural-gradient step in the space
of λ (the update Eq. 18). This is a consequence of the Legendre-duality between the spaces
of λ and µ (Wainwright and Jordan, 2008), and is also related to the dual-flat Riemannian
structures (Amari, 2016) employed in information geometry. Unlike the previous derivation,
this derivation is more direct and obtained without any second-order approximation of the
KLD, and it reveals that, due to computational reasons, certain parameterizations should
be preferred for a natural-gradient descent over Bayesian objectives.

There is a duality between the space of λ and µ, since µ = ∇λA(λ) is a bijection. An
alternative view of this mapping, is to use the Legendre transform of A(λ),

A∗(µ) = sup
λ′∈Ω

〈µ,λ′〉 −A(λ′).

The mapping follows by setting the gradient of the right-hand-side to zero. The reverse
mapping is A(λ) = supµ′∈M 〈µ′,λ〉 −A∗(µ′), giving us, λ = ∇µA∗(µ).

The expectation parameters µ provide a dual coordinate system to specify the expo-
nential family with natural parameter λ, and using µ we express q(θ) as given below (see
Banerjee et al. (2005) for details):

q(θ) = h(θ) exp [−DA∗(T (θ)‖µ) +A∗(T (θ))] (20)

where DA∗(µ1‖µ2) = A∗(µ1) − A∗(µ2) − 〈µ1 − µ2,∇µA∗(µ2)〉 is the Bregman divergence
defined using the function A∗(µ). The Bregman and KL divergences are related,

DKL[q1(θ) ‖ q2(θ)] = DA∗(µ1‖µ2) = DA(λ2‖λ1). (21)

The Bregman divergence is equal to the KL divergence between the corresponding distri-
butions, which can also be measured in the dual space using the (swapped order of the)
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natural parameters. We can then use these Bregman divergences to measure the distances
in the two dual spaces.

The relationship with the KLD enables us to express natural-gradient descent in one
space as a mirror descent in the dual space. Specifically, the following mirror-descent update
in the space M is equivalent to the natural-gradient descent Eq. 18 in the space of Ω,

µt+1 ← arg min
µ∈M

〈∇µL̃(µt),µ〉+
1

ρt
DA∗(µ‖µt). (22)

The L̃(µ) = L(λ) here is a reparameterized objetive expressed in terms of µ. The proof is
straightforward: from the definition for the Bregman divergence, we find that

∇µDA∗(µ‖µt) = λ− λt, (23)

and if we take the derivative of Eq. 22 with respect to µ and set it to zero, we get the
BLR update. The derivation shows that the second-order approximation in the previous
derivation (used to obtain Eq. 18) is in fact exact for exponential-family distribution. Due
to this we get an equivalence between the natural gradient descent and mirror descent.

The reverse statement also holds: a mirror descent update in the space Ω leads to
a natural gradient descent in the space of M. From a Bayesian viewpoint, Eq. 22 is
closer to Bayes’ rule since an addition in the natural-parameter space Ω is equivalent to
multiplication in the space of Q (see Sec. 5.1). Natural parameters additionally encode
conditional independence (e.g., for Gaussians) which is preferable from a computational
viewpoint (see Malagò and Pistone (2015) for a similar suggestion). In any case, a reverse
version of BLR can always be used if the need arises.

3. Optimization Algorithms from the Bayesian Learning Rule

3.1 First- and Second-Order Methods by using Gaussian Candidates

The examples in Sec. 1.3 demonstrate the key ideas behind our recipe to derive learning
algorithms:

1. Natural-gradients retrieve essential higher-order information about the loss landscape
and assign them to the appropriate natural parameters,

2. Both of these choices are dictated by the entropy of the chosen class Q, which auto-
matically determines the complexity of the derived algorithms.

These are concisely summarized in the optimality condition of the Bayes objective (derived
in Eq. 5).

∇µEq∗ [¯̀(θ)] = ∇µH (q∗) (24)

From this, we can derive as a special case the optimality condition of a non-Bayesian problem
over ¯̀(θ), given in Eq. 1. For instance, for Gaussians N (θ|m, I), the entropy is constant.
Therefore the right hand side in Eq. 24 goes to zero, giving the first equality below,

∇mEq∗
[
¯̀(θ)

]∣∣
m=m∗

= 0
Bonnet’s thm.−−−−−−−−→ Eq∗

[
∇θ ¯̀(θ)

]
= 0

delta−−−→ ∇θ ¯̀(θ)
∣∣
θ=θ∗

= 0. (25)
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The simplifications shown at the right above are respectively obtained by using Bonnet’s
theorem (App. D) and the delta method (App. C) to finally recover the 1st-order optimality
condition at a local minimizer θ∗ of ¯̀(θ). Clearly, the above natural gradient contain
the information about the first-order derivative of the loss, to give us an equation that
determines the value of the natural parameter m∗.

When the complexity of the Gaussian is increased to include the covariance parameters
with candidates N (θ|m,S−1), the entropy is no more a constant but depends on S: we have
H(q) = −1

2 log |2πeS|. The fixed-point of the BLR (in Eq. 12 now) to yield an additional
condition, shown on the left,

∇S−1Eq∗
[
¯̀(θ)

]∣∣
S−1=S−1

∗
=

1

2
S∗

Price’s thm.−−−−−−−→ Eq∗
[
∇2
θ

¯̀(θ)
]

= S∗
delta−−−→ ∇2

θ
¯̀(θ)

∣∣
θ=θ∗

� 0.

(26)
The simplifications at the right are respectively obtained by using Price’s theorem (App. D)
and the delta method (App. C) to recover the 2nd-order optimality condition of a local
minimizer θ∗ of ¯̀(θ), Here, � 0 denotes the positive-definite condition which follows from
S∗ � 0. The condition above matches the second-order derivatives to the precision matrix
S∗. In general, more complex sufficient statistics in q(θ) can enable us to retrieve higher-
order derivatives of the loss through natural gradients.

3.2 Multimodal Optimization by using Mixtures-Candidate Distributions

It is natural to expect that by further increasing the complexity of the class Q, we can
obtain algorithms that go beyond standard Newton-like optimizers. We illustrate this point
by using mixture distribution to obtain a new algorithm for multimodal optimization (Yu
and Gen, 2010). The goal is to simultaneously locate multiple local minima within a single
run of the algorithm (Wong, 2015). Mixture distributions are ideal for this task where
individual components can be tasked to locate different local minima and diversity among
them is encouraged by the entropy, forcing them to take responsibility of different regions.
Our goal in this section is to illustrate this principle. Note that we do not aim to propose
new algorithms that solve multimodal optimization in its entirety.

We will rely on the work of Lin et al. (2019b,a) who derive a natural-gradient update,
similar to Eq. 3, but for mixtures. Consider, for example, the finite mixture of Gaussians

q(θ) =
K∑
k=1

πkN (θ|mk,S
−1
k )

with mk and Sk as the mean and precision of the k’th Gaussian component and πk are the
component probabilities with πK = 1 −

∑K−1
k=1 πk. In general, the FIM of such mixtures

could be singular, making it difficult to use natural-gradient updates. However, the joint
q(θ, z = k) = πkN (θ|mk,S

−1
k ), where z ∈ {1, 2, . . . ,K} a mixture-component indicator,

has a well-defined FIM which can be used instead. We will now briefly describe this for the
mixture of Gaussian case with fixed πk.

We start by writing the natural and expectation parameters of the joint q(θ, z = k),
denoted by λk and µk respectively. Since πk are fixed, these take very similar form to a

11
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single Gaussian case in Eq. 9 as shown below (we denote the indicator function by 1[z=k]),

λ
(1)
k = Skmk,

λ
(2)
k = −1

2Sk,

µ
(1)
k = Eq

[
1[z=k]θ

]
= πkmk,

µ
(2)
k = Eq

[
1[z=k]θθ

T
]

= πk
(
S−1
k +mkm

T
k

)
,

(27)

where λk = {λ(1)
k ,λ

(2)
k } and µk = {µ(1)

k ,µ
(2)
k }. With this, we can write a natural-gradient

update for λk, for all k = 1, . . . ,K, by using the gradient with respect to µk (Lin et al.,
2019b, Theorem 3),

λk,t+1 ← λk,t − ρt∇µk
[
Eqt
(
¯̀(θ)

)
−H(qt)

]
, (28)

where λk,t denotes the value of the natural parameter λk at iteration t and H(q) =
Eq[− log q(θ)] is the entropy of the mixture q(θ) (not the joint q(θ, z)). This is an ex-
tension of the BLR (Eq. 3) to finite mixtures.

As before, the natural gradients retrieve first and second order information. Specifically,
as shown in App. E, the update for each k takes a Newton-like form,

mk,t+1 ←mk,t − ρt S−1
k,t+1Eqk,t

[
∇θ ¯̀(θ) +∇θ log q(θ)

]
, (29)

Sk,t+1 ← Sk,t + ρt Eqk,t
[
∇2
θ

¯̀(θ) +∇2
θ log q(θ)

]
, (30)

where qk,t(θ) = N (θ|mk,t,S
−1
k,t ) is the k’th component at iteration t. The mean and pre-

cision of a component are updated using the expectations of the gradient and Hessian
respectively. Similarly to the Newton step of Eq. 12, the first update is preconditioned with
the covariance. The expectation helps to focus on a region where the component has a high
probability mass.

