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Abstract

A compression function is a map that slims down an observational set into a subset of
reduced size, while preserving its informational content. In multiple applications, the con-
dition that one new observation makes the compressed set change is interpreted that this
observation brings in extra information and, in learning theory, this corresponds to mis-
classification, or misprediction. In this paper, we lay the foundations of a new theory
that allows one to keep control on the probability of change of compression (which maps
into the statistical “risk” in learning applications). Under suitable conditions, the cardi-
nality of the compressed set is shown to be a consistent estimator of the probability of
change of compression (without any upper limit on the size of the compressed set); more-
over, unprecedentedly tight finite-sample bounds to evaluate the probability of change of
compression are obtained under a generally applicable condition of preference. All results
are usable in a fully agnostic setup, i.e., without requiring any a priori knowledge on the
probability distribution of the observations. Not only these results offer a valid support
to develop trust in observation-driven methodologies, they also play a fundamental role in
learning techniques as a tool for hyper-parameter tuning.

Keywords: Compression Schemes, Statistical Risk, Statistical Learning Theory, Scenario
Approach

1. Introduction

Compression is an established topic in theoretical learning, and various generalization
bounds have been proven for compression schemes.

According to a definition introduced in Littlestone and Warmuth (1986), a compression
scheme consists of i. a compression function c, which maps any list of observed examples
S = ((x1, y1), . . . , (xN , yN )) (xi is called an “instance” and yi a “label”) into a sub-list c(S),
and ii. a reconstruction function ρ, which maps any list of examples S into a classifier ρ(S).
An important feature of a classifier is its risk and, in the context of compression schemes,
one is interested in the risk associated to the classifier ρ(c(S)). The concept of risk finds a
natural definition in statistical learning where one assumes that examples (x, y) are gener-
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ated according to a random mechanism: the risk of a generic classifier f is then defined as
R(f) = P{f(x) 6= y} (throughout, boldface indicates random quantities). In loose terms,
most results in compression schemes establish that low cardinality of the compression im-
plies low risk for the ensuing classifier. A bit more precisely, let S = ((x1,y1), . . . , (xN ,yN ))
be a list of independent random examples all sharing the same distribution (which coincides
with the distribution of (x,y) in the definition of risk). In the example-consistent framework
(i.e., the bound on the risk is only given for lists of examples S for which ρ(c(S)) returns
the corresponding label yi for any xi in S – in this case ρ(c(S)) is said to be “consistent”
with S) and under the assumption that the maximum cardinality of c(S) is bounded by
an integer d (d is called the “size” of the compression scheme), Littlestone and Warmuth
(1986) and Floyd and Warmuth (1995) establish results of the type: with high probability
1−δ with respect to the generation of the list of examples S, if ρ(c(S)) is consistent with
S, then the risk of c(S) is below a known bound that depends on N , d and δ only (in par-
ticular, the bound does not depend on the distribution by which examples are generated).
Results in this vein have been subsequently extended to the non-consistent framework and
to compression schemes with unbounded size, in which context the best known results are
given in Graepel et al. (2005).

In a series of recent papers, compression schemes have been studied under a stability
condition, a notion that is natural in many contexts and that has its roots in Vapnik and
Chervonenkis (1974). For the example-consistent framework and compression schemes with
bounded size, Bousquet et al. (2020) succeeded in removing a log(N) term in the expression
of the bound for the risk as compared to the formulation given in the above referenced
papers; when applied to Support Vector Machines, this result resolves a long-standing issue
that was posed in – and remained open since – Vapnik and Chervonenkis (1974). Later,
the scope of Bousquet et al. (2020) has been significantly broadened by Hanneke and Kon-
torovich (2021), where the non-consistent framework with no upper bounds on the size of
the compression scheme has been considered. Since the stable case is most relevant to the
present paper, we shall come back to these latter contributions with a more detailed dis-
cussion and comparison at the end of Section 3.

In the present paper, we make a paradigm shift: since we are interested in compression
as a general tool applicable across various domains, we are well-advised to adopt a “purist”
approach in which compression functions are studied in isolation (without a reconstruction
function). Our essential goal is to study how the probability of change of compression relates
to the size of the compressed set. The corresponding results can be applied to supervised
learning, unsupervised learning and, in addition, to any other contexts where compression
functions are in use. Our findings are summarized at the end of this section, we start with
introducing the formal elements of the problem.

1.1 Mathematical setup and notation

Examples z are elements from a set Z (for instance, in supervised learning z are pairs
(x, y)). The compression functions we study are permutation invariant. Correspond-
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ingly, given any n = 0, 1, 2, . . . and a list of examples (z1, . . . , zn),1 we introduce the
associated multiset written as ms(z1, . . . , zn), where the operator “ms” removes the or-
dering in the list, while maintaining repetitions. The set operations ∪,∩, \ (union, in-
tersection, and set difference) are easily extended to multisets using the notion of mul-
tiplicity function µU for a multiset U , which counts how many times each element of Z
occurs in U . Then, µU∪U ′(z) = µU (z) + µU ′(z), µU∩U ′(z) = min

{
µU (z), µU ′(z)

}
, and

µU\U ′(z) = max
{

0, µU (z)− µU ′(z)
}

. Moreover, U ⊆ U ′ means that µU (z) ≤ µU ′(z) for all
z, and |U | stands for the cardinality of a multiset where each example is counted as many
times as is its multiplicity. Throughout this paper, multisets have always finite cardinal-
ity and, any time a multiset is introduced, it is tacitly assumed that it has finitely many
elements. A compression function c is a map from any multiset of examples U to a sub-
multiset: c(U) ⊆ U . We write c(z1, . . . , zn) as a shortcut for c(ms(z1, . . . , zn)). Also, given
a multiset U and one more example z, c(U, z) stands for c(U ∪ ms(z)). Similar notations
apply to other maps having a multiset as argument. Throughout, an example is modeled
as a realization of a random element defined over a probability space (Ω,F ,P); moreover,
a list of n examples is the realization of the first n elements of an independent and iden-
tically distributed (i.i.d.) sequence z1, z2, . . .. A training set is a multiset generated from
a list of observed examples. When dealing with problems in machine learning, a learning
algorithm A is a map from training sets to a hypothesis h in a set H (in supervised binary
classification, h is a concept; in supervised learning with continuous label, h is a predictor;
in unsupervised learning, h can, e.g., be a collection of clusters; etc.). According to the
above notation, we write A(z1, . . . , zN ) to denote the hypothesis generated by A when the
input is the training set ms(z1, . . . , zN ). We use a {0, 1}-valued function `(h, z) to indicate
whether or not a hypothesis h is appropriate for an example z: `(h, z) = 0 signifies that h
is appropriate for z, while `(h, z) = 1 corresponds to inappropriateness (for instance, in su-
pervised classification, `(h, z) = 1h(x) 6=y, where 1 is the indicator function). The statistical
risk of h is R(h) = P{`(h,z) = 1}, where z is a random element distributed as each zi.

1.2 Main contributions

The contributions of this paper are summarized in the following three points.

(i) Under the property of preference,2 Theorem 4 establishes a new bound to the prob-
ability of change of compression as a function of the cardinality of the compressed multiset.
For a finite size of the training set, the bound is informative and useful in applications (see
Figure 2). When the size of the training set N tends to infinity, the bound tends to the ratio
k/N (where k is the cardinality of the compressed multiset), uniformly in k ∈ {0, 1, . . . , N}
(the fact that the range for k arrives at N means that the compressed multiset has no upper
limits other than the size of the training set itself), see Proposition 8. No lower bounds to
the probability of change of compression are possible under the sole preference property.
Under an additional non-associativity property and a condition of non-concentrated prob-

1. Note that here symbol n indicates the size of a generic list, while N is in use throughout to indicate
the actual number of observed examples. The distinction between the two is necessary to accommodate
various needs in theoretical developments.

2. While stated differently, the preference property is equivalent to the property of stability, see Section 2
for an explanation of our terminology.
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abilistic mass, Theorem 7 establishes a lower bound (see Figure 3). This lower bound also
converges to k/N uniformly in k ∈ {0, 1, . . . , N}. Hence, under the assumptions of Theorem
7, the probability of change of compression is in sandwich between two bounds that merge
one on top of the other as N → ∞ (see Proposition 8). This entails that the cardinality
of the compressed multiset is a highly informative statistics to evaluate the probability of
change of compression.

(ii) In Section 3, the results in (i) are put at work to study classical compression schemes
in the presence of a reconstruction function. It is shown that a preferent compression scheme
augmented with the examples that are misclassified preserves the preference property. From
this, one finds that the risk can be evaluated without resorting to an incremental approach
(as it was customary in previous contributions) in which the empirical risk is incremented
with an estimate of the mismatch between empirical and actual risk. The resultant eval-
uations of the risk, established in Theorem 17, are unprecedentedly sharp. Under the
additional conditions of non-associativity and of non-concentrated mass, if certain coher-
ence properties hold, then one obtains bounds on the risk that are valid both from above
and from below, which provides a statistically consistent evaluation of the risk. Empirical
demonstrations complement the theoretical study and show that the bounds cover tightly
the actual stochastic dispersion of the risk.

(iii) As examples of application, the achievements in point (ii) are applied in Section
4 to various support vector methods, including the Support Vector Machine (SVM) and
the Support Vector Regression (SVR), and to the Guaranteed Error Machine (GEM). This
study shows that, in various learning contexts, one can identify statistics of the data from
which consistent estimates of the risk can be obtained without resorting to validation or
testing.

1.3 Relation with previous contributions and a more general perspective on
this work

The scientific background in which this work has matured lies in some fifteen years of
work by its authors in the field of data-driven optimization. In a group of papers, whose
forefathers are Calafiore and Campi (2005, 2006); Campi and Garatti (2008) and that in-
clude Campi and Garatti (2011); Campi and Carè (2013); Carè et al. (2015); Campi et al.
(2018); Garatti et al. (2019, 2023); Garatti and Campi (2023), they laid with co-authors the
foundations of the so-called “scenario approach”, a vast body of methods and algorithms
to obtain data-driven, theoretically-certified, solutions to uncertain optimization problems.
The scenario approach has spurred quite a bit of work also done by others, as witnessed by a
large number of theoretical contributions, of which we here only mention the most significant
ones: Welsh and Rojas (2009); Welsh and Kong (2011); Pagnoncelli et al. (2012); Schildbach
et al. (2013, 2014); Margellos et al. (2014, 2015); Zhang et al. (2015); Esfahani et al. (2015);
Crespo et al. (2015); Grammatico et al. (2016); Crespo et al. (2016); Lacerda and Crespo
(2017); Margellos et al. (2018); Crespo et al. (2019); Falsone et al. (2019). Recently, the
studies on scenario optimization have culminated in the works Campi and Garatti (2018);
Garatti and Campi (2022), which are conceptually linked to the present contribution by
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the fact that the generalization properties of the solution are evaluated from an observable
called “complexity” (complexity parallels the size of the compressed multiset of this paper).
As compared with all this previous literature, the present contribution introduces two major
elements of novelty:

(a) compression takes center stage, beyond any contextualization. By this purist ap-
proach, we aim to lay the groundwork for a new theory of wide applicability, to machine
learning in primis, but also across the other multiple data science fields in which compres-
sion finds application;

(b) by a novel, powerful, theoretical apparatus, this paper establishes bounds on the
risk that fare beyond the domain of previous contributions; in particular, they allow one
to drop any condition of non-degeneracy, which was a standing and limiting assumption in
previous works, e.g., Campi and Garatti (2018); Garatti and Campi (2022).

