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Abstract

Gaussian processes are widely employed as versatile modelling and predictive tools in spa-
tial statistics, functional data analysis, computer modelling and diverse applications of
machine learning. They have been widely studied over Euclidean spaces, where they are
specified using covariance functions or covariograms for modelling complex dependencies.
There is a growing literature on Gaussian processes over Riemannian manifolds in order
to develop richer and more flexible inferential frameworks for non-Euclidean data. While
numerical approximations through graph representations have been well studied for the
Matérn covariogram and heat kernel, the behaviour of asymptotic inference on the param-
eters of the covariogram has received relatively scant attention. We focus on asymptotic
behaviour for Gaussian processes constructed over compact Riemannian manifolds. Build-
ing upon a recently introduced Matérn covariogram on a compact Riemannian manifold, we
employ formal notions and conditions for the equivalence of two Matérn Gaussian random
measures on compact manifolds to derive the parameter that is identifiable, also known as
the microergodic parameter, and formally establish the consistency of the maximum like-
lihood estimate and the asymptotic optimality of the best linear unbiased predictor. The
circle is studied as a specific example of compact Riemannian manifolds with numerical
experiments to illustrate and corroborate the theory.

Keywords: Equivalence of Gaussian measures, Identifiability and consistency, Laplace–
Beltrami operator, Microergodic parameters.

1. Introduction

Gaussian processes are pervasive in spatial statistics, functional data analysis, computer
modelling and machine learning applications because of the flexibility and richness they
allow in modelling complex dependencies (Rasmussen and Williams, 2006; Stein, 1999;
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Gelfand et al., 2010; Cressie and Wikle, 2011; Banerjee et al., 2015). For example, in spatial
statistics Gaussian processes are widely used to model spatial dependencies in geostatistical
models and perform spatial prediction or interpolation (“kriging”) (Matheron, 1963). In
non-parametric regression models Gaussian processes are used to model unknown functions
and, specifically in Bayesian contexts, act as priors over functions (Ghosal and van der
Vaart, 2017). A typical modelling framework assumes y(x) = µ(x) +Z(x) + ε(x) for inputs
x (e.g., spatial coordinates; functional inputs) over a domain D, where y(x) is a dependent
variable of interest, µ(x) is a mean function, Z(x) is a zero-mean Gaussian process and
ε(x) is a noise process1. These frameworks can also be adapted to deal with discrete
outcomes and applied to classification problems (Neal, 1999). Gaussian processes are also
being increasingly employed in deep learning and reinforcement learning (Damianou and
Lawrence, 2013; Deisenroth et al., 2013). The current manuscript focuses upon inferential
properties of Z(x) when D is not necessarily Euclidean but a compact Riemannian manifold.

A Gaussian process is determined by its covariogram, also known as the covariance
function. In Euclidean space, the Matérn covariogram (Matérn, 1986) is especially popular
in spatial statistics and machine learning (see, e.g., Stein, 1999, for an extensive discussion
on the theoretical properties of the Matérn covariogram). A key attraction of the Matérn
covariogram is the availability of a smoothness parameter for the process. Several simpler
covariograms, such as the exponential, arise as special cases of the Matérn.

This article is motivated by the emergence of non-Euclidean data, especially manifold
data, in a variety of scientific fields over the last decade. As a consequence, inference for
Gaussian processes on manifolds have been attracting attention in spatial statistics and
machine learning in settings where the data generating process is more appropriately mod-
elled over non-Euclidean spaces. Taking climate science as an example, geographic data
involving geopotential height, temperature and humidity are measured at global scales and
are more appropriately treated as (partial) realisations of a spatial process over a sphere
(see, e.g., Banerjee, 2005; Jun and Stein, 2008; Jeong and Jun, 2015a). Data arising over
domains with irregular shapes or examples in biomedical imaging where the domain is a
three-dimensional shape of an organ comprise other examples where inference for Gaus-
sian processes over manifolds will be relevant (see, e.g., Gao et al., 2019, and references
therein). Motivated by isotropic covariograms in Euclidean space, it is natural to replace
Euclidean distance by an appropriate geodesic distance to define a “Matérn” covariogram
on Riemannian manifolds. However, this formal generalisation is not valid for the squared
exponential covariogram, or Matérn with ν =∞ (Feragen et al., 2015), unless the manifold
is flat. For Matérn with ν ∈ (1/2,∞), this naive generalisation is not even valid on the
sphere (Gneiting, 2013). Recently, valid covariograms for smooth Gaussian processes on
general Riemannian manifolds have been constructed based upon heat equations, Brownian
motion and diffusion models on manifolds (Castillo et al., 2014; Niu et al., 2019; Dunson
et al., 2020). However, these covariograms lack flexibility, especially in terms of modelling
smoothness.

Whittle (1963) proposed a new representation of GP by stochastic partial differential
equations. Following this path, Lindgren et al. (2011) introduced a “Matérn” family on
generic compact Riemannian manifolds with three parameters involved in the covariogram.

1. This article does not consider the noise process, which introduces additional difficulties that are beyond
the scope of the current manusript; see Tang et al. (2021) for related developments in Euclidean space.
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Since such Matérn covariograms involve the spectrum of the Laplace-Beltrami operator, a
numerical approximation to the covariogram is needed for most nontrivial manifolds. There
is a rich literature focusing on approximations to the covariogram using tools from harmonic
analysis, graph Laplacians, and stochastic partial differential equations (Sanz-Alonso and
Yang, 2022a,b). However, the study of statistical inference for the parameters in the Matérn
covariogram remains relatively sparse.

In Euclidean domains Rd with d ≤ 3, while not all parameters in the Matérn covariogram
are consistently estimable within the paradigm of “fixed-domain” or “in-fill” asymptotic in-
ference (see, e.g. Stein, 1999; Zhang, 2004), certain parameters, customarily referred to as
microergodic parameters, which can identify Gaussian processes specified by Matérn covar-
iograms are consistently estimable (see Section 2). Furthermore, the maximum likelihood
estimator of the spatial variance under any misspecified decay parameter is consistently
and asymptotically normally distributed (Du et al., 2009; Kaufman et al., 2008; Wang
and Loh, 2011), while predictive inference is also asymptotically optimal using maximum
likelihood estimators (Kaufman and Shaby, 2013). Recently, Bevilacqua et al. (2019) and
Ma and Bhadra (2022) considered more general classes of covariance functions outside of
the Matérn family and studied the consistency and asymptotic normality of the maximum
likelihood estimator for the corresponding microergodic parameters.