The update can locate multiple solutions in a single run, when each component takes the
responsibility of an individual minimum. For example, for a problem with two local minima
θ1,∗ and θ2,∗, the best candidate with two components N (θ|m1,∗,S

−1
1,∗) and N (θ|m2,∗,S

−1
2,∗)

satisfies optimality condition,

EN (θ|mk,∗,S
−1
k,∗)

[
∇θ ¯̀(θ) + r(θ)S1,∗(m1,∗ − θ) + (1− r(θ))S2,∗(m2,∗ − θ)︸ ︷︷ ︸

=∇θ log q(θ)

]
= 0, (31)

for k = 1, 2, where we use expression for ∇θ log q(θ) from Eq. 69 in App. E, and r(θ) is the
responsibility function defined as

r(θ) =
πN (θ|m1,∗,S

−1
1,∗)

πN (θ|m1,∗,S
−1
1,∗) + (1− π)N (θ|m2,∗,S

−1
2,∗)

. (32)

Suppose that each component takes responsibility of one local minimum each, for example,
for θ sampled from the first component, r(θ) ≈ 1, and for those sampled from the second
component, r(θ) ≈ 0 (see Eq. 74 in App. E which gives the explicit assumptions). Under
this condition, both the second and third term in Eq. 31 are negligible, and the mean mk,∗
approximately satisfies the first-order optimality condition to qualify as a minimizer of ¯̀(θ),

EN (θ|mk,∗,S
−1
k,∗)

[∇θ ¯̀(θ)] ≈ 0
delta−−−→ ∇θ ¯̀(θ)

∣∣
θ=mk,∗

≈ 0, for k = 1, 2 (33)

12



The Bayesian Learning Rule

This roughly implies that mk,∗ ≈ θk,∗, meaning the two components have located the two
local minima. The example illustrates the role of entropy in encouraging diversity through
the responsibility function. There remain several practical difficulties to overcome before
we are ensured a good algorithmic outcome, like setting the correct number of components,
appropriate initialization, and of course degenerate solutions where two components collapse
to be the same. The example simply illustrates the usefulness of being Bayesian.

Other mixture distributions can also be used as shown in Lin et al. (2019b) who con-
sider the following: finite mixtures of minimal exponential-families, scale mixture of Gaus-
sians (Andrews and Mallows, 1974; Eltoft et al., 2006), Birnbaum-Saunders distribution
(Birnbaum and Saunders, 1969), multivariate skew-Gaussian distribution (Azzalini, 2005),
multivariate exponentially-modified Gaussian distribution (Grushka, 1972), normal inverse-
Gaussian distribution (Barndorff-Nielsen, 1997), and matrix-variate Gaussian distribution
(Gupta and Nagar, 2018; Louizos and Welling, 2016).

4. Deep-Learning Algorithms from the Bayesian Learning Rule

4.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is one of the most popular deep-learning algorithms due
to its computational efficiency. The computational speedup is obtained by approximating
the gradient of the loss by a stochastic-gradient built using a small subsetM of M examples
with M � N . The subset M, commonly referred to as a mini-batch, is randomly drawn
at each iteration from the full data set using a uniform distribution, and the resulting
mini-batch gradient

∇̂θ ¯̀(θ) =
N

M

∑
i∈M
∇θ`(yi, fθ(xi)) +∇θR(θ), (34)

is much faster to compute. Similarly to the gradient-descent case in Sec. 1.3.1, the SGD
step can be interpreted as the BLR over a distribution q(θ) = N (θ|m, I) with the unknown
mean m and the gradient in Eq. 7 being replaced by the mini-batch gradient. The BLR
update is extended to candidates q(θ) = N (θ|m,S−1) with any fixed S � 0 to get an
SGD-like update where S−1 is the preconditioner,

mt+1 ←mt − ρtS−1 ∇̂θ ¯̀(θ)
∣∣∣
θ=mt

. (35)

This is derived similarly to Sec. 1.3.1 by using the various quantities associated with
N (θ|m, I), that is, λ = Sm, µ = m, and 2 log h(θ) = P log |2πS| − θTSθ.

The above BLR interpretation sheds light on the ineffectiveness of first-order methods
(like SGD) to estimate posterior approximations. This is a recent trend in Bayesian deep
learning, where a preconditioned update is preferred due to the an-isotropic SGD noise
(Mandt et al., 2017; Chaudhari and Soatto, 2018; Maddox et al., 2019). Unfortunately, a
first-order optimizer (such as Eq. 35) offers no clue about estimating S. SGD iterates can
be used (Mandt et al., 2017; Maddox et al., 2019), but iterates and the noise in them are
affected by the choice of S, which makes the estimation difficult. With our Bayesian scheme,
the preconditioner is estimated automatically using a second-order method (Eq. 12) when
we allow S as a free parameter. We discuss this next in the context of adaptive learning-rate
algorithms.
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4.2 Adaptive Learning-Rate Algorithms

Adaptive learning-rate algorithms, motivated from Newton’s method, adapt the learning
rate in SGD with a scaling vector, and we discuss their relationship to the BLR. Early
adaptive variants relied on the diagonal of the mini-batch Hessian matrix to reduce the
computation cost (Barto and Sutton, 1981; Becker and LeCun, 1988), and use exponential
smoothing to improve stability (LeCun et al., 1998):

θt+1 ← θt − α
1

st+1
◦ ∇̂θ ¯̀(θt), and st+1 ← (1− β)st + β diag[∇̂2

θ
¯̀(θt)], (36)

where a ◦ b and a/b denote element-wise multiplication and division respectively, and the
scaling vector, denoted by st, uses diag[∇̂2

θ
¯̀(θt)] which denotes a vector whose j’th entry

is the mini-batch Hessian

∇̂2
θj

¯̀(θ) =
N

M

∑
i∈M
|∇2

θj
`(yi,f θ(xi))|+∇2

θj
R(θ).

Note the use of absolute value to make sure that the entries of st stay positive (assuming
R(θ) to be strongly-convex). The exponential smoothing, a popular tool from the non-
stationary time-series literature (Brown, 1959; Holt et al., 1960; Gardner Jr, 1985), works
extremely well for deep learning and is adopted by many adaptive learning-rate algorithms,
for example, the natural Newton method of Le Roux and Fitzgibbon (2010) and the vSGD
method by Schaul et al. (2013) both use it to estimate the second-order information, while
more modern variants such as RMSprop (Tieleman and Hinton, 2012), AdaDelta (Zeiler,
2012), and Adam (Kingma and Ba, 2015), use it to estimate the magnitude of the gradient
(a more crude approximation of the second-order information (Bottou et al., 2018)).

The BLR naturally gives rise to the update in Eq. 36, where exponential smoothing
arises as a consequence and not something we need to invent. We optimize over candidates
of the form q(θ) = N (θ|m,S−1) where S is constrained to be a diagonal matrix with a
vector s as the diagonal. This choice results in the BLR update shown below (the derivation
is identical to Sec. 1.3.2),

θt+1 ← θt − ρt
1

st+1
◦ ∇θ ¯̀(θt), where st+1 ← (1− ρt)st + ρt diag(∇2

θ
¯̀(θt)), (37)

to obtain mt = θt and diag(St) = st. Replacing the gradient and Hessian by their mini-
batch approximations and then employing different learning-rates for θt and st, we recover
the update in Eq. 36. Using different learning rates is useful to compensate for the errors
due to minibatches and diagonal approximation of the Hessian.

The similarity of the BLR update can be exploited to compute uncertainty estimates
for deep-learning models. Khan et al. (2018) study the relationship between Eq. 37 and
modern adaptive learning-rate algorithms, such as RMSprop (Tieleman and Hinton, 2012),
AdaDelta (Zeiler, 2012), and Adam (Kingma and Ba, 2015). These modern variants also
use exponential smoothing but over gradient-magnitudes ∇̂θ ¯̀(θt) ◦ ∇̂θ ¯̀(θt), instead of the
Hessian. For example, RMSprop uses the following update,

θt+1 ← θt − α
1

√
vt+1 + c1

◦
[
∇̂θ ¯̀(θt)

]
, where vt+1 ← (1− β)vt + β

[
∇̂θ ¯̀(θt) ◦ ∇̂θ ¯̀(θt)

]
.

(38)

14



The Bayesian Learning Rule

There are also some other minor differences to Eq. 37, for example, the scaling uses a
square-root to take care of the factor 1/M2 in the square of the mini-batch gradient and
a small c > 0 is added to avoid (near)-zero vt+1 (Khan et al., 2018, Sec. 3.4). Despite
these small differences, the similarly of the two updates in Eqs. 37 and 38 enables us to
incorporate Bayesian principles in deep learning. Uncertainty is then computed using a
slightly-modified RMSprop update (Osawa et al., 2019) which, with just a slight changes in
the code, can exploit all the tricks-of-the-trade of deep learning such as batch normalization,
data augmentation, clever initialization, and distributed training (also see Sec. 4.4). The
BLR update extends the application of adaptive learning-rate algorithms to uncertainty
estimation in deep learning.

The update in Eq. 37 also demonstrate that the BLR can naturally deal with stochastic
approximations. The update is an online extension of Newton’s method where the scale
vector uses exponential smoothing. Such smoothing leads to much more stable than directly
using a mini-batch approximation of the Hessian in Newton’s method. The BLR can lead to
second-order methods that are most suitable for online, stochastic, or incremental learning.

The BLR update can also be used to recover the Adam optimizer (Kingma and Ba,
2015), which is inarguably one of the most popular optimizer. The Adam optimizer is closely
related to a BLR variant which uses a momentum based mirror-descent. Momentum is a
common technique to improve convergence speed of deep learning (Sutskever et al., 2013).
The classical momentum method is based on the Polyak’s heavy-ball method (Polyak, 1964),

θt+1 ← θt − α∇̂θ ¯̀(θt) + γt(θt − θt−1)

with a fixed momentum coefficient γt > 0, but the momentum used in adaptive learning-
rate algorithms, such as Adam, differ in the use of scaling with st in front of the momentum
term θt− θt−1 (see Eq. 78 in App. F). These variants can be better explained by including
a momentum term in the BLR within the mirror descent framework of Sec. 2, which gives
the following modification of the BLR (see App. F):

λt+1 ← λt − ρt∇̃λ
[
Eqt
(
¯̀(θ)

)
−H(qt)

]
+ γt(λt − λt−1).