We hope that the findings presented in this paper will open a new era of exploration and
discovery in an important subarea of data-driven methods that is centered around the notion
of compression. As previously mentioned, we here already consider support vector methods
and improve the results in Campi and Garatti (2021) by eliminating all assumptions on
the distribution of the examples for the problem of obtaining upper bounds on the risk.
We also study a generalized version of the so-called Guaranteed Error Machine, which was
introduced in Campi (2010) under a limiting condition on the complexity of the classifier.
Beyond the applications discussed in this paper, we expect that our results will prove useful
in various fields where the scenario approach is applicable (including robust optimization,
with its multiform applications to diverse contexts). We feel like to also mention that
the authors of this paper are at present actively exploring a wide range of example-driven
computer science algorithms in which the application of the compression theory of this paper
is made possible through an importance procedure for example selection, even in cases where
the original algorithm lacks any compression (see Paccagnan et al. (2023) for a study in
the context of machine learning). For a broader discussion on the increasing importance
of establishing well-founded risk theories for data-driven decision processes, particularly in
today’s time in which the use of data is becoming pervasive, the reader is referred to the
recent position paper Campi et al. (2021).

1.4 Structure of the paper

The main results on compression schemes are presented in a unified treatment in the next
Section 2, which also includes a discussion on the asymptotic behavior of the bounds.
Section 3 presents a rapprochement with classical compression schemes in statistical learning
that incorporate a reconstruction function, along with some other more general results useful
for machine learning problems. Specific machine learning schemes are considered in Section
4. The proofs of the main results are deferred till Section 5.
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2. New generalization results for compression schemes

Our interest lies in quantifying the probability with which a change of compression occurs.
As it was mentioned in the introduction, and it will be further explored in Section 4, this
probability has important implications in relation to learning schemes. We start with a
formal definition of probability of change of compression.

Definition 1 (probability of change of compression) The probability of change of com-
pression is defined as

φ(z1, . . . ,zn) = P{c(c(z1, . . . ,zn), zn+1) 6= c(z1, . . . ,zn)|z1, . . . ,zn}.3

?

On the right-hand side a new element zn+1 is added to the compression of ms(z1, . . . ,zn) 4

and it is tested whether this makes the compression change. This gives an event, and our
interest lies in the probability of this event. However, in view of its use in applications, what
matters is not the probability tout court, rather, we take a more fine-grained standpoint
by conditioning on z1, . . . ,zn, so as to capture the variability of the probability of change
of compression as determined by the examples. This makes φ(z1, . . . ,zn) into a random
variable. In what follows, we shall often use the symbol φn as a shorthand for the random
variable φ(z1, . . . ,zn).

Before delving into the mathematical developments, we are well-advised to digress a
moment to discuss the nature of the results we mean to reach. Let N be the size of the
multiset at hand, the one of which we want to study the probability of change of compres-
sion. φN has a probability distribution of its own. Arguably, this distribution may vary
significantly with the distribution by which the zi’s are generated. This fact has an impor-
tant implication: any result that describes the distribution of φN without referring to some
prior knowledge on the distribution of the zi’s is bound to stay on the conservative side
and is therefore poorly informative. While this may seem to set fundamental limitations to
obtaining distribution-free results on φN (i.e., results valid without any a priori knowledge
on the distribution of the zi’s), nevertheless it turns out that this conclusion is hasty and
incorrect: indeed, one can instead move along a different path and take a bi-variate stand-
point, as next explained. Let |c(z1, . . . ,zN )| be the cardinality of the compressed multiset
c(z1, . . . ,zN ). We consider the pair (|c(z1, . . . ,zN )|,φN ) and identify conditions of general
interest under which its bi-variate distribution concentrates in a slender, lenticular-shaped,
region (see Figure 3). The implications are quite notable: within the lenticular-shaped
region, the distribution of (|c(z1, . . . ,zN )|,φN ) does exhibit a strong variability depending
on the problem (which also translates into the variability of the marginal distribution of
φN ). However, given the realization of z1, . . . ,zN at hand, one can compute the value of
|c(z1, . . . ,zN )| and intersect the vertical line corresponding to this value with the lenticular-
shaped region to obtain an interval for the probability of the change of compression. The
so-formulated evaluation is tight and informative even for small values of N and offers an
useful assessment tool for applications. Importantly, the corresponding theory retains the

3. This means that φ(z1, . . . ,zn) is any version of the conditional probability on the right-hand side.
4. It is not unimportant that zn+1 is added to the compression, not to the initial multiset.
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characteristic of being distribution-free. This finding is stated below as Theorem 7 and it
holds under two properties called preference (Property 2) and non-associativity (Property
5), besides a condition that rules out concentrated masses (Property 6). Interestingly, under
the sole preference property, only the lower bound of the lenticular-shaped region is lost
while the upper bound maintains its validity (Theorem 4), which provides a result broadly
applicable to evaluate an upper limit on the probability of change of compression as a func-
tion of the cardinality of the compressed multiset.

Moving towards the mathematical results, we first formalize the concept of preference.

Property 2 (preference) For any multisets U and V such that V ⊆ U , if V 6= c(U),
then V 6= c(U, z) for all z ∈ Z. ?

Hence, if a sub-multiset is not chosen as the compressed multiset, then it cannot become
the compressed multiset at a later stage after augmenting the multiset with a new example.5

The following lemma provides a useful reformulation of the preference property.

Lemma 3 A compression function c satisfies the preference property if and only if c(V ) =
c(U) for all multisets U, V such that c(U) ⊆ V ⊆ U . ?

Proof Assume c satisfies the preference property and let z1, . . . , zn be the elements in U \V
where U and V are multisets such that c(U) ⊆ V ⊆ U . Let S0 = V and Si = Si−1 ∪ms(zi)
for i = 1, . . . , n so that Sn = U . Now suppose that c(V ) 6= c(U). Since c(S0) = c(V )
and c(Sn) = c(U), then it must be that c(Si−1) 6= c(U) and c(Si−1, zi) = c(U) for some
i ∈ {1, . . . , n}. However, since c(U) ⊆ Si−1, this contradicts the assumption that c satisfies
the preference property.
For the other direction, assume that the preference property does not hold. Then, we can
find U, V, z such that V ⊆ U and c(U) 6= V = c(U, z). This implies c(U, z) ⊆ U ⊆ U ∪ms(z)
and c(U) 6= c(U, z), contradicting the statement that c(V ′) = c(U ′) for all multisets U ′, V ′

such that c(U ′) ⊆ V ′ ⊆ U ′.

An immediate consequence of Lemma 3 is that c
(
c(U)

)
= c(U) whenever c satisfies the

preference property.

The statement of our first theorem is better enunciated by introducing the following
functions Ψk,δ : (0, 1)→ R, which are indexed by k = 0, 1, . . . , N − 1 and by the confidence
parameter δ ∈ (0, 1):

Ψk,δ(α) =
δ

N

N−1∑
m=k

(
m
k

)(
N
k

)(1− α)−(N−m) .

5. This property is not new and is called “stability” in the literature, see, e.g., Bousquet et al. (2020) where
the formulation is slightly different but, provably, equivalent. Our introducing a change of terminology
is in the interest of clarity as we believe that “stability” may convey the erroneous idea of absence of
change or, what is germane to the field of systems theory, the idea that a small input variation can only
cause a small output variation. We chose “preference” because we feel that this term rightly conveys
the idea that a multiset cannot be selected – and hence preferred – at a later stage if it had not been
preferred earlier when it was already available.
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Figure 1: (a) Function Ψk,δ(α): it starts below δ when α → 0 and tends to +∞ when
α→ 1; (b) Function Ψ̃k,δ(α): it tends to +∞ as α→ 1 or α→ −∞ and takes a
value below 1 in a point in (−∞, 1).

For any k and any δ, the equation Ψk,δ(α) = 1 admits one and only one solution in (0, 1).
Indeed, Ψk,δ(α) is strictly increasing, continuous, and Ψk,δ(α) ≤ δ < 1 when α → 0, while
it grows to +∞ when α→ 1 (see Figure 1(a)). Define6

εk =

{
solution to Ψk,δ(α) = 1, k = 0, 1, . . . , N − 1;

1, k = N.
(1)

Theorem 4 Assume the preference Property 2. For any δ ∈ (0, 1), it holds that

P{φN > εk} ≤ δ, (2)

where εk is the random variable obtained by the composition of k := |c(z1, . . . ,zN )| (the
cardinality of the multiset c(z1, . . . ,zN )) with the function εk given in (1) (in other words,
it is εk evaluated at the random value k). ?

Proof The proof of Theorem 4 is given in Section 5.2.

In the theorem, parameter δ is called the “confidence parameter” and it is normally selected
to a very small value, say 10−5 or 10−6. The theorem claims that φN , the probability of
change of compression, is upper-bounded, with high confidence 1 − δ, by εk, which is a
known, deterministic, function εk evaluated in correspondence of the cardinality k of the
compressed multiset. Figure 2 visualizes function εk for N = 2000 and various values of δ.

In machine learning applications, the interest of Theorem 4 stems from the fact that
a change of compression occurs when an example is misclassified, or mispredicted. Hence,

6. εk can be computed via a bisection algorithm. An efficient and ready-to-use MATLAB code is provided
in Appendix B.1.
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Figure 2: Curve εk against the value of k for N = 2000 and various values of δ (10−3, 10−6,
and 10−9). As established in Theorem 4, for preferent compression functions
this curve sets an upper bound (valid with confidence 1 − δ) on the probability
of change of compression as a function of the cardinality k of the compressed
multiset.

the theorem allows one to upper-bound the probability of misclassification, or mispredic-
tion, by using an observable, the cardinality of the compressed multiset. Importantly, the
evaluation holds independently of the distribution of the zi’s, hence the user can apply the
result without positing any, possibly hazardous, conjecture on how data are generated. An
ample space to the use of Theorem 4 in machine learning problems is given in Sections 3
and 4.

Lower and upper bounds on φN are established under additional conditions, the non-
associativity Property 5 and the Property 6 of non-concentrated mass, as described in the
following.

Property 5 (non-associativity) For any n ≥ 0 and p ≥ 1,

P
(
E1 \ E2

)
= 0,

where
E1 = {c(z1, . . . ,zn, zn+i) = c(z1, . . . ,zn), i = 1, . . . , p},

E2 = {c(z1, . . . ,zn, zn+1, . . . ,zn+p) = c(z1, . . . ,zn)}.

?

In words, the non-associativity property can be phrased as follows: if the compression does
not change adding elements one at a time, then it does non change when they are added
altogether, with the possible exception of an event whose probability is zero.7 The reader

7. Non-associativity is naturally satisfied in many contexts, including all cases in which the compression
singles out the relevant observations in a robust optimization process (this is because adding multiple
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may have noticed that Property 5 is given in probability unlike the preference Property 2,
which was required to hold for any choice of the examples. The reason is that requiring
the validity of the non-associativity property for all examples can be restrictive in some
applications.