Our current contribution develops asymptotic inference for a flexible and rich Matérn-
type covariogram on compact Riemannian manifolds. We review the Matérn covariogram
(Section 3.1) on general compact Riemannian manifolds from the perspective of stochastic
partial differential equations with reasonably tractable covariograms and spectral densities
(Borovitskiy et al., 2020). Our specific results emanate from a sufficient and necessary
condition for the equivalence of two Gaussian random measures on compact Riemannian
manifolds with Matérn or squared exponential covariograms (Section 3.2). We subsequently
establish (Section 3.3) that for Gaussian measures with Matérn covariograms the smooth-
ness parameter is identifiable, while the spatial variance and decay parameters are not
identifiable when d ≤ 3, where d is the dimension of the manifold. For d ≥ 4, all three
parameters are identifiable. For squared exponential covariograms on manifolds with arbi-
trary dimension, we show that both parameters are identifiable. Again, this problem is still
open in Euclidean spaces. For Matérn covariograms on manifolds with d ≤ 3, we formally
establish that the maximum likelihood estimate of the spatial variance with a misspeci-
fied decay parameter is still consistent. Next, we turn to predictive inference (Section 3.4)
and show that for any misspecified decay parameter in the Matérn covariogram, the best
linear unbiased predictor derived from the maximum likelihood estimate is asymptotically
optimal. Finally, for spheres with dimension less than 4, we explicitly study the Matérn
covariogram, the microergodic parameter, the consistency of the maximum likelihood es-
timate and the optimality of the best linear unbiased predictor (Section 4). Proofs and
mathematical details surrounding our main results are provided in the Appendix.

2. Gaussian Processes in Euclidean spaces

Let Z = {Z(x) : x ∈M ⊂ Rd} be a zero-mean Gaussian process on a bounded domain M.
The process Z(·) is characterised by its covariogram k(x, y) = E(Z(x)Z(y)), x, y ∈ M so
that for any finite collection of points, say x1, · · · , xn ∈M, we have (Z(x1), · · · , Z(xn))T ∼
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N (0,Σ), where Σ is the n × n covariance matrix with (i, j)-th entry Σij = k(xi, xj). The
Matérn process is a zero-mean stationary Gaussian process specified by the covariogram2,

k(x, y) =
σ2 (α‖x− y‖)ν

Γ(ν)2ν−1
Kν (α‖x− y‖) , x, y ∈M ⊂ Rd, (1)

where σ2 > 0 is called the partial sill or spatial variance, α > 0 is the scale or decay
parameter, ν > 0 is a smoothness parameter, Γ(·) is the Gamma function, and Kν(·) is
the modified Bessel function of the second kind of order ν (Abramowitz and Stegun, 1965,
Section 10). The Matérn covariogram in (1) is isotropic and its spectral density (also known
as the Hankel-Fourier transform, Genton (2002)) is given by

f(u) =
σ2α2ν

πd/2(α2 + u2)ν+d/2
, u ≥ 0.

2.1 Identifiability

Let P0 and P1 be Gaussian measures corresponding to Matérn parameters {σ2
0, α0, ν} and

{σ2
1, α1, ν}, respectively. Two measures are said to be equivalent, denoted by P0 ≡ P1, if

they are absolutely continuous with respect to each other. Two equivalent measures cannot
be distinguished no matter how dense the observations are. Zhang (2004) showed that
when d < 4, P0 is equivalent to P1 if and only if σ2

0α
2ν
0 = σ2

1α
2ν
1 . Hence, σ2 and α do

not admit asymptotically consistent estimators, while σ2α2ν , also known as a microergodic
parameter, is consistently estimable. For d > 4, Anderes (2010) proved that both σ2

and α are consistently estimable. The case for d = 4 remains unresolved. The integral
test offers a sufficient (but not necessary) condition on the spectral densities to determine
whether two measures are equivalent. While unidentifiable parameters are never consistently
estimable, identifiable parameters may be consistently estimable. However, deriving an
explicit construction for such a consistent estimator is often challenging and is beyond the
scope of the current manuscript; we identify this as an area of future research.

2.2 Parameter estimation

In practice, the maximum likelihood estimate is customarily used to estimate unknown
parameters in the covariogram. Let Ln(σ2, α) be the likelihood function:

Ln(σ2, α) = (2πσ2)−n/2 det(Γn(α))−1/2 exp

{
− 1

2σ2
ZT
n Γn(α)−1Zn

}
, (2)

where Zn = (Z(x1), · · · , Z(xn))T and (Γn(α))i,j =
(α‖xi−xj‖)ν

Γ(ν)2ν−1 Kν (α‖xi − xj‖) is indepen-

dent of σ2. Given α, the maximum likelihood estimation of σ2 is given by (Stein, 1999)

σ̂2 =
ZT
n Γn(α)−1Zn

n
.

Let {σ2
0, α0} be the data generating parameters with observations Z(x1), · · · , Z(xn). For any

misspecified α1, if σ̂2
1,n is the maximum likelihood estimation of Ln(σ2, α1), then σ̂2

1,nα
2ν
1 →

2. Solin and Kok (2019) provides an alternative definition based on PDEs with boundary conditions.
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σ2
0α

2ν
0 as n → ∞ with probability 1 under P0 when ∪∞n=1{xn} is bounded and infinite

(Zhang, 2004; Kaufman et al., 2008). Moreover,
√
n

(
σ̂2
1,nα

2ν
1

σ2
0α

2ν
0
− 1

)
→ N (0, 2) as n → ∞

(Du et al., 2009; Wang and Loh, 2011; Kaufman and Shaby, 2013). As a result, even
if we do not know the true parameters {α0, σ

2
0}, we can choose an arbitrary, possibly

misspecified, decay parameter α1 and find the maximum likelihood estimate of the spatial
variance σ̂2

1,n. The resulting Gaussian measure is asymptotically equivalent to the Gaussian
measure corresponding to the true parameter.

2.3 Prediction and kriging

Gaussian processes are widely deployed in spatial or nonparametric regression models to
carry out model-based predictive inference. Given a new location x0, the best linear unbi-
ased predictor (BLUP) for Z0 = Z(x0) is given by

Ẑn(α) = γn(α)TΓn(α)−1Zn,

where (γn(α))i = (α‖x0−xi‖)ν
Γ(ν)2ν−1 Kν (α‖x0 − xi‖). Then

Eσ2
0 ,α0

(Ẑn(α1)− Z0)2

Eσ2
0 ,α0

(Ẑn(α0)− Z0)2

n→∞−−−→ 1,
Eσ̂2

1,n,α1
(Ẑn(α1)− Z0)2

Eσ2
0 ,α0

(Ẑn(α1)− Z0)2

n→∞−−−→ 1,

where E is the expectation with respect to the measure characterised by the parameter
or spectral density (see Section 3) in the subscript. As a result, any misspecified α still
yields an asymptotically optimal BLUP as long as σ2 is replaced by its maximum likelihood
estimate (Stein, 1993; Kaufman and Shaby, 2013). In the current manuscript, we develop
parallel results for the d dimensional compact Riemannian manifold M.

3. Gaussian processes on compact Riemannian manifold

Henceforth, we assume that our domain of interest is a d-dimensional compact Riemannian
manifold M equipped with a Riemannian metric g. We denote the Laplace–Beltrami op-
erator on M by −∆g with eigenvalues λn and eigenfunctions fn, the volume form by dVg
and the volume ofM by VM (see, e.g., Kobayashi and Nomizu, 1963; Lee, 2018; do Carmo,
1992, for further details on operators and spectral theory on Riemannian manifolds).