For a Gaussian distribution, this recovers both SGD and Newton’s method with momentum.
Variants like Adam can then be obtained by making approximations to the Hessian and by
using a square-root scaling; see Eq. 81 in App. F.

Finally, we will also mention Aitchison (2020) who derive deep-learning optimizers using
a Bayesian filtering approach with updating equations similar to the ones we presented.
They further discuss modifications to justify the use of square-root in Adam and RMSprop.
The approach taken by Ollivier (2018) is similar, but exploits the connection of Kalman
filtering and the natural-gradient method.

4.3 Dropout

Dropout is a popular regularization technique to avoid overfitting in deep learning where
hidden units are randomly dropped from the neural network (NN) during training (Srivas-
tava et al., 2014). Gal and Ghahramani (2016) interpret SGD-with-dropout as a Bayesian
approximation (called MC-dropout), but their crude approximation to the entropy term
prohibits extensions to more flexible posterior approximations. In this section, we show
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that by using the BLR we can improve their approximation and go beyond SGD to derive
MC-dropout variants of Newton’s method, Adam and RMSprop.

Denoting the j’th unit in the l’th layer by fjl(x) for an input x, we can write the i’th
unit for the l + 1’th layer as follows:

fi,l+1(x) = h

 nl∑
j=1

θijlzjlfjl(x)

 (39)

where the binary weights zjl ∈ {0, 1} are to be defined, nl is the number of units in the
l’th layer, all θijl ∈ R are the parameters, and h(·) is a nonlinear activation function. For
simplicity, we have not included an offset term.

Without dropout, all weights zjl are set to one. With dropout, all zjl’s are independent
Bernoulli variables with probability for being 1 equal to π1 (and fixed). If zjl = 0, then the
j’th unit of the l’th layer is dropped from the NN, otherwise it is retained. Let θ̃ijl = θijlzjl
and let θ and θ̃ denote the complete set of parameters. The training can be performed with
the following simple modification of SGD where θ̃ are used during back-propagation,

θt+1 ← θt − α∇̂θ ¯̀(θ̃t). (40)

This simple procedure has proved to be very effective in practice and dropout has become
a standard trick-of-the-trade to improve performance of deep networks trained with SGD.

We can include dropout into the Bayesian learning rule, by considering a spike-and-slab
mixture distribution for θjl = (θ1jl, . . . , θnljl)

q(θjl) = π1N (θjl|mjl,S
−1
jl ) + (1− π1)N (θjl|0, s−1

0 Inl) (41)

where the means and covariances are unknown, but s0 is fixed to a small positive value
to emulate a spike at zero. Further, we assume independence for every j and l, q(θ) =∏
jl q(θjl). For this choice, we arrive in the end at the following update,

θjl,t+1 ← θjl,t − ρt S−1
jl,t+1

[
∇̂θjl ¯̀(θ̃t)

]
/π1, (42)

Sjl,t+1 ← (1− ρt)Sjl,t + ρt

[
∇̂2
θjl

¯̀(θ̃t)
]
/π1. (43)

The derivation in App. G uses two approximations. First, the delta method (Eq. 84, also
used by Gal and Ghahramani (2016)), and second, an approximation to the responsibility
function (Eq. 32) which assumes that θjl is far apart from 0 (can be ensured by choosing
s0 to be very small; see Eqs. 85 and 86).

The update is a variant of the Newton’s method derived in Eq. 12. The difference is
that the gradients and Hessians are evaluated at the dropout weights θ̃t. By choosing Sjl,t
to be a diagonal matrix as in Sec. 4.2, we can similarly derive RMSprop/Adam variants
with dropout. The BLR derivation enables more flexible posterior approximations than the
original derivation by Gal and Ghahramani (2016).

We can build on the mixture candidate model to learn π1 and also allow it to be different
across layers, although by doing so we leave the justification leading to dropout. Such
extensions can be obtained using the extension to mixture distribution by Lin et al. (2019b).
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The update requires gradients with respect to π1 which can be approximated by using the
Concrete distribution (Maddison et al., 2016; Jang et al., 2016) where the binary zjl is
replaced with an appropriate variable in the unit interval, see also Sec. 4.5 for a similar
approach. Gal et al. (2017) proposed a similar extension but their approach do not allow
for more flexible candidate distributions. Our approach here extends to adaptive learning-
rate optimizers, and can be extended to more complex candidate distributions.

4.4 Uncertainty Estimation in Deep Learning

The observation that some deep-learning algorithms are specific instances of the BLR, can
be leveraged to improve them. Specifically, we will show that, by improving the approxima-
tions, we get improved uncertainty estimates. The solutions will also have better robustness
properties, similar to those of flatter minima found by stochastic methods in deep learning.

Uncertainty estimation in deep learning is crucial for many applications, such as med-
ical diagnosis and self-driving cars, but its computation is extremely challenging due to a
large number of parameters and data examples. A straightforward application of Bayesian
methods does not usually work. Standard Bayesian approaches, such as Markov Chain
Monte Carlo (MCMC), Stochastic Gradient Langevin Dynamics (SGLD), and Hamiltonian
Monte-Carlo (HMC), are either infeasible or slow (Balan et al., 2015). Even approximate in-
ference approaches, such as Laplace’s method (Mackay, 1991; Ritter et al., 2018), variational
inference (Graves, 2011; Blundell et al., 2015), and expectation propagation (Hernandez-
Lobato and Adams, 2015), do not match the performance of the standard point-estimation
methods at large scale. On the ImageNet data set, for example, these Bayesian methods
performed poorly until recently when Osawa et al. (2019) applied the natural-gradient algo-
rithms (Khan et al., 2018; Zhang et al., 2018b). Such natural-gradient algorithms are in fact
variants of the BLR and we will now discuss their derivation, application, and suitability
for uncertainty estimation in deep learning.

We start with the Laplace’s method which is one of the simplest approaches to obtain
uncertainty estimates from point estimates; see Mackay (1991) for an early application to
NN. Given a minimizer θ∗ of ERM in Eq. 1 (assume that the loss correspond to a negative
log probability over outputs yi), in Laplace’s method, we employ a Gaussian approximation
N (θ|θ∗,S−1

∗ ) where S∗ = ∇2
θ

¯̀(θ∗). For models with billions of parameters, even forming
S∗ is infeasible and a diagonal approximation is often employed (Ritter et al., 2018). Still,
Hessian computation after training requires a full pass through the data which is expensive
and challenging. The BLR updates solve this issue since Hessian can be obtained during
training, for example, using Eq. 37 with a minibach gradient and Hessian (denoted by ∇̂),

θt+1 ← θt − ρt
1

st+1
◦ ∇̂θ ¯̀(θt), with st+1 ← (1− ρt)st + ρt diag(∇̂2

θ
¯̀(θt)). (44)

The vectors st converge to an unbiased estimate of the diagonal of the Hessian at θ∗.

Using (diagonal) Hessian is still problematic in deep learning because sometimes it can
be negative, and the steps can diverge. An additional issue is that its computation is
cumbersome in existing software which mainly support first-order derivatives only. Due to
this, it is tempting to simply use the RMSprop/Adam update Eq. 38, but using (∇̂θj ¯̀(θt))

2

results in poor performance as shown by Khan et al. (2018, Thm. 1). Instead, they propose
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to use the following Gauss-Newton approximation which is built from first-order derivatives
but gives better estimate of uncertainty:

∇̂2
θj

¯̀(θ) ≈ N

M

∑
i∈M

[
∇θj`(yi, fθ(xi))

]2
+∇2

θj
R(θ). (45)

This is referred to as the online Gauss-Newton (OGN) in Osawa et al. (2019, App. C).

The update Eq. 44 is similar to RMSprop, and can be implemented with minimal changes
to the existing software and many practical deep-learning tricks can also be applied to boost
the performance. Osawa et al. (2019) use OGN with batch normalization, data augmen-
tation, learning-rate scheduling, momentum, initialization tricks, and distributed training.
With these tricks, OGN gives similar performance as the Adam optimizer, even at large scale
(Osawa et al., 2019) while yielding a reasonable estimate of the variance. The compute cost
is only slightly higher, but it is not an increase in the complexity, rather due to a difficulty of
implementing Eq. 45 in the existing deep-learning software. Khan et al. (2019) further pro-
pose a slightly better (but costlier) approximation based on the FIM the log-likelihood, to
get an algorithm they call the online Generalized Gauss-Newton (OGGN) algorithm. Both
OGN and OGGN algorithms are scalable BLR variants for Laplace’s method for NNs.

OGN’s uncertainty estimates can be improved further by relaxing the approximation
made by the delta method and using Bayesian averaging through variational inference.
This improves over Laplace’s method by using the stationarity conditions (Eqs. 25 and 26)
where Bayesian averaging is employed through an expectation over q(θ) (Opper and Ar-
chambeau, 2009). The variational solution is slightly different than Laplace’s method and
is expected to be more robust due to the averaging over q∗(θ) in Eqs. 25 and 26. Two
such situations are illustrated in Fig. 1, one corresponding to an asymmetric loss where the
Bayesian solution avoids a region with extremely high loss (Fig. 1(a)), and the other one
where it seeks a more stable solution involving a wide and shallow minimum compared to
a sharp and deep minimum (Fig. 1(b)). Such situations are hypothesised to exist in deep-
learning problems (Hochreiter and Schmidhuber, 1997, 1995; Keskar et al., 2016), where a
good performance of stochastic optimization methods is attributed to their ability to find
shallow minima (Dziugaite and Roy, 2017). Similar strategies exist in stochastic search
and global optimization literature where a kernel is used to convolve/smooth the objective
function, like in Gaussian homotopy continuation method (Mobahi and Fisher III, 2015),
optimization by smoothing (Leordeanu and Hebert, 2008), graduated optimization method
(Hazan et al., 2016), and evolution strategies (Huning, 1976; Wierstra et al., 2014). The
stochastic noise in these methods is akin to the Bayesian noise injected through the distri-
bution q(θ). Unlike the ‘unregulated’ noise in these methods, the benefit of the Bayesian
approach is that the noise source q(θ) can adapt itself from data by using the BLR.

