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Abstract

We study the non-stationary stochastic multi-armed bandit problem, where the reward
statistics of each arm may change several times during the course of learning. The perfor-
mance of a learning algorithm is evaluated in terms of its dynamic regret, which is defined
as the difference between the expected cumulative reward of an agent choosing the optimal
arm in every time step and the cumulative reward of the learning algorithm. One way
to measure the hardness of such environments is to consider how many times the identity
of the optimal arm can change. We propose a method that achieves, in K-armed bandit
problems, a near-optimal Õ(

√
KN(S + 1)) dynamic regret, where N is the time horizon of

the problem and S is the number of times the identity of the optimal arm changes, without
prior knowledge of S. Previous works for this problem obtain regret bounds that scale with
the number of changes (or the amount of change) in the reward functions, which can be
much larger, or assume prior knowledge of S to achieve similar bounds.

Keywords: Online learning, multi-armed bandits, non-stationary learning, dynamic
regret, tracking.

1. Introduction

The multi-armed bandit (MAB) problem is the canonical problem for studying the exploration-
exploitation dilemma. At each time step n ∈ {1, . . . , N}, the learner selects an arm (also
called action) an ∈ {1, ..,K} and receives a reward rn generated from an unknown distri-
bution which may depend on both the time step and the action. The learner’s goal is to
maximize the sum of the rewards. In the standard stochastic MAB problem, the reward
distribution for each arm is assumed to be stationary, and algorithms are evaluated based
on their expected regret, which is the difference between the expected rewards obtained by
the algorithm and the best fixed arm in hindsight.

In this work, we consider the MAB problem with reward distributions that are non-
stationary and can change several times during the course of learning. We evaluate learning
algorithms in terms of their dynamic regret, which is the difference between the cumulative
expected rewards obtained by the best non-stationary policy selecting the optimal arm in
every time step and those of the learning algorithm. MAB problems with non-stationary
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reward distributions have been studied extensively in literature. This includes a variety
of settings, including adversarial rewards, limited total variation of change (Besbes et al.,
2014), limited number of switches (Auer et al., 2002), as well as imposing additional as-
sumptions on the process generating the changes (Ortner et al., 2014; Slivkins and Upfal,
2008; Cao et al., 2019).

In general, the achievable dynamic regret depends on the assumptions made about the
reward process. When the reward distribution changes at most L times, known as the
switching bandit problem (Garivier and Moulines, 2011), the EXP3.S algorithm of Auer
et al. (2002) can achieve O(

√
K(L+ 1)N log(KN)) regret when its tuning depends on L,

which therefore needs to be known in advance.1 This result is known to be minimax optimal
up to the logarithmic factors (Garivier and Moulines, 2011). Several other algorithms can
be tuned to achieve bounds that are optimal in N and L given the prior knowledge of
L, including the sliding-window UCB algorithm of Garivier and Moulines (2011) and an
elimination-based method by Allesiardo et al. (2017).

The first algorithm to obtain near-optimal regret without knowing the number of changes
L is the AdSwitch algorithm of Auer et al. (2018). While the original version of AdSwitch
is only applicable to the case of K = 2, it was subsequently extended to general K by Auer
et al. (2019b); Chen et al. (2019); Auer et al. (2019a). The algorithm starts with an initial
estimation stage that detects the current optimal arm, and then plays that arm while
performing periodic exploration in order to detect changes. Another recent such algorithm
is Master (Wei and Luo, 2021), which, specialized to the switching bandit problem, runs a
baseline UCB1 algorithm (Auer and Ortner, 2010) at multiple time scales, and periodically
resets if non-stationarity is detected.

While the number of times the reward distribution changes is often indeed related to the
hardness of the problem, it can be a quite pessimistic measure of complexity: for example,
a change in the reward distribution of a suboptimal arm that leaves it suboptimal, or a
slight change in the reward of the optimal arm so that it remains optimal should not really
affect the performance of good learning algorithms.

To address this issue, in this paper we aim to bound the regret in terms of the number of
changes in the identity of the optimal arm S, which can be much smaller than the number
of reward changes L considered in prior work (note that EXP3.S of Auer et al., 2002 can
readily give a bound which scales with S instead of L, but it requires prior knowledge of
S, as discussed above). We propose a modified version of AdSwitch, called ArmSwitch,
which performs periodic exploration in order to detect a change in the optimal arm, rather
than a change in the reward gap. This allows us to obtain a regret bound which scales as
Õ(
√
KN(S + 1)), without the prior knowledge of S.

Similarly to AdSwitch, our algorithm is based on a phased elimination procedure with
restarts. The original phased elimination procedure explores arms uniformly at random
until it can be determined that an arm is not optimal, at which point the arm is eliminated
and moved to the set of “bad” arms, BAD. The arms in the BAD set are occasionally
explored to detect a potential change in the optimal arm. The algorithm restarts the
phased elimination when all arms are moved to the BAD set.

1. The EXP3.S algorithm achieves dynamic regret O(
√
K(L+ 1)N log(KN)) with respect to any com-

parator sequence of arms with L changes. By choosing the comparator sequence to be the sequence of
optimal arms, we get the aforementioned bound in our problem.
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The phased elimination procedure uses confidence intervals to perform arm eliminations.
In our setting, even though rewards can change in an arbitrary fashion, we can construct
confidence intervals (based on the idea of importance weighting) for a notion of weighted
total rewards. Using such confidence intervals however introduces an issue: it is difficult to
control the probability of detecting a change in the optimal arm as the number of active
arms can fluctuate in a complicated way, and this can lead to a regret bound that scales
worse than the optimal

√
K scaling in the number of actions K.

In order to resolve this issue, we use a non-uniform sampling distribution in the phased
elimination procedure: a fixed probability of 1/K is assigned to each active BAD arm2, while
GOOD arms are also selected with equal probability (which is at least 1/K). This allows us
to construct additional confidence intervals with sampling probabilities 1/K for each active
arm. Using such confidence in addition to ones described above, we can achieve a tighter
control on the detection probability, eventually giving the desired overall Õ(

√
KN(S + 1))

regret bound.

1.1 Notation

For any integer K, [K] = {1, . . . ,K}. For integers n′ < n, we use [n′ : n] to denote the
set {n′, n′ + 1, . . . , n} (we will often refer to such sets as intervals and use similarly half-
open/open intervals not including the corresponding boundary points), and for any sequence
bn′ , bn′+1, . . . , bn, bn′:n =

∑n
t=n′ bt. We denote the cardinality of a discrete set I by |I|. For

any two real numbers x, y, x ∨ y = max{x, y} denotes their maximum. For an event E , its
complement is denoted by E , and the indicator I{E} is 1 if E holds and zero otherwise.

2. Problem setting

We consider a multi-armed bandit problem with K arms (also called actions) and a known
time horizon N (with K,N ≥ 2). Here, a learning algorithm and an environment interact
with each other as follows: At each time step n ∈ [N ], the algorithm selects an arm An ∈ [K]
and receives a reward rn ∈ [0, 1] drawn according to an unknown distribution Dn(An). The
goal of the learning algorithm is to collect as much reward as possible.

Let gn(a) denote the mean of Dn(a) for any a ∈ [K] and n ∈ [N ]. We assume gn(a) ∈
[0, 1] and we call it the (mean) reward function. Our assumptions on the rewards and their
expectation are made to simplify the presentation and can be replaced with a more general
assumption of bounded reward expectation and sub-Gaussian noise. We also assume that
the sequence of reward distributions is chosen by an oblivious adversary before the start of
the game. Let a∗n ∈ argmaxa∈[K] gn(a) be an optimal arm at time n. We say an arm a ∈ [K]
is optimal in the interval [n : n′] if a ∈ argmaxa∈[K] gt(a) for all t ∈ [n : n′]. We evaluate
the performance of algorithms in terms of the dynamic regret, defined with respect to the
sequence of optimal arms as

RN :=

N∑
n=1

(gn(a∗n)− gn(An)) ,

where An denotes the arm selected by the algorithm at time n.

2. By BAD (GOOD) arms, we mean the set of arms that are in the BAD (GOOD) set.
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We are interested in bounding the dynamic regret with the number of changes in the
identity of the optimal arm. To this end, for any sequence x1, . . . , xN we define

S(x1, . . . , xN ) :=
N−1∑
n=1

I{xn 6= xn+1} .

and denote by S = S(a∗1, . . . , a
∗
N ) the number of times the identity of the optimal arm

changes. Since the optimal arm a∗n may not be unique for any n, we select a∗1, . . . , a
∗
N such

that they minimize S(a∗1, . . . , a
∗
N ) over the possible sequences of optimal arms (and hence

S takes the smallest value possible). Our goal is to design an algorithm that satisfies the
following regret bound without the knowledge of S:

E[RN ] = Õ

(√
KN(S(a∗1, . . . , a

∗
N ) + 1)

)
. (1)

We emphasize that this goal is not addressed in the literature on stochastic non-stationary
bandits. In most existing results, the regret bounds depend on the number of changes in
the reward distributions Dn instead, which can be much larger than S.

3. Algorithm

To develop our algorithm, we start with the AdSwitch method of Auer et al. (2019b),
which was designed for the standard piecewise stationary scenario, where the reward distri-
butions may change only a limited number of times (say L), and they remain constant in
between. Conceptually, AdSwitch works the following way. For every stationary segment
it maintains a set of arms (called the GOOD set), one of which is with high probability
guaranteed to be the optimal arm for the given segment, and these arms are pulled in a
round robin fashion. The expected reward of each arm is estimated based on the observa-
tions (calculating the average reward for each arm together with confidence intervals), and
if the estimates imply with high probability that an arm cannot be optimal, it is removed
from the GOOD set. This phased elimination strategy is known to achieve an optimal regret
rate for stationary stochastic bandits (Auer and Ortner, 2010). To be able to detect the
end of a stationary segment, AdSwitch also explores arms which are not in the GOOD set
(the set of those arms is called the BAD set), with a carefully designed exploration strategy,
striking a good balance between the exploration probability and the amount of change the
selected exploration strategy can detect. If a change is detected (with high probability),
the algorithm declares the end of the current segment, and it is restarted, with all the arms
being in the GOOD set and all estimates reset.

Our algorithm, called ArmSwitch (for considering the number of times the optimal
arm changes), is based on similar ideas, but we need to introduce several changes in both
the algorithm and its analysis to make it work in our setting. Similarly to AdSwitch,
ArmSwitch tries to identify adaptively the segments where the identity of the optimal
arm remains the same, and also to learn the optimal arm in each segment. As such, we
also maintain a GOOD set of arms, one of which is guaranteed to be the optimal arm for
the given segment with high probability, while also carefully exploring arms in the BAD
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Algorithm 1 ArmSwitch algorithm

Input: time horizon N , constant δ ∈ (0, 1)

1: Initialize s = 0, n = 0.
2: Start a new episode:
s← s+ 1, ts ← n+ 1 {** ts is the start of phase s **}
GOOD← {1, . . .K}, BAD← ∅.
B(a)← 0, Active(a)← n+ 1, ∀a. {** B(a) is exploration obligation of arm a **}

3: Next time step: n← n+ 1
{** History H′n is the information available to the algorithm at this point **}

4: for a ∈ BAD do
5: for ε ∈ B = {2−1, 2−2, . . . 2−dlog2Ne} do
6: With probability ε/

√
K(n+ 1− ts):

7: if B(a) ≤ 0 then
8: Set Active(a)← n.
9: end if

10: B(a)← max(B(a), 1/ε2).
11: end for
12: end for
13: Define the active set A = GOOD ∪ {a ∈ BAD : B(a) ≥ 1

K }.
14: Set B(a)← 0 for all a 6∈ A, and let m = |A ∩ BAD|.
{** History Hn is the information available to the algorithm at this point **}

15: Define distribution Pn by Pn(a) = 1
K for a ∈ A∩BAD, Pn(a) = 1−m/K

|GOOD| for a ∈ GOOD,
and Pn = 0 for a 6∈ A.