Property 6 (non-concentrated mass)

P{zi = z} = 0, ∀z ∈ Z.

?

The property of non-concentrated mass simply requires that any z can only be drawn with
probability zero and, hence, it excludes with probability 1 that the same z occurs twice or
more times in a training set.

Theorem 7 is stated by means of the following functions Ψ̃k,δ : (−∞, 1)→ R indexed by
k = 0, 1, . . . , N and by the confidence parameter δ ∈ (0, 1):

for k = 0, . . . , N − 1, let

Ψ̃k,δ(α) =
δ

2N

N−1∑
m=k

(
m
k

)(
N
k

)(1− α)−(N−m) +
δ

6N

4N∑
m=N+1

(
m
k

)(
N
k

)(1− α)m−N , (3)

while, for k = N , let

Ψ̃N,δ(α) =
δ

6N

4N∑
m=N+1

(
m

N

)
(1− α)m−N .

In Appendix A it is shown that, for k = 0, 1, . . . , N − 1, equation Ψ̃k,δ(α) = 1 admits two
and only two solutions in (−∞, 1), say αk and αk, with αk <

k
N < αk (see Figure 1(b) for

a graphical visualization of Ψ̃k,δ(α), k < N). Instead, equation Ψ̃N,δ(α) = 1 admits only
one solution in (−∞, 1), which is denoted by αN (this is easy to verify because Ψ̃N,δ(α) is
strictly decreasing and it tends to 0 as α→ 1 while it grows to +∞ as α→ −∞). Define8

εk = max{0, αk}, k = 0, 1, . . . , N, (4)

and

εk =

{
αk, k = 0, 1, . . . , N − 1;

1, k = N.
(5)

Theorem 7 Assume the preference Property 2, the non-associativity Property 5 and the
non-concentrated mass Property 6. For any δ ∈ (0, 1), it holds that

P{εk ≤ φN ≤ εk} ≥ 1− δ, (6)

constraints that do not change the solution when considered in isolation – viz., the current solution is
feasible for the new constraints – does not change the solution when all the constraints are introduced
simultaneously). See Section 4 for examples in the machine learning context.

8. See Appendix B.2 for a MATLAB code that efficiently computes εk and εk.
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Figure 3: Region delimited by εk and εk for N = 2000 and various values of δ (10−3,
10−6, and 10−9). Under the assumptions of Theorem 7, this region contains with
confidence 1 − δ the probability of change of compression as a function of the
cardinality of the compressed multiset.

where εk is the random variable obtained by the composition of k := |c(z1, . . . ,zN )| with
the function εk given in (4) and εk is the random variable obtained by the composition of
k with the function εk given in (5). ?

Proof The proof of Theorem 7 is given in Section 5.3.

With the additional properties of non-associativity and non-concentrated mass, The-
orem 7 assigns upper and lower bounds for the change of compression, as visualized in
Figure 3. Strictly speaking, these additional requirements do depend on the underlying
probability by which examples are generated and, hence, they cannot be labeled as being
“distribution-free”. Nonetheless, in various situations, Theorem 7 becomes applicable un-
der a very limited knowledge on the distribution of the zi’s, and we shall see examples
of this in Section 4. We also note that dropping the assumption of non-concentrated mass
makes Theorem 7 false, as shown in the following counterexample.9 Suppose that one single
element z̄ has probability 1 to be selected (so that the non-concentrated mass property is
violated), fix any integer M (for example M = 100) and consider the compression function
that returns the initial multiset any time this multiset includes the element z̄ less than M
times, while it trims the number of elements z̄ to M when z̄ appears more than M times
in the initial multiset. It is easily seen that the preference and non-associativity properties
hold. On the other hand, for N ≥M the probability of change of compression is zero with
probability 1, so that no meaningful lower bounds can be assigned in this example.

9. While the non-concentrated mass property is easy to state, which led us to prefer this formulation,
Theorem 7 can still be proven under a slightly weaker condition, as briefly discussed in Remark 30 after
the proof of the theorem.
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Figure 4: Graph of εk, and εk as functions of k for δ = 10−6 and N = 2000, 4000, and 8000.

2.1 Asymptotic behavior of εk and εk, εk

The purpose of this section is to establish explicit lower and upper bounds on εk and εk,
εk able to reveal the dependencies of these quantities on k, N , and δ, and also to pinpoint
convergence properties as N tends to infinity. The main result is in Proposition 8, followed
by some comments. We advise the reader that the explicit bounds in Proposition 8 are
in use to clarify various dependencies, but they are not meant for practical computation
since they lead to conservative results if used in place of the numerical procedures given in
Appendix B.

Proposition 8

εk ≤
k

N
+ 2

√
k + 1

N

(√
ln(k + 1) + 4

)
+ 2

√
k + 1

√
ln 1

δ

N
+

ln 1
δ

N
(7)

εk ≥
k

N
− 3

√
k + 1

N

(√
ln(k + 1) + 2

)
− 3

√
k + 1

√
ln 1

δ

N
. (8)

Moreover, it holds that

k

N
≤ εk ≤ εk

Proof The proof of Proposition 8 is given in Section 5.4.

In both (7) and (8), the dependence on δ is inversely logarithmic, which shows that “con-
fidence is cheap”: very small values of δ can be enforced without significantly affecting the
results and, thereby, the width of the interval [εk, εk] (see again Figure 3). For any fixed k,
we see that εk and εk, εk tend to k/N as O(1/N), while for k that grows at the same rate
as N (say k/N = constant) εk and εk, εk converge towards k/N as O(

√
ln(N)/

√
N). This

is just marginally slower than the convergence rate for the law of large numbers, as given
by the central limit theorem. The evolution of εk, εk as N grows can be seen in Figure 4.

Reading the results of this section in the light of Theorem 4, one concludes that, for
all compression functions satisfying the preference Property 2, the bi-variate distribution
of k = |c(z1, . . . ,zN )| and φN all lies below the line k/N plus an offset whose size goes to
zero as O(

√
ln(N)/

√
N) with the exception of a slim tail whose probabilistic mass is no

more than δ. If, additionally, Properties 5 and 6 hold, Theorem 7 shows that the bi-variate
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distribution of k = |c(z1, . . . ,zN )| and φN all lies in a strip around k/N whose size goes
to zero as O(

√
ln(N)/

√
N) but a slim tail. In this latter case, Theorem 7 also carries the

very important implication that the ratio k/N is a strongly consistent estimator of φN
irrespective of the problem at hand (it can be proven that Theorem 7 and Proposition 8
together imply that |k/N−φN | converges to zero both in the mean square sense and almost
surely).

3. Compression schemes for machine learning

The aim of this section is to connect the theory of Section 2 to that of statistical risk in
learning algorithms. Our findings will be compared with existing results at the end of this
section. Refer to Section 1.1 for the mathematical setup and notation.

Given a learning algorithm A, suppose that there exists a compression function c that
ties in with the loss function ` according to the following property.

Property 9 (coherence – part I) For any n ≥ 0 and any choice of z1, . . . , zn, zn+1 ∈ Z,
if `
(
A(z1, . . . , zn), zn+1

)
= 1, then c

(
c(z1, . . . , zn), zn+1

)
6= c(z1, . . . , zn). ?

Under Property 9, R(A(z1, . . . ,zN )) ≤ φN holds with probability 1,10 and Theorem 4 can
be used to bound the risk of the hypothesis returned by the learning algorithm, as specified
in the following theorem.

Theorem 10 Given a learning algorithm A, suppose that there exists a compression func-
tion c that satisfies the coherence – part I Property 9. Assume the preference Property 2.
For any δ ∈ (0, 1), it holds that

P
{
R
(
A(z1, . . . ,zN )

)
> εk

}
≤ δ,

where k = |c(z1, . . . ,zN )| and εk is given in (1). ?

We next provide a sufficient condition for Property 9 to hold for the case in which the
learning algorithm can be reconstructed from the compressed multiset.

Definition 11 (reconstruction function) Given a learning algorithm A and a compres-
sion function c, a reconstruction function ρ is a map from multisets to hypotheses such that
ρ
(
c(z1, . . . , zn)

)
= A(z1, . . . , zn) for any multiset ms(z1, . . . , zn). ?

We also need the following property, which requires that the examples in the training set
for which the hypothesis chosen by the learning algorithm A is inappropriate are included
in the compressed multiset.

Property 12 (inclusion) For any multiset ms(z1, . . . , zn) and for any i = 1, 2, . . . , n, if
`
(
A(z1, . . . , zn), zi

)
= 1, then zi appears in c(z1, . . . , zn) the same number of times as it

appears in ms(z1, . . . , zn). ?

10. The reason why the inequality holds with probability 1 and not always is that φN is just a version of
the conditional probability in Definition 1 and various versions can differ over events having probability
zero.

13
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The following lemma shows that inclusion implies coherence – part I whenever A admits a
reconstruction function for the given c.

Lemma 13 Given a learning algorithm A and a compression function c satisfying the
inclusion Property 12, if there exists a reconstruction function for (A, c), then the coherence
– part I Property 9 holds. ?

Proof We prove that, under inclusion and existence of a reconstruction function, absence
of change of compression is necessarily associated to appropriateness (contrapositive of
coherence – part I Property 9).

Let U := ms(z1, . . . , zn) and suppose that for a new zn+1 the compression does not
change, i.e.,

c
(
c(U), zn+1

)
= c(U). (9)

Applying ρ to both sides of (9) and using the definition of reconstruction function gives

A
(
c(U), zn+1

)
= A(U). (10)

On the other hand, (9) implies that zn+1 appears in c
(
c(U), zn+1

)
as many times as it does

in c(U). Thus, zn+1 appears in ms
(
c(U), zn+1

)
one more time than it does in c

(
c(U), zn+1

)
.

Since A and c satisfy the inclusion Property 12, it follows that

`
(
A
(
c(U), zn+1

)
, zn+1

)
= 0, (11)

and, substituting (10) in (11) gives

`
(
A(U), zn+1

)
= 0.

Hence, it remains proven that

c
(
c(U), zn+1

)
= c(U) =⇒ `

(
A(U), zn+1

)
= 0,

which is the contrapositive of Property 9.

Remark 14 If, for any multiset, an algorithm generates a hypothesis that is appropriate
for all the examples in the multiset (i.e., the hypothesis is consistent with the multiset),
then the inclusion Property 12 is automatically satisfied and, hence, the existence of a re-
construction function implies the coherence – part I Property 9. The inclusion Property
12 provides a condition for the coherence – part I property to hold when the algorithm is
allowed to generate hypotheses without appropriateness requirements on the training set.
Notice also that the inclusion property alone (without a reconstruction function) does not
imply the coherence – part I property. For example, consider points zi ∈ R and let11

A(z1, . . . , zn) = (−∞, second largest zi] and c(z1, . . . , zn) = max{z1, . . . , zn},12 and say that

11. If two or more zi attain the maximum, then the second largest equals the largest.
12. For a training set that has only one element or it is empty, let, e.g., the algorithm return the whole real

line and the compression coincide with the training set.