3.1 Matérn covariogram on compact Riemannian manifolds

On a Riemannian manifold, where the linear structure of Rd is missing, the standard def-
inition of the Matérn covariogram is no longer valid. A natural extension of the Matérn
covariogram to manifolds will consider replacing the Euclidean norm ‖x− y‖ in (1) by the
geodesic distance d(x, y). Unfortunately, this naive generalisation is not valid for ν = ∞
(Feragen et al., 2015), unless the manifold is flat. If we restrict ourselves to spheres, Matérn
with ν ∈ (1/2,∞) is still invalid (Gneiting, 2013). Instead, some Matérn-like covariograms
including chordal, circular and Legendre Matérn covariograms and other families of covari-
ograms have been studied (Jeong and Jun, 2015b; Porcu et al., 2016; Guinness and Fuentes,
2016; Guella et al., 2018; Clarke De la Cerda et al., 2018; Alegŕıa et al., 2021). However,
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these covariograms are constructed specifically with respect to the geometry of the sphere
and do not generalise to generic compact Riemannian manifolds.

Whittle (1963) showed that the Matérn covariogram in Euclidean space admits a rep-
resentation through a stochastic partial differential equation involving white noise and the
Laplace operator ∆. Lindgren et al. (2011) built on this stochastic partial differential
equation approach to define the Matérn covariogram on manifolds involving the Laplace–
Beltrami operator ∆g. This idea was further developed, both theoretically and practically,
by several scholars (see, e.g., Bolin and Lindgren, 2011; Lang and Schwab, 2015; Herrmann
et al., 2020; Borovitskiy et al., 2020, 2021, among others). We state the definition of the
Matérn covariogram in the stochastic partial differential equation sense, which is a valid
positive definite function for any ν on any compact Riemannian manifold M.

Definition 1 Let fl be the orthonormal eigenfunctions of −∆g and λl ≥ 0 be the corre-
sponding eigenvalues in ascending order. The Matérn covariogram is defined by

k(x, y) =
σ2

Cν,α

∞∑
l=0

(
α2 + λl

)−ν− d
2 fl(x)fl(y),

where Cν,α =

∞∑
l=0

(α2 + λl)
−ν−d/2 is a constant such that the average variance is σ2 =

1
VM

∫
M k(x, x)dVg(x). The corresponding spectral density is

ρ(l) =
σ2

Cν,α
(α2 + λl)

−ν− d
2 .

Similarly, the squared exponential covariogram is

k(x, y) =
σ2

C∞,α

∞∑
l=0

e−
λl
2α2 fl(x)fl(y),

where C∞,α =

∞∑
l=0

e−
1

2α2
λl is a constant such that the average variance is σ2 = 1

VM

∫
M k(x, x)dVg(x).

The corresponding spectral density is

ρ(n) =
σ2

C∞,α
e−

λl
2α2 .

Remark 2 There are several commonly used parametric representations of the Matérn co-
variogram. In particular, this article adopts the same parametric representation as the one
in Zhang (2004), but different from Borovitskiy et al. (2021).

IfM is a sphere, the covariograms defined above coincide with the Matérn-like covariograms
on spheres provided by Guinness and Fuentes (2016) and Kirchner and Bolin (2022). As a
result, we focus on a non-trivial generalisation to generic compact Riemannian manifolds.
The relation between the three parameters (α, σ2, ν) in the above definition and the coef-
ficients in the stochastic partial differential equation representation is not straightforward
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(see Lindgren et al., 2011, for details). Note that for any (α, σ2, ν), the covariogram shares
the same eigenbasis with the Laplace–Beltrami operator ∆g. This property is not deemed
restrictive for our ensuing development since we primarily focus on the Matérn and squared
exponential covariograms. Furthermore, this property offers crucial analytic tractability
for several results developed subsequently. Hence, we refer to the Matérn and squared
exponential covariograms as in Definition 1 in the following sections.

3.2 Identifiability

In Euclidean domains, the integral test (Yadrenko, 1983; Stein, 1999) is a powerful tool
to determine the equivalence of two Gaussian measures. However, such tests do not carry
through to non-Euclidean domains as the spectrum on such manifolds is discrete. Alegŕıa
et al. (2021) studied the so called F−family of covariograms on spheres and numerically
deduced, without proof, the consistency of the maximum likelihood estimate of some param-
eters for this family. Arafat et al. (2018) derived the equivalence of Gaussian measures on
spheres and derived microergodic parameters of some covariograms excluding the Matérn.
All of the above results are built upon the Feldman–Hájek Theorem (Da Prato and Zabczyk,
2014), which is valid for any metric space and, hence, applicable to compact Riemannian
manifolds. Here, we generalise the above results to a Gaussian process with Matérn and
squared exponential covariograms on arbitrary compact Riemannian manifolds, also moti-
vated by the Feldman–Hájek theorem. Therefore, we can still study the identifiability of
these parameters by finding the microergodic parameters.

Lemma 3 Let Pi (i = 1, 2) be mean zero Matérn/squared exponential Gaussian random
measures with spectral densities ρi. Then, P1 ≡ P2 if and only if

∑
l

∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣2 <∞.
Proof See Appendix A.

From Definition 1, ρi is strictly positive so the denominator is always non-zero. The series
test is a sufficient and necessary condition. This is a significant enhancement over the
integral test in Euclidean spaces, which offers only a sufficient condition. Its importance to
us will become clear after Theorem 4. Subsequently, we consider microergodic parameters
of Gaussian processes on a manifold with the Matérn covariogram. This is analogous to
Theorem 2 in Zhang (2004) for compact Riemannian manifolds.

Theorem 4 Let Pi, i = 1, 2, denote two Gaussian measures with the Matérn covariogram
parametrized by θi = {σ2

i , αi, νi}. Then the following results hold.

(A) If d ≤ 3, then P1 ≡ P2 if and only if σ2
1/Cν1,α1 = σ2

2/Cν2,α2, ν1 = ν2.

(B) If d ≥ 4, then P1 ≡ P2 if and only if σ2
1 = σ2

2 and α1 = α2, ν1 = ν2.

Proof See Appendix B.

Part (A) of Theorem 4 implies that if d ≤ 3, then neither σ2 nor α are identifiable or
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consistently estimable, while ν is identifiable. Part (B) implies that when d ≥ 4, all three
parameters—σ2, α and ν—are identifiable. In Euclidean space, the smoothness parameter
ν is typically assumed to be known and fixed when discussing fixed-domain asymptotic
inference. In this specific Euclidean setting, assuming ν1 = ν2 = ν, (A) still holds while
(B) holds for d > 4; d = 4 is still an unresolved problem in Euclidean space unless the
domain is assumed to be bounded (Bolin and Kirchner, 2021). This difference in behaviour
between (A) and (B) can be attributed to the integral test being a sufficient condition in
Euclidean spaces, which ensures only the equivalence of measures when d ≤ 3; (see Zhang,
2004, for details). In d > 4, Anderes (2010) estimated the principal irregular term without
the integral test and constructed consistent estimators for α and σ2 directly. However, this
construction does not hold for d = 4.