16: Select An by sampling from Pn and receive reward rn.
{** Define variables with index n: GOODn = GOOD, BADn = BAD, Bn(a) = B(a),
etc. **}

17: Set B(a)← B(a)− 1
K for all a ∈ A∩BAD. {** Exp. obl. consumed in one round **}

18: for a, a′ ∈ A do
19: if Elimn(a′, a) then
20: If a ∈ GOOD, move a to BAD.
21: If a ∈ BAD, set B(a)← 0.
22: end if
23: if GOOD is empty then
24: Go to 2 (start a new episode)
25: end if
26: end for
27: Go to 3 (next time step).

set.3 Note, however, that because in our case the reward function can change arbitrarily for
every arm, deterministically going over all active arms (the GOOD arms and the ones being
explored, together the active arms A) and taking the average observed reward for every

3. Throughout the paper, when these sets are referred to in a specific time step, they are indexed with that
time step (as mentioned in the comment in line 16 of the algorithm), and we also refer to the arms in
the GOOD, resp. BAD, set as GOOD, resp. BAD, arms.
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Algorithm 2 The Elimn(a′, a) subroutine

1: for n′ ∈ [max{Activen(a),Activen(a′)}, n] do

2: if
̂̃
∆n′:n(a′, a) > 12Cn′,n

(√
n−n′+1

K ∨ Cn′,n
)

(see definition (3) and condition (6)),

or a, a′ ∈ GOOD and ∆̂n′:n(a′, a) > 12Cn′,n
(√
Pn′:n ∨ Cn′,n

)
(see definition (2) and

condition (7)) then
3: return true
4: end if
5: end for
6: return false

arm would not give good estimates of the arms’ performances over the segment. Instead,
we randomly sample from the active set A, and when comparing the performance of two
arms over an interval where both arms were active, we compare their cumulative weighted
reward where each reward is weighted with the sampling probability (instead of the average
observed reward) irrespective of how many times the arms were actually used. We provide
more details on the sampling and comparison procedures in the next section. Most notably,
the sampling distribution is non-uniform and assigns a fixed probability of 1/K to any BAD
arm in A (i.e., to arms in BAD ∩ A).

3.1 The ArmSwitch algorithm

Our algorithm is shown in Algorithm 1. It is an elimination algorithm with repeated
exploration and restarts. The algorithm proceeds in episodes s = 1, 2, ...; we use ts to
denote the start time of the sth episode.

The algorithm continuously maintains a set of arms GOOD containing the arms which
have not been ruled out to be optimal in the current episode by some statistical test, while
BAD = [K]\GOOD contains all other arms. In what follows, we use GOODn and BADn to
denote the GOOD and BAD sets at time n, respectively. At the beginning of each episode,
GOOD contains all the arms, which are then eliminated (and moved to BAD) when it can
be proved with high probability based on the received rewards that they cannot be optimal
for at least one time step of the episode. When all arms are eliminated from the GOOD set,
the algorithm knows that the identity of the optimal arm has changed with high probability,
so a new episode is started (where again all arms can be optimal initially). An algorithm
that only plays the arms in the GOOD set would miss detecting if an arm from the BAD
set became good. To handle such cases, in every step ArmSwitch may select, with some
small probability, some arms from the BAD set to be explored, and the algorithm may play
these arms as well, beside the ones in the GOOD set; the arms which can be played in any
given time step are collected in the active set A.

Next we describe each component of ArmSwitch in detail:

Exploration of arms in the BAD set. To facilitate exploration of arms in the BAD
set, ArmSwitch maintains so-called exploration obligations B(a), containing a prescribed
sum of probabilities with which a bad arm has to be explored over multiple time steps (this
is similar to exploration obligations used by AdSwitch prescribing how many times an
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arm has to be sampled, but it is better tuned for random sampling). When any arm gets
to the BAD set, its exploration obligation is set to 0 (lines 20 and 21). At the beginning
of a time step n (before an arm is played, see lines 4–12), the algorithm may schedule some
exploration for some arms in the BAD set: The obligation (length) can be 1/ε2 for any ε
in an exponential grid B = {1/2, 1/4, . . . , 2−dlog2Ne}, and longer explorations have smaller
probabilities: in episode s, a ∈ BADn and ε ∈ B, with probability ε/

√
K(n+ 1− ts), we

prescribe an exploration obligation of length 1/ε2 by setting B(a) to max(B(a), 1/ε2). We
say that an obligation is scheduled in a time step for arm a if it is the longest obligation
prescribed, and it is larger than the previous obligation, and define a corresponding event
EXP(a, n, ε) which holds if and only if an exploration obligation of length 1/ε2 is scheduled
for arm a in time step n (i.e., Bn(a) = 1/ε2 > Bn−1(a)). Note that the conditional
probability of EXP(a, n, ε) (given the history up to this point) if n belongs to episode s is
at most ε/

√
K(n+ 1− ts).

Arms in the BAD set with positive exploration obligations typically belong to the active
set A for the given time step, unless their exploration obligation is “rounded down” to 0
(see lines 13–14, and the description of the procedure for sampling an arm below). After
the algorithm plays an arm and receives a reward, the exploration obligations for any active
arm in the BAD set are reduced by the (conditional) probability of selecting that arm, that
is, by 1

K (line 17).

Selecting arms. After possibly introducing new sampling obligations, the algorithm se-
lects a set of active arms A from which the played arm An is selected. Set A contains all the
arms in the GOOD set, and also all the BAD arms with exploration obligations at least 1

K .
We also use An to denote the active arms at time n. The algorithm selects an action from
a distribution that assigns probability 1

K to any BAD arm in the active set, and is uniform
over the GOOD arms using the remaining probabilities (line 15). It will be helpful to define
an additional variable Ãn by implementing the sampling of An in a two-step procedure:
with probability |A|K , an arm is sampled uniformly at random from A, and otherwise an arm
is sampled uniformly at random from GOOD. The sampled arm is denoted by An; if the
first event happens, we also let Ãn := An, while in case of the second event, we let Ãn to
take a value not in the action set by defining Ãn := ∗ (an alternative definition of Ãn is
to choose An according to Pn and then set Ãn to An with probability 1

K /Pn(An) and to ∗
otherwise).

Eliminating arms from the active set. If, based on the observed rewards rn and the
selected actions, the algorithm can prove (with high probability) that an arm in the active
set A cannot be optimal starting from the last time it has become active, it is removed
from the active set, that is, it is removed from the set of GOOD arms if it belonged there,
or its exploration obligations are deleted if it belongs to the BAD set (lines 18–22). This
elimination is based on observations in intervals when an arm is active: we say that arm a
is active in time step n if a ∈ An. The start of the most recent active period is maintained
in the variable Active: for arms in the GOOD set, it is the beginning of the current episode
(line 2), while for active arms a in the BAD set, it is the time when the algorithm has
decided to explore them (i.e., when the exploration obligation B(a) last became positive,
see line 8). If a ∈ An, then a is active in [n′ : n] if and only if Activen(a) ≤ n′. We denote
by the boolean Elimn(a′, a) whether we can prove (with high probability) in time step n
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that arm a′ was better in at least one time step than a during a time interval ending at time
n when both arms were active. In this case we know that a cannot be an optimal arm in
this interval, hence it cannot be an optimal arm in the episode, and so it can be eliminated.
The details of this procedure, which is at the heart of ArmSwitch, are given in the next
section (Section 3.2) and Algorithm 2.

3.2 Comparison of arms (Elimn(a′, a))

We now specify the arm-elimination condition Elimn(a′, a), which indicates whether arm
a′ is better than a in at least one time step in the current episode up to time n, with high
probability, given the algorithm’s history up to that point. If it is the case that a′ is better
than a, arm a can be eliminated from the active set by a′. The formal definition is given in
Algorithm 2. The notation used in the algorithm and its analysis is introduced below and
summarized in Table 1.

Let Pn(a) denote the probability of selecting arm a in time step n, given the history Hn
up to that point (see line 14 of Algorithm 1). By definition, Pn(a) = 1

K for a ∈ An∩BADn,

and Pn(a) = 1
|GOODn|

(
1− |An∩BADn|

K

)
for a ∈ GOODn (note that the latter is always at

least 1/K). For a /∈ An, Pn(a) = 0. Let An be the arm selected at time n, Gn(a) :=
Pn(a)gn(a) be the weighted expected reward of arm a in time step n, and Ĝn(a) := I{An =
a}rn be its estimate; note that this is an unbiased estimate since Gn(a) = E[Ĝn(a)|Hn]. We

also define G̃n(a) := gn(a)
K and its estimate

̂̃
Gn(a) := I{Ãn = a}rn (recall that Ãn equals An

with probability |An|/K and ∗ otherwise, see its definition in the paragraph on selecting
arms in Section 3.1). For any interval [n′ : n], we consider the following weighted sums of
(possibly expected) rewards:

Gn′:n(a) :=
∑

t∈[n′:n]

Pt(a)gt(a) , Ĝn′:n(a) :=
∑

t∈[n′:n]

Ĝt(a) =
∑

t∈[n′:n]

I{At = a}rt ,

G̃n′:n(a) :=
1

K

∑
t∈[n′:n]

gt(a) ,
̂̃
Gn′:n(a) :=

∑
t∈[n′:n]

̂̃
Gt(a) =

∑
t∈[n′:n]

I{Ãt = a}rt .

Note that G̃n′:n(a) = Gn′:n(a) and
̂̃
Gn′:n(a) = Ĝn′:n(a) for a ∈

⋂n
t=n′ At ∩ BADt.

4 Define

∆n′:n(a, a′), ∆̂n′:n(a, a′), ∆̃n′:n(a, a′) and
̂̃
∆n′:n(a, a′) as follows: for any arms a, a′ ∈ [K], let

∆n′:n(a, a′) := Gn′:n(a)−Gn′:n(a′) , ∆̂n′:n(a, a′) := Ĝn′:n(a)− Ĝn′:n(a′) , (2)

∆̃n′:n(a, a′) := G̃n′:n(a)− G̃n′:n(a′) ,
̂̃
∆n′:n(a, a′) :=

̂̃
Gn′:n(a)− ̂̃Gn′:n(a′) . (3)

Note that ∆̃n′,n(a, a′) = −∆̃n′,n(a′, a) and
̂̃
∆n′,n(a, a′) = − ̂̃∆n′,n(a′, a). Since for an active

arm a,
̂̃
Gn(a) is an unbiased estimate of G̃n(a) as explained above, using martingale con-

centration it can be shown that
̂̃
Gn′,n(a) is close to G̃n′,n(a) (and in turn

̂̃
∆n′,n(a, a′) is

4. Also notice that since I{At = a} is a Bernoulli random variable whose variance is upper bounded by
Pt(a), Gn′:n(a) is similar in spirit to the minimum-variance estimator of a joint mean of independent
random variables, where the optimal weighting is proportional to the variance of each variable.
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Probabilities

Pn′:n(a)
∑n

t=n′ Pt(a)

Confidence intervals

Cn′,n

√
log
(

2KN2(log(n−n′+1)+2)
δ

)
CN = C1,N

C ′n′,n

√
log
(

2K2N2(log(n−n′+1)+2)
δ

)
Rewards Gaps

Gn(a) Pn(a)gn(a) ∆n′:n(a, a′) Gn′:n(a)−Gn′:n(a′)

Ĝn(a) I{An = a}rn ∆̂n′:n(a, a′) Ĝn′:n(a)− Ĝn′:n(a′)

G̃n(a) gn(a)
K ∆̃n′:n(a, a′) G̃n′:n(a)− G̃n′:n(a′)̂̃

Gn(a) I{Ãn = a}rn
̂̃
∆n′:n(a, a′)

̂̃
Gn′:n(a)− ̂̃Gn′:n(a′)

Gn′:n(a)
∑

t∈[n′:n]Gt(a) ∆̃′n′:n(a, a′)
∑n

t=n′ I{Ãt = a}
(
gt(a)− gt(a′)

)
Ĝn′:n(a)

∑
t∈[n′:n] Ĝt(a)

G̃n′:n(a)
∑

t∈[n′:n] G̃t(a)̂̃
Gn′:n(a)

∑
t∈[n′:n]

̂̃
Gt(a)

Gn′:n(a, a′)
∑n

t=n′ Pt(a)gt(a
′)

G′n′:n(a, a′)
∑n

t=n′ I{At = a}gt(a′)

Events

E1

∣∣∣Ĝn′:n(a)−Gn′:n(a)
∣∣∣ ≤ 6Cn′,n

(√
Pn′:n(a) ∨ Cn′,n

)
for all [n′ : n] ⊆ [N ], a ∈ [K]

E2

∣∣∣ ̂̃Gn′:n(a)− G̃n′:n(a)
∣∣∣ ≤ 6Cn′,n

(√
n−n′+1

K ∨ Cn′,n
)

for all [n′ : n] ⊆ [N ] and

a ∈ [K] active on [n′ : n]

E3

∣∣G′n′:n(a, a′)−Gn′:n(a, a′)
∣∣ ≤ 5C ′n′,n

(√
Pn′:n(a) ∨ C ′n′,n

)
for all [n′ : n] ⊆ [N ] and

a, a′ ∈ [K]

E4

∣∣∣∆̃′n′:n(a, a′)− ∆̃n′:n(a, a′)
∣∣∣ ≤ 5C ′n′,n

(√
n−n′+1

K ∨ C ′n′,n

)
for all [n′ : n] ⊆ [N ] and

a, a′ ∈ [K] active on [n′ : n]

Table 1: Summary of notation for the ArmSwitch algorithm and its analysis.
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close to ∆̃n′,n(a, a′)) for active arms: defining Cn′,n =

√
log
(

2KN2(log(n−n′+1)+2)
δ

)
for some

δ ∈ (0, 1) and Pn′:n(a) =
∑n

t=n′ Pt(a), Lemma 3 shows that∣∣∣Ĝn′:n(a)−Gn′:n(a)
∣∣∣ ≤ 6Cn′,n

(√
Pn′:n(a) ∨ Cn′,n

)
, (4)∣∣∣∣ ̂̃Gn′:n(a)− G̃n′:n(a)

∣∣∣∣ ≤ 6Cn′,n

(√
n− n′ + 1

K
∨ Cn′,n

)
(5)

with probability at least 1 − δ simultaneously for all intervals [n′ : n] ⊂ [N ] and actions a
that are active on that interval.