14
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A(z1, . . . , zn) is appropriate for z if z ∈ A(z1, . . . , zn). Here, one can verify that the in-
clusion property holds, while no reconstruction function exists. If a new point zn+1 falls in
between the second largest zi and max{z1, . . . , zn}, then A(z1, . . . , zn) is not appropriate for
this zn+1, but the compression does not change, that is, the coherence – part I property does
not hold. ?

The statement of Lemma 13 does not admit a converse: under the existence of a recon-
struction function, coherence – part I does not imply inclusion. To see this, let examples zi
be points of R and consider A(z1, . . . , zn) = [second largest zi,+∞), while c(z1, . . . , zn) =
second largest zi.

13 Then, A(z1, . . . , zn) can be reconstructed from c(z1, . . . , zn) and, when a
point for whichA(z1, . . . , zn) is inappropriate (i.e., the point does not belong toA(z1, . . . , zn))
is added to c(z1, . . . , zn), the compression becomes the newly added point (which is now
the second largest14) so that the coherence – part I property holds. On the other hand, if
there are among z1, . . . , zn some examples strictly smaller than the second largest zi, then
A(z1, . . . , zn) is inappropriate for all of these examples while these examples are not in the
compression (and, hence, the inclusion property does not hold).

Interestingly, the properties of inclusion and coherence – part I become equivalent under
preference, a fact that is stated in the next lemma.

Lemma 15 Consider a learning algorithm A and a compression function c that satisfies
the preference Property 2. Assume that there exists a reconstruction function ρ for (A, c).
Then, the inclusion Property 12 holds iff the coherence – part I Property 9 holds.

Proof In view of Lemma 13, we only need to show the implication coherence – part I ⇒
inclusion.

Let U := ms(z1, . . . , zn). Assume the coherence – part I property and, by contradiction,
that the inclusion property fails so that there is a zi ∈ U such that `

(
A(U), zi

)
= 1 and

zi does not appear in c(U) as many times as it does in U . Now, A(c(U)) = ρ(c(c(U))) =
ρ(c(U)) = A(U) (where the second last equality is true because c(c(U)) = c(U) under prefer-
ence – see the comment immediately after Lemma 3); hence, `

(
A(c(U)), zi

)
= `
(
A(U), zi

)
=

1. By the coherence – part I property, we then have: c(c(U), zi) 6= c(U), which contradicts
Lemma 3 by the choice V = ms(c(U), zi) for which c(U) ⊆ V ⊆ U .

Under preference and the existence of a reconstruction function, the previous lemma shows
that inclusion is strictly necessary to have the coherence – part I property. The next
lemma shows a way to secure inclusion (and thereby coherence – part I ) by augmenting the
compression function so as to include examples for which the hypothesis is inappropriate.

Lemma 16 Consider a learning algorithm A and a compression function c that satisfies
the preference Property 2 ((A, c) are not required to satisfy the inclusion Property 12).
Assume that there exists a reconstruction function ρ for (A, c). Define a new couple (c̃, ρ̃)
as follows:

13. When the training set has only one element z1, let the algorithm return [z1,+∞) and the compression
be ms(z1) while, with an empty training set, the algorithm returns the empty subset of R and the
compression is obviously empty.

14. If the compression is empty, then the newly added point is alone and it becomes the compression as well.
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• for any multiset U , let c̃(U) = c(U) ∪
(
ms(zi ∈ U : `(A(U)), zi) = 1) \ c(U)

)
;

(i.e., c̃(U) is c(U) augmented with the examples that are not already in c(U) for which
A(U) is inappropriate);

• for any multiset U , let ρ̃(U) = A(U).

Then,

(i) c̃ satisfies the preference Property 2;

(ii) ρ̃ is a reconstruction function for (A, c̃);

(iii) (A, c̃) satisfies the inclusion Property 12 (and, thereby, the coherence – part I Prop-
erty 9). ?

Proof

(i) Consider any two multisets U and V such that c̃(U) ⊆ V ⊆ U . We want to show
that c̃(V ) = c̃(U), which, by Lemma 3, implies that c̃ satisfies the preference Property 2.
By definition of c̃, it holds that c(U) ⊆ c̃(U), yielding c(U) ⊆ V ⊆ U . Since c satisfies the
preference Property 2, Lemma 3 gives c(V ) = c(U), which, together with the fact that ρ is
a reconstruction function for (A, c), also implies that A(V ) = ρ(c(V )) = ρ(c(U)) = A(U).
Using c(V ) = c(U) and A(V ) = A(U) in the definition of c̃(V ) gives

c̃(V ) = c(V ) ∪
(
ms(zi ∈ V : `(A(V ), zi) = 1) \ c(V )

)
= c(U) ∪

(
ms(zi ∈ V : `(A(U), zi) = 1) \ c(U)

)
= c(U) ∪

(
ms(zi ∈ U : `(A(U), zi) = 1) \ c(U)

)
, (12)

where the last equality follows by the observation that c̃(U) ⊆ V and that c̃(U) contains
by definition all the zi ∈ U such that `(A(U), zi) = 1. The thesis follows by observing that
the right-hand side of (12) is c̃(U).

(ii) For any multiset U it holds that c(U) ⊆ c̃(U) ⊆ U and, since c satisfies the prefer-
ence Property 2, Lemma 3 gives that c(c̃(U)) = c(U). Recalling now the definition of ρ̃ and
the fact ρ is a reconstruction function for (A, c), we have that

ρ̃(c̃(U)) = A(c̃(U)) = ρ(c(c̃(U))) = ρ(c(U)) = A(U).

(iii) This is obvious in view of the definition of c̃.

Using Lemma 16, the following theorem follows immediately from Theorem 10.

Theorem 17 Consider a learning algorithm A and a compression function c that satisfies
the preference Property 2. Assume that there exists a reconstruction function ρ for (A, c).
Define c̃ as in Lemma 16. For any δ ∈ (0, 1), it holds that

P
{
R
(
A(z1, . . . ,zN )

)
> εk

}
≤ δ,

where k = |c̃(z1, . . . ,zN )| and εk is given in (1). ?
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Upper and lower bounds for R(A(z1, . . . ,zN )) can be established under additional condi-
tions.

Property 18 (coherence – part II) For any n ≥ 0 and p ≥ 1,

P
(
E1 \ E2

)
= 0,

where
E1 = {c

(
c(z1, . . . ,zn), zn+1

)
6= c(z1, . . . ,zn)},

E2 = {`
(
A(z1, . . . ,zn), zn+1

)
= 1}.

?

The coherence – part II property requires that E2 covers E1 up to an event of probability
zero. The reason for not requiring that E1\E2 = ∅ is that non-pathological examples can be
exhibited where this latter condition fails (while the one in probability does hold), showing
that this requirement would be unduly restrictive.

We now have the following theorem, which can be proven from Theorem 7 in the light
of the two coherence properties.

Theorem 19 Given a learning algorithm A, suppose that there exists a compression func-
tion c that satisfies the coherence – part I Property 9 and the coherence – part II Prop-
erty 18. Assume the preference Property 2, the non-associativity Property 5 and the non-
concentrated mass Property 6. For any δ ∈ (0, 1), it holds that

P
{
εk ≤ R

(
A(z1, . . . ,zN )

)
≤ εk

}
≥ 1− δ,

where k = |c(z1, . . . ,zN )| and εk, εk are given respectively in (4), (5). ?

Proof Consider events E1 and E2 as in the statement of the coherence - part II Property
18 and notice that φN = P{E1|z1, . . . ,zN} while R

(
A(z1, . . . ,zN )

)
= P{E2|z1, . . . ,zN}.

Properties 9 and 18 then imply that φN 6= R
(
A(z1, . . . ,zN )

)
over a zero probability set

only, and the conclusion of Theorem 19 follows in view of (6).

We close this section with some comparison of the results given here with previous
results established under the preference property (or the stability property, as it is phrased
in some contributions) for compression schemes that consist of a compression function c
and a reconstruction function ρ. In an example-consistent framework (i.e., the bound on
the risk is only given for multisets S for which ρ(c(S)) is appropriate for all zi ∈ S),
the best available result for the case when a threshold on the maximum cardinality of
c(S) is known is given by Theorem 15 in Bousquet et al. (2020). When N → ∞, the
bound on the risk in Bousquet et al. (2020) exhibits a O(1/N) convergence rate to zero,
in line with the asymptotic results of this paper given in Section 2.1. The findings of
Bousquet et al. (2020) have been extended to compression schemes that have no upper
limit for the maximum cardinality of c(S) in Hanneke and Kontorovich (2021), Theorem
10. As compared to Hanneke and Kontorovich (2021), our upper bound shows a uniform
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Figure 5: Convex hull of points in R3.

(in |c(S)| ∈ {0, 1, . . . , N}) convergence towards |c(S)|/N , which is unattainable within the
approach of Hanneke and Kontorovich (2021) (where |c(S)|/N is multiplied by a non-unitary
constant). Moreover, our bound is unprecedentedly sharp for finite values of N and gets
rapidly close to |c(S)|/N as N grows, see Figure 4. Moving to the non-consistent framework,
the available literature aims at bounding the gap between the empirical probability of
inappropriateness (ratio between the number of examples in the training set for which the
selected hypothesis is inappropriate divided by the size of the training set) and the actual
probability of inappropriateness (i.e., the actual risk). Our Theorem 17 departs from this
approach by allowing for an evaluation of the risk that uses directly the size of an augmented
compression that automatically incorporates the empirical cases of inappropriateness. This
allows us to use the same bound for the risk, without distinguishing between the consistent
and non-consistent frameworks. The ensuing theory reveals all its sharpness when change of
compression and inappropriateness are equivalent as specified in Theorem 19 (this is, e.g.,
the case for Support Vector Regression in Section 4.1.2 or the Guaranteed Error Machine
in Section 4.2 under mild conditions), in which case one can establish lower and upper
bounds that converge one to the other for increasing N as shown in Section 2.1 (which
is unprecedented in statistical learning).15 See also the next Example 20 for a numerical
simulation that shows that our bounds for finite N well capture the intrinsic stochastic
variability of the risk.

Example 20 We consider a sample of 1000 points drawn in an independent fashion in
R3 and an algorithm A that constructs the corresponding convex hull (see Figure 5). The
compression function c returns the vertexes of the convex hull (in case of multiple points
corresponding to the same vertex, only one point is put in the compression) and a new
point is appropriate if it belongs to the convex hull. It is easy to check that c satisfies
the preference Property 2 and the non-associativity Property 5 and that coherence – part
I Property 9 and coherence – part II Property 18 also hold. Hence, if the probability by
which the points are drawn has no concentrated mass (for instance, if it admits density),
then the non-concentrated mass Property 6 is also verified and Theorem 19 can be used to
assess the risk. Panels (a) and (b) in Figure 6 profile the region delimited by εk and εk for
N = 1000 and δ = 10−3. The green dots have coordinates equal to the cardinality of the

15. This also shows the sharpness of the upper bound in Theorem 17 because εk ≤ εk (see Proposition 8)
and the cases dealt with in Theorem 19 that admit lower bound εk and upper bound εk have to be
accommodated in Theorem 17 as well.
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Figure 6: Region delimited by εk and εk for N = 1000 and δ = 10−3. The green dots are
generated by a Monte-Carlo testing with (a) a Gaussian distribution and (b) a
uniform distribution.

compressed multiset (x axis) and the risk (y axis) in a Monte-Carlo testing in which points
in R3 have a Gaussian distribution – panel (a) – and a uniform distribution in a hyper-cube
– panel (b). One sees that the two clouds of green dots in (a) and in (b) are quite different,
while, in both cases, they belong to the region (compare with the discussion in Section 2).
Moreover, the stochastic fluctuation of the two clouds well covers the gap between the lower
and the upper bound, signifying that the bounds are tight. ?