In contrast, the series test in Lemma 3 is a sufficient and necessary condition so that
we can provide a condition for the equivalence of two measures with Matérn covariograms
over any dimension. The dimension also plays an important role in the manifold setting
due to Weyl’s Law (Li, 1987; Canzani, 2013). That is, the growth of the eigenvalues and
their multiplicities are intertwined with the dimension d; further details are provided within
the proof in Appendix B. Another benefit of the sufficient and necessary condition is that
the series test can be applied to the squared exponential covariogram, also known as the
radial basis function, which can be viewed as a limiting case of the Matérn covariogram
when ν →∞, as introduced in Definition 1. Since the spectral density is not a polynomial,
the integral test over Euclidean domains is invalid and the conditions for the equivalence of
two squared exponential covariograms are intractable. In contrast, the following theorem
resolves the equivalence of squared exponential covariograms on a compact manifold M.

Theorem 5 Let Pi, for i = 1, 2, be Gaussian measures with squared exponential covari-
ograms parametrised by θi = {σ2

i , αi}. Then P1 ≡ P2 if and only if σ2
1 = σ2

2 and α1 = α2.

Proof See Appendix C.

Theorem 5 shows that it is possible to have consistent estimators for both σ2 and α. So
far we have developed formal results on the identifiability of parameters in the covariogram
on a compact Riemannian manifold. Inference for identifiable parameters will proceed in
customary fashion so we turn our attention to non-identifiable settings, i.e., the Matérn
covariogram with known ν on manifolds with dimension d ≤ 3.

3.3 Consistency of maximum likelihood estimation

SinceM is compact, there is no increasing-domain asymptotic framework and ∪∞n=1{xn} is
always bounded. In the remaining sections, we assume that ∪∞n=1{xn} is infinite, which is the
standard assumption also known as the increasing sequence assumption (also see Stein, 1999;
Zhang, 2004; Kaufman and Shaby, 2013). Let {σ0, α0} be the data generating parameter
(oracle) and let σ̂2

1,n be the maximum likelihood estimate of σ2 obtained by maximising

Ln(σ2, α1) with a misspecified α1. The following theorem is analogous to Theorem 3 in
Zhang (2004) for compact Riemannian manifolds.
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Theorem 6 Under the setting of Theorem 4, assuming ∪∞n=1{xn} is infinite, we obtain

σ̂2
1,n

Cν,α1

n→∞−−−→ σ2
0

Cν,α0

, P0 a.s.

Proof See Appendix D.

In Euclidean space, σ̂2
1,n/Cν,α1 is asymptotically Gaussian. We conjecture that this asymp-

totic normality still holds on Riemannian manifolds. However, this result relies on specific
constructions in Euclidean space (Wang, 2010), which become invalid for manifolds. A
formal proof is beyond the scope of the current manuscript and we intend to pursue this
development in future investigations. In Section 4 we present a numerical simulation ex-
periment to demonstrate the asymptotic (normal) behaviour of this parameter on spheres.

3.4 Prediction

Given a new location x0 ∈ M\{xi}ni=1, the best linear unbiased predictor for Z0 = Z(x0)
under a covariance function kρ characterised by its spectral density ρ is given by

Ẑn(ρ) = γn(ρ)TΓn(ρ)−1Zn,

where γn(ρ) = 1
σ2kρ(x0, xi) and {Γn(ρ)}ij = 1

σ2kρ(xi, xj).
Kirchner and Bolin (2022) and Bolin and Kirchner (2021) generalise the results of asymp-

totic optimality of the BLUP based on a misspecified scale parameter in Euclidean spaces
(Stein, 1993) to metric spaces. That is, the prediction error of the BLUP under a mis-
specified scale parameter is asymptotically the same as the error of the BLUP under the
true parameter. If the domain is a compact Riemannian manifold and the covariograms
are Matérn, then two covariance operators share the same eigenbasis; this is the setting
described in Section 5.1 of Kirchner and Bolin (2022) as a special case of Theorem 3.1
therein. We rephrase it in the following lemma with some modifications to fit the Matérn
covariograms on a compact Riemannian manifold with a different and simpler proof.

Lemma 7 Let ρ0, ρ1 be the spectral densities of two Gaussian measures onM with Matérn
covariograms. Given x0 ∈ M\{xi}ni=1, let Ẑn(ρi) be the best linear unbiased predictor
of Z0 := Z(x0) based on observations {Z(x1), · · · , Z(xn)} with {xi}∞i=1 being infinite and
having x0 as an accumulation point, where ρi is the spectral density of Z(·). If there exists

a real number c such that lim
m→∞

ρ1(m)

ρ0(m)
= c, then:

(i)
Eρ0(Ẑn(ρ1)− Z0)2

Eρ0(Ẑn(ρ0)− Z0)2

n→∞−−−→ 1,

(ii)
Eρ1(Ẑn(ρ1)− Z0)2

Eρ0(Ẑn(ρ1)− Z0)2

n→∞−−−→ c.

Proof See Appendix E.

Focusing on the parameters in a Matérn covariogram, let σ̂2
1,n be the maximum likelihood

estimate of Ln(σ2, α1) and ρi be the spectral density of the Matérn covariogram with decay
parameter αi.
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Theorem 8 Under the same conditions as in Theorem 4 and Lemma 7, let σ2
1 = σ2

0Cν,α1/Cν,α0,
then

Eσ2
0 ,α0

(Ẑn(α1)− Z0)2

Eσ2
0 ,α0

(Ẑn(α0)− Z0)2

n→∞−−−→ 1,
Eσ̂2

1,n,α1
(Ẑn(α1)− Z0)2

Eσ2
0 ,α0

(Ẑn(α1)− Z0)2

n→∞−−−−→
P0 a.s.

1.

Proof See Appendix F.

Note that Lemma 7 and Theorem 8 offer the manifold versions of Theorems 3 and 4 in
Kaufman and Shaby (2013).

4. Matérn on spheres

We now consider Gaussian processes with the Matérn covariogram on the d-dimensional
sphere Sd, including two popular manifolds in spatial statistics: the circle S1 and sphere S2.
We show that all theorems in the previous sections hold for Sd with d = 1, 2, 3. As earlier,
we assume that Pi, i = 1, 2, are two Gaussian measures on Sd with Matérn covariogram
parameters {σ2

i , αi, ν}.

Theorem 9 For spheres with dimension d = 1, 2, 3, the following results are true:

1. P1 ≡ P2 if and only if σ2
1/Cν,α1 = σ2

2/Cν,α2, so neither σ2 nor α can be consistently
estimated.

2. Let the data generating parameters be {σ0, α0} and σ̂2
1,n be the maximum likelihood

estimation of Ln(σ2, α1) with misspecified α1 based on increasing sequence {xi}ni=1.
Then,

σ̂2
1,n

Cν,α1

n→∞−−−→ σ2
0

Cν,α0

, P0 a.s.

3. Given x0 ∈ M\{xi}ni=1, let Ẑn be the best linear unbiased predictor of Z0 := Z(x0)
based on observations {Z(x1), · · · , Z(xn)} with {xi}∞i=1 being infinite, then

Eσ̂2
1,n,α1

(Ẑn(α1)− Z0)2

Eσ2
0 ,α0

(Ẑn(α1)− Z0)2

n→∞−−−→ 1, P0 a.s.