The variational-Bayesian version is obtained by simply removing the approximation due
to the delta method from Eq. 44, going back to the original Newton variant of Eq. 12 (now
with minibatch Hessians),

θt+1 ← θt − ρt
1

st+1
◦ Eqt

[
∇̂θ ¯̀(θ)

]
, with st+1 ← (1− ρt)st + ρt Eqt

[
diag(∇̂2

θ
¯̀(θ))

]
,

(46)
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Figure 1: Bayesian solutions have similar robustness properties to flatter minima found in
deep learning via stochastic algorithms. Panel (a): When the minimum lies right next to
a ‘wall’, the Bayesian solution shifts away from the wall (towards the flatter side) to avoid
large losses under small perturbation. This is due to the averaging over q∗(θ) in condition
Eq. 25. Panel (b): Given a sharp minimum vs a flat minimum, the Bayesian solution often
prefers the flatter minimum, which is again due to the averaging over q∗(θ).

where iterates qt(θ) = N (θ|θt,S−1
t ) are defined with precision matrix St as a diagonal

matrix with st as the diagonal. The iterates converge to an optimal diagonal Gaussian
candidate that optimizes Eq. 2.

Similarly to OGN, the update Eq. 46 can be modified to use the Gauss-Newton ap-
proximation Eq. 45, which is easier to implement and can also exploit the deep-learning
tricks to find good solutions. The expectations can be implemented by a simple ‘weight-
perturbation’,

Eqt [∇̂θ ¯̀(θ)] ≈ ∇̂θ ¯̀(θt + εt)

where εt ∼ N (ε|0, diag(st)) (multiple samples can also be used). The resulting algorithm
is referred to as variational OGN or VOGN by Khan et al. (2018)) and is shown to match
the performance of Adam and give better uncertainty estimates than both Adam, OGN,
and other Bayesian alternatives (Osawa et al., 2019, Fig. 1). A version with the FIM of
the log-likelihood is proposed in Khan et al. (2019) (algorithm is called VOGGN). Variants
that exploit Hessian structures using Kronecker-factored (Zhang et al., 2018b) and low-rank
(Mishkin et al., 2018) are also considered in the literature.

4.5 Binary Neural Networks

Binary NNs have binary weights θ ∈ {−1,+1}P , hence we need to consider another class of
the candidate distributions than the Gaussian (we will choose Bernoulli). Binary NNs are
natural candidates for resource-constrained applications, like mobile phones, wearable and
IoT devices, but their training is challenging due to the binary weights for which gradients
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do not exists. Our Bayesian scheme solves this issue because gradients of the Bayesian
objective are always defined with respect to the parameters of a Bernoulli distribution,
turning a discrete problem into a continuous one. The discussion here is based on the results
of Meng et al. (2020) who used the BLR to derive the BayesBiNN learning algorithm and
connect it to the well known Straight-Through-Estimator (STE) (Bengio et al., 2013).

The training objective of binary NN involves a discrete optimization problem

min
θ∈{−1,+1}P

N∑
i=1

`(yi, fθ(xi)). (47)

In theory, gradient based methods should not work for such problems since the gradients
with respect to discrete variables do not exist. Still, the most popular method to train bi-
nary NN, the Straight-Through-Estimator (STE) (Bengio et al., 2013), employs continuous
optimization methods and works remarkably well (Courbariaux et al., 2015). The method
is justified based on latent real-valued weights θ̃ ∈ RP which are discretized at every iter-
ation to get binary weights θ, while the gradients used to update the latent weights θ̃, are
computed at the binary weights θ, as shown below,

θ̃t+1 ← θ̃t − α
∑
i∈Mt

∇θ`(yi, fθt(xi)), where θt ← sign(θ̃t) (48)

It is not clear why the gradients computed at the binary weights help the search for the
minimum of the discrete problem, and many studies have attempted to answer this question,
e.g., see Yin et al. (2019); Alizadeh et al. (2019). The Bayesian objective in Eq. 2 rectify
this issue since the expectation of a discrete objective is a continuous objective with respect
to the parameters of the distributions, justifying the use of gradient based methods.

We will now show that using Bernoulli candidate distributions in the BLR gives rise to
an algorithm similar to Eq. 48, justifying the application of the STE algorithm to solve a
discrete optimization problem. Specifically, we choose q(θj = 1) = pj where pj ∈ [0, 1] is

the success probability. We also assume a mean-field distribution to get q(θ) =
∏P
j=1 q(θj).

Since the Bernoulli distribution is a minimal exponential-family with a constant h(θ), we
use the BLR in Eq. 6 with λj = 1/2 log(pj/(1− pj)) and µj = 2pj − 1, to get

λt+1 ← (1− ρt)λt − ρt∇µEqt

[∑
i∈Mt

`(yi, fθ(xi))

]
. (49)

The challenge now is to compute the gradient with respect to µ, but it turns out that
approximating it with the Concrete distribution (Maddison et al., 2016; Jang et al., 2016)
recovers the STE step.

Concrete distribution provides a way to relax a discrete random variable into a contin-
uous one such that it becomes a deterministic function of a continuous random variable.
Following Maddison et al. (2016), the continuous random variable, denoted by θ̂(τ) ∈ (−1, 1),
are constructed from the binary variable θ ∈ {−1, 1} by using iid uniform random variables
ε ∈ (0, 1) and using the function tanh(·),

θ̂(τ) = tanh

(
λ+ δ(ε)

τ

)
, where δ(ε) =

1

2
log

(
ε

1− ε

)
, (50)
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with τ > 0 as the temperature parameter. As τ → 0, the function approaches the sign
function used in STE step (Eq. 48): θ̂(0) = sign(λ+ δ(ε)).

The gradient too can be approximated by the gradients with respect to the relaxed
variables

∇µEq [`(yi, fθ(xi))] ≈ ∇µ`(yi, f
θ̂
(τ)(xi)) = s ◦

[
∇
θ̂
(τ)`(yi, f

θ̂
(τ)(xi))

]
, (51)

where we used chain rule in the last step and s is a vector of

sj = ∇µjθ
(τ)
j =

1

τ

[
1− (θ̂

(τ)
j )2

1− tanh2(λj)

]
.

By renaming λ by θ̃ and θ̂
(τ)

by θ, the rule in Eq. 49 becomes

θ̃t+1 ← (1− ρt)θ̃t − ρtst ◦

[∑
i∈Mt

∇θ`(yi, fθt(xi))

]
, where θt ← tanh

(
1

τ

(
θ̃t + δ(εt)

))
(52)

with st ← (1 − θ2
t )/(τ(1 − tanh2(θ̃t))), and εt is a vector of P iid samples from a uniform

distribution. Meng et al. (2020) refer to this algorithm as BayesBiNN.
BayesBiNN is similar to STE shown in Eq. 48, but computes natural-gradients (instead

of gradients) at the relaxed parameters θt which are obtained by adding noise δ(εt) to
the real-valued weights θ̃t. The gradients are approximations of the expected loss and are
well defined. By setting noise to zero and letting the temperature τ → 0, the tanh(·/τ)
becomes the sign-function and we recover the gradients used in STE. This limit is when
the randomness is ignored and is similar to the delta method used in earlier sections. The
random noise δ(εt) and the non-zero temperature τ enables a softening of the binary weights,
allowing for meaningful gradients. BayesBiNN also provides meaningful latent θ̃ which are
now the natural parameters of the Bernoulli distribution.

Unlike STE, the updates employs a exponential smoothing which is a direct consequence
of using the entropy term in the Bayesian objective. With discrete weights, optimum of
Eq. 47 could be completely unrelated to an STE solution θ∗, for example, the one that yields
zero gradients

∑
i∇θ`(yi, fθ∗(xi)) = 0. In contrast, the BayesBiNN solution minimizes the

well-defined Bayes objective of Eq. 2, whose optimum is characterized by the optimality
condition Eq. 24 directly relating the optimal θ̃∗ to the relaxed variables θ∗:

θ̃∗
s∗
≈

N∑
i=1

∇θ`(yi, fθ∗(xi)). (53)

The BayesBiNN solution θ∗ is in general different from the one from the STE algorithm,
but when temperature τ → 0 we expect the two solutions to be similar whenever s∗ →
∞ (as the left-hand-side in the equation above goes to zero). In general, we expect the
BayesBiNN solution to have robustness properties similar to the ones discussed for Fig. 1.
The exponential smoothing used in BayesBiNN is similar to the update of Helwegen et al.
(2019) but their formulation lacks a well-defined objective.
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5. Probabilistic Inference Algorithms from the Bayesian Learning Rule

Algorithms for inference in probabilistic graphical models can be derived from the BLR, by
setting the loss function to be the log-joint density of the data and unknowns. Unknowns
could include both latent variables z and model parameters θ. The class Q is chosen based
on the form of the likelihood and prior. We will first discuss the conjugate case, where BLR
reduces to Bayes’ rule, and then discuss expectation maximization and variational inference
(VI) where structural approximations to the posterior are employed.