Remark 21 (On the role of observations) We feel advisable to just touch upon here
an aspect, the full study of which goes beyond the intended goal of this paper. In data-driven
applications, it is common practice that observations are split in two sets, used respectively
for training and testing. This paper shows that, in a compression setup, data can well stand
a double role, in which they are all used for training, while preserving their usability in the
process of assessing the risk. Indeed, under the assumptions of Theorem 19 one can show
that the quality of risk assessment by means of εk and εk (which is based on the sample of
data points that has been used for training) only marginally degrades as compared to testing
the solution with a new, untouched, sample of data points of equal cardinality. Hence, in
this context, saving data for testing seems inappropriate, particularly when data are a scarce
or costly resource. ?

For the non-consistent framework, it is interesting to further contrast asymptotic bounds
that stem from the theory of this paper with previous results. To facilitate the comparison,
we first reformulate our upper bound in terms of the empirical probability of inappropriate-
ness R̂

(
A(S)

)
(empirical risk). Start by noticing that |c̃(S)| in Theorem 17 can be bounded

as follows: |c̃(S)| ≤ R̂
(
A(S)

)
N + |c(S)| (strict inequality occurs when one or more exam-

ples zi are simultaneously inappropriate and also contained in c(S) and, therefore, counted
twice in the right-hand side). Then, Theorem 17 in conjunction with Proposition 8 give,
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with probability 1− δ with respect to the draw of the training set, that

R
(
A(S)

)
≤ R̂

(
A(S)

)
+
|c(S)|
N

+2

√
R̂
(
A(S)

)
N + |c(S)|+ 1

N

(√
ln
(
R̂
(
A(S)

)
N + |c(S)|+ 1

)
+ 4

)

+2

√
R̂
(
A(S)

)
N + |c(S)|+ 1

√
ln 1

δ

N
+

ln 1
δ

N

= R̂
(
A(S)

)
+
|c(S)|
N

+

O


√
R̂
(
A(S)

)
√
N

+

√
|c(S)|+ 1

N

(√ln
(
R̂
(
A(S)

)
N + |c(S)|+ 1

)
+ 1

) (13)

(since our use of the notation O(·) is not standard, we clarify that here and in (14)
g(N, c(S), R̂(A(S))) = O(f(N, c(S), R̂(A(S)))) means that there exist a constant C and
an N̄ such that g(N, c(S), R̂(A(S))) ≤ Cf(N, c(S), R̂(A(S))) for all c(S) ∈ {0, . . . , N}
and R̂(A(S)) ∈ [0, 1] when N ≥ N̄). This last expression can be compared with the best
available result in the literature given by Theorem 17 in Hanneke and Kontorovich (2021),
which yields

R
(
A(S)

)
= R̂

(
A(S)

)
+O

 |c(S)|+ 1

N
+

√
R̂
(
A(S)

)√
|c(S)|+ 1

√
N

. (14)

It stands out that in (13) term
√
R̂
(
A(S)

)
does not multiply

√
|c(S)|+ 1, as it instead

does in (14); moreover,
√
|c(S)|+ 1 is divided by N instead of

√
N . As a consequence, it is

easy to show that, if, e.g., R̂
(
A(S)

)
is replaced by a constant (so as to accommodate typical

non-consistent frameworks), then the rate provided by (13) outdoes that of (14) whenever
|c(S)| grows sub-linearly and faster than ln(N) (when |c(S)| is slower than ln(N), the
dominant term in (13) is of the type O(

√
ln(N)/

√
N), whereas in (14) it is of the type

O(
√
|c(S)|/

√
N)). For instance, replacing |c(S)| with

√
N gives the rate

√
ln(N)/

√
N in

(13) and the rate 1/N
1
4 in (14).16

To close, we finally mention an interesting implication of our result that has been kindly
suggested to us by an anonymous reviewer. Suppose that in a binary classification problem a
hypothesis is selected from a class H via a compression scheme that minimizes the empirical
risk (such compression scheme is named “agnostic sample compression scheme for H” in
David et al., 2016b, Section 2; see also David et al., 2016a), and that this compression

16. Interestingly enough, both these rates violate the lower bound established in Hanneke and Kontorovich
(2019) for generic non-preferent compression schemes, which shows that the property of preference is
strictly necessary to establish accelerated convergence rates for the excess risk as discussed here.

20



Compression, Generalization and Learning

scheme is also preferent. Then, (13) and Lemma 3.2 in David et al. (2016b) give (with high
probability with respect to the draw of the training set) that

R
(
A(S)

)
= inf

h∈H
R
(
h
)

+
|c(S)|
N

+O

(√
ln(N)√
N

)
. (15)

On the other hand, Theorem 5.2 in Anthony and Bartlett (1999) establishes a bound to the
rate at which any hypotheses class H of Vapnik-Chernovenkis dimension d can be learned:

R
(
A(S)

)
− inf
h∈H

R
(
h
)
≥
√

d

320 ·N
. (16)

Considering classes H whose Vapnik-Chernovenkis dimension increases with N more than
ln(N), results (15) and (16) imply that these classes cannot admit preferent “agnostic
sample compression schemes for H” of a size that increases at a rate less than

√
d
√
N . This

result is in contrast with the case of non-preferent “agnostic sample compression scheme
for H”, in which context David et al. (2016b) shows that schemes of smaller cardinality can
be found.

4. Application to known learning schemes

The theory developed in Section 3 is here applied to well-known learning techniques: some
algorithms within the family of support vector methods and then a more recent classification
technique called Guaranteed Error Machine (GEM). In all these cases, Theorem 10 applies
without restrictions, while the use of Theorem 19 requires some conditions on the probability
distribution of the examples. The content of this section is also meant to illustrate the
flexibility and usefulness of the theory of this paper and, in this light, additional schemes
that are amenable to be analyzed within the framework of Section 3 are hinted upon at the
end of the section.

4.1 Support Vector methods

4.1.1 Support Vector Machines

In supervised binary classification, an example z is a pair z := (x, y), where x ∈ X (think
of X as a generic space without any specific structure) is an “instance” and y ∈ {−1, 1}
is a “label”. A hypothesis, called a “binary classifier”, is a map h : X → {−1, 1}. We let
`(h, (x, y)) = 1y 6=h(x), so that the loss function equals 0 when y = h(x) (correct classifica-
tion) and 1 when y 6= h(x) (misclassification).

To add flexibility, support vector methods are often got to operate in a feature space. Let
ϕ : X → H be a “feature map” from X into a Hilbert space H equipped with an inner prod-
uct 〈·, ·〉. Support Vector Machine (SVM, see Cortes and Vapnik, 1995; Schölkopf and Smola,
1998) is a learning algorithm ASVM that maps a training set S = ms((x1, y1), . . . , (xn, yn))
into a binary classifier according to the formula

ASVM(S)(x) =

{
1, if 〈w∗(S), ϕ(x)〉+ b∗(S) ≥ 0

−1, if 〈w∗(S), ϕ(x)〉+ b∗(S) < 0,
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where x is a generic instance and (w∗(S), b∗(S)) (along with the auxiliary variables ξ∗i (S)
that are used to relax the constraint of exact classification of all the examples in the training
set) is the solution to the optimization program

PSVM(S) : min
w∈H,b∈R

ξi≥0,i=1,...,n

‖w‖2 + ρ
n∑
i=1

ξi (17)

subject to: 1− yi(〈w,ϕ(xi)〉+ b) ≤ ξi, i = 1, . . . , n.

As shown in Theorem 2 in Burges and Crisp (1999), (17) always admits a minimizer and,
moreover, w∗(S) is unique; however, b∗(S) (and ξ∗i (S)) need not be unique. When b∗(S)
is not unique, we assume that the tie is broken by selecting the value of b that minimizes
|b|.17 Note that once w∗(S) and b∗(S) are uniquely determined, then also the optimal values
ξ∗i (S) remain univocally identified.

As is well known, see e.g. Schölkopf and Smola (1998), the feature map ϕ(·) and the
inner product 〈·, ·〉 need not be explicitly assigned to solve (17). The reason is that the de-
termination of the solution to (17) (as well as the evaluation of ASVM(S)(x)) only involves
the computation of inner products of the type 〈ϕ(xi), ϕ(xj)〉 and 〈ϕ(xi), ϕ(x)〉. These inner
products can indeed be directly obtained from a kernel k(·, ·) (k(·, ·) is a function X×X → R
that satisfies suitable conditions of positive definiteness, see Schölkopf and Smola, 1998) and
the theory of Reproducing Kernel Hilbert Spaces ensures that any choice of k(·, ·) always
corresponds to allocate a suitable pair ϕ(·), 〈·, ·〉 so that k(·, ·) = 〈ϕ(·), ϕ(·)〉 (this is the
so-called “kernel trick”). We also note that the solution to (17) is typically obtained by
solving a program that is the dual of (17). However, although important for the practice
of SVM, all these remarks are immaterial for the discussion that follows.

To cast SVM within the framework of the present paper, introduce the following com-
pression function cSVM. First, endow X with an arbitrary total ordering (to be used below
in point (ii)). For any multiset S, define cSVM(S) = S+ ∪ S0 where:

(i) S+ is the sub-multiset of all the examples (repeated as many times as they appear in
S) for which 1 − yi(〈w∗(S), ϕ(xi)〉 + b∗(S)) > 0 (note that this is equivalent to the
condition ξ∗i (S) > 0);

(ii) consider the sub-multisets S̃0 of smallest cardinality for which:

(a) 1− yi(〈w∗(S), ϕ(xi)〉+ b∗(S)) = 0; and,

(b) the couple (w∗(S+ ∪ S̃0), b∗(S+ ∪ S̃0)) given by (17) with S+ ∪ S̃0 in place of the
original S is the same as (w∗(S), b∗(S)).18

17. This certainly breaks the tie because, if the smallest absolute value were achieved by two values for b∗,
say b∗ = ±b̄, corresponding to the solutions (w∗, b̄, ξ∗i,1) and (w∗,−b̄, ξ∗i,2) (recall that w∗ must be the
same at optimum), then the optimality of these two solutions would imply that

∑n
i=1 ξ

∗
i,1 =

∑n
i=1 ξ

∗
i,2

and therefore the solution half way between (w∗, b̄, ξ∗i,1) and (w∗,−b̄, ξ∗i,2), i.e., (w∗, 0, 0.5 · ξ∗i,1 +0.5 · ξ∗i,2),
would be feasible thanks to convexity, it would achieve the same cost as the other two solutions, but it
would be preferred because it carries a smaller value of |b|.