Proof See Appendix G.

Next, we consider two concrete examples: the circle S1 and the sphere S2.

4.1 Matérn covariogram on circle

First, we recall the simplified form of the Matérn covariogram on S1 (Borovitskiy et al.,
2020):

Lemma 10 WhenM = S1 ⊂ R2 and ν = 1/2+s, s ∈ N, the Matérm covariogram is given
by

k(x, y) =
σ2

C ′ν,α

s∑
k=0

as,k(α(|x− y| − 1/2))khypk(α(|x− y| − 1/2)), x, y ∈ S1, (3)

10
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(a) (b)

Figure 1: (a) Covariogram of Matérn 1/2 on S1; (b): Sample fields with σ2 = 0.1, ν = 1/2,
α ∈ {0.01, 1, 100}.

where C ′ν,α is chosen so that k(x, x) = σ2, hypk is cosh when k is even and sinh when k is
odd, as,k are constants depending on ν and α; see Borovitskiy et al. (2020) for details.

Note that x− y := θx− θy mod 1 for x = e2πiθx and y = e2πiθy . Therefore, the Matérn
covariogram is “stationary” with respect to this group addition instead of the standard
addition in Euclidean space. The corresponding spectral density is given by

ρ(n) =
2σ2α sinh(α/2)

C ′ν,α(2π)1−2ν

(
α2 + 4π2n2

)−ν−1/2
, n ∈ Z. (4)

In particular, when ν = 1/2, the covariogram and spectral densities admit simple forms:

k(x, y) =
σ2

cosh(α/2)
cosh (α(|x− y| − 1/2)) ,

ρ(n) = 2σ2α tanh(α/2)(α2 + 4π2n2)−1.

Figure 1(a) depicts a covariogram with ν = 1/2, α = 2, and σ2 = 1. Note that |x−y| = 1/2
means that x and y are antipodal points so the correlation attains a minimum. Figure 1(b)
shows a set of simulated Z’s with different values of α. It is clear that the smaller values of
α generate smoother random fields as the correlation grows larger.

Corollary 11 Let ν = 1/2, then P1 ≡ P2 if and only if σ2
1α1 tanh(α1/2) = σ2

2α2 tanh(α2/2),
so neither σ2 nor α can be consistently estimated.

For a general ν = 1/2 + s, s ∈ N, the normalising constant is

C ′ν,α =

s∑
k=0

as,k(−α/2)khypk(−α/2).

We point out that this C ′ν,α is different from the C ′ν,α in Definition 1 when M = S1. Al-
though we cannot express C ′ν,α as an elementary function, we can still find the microergodic
parameter for any ν = s+ 1/2, s ∈ Z:

Corollary 12 Let ν = 1/2+s, s ∈ Z, then P1 ≡ P2 if and only if σ2
1α1 sinh(α1/2)/C ′ν,α1

=
σ2

2α2 sinh(α2/2)/C ′ν,α2
, so neither σ2 nor α can be consistently estimated.

11
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(a) (b)

Figure 2: (a) σ̂2
1,n v.s. σ2

1; (b): Distribution of
√
n

(
σ̂2
1,n

σ2
1
− 1

)
.

Figure 2 shows that σ̂2
1,n → σ2

1 :=
σ2
0α0 sinh(α0/2)

C′ν,α0

C′ν,α1
α1 sinh(α1/2) as shown by the horizontal

line and the empirical distribution of
√
n

(
σ̂2
1,n

σ2
1
− 1

)
is N(0, 2), for ν = 1/2, σ0 = 0.1,

α0 = 2 6= α1 = 1. Panel (a) supports Theorem 9 empirically. That is, although (σ2, α, ν) are

not consistently estimable, the microergodic parameter σ2α sinh(α/2)
C′ν,α

is consistently estimable.

Panel (b) supports our conjecture after Theorem 6 empirically.

4.2 Matérn covariogram on the sphere

On a sphere S2, the Mateŕn covariogram is more complicated (Borovitskiy et al., 2020):

Lemma 13 The Matérn covariogram on M = S2 with ν > 0 is

k(x, y) =
σ2

Cν,α

∞∑
l=0

(
α2 + l(l + 1)

)−ν−1
clLl(cos(dM (x, y)))

and its spectral density is given by

ρ(l) =
σ2

Cν,α

(
α2 + l(l + 1)

)−ν−1
,

where dM (·, ·) is the geodesic distance on S2, Ll is the Legendre polynomial of degree l:

Ll(z) =

bl/2c∑
k=0

(−1)k
l!(l − k − 1

2)!

k!(l − 2k)!
(2z)n−2k , and

cl =
(2l + 1)Γ(3/2)

2π3/2
, Cν,α =

Γ(3/2)

8π5/2

∞∑
l=0

(2l + 1)
(
2να2 + l(l + 1)

)−ν−1

Remark 14 The index l in the above covariance function is different from the index l in
Definition 1. In fact, each Legendre polynomial corresponds to multiple spherical harmonics,
so the spectral density does not contain the cl constants anymore.

12
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Unlike Lemma 10, where ν is required to be a half-integer, here ν can be any positive number.
However, the covariogram now involves an infinite series, which needs to be approximated
when x 6= y. Approximating a function on S2 is known as the “scatter data interpolation
problem” (Narcowich et al., 1998) and preserving the positive definiteness is known as the
stability problem (Kunis, 2009). For the Matérn covargioram considered in this manuscript,
we adopt a natural and simple approximation using the partial sum of an infinite series. The
following theorem controls the approximation error and ensures the positive definiteness of
the approximated covariogram.

Theorem 15 For the partial sum

kL(x, y) =
σ2

Cν,α

L∑
l=0

(
α2 + l(l + 1)

)−ν−1
clLl(cos(dM (x, y))),

the approximation error is controlled by

|kL(x, y)− k(x, y)| ≤ ε :=
12πσ2∑

l(2l + 1)(α2 + l(l + 1))−ν−1
L−2ν .

Given observations x1, · · · , xn with minimal separation q = infi 6=j d(xi, xj), the approxi-
mated covariance matrix {kL(xi, xj)}ij is positive definite for any

L >

(
12πnσ2

ξρ(q)
∑

l(2l + 1)(α2 + l(l + 1))−ν−1

) 1
2ν

,

where ξρ(q) is a constant depending on the spectral density ρ and minimal separation q; see
the proof for more details.

Proof See Appendix H.

The above result implies that the computational cost is of order ε−
1
2ν as ε→ 0. Larger values

of ν imply smoother random fields that require smaller values of N to approximate the
covariogram. In practice, we can first calculate ξρ(q), which is computationally practicable
because of the closed-form representation (see Appendix H for details), and then choose N .

Figure 3(a) presents the covariogram with ν = 1/2, α = 1, and σ2 = 1. Note that
d(x, y) = π means that x and y are antipodal points so the correlation reaches the minimum.
Figure 3(b) shows some simulated Z’s with different α’s. Similar toM = S1, smaller values
of α lead to smoother random fields.