If a is an optimal arm in the interval [n′ : n], then gt(a) ≥ gt(a
′) for any other arm a′

and t ∈ [n′ : n]. Therefore, if both a and a′ are active in [n′ : n], ∆̃n′,n(a, a′) ≥ 0. Thus,

if for an arm a there exists another arm a′ such that ∆̃n′,n(a, a′) < 0 — or equivalently,

∆̃n′,n(a′, a) > 0 — then a cannot be optimal, and hence can be eliminated from the set of

potentially optimal arms for [n′ : n]. We use our empirical estimates
̂̃
∆n′:n(a, a′) to verify,

with high probability, if this happens: if (5) holds for a, a′, then

̂̃
∆n′:n(a′, a) > 12Cn′,n

(√
n− n′ + 1

K
∨ Cn′,n

)
(6)

implies that ∆̃n′:n(a′, a) > 0. The indicator Elimn(a′, a) is true (see Algorithm 2) if (6)
holds for any interval [n′ : n] ⊂ [ts : n] such that both a and a′ are active on [n′ : n]. The
above condition discards data from any time step t such that Ãt 6= At. Although this way
of using data looks sub-optimal, condition (6) does not involve Pt variables, which proves
crucial in showing tight regret bounds when the optimal arm is in the BAD set. We also
present a variant of our algorithm where the constant 12 in the elimination condition (6) is
replaced with 13, implying that K∆̃n′:n(a′, a) >

√
K(n− n′ + 1).

With a similar argument, we can show that if (4) holds for a, a′ ∈ GOODn, then

∆̂n′:n(a′, a) > 12Cn′,n

(√
Pn′:n(a) ∨ Cn′,n

)
(7)

implies that ∆n′:n(a′, a) > 0. The indicator Elimn(a′, a) is true if (7) holds for any interval
[n′ : n] ⊂ [ts : n] such that both a and a′ are in the GOOD set. Further intuition on why
we use two elimination conditions are given in Section 4.2.

3.3 Regret of ArmSwitch

The following theorem shows that the regret of ArmSwitch behaves as desired.

Theorem 1 For a switching multi-armed bandit problem with K ≥ 2 arms, horizon N ≥ 2,
and S ≥ 0 changes in the identity of the optimal arm, the expected regret of ArmSwitch
run with δ = 1/(

√
KN3/2) is bounded as

E[RN ] ≤ Const
√
K(S + 1)N(log(KN log(N)))3/2

for an appropriate universal constant Const.
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If the elimination condition (6) is changed a little bit as indicated above, we can also
prove a bound in terms of how much the rewards of the arms can change from one round to
the next, usually referred to in the literature as a variational bound (Besbes et al., 2014).
To this end, let

V :=
N−1∑
n=1

max
a∈[K]

|gn+1(a)− gn(a)|

be the total variation of the reward vectors. The next result is an easy consequence of some
intermediate bound obtained in the proof of Theorem 1:

Corollary 2 Assume ArmSwitch is run with condition

̂̃
∆n′:n(a′, a) > 13Cn′,n

(√
n− n′ + 1

K
∨ Cn′,n

)
(8)

instead of (6) in line 2 of Elimn(a′, a) (Algorithm 2). Then, for an appropriate uni-
versal constant Const independent of K,N, V , the regret of ArmSwitch run with δ =
1/(
√
KN3/2) is bounded as

E[RN ] ≤ Const
(√

KN + (KV )1/3N2/3
)(

log
(
KN log(N)

))3/2
.

The rest of the paper (Section 4) is devoted to the proof of the above results.

Remark. In a parallel work, Suk and Kpotufe (2022) proposed a similar algorithm and
regret bounds. Compared to ours, the main difference is that their algorithm uses a fully
synchronized exploration of all arms, while we also randomize which arms to explore (i.e.,
when they explore, they explore all BAD arms, that is, completely restart the algorithm
in an exploration phase, while we can explore BAD arms individually). This additional
randomization introduces some complications in the proof as we need to keep track of the
exploration status of each arm separately. Otherwise the resulting algorithms and proof
techniques are essentially the same. The elimination condition of Suk and Kpotufe (2022)
is slightly different as is designed to detect significant changes in the reward distribution
(discussed in more details in Section 4.5) instead of changes in the identity of optimal arms;
hence, as a parallel to Theorem 1, they prove a bound which scales with the number of
significant shifts and not the number of changes to the identity of the optimal arm. They
also show a variational bound as given in Corollary 2 above; in fact, we use their definition
of significant reward changes to establish our variational bound. More details are given in
Section 4.5, along with the proof of the corollary.

4. Analysis

We start with a few useful lemmas then analyze the regret in Section 4.2.

11
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4.1 Useful lemmas

Fix δ ∈ (0, 1). We define events E1, E2 under which the estimates Ĝn′,n(a),
̂̃
Gn′,n(a) are

good:

E1 =

{∣∣∣Ĝn′:n(a)−Gn′:n(a)
∣∣∣ ≤ 6Cn′,n

(√
Pn′:n(a) ∨ Cn′,n

)
for all [n′ : n] ⊆ [N ] and actions a ∈ [K]

}
,

E2 =

{∣∣∣∣ ̂̃Gn′:n(a)− G̃n′:n(a)

∣∣∣∣ ≤ 6Cn′,n

(√
n− n′ + 1

K
∨ Cn′,n

)

for all [n′ : n] ⊆ [N ] and actions a active on [n′ : n]

}
.

To help the analysis, it will also be useful to consider the following quantities for any n′ ≤ n
and arms a, a′ ∈ [K]:

Gn′:n(a, a′) :=
n∑

t=n′

Pt(a)gt(a
′) , G′n′:n(a, a′) :=

n∑
t=n′

I{At = a}gt(a′) ,

∆̃′n′:n(a, a′) :=

n∑
t=n′

I{Ãt = a}
(
gt(a)− gt(a′)

)
.

By taking conditional expectations it follows that G′n′:n(a, a′) should be close to Gn′:n(a, a′)

for all arms a, a′, and ∆̃′n′:n(a, a′) should be close to ∆̃n′:n(a, a′) for arms a, a′ that are

active on interval [n′ : n]. Defining C ′n′,n =

√
log
(

2K2N2(log(n−n′+1)+2)
δ

)
(which satisfies

C ′n′,n ≤ 2Cn′,n), these are formalized in the following events:

E3 =

{∣∣G′n′:n(a, a′)−Gn′:n(a, a′)
∣∣ ≤ 5C ′n′,n

(√
Pn′:n(a) ∨ C ′n′,n

)
for all [n′ : n] ⊆ [N ] and actions a, a′ ∈ [K]

}
,

E4 =

{∣∣∣∆̃′n′:n(a, a′)− ∆̃n′:n(a, a′)
∣∣∣ ≤ 5C ′n′,n

(√
n− n′ + 1

K
∨ C ′n′,n

)

for all [n′ : n] ⊆ [N ] and actions a, a′ active on [n′ : n]

}
.

The next lemma shows that E1, E2, E3, and E4 hold with high probability. Its proof,
presented in Appendix A, is based on a version of Freedman’s inequality.
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Lemma 3 Each of the events E1, E2, E3, and E4 hold with probability at least 1− δ.

We bound the regret of ArmSwitch under the event E1 ∩ E2 ∩ E3 ∩ E4. Taking into
account that the regret in every time step is at most 1 and choosing δ = 1/(

√
KN3/2), the

contribution to the expected regret when E1, E2, E3 or E4 do not hold can be bounded by
4/
√
KN . For arms a, a′, note that since

∆̂n′:n(a′, a) =
(
Ĝn′:n(a′)−Gn′:n(a′)

)
+
(
Gn′:n(a′)−Gn′:n(a)

)
+
(
Gn′:n(a)− Ĝn′:n(a)

)
,

E1 implies∣∣∣∆̂n′:n(a′, a)−∆n′:n(a′, a)
∣∣∣ ≤ 6Cn′,n

(√
Pn′:n(a) ∨ Cn′,n +

√
Pn′:n(a′) ∨ Cn′,n

)
.

In particular, if both a and a′ are GOOD throughout the interval [n′ : n], then Pt(a) = Pt(a
′)

for all t ∈ [n′ : n], and hence∣∣∣∆̂n′:n(a′, a)−∆n′:n(a′, a)
∣∣∣ ≤ 12Cn′,n

(√
Pn′:n(a) ∨ Cn′,n

)
. (9)

Similarly, E2 implies, for any a, a′ ∈ [K] that are active on [n′ : n],∣∣∣∣ ̂̃∆n′:n(a′, a)− ∆̃n′:n(a′, a)

∣∣∣∣ ≤ 12Cn′,n

(√
n− n′ + 1

K
∨ Cn′,n

)
. (10)

The next lemma, proved in Appendix A, shows some useful connections between events
E1, E2, the gaps, and Elimn(a′, a).

Lemma 4 Let n′ ≤ n be two time steps belonging to the same episode.

(i) Suppose E1 holds. If ∆n′:n(a′, a) > 24Cn′,n
(√
Pn′:n ∨ Cn′,n

)
for a, a′ ∈ GOODn, then

Elimn(a′, a) is true. Furthermore, if a, a′ ∈ GOODn+1, then Elimn(a′, a) is false and

∆n′:n(a′, a) ≤ 24Cn′,n

(√
Pn′:n(a) ∨ Cn′,n

)
.

(ii) Assume E2 holds and arms a, a′ are active on interval [n′ : n]. If ∆̃n′:n(a′, a) >

24Cn′,n

(√
n−n′+1

K ∨ Cn′,n
)

, then Elimn(a′, a) is true. Furthermore, if a′ ∈ GOODn+1

and either a ∈ GOODn+1 or a ∈ BADn+1 ∩ An+1 with no new exploration obliga-
tion scheduled for a in time step n + 1, then Elimn(a′, a) is false and ∆̃n′:n(a′, a) ≤

24Cn′,n

(√
n−n′+1

K ∨ Cn′,n
)

.

4.2 Preliminaries to the proof of Theorem 1

We bound the regret of ArmSwitch under the event E1 ∩ E2 ∩ E3 ∩ E4. We first show that
the number of episodes produced by our algorithm is at most S + 1.

Lemma 5 If E1 ∩ E2 holds, ArmSwitch has at most S + 1 episodes.
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Proof At the beginning of each episode s, the set GOODts includes all arms including
the current optimal arm. Under the event E1 ∩ E2 and given the elimination conditions (6)
and (7), the arm that is optimal at the start of the episode cannot be eliminated from the
GOOD set for as long as it stays optimal. Thus, the GOOD set can only become empty
after a change in the optimal arm, which happens S times.