18. The sub-multiset of S formed by all examples that satisfy relation 1 − yi(〈w∗(S), ϕ(xi)〉 + b∗(S)) ≥ 0
certainly gives the same couple (w∗(S), b∗(S)) obtained when (17) is applied to the whole multiset S,
hence a multiset of smallest cardinality satisfying (a) and (b) certainly exists.
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Among the multisets S̃0, single out S0 by using the ordering on X : for each candidate
multiset S̃0, identify the element with smallest instance and pick the multiset that
exhibits the smallest among all; if a tie remains, move on to compare the second
smallest and so on until S0 is uniquely determined.

We want to apply Theorem 10 to SVM. To this purpose, we start by verifying that cSVM

satisfies the preference Property 2.

� Preference. We apply Lemma 3, which requires to show that, for every multisets S
and S′ such that cSVM(S) ⊆ S′ ⊆ S, it holds that cSVM(S′) = cSVM(S).
First, we show that

(w∗(S′), b∗(S′)) = (w∗(S), b∗(S)). (18)

For the sake of contradiction, suppose that (18) does not hold:

(w∗(S′), b∗(S′)) 6= (w∗(S), b∗(S)). (19)

Note that the value achieved by (w∗(S′), b∗(S′)) for the problem that only contains the con-
straints corresponding to the examples in cSVM(S)19 cannot be worse than the value achieved
by (w∗(S′), b∗(S′)) for the problem containing the constraints associated to S′ (because the
latter is more constrained than the former); moreover, the value achieved by (w∗(S), b∗(S))
for the problem containing only the constraints associated to cSVM(S) is equal to the value
achieved by (w∗(S), b∗(S)) for the problem containing the constraints associated to S′ (be-
cause the examples in S′ that are not in cSVM(S) corresponds to ξ∗i (S) whose value is zero).
From (19), then, one concludes that (w∗(S′), b∗(S′)) must be preferred to (w∗(S), b∗(S)) for
the problem containing only the constraints associated to cSVM(S). This, however, leads
to a contradiction because, by construction (w∗(cSVM(S)), b∗(cSVM(S))) = (w∗(S), b∗(S)).
Hence, (18) remains proven.
Consider now cSVM(S′) = S′+∪S′0, where S′+ and S′0 are obtained from (i) and (ii) applied to
S′. Since S′ ⊇ cSVM(S), S′ contains all the examples in S for which 1− yi(〈w∗(S), ϕ(xi)〉+
b∗(S)) > 0 and, in view of (18), these examples are also all those in S′ for which 1 −
yi(〈w∗(S′), ϕ(xi)〉 + b∗(S′)) > 0. Thus, S′+ = S+. The fact that S′0 = S0 follows instead
from observing that S0 is the preferred selection according to the ordering procedure in (ii)
to recover (w∗(S), b∗(S)) and, since (w∗(S′), b∗(S′)) = (w∗(S), b∗(S)) and S0 is available as
a sub-multiset of S′, this same S0 is selected when (ii) is applied to S′, leading to S′0 = S0.
This establishes the validity of Lemma 3 and closes the argument. ?

Next, we verify the coherence – part I Property 9.

� Coherence – part I. Notice first that the very definition of cSVM implies that ASVM(cSVM(S))
= ASVM(S), i.e., ASVM itself acts as a reconstruction function. Moreover, if we have that
`(ASVM(S), (xi, yi)) = 1 for an example (xi, yi) in S, then it must be that yi(〈w∗(S), ϕ(xi)〉+
b∗(S)) ≤ 0 (because yi has sign opposite to that of 〈w∗(S), ϕ(xi)〉+b∗(S)). This implies that
1 − yi(〈w∗(S), ϕ(xi)〉 + b∗(S)) > 0, from which the inclusion Property 12 follows because

19. This amounts to substitute (w∗(S′), b∗(S′)) in the problem of the type (17) where only the constraints
corresponding to the examples in cSVM(S) are enforced, and then optimize with respect to the variables ξi.
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cSVM(S) includes all examples for which this latter inequality holds true. Based on these
results, the coherence – part I Property 9 follows from Lemma 13. ?

Having established the preference and the coherence - part I properties, the following
theorem follows as a corollary of Theorem 10.

Theorem 22 (Risk of SVM) For any δ ∈ (0, 1), it holds that

P
{
R
(
ASVM(S)

)
> εk

}
≤ δ,

where k = |cSVM(S)| and εk is given in (1). ?

We are instead not in a position to establish lower bounds for R
(
ASVM(S)

)
. The reason is

that adding a new example (xn+1, yn+1) for which 1− yn+1(〈w∗(S), ϕ(xn+1)〉+ b∗(S)) > 0
changes the compression (refer to (i) in the definition of cSVM), but this does not exclude
that yn+1(〈w∗(S), ϕ(xn+1)〉+b∗(S)) > 0, in which case the new example is not misclassified.
This fact prevents the coherence – part II Property 18 from being satisfied.

Remark 23 (A computational aspect) To evaluate an upper bound to the risk according
to Theorem 22, one needs to compute |cSVM(S)|. Computing the cardinality of S+ is easy;
determining the cardinality of S0, however, is more computationally demanding. On the
other hand, εk is increasing with k so that a valid result can be easily found by overestimating
|cSVM(S)| with the cardinality of the set of examples for which 1−yi(〈w∗(S), ϕ(xi)〉+b∗(S)) ≥
0. Heuristically, this evaluation often turns out to be sharp. ?

4.1.2 Support Vector Regression

In regression problems, an example z is a pair z := (x, y) with x ∈ X , a generic space, and
y ∈ R. A hypothesis h is called a “predictor” and it is a map from X to R. As loss function,
we take

`(h, (x, y)) =

{
1, if |y − h(x)| > t

0, if |y − h(x)| ≤ t,

where t is the so-called “prediction tolerance”. Let ϕ : X → H be a feature map from X
to a Hilbert space H endowed with inner product 〈·, ·〉. Support Vector Regression (SVR,
see Smola and Schölkopf, 2004) is a learning algorithm ASVR(S) that maps any training set
S = ms((x1, y1), . . . , (xn, yn)) into the predictor

ASVR(S)(x) = 〈w∗(S), ϕ(x)〉+ b∗(S)

where w∗(S) and b∗(S) (along with ξ∗i (S)) are the solution to the program

PSVR(S) : min
w∈H,b∈R

ξi≥0,i=1,...,n

‖w‖2 + ρ
n∑
i=1

ξi

subject to: |yi − 〈w,ϕ(xi)〉 − b| ≤ t+ ξi, i = 1, . . . , n.

Similarly to SVM, a minimizer certainly exists and w∗(S) is also unique, but b∗(S) may
not be, see Burges and Crisp (1999). In the latter case, the tie is broken by choosing
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the minimizer with the smallest value of |b|. After that w∗(S) and b∗(S) have been made
unique, also the values of ξ∗i (S) remain univocally determined. The kernel trick described
for SVM applies here as well, so that ϕ(·) and 〈·, ·〉 need not be specified explicitly and can
be assigned via a kernel function.

Our definition of a compression function cSVR closely resembles that for SVM. For any
multiset of examples S, define cSVR(S) = S+ ∪ S0 where:

(i) S+ is the multiset of all the examples (repeated as many times as they appear in S)
for which |yi−〈w∗(S), ϕ(xi)〉−b∗(S)| > t (note that this is equivalent to the condition
ξ∗i (S) > 0);

(ii) S0 is the smallest sub-multiset only containing examples that satisfy condition |yi −
〈w∗(S), ϕ(xi)〉 − b∗(S)| = t for which w∗(S+ ∪ S0) = w∗(S) and b∗(S+ ∪ S0) = b∗(S).
In complete analogy with SVM, S0 as defined before may not be unique, in which
case an S0 is singled out by a total ordering on X .

The proof that cSVR satisfies the preference Property 2 and that (ASVR, cSVR) satisfies
the coherence – part I Property 9 follows the same path, mutatis mutandis, as for SVM and
is therefore omitted. This gives the following theorem, obtained as a direct consequence of
Theorem 10.

Theorem 24 (Risk of SVR) For any δ ∈ (0, 1), it holds that

P
{
R
(
ASVR(S)

)
> εk

}
≤ δ,

where k = |cSVR(S)| and εk is given in (1). ?

Unlike SVM, for SVR lower and upper bounds for the risk are established under an addi-
tional, mild, distributional assumption.

Assumption 25 The regular conditional distribution of y given x has no concentrated
mass almost surely. ?

To establish the lower and upper bounds, we resort to Theorem 19. Preliminarily, we show
the validity of the assumptions of this theorem.

� Non-associativity. Consider any training set S = ms((x1, y1), . . . , (xn, yn)) and an ad-
ditional multiset of examples S′ = ms((xn+1, yn+1), . . . , (xn+p, yn+p)) such that c(S, (xn+i,
yn+i)) = c(S) for all i ∈ {1, . . . , p}. Further, assume that |yn+i − ASVR(S)(xn+i)| 6= t for
all i ∈ {1, . . . , p}. Then, it must be that |yn+i − ASVR(S)(xn+i)| < t for all i ∈ {1, . . . , p}.
Indeed, suppose by contradiction the opposite: |yn+i − ASVR(S)(xn+i)| > t for some i.
Then, if ASVR(S, (xn+i, yn+i)) = ASVR(S), then |yn+i−ASVR(S, (xn+i, yn+i))(xn+i)| > t and
(xn+i, yn+i) is counted in cSVR(S, (xn+i, yn+i)) leading to cSVR(S, (xn+i, yn+i)) 6= cSVR(S); if
insteadASVR(S, (xn+i, yn+i)) 6= ASVR(S), thenASVR(cSVR(S, (xn+i, yn+i))) 6= ASVR(cSVR(S)),
which means that cSVR(S, (xn+i, yn+i)) cannot be the same as cSVR(S). Thus, it remains
proven that |yn+i − ASVR(S)(xn+i)| < t for all i ∈ {1, . . . , p} and this yields immediately
that ASVR(S ∪ S′) = ASVR(S) and that cSVR(S ∪ S′) = cSVR(S). This, along with the fact
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that |yn+i − ASVR(S)(xn+i)| 6= t for all i ∈ {1, . . . , p} holds with probability 1 in view of
Assumption 25, gives the non-associativity property. ?

� Non-concentrated mass. This is obvious in view of Assumption 25. ?

� Coherence – part II. The proof is by contrapositive: letting S = ms((x1,y1), . . . , (xn,yn))
we show that

P
(
{`(ASVR(S), (xn+1,yn+1)) = 0} \ {cSVR(cSVR(S), (xn+1,yn+1)) = cSVR(S)}

)
= 0. (20)

Assumption 25 implies that the case |yn+1 − ASVR(S)(xn+1)| = t can be disregarded
because it correpsonds to an event that has probability zero. Moreover, when |yn+1 −
ASVR(S)(xn+1)| > t, we have that `(ASVR(S), (xn+1, yn+1)) = 1, so that this case can be
disregarded too. When instead |yn+1−ASVR(S)(xn+1)| < t, it holds that `

(
ASVR(S), (xn+1,

yn+1)
)

= 0. In this case,

|yn+1 −ASVR(cSVR(S))(xn+1)| = |yn+1 −ASVR(S)(xn+1)| < t

yields ASVR(cSVR(S), (xn+1, yn+1)) = ASVR(S), from which

|yn+1 −ASVR(cSVR(S), (xn+1, yn+1))(xn+1)| < t.