5.1 Conjugate Models and Bayes’ Rule

We start with one of the most popular category of Bayesian models called exponential-
family conjugate models. We consider N i.i.d. data yi with likelihoods p(yi|θ) (no latent
variables) and prior p(θ). Conjugacy implies the existence of sufficient statistics T (θ) such
that both the likelihood and prior take an exponential form shown below

p(yi|θ) ∝ e〈λ̃i(yi),T (θ)〉, and p(θ) ∝ e〈λ0,T (θ)〉,

for some λ̃i(yi) (a function of yi), and λ0. For example, for ridge regression discussed in
Sec. 1.3.3, the likelihoods and prior are

p(yi|θ) = N (yi|x>i θ, 1) ∝ e(yixi)
>θ+Tr(− 1

2
xix
>
i (θθ>))− 1

2
y2i ,

p(θ) = N (θ|0, I/δ) ∝ eTr(− 1
2
δI(θθ>)),

respectively, and, because T (θ) = (θ,θθ>), we have the following pairs

λ̃
(1)

i (yi) = yixi,

λ̃
(2)

i (yi) = −1
2xix

>
i ,

λ
(1)
0 = 0,

λ
(2)
0 = −1

2δI.

The quantity λ̃i(yi) is often interpreted as the sufficient statistics of yi, but it can also be
seen as the natural parameter of the likelihood with respect to T (θ). The posterior is then
obtained by a simple addition of these natural parameters, as shown below,

p(θ|y) ∝ p(θ)
∏
i

p(yi|θ) ∝ exp

(
〈λ0 +

∑
i

λ̃i(yi),T (θ)〉

)
,

where y = (y1,y2, . . . ,yN ).
The natural-parameter of the posterior can be obtained from the BLR. To see this, we

first note that the loss needed in the BLR is the negative of the log-joint density

¯̀(θ) = − log p(y,θ) = − log p(θ) +

N∑
i=1

[− log p(yi|θ)] .

The natural parameter of the posterior is recovered from the fixed point of the BLR (Eq. 5),

λ∗ = ∇µEq∗ [log p(θ)] +
∑
i

∇µEq∗ [log p(yi|θ)] = λ0 +
∑
i

λ̃i(yi), (54)
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which is equivalent to running the BLR for just one-iteration with ρt = 1. For ridge
regression, for instance, the above equation results in the natural gradients in Eq. 14 from
which the ridge-regression solution can be recovered, as shown in Sec. 1.3.3.

In general, for such conjugate exponential-family models, the BLR yields the exact
posterior by a direct application of Eq. 5. Applying Bayes’ rule there is equivalent to a
single step of Eq. 6 with ρt = 1. This includes popular Gaussian linear models (Roweis and
Ghahramani, 1999), such as Kalman filter/smoother, probabilistic Principle Components
Analysis (PCA), factor analysis, mixture of Gaussians, and hidden Markov models, as
well as nonparameteric models, such as Gaussian process (GP) regression (Rasmussen and
Williams, 2006). For all such cases, the BLR gives yields the natural parameter of the
posterior in just one step. From a computational point of view, it does not offer any advice
to obtain marginal properties in general, and, similarly to Bayes’ rule, efficient techniques,
such as message passing, may be needed to perform the necessary computation.

5.2 Expectation Maximization

We will now derive Expectation Maximization (EM) from the BLR with coordinate-wise
updates with ρt = 1, similarly to the conjugate case. In the subsequent sections, this
connection is used to derive new stochastic VI algorithms where sometimes ρt < 1 is used.

EM is a popular algorithm for parameter estimation with latent variables (Dempster
et al., 1977). Given the joint distribution p(y, z|θ) with latent variables z and parameters θ,
the EM algorithm computes the posterior p(z|y,θ∗) as well as parameter θ∗ that maximizes
the marginal likelihood p(y|θ). The algorithm can be seen as coordinate-wise BLR updates
with ρt = 1 to update candidate distribution that factorizes across z and θ,

qt(z,θ) = qt(z)qt(θ) ∝ e〈λt,T z(z)〉N (θ|θt, I), (55)

where θt denotes the mean of the Gaussian. The loss function is set to ¯̀(z,θ) = − log p(y, z|θ).

To ease the presentation, assume the likelihood, prior, and joint are expressed as

p(y|z,θ) ∝ exp
(
〈λ̃1(y,θ),T z(z)〉

)
, p(z|θ) ∝ exp (〈λ0(θ),T z(z)〉) ,

p(y, z|θ) ∝ exp (〈T yz(y, z),θ〉 −Ayz(θ)) , (56)

for some functions λ̃1(·, ·) and λ0(·) (similarly to the previous section), and θ is the natural
parameter of the joint. The likelihood and prior are expressed in terms of sufficient statistics
T z(z) while the joint is with T yz(·, ·) (Winn and Bishop, 2005). The EM algorithm then
takes a simple form where we iterate between updating λ and θ (Banerjee et al., 2005),

E-step: λt+1 ← λ̃1(y,θt) + λ0(θt), M-step: θt+1 ← ∇A∗yz
(
Eqt+1 [T yz(y, z)]

)
.

Here, A∗yz(·) is the Legendre transform, and qt+1(z) = p(z|y,θt+1) is the outcome of E-step.

The two steps are obtained from the BLR by using the delta method to approximate
the expectation with respect to qt(θ). For the E-step, we assume qt(θ) fixed, and use Eqs. 5
and 54 and the delta method,

λt+1 ← ∇µEqt(z)qt(θ)[−¯̀(z,θ)]
∣∣
µ=µt

= Eqt(θ)[λ̃1(y,θ) + λ0(θ)] ≈ λ̃1(y,θt) + λ0(θt)
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For the M-step, we use the stationarity condition similar to Eq. 25 but now with the delta
method with respect to q(θ) (note that θt+1 is both the expectation and natural parameter),

∇θEqt+1(z)

[
¯̀(z,θ)

]∣∣
θ=θt+1

= 0

A simple calculation using the joint p(y, z) will show that this reduces to the M-step.
The derivation is easily extended to the generalized EM iterations. The coordinate-

wise strategy also need not be employed and the BLR steps can also be run in parallel.
Such scheme resembles the generalized EM algorithm and usually converges faster. Online
schemes can be obtained by using stochastic gradients, similar to those considered in Tit-
terington (1984); Neal and Hinton (1998); Sato (1999); Cappé and Moulines (2009); Delyon
et al. (1999). More recently, Amid and Warmuth (2020) use a divergence-based approach
and Kunstner et al. (2021) prove attractive convergence properties using a mirror-descent
formulation similar to ours. Next, we derive a generalization of such online schemes, called
the stochastic variational inference.

5.3 Stochastic Variational Inference and Variational Message Passing

Stochastic variational inference (SVI) is a generalization of EM, first considered by Sato
(2001) for the conjugate case and extended by Hoffman et al. (2013) to conditionally-
conjugate models (a similar strategy was also proposed by Honkela et al. (2011)). We
consider the conjugate case due to its simplicity. The model is assumed to be similar to the
EM case as in Eq. 56, but with N iid data examples yi associated with one latent vector
zi each and a conjugate prior p(θ|α) with α = (α1, α2) as prior parameters,

p(yi|zi,θ) ∝ exp
(
〈λ̃i(yi,θ),T i(zi)〉

)
, p(zi|θ) ∝ exp (〈λ0(θ),T i(zi)〉) ,

p(yi, zi|θ) ∝ exp (〈T yz(yi, zi),θ〉 −Ayz(θ)) , p(θ|α) = h0(θ) exp ([〈α1,θ〉 − α2Ayz(θ)]) .
(57)

Due to conjugacy, each conditional update can be done coordinate wise. A common strategy
is to assume a mean-field approximation

q(z1, . . . ,zN ,θ) = q(θ)
∏
i

q(zi) ∝ eλ
(1)
0 −λ

(2)
0 Ayz(θ)

∏
i

e〈λi,T i(zi)〉,

where λi is the natural parameter of q(zi), and (λ
(1)
0 , λ

(2)
0 ) is the same for q(θ).

Coordinate-wise updates when applied to general graphical model are known as varia-
tional message passing (Winn and Bishop, 2005). These updates are a special case of BLR,
applied coordinate wise with ρt = 1. The derivation is almost identical to the one used
for the EM case earlier, therefore omitted. One important difference is that, we do not
employ the delta method for q(θ) and explicitly carry out the marginalization which has a
closed-form expression due to conjugacy. The update for q(θ) is therefore replaced by its
corresponding conjugate update.

Stochastic variational inference employs a special update where, after every q(zi) update
with ρt = 1, we update q(θ) but with ρt < 1. Clearly, this is also covered as a special case of
the BLR. The BLR update is more general than these strategies since it applies to a wider
class of non-conjugate models, as discussed next.
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5.4 Non-Conjugate Variational Inference

Consider a graphical model p(x) ∝
∏
i∈I fi(xi) where x denotes the set of latent variables

z and parameters θ and fi(xi) is the i’th factor operating on the subset xi indexed by
the set I. The BLR can be applied to estimate a minimal exponential-family (assuming a
constant h(θ)),

λt+1 ← (1− ρt)λt + ρt
∑
i∈I

λ̃i(µt), where λ̃i(µt) = ∇µEq [log fi(xi)]|µ=µt
, (58)

and µt = ∇λA(λt). We already encountered the quantities λ̃i(µt) for conjugate models
in Sec. 5.1 where they are referred to as the natural parameter of the factors. They can
also be interpreted as “local” messages that are aggregated to obtain the “global” natural
parameter λt+1.

The update is quite flexible and can also be applied to other graphical models, such as
Bayesian networks, Markov random fields, and Boltzmann machines. We can also view it
as an update over distributions, by multiplying by T (x) followed by exponentiation,

qt+1(x) ∝ qt(x)(1−ρt)

[∏
i∈I

exp
(
〈λ̃i(µt),T (x)〉

)]ρt
(59)

and at convergence

q∗(x) ∝
∏
i∈I

exp
(
〈λ̃i(µ∗),T (x)〉

)
,

where q∗(x) is the optimal distribution with natural and expectation parameters as λ∗ and
µ∗. This update has three important features.