In what follows, let ags denote an arm that stays in the GOOD set during the entire
episode s (i.e., the last arm to get eliminated, or one of the last arms if multiple arms are
eliminated when GOOD becomes empty). Let Ns denote the set of time steps in episode s.
We decompose the regret in each episode s into the regret of played arms with respect to
ags, and the regret of ags with respect to the optimal arms as follows:

RN =

N∑
n=1

(gn(a∗n)− gn(An)) = R
(1)
N +R

(2)
N +R

(3)
N ,

where we define

R
(1)
N :=

S+1∑
s=1

∑
n∈Ns

I{An ∈ BADn}(gn(ags)− gn(An)) ,

R
(2)
N :=

S+1∑
s=1

∑
n∈Ns

I{An ∈ GOODn}(gn(ags)− gn(An)) ,

R
(3)
N :=

S+1∑
s=1

∑
n∈Ns

(gn(a∗n)− gn(ags)) .

We proceed by bounding each of the above regret terms. Bounding R
(1)
N and R

(2)
N can be

done using arguments similar to existing techniques of Auer et al. (2019b); this is presented
in Section 4.3, in Lemma 6 and Lemma 7, respectively.

The main challenge is controlling R
(3)
N , and ensuring that it scales properly with the

number of arms K is the source of most complications in the algorithm design: using a non-
uniform sampling distribution over the active arms, and having two elimination conditions
(namely, equations 6 and 7). Indeed, choosing the sampling distribution to be uniform over
the active set, which is similar to the round robin action selection of Auer et al. (2019b),
would lead to a suboptimal bound in K according to our analysis, as discussed below:
Assume that the optimal arm is fixed and active on interval [n′ : n], and it belongs to the
BAD set. Then condition (7) for eliminating ags (and starting a new episode) is of the form
(neglecting the lower order term C2

n′,n)

n∑
t=n′

1

|At|
(gt(a

∗
t )− gt(ags)) ≈

n∑
t=n′

(Ĝt(a
∗
t )− Ĝt(ags)) ' 12CN

√√√√ n∑
t=n′

1

|At|
, (11)

where CN := C1,N which equals
√

log(2K3/2N7/2(log(N) + 2)) = Õ(1) for δ = 1/(
√
KN3/2).

To detect by time n that a∗n is better than agn, we need to explore it for sufficiently long,
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and with sufficiently high probability. However, |At| can be as small as 2 and as large as
K, and so for the same reward sequence, a∗n needs to be explored Θ(

√
K) times longer to

detect a change if |At| is close to K than if it is close to 2, also resulting in a K times larger
regret (assuming the difference between gt(an) and gt(a

g
s) is constant in [n′, n]). Therefore,

there is an ambiguity (of a factor K) here in selecting the length of the exploration interval,
or equivalently, selecting the probability of adding different exploration obligations.

On the other hand, using an action selection probability 1/K for actions in BAD, the
elimination condition becomes (6), or in simplified form

n∑
t=n′

(gt(a
∗
t )− gt(ags)) ' 12CN

√
K(n− n′ + 1) .

This in turn allows to set the probability of introducing exploration obligations of different
lengths properly, leading to an optimal (up to logarithmic factors) Õ(

√
KSN) regret bound.

This is proved formally in Lemma 8 in Section 4.4.
Combining Lemmas 6–8 trivially yields Theorem 1. Following the proofs of these lem-

mas, Corollary 2 is proved in Section 4.5.

4.3 Bounding R
(1)
N and R

(2)
N

We start with bounding E[R
(1)
N ].

Lemma 6 Under the conditions of Theorem 1, we have

E[R
(1)
N ] ≤ 160CN (log2(N) + 1)E

[
I{E1 ∩ E2}

∑
s

√
K(ts+1 − ts)

]

+
320CN (log2(N) + 1)√

N
+

2√
KN

≤ 160CN (log2(N) + 1)
√
K(S + 1)N +

320CN (log2(N) + 1)√
N

+
2√
KN

where CN := C1,N .

Proof Here we bound the regret due to exploring arms in the BAD set in each episode
with respect to the arm ags. Note that all sampling obligations start and end in the same
episode, since all arms are placed in the GOOD set at the beginning of each episode. Since
the bound trivially holds if K > N2 or N < 64, in the rest of the proof we assume K ≤ N2

and N ≥ 64.
Consider a sampling obligation for arm a ∈ BADn that is scheduled in time step n in

episode s with exploration parameter ε. Let τn(ε, a) be the time at which this particular
sampling obligation expires, that is, either n′ = τn(ε, a) + 1 is the first time after n when
the obligation Bn′(a) is zero (i.e., it is zero after line 14 of Algorithm 1), or n′ = τn(ε, a) + 1
is the first time step when a new exploration obligation is scheduled for a (by triggering
the max operation in line 10). Then, under E2 ∩ E4, the regret with respect to ags can be
bounded as ∑

t∈[n:τn(ε,a)]

I{At = a}(gt(ags)− gt(a))
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≤ ∆̃n:τn(ε,a)(a
g
s, a) + 10CN

(√
τn(ε, a)− n+ 1

K
∨ 2CN

)
(12)

≤ 34CN

(√
τn(ε, a)− n+ 1

K
∨ CN

)
+ 20C2

N + 1

≤ 34CN

(
1

ε
∨ CN

)
+ 20C2

N + 1 , (13)

where the first inequality holds by the definition of E4 because a is a BAD arm in [n : τn(ε, a)]
(hence At = a is equivalent to Ãt = a) and C ′n′,n ≤ 2CN ; the second inequality holds by
Lemma 4(ii) (since we assumed that E2 holds) and the fact that the reward difference
between any two arms in one step is at most 1; and the last inequality holds by the fact
that the length of the interval cannot be more than K/ε2 (see line 17 of Algorithm 1).

Recall that Ns denotes the set of time steps in episode s and that EXP(a, n, ε) denotes
the event that an exploration obligation of length 1/ε2 is scheduled for arm a in time step
n. Note that the exploration intervals [n, τn(εn, a)] ⊂ Ns for the scheduled explorations of
arm a (that is, for which EXP(a, n, εn) hold) are disjoint for all n, and together cover all
time steps in episode s where a belongs to the BAD set and is active.

Using these observations, the expected regret due to exploring BAD arms in episode s
with respect to arm ags can be bounded as follows:

E[R
(1)
N,s] := E

[∑
n∈Ns

I{An ∈ BADn}(gn(ags)− gn(An))

]

= E

[∑
n∈Ns

∑
a∈BADn

I{An = a}(gn(ags)− gn(a))

]

= E

∑
n∈Ns

∑
a∈BADn

∑
ε∈B

I{EXP(a, n, ε)}
τn(ε,a)∑
t=n

I{At = a}(gt(ags)− gt(a))


≤ E

∑
n∈Ns

∑
a∈BADn

∑
ε∈B

I{EXP(a, n, ε)}I{E2 ∩ E4}
τn(ε,a)∑
t=n

I{At = a}(gt(ags)− gt(a))


+ E

[
I{E2 ∪ E4}|Ns|

]
≤ E

[∑
n∈Ns

∑
a∈BADn

∑
ε∈B

I{EXP(a, n, ε)}
(

34CN

(
1

ε
∨ CN

)
+ 20C2

N + 1

)]
+ E

[
I{E2 ∪ E4}|Ns|

]
,

where the first inequality holds trivially when introducing the indicator for E2 ∩ E4 as the
sum is always at most |Ns|, and the second inequality holds by (12). Taking into account
that the conditional probability of EXP(a, n, ε) for n ∈ Ns, given all the information up to
the beginning of time step n, which also determines if n ∈ Ns, is at most ε/

√
K(n+ 1− ts),

the first term above can be bounded as

E

[∑
n∈Ns

∑
a∈BADn

∑
ε∈B

I{EXP(a, n, ε)}
(

34CN

(
1

ε
∨ CN

)
+ 20C2

N + 1

)]
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≤ E

[∑
n∈Ns

∑
a∈BADn

∑
ε∈B

1√
K(n+ 1− ts)

(
34CN (1 ∨ εCN ) + ε(20C2

N + 1)
)]

≤ E

[∑
n∈Ns

∑
a∈BADn

1√
K(n+ 1− ts)

(
54C2

N + 34CN (log2(N) + 1) + 1
)]

≤ E

[∑
n∈Ns

∑
a∈BADn

80CN (log2(N) + 1)√
K(n+ 1− ts)

]
≤ 160CN (log2(N) + 1)E[

√
K|Ns|],

where in the second inequality we used that |B| ≤ log2(N) + 1 and that
∑

ε∈B ε < 1,

and in the third one that for K ≤ N2, N ≥ 64 and δ = 1/(
√
KN3/2), 54C2

N + 1 ≤
46CN (log2(N) + 1), while the last step follows by

∑X
x=1 1/

√
x ≤ 2

√
X. Combining with the

above gives

E[R
(1)
N,s] ≤ 160CN (log2(N) + 1)E[

√
K|Ns|] + E

[
I{E2 ∪ E4}|Ns|

]
Summing up for all s we obtain

E[R
(1)
N ] = E

[∑
s

R
(1)
N,s

]
≤ 160CN (log2(N) + 1)E

[∑
s

√
K|Ns|

]
+ E

[
I{E2 ∪ E4}

∑
s

|Ns|

]
.

Now Lemma 3 and the choice of δ imply that E
[
I{E2 ∪ E4}

]
≤ 2/(N

√
KN), and hence

the second term on the right hand side above can be bounded by 2/
√
KN . To obtain the

statements of the lemma, split the first term as

E

[∑
s

√
K|Ns|

]
= E

[
I{E1 ∩ E2}

∑
s

√
K|Ns|

]
︸ ︷︷ ︸

A

+E

[
I{E1 ∪ E2}

∑
s

√
K|Ns|

]
︸ ︷︷ ︸

B

.

Since the number of episodes is at most S + 1 under E1 ∩ E2 by Lemma 5, and since
the Ns form a partition of [1, N ], we have A ≤

√
K(S + 1)N . To bound B, notice that

B ≤ N
√
KE

[
I{E1 ∪ E2}

]
. By Lemma 3, E

[
I{E1 ∪ E2}

]
≤ 2/(

√
KN3/2), and soB ≤ 2/

√
N .

Putting everything together, we obtain

E[R
(1)
N ] ≤ 160CN (log2(N) + 1)E

[
I{E1 ∩ E2}

∑
s

√
K|Ns|

]
+

320CN (log2(N) + 1)√
N

+
2√
KN

≤ 160CN (log2(N) + 1)
√
K(S + 1)N +

320CN (log2(N) + 1)√
N

+
2√
KN

,

as desired.

Lemma 7 Under the conditions of Theorem 1, we have

E
[
R

(2)
N

]
≤ 45CNE

[
I{E1 ∩ E2 ∩ E3}

∑
s

√
4C2

NK
2 +K(ts+1 − ts)

]
+ 3/

√
KN (14)

≤ 46CN
√
K(S + 1)N + 3/

√
KN . (15)
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Proof For any a ∈ [K], let Ns(a) denote the set of time steps in episode s on which arm
a is GOOD; note that by definition, Ns(a) is an interval of the form [ts, t̃s(a)], where t̃s(a)
denotes the last time step of episode s in which a is in the GOOD set. Since ags belongs to
GOOD throughout the whole episode, if n ∈ Ns(a), Pn(a) = Pn(ags), and we have

I{An = a}(gn(ags)− gn(a))

= gn(ags)
(
I{An = a} − Pn(a)

)
+
(
Pn(ags)gn(ags)− I{An = ags}rt

)
+
(
I{An = ags}rt − I{An = a}rt

)
+
(
I{An = a}rt − Pn(a)gn(a)

)
+ gn(a)

(
Pn(a)− I{An = a}) .