Hence, (xn+1, yn+1) is not in cSVR(cSVR(S), (xn+1, yn+1)), so that, owing to the preference
Property 2, it must be that cSVR(cSVR(S), (xn+1, yn+1)) = cSVR(S). This shows the validity
of (20). ?

Using Theorem 19, we now have the following result.

Theorem 26 (Risk of SVR - bounds from below and from above) Under Assump-
tion 25, for any δ ∈ (0, 1), it holds that

P
{
εk ≤ R

(
ASVR(S)

)
≤ εk

}
≥ 1− δ,

where k = |cSVR(S)| and εk, εk are given respectively in (4), (5). ?

4.1.3 Other Support Vector methods

The applicability of Theorems 10 and 19 can be carried over to other Support Vector
methods. SVR with Adjustable Size, Schölkopf et al. (1998), requires minor modifications.
Suitable but conceptually straightforward modifications of the arguments used in this sec-
tion can also be applied to one-class SVM, Schölkopf et al. (1999), and Support Vector Data
Description (SVDD), Tax and Duin (2004) and Wang et al. (2011). In these latter two cases,
the setup changes slightly since examples are unlabeled and hypotheses are regions in the
set hosting the examples. To apply Theorem 19, one needs here to modify Assumption 25
so as to enforce specific non-accumulation conditions for the method at hand.
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4.2 Guaranteed Error Machine

The Guaranteed Error Machine (GEM) is a learning algorithm for classification that was
first introduced in Campi (2010) and then further developed in Caré et al. (2018).20 GEM
returns a ternary-valued classifier, which is also allowed to abstain from classifying in case
of doubt. To be specific, letting z = (x, y) with x ∈ X , a generic set, and y ∈ {−1, 1} (this
is the same setup as in SVM), a hypothesis h is here a map from X to {−1, 1, 0}, where
the value 0 is interpreted as admission of being unable to classify. Issuing an incorrect label
(−1 in place of 1 or vice versa) leads to a mistake, and the theory aims at bounding the
probability for this to happen. Correspondingly, the loss function is defined as follows:

`(h, (x, y)) =

{
1, if |y − h(x)| = 2

0, if |y − h(x)| = 0 or 1.

To describe the operation of GEM, start by introducing a feature map ϕ : X → H, where H
is a Hilbert space with inner product 〈·, ·〉 (as for support vector methods, ϕ, H, and 〈·, ·〉
need not be explicitly given and can be implicitly defined by means of a kernel) and also
assume the existence of an ordering on X (used later to introduce a tie-break rule). GEM
requires that the user chooses an integer d ≥ 1, which specifies the maximal cardinality for
the compression.21 In loose terms, GEM operates as follows. It is assumed that one has an
additional observation (x̄, ȳ) (besides the training set S = ms((x1, y1), . . . , (xn, yn))) that
acts as initial “center”. GEM constructs the hyper-sphere in H around ϕ(x̄) which is the
largest possible under the condition that the hyper–sphere does not include any ϕ(xi) with
label yi different from ȳ. All points inside this hyper-sphere are classified as the label ȳ, and
all examples (xi, yi) for which ϕ(xi) is inside the hyper-sphere are removed from the training
set. The example that lies on the boundary of the hyper-sphere (and that has therefore
prevented the hyper–sphere from further enlarging) is then appointed as the new center (in
case of ties, the tie is broken by using the ordering on X ) and the procedure is repeated
by constructing another hyper-sphere around the new center. This time, only the region
given by the difference between the newly constructed hyper-sphere and the first hyper–
sphere (which has been already classified) is classified as the label of the second center. This
procedure continues the same way and comes to a stop when either the whole space has
been classified or the total number of centers is equal to d, in which case the portion of X
that has not been covered is classified as 0. This leads to the algorithm formally described
below.

STEP 0. SET q := 0, P := S ∪ms((x̄, ȳ)), C = ∅ and xC = x̄, yC = ȳ;

STEP 1. SET q := q + 1 and SOLVE problem

max
r≥0

r

subject to: ‖ϕ(xi)− ϕ(xC)‖ ≥ r, for all (xi, yi) ∈ P such that yi 6= yC .

20. The algorithm described here is a variant of those proposed in the referenced papers.
21. Selecting a large value for d reduces the chance of abstention from classifying. When d is larger than

the cardinality of the training set, the set of abstention becomes empty. In other cases, the user tries
to achieve a good compromise between the probability of abstention and the probability of making an
error. This is not specific to GEM and applies to any technique for the construction of ternary-valued
classifiers. See Campi (2010) for more discussion on this point.
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Let r∗ be the optimal solution (note that r∗ can possibly be +∞);

STEP 2. FORM the regionRq := {x ∈ X : ‖ϕ(x)−ϕ(xC)‖ < r∗} and LET `q := yC ; UPDATE
P as follows: if r∗ > 0, then remove from P all the examples with xi ∈ Rq; if instead
r∗ = 0,22 then remove from P the example (xC , yC);

STEP 3. IF r∗ < +∞, THEN

3.a SET C := C ∪ ms((xi∗ , yi∗)), where (xi∗ , yi∗) is an example in P such that: a.
‖ϕ(xi∗)−ϕ(xC)‖ = r∗; b. yi∗ 6= yC ; c. xi∗ is smallest in the ordering of X among
all the examples satisfying a. and b.;

3.b SET (xC , yC) := (xi∗ , yi∗);

STEP 4. IF either |C| = d or P = ∅ THEN STOP and RETURN `j , Rj , j = 1, . . . , q and C;
ELSE, GO TO 1.

The GEM predictor is defined as

AGEM(S)(x) =

{
0, if x /∈ Rj ∀j = 1, . . . , q;

`j∗ otherwise, with j∗ = min
{
j ∈ {1, . . . , q} : x ∈ Rj

}
.

The compression function for GEM is cGEM(S) = C.

We next establish the preference and coherence – part I properties, required to apply
Theorem 10.

� Preference. Given any multisets S and S′ such that cGEM(S) ⊆ S′ ⊆ S, it is easy to
verify that running STEPS 0-4 with S′ as input returns the same output as when these
steps are run with input S. In particular, cGEM(S′) = C = cGEM(S) and, therefore, the
preference property follows by an application of Lemma 3. ?

� Coherence – part I. Since applying STEPS 0-4 to cGEM(S) returns the same output as
when they are applied to S, AGEM itself acts as a reconstruction function. Also, the in-
clusion Property 12 is immediately verified (just pay a bit of care to the case in which
more examples with different labels corresponds to the same xC). The coherence – part I
Property 9 then follows from Lemma 13. ?

Applying Theorem 10 we now have the following result.

Theorem 27 (Risk of GEM) For any δ ∈ (0, 1), it holds that

P
{
R
(
AGEM(S)

)
> εk

}
≤ δ,

where k = |cGEM(S)| and εk is given in (1). ?

22. r∗ = 0 only happens if there are examples with different labels whose instance is xC .
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Notice also that |cGEM(S)| ≤ d holds by construction, which implies that the bound
R
(
AGEM(S)

)
≤ εd is always correct with high confidence 1− δ.23

We now turn to lower bounds to the risk, which are established by an application of
Theorem 19. We start by showing the validity of the non-associativity property.

� Non-associativity. Consider any training set S = ms((x1, y1), . . . , (xn, yn)) and an addi-
tional multiset of examples S′ = ms((xn+1, yn+1), . . . , (xn+p, yn+p)). Suppose that cGEM(S∪
S′) 6= cGEM(S). For this to be, it is required that at least one of these conditions applies:
(i) `(AGEM(S), (xn+i, yn+i)) = 1 for some i ∈ {1, . . . , p}; or, (ii) one of the (xn+i, yn+i),
i ∈ {1, . . . , p}, for which `(AGEM(S), (xn+i, yn+i)) = 0 lies on the boundary of a Rj and is
lower in order than the example that is chosen as center by the algorithm applied to S.
However, take in isolation an example (xn+i, yn+i) that satisfies either (i) or (ii); then, that
example alone makes the compression change. This proves the non-associativity property. ?

To move on and prove the non-concentrated mass and coherence – part II properties,
we need a mild assumption on the distribution of examples.

Assumption 28 For any c ∈ H and γ ∈ R, it holds that

P{‖ϕ(x)− c‖2 = γ} = 0.

?

� Non-concentrated mass. This immediately follows from Assumption 28: if P{z = z̄} 6= 0
for some z̄ = (x̄, ȳ), then Assumption 28 is violated by the choices c = ϕ(x̄) and γ = 0. ?

� Coherence – part II. In view of Assumption 28, xn+1 lies on the boundary of a region Rj
with probability zero. On the other hand, when xn+1 is not on the boundary, a change of
compression only occurs if (xn+1, yn+1) is misclassified, that is, `(AGEM(S), (xn+1, yn+1)) =
1. This proves the coherence – part II property. ?

The following theorem now follows from Theorem 19.

Theorem 29 (Risk of GEM - bounds from below and from above) Under Assump-
tion 28, for any δ ∈ (0, 1), it holds that

P
{
εk ≤ R

(
AGEM(S)

)
≤ εk

}
≥ 1− δ,

where k = |cGEM(S)| and εk, εk are given respectively in (4), (5). ?

4.3 Other learning schemes with a preferent compression

Besides Support Vector methods and GEM, other learning schemes can be studied within
the framework of the present paper. We mention here just two additional examples, without

23. A similar result would not be possible without resorting to ternary classifiers that allow for abstention
from classifying.
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working out all the details as it was done in Sections 4.1 and 4.2.

One first example is the class of methods for classification based on the nearest-neighbor
(NN) algorithm. Consider for simplicity 1-NN in a finite Euclidean space X and with labels
generated by a target concept, see Shalev-Shwartz and Ben-David (2014). For every train-
ing set S = ms((x1, y1), . . . , (xn, yn)) of instance/label pairs, 1-NN relies on the Voronoi
partition of the instance domain X induced by S, where cells are Ci = {x ∈ X : ‖x− xi‖ ≤
‖x − xj‖ ∀j = 1, . . . , n}, i = 1, . . . , n. If one eliminates from S all the examples whose as-
sociated cell is in the interior of the region labeled as the cell, then the remaining examples
form a compressed multiset for which 1-NN itself acts as a reconstruction function. It is
then a simple enough task to show that such a compression function satisfies the prefer-
ence Property 2; moreover, since the 1-NN classifier is always consistent with S, Lemma
13 allows us to conclude that the coherence – part I Property 9 holds. Thereby, Theorem
10 can be applied to evaluate the probability of misclassification of the 1-NN classifier.
Similar arguments are expected to be applicable to more general k-NN schemes, even in
generic (infinite dimensional) metric spaces. Further studies can possibly cover more general
NN-based methods along the lines of Kontorovich et al. (2017, 2018); Hanneke et al. (2021).