1. The optimal q∗(x) has the same structure as p(x) and each term in q∗(x) yields an
approximation to those in p(x),

log fi(xi) ≈ 〈λ̃i(µ∗),T (x)〉+ ci

for some constant ci. The quantity λ̃i(·) can be interpreted as the natural param-
eter of the local approximation. Such local parameters are often referred to as the
site parameters in expectation propagation (EP) where their computations are of-
ten rather involved. In our formulation they are simply the natural gradients of the
expected log joint density. See Chang et al. (2020, Sec. 3.4 and 3.5) for an exam-
ple comparing the two. The above local approximations are inherently superior to
the local-variational bounds, for example, quadratic bounds used in logistic regression
(Jaakkola and Jordan, 1996; Khan et al., 2010, 2012; Khan, 2012), and also to the aug-
mentation strategies (Girolami and Rogers, 2006; Klami, 2015). Gaussian posteriors
give rise to quadratic surrogates to the loss function. These can be seen as alternatives
to those obtained using Taylor’s expansion. The advantage of our surrogates is that
they are not tight locally, rather globally Opper and Archambeau (2009).

2. The update in Eq. 59 yields both the local λ̃i(·) and global λ parameters simulta-
neously, which is unlike the message-passing strategies that only compute the local
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messages. In fact, Eq. 59 can also be reformulated entirely in terms of local parameters

(denoted by λ̃
(t+1)

i below with a slight abuse of notation),

λt+1 ←
∑
i∈I

λ̃
(t+1)

i , where λ̃
(t+1)

i ← (1− ρt)λ̃
(t)

i + ρtλ̃i(µt), (60)

This formulation was discussed by Khan and Lin (2017) who show this to be a gen-
eralization of the non-conjugate variational message passing algorithm (Knowles and
Minka, 2011). The form is suitable for a distributed implementation using a message-
passing framework.

3. The update applies to both conjugate and non-conjugate factors, but also for both
probabilistic and deterministic variables. Automatic differentiation tools can be eas-
ily integrated. Due to such properties, the BLR offers an attractive framework for
practical probabilistic programming (van de Meent et al., 2018).

We have argued that natural gradients play an important role for probabilistic inference,
both for conjugate models or within those using message-passing frameworks. Still, their
importance is somehow missed in the community. Natural gradients were first introduced
in this context by Khan and Lin (2017); Khan et al. (2018), although Salimans and Knowles
(2013) also mention a similar condition without an explicit reference to natural gradients.
Sheth and Khardon (2016); Sheth (2019) discuss an update similar to the BLR for a specific
case of two-level graphical models. Salimbeni et al. (2018) propose natural-gradient strate-
gies for sparse GPs by using automatic differentiation which is often slower (the original
work by Hensman et al. (2013), is also a special case of the BLR). A recent generalization
to structured natural-gradient by Lin et al. (2021) is also worth noting.

We will end the section by discussing the connections of the BLR to the algorithms used
in online learning, where the loss functions are observed sequentially at every iteration t,

qt+1(θ) = arg min
q(θ)

Eq [`(yt, fθ(xt))] +
1

ρt
DKL[q(θ) ‖ qt(θ)].

The resulting updates are called Exponential-Weight (EW) updates (Littlestone and War-
muth, 1994; Vovk, 1990), which are closely related to Bayes’ rule. van der Hoeven et al.
(2018) show that, by approximating the first term by a surrogate (linear/quadratic) at the
posterior mean (the delta method), many existing online learning algorithms can be ob-
tained as special cases. This includes, online gradient descent, online Newton step, online
mirror descent, among many others. This derivation is similar to the BLR which, when
applied here, is slightly more general, not only due to the use of expectated loss, but also
because the surrogate choice is automatically obtained by the posterior approximations.

An advantage of this connection is that the theoretical guarantees derived in online
learning can be translated to the BLR, and consequently to all the learning-algorithms
derived from it. We will also note that the local and global BLR updates presented in
Eqs. 58 and 60 are similar to the ‘greedy’ and ‘lazy’ updates used in online learning (van der
Hoeven et al., 2018). The conjugate case discussed in earlier sections are very similar to
the algorithms proposed for online learning by Azoury and Warmuth (2001), which are
concurrent to a similar proposal in the Bayesian community by Sato (2001).
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6. Discussion

To learn, we need to extract useful information from new data and revise our beliefs. To
do this well, we must reject false information and, at the same time, not ignore any (real)
information. A good learning algorithm too must possess these properties. We expect the
same to be true for the algorithms that have “stood the test of time” in terms of good
performance, even if they are derived through empirical experimentation and intuitions.
If there exist an optimal learning-algorithm, as it is often hypothesized, then we might be
able to view these empirically good learning-algorithms as derived from this common origin.
They might not be perfect but we might expect them to be a reasonable approximation of
the optimal learning-algorithm. All in all, it is possible that all such algorithms optimize
similar objectives and use similar strategies on how the optimization proceeds.

In this paper we argue for two ideas. The first is that the learning-objective is a Bayesian
one and uses the variational formulation by Zellner (1988) in Eq. 2. The objective tells us
how to balance new information with the old one, resulting ultimately in Bayes theorem as
the optimal information processing rule. The power of the variational formulation, is that
it also shows how to process the information when we have limited abilities, for example,
in terms of computation, to extract the relevant information. The role of q(θ) is to define
how to represent the knowledge, for which exponential families and mixtures thereof, are
natural choices that have shown to balance complexity while still being practical.

The second idea is the role natural gradients play in the learning algorithms. Bayes’
rule in its original form has no opinion about them, but they are inherently present in
all solutions of the Bayesian objective. They give us information about the learning-loss
landscape, sometimes in the form of the derivatives of the loss and sometimes as the messages
in a graphical model. Our work shows that all these seemingly different ideas, in fact, have
deep roots in information geometry that is being exploited by natural gradients and then
in Bayesian Learning Rule (BLR) we proposed.

The two ideas go together as a symbiosis into the BLR. By a long series of examples from
optimisation, deep learning, and graphical models, we demonstrate that classical algorithms
such as ridge regression, Newton’s method, and Kalman filter, as well as modern deep-
learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout, all can be
derived from the proposed BLR. The BLR gives a unified framework and understanding of
what various (good) learning algorithms do, how they differ in approximating the target
and then also how they can be improved. The main advantage of the BLR, is that we now
have a principled framework to approach new learning problems, both in terms of what to
aim for and also how to get there.
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Appendix A. Bayesian Inference as Optimization

Bayesian inference is a special case of the Bayesian learning problem. Although this fol-
lows directly from the variational formulation by Zellner (1988), it might be useful to
provide some more motivation. Bayesian inference corresponds to a log-likelihood loss
`(y, fθ(x)) = − log p(y|fθ(x)). With conditional independent data and prior p(θ), the pos-
terior distribution is p(θ|D) = p(θ)/Z(D)

∏N
i=1 p(yi|fθ(xi)). The minimizer of the Bayesian

learning problem recovers this posterior distribution. This follows directly from reorganizing
the Bayesian objective Eq. 2:

L(q) = −Eq(θ)

[
N∑
i=1

log p(yi|fθ(xi))

]
+ DKL[q(θ) ‖ p(θ)] (61)

= Eq(θ)

log
q(θ)

p(θ)
Z(D)

∏N
i=1 p(yi|fθ(xi))

+ logZ(D) (62)

= DKL[q(θ) ‖ p(θ|D)] + logZ(D) (63)

Choosing q(θ) as p(θ|D) minimizes the above equation since Z(D) is a constant, and the
KL divergence is zero.

Appendix B. Natural Gradient of the Entropy

Here, we show that ∇̃λH(q) = −λ when h(θ) is a constant. First, we write

−∇̃λH(q) = ∇µEq[log q(θ)]

= ∇µ [〈λ,µ〉 −A(λ)] +∇µEq[log h(θ)]

= λ+
(
∇2
λA(λ)

)−1
[µ−∇λA(λ)] +∇µEq[log h(θ)]

= λ+∇µEq[log h(θ)],

(64)

where in the second line we use the definition of q(θ) and in the third line we use chain-rule
and the fact that µ = ∇λA(λ). For constant h(θ), this reduces to λ, giving us the result.

Appendix C. The Delta Method

In the delta method (Dorfman, 1938; Ver Hoef, 2012), we approximate the expectation
of a function of a random variable by the expectation of the function’s Taylor expansion.
For example, given a distribution q(θ) with mean m, we can use the first-order Taylor
approximation to get,

Eq[f(θ)] ≈ Eq
[
f(m) + (θ −m)> ∇θf(θ)|θ=m

]
≈ f(m)

We will often use this approximation to approximate the expectation of gradient/Hessian
at their values at a single point (usually the mean). For example, we can use a zeroth-order
expansion to get

Eq[∇θf(θ)] ≈ ∇θf(θ)|θ=m Eq[∇2
θf(θ)] ≈ ∇2

θf(θ)
∣∣
θ=m

.
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A better derivation (to get the same result) would be use higher-order expansion. For
example, by using the first-order Taylor expansion, we approximate below the expectation
of the gradient by the gradient at the mean,

Eq[∇θf(θ)] = ∇mEq[f(θ)]

≈ ∇mEq
[
f(m) + (θ −m)> ∇θf(θ)|θ=m

]
= ∇θf(θ)|θ=m , (65)

where the first line is due to Bonnet’s theorem (App. D) and the second line is simply
the first-order Taylor expansion. We refer to this as the first-order delta method. Similar
applications have been used in variational inference (Blei and Lafferty, 2007; Braun and
McAuliffe, 2010; Wang and Blei, 2013).