However, due to the bias introduced by the partial sum, we do not have access to the
ground truth covariogram, so the analogue of Figure 2 is not available anymore. Similar
issues arise in approximations to the Matérn on a compact manifold (Sanz-Alonso and Yang,
2022a). Instead, we show the theoretical results on microergodic parameters analogous to
Corollary 12:

Corollary 16 Pθ1 ≡ Pθ2 if and only if σ2
1/Cν,α1 = σ2

2/Cν,α2, so neither σ2 nor α can be
consistently estimated.

13



Li, Tang and Banerjee

(a) (b)

Figure 3: (a) Covariogram of Matérn 1/2 on S2; (b): Sample fields with σ2 = 0.1, ν = 1/2,
α ∈ {0.01, 1, 100}.

5. Discussion

This article has formally developed some theoretical results on statistical inference for Gaus-
sian processes with Matérn covariograms on compact Riemannian manifolds. Our focus has
primarily been on the identifiability and consistency (or lack thereof) of the covariogram pa-
rameters and of spatial predictions. For the Matérn and squared exponential covariograms,
we provide a sufficient and necessary condition for the equivalence of two Gaussian random
measures through a series test and derive identifiable and consistently estimable microer-
godic parameters for an arbitrary dimension d. Specifically for d ≤ 3, we formally establish
the consistency of maximum likelihood estimates of the parameters and the asymptotic
normality of the best linear unbiased predictor under a misspecified decay parameter. The
circle and sphere are analysed as two examples with corroborative numerical experiments.

We anticipate that the results developed here will generate substantial future work
in this domain. For example, as we have alluded to earlier in the article, in Euclidean
spaces we know that the maximum likelihood estimate of σ2 is asymptotically normal:
√
n

(
σ̂2
1,n

Cν,α1
− σ2

0
Cν,α0

)
→ N(0, 2). While our numerical experiments lead us to conjecture

that an analogous result holds for compact Riemannian manifolds, a formal proof may well
require substantial new machinery that we intend to explore further. Next, we conjecture
that two measures with the Matérn covariogram are equivalent on R4 if and only if they have
the same decay and spatial variance parameters. We know this result holds for manifolds
with d = 4, but a formal proof for R4 has not yet been established. Based upon similar
reasonings we conjecture that two measures with squared exponential covariograms are
equivalent on Euclidean spaces if and only if they have the same decay and spatial variance
parameters.

Another future generalisation is to consider covariograms on compact Riemannian man-
ifolds that are not simultaneously diagonalisable, whose asymptotically optimal linear pre-
dictor has been studied in Kirchner and Bolin (2022). Nevertheless, issues pertaining to the
equivalence of measures, derivation of microergodic parameters and consistency of maximum
likelihood estimates remain unresolved. Furthermore, covariograms that offer scientific in-
terpretation in practical inference need to be explored. In this regard, it is worth remarking
that although our results are primarily concerned with maximum likelihood estimates, they

14
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will provide useful insights into Bayesian learning on manifolds. For example, the failure to
consistently estimate certain (non-microergodic) parameters will inform Bayesian modellers
that inference for such parameters will always be sensitive to their prior specifications. This
will open up new avenues of research in specifying prior distributions for microergodic pa-
rameters. Formal investigations into the consistency of the posterior distributions of Matérn
covariogram parameters on manifolds are of inferential interest and may benefit from some
of our developments in the current manuscript.

Other avenues for future developments will relate to computational efficiency of Gaussian
processes on manifolds. Here, a natural candidate for explorations is the tapered covari-
ogram on manifold to introduce sparsity in the covariance matrix (Furrer et al., 2006).
Since our domain in the current manuscript is compact, unlike in Euclidean domains, fur-
ther compact truncation is redundant. One can explore the development of new “tapered”
covariograms that achieve positive-definiteness and sparsity. Other approaches that induce
dimension reduction based on conditional expectations, such as Gaussian predictive pro-
cesses (Banerjee et al., 2008), may be explored on compact Riemannian manifolds since
these low-dimensional processes are induced by any valid probability measure, although the
choice of inputs to define the lower dimensional subspace will need to be addressed. On the
other hand, sparse processes resulting from approximations using directed acyclic graphs
(Datta et al., 2016b) are less natural for modelling data on manifolds since they depend
on well-defined neighbours of inputs, which are less obvious to define outside of Euclidean
spaces. Nevertheless, Datta et al. (2016a) developed adaptive Nearest-Neighbour Gaussian
processes for massive space-time data sets on Euclidean spaces that selected neighbours
using the covariance kernel as a metric for proximity. Such an approach holds promise in
modelling massive data sets on manifolds.

In addition, asymptotic properties of estimates under tapering are of interest and have,
hitherto, been explored only in Euclidean domains (Kaufman et al., 2008; Du et al., 2009)
and without the presence of measurement error processes (“nuggets”). Inference for Gaus-
sian process models with measurement errors (nuggets) on compact manifolds also present
novel challenges and can constitute future work. Identifiability and consistency of the nugget
in Euclidean spaces have only recently started receiving attention (Tang et al., 2021). How-
ever, the developments for Euclidean spaces do not easily apply to compact Riemannian
manifolds; hence new tools will need to be developed. On complex or unknown domains, the
eigenvalues and eigenfunctions of the Laplacian operator need to be estimated (Belkin and
Niyogi, 2007). Asymptotic analysis of estimation in the spectral domain should be closely
related to the frequency domain. Finally, since compact manifolds are distinct from non-
compact manifolds, both geometrically and topologically, generalisation to non-compact
Riemannian manifolds is of interest, where the spectrum is not discrete. Analytic tools on
non-compact manifolds will need to be developed.
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Appendix A. Proof of Lemma 3

Before proving Lemma 3, we recall the following lemma (Proposition B, Chapter III Ya-
drenko, 1983), also known as the Feldman–Hájek theorem:

Lemma 17 P1 ≡ P2 if and only if

1. Operator D = B
−1/2
1 B2B

−1/2
1 − I is Hilbert–Schmidt;

2. Eigenvalues of D are strictly greater than −1,

where Bi is the correlation operator of Pi defined by:

(Bih)(x) :=

∫
M

∞∑
l=0

ρi(l)fl(x)fl(y)h(y)dVg(y), h ∈ L2(M).

Proof of Lemma 3. By Lemma 17, it suffices to check conditions 1 and 2. Let γin be the
eigenvalue of Bi and dn be the eigenvalue of D. Observe that fn is an eigenfunction of Bi
with eigenvalue ρi(n):

(Bifl)(x) =

∫
M

∑
m

ρi(m)fm(x)fm(y)fl(y)dVg(y)

=
∑
m

ρi(m)fm(x)

∫
M
fm(y)fl(y)dVg(y)

=
∑
m

ρi(m)fm(x)〈fm, fl〉M

=
∑
m

ρi(m)fm(x)δnm

= ρi(l)fl(x),

where δ is the Kronecker delta and 〈·, ·〉M is the L2 inner product on M with fn being
orthonormal basis.