Summing up for all n ∈ Ns(a), under E1 ∩ E3 we get∑
n∈Ns(a)

I{An = a}(gn(ags)− gn(a))

≤
(
G′
ts:t̃s(a)

(a, ags)−Gts:t̃s(a)(a, a
g
s)
)

+
(
Gts:t̃s(a)(a

g
s)− Ĝts:t̃s(a)(a

g
s)
)

+ ∆̂ts:t̃s(a)(a
g
s, a) +

(
Ĝts:t̃s(a)(a)−Gts:t̃s(a)(a)

)
+
(
Gts:t̃s(a)(a, a)−G′

ts:t̃s(a)
(a, a)

)
≤ ∆̂ts:t̃s(a)(a

g
s, a) + 32CN

(√
Pts:t̃s(a)(a) ∨ 2CN

)
(16)

From here the regret of playing arms in the GOOD set with respect to ags in episode s
can be bounded as follows:

I{E1 ∩ E3}R(2)
N,s := I{E1 ∩ E3}

∑
n∈Ns

I{An ∈ GOODn}
(
gn(ags)− gn(An)

)
=
∑
a∈[K]

I{E1 ∩ E3}
∑
n∈Ns

I{An = a, a ∈ GOODn}
(
gn(ags)− gn(a)

)
=
∑
a∈[K]

I{E1 ∩ E3}
∑

n∈Ns(a)

I{An = a}
(
gn(ags)− gn(a)

)
≤ I{E1 ∩ E3} ·

∑
a∈[K]

(
∆̂ts:t̃s(a)(a

g
s, a) + 32CN

(√
Pts:t̃s(a)(a) ∨ 2CN

))
≤ I{E1 ∩ E3} ·

∑
a∈[K]

(
44CN

(√
Pts:t̃s(a)(a) ∨ 2CN

)
+ 1
)

≤ I{E1 ∩ E3} ·
∑
a∈[K]

(
44CN

√
4C2

N + Pts:t̃s(a)(a) + 1
)

≤ I{E1 ∩ E3} · 45CN
∑
a∈[K]

√
4C2

N + Pts:ts+1−1(a)

≤ I{E1 ∩ E3} · 45CN

√
4C2

NK
2 +K

∑
a∈[K]

∑
t∈Ns

Pt(a)

= I{E1 ∩ E3} · 45CN

√
4C2

NK
2 +K|Ns| ,

where the first inequality holds by (16), the second because the elimination condition does
not hold at time step t̃s(a) − 1 and the last term in the summation of ∆̂ts:t̃s(a)(a

g
s, a) is at

most 1, and the penultimate step follows from the Cauchy-Schwartz inequality.
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Since we have at most S + 1 episodes under E1 ∩ E2 (by Lemma 5) and since E1 ∩
E2 ∩ E3 holds with probability at least 1 − 3/(N

√
KN) (by Lemma 3 and the choice δ =

1/(
√
KN3/2)), we obtain

E
[
R

(2)
N

]
≤ E

[
I{E1 ∩ E2 ∩ E3}R(2)

N

]
+ 3/
√
KN

≤ E

[
I{E1 ∩ E2 ∩ E3}

∑
s

45CN

√
4C2

NK
2 +K|Ns|

]
+ 3/

√
KN (17)

≤ 45CN

√
4C2

NK
2(S + 1)2 +K(S + 1)N + 3 , (18)

where the last step follows again by the Cauchy-Schwartz inequality. Bounding the indicator
by 1 in (17) proves the first inequality of the lemma.

To finish the proof, notice that if 180C2
NK(S + 1) ≤ N , (18) implies

E
[
R

(2)
N

]
≤
√

45 · 46CN
√
K(S + 1)N + 3 ≤ 46CN

√
K(S + 1)N + 3/

√
KN . (19)

Finally, if 180C2
NK(S+1) > N , the right hand side above is lower bounded by 46√

180
N > N ,

hence (19) also holds trivially in this case (as the rewards are [0, 1]-valued, and so R
(2)
N ≤ N).

4.4 Bounding R
(3)
N , the regret of playing arms ags with respect to the optimal

arms

In this section we bound the regret of playing arms ags with respect to playing the optimal
arms.

Lemma 8 Let τ1 = 1 < τ2 < · · · < τM ≤ τM+1 := N denote the time steps when either
a new episode starts or the identity of the optimal arm changes.5 Under the conditions of
Theorem 1,

E[R
(3)
N ] ≤ 25CNE

[
I{E1 ∩ E2}

M∑
i=1

((
21 + 2

√
log2(N) + 1

)√
K(τi+1 − τi) + 3CNK

)]
+ 400CN .

Furthermore, under the same conditions,

E[R
(3)
N ] ≤ 25CN

(
22 + 2

√
log2(N) + 1

)√
K(2S + 1)N + 400CN .

The rest of the section is devoted to proving this lemma. We introduce a partitioning
of the time horizon into several intervals, and we bound the regret of ags with respect to
a∗n (where n ∈ Ns; recall that Ns is the set of time steps in episode s). Throughout we let
cn(a) = gn(a∗n) − gn(a) denote the instantaneous regret of an arm a ∈ [K] in time step n,
and s(n) the index of the episode n belongs to (note that s(n) is a random quantity).

5. Note that M is random, and since by Lemma 5 the number of episodes is at most S + 1 under E1 ∩ E2,
and the identity of the optimal arm changes S times, we have M ≤ 2S+ 1 when E1 ∩E2 holds (i.e., with
high probability).

19



Abbasi-Yadkori, György, and Lazić

Figure 1: Partitioning the time horizon.

Partitioning the time horizon. In the analysis we partition the time horizon as follows:
Each episode s is of the form [τis : τis+ms − 1] where is is the index marking the beginning
of the episode and ms is the (random) number of segment [τi : τi+1 − 1] in episode s.
For any i ∈ [M ], let τ ′i be the first time step when a∗t is not in the GOOD set, that is,
τ ′i = min{t ∈ [τi : τi+1 − 1] : a∗t ∈ BADt} if the latter set is non-empty, and we let τ ′i = τi+1

if the optimal arm is in the GOOD set during the entire segment [τi : τi+1 − 1]. In what
follows, we bound the regret on intervals {[τi : τ ′i − 1], [τ ′i : τi+1 − 1] : i ∈ [M ]}. Note
that a∗n and ags(n) are constant in the time steps n of any of these intervals. We also define

τ ′′i as the next point starting from τ ′i where the identity of the optimal arm changes, that
is, τ ′′i := min{τj : a∗τj 6= a∗τi , j ∈ [i + 1 : M ]} if this set is non-empty, and we define
τ ′′i := τM+1 = N otherwise. It is easy to see that under the event E1 ∩ E2, τ ′′i is either τi+1

if τi corresponds to the start of an episode, and it is either τi+1 or τi+2 if it corresponds
to a change of the optimal arm (see also Lemma 5). See Figure 1 for a visual depiction
of the partitioning. For technical reasons, it will be advantageous to consider the regret
on [τ ′i : τ ′′i − 1] instead of [τ ′i : τi+1 − 1], as for the former, the endpoint of the interval is
determined by τ ′i , while it can be random for the latter even given τ ′i .

We start by analyzing time steps where the optimal arm is in the GOOD set in Sec-
tion 4.4.1, and consider the significantly more complicated case when it belongs to the BAD
set in Section 4.4.2. Some technical lemmas are presented in Section 4.6.

We start by defining a partitioning of the time horizon.

4.4.1 The optimal arm belongs to the GOOD set

In this section we analyze the regret on segments where ags belongs to the set of GOOD
arms, that is, for some i ∈ [1,M ], consider an interval I = [τi : τ ′i − 1]. Let s = s(τi) denote
the episode I belongs to. Since both ags and the optimal arm a∗I := a∗n are constant over I
and belong to GOODn for all n ∈ I, Lemma 4(ii) implies that if E2 holds, then∑

n∈[τi:τ ′i−2]

cn(ags) = K∆̃τi,τ ′i−2(a∗I , a
g
s) ≤ 24CN

(√
K(τ ′i − τi) ∨KCN

)
.

Taking into account that ct ≤ 1 ≤ KC2
N , we have that under E2,∑

n∈[τi:τ ′i−1]

cn(ags) ≤ 24CN

√
K(τ ′i − τi) + 25KC2

N . (20)

4.4.2 The optimal arm belongs to the BAD set

Fix an episode s (recall that this episode is [τis : τis+ms − 1]). In what follows, we bound
the regret of arm ags for time steps when the optimal arm belongs to the BAD set, that is,
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over all intervals of the form [τ ′i , τi+1 − 1] for i ∈ [is : is + ms − 1]. Since ags is determined
only at the end of segment s, we bound the maximum regret caused by every arm a ∈ [K]
in this segment before it can be eliminated from the GOOD set. Furthermore, to avoid
measurability problems, we bound this regret not on the original interval [τ ′i , τi+1−1] (whose
endpoint can be random given τi+1−1) but on the possibly longer interval [τ ′i , τ

′′
i −1], whose

endpoint is determined by τ ′i ; importantly, throughout this subsection we do not consider
that the episode can end earlier (at τi+1− 1) as this can only increase the regret and hence
it gives an upper bound as desired. During the proof we consider the shortest intervals
which ensure that, under E2, if the optimal arm is explored, arm a is eliminated by the
optimal arm (see Lemma 4(ii)). The regret on these intervals is well-controlled, hence their
overall contribution to E[R(3)] is acceptable if there are not too many of them. On the other
hand, the more such intervals are in the episode, the larger the probability of detecting the
suboptimality of a, hence limiting a’s contribution to the total regret.

Fix an arm a. Consider an index i ∈ [is : is +ms − 1] and the interval [τ ′i : τ ′′i − 1]. For
a time step n ∈ [τ ′i , τ

′′
i − 1], let n′ ∈ [n : τ ′′i ] be the smallest integer such that the following

condition is satisfied for some n′′ ∈ [n : n′]:

n′−1∑
t=n′′

ct(a) > 24CN

(√
K(n′ − n′′) ∨KCN

)
. (21)

If no such n′ exists, we define n′ = τ ′′i . Let In := [n : n′ − 1]. Note that if the optimal

arm does not change in In, then the left-hand side of (21) is K∆̃n′′:n′(a
∗
n′ , a), and (21) is

the elimination condition in Lemma 4(ii) (if both a and a∗n are active in In). As such, an
interval constructed in this way is called a candidate interval for eliminating a.

Given that ct ∈ [0, 1] and CN ≥ 1, (21) implies |In| = n′ − n ≥ n′ − n′′ ≥ KC2
N , and

thus
√
K|In| ≥ KCN . Therefore, since (21) does not hold for the interval [n : n′ − 2] by

definition and since ct(a) ≤ CN (as ct(a) ∈ [0, 1] and CN ≥ 1),

∑
t∈In

ct(a) ≤

{
25CN

(√
K|In| ∨KCN

)
= 25CN

√
K|In| if (21) holds for n′;

24CN
√
K|In|+ 24C2

NK otherwise.
(22)

which provides a bound on the regret of a in In with respect to the optimal arm.
Let En denote the event that the optimal arm is active in interval In. By Lemma 4(ii),

En leads to the elimination of a when E2 holds, hence we refer to En as an elimination event.
If the optimal arm a∗n is in BADn, it is active in In if a new exploration obligation of length
at least |In|/K is prescribed at the beginning of time step n.6 Conditioned on the history,
this happens with probability at least 1

2
√
|In|(n+1−ts)

since a new exploration obligation of

length 1/ε2 is prescribed with probability ε/
√
K(n+ 1− ts) (see line 5 in Algorithm 1) for

all ε ∈ B (the factor 1
2 is due to the fact that ε can take values only in the exponential grid

B). Therefore,7

P(En|a∗n ∈ BADn,H′n) = P(En|a∗n ∈ BADn,H′τ ′i ) ≤ 1− 1

2
√
|In|(n+ 1− ts)

. (23)

6. Recall that arm a is active in [n′ : n] if and only if Activen(a) ≤ n′.
7. Recall that history H′n is defined in line 3 of Algorithm 1.
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Figure 2: Partitioning of [τ ′i , τ
′′
i − 1].

Let J = {J1, J2, . . . , Jm} be a partitioning of [τ ′i , τ
′′
i −1] into candidate intervals ordered

by their starting points (if j < k then the starting point of Jj is smaller than that of Jk);
we have J1 = Iτ ′i and Jj = Iτ ′i+|J1|+···+|Jj−1| for j ∈ [2 : m]. Note that m is a random
quantity which depends on τ ′i , the starting point of the segment. See Figure 2 for a visual
depiction. By the construction of candidate intervals, if an elimination event En happens
in an interval Jk (i.e., n ∈ Jk), the corresponding exploration of the optimal arm finishes
by the end of Jk+1, and if E2 holds, it means that a is eliminated from the GOOD set by
then (when a = ags, this means that the episode also finishes).

Let Fk =
⋃
n∈Jk En denote the event that an elimination event happens in Jk, and

F
k

:=
⋂k
j=1 Fj that no elimination event happens before Jk. By the argument above, if E2

holds, then F
k−1 ∩ Fk means that a is eliminated from the GOOD set by an elimination

event happening in Jk, hence a can only be in the GOOD set until the end of Jk+1. Let

RG(a, [τ ′i : τ ′′i − 1]) =

τ ′′i −1∑
n=τ ′i

I{a ∈ GOODn}cn(a)

denote the regret of arm a in interval [τ ′i : τ ′′i − 1] when it is in the GOOD set.8

Lemma 9 We have that

I{E1 ∩ E2}RG(a, [τ ′i : τ ′′i −1])

≤ 25CN

(
2I{E1 ∩ E2}

(√
K(τ ′′i − τi) + CNK

)
+
m−2∑
k=1

I
{
E1 ∩ E2 ∩ F

k}√
K|Jk|

)
.