Similarly, by using the second-order Taylor expansion, we approximate below the ex-
pectation of the Hessian by the Hessian at the mean,

Eq[∇2
θf(θ)] = 2∇S−1Eq[f(θ)]

≈ 2∇S−1Eq
[
f(m) + (m− θ)> ∇θf(θ)|θ=m +

1

2
(m− θ)> ∇2

θf(θ)
∣∣
θ=m

(m− θ)

]
= 2∇S−1Tr

[
1

2
S−1 ∇2

θf(θ)
∣∣
θ=m

]
= ∇2

θf(θ)
∣∣
θ=m

, (66)

where the first line is due to Price’s theorem (App. D) and the second line is simply the
second-order Taylor expansion. We refer to this as the second-order delta method.

C.1 Deterministic Estimates as crude-Bayesians

In ML it is often argued that deterministic estimates/models can be seen as a special case of
probabilistic ones where variables are set to their maximum-a-posterior (MAP) estimates.
One justification stems from the fact that such estimates can be seen as a posterior which
is a Dirac-delta distribution at the MAP estimate; see Buntine (2002); Girolami and Kabán
(2003); Gal (2016) for examples. The argument is then to use the delta distribution as a
solution to the Bayesian objective (the evidence lower bound), justifying the MAP estimate
as a Bayesian solution.

Formally, denoting the MAP estimate as θ∗, we can define a distribution qσ(θ) =
N (θ|θ∗, σI) By taking σ → 0, we can view L(qσ) as the Bayesian solution obtained by
a non-Bayesian MAP estimate. Unfortunately, this argument is flawed when estimating
continuous parameters of deterministic models, as shown by Welling et al. (2008). This
is because, as σ → 0, the entropy H(q) = P log σ → −∞, making the objective useless.
Therefore, it is not correct to use delta distributions to justify deterministic solutions as
probabilistic and Bayesian ones.

Instead, we use the Delta method and obtain MAP estimates as a crude Bayesian
approximation of the expectation. In this method, we do not set the posterior as a Dirac
delta, rather we use a posterior approximation with a pre-specified uncertainty. For example,
we can use a Gaussian

q∗(θ) = N (θ|θ∗,H−1
∗ )
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where H∗ is the Hessian of ¯̀(θ) or a positive-definite approximation of it when H∗ itself is
not. This is the Laplace’s method where the curvature around θ∗ is used as an uncertainty
estimate. The choice views the MAP estimate as a crude-Bayesian because, by using the
Delta method, we can replace the expectation by loss at the mean θ∗,

Eq[¯̀(θ)]−H(q) ≈ ¯̀(θ∗) +
1

2
P log |H∗|

which is exactly the objective optimized by θ∗ (the second term being a constant). A
crude-Bayesian ignores the uncertainty around the estimate and simply uses the mean to
approximate the expectation.

A similar view was presented in Opper and Archambeau (2009) where Laplace’s method
was shown to be a crude-approximation of the variational method. However, in our argu-
ment the posterior covariance can be an arbitrary quantity, and even the posterior form
does not need to be a Gaussian. The Delta method view is more general than the Laplace’s
view of Opper and Archambeau (2009).

Appendix D. Newton’s Method from the BLR

We start by expressing the natural gradients in terms of the gradient with respect to the
mean and covariance. Let θ be multivariate normal with mean µ and covariance C, and
h(µ,C) be a differentiable function. First, we write m and C in terms of µ(1) and µ(2),

m = µ(1), C = µ(2) − µ(1)
(
µ(1)

)>
,

We then express the natural gradients in terms of gradients with respect to m and C by
using the chain rule. For example, the derivative with respect to µ(2) is as follows,

∂h

∂µ
(2)
ij

=
∑
k

∂h

∂mk

∂mk

∂µ
(2)
ij

+
∑
k,l

∂h

∂Ckl

∂Ckl

∂µ
(2)
ij

=
∂h

∂Ckl
,

giving us ∇µ(2)h = ∇Ch = ∇S−1h. Similarly, the gradient with respect to µ(1) is

∂h

∂µ
(1)
i

=
∑
k

∂h

∂mk

∂mk

∂µ
(1)
i

+
∑
k,l

∂h

∂Ckl

∂Ckl

∂µ
(1)
i

=
∂h

∂mi
−
∑
k

∂h

∂Cki
µ

(1)
k −

∑
l

∂h

∂Cil
µ

(1)
l

=
∂h

∂mi
− 2

∑
k

∂h

∂Cki
mk,

where the last line follows due to symmetry of C. Using this, we get the desired result,

∇µ(1)h = ∇mh− 2[∇S−1h]m,

∇µ(2)h = ∇S−1h

30



The Bayesian Learning Rule

Next, we give a summary of the Theorem’s of Bonnet’s and Price’s (Bonnet, 1964; Price,
1958); see also Opper and Archambeau (2009); Rezende et al. (2014). Let f(θ) be a twice
differentiable function where E|f(θ)| <∞, then the Bonnet and Price’s results are

∂

∂µi
E [f(θ)] = E

[
∂

∂xi
f(θ)

]
and

∂

∂Cij
E [f(θ)] = cijE

[
∂2

∂xi∂xj
f(θ)

]
where cij = 1/2 if i = j and cij = 1 if i 6= j (since C is symmetric), respectively. Using
these, we obtain Eq. 10 and Eq. 11.

The following derivation is also detailed in Khan et al. (2018). We now use the definitions
of natural and expectation parameters from Eq. 9 in the BLR Eq. 6. The function h(θ) is
constant for the multivariate Gaussian, hence

St+1mt+1 ← (1− ρt)Stmt − ρt∇µ(1)Eqt [¯̀(θ)]

St+1 ← (1− ρt)St + 2ρt∇µ(2)Eqt [¯̀(θ)].

The update for St+1 can be obtained using Eq. 11,

St+1 ← (1− ρt)St + ρtEqt
[
∇2
θ

¯̀(θ)
]
.

We can simplify the update for the mean using Eq. 10,

St+1mt+1 = (1− ρt)Stmt − ρt
{
Eqt [∇θ ¯̀(θ)]− Eqt [∇2

θ
¯̀(θ)]mt

}
,

= St+1mt − ρtEqt [∇θ ¯̀(θ)],

and the update for mt+1 follows from this.

Appendix E. Natural-Gradient Updates for Mixture of Gaussians

The joint distribution q(θ, z) is a minimal-conditional exponential-family distribution (Lin
et al., 2019b), i.e., the distribution then takes a minimal form conditioned over z = k which
ensures that the FIM is non-singular. Details of the update are in Lin et al. (2019b, Theorem
3). The natural and expectation parameters are given in Lin et al. (2019b, Table 1)).

The gradients with respect to µk can be written in terms of mk and S−1
k as

∇
µ

(1)
k

Eq[¯̀(θ)] =
[
∇
µ

(1)
k

m>k

]
∇mk

Eq[¯̀(θ)] =
1

πk
∇mk

Eq[¯̀(θ)]

Hence we can utilize from the derivation of Newton’s method, Eq. 10 and Eq. 11, and do
similarly as in App. D, to achieve a Newton-like update for a mixture of Gaussians

mk,t+1 ←mk,t −
ρ

πk
S−1
k,t+1∇mk

Eqt
[
¯̀(θ) + log q(θ)

]
, (67)

Sk,t+1 ← Sk,t +
2ρ

πk
∇S−1

k,t
Eqt
[
¯̀(θ) + log q(θ)

]
. (68)

The gradients can be expressed in terms of the gradient and Hessian of the loss, similar to
Bonnet’s and Price’s Theorem in App. D, see (Lin et al., 2019a, Thm 6 and 7). This gives

∇mk
Eq[f(θ)] = πkEN (θ|mk,S

−1
k )[∇θf(θ)],

∇S−1
k
Eq[f(θ)] =

πk
2
EN (θ|mk,S

−1
k )[∇

2
θf(θ)],
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and hence the updates in Eqs. 29 and 30.
The gradient of log q(θ) = log

∑K
k=1 πkN (θ|mk,S

−1
k ) were not spelled out explicit in

Eqs. 67 and 68, but are as follows,

∇θ log q(θ) =

K∑
j=1

rj(θ)Sj(mj − θ), (69)

∇2
θ log q(θ) =

K∑
j=1

rj(θ)

[
Ajj(θ)− Sj −

K∑
i=1

ri(θ)Aij(θ)

]
. (70)

Here, rk(θ) is the responsibility of the k’th mixture component at θ, q(z = k|θ)

q(z = k|θ) =
πkN (θ|mk,S

−1
k )∑K

j=1 πjN (θ|mj ,S
−1
j )

. (71)

and Aij(θ) = Si(mi − θ)(mj − θ)>Sj .
With two natural assumptions, we can get simplifications that help us understand how

different components can take responsibility for different local minima. First, we assume
θk = mk, then Aik(θk) = 0 for all i, leading to

∇θ log q(θk) =
∑
j 6=k

rj(θk)Sj(θj − θk), (72)

∇2
θ log q(θk) = −rk(θk)Sk +

∑
j 6=k

rj(θk)

Aii(θk)− Sj −
K∑

i=1,i 6=k
ri(θk)Aij(θk)

 , (73)

Second, we assume the mixture components to be far apart from each other, then the
responsibility is approximately zero for all j 6= k, leading to

∇θ log q(θk) ≈ 0, ∇2
θθ log q(θk) ≈ −Sk. (74)

Appendix F. Deep Learning Algorithms with Momentum

Momentum is a useful technique to improve the performance of SGD (Sutskever et al.,
2013). Modern adaptive-learning algorithms, such as RMSprop and Adam, often employ
variants of the classical momentum to increase the learning rate (Sutskever et al., 2013).