Since Bi’s share the same eigenfunctions and hence commute, we have dl =
γ2l
γ1l
− 1 =

ρ2(l)
ρ1(l) − 1 > −1, so condition 2 holds by the definition of ρi. For condition 1, observe that

dl = ρ2(l)−ρ1(l)
ρ1(l) , so

D is Hilbert–Schmidt⇐⇒
∑
l

d2
l <∞⇐⇒

∑
l

∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣2 <∞.
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Appendix B. Proof of Theorem 4

Proof We start with (A). First assume that ν1 = ν2 = ν and σ2
1/Cν,α1 = σ2

2/Cν,α2 , then
observe ∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣ =

∣∣∣∣∣(α2
1 + λl)

ν+d/2

(α2
2 + λl)ν+d/2

− 1

∣∣∣∣∣
≤
∣∣∣(α2

1 + λl)
ν+d/2 − (α2

2 + λl)
ν+d/2

∣∣∣ /λν+d/2
l

≤
∣∣∣((α2

1/λl + 1)ν+d/2 − ((α2
2/λl + 1)ν+d/2

∣∣∣ .
Note that (1/x+ 1)a = 1 +a/x+O(x−2) as x→∞, then when l is sufficiently large so that
λl > 0,∣∣∣(α2

1/λl + 1)ν+d/2 − (α2
2/λl + 1)ν+d/2

∣∣∣ ≤ (ν + d/2)(α2
1 − α2

2)λ−1
l +O(λ−2

l ) = O(λ−1
l ).

As a result,

∑
l

∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣2 .
∑
l

λ−2
l .

By Weyl’s law (equation (4.1) in Grebenkov and Nguyen (2013)), λl ∼ l2/d, so we have
λ−2
l ∼ l

−d/4 hence −4/d < −1 when d ≤ 3. By the series test in Lemma 3, P1 ≡ P2.

For the other direction, observe that

∣∣∣∣ρ2(l)

ρ1(l)

∣∣∣∣ =

∣∣∣∣∣σ2
2Cν1,α1(α2

1 + λl)
ν1+d/2

σ2
1Cν2,α2(α2

2 + λl)ν2+d/2

∣∣∣∣∣→

∞ ν1 < ν2

1 ν1 = ν2

0 ν1 > ν2.

.

As a result, if ν1 6= ν2,
∑

l

∣∣∣ρ2(l)
ρ1(l) − 1

∣∣∣→∞ so P1 6≡ P2 by the series test.

Then assume ν1 = ν2 = ν and σ2
1/Cν,α1 6= σ2

2/Cν,α2 . Let σ2
0 = σ2

2
Cν,α1
Cν,α2

6= σ2
1, then

σ2
0/Cν,α1 = σ2

2/Cν,α2 ,

so k(·;σ2
0, α1) and k(·;σ2

2, α2) define two equivalent measures, denoted by P0 and P2. Ob-
serve that

k(x, y;σ2
1, α1) =

σ2
1

σ2
0

k(x, y;σ2
0, α1),

then the corresponding spectral densities ρ0 and ρ1 only differ by a multiplicative scalar
σ2
1

σ2
0

so
∑

l

∣∣∣ρ1(l)−ρ0(l)
ρ1(l)

∣∣∣2 =
∑

l

∣∣∣σ2
1−σ2

0

σ2
1

∣∣∣2 = ∞. So by Lemma 3, P0 is orthogonal to P1, so is P2,

which is equivalent to P0. Now we conclude that P1 ≡ P2 if and only if σ2
1/Cν,α1 = σ2

2/Cν,α2

and ν1 = ν2.
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Then we show (B). As proved in (A), P1 6≡ P2 if ν1 6= ν2 so we assume ν1 = ν2 = ν.
Recall that λn →∞, so when n is sufficiently large, λn > α2, then

∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣ =

∣∣∣∣∣σ2
2Cν,α1(α2

1 + λl)
ν+d/2

σ2
1Cν,α2(α2

2 + λl)ν+d/2
− 1

∣∣∣∣∣
≥
∣∣σ2

2Cν,α1(α2
1 + λl)

ν+d/2 − σ2
1Cν,α2(α2

2 + λl)
ν+d/2

∣∣
σ2

1Cν,α2(2λl)ν+d/2

= 2−ν−d/2
∣∣∣∣σ2

2Cν,α1

σ2
1Cν,α2

(
α2

1/λl + 1
)ν+d/2 − (α2

2/λl + 1)ν+d/2

∣∣∣∣
= 2−ν−d/2

∣∣∣∣σ2
2Cν,α1

σ2
1Cν,α2

− 1 +

(
ν +

d

2

)(
σ2

2Cν,α1

σ2
1Cν,α2

α2
1 − α2

2

)
λ−1
l +O(λ−2

l )

∣∣∣∣ . (5)

When σ2
1 6= σ2

2 or α1 6= α2, the constant term
σ2
2Cν,α1
σ2
1Cν,α2

−1 and the linear coefficient
σ2
2Cν,α1
σ2
1Cν,α2

α2
1−

α2
2 in Equation (5) do not vanish at the same time hence

∣∣∣ρ2(l)−ρ1(l)
ρ1(l)

∣∣∣ & λ−1
l . Then

∑
l

∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣2 &
∑
l

λ−2
l =

∑
l

l−4/d =∞

since d ≥ 4. By the series test, P1 6≡ P2. When σ2
1 = σ2

2 and α1 = α2, P1 = P2 so P1 ≡ P2,
which finises the proof of (B).

Appendix C. Proof of Theorem 5

Proof First assume α1 6= α2, or α1 < α2 without loss of generality, then

∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣ =

∣∣∣∣∣σ2
2Cα1

σ2
1Cα2

e
−λl

2

(
1

α22
− 1

α21

)
− 1

∣∣∣∣∣→∞
since λl →∞. As a result, ∑

l

∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣2 =∞.

Then assume α1 = α2 but σ2
1 6= σ2

2, similarly,

∑
l

∣∣∣∣ρ2(l)− ρ1(l)

ρ1(l)

∣∣∣∣2 =
∑
l

(
σ2

2

σ2
1

− 1

)2

=∞.

Then the series test applies.
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Appendix D. Proof of Theorem 6

Proof Let σ2
1 =

σ2
0Cν,α1
Cν,α0

so P0 ≡ P1 by Theorem 4. It suffices to show σ̂2
1,n → σ2

1, P1

a.s. Recall that σ̂2
1,n = ZT

n Γ−1
n (α1)Zn
n and Zn ∼ N(0, σ2

1Γn(α1)) under P1, where (Γn(α))i,j =

1
Cν,α

∑∞
l=0

(
2να2 + λl

)−ν− d
2 fl(xi)fl(xj). As a result, σ̂2

1,n = σ2
1
χ2
n
n → σ2

1, P1 a.s., as n→∞.

Appendix E. Proof of Lemma 7

Proof The logic of the proof is similar to the proof of Theorem 1 and 2 in Stein (1993).
However, these two theorems are not directly applicable due to the discreteness of spec-
trum in our case. To be more specific, the key construction in the proof of Stein (1993)
is the following. By the assumption, for any ε > 0, there exists Mε > 0 such that

supm≥Mε

∣∣∣ ρ1(m)
cρ0(m) − 1

∣∣∣ < ε. We define

ηε(m) :=

{
1
cρ1(m) m ≤Mε

ρ0(m) m > Mε

.