Proof We write

I{E1 ∩ E2}
RG(a, [τ ′i : τ ′′i − 1])

25CN

≤ I{E1 ∩ E2 ∩ F1}(
√
K|J1|+

√
K|J2|)

+ I{E1 ∩ E2 ∩ F1 ∩ F2}(
√
K|J1|+

√
K|J2|+

√
K|J3|)

8. With a slight abuse of notation, here and in the rest of this subsection we use GOODn to denote the
GOOD set for the modified algorithm which does not start a new episode before τ ′′i , as discussed before.
The same applies to other notation, such as BADn.
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+ . . .

+ I{E1 ∩ E2 ∩ F1 ∩ . . . ∩ Fm−2 ∩ Fm−1}(
√
K|J1|+ . . .+

√
K|Jm|+ CNK)

+ I{E1 ∩ E2 ∩ F1 ∩ . . . ∩ Fm−2 ∩ Fm−1}(
√
K|J1|+ . . .+

√
K|Jm|+ CNK)

≤ I{E1 ∩ E2 ∩ F1 ∩ F2}
√
K|J1|

+ . . .

+ I{E1 ∩ E2 ∩ F1 ∩ . . . ∩ Fm−2 ∩ Fm−1}(
√
K|J1|+ . . .+

√
K|Jm−2|)

+ I{E1 ∩ E2 ∩ F1 ∩ . . . ∩ Fm−2 ∩ Fm−1}(
√
K|J1|+ . . .+

√
K|Jm−2|)

+ 2I{E1 ∩ E2}
(√

K(τ ′′i − τi) + CNK

)
= I{E1 ∩ E2 ∩ F

1}
√
K|J1|+ I{E1 ∩ E2 ∩ F

2}
√
K|J2|

+ . . .+ I{E1 ∩ E2 ∩ F
m−2}

√
K|Jm−2|+ 2I{E1 ∩ E2}

(√
K(τ ′′i − τi) + CNK

)
,

where (i) the first inequality holds by the above argument about the elimination of a from the
GOOD set and by (22) bounding its regret in intervals J1, J2, . . .; (ii) the second inequality
holds by bounding the last two terms in every row using |Jk| ≤ τ ′′i − τi for all k; (iii) the
last equality follows by collecting like terms. Therefore,

I{E1 ∩ E2}RG(a, [τ ′i : τ ′′i −1])

≤ 25CN

(
2I{E1 ∩ E2}

(√
K(τ ′′i − τi) + CNK

)
+
m−2∑
k=1

I
{
E1 ∩ E2 ∩ F

k}√
K|Jk|

)
.

To proceed from here, we need to bound the probability of events F
k

for k ∈ [m − 2].
Let J d = {Jk ⊂ J : |Jk+1| >

∑k
j=1 |Jj |} denote the set of intervals where adding Jk+1 at

least doubles the length of the interval
⋃k
j=1 Jk covered so far (these are the intervals where

the next lemma does not apply). We bound the regret of a on intervals in J d separately.
Because of the aforementioned doubling of length, and since

∣∣⋃
J∈J J

∣∣ ≤ τ ′′i − τ ′i ≤ N ,
|J d| ≤ log2(N) + 1. Therefore, by (22) and the Cauchy-Schwartz inequality,∑

J∈J d

√
K|J | ≤

√
K(τ ′′i − τ ′i)(log2(N) + 1). (24)

Next we bound the probability of events F
k

on the remaining intervals.

Lemma 10 Let J ′ = J \ J d. For any k such that Jk ∈ J ′,

P
(
F
k
∣∣∣H′τ ′i) ≤ exp

− 1

8
√
τ ′′i − ts

k∑
j=1

√
|Jj |

 .
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Proof Define QI := 1

2
√
|I|(τ ′′i −ts)

for any interval I ⊂ [τ ′i , τ
′′
i − 1], and recall from (23) that

for any n ∈ [τ ′i : τ ′′i − 1],

P(En|a∗n ∈ BADn,H′τ ′i ) ≤ 1− 1

2
√
|In|(τ ′′i − ts)

= 1−QIn , . (25)

Let {Jk1 , Jk2 , . . . , Jk|Jk|} be the set of all candidate intervals starting in Jk (meaning that for

1 ≤ i ≤ |Jk|, Jki = It for some t ∈ Jk). See Figure 2 for a visual depiction. Note that by
definition, all intervals Jki end no later than the last time step of Jk+1, hence Jki ⊂ Jk∪Jk+1.
Therefore, conditioned on τ ′i , the probability that no elimination event happens before the
end of Jk can be upper bounded as

P
(
F
k
∣∣∣H′τ ′i) = P

( ⋂
n∈∪kj=1Jj

En

∣∣∣H′τ ′i
)

=
∏

n∈∪kj=1Jj

P(En|H′τ ′i , Eτ ′i , . . . , En−1)

=

∏
n∈J1

P(En|H′τ ′i , Eτ ′i , . . . , En−1)

∏
n∈J2

P(En|H′τ ′i , Eτ ′i , . . . , En−1)


. . .

∏
n∈Jk

P(En|H′τ ′i , Eτ ′i , . . . , En−1)


≤
(

(1−QJ1
1
) · (1−QJ1

2
) . . . (1−QJ1

|J1|
)
)

·
(

(1−QJ2
1
) · (1−QJ2

2
) . . . (1−QJ2

|J2|
)
)

. . .

·
(

(1−QJk1 ) · (1−QJk2 ) . . . (1−QJk|Jk|
)

)
,

where the last inequality holds by (25). We further upper bound the above probability by
using the fact that QI ≥ QI′ for any intervals I ⊂ I ′ (and therefore QJki

≥ QJk∪Jk+1
),

P
(
F
k
∣∣∣H′τ ′i) ≤ ((1−QJ1∪J2) · (1−QJ1∪J2) . . . (1−QJ1∪J2))

· ((1−QJ2∪J3) · (1−QJ2∪J3) . . . (1−QJ2∪J3))

. . .

·
(
(1−QJk∪Jk+1

) · (1−QJk∪Jk+1
) . . . (1−QJk∪Jk+1

)
)

= (1−QJ1∪J2)|J1| · (1−QJ2∪J3)|J2| . . . (1−QJk∪Jk+1
)|Jk|

≤ exp (−|J1|QJ1∪J2) · exp (−|J2|QJ2∪J3) . . . exp
(
−|Jk|QJk∪Jk+1

)
= exp

− 1

2
√
τ ′′i − ts

k∑
j=1

|Jj |√
|Jj |+ |Jj+1|

 , (26)
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where in the last inequality we used that 1−x ≤ e−x for any real number x. Then, by (26)
and Lemma 13, for any k such that Jk ∈ J ′,

P
(
F
k
∣∣∣H′τ ′i) ≤ exp

− 1

2
√
τ ′′i − ts

k∑
j=1

|Jj |√
|Jj |+ |Jj+1|


≤ exp

− 1

8
√
τ ′′i − ts

k∑
j=1

√
|Jj |


≤ exp

 1

8
√
τ ′′i − ts

∑
j∈[1:k]:Jj∈J ′

√
|Jj |



Now we are ready to bound the regret of an arm a in an episode s starting from time
step τi when the optimal arm is in the BAD set and a belongs to the GOOD set, denoted
as

RG(a, τi) :=

is+ms−1∑
j=i

∑
n∈[τj :τ ′′j −1]

I{a ∈ GOODn, a
∗
n ∈ BADn}cn(a)

Lemma 11 Let DN = 25CN
√
K and D′N = 10 +

√
log2(N) + 1. Furthermore, let Sτi

denote the collection of segments in episode s after τi, that is, Sτi = {[τj : τ ′′j − 1] : j ∈ [i :
is +ms − 1]}. Then

E
[
I{E1 ∩ E2}RG(a, τi)

∣∣∣H′τi] ≤ DNE

I{E1 ∩ E2}
∑
I∈Sτi

(
D′N
√
|I|+ 2CN

√
K
) ∣∣∣∣∣∣H′τi


+ 8DN

√
τi − ts + 8DNE

(1− I{E1 ∩ E2})
∑
I∈Sτi

√
|I|

∣∣∣∣∣∣H′τi
 . (27)

In particular, for i = is, that is, τis = ts, we have

E
[
I{E1 ∩ E2}RG(a, τis)

∣∣∣H′τis]
≤ DNE

I{E1 ∩ E2}
∑
I∈Sτis

(
D′N
√
|I|+ 2CN

√
K
)

+ 8 (1− I{E1 ∩ E2})
∑
I∈Sτis

√
|I|

∣∣∣∣∣∣H′τi
 .

Proof In the proof we use the notation previously defined for the interval [τ ′i : τ ′′i − 1]
without any reference to i, such as the set of intervals J , the intervals J1, . . . , Jm or the

corresponding events F
k
. To simplify the notation, the latter will also be denoted by

F
Jk := F

k
.
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We bound E
[
I{E1 ∩ E2}RG(a, τi)|H′τi

]
recursively as follows:

E
[
I{E1 ∩ E2}RG(a, τi)|H′τi

]
= E

[
E
[
I{E1 ∩ E2}RG(a, τi)

∣∣∣H′τ ′i]
∣∣∣∣∣H′τi

]

= E

[
E
[
I{E1 ∩ E2}RG(a, [τ ′i : τ ′′i − 1]) + I

{
E1 ∩ E2 ∩ F

m−2}
RG(a, τ ′′i )

∣∣∣∣H′τ ′i
] ∣∣∣∣∣H′τi

]

≤ E

[
E
[
DN I{E1 ∩ E2}

(
(D′N − 8)

√
τ ′′i − τi + 2CN

√
K

)
+DN

∑
J∈J ′′

I
{
E1 ∩ E2 ∩ F

J}√|J |
+ I
{
E1 ∩ E2 ∩ F

m−2}
RG(a, τ ′′i )

∣∣∣∣H′τ ′i
] ∣∣∣∣∣H′τi

]

≤ DNE

[
E
[
I{E1 ∩ E2}

(
(D′N − 8)

√
τ ′′i − τi + 2CN

√
K

)
+
∑
J∈J ′′

I
{
F
J}√|J | ∣∣∣∣H′τ ′i

] ∣∣∣∣∣H′τi
]

+ E

[
E
[
I
{
F
m−2}E[I{E1 ∩ E2

}
RG(a, τ ′′i )

∣∣∣H′τ ′′i ]
∣∣∣∣H′τ ′i

] ∣∣∣∣∣H′τi
]
, (28)

where (i) the second equality follows since a ∈ GOODτ ′′i
is only possible (under E2) if

E2 ∩ F
m−2

holds; (ii) the first inequality holds by Lemma 9 and (24); and (iii) the last

inequality holds by dropping some of the indicators I{E1 ∩ E2} and because F
m−2

is H′τ ′′i -

measurable.
Now we are ready to prove (27) by induction. By definition, RG(a, τk) = 0 when a

is eliminated from the GOOD set. This happens at latest at the end of the episode, so
RG(a, τ ′′is+ms−1) = 0, satisfying (27) for τ ′′is+ms−1 (note that we can define, without loss of
generality RG(a,N + 1) = 0), so the starting assumption holds for backwards induction.
Assume now that

E
[
I{E1 ∩ E2}RG(a, τ ′′i )

∣∣∣H′τ ′′i ] ≤ DNE

I{E1 ∩ E2}
∑
I∈Sτ ′′

i

(
D′N
√
|I|+ 2CN

√
K
)∣∣∣∣∣∣∣H′τ ′′i


+ 8DN

√
τ ′′i − ts + 8DNE

(1− I{E1 ∩ E2})
∑
I∈Sτ ′′

i

√
|I|

∣∣∣∣∣∣∣H′τ ′′i


holds. Combining this assumption with (28), it remains to prove that

E

[
E
[ ∑
J∈J ′′

I
{
F
J}√|J |+ 8I

{
F
m−2}√

τ ′′i − ts
∣∣∣∣H′τ ′i

] ∣∣∣∣∣H′τi
]

≤ 8

(√
τi − ts + E

[√
τ ′′i − τi

∣∣∣∣H′τi]) . (29)
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Let m′′ = |J ′′|, and let x1, . . . , xm′′ denote the length of the intervals J ∈ J ′′ ordered
according to the indices of the corresponding intervals (that is, if xa is the length of |Jk|
and xa′ is the length of |Jk′ |, with k < k′, Jk, Jk′ ∈ J ′′, then a < a′). By the upper bound

of Lemma 10 on P(F
K |H′τ ′i ), we have

E

[ ∑
J∈J ′′

I
{
F
J}√|J |+ 8I

{
F
m−2}√

τ ′′i − ts

∣∣∣∣∣H′τ ′i
]

≤
m′′∑
k=1

exp

− 1

8
√
τ ′′i − ts

k∑
j=1

√
xj

√xk + exp

− 1

8
√
τ ′′i − ts

m′′∑
j=1

√
xj

 · 8√τ ′′i − ts
≤ 8
√
τ ′′i − ts ≤ 8

(√
τi − ts +

√
τ ′′i − τi

)
by Lemma 14 with α = 1/

(
8
√
τ ′′i − ts

)
and yj =

√
xj . We get the desired result by taking

conditional expectations E
[
·
∣∣H′τi] of both sides. This shows that (29) holds, and hence so

does the first statement of the lemma. The second statement holds because τis = ts.