The classical momentum method is based on the Polyak’s heavy-ball method Polyak
(1964), where the current θt+1 − θt update is pushed along the direction of the previous
update θt − θt−1:

θt+1 ← θt − α∇̂θ ¯̀(θt) + γ(θt − θt−1) (75)

with a fixed momentum coefficient γ > 0. Why this technique can be beneficial when using
noisy gradient is more transparent when we rewrite Eq. 75 as

θt+1 ← θt − α
t∑

k=0

γk∇̂θ ¯̀(θt−k) + initial conditions. (76)
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Hence, the effective gradient is an average of previous gradients with decaying weights.
The hope is that this will smooth out and reduce the variance of the stochastic gradient
estimates, although exact mechanisms behind the success of momentum-based methods are
still an open research question.

Adaptive-learning rate algorithms, such as RMSprop and Adam, employ a variant of
the classical momentum method where exponential-smoothing is applied to the gradient
ut+1 ← γut+(1−γ)∇̂θ ¯̀(θt) which is used in the update while keeping the scaling unchanged
(Graves, 2013; Kingma and Ba, 2015). This gives the update

θt+1 ← θt − α
1

√
st+1 + c1

◦ ut+1. (77)

We can express this similar to Eq. 75, as (Wilson et al., 2017)

θt+1 ← θt − α(1− γ)
1

√
st+1 + c1

◦
[
∇̂θ ¯̀(θt)

]
+ γ

√
st + c1

√
st+1 + c1

◦ (θt − θt−1), (78)

showing a dynamic scaling of the momentum depending (essentially) on the ratio of st+1

and st. Although this adaptive scaling is not counter-intuitive, it is a result of the somewhat
arbitrary choices made. Can we justify this from the Bayesian principles and derive the
corresponding BLR? The problem we face is provoked by the use of stochastic gradient
approximations and the principles simply state that we should compute exact gradients
instead. This might appear as a deficiency in our main argument but we can resolve this
issue in other ways.

It is our view that the natural way to include a momentum term in the BLR, is to do
it within the mirror descent framework discussed in Sec. 2. This will result in an update
where the momentum term obey the geometry of the posterior approximation. We propose
to augment Eq. 22 with a momentum term

µt+1 ← arg min
µ∈M

〈∇µL(qt),µ〉+
1 + γt
ρt

DA∗(µ‖µt)−
γt
ρt
DA∗(µ‖µt−1) (79)

The last term penalizes the proximity to µt−1 where the proximity is measured according
to the KL divergence, following the suggestion by Khan et al. (2018) we may interpret this
as the ‘natural momentum’ term. This gives a (revised) BLR with momentum,

λt+1 ← λt − ρt∇̃λ
[
Eqt
(
¯̀(θ)

)
−H(qt)

]
+ γt(λt − λt−1). (80)

This update will recover Eq. 75 and an alternative to Eq. 78. Choosing a Gaussian candidate
distribution N (θ|m, I) (the result is invariant to a fixed covariance matrix), we recover
Eq. 75 after a derivation similar as in Sec. 1.3.1. Choosing the candidate distribution
N (θ|m,diag(s)−1), follow again previous derivations (Newton’s method in Sec. 1.3.2) with
mini-batch gradients, and result in the following update

θt+1 ← θt − ρt
1

st+1
◦
[
∇̂θ ¯̀(θt)

]
+

1

st+1
◦ (stθt − st−1θt−1),

st+1 ← (1− ρt)st + ρt diag
[
∇̂2
θθ

¯̀(θt)
]

+ γt(st − st−1).

(81)
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Assuming st ≈ st−1 the last terms in the above two equations simplifies, and then by
replacing st by

√
st and adding a constant c, we can recover Eq. 78. This momentum-

version of Eq. 37, not only justifies the use of scaling vectors for the momentum, but also
the use of exponential-smoothing for the scaling vectors itself.

Appendix G. Dropout from the BLR

Deriving updates for mjl and Sjl with dropout is similar to the Newton variant derived
for mixture of Gaussian discussed in App. E. With dropout there are only two components
where one of the component has fixed parameters, hence one set of natural and expectation
parameters per weight vector θjl,

λ
(1)
jl = Sjlmjl,

λ
(2)
jl = −1

2Sjl,

µ
(1)
jl = Eq

[
1[zjl=1]θjl

]
= π1mjl,

µ
(2)
jl = Eq

[
1[zjl=1]θjlθ

T
jl

]
= π1

(
S−1
jl +mjlm

T
jl

)
,

We can reuse the update Eqs. 67 and 68 from App. E

mjl,t+1 ←mjl,t −
ρ

π1
S−1
jl,t+1∇mjl

{
Eqt
[
¯̀(θ)

]
+ Eqt [log q(θjl)]

}
, (82)

Sjl,t+1 ← Sjl,t+1 +
2ρ

π1
∇S−1

jl

{
Eqt
[
¯̀(θ)

]
+ Eqt [log q(θjl)]

}
. (83)

We have moved the expectation inside the gradient since the entropy term only depends on
θjl. The gradient of the loss ¯̀(θ) may depend on the whole θ, however.

By using appropriate methods to compute gradients, we can recover the dropout method.
Specifically, for the loss term, we use the reparameterization trick (Kingma and Welling,
2013) and approximate the gradients at the samples from q(θjl),

θjl = zjl(mjl + S
−1/2
jl ε1,jl) + (1− zjl)s

−1/2
0 ε2,jl

where zjl is a sample from Bernoulli distribution with probability π1, and ε1,jl and ε2,jl are
two independent samples from standard normal distribution. Since weights are deterministic
in dropout, we need to ignore ε1,jl and ε2,jl to recover dropout from the BLR. The gradients
are then evaluated at the dropout mean m̃jl = zjlmjl (the delta method) which leads to
the following gradient approximations:

∇mjl
Eqt [¯̀(θ)] ≈ ∇θjl ¯̀(θ̃)

∣∣∣
θ̃=m̃t

,

2∇S−1
jl
Eqt
[
¯̀(θ)

]
= ∇2

mjlm
>
jl
Eqt
[
¯̀(θ)

]
≈ ∇2

θ̃jlθ̃
>
jl

¯̀(θ̃)

∣∣∣∣
θ̃=m̃t

.
(84)

We will use these gradients for the loss term in Eqs. 82 and 83.

Gradients of log q(θjl) only depends on the variables involved in q(θjl), and we can use
the delta method similar to Eq. 33 in Sec. 3. We make the assumption that the two mixture
components are “not close” which is reasonable with dropout. With this assumption then
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the gradient respect to mjl is approximately zero

∇mjl
Eq [log q(θjl)] = ∇mjl

∫
dθjl log q(θjl)

[
π1N (θjl|mjl,S

−1
jl ) + (1− π1)N (θjl|0, s−1

0 Inl)
]

= π1∇mjl

∫
dθjl log q(θjl)N (θjl|mjl,S

−1
jl )

= π1EN (θjl|mjl,t,S
−1
jl,t)

[
∇θjl log q(θjl)

]
(Using Bonnet’s Theorem)

≈ π1∇mjl
log q(mjl,t) (Using the Delta approximation)

≈ 0. (85)

For the gradient with respect to S−1 we get

2∇S−1
jl
Eq [log q(θjl)] = ∇2

mjlm
>
jl
Eq [log q(θjl)]

= ∇mjl

[
π1EN (θjl|mjl,t,S

−1
jl,t)

[
∇θjl log q(θjl)

]]
(using first derivative wrt mjl)

= π1EN (θjl|mjl,t,S
−1
jl,t)

[
∇2
θjlθ
>
jl

log q(θjl)
]

(Using Bonnet’s theorem)

≈ π1∇2
mjlm

>
jl

log q(mjl,t) (Using Delta approximation)

≈ −π1Sjl,t, (86)

Using the gradient approximations Eqs. 84 to 86 in Eqs. 82 and 83, we get the

mjl,t+1 ←mjl,t −
ρ

π1
S−1
jl,t+1∇mjl

{
∇mjl

¯̀(m̃t) + 0
}
,

Sjl,t+1 ← Sjl,t+1 +
ρ

π1
∇S−1

jl

{
∇2

mjlm
>
jl

¯̀(m̃t)− π1Sjl,t

}
.

which reduces to the updates Eqs. 42 and 43.

Appendix H. Table of exponential-family distributions

35



Khan and Rue

Distribution λ T (θ) µ Reference

Gaussian
N (θ|m, I)
with fixed
covariance

m θ m Sec. 1.3.1

Gaussian
N (θ|m,S−1)
with fixed
covariance

Sm θ m Sec. 4.1

Gaussian
N (θ|m,S−1)
with diagonal
S = diag(s)

(
m

−1
2s

) (
θ

θ ◦ θ

) (
m

m ◦m+ 1/s

)
Sections 4.2
and 4.4

Gaussian
N (θ|m,S−1)

(
m

−1
2S

) (
θ

θθ>

) (
m

mm> + S−1

)
Sections 1.3.2
and 1.3.3

Finite mixture
of Gaussian
P (z = k,θ) =
πkN (θ|mk,S

−1
k )

with fixed πk

(
mk

−1
2Sk

) (
1[z=k]θ

1[z=k]θθ
>

) (
πkmk

πk
(
mkm

>
k + S−1

k

) ) Sections 3.2
and 4.3

Bernoulli with
P (θ = 1) = p

1
2 log p

1−p 21[θ=k] − 1 2p− 1 Sec. 4.5

Table 2: A summary of exponential-family used in the paper showing natural parameters λ,
sufficient statistics T (θ), and expectation parameters µ, along with the relevant sections.
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mémoire. In Annales des Télécommunications, volume 19, pages 203–220. Springer, 1964.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

M. Braun and J. McAuliffe. Variational inference for large-scale models of discrete choice.
Journal of the American Statistical Association, 105(489):324–335, 2010.

R. G. Brown. Statistical forecasting for inventory control. McGraw/Hill, 1959.

W. Buntine. Variational extensions to EM and multinomial PCA. In 13th European Con-
ference on Machine Learning Helsinki, Finland, pages 23–34. Springer, 2002.
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