That is, ηε differs from ρ0 only on a bounded subset of N. Note that in Stein (1993), the key
step is to show Pηε ≡ Pρ0 , and the rest of the proof will not rely on any special structure
of the Euclidean domain anymore. That is, it suffices to show Pηε ≡ Pρ0 , which is a direct
consequence of the series test in Lemma 3. The rest of the proof of (i) naturally follows the
proof of Theorem 1 in Stein (1993) while the proof of (ii) follows the proof of Theorem 2
in Stein (1993), where e(x0, n, f1) in Stein (1993) corresponds to Z0−Ẑn(ρ1) in our paper.

Appendix F. Proof of Theorem 8

Proof For σ2
1 =

σ2
0Cν,α1
Cν,α0

, let ρ1 and ρ0 be the spectral density of the Gaussian process

parametrised by (α1, σ
2
1) and (α0, σ

2
0) hence ρ1/ρ0 → 1. Then by (ii) in Lemma 7,

Eσ2
1 ,α1

(Ẑn(α1)− Z0)2

Eσ2
0 ,α0

(Ẑn(α1)− Z0)2
→ 1.

Observe that

Eσ̂2
1,n,α1

(Ẑn(α1)− Z0)2

Eσ2
0 ,α0

(Ẑn(α1)− Z0)2
=

Eσ̂2
1,n,α1

(Ẑn(α1)− Z0)2

Eσ2
1 ,α1

(Ẑn(α1)− Z0)2

Eσ2
1 ,α1

(Ẑn(α1)− Z0)2

Eσ2
0 ,α0

(Ẑn(α1)− Z0)2
. (6)

The second term in Equation (6) tends to 1. For the first term, by the definition of Ẑn, we
obtain

Eσ̂2
1,n,α1

(Ẑn(α1)− Z0)2 = σ̂2
1,n

(
1− γn(α1)TΓn(α1)−1γn(α1)

)
.
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Hence, the first term in Equation (6) is
σ̂2
1,n

σ2
1

. Similar to the proof of Theorem 6, σ̂2
1,n =

σ2
1
χ2
n
n → σ2

1, P1 := Pσ2
1 ,α1

a.s. By Theorem 4, P0 ≡ P1, so the left hand side of Equation (6)
tends to 1, P0 a.s.

Appendix G. Proof of Theorem 9

Proof d-dimensional spheres are compact Riemannian manifolds. The eigenfunctions of
the Laplace operator on Sd are known as spherical harmonics, denoted by Slm, m = 0, 1, · · · ,
l = 1, · · · , td(m). The corresponding eigenvalues are l(l + d − 1) = O(l2) with multiplicity
(Müller, 1966; Efthimiou and Frye, 2014)

2l + d− 1

l

(
l + d− 2

l − 1

)
= O(ld−1).

So 1, 2, 3 follow directly from Theorem 4, 6 and 8 respectively.

Appendix H. Proof of Theorem 15

Proof First we reformulate the covariogram as

k(x, y) =
σ2

Cν,α

∞∑
l=0

(
α2 + l(l + 1)

)−ν−1
clLl(cos(dM (x, y))) = C

∞∑
l=0

al(z) ,

where C = Γ(3/2)σ2

2π3/2Cν,α
= 4πσ2∑

l(2l+1)(α2+l(l+1))−ν−1 , z = cos(dM (x, y)) and

al(z) =
(
α2 + l(l + 1)

)−ν−1
(2l + 1)Ll(z).

Observe that Ll(z) ∈ [−1, 1]. Therefore,

|al(z)| ≤
(
α2 + l(l + 1)

)−ν−1
(2l + 1).

As a result,

|kL(x, y)− k(x, y)| ≤ C
∞∑

l=L+1

|al(z)| ≤ C
∞∑

l=L+1

(
α2 + l(l + 1)

)−ν−1
(2l + 1)

≤ C
∞∑

l=L+1

(l2)−ν−1(3l) = 3C

∞∑
l=L+1

l−2ν−1 ≤ 3C

∫ ∞
L+1

t−2ν−1dt

≤ 3C

2ν
L−2ν =

6πσ2

ν
∑

l(2l + 1)(α2 + l(l + 1))−ν−1
L−2ν .

That is, if the target approximation error is ε, then we can truncate the infinite sum at

L = b
(

6πσ2

εν
∑

l(2l + 1)(α2 + l(l + 1))−ν−1

) 1
2ν

c+ 1.
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To prove positive definiteness, we first find the lower bound of the minimal eigenvalue of
the covariance matrix Σ := {k(xi, xj)}ij , denoted by λmin. By Theorem 2.8 (i) in Narcowich
et al. (1998),

λmin ≥ ξρ(q) := Γρ(K)

(
1− π3k(q)

4q

(
sin(q/2)

q/2

)K)
,

where

k(q) = max

{
8π2

q
,
25π

2

}
, K = arg min

m∈N

{
m : 1− π3k(q)

4q

(
sin(q/2)

q/2

)m
> 0

}
,

and Γρ(K) is determined by the spectral density ρ, K and the B-spline, see Equation (2.41)
in Narcowich et al. (1998) for further details (where m = 2 in our setting). Let the truncated
covariance function be ΣL := {kL(xi, xj)}ij with minimal eigenvalue λNmin, then by the first
half of the proof,

λLmin ≥ λmin−‖Σ−ΣL‖ ≥ ξρ(q)−n‖Σ−ΣL‖max ≥ ξρ(q)−
6πnσ2L−2ν

ν
∑

l(2l + 1)(α2 + l(l + 1))−ν−1

The second inequality follows from a matrix norm equivalence: ‖A‖max ≤ ‖A‖ ≤ n‖A‖max

for any n×n matrix A. The first inequality relies on the fact that eigmin(A) ≥ eigmin(B)−
‖A−B‖ for symmetric matrices A and B. Note that eigmin(A) = min‖x‖=1 x

>Ax and let x0

be the eigenvector of A associated with the smallest eigenvalue, that is, Ax0 = eigmin(A)x0.
By the same observation, x>0 Bx0 ≥ eigmin(B). Then,

eigmin(A) = x>0 Ax0 = x>0 (B+A−B)x0 = x>0 Bx0+x>0 (A−B)x0 ≥ eigmin(B)+x>0 (A−B)x0.

For the last term, since ‖A−B‖ = max‖x‖=1 |x>(A−B)x|, we have |x>0 (A−B)x0| ≤ ‖A−B‖,
hence x>0 (A − B)x0 ≥ −‖A − B‖ as desired. Let ξρ(q) − 6πnσ2L−2ν

ν
∑
l(2l+1)(α2+l(l+1))−ν−1 > 0, we

have

L >

(
6πnσ2

νξρ(q)
∑

l(2l + 1)(α2 + l(l + 1))−ν−1

) 1
2ν
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