Our desired regret bound follows easily from Lemma 11.

Proof [Proof of Lemma 8] Since ags is in the GOOD set in the entire segment s,

RG(ags, τis) =

is+ms−1∑
i=is

∑
n∈[τ ′i :τ

′′
i −1]

cn(ags) ,

and so by the second part of Lemma 11,

E

[
I{E1 ∩ E2}

N∑
n=1

I{a∗n ∈ BADn}cn(ags(n))

]

≤ DNE

I{E1 ∩ E2}
∑
s

∑
I∈Sτis

(
D′N
√
|I|+ 2CN

√
K
)

+ 8 (1− I{E1 ∩ E2})
∑
s

∑
I∈Sτis

√
|I|

 .
≤ DNE

[
I{E1 ∩ E2}

M∑
i=1

(
D′N

√
τ ′′i − τi + 2CN

√
K

)]
+ 16DNδN

3/2

≤ 50CNE

[
I{E1 ∩ E2}

M∑
i=1

((
10 +

√
log2(N) + 1

)√
K(τi+1 − τi) + CNK

)]
+ 400CN ,

where the second inequality holds since P (E1∩E2) ≥ 1−2δ = 1−2/(
√
KN3/2) by Lemma 3

(and by the choice of δ = 1/(
√
KN3/2)) and since the number of intervals M in the second

sum is at most N (also at most 2S + 1 by Lemma 5), and each has length at most N ; and
the last inequality follows by bounding

√
τ ′′i − τi with

√
τi+2 − τi+1 +

√
τi+1 − τi (which

holds under E1 ∩ E2 since then τ ′′i is either τi+1 or τi+2). Combining with (20) to cover the
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case when a∗n ∈ GOODn, and bounding τ ′i − τi by τi+1 − τi, we obtain

E[R
(3)
N ] ≤ 25CNE

[
I{E1 ∩ E2}

M∑
i=1

((
21 + 2

√
log2(N) + 1

)√
K(τi+1 − τi) + 3CNK

)]
+ 400CN .

By the Cauchy-Schwartz inequality it follows that

E[R
(3)
N ] ≤ 25CNE

[
I{E1 ∩ E2}

((
21 + 2

√
log2(N) + 1

)√
KMN + 3CNKM

)]
+ 400CN

≤ 25CN

(
21 + 2

√
log2(N) + 1

)√
K(2S + 1)N + 75C2

NK(2S + 1) + 400CN . (30)

Taking into account that the regret is at most N , as it was discussed in the proof of (19)
from (18), it follows that the regret (30) is of order at most CN

√
log2(N)

√
K(2S + 1)N

(with δ = O(1/(
√
KN3/2)): If N ≥ 9C2

NK(2S + 1), then

E[R
(3)
N ] ≤ 25CN

(
22 + 2

√
log2(N) + 1

)√
K(2S + 1)N + 400CN ,

which bound also holds trivially if N < 9C2
NK(2S + 1), since in that case the right hand

side is larger than N . This completes the proof of the lemma.

4.5 Variational bound: proof of Corollary 2

In this section, we prove a variational bound on a slightly modified version of our algo-
rithm, as described in Corollary 2. Putting together the first bounds in Lemmas 6-8, after
straightforward manipulations we can obtain that

E[RN ] ≤ Õ

(
E
[
I{E1 ∩ E2}

(∑
s

(√
K(ts+1 − ts)∨K

)
+
∑
i

(√
K(τi+1 − τi)∨K

))])
(31)

where Õ hides polylogarithmic factors.

For any 2 ≤ n′ ≤ n′′ ≤ N , define

Vn′:n′′−1 =
n′′−1∑
n=n′

max
a∈[K]

|gn+1(a)− gn(a)|.

Note that V = V1:N−1. We start by showing the following lemma:

Lemma 12 Assume ArmSwitch is run with the modification described in Corollary 2 and
that KV ≤ N .9 Then

I{E1 ∩ E2}
∑
s

(
√
K(ts+1 − ts) ∨K) ≤

√
KN + (1 +

3
√

2)(KV )1/3N2/3. (32)

9. Otherwise, our desired final Õ((KV )1/3N2/3) regret bound trivially holds.
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Proof Fix an episode s, which is not the last one, and assume that E1 ∩ E2 holds. Since
all arms are in the GOOD set at the beginning of step ts, and all of them are eliminated by
the end of ts+1 − 1, there exists a sequence of different arms a1, . . . , am ∈ [K] such that in
episode s, ak eliminates ak+1 for k ∈ [m− 1] and am eliminates a1 (to simplify notation, we
also denote am+1 := a1). This is easy to see by considering the directed graph whose nodes
are the arms and there is an edge from arm a to arm b if a eliminates b: Since each arm is
eliminated exactly once, there are K edges and each node has an in-degree one. Since there
are K edges, there is an undirected circle in the graph, and since the in-degree within this
circle is at most one for each node, the circle has to be a directed circle, and a1, . . . , am can
be chosen as the nodes in this circle such that a1 is eliminated last from the GOOD set.
Since am is eliminated before, am is already in the BAD set when it eliminates a1.

For k ∈ [m], consider the time step n when ak eliminates the next arm ak+1. If
the elimination happens because of condition (7), the discussion after the condition im-
plies that there is an interval [n′ : n] ⊂ [ts : ts+1 − 1] such that both ak and ak+1 are
active on this interval and ∆n′:n(ak, ak+1) > 0, implying that there exists a time step
nk ∈ [n′ : n] such that gnk(ak) − gnk(ak+1) > 0. If the elimination happens because of
the modified condition (8), it follows (as discussed in the paragraph following (6)) that
K∆̃n′:n(ak, ak+1) >

√
K(n− n′ + 1) for some interval [n′ : n] ⊂ [ts : ts+1 − 1] where both

arms are active. It follows then that there exists a time step nk ∈ [n′ : n] such that

gnk(ak) − gnk(ak+1) >
√

K
n−n′+1 ≥

√
K

ts+1−ts . Note that if ak ∈ BAD when it eliminates

ak+1, only condition (8) can be triggered, and so we obtain

gnk(ak)− gnk(ak+1) ≥

{√
K

ts+1−ts if ak belongs to BAD when it eliminates ak+1;

0 otherwise.

Now clearly am is in the BAD set when it eliminates a1 (= am), hence√
K

ts+1 − ts
≤ gn1(a1)− gn1(a2) + gn2(a2)− gn2(a3) + · · ·+ gnm(am)− gnm(a1)

≤ |gn1(a1)− gnm(a1)|+ |gn2(a2)− gn1(a2)|+ · · ·+ |gnm(am)− gnm−1(am)|

≤ 2

nm−1∑
n=n1

max
a∈[K]

|gn+1(a)− gn(a)| = 2Vn1:nm−1

≤ 2Vts:ts+1−1.

Denoting the number of episodes by S′ and bounding the contribution of the last interval
as
√
K(tS′+1 − tS′) ≤

√
KN , Hölder’s inequality implies

∑
s∈[S′]

√
K(ts+1 − ts) ≤

√
KN +

 ∑
s∈[S′−1]

√
K

ts+1 − ts

1/3 ∑
s∈[S′−1]

(ts+1 − ts)
√
K

2/3

≤
√
KN +

 ∑
s∈[S′−1]

2Vts:ts+1−1

1/3

K1/3N2/3
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=
√
KN + (2KV )1/3N2/3 .

On the other hand, by Vts:ts+1−1 ≥
√
K/(ts+1 − ts), the inequality ts+1 − ts ≤ K implies

Vts,ts+1 ≥ 1. Therefore, using the fact that KV ≤ N ,∑
s

KI{ts+1 − ts ≤ K} ≤
∑
s

KVts,ts+1 ≤ KV ≤
√
KN + (KV )1/3N2/3 .

We conclude that under E1 ∩ E2,
∑

s

√
K(ts+1 − ts) ∨K ≤ (1 + 3

√
2)(KV )1/3N2/3), as de-

sired.

It would be tempting to bound the second term in (31) similarly; however, the length
of the intervals τi+1− τi (typically between two time steps where the optimal arm changes)
is not connected to the variations of the reward function. To resolve this problem, we can
modify our Lemma 8 and consider time steps where the rewards change significantly, as
defined by Suk and Kpotufe (2022).10 We say that an arm a suffers significant regret in an
interval [n′ : n], if

∑
t∈[n′:n] (gt(a

∗
t )− gt(a)) ≥

√
K(n− n′ + 1). Then starting with σ1 = 1,

the time step σi for the (i− 1)th significant change is defined as the first time step σi after
σi−1 such that for every arm a there exists an interval Ia ⊂ [σi−1 : σi] such that a suffers a
significant regret in Ia. The last arm to suffer significant regret in [σi−1 : σi] (or one such
arm with the largest cumulative reward in the interval if there are more than one), denoted
by â∗i and called the approximately optimal arm for [σi−1 : σi − 1], plays the role of the
optimal arm in the interval [σi−1 : σi−1] (by definition, its regret compared to the sequence
of optimal arms in [σi : σi+1 − 1] is bounded by

√
K(σi − σi−1)). Note that the σi and the

â∗i are deterministic, as they only depend on reward functions (g1, . . . , gn).
It is easy to see that the proof of Lemma 8 goes through if we define τi with the time

steps of significant changes instead of the changes in the optimal arm, with an extra term of∑
i

√
K(σi − σi−1), accounting for using approximately optimal arms instead of the optimal

arms in the analysis. Then the second term in (31) can be bounded by (for the redefined
τi) as

Õ

(∑
s

(
√
K(ts+1 − ts) ∨K) +

∑
i

(
√
K(σi+1 − σi) ∨K)

)
giving the overall bound

E[RN ] ≤ Õ

(
E
[
I{E1 ∩ E2}

(∑
s

(√
K(ts+1 − ts)∨K

)
+
∑
i

(√
K(σi+1 − σi)∨K

))])
(33)

As noticed by Suk and Kpotufe (2022), the second term above can also be bounded
similarly to Lemma 12: It follows easily from the definition of significant change that for
all but the last intervals [σi : σi+1 − 1], there is a time step ni ∈ [σi : σi+1 − 1] such that
gni(a

∗
ni)− gni(a

∗
σi+1

) ≥
√
K/(σi+1 − σi) (the largest gap in the interval where a∗σi+1

suffers
a significant regret – note that this interval finishes before σi+1 because of the optimality
of a∗σi+1

) and gσi+1(a∗σi+1
)− gσi+1(a∗ni) ≥ 0. Therefore,√

K/(σi+1 − σi) ≤ gni(a∗ni)− gni(a
∗
σi+1

) + gσi+1(a∗σi+1
)− gσi+1(a∗ni) ≤ 2Vni:σi+1−1 ≤ 2Vσi:σi+1−1.

10. We present a slightly different definition than that of Suk and Kpotufe (2022).

30



A New Look at Dynamic Regret

Similarly to Lemma 12, this yields

I{E1 ∩ E2}
∑
i

(
√
K(σi − σi) ∨K) ≤

√
KN + (1 +

3
√

2)(KV )1/3N2/3 (34)

when KV ≤ N .

Proof [Proof of Corollary 2] Combining Lemma 6, Lemma 7, and the modified version (33)
of Lemma 8 with Lemma 12 and (34) proves the corollary.

4.6 Technical lemmas

Lemma 13 Let x1, . . . , xn+1 be a sequence of positive reals. Then

1

2

n∑
j=1

√
xj −

√
xn+1

4
≤

n∑
j=1

xj√
xj + xj+1

.

In particular, if xn+1 ≤
∑n

j=1 xj, then

1

4

n∑
j=1

√
xj ≤

n∑
j=1

xj√
xj + xj+1

.

Proof We have

n∑
j=1

xj√
xj + xj+1

≥
n∑
j=1

xj√
xj +

√
xj+1

(35)

=
n∑
j=1

(
xj − xj+1√
xj +

√
xj+1

+
xj+1√

xj +
√
xj+1

)

=

n∑
j=1

(
√
xj −

√
xj+1 +

xj+1√
xj +

√
xj+1

)

=
√
x1 −

√
xn+1 +

n∑
j=1

xj+1√
xj +

√
xj+1

. (36)

Combining (35) and (36), we obtain

n∑
j=1

xj√
xj + xj+1

≥
√
x1 −

√
xn+1

2
+

1

2

n∑
j=1

xj + xj+1√
xj +

√
xj+1

≥
√
x1 −

√
xn+1

2
+

1

4

n∑
j=1

(√
xj +

√
xj+1

)
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≥ 1

2

n∑
j=1

√
xj −

√
xn+1

4
,

finishing the proof of the first statement. The second statement holds because xn+1 ≤∑n
j=1 xj implies

√
xn+1 ≤

√∑n
j=1 xj ≤

∑n
j=1
√
xj .

Lemma 14 Let α, y1, . . . , ym be positive real numbers. Then

∑
k∈[m]

exp

−α k∑
j=1

yj

 yk + exp

−α m∑
j=1

yj

 1

α
≤ 1

α
. (37)

Proof First, we show that e−αyy + e−αy 1
α ≤

1
α . Let f(y) = e−αyy + e−αy 1

α , and observe
that

f ′(y) = e−αy − αe−αyy − e−αy = −αe−αyy ≤ 0 .

Therefore f is maximized at y = 0, and so f(y) ≤ f(0) = 1
α . We finish the proof by

induction. Assume (37) holds for m− 1 (in place of m). Then

∑
k∈[m]

exp

−α k∑
j=1

yj

 yk + exp

−α m∑
j=1

yj

 1

α

=
∑

k∈[m−1]

exp

−α k∑
j=1

yj

 yk + exp

−αm−1∑
j=1

yj

(e−αymym + e−αym
1

α

)

≤
∑

k∈[m−1]

exp

−α k∑
j=1

yj

 yk + exp

−αm−1∑
j=1

yj

 1

α

≤ 1

α
,

where in the last step we used the induction hypothesis. This completes the proof.

5. Conclusions and future directions

We have introduced ArmSwitch, an algorithm for learning in non-stationary stochastic
multi-armed bandit environments. The main feature of our algorithm is that its regret
scales as Õ(

√
KSN), where S is the number of changes in the identity of the optimal arm,

and it is unknown to the algorithm. In contrast, existing works for this problem bound the
regret in terms of the number of changes in reward functions, which can be much larger.

An interesting related question is whether similar bounds can be shown on the regret
with respect to any sequence of arms (instead of the sequence of optimal arms considered
here). This can be achieved by the EXP3.S algorithm of Auer et al. (2002) if S, the number
of changes in the sequence of reference arms in this case, is known and can be used to tune
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the method. However, obtaining such a result without the prior knowledge of S might
require fundamentally different techniques, because we cannot eliminate arms which proved
to be suboptimal at a given time step (as they can still remain in the reference sequence).

While we also provided a variational regret bound (which depends on the temporal
variation of reward functions instead of the time horizon), this bound is unsatisfactory in
the sense that it may be dominated by variations of the rewards of suboptimal arms. In
fact, it is not clear which variations of the reward function are important, and exploring
this problem is an interesting question for future research.

Another interesting future direction is designing algorithms with similar guarantees in
the more complex setting of reinforcement learning. Unlike in the bandit setting, it is not
clear what notion of complexity we should use in a reinforcement learning problem. A
straightforward extension would be regret bounds that scale with the square root of the
number of changes in the optimal policy multiplied by the number of policies. However, the
space of policies is prohibitively large, which would make such bounds less meaningful. A
more refined variant could weight each change by the probability of visiting a state where
a change happens; we leave the exploration of these – and other – ideas for future work.
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Appendix A. Auxiliary proofs

We start with a Freedman-style martingale tail inequality:

Theorem 15 (Agarwal et al., 2014) Let (Ht; t ≥ 1) be a filtration, (Xt; t ≥ 1) be a
real-valued martingale difference sequence adapted to (Ht) (i.e., Xt−1 is Ht-measurable and
E[Xt|Ht] = 0). If |Xt| ≤ B almost surely, then for any η ∈ (0, 1/B], with probability at
least 1− δ,

n∑
t=1

Xt ≤ η(e− 2)
n∑
t=1

E[X2
t |Ht] +

log(1/δ)

η
.

The optimal η minimizing the above bound is η∗ =
√

log(1/δ)
(e−2)

∑n
t=1 E[X2

t |Ht−1]
, which would lead

to a bound
n∑
t=1

Xt ≤ 2

√√√√(e− 2) log(1/δ)

n∑
t=1

E[X2
t |Ht] .

However, since η∗ depends on the sum of E[X2
t |Ht], it is not guaranteed that η∗ ≤ 1/B.

The next corollary takes care of these problems.
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Corollary 16 Under the conditions of Theorem 15, for any 0 < δ ≤ 2/e,∣∣∣∣∣
n∑
t=1

Xt

∣∣∣∣∣ ≤ 2e

√√√√(e− 2) log

(
log(n/B) + 2

δ

) n∑
t=1

E[X2
t |Ht] ∨ 2B log

(
log(n/B) + 2

δ

)
holds with probability at least 1− δ.

Proof We first prove the bound on
∑n

t=1Xt with δ′ = δ/2, then we apply the same
bound to

∑n
t=1(−Xt). We create an exponential grid for η; applying Theorem 15 for each

value in the grid together with the union bound will prove the corollary. Since |Xt| ≤ B,

the smallest possible value of η∗ is ηmin =
√

log(1/δ′)
(e−2)nB . Assume first that ηmin ≤ 1/B.

Let G = {e−i/B : i ∈ blog(n/B)/2c}. Then, by Theorem 15 and the union bound, with
probability at least 1− δ′, we have

n∑
t=1

Xt ≤ η(e− 2)

n∑
t=1

E[X2
t |Ht] +

log(log(n/B)/2 + 1)/δ′)

η
(38)

for all η ∈ G simultaneously.
The smallest element of G, denoted η′min, satisfies

η′min = e−blog(n/B)/2c/B ≤ e/
√
Bn ≤ e

√
log(1/δ′)

(e− 2)nB
= eηmin

where the second inequality holds because δ′ ≤ 1/e. Therefore, for any η ∈ [ηmin, 1/B] there
is an η′ ∈ G such that η ≤ η′ ≤ ηe. Thus, by (38), for any η ∈ [ηmin, 1/B],

n∑
t=1

Xt ≤ η′(e− 2)
n∑
t=1

E[X2
t |Ht−1] +

log(log(n/B)/2 + 1)/δ′)

η′

≤ e

[
η(e− 2)

n∑
t=1

E[X2
t |Ht] +

log(log(n/B)/2 + 1)/δ′)

η

]
.

Specifically, for the minimizer ηm =
√

log(log(n/B)/2+1)/δ′)
(e−2)

∑n
t=1 E[X2

t |Ht]
of the above bound, we obtain

n∑
t=1

Xt ≤ 2e

√√√√(e− 2) log

(
log(n/B)/2 + 1

δ′

) n∑
t=1

E[X2
t |Ht] (39)

If ηm ≤ 1/B, the above bound holds. If not,

n∑
t=1

E[X2
t |Ht] ≤ B2 log(log(n/B)/2 + 1)/δ′)

e− 2

and hence by (38) for η = 1/B ∈ G, we get

n∑
t=1

Xt ≤ 2B log

(
log(n/B)/2 + 1

δ′

)
.

35



Abbasi-Yadkori, György, and Lazić

Since one of the last two inequalities always hold, we obtain that with probability at least
1− δ′,

n∑
t=1

Xt ≤ 2e

√√√√(e− 2) log

(
log(n/B)/2 + 1

δ′

) n∑
t=1

E[X2
t |Ht] ∨ 2B log

(
log(n/B)/2 + 1

δ′

)
.

Using the same bound for (−Xt), and using the union bound proves the corollary.

Now we are ready to prove Lemma 3.

Proof of Lemma 3. Proof for E1: Fix a time interval [n′ : n] ⊂ [N ] and an arm a ∈ [K].
For any t ∈ [n′ : n], define variable Xt = I{At = a}rt − Pt(a)gt(a). Then |Xt| ≤ 1,
E[Xt|Ht] = 0, and

E[X2
t |Ht, At] = E

[(
I{At = a}

(
rt − gt(a)

)
+
(
I{At = a} − Pt(a)

)
gt(a)

)2∣∣Ht, At]
= I{At = a}E

[(
rt − gt(a)

)2|Ht, At]+
(
I{At = a} − Pt(a)

)2
g2
t (a).

Therefore, since rt takes values in [0, 1], Var[rt|At,Ht] ≤ 1/4,

E[X2
t |Ht] ≤ Pt(a)/4 + Pt(a)(1− Pt(a))g2

t (a) ≤ 5Pt(a)/4.

Therefore, for any fixed δ′ ∈ (0, 1), with probability at least 1− δ′,∣∣∣∣∣
n∑

t=n′

Xt

∣∣∣∣∣ ≤ 2e

√
5

4
(e− 2) log

(
log(n− n′ + 1) + 2

δ′

)
Pn′:n(a) ∨ 2 log

(
log(n− n′ + 1) + 2

δ′

)

≤ 6

√
log

(
log(n− n′ + 1) + 2

δ′

)
Pn′:n(a) ∨ 2 log

(
log(n− n′ + 1) + 2

δ′

)
Using δ′ = δ/(2KN2) and the union bound over all intervals [n′ : n] and arms a (note that
this choice of δ′ satisfies δ′ ≤ 2/e for all δ ∈ (0, 1)), we obtain that with probability at least
1− δ ∣∣∣Ĝn:n′(a)−Gn:n′(a)

∣∣∣ ≤ 6Cn,n′(
√
Pn:n′(a) ∨ Cn,n′),

finishing the proof of the bound for E1.
For E2, for any arm a ∈ [K] active in [n′ : n], letting Xt = I{Ãt = a}rt − gt(a)/K yields

the desired bound similarly, because here one can show that E[X2
t |Ht] ≤ 5/(4K).

For E3, let Xt = (I{At = a} − Pt(a))gt(a
′). Then E[X2

t |Ht] ≤ Pt, and we obtain the
bound ∣∣G′n:n′(a, a

′)−Gn:n′(a, a
′)
∣∣ ≤ 5C ′n,n′(

√
Pn:n′(a) ∨ C ′n,n′),

where we introduced C ′n,n′ because here the union must be taken over all ordered pairs of
arms a, a′ ∈ [K] instead of all arms.
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Finally, for E4 introducing Xt =
(
gt(a)− gt(a′)

)(
I{Ãt = a} − 1/K

)
for arms a, a′ active

in [n′ : n] gives E[X2
t |Ht] ≤ 1/K, which yields the desired bound.

Proof of Lemma 4. If ∆n′:n(a′, a) > 24Cn′,n
(√
Pn′:n ∨ Cn′,n

)
for a, a′ ∈ GOODn, then by

the definition of E1 and by (9), Elimn(a′, a) is true:

∆̂n′:n(a′, a) ≥ ∆n′:n(a′, a)− 12Cn′,n

(√
Pn′:n(a) ∨ Cn′,n

)
> 12Cn′,n

(√
Pn′:n(a) ∨ Cn′,n

)
,

proving the first part of (i). If a, a′ ∈ GOODn+1, then a is not eliminated at the end of time
step n, hence Elimn(a′, a) is false. Consequently, ∆n′:n(a′, a) ≤ 24Cn′,n

(√
Pn′:n ∨ Cn′,n

)
,

finishing the proof of part (i). Part (ii) can be shown similarly.
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