As a second example, again in the context of classification, we would like to mention the
Total Recall algorithm of Helmbold et al. (1990), which is in use to learn nested differences
of concepts from intersection-closed classes. In the setup of Helmbold et al. (1990), no
matter whether the depth24 of the hypothesis returned by the algorithm is arbitrary or
a-priori fixed, it is fairly easy to prove that the union of the spanning sets25 with minimal
cardinality for the multisets of examples used in the various calls to the closure learner
by the Total Recall algorithm26 defines a compression function that satisfies the preference
Property 2. By the very definition of spanning sets, we also have that the Total Recall
algorithm applied to the union of the minimal spanning sets (i.e., applied to the compressed
multiset) returns the same hypothesis as when the algorithm is run on the whole training
set. This means that the Total Recall algorithm itself acts as a reconstruction function and
Theorem 17 can be used to obtain evaluations of the probability of misclassification. More
research can extend this analysis to alternative algorithms, e.g., along the lines discussed
in Section 5 in Helmbold et al. (1990).

5. Proofs

5.1 A brief overview of the proofs

To help readability, we first trace a roadmap of the fundamental steps in which the rather
long proofs of Theorems 4 and 7 are articulated. To prove Theorem 4, we first establish
some properties that have necessarily to be satisfied by any compression scheme that is
preferent. These are (i) and (ii) in the second page of the proof. Next, the probability
P{φN > εk} that appears in the left-hand side of (2) in the statement of Theorem 4 is re-

24. See Helmbold et al. (1990), page 166.
25. See Helmbold et al. (1990), page 170.
26. If multiple spanning sets with minimal cardinality exist, then a choice is singled-out by means of any

total ordering of the finite subests of X .
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written in integral form with respect to suitable measures that are introduced in (23), and
the resulting expression is minimized under conditions (i) and (ii). The ensuing variational
problem (33) returns an upper bound to P{φN > εk}. The next step consists in the evalua-
tion of the optimal value of problem (33). This step is accomplished by dualization, leading
to the reformulation (42). Interestingly, dualization does not introduce any conservatism
since strong duality holds, as stated in equation (36). To close the proof, we show that the
value δ that appears in the statement of Theorem 4 is achieved by a feasible solution of the
dual problem and, thereby, it upper bounds the optimal value of (42) and, by this, that
of P{φN > εk}. This derivation is covered in the last part of the proof that starts after
equation (46).

The proof of Theorem 7 follows the same path as that of Theorem 4 with the non-trivial
difference that the property (ii) holds with equality in this case (it has an inequality in
the proof of Theorem 4). This results in primal and dual problems that have substantial
differences from those in the proof of Theorem 4, while the conceptual structure of the proof
remains the same.

5.2 Proof of Theorem 4

Result (2) is first proven under the following additional assumption of no concentrated mass

P
{
zi = z

}
= 0, ∀z ∈ Z; (21)

the extension to the general case is dealt with at the end of this proof.

The quantity of interest P{φN > εk} can be expressed as follows

P
{
φN > εk

}
= P

{
φN > ε|c(z1,...,zN )|

}
=

N∑
k=0

P
{
|c(z1, . . . ,zN )| = k and φN > εk

}

=
N∑
k=0

P

 ⋃
{i1,...,ik}
⊆{1,...,N}

{
c(z1, . . . ,zN ) = ms(zi1 , . . . ,zik) and φN > εk

}
=

N∑
k=0

∑
{i1,...,ik}
⊆{1,...,N}

P
{
c(z1, . . . ,zN ) = ms(zi1 , . . . ,zik) and φN > εk

}
,

where the last equality holds because: due to (21), z1 6= · · · 6= zN occurs with probability
1, and so the multisets ms(zi1 , . . . ,zik) are all different from each other with probability 1;
whence, c(z1, . . . ,zN ) = ms(zi1 , . . . ,zik) holds for one and only one choice of the indexes
with probability 1, implying that the events under the sign of union are disjoint up to over-
laps of probability zero.
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Now, for any fixed k, all the probabilities in the inner summation are equal because the zi’s
are i.i.d. and so we can write

N∑
k=0

∑
{i1,...,ik}
⊆{1,...,N}

P
{
c(z1, . . . ,zN ) = ms(zi1 , . . . ,zik) and φN > εk

}

=

N∑
k=0

(
N

k

)
P
{
c(z1, . . . ,zN ) = ms(z1, . . . ,zk) and φN > εk

}
=

N∑
k=0

(
N

k

)∫
(εk,1]

dm+
k,N , (22)

where m+
k,N is a (positive) measure on [0, 1] defined as follows (for future use we introduce a

definition that holds for a generic integer m, and not just for m = N): for all m = 0, 1, . . .
and k = 0, . . . ,m, let

m+
k,m(B) = P

{
c(z1, . . . ,zm) = ms(z1, . . . ,zk) and φm ∈ B

}
, (23)

with B any Borel set in [0, 1].

Next we derive two relations (i) and (ii) that are satisfied by measures m+
k,m for all com-

pression schemes that satisfy the preference property; relations (i) and (ii) will be in use
when evaluating P{φN > εk}.

(i) For m = 0, 1, . . ., it holds that (we use α as variable of integration)

m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m(α) = 1; (24)

(ii) For m = 0, 1, . . . and k = 0, . . . ,m, it holds that∫
B

dm+
k,m+1(α)−

∫
B

(1− α) dm+
k,m(α) ≤ 0, (25)

for any Borel set B ⊆ [0, 1].

For any given B, the left-hand side of (25) returns a numerical value and, when B ranges
over the Borel sets in [0, 1], the left-hand side of (25) defines a signed measure. Condition
(25) means that this measure is in fact negative. In the following, this measure will be
denoted as m+

k,m+1 − (1− α)m+
k,m,27 and condition (ii) can also be written as

m+
k,m+1 − (1− α)m+

k,m ∈M
−,

where M− is the cone of negative finite measures on [0, 1].

27. Note that (1 − α)m+
k,m cannot be interpreted as a product since (1 − α) is not a number because it

depends on α; hence, “m+
k,m+1 − (1− α)m+

k,m” has to be interpreted just as a symbol that indicates the
measure defined via the left-hand side of equation (25).
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Proof of (i): Along the same lines as the proof of (22), we obtain

1 =

m∑
k=0

P
{
|c(z1, . . . ,zm)| = k

}

=
m∑
k=0

P

 ⋃
{i1,...,ik}
⊆{1,...,m}

{
c(z1, . . . ,zm) = ms(zi1 , . . . ,zik)

}
=

m∑
k=0

∑
{i1,...,ik}
⊆{1,...,m}

P
{
c(z1, . . . ,zm) = ms(zi1 , . . . ,zik)

}

=

m∑
k=0

(
m

k

)
P
{
c(z1, . . . ,zm) = ms(z1, . . . ,zk)

}
=

m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m.

?

Proof of (ii): For any given Borel set B in [0, 1], we have that∫
B

dm+
k,m+1 = P

{
c(z1, . . . ,zm+1) = ms(z1, . . . ,zk) and φm+1 ∈ B

}
. (26)

By Lemma 3, relation c(z1, . . . , zm+1) = ms(z1, . . . , zk) implies the following two facts:

(a) c(z1, . . . , zm) = ms(z1, . . . , zk);

(b) c(c(z1, . . . , zm), zm+1) = c(z1, . . . , zm).

Equation (a) is an immediate consequence of Lemma 3, while (b) is proven by the
following chain of equalities: c(c(z1, . . . , zm), zm+1) = [use (a)] = c(z1, . . . , zk, zm+1) =
[use Lemma 3] = c(z1, . . . , zm, zm+1) = ms(z1, . . . , zk) = c(z1, . . . , zm).

Over the set where c(z1, . . . ,zm+1) = ms(z1, . . . ,zk), it therefore holds that

φm+1 = P
{
c(c(z1, . . . ,zm+1), zm+2) 6= c(z1, . . . ,zm+1)|z1, . . . ,zm+1

}
= P

{
c(c(z1, . . . ,zm), zm+2) 6= c(z1, . . . ,zm)|z1, . . . ,zm+1

}
(
where we have used (a), which gives c(z1, . . . ,zm+1) = c(z1, . . . ,zm)

)
= P

{
c(c(z1, . . . ,zm), zm+2) 6= c(z1, . . . ,zm)|z1, . . . ,zm

}
= φm P-almost surely, (27)

so that the right-had side of (26) can be re-written as

P
{
c(z1, . . . ,zm+1) = ms(z1, . . . ,zk) and φm+1 ∈ B

}
= P

{
c(z1, . . . ,zm+1) = ms(z1, . . . ,zk) and φm ∈ B

}
. (28)
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On the other hand, an application of (a) and (b) also gives28

P
{
c(z1, . . . ,zm+1) = ms(z1, . . . ,zk) and φm ∈ B

}
≤ P

{
c(c(z1, . . . ,zm), zm+1) = c(z1, . . . ,zm) and

c(z1, . . . ,zm) = ms(z1, . . . ,zk) and φm ∈ B
}
. (29)

Using (28) and (29) in (26), we obtain∫
B

dm+
k,m+1 ≤ P

{
c(c(z1, . . . ,zm), zm+1) = c(z1, . . . ,zm) and

c(z1, . . . ,zm) = ms(z1, . . . ,zk) and φm ∈ B
}
. (30)

The proof of (ii) is now established by noticing that the right-hand side of (30) can
be re-written as follows

E
[
E
[
1{c(c(z1,...,zm),zm+1)=c(z1,...,zm)} · 1{c(z1,...,zm)=ms(z1,...,zk) and φm∈B}|z1, . . . ,zm

]]
= E

[
E
[
1{c(c(z1,...,zm),zm+1)=c(z1,...,zm)}|z1, . . . ,zm

]
· 1{c(z1,...,zm)=ms(z1,...,zk) and φm∈B}

]
= E

[
(1− φm) · 1{c(z1,...,zm)=ms(z1,...,zk) and φm∈B}

]
=

∫
B

(1− α) dm+
k,m.

?

We are now ready to upper-bound P {φN > εk} by taking the sup of the right-hand side of
(22) under conditions (i) and (ii) (in addition to the fact that measures m+

k,m belong to the

cone M+ of positive finite measures on [0, 1]). This gives

P {φN > εk} ≤ γ, (31)

28. Importantly, inequality in (29) may be strict. For example, suppose that z is uniformly distributed over
a circle with unitary circumference and that c(z1, . . . , zn) selects the two points whose gap is smallest (i.e.
c(z1, . . . , zn) = ms(zi1 , zi2) such that no other pair of points is closer – if a tie occurs use an arbitrary tie-
break rule). Take m = 3 and B = [0, 1]. The left-hand side of (29) equals 1/6, as is obvious by observing
that any choice of two points has the same probability of being selected. Instead, the right-hand side is
the probability that c(z1,z2,z4) = ms(z1,z2) and c(z1,z2,z3) = ms(z1,z2). Naming x the length of
the arc connecting z1 and z2, we have: i. x has uniform density equal to 2 over [0, 1/2]; ii. if x > 1/3,
then adding one more point certainly changes the compression; and iii. if x ≤ 1/3, then the probability
that one more point changes the compression is 3x. Hence, the right-hand side of (29) has value

P
{
c(z1,z2,z4) = ms(z1,z2) and c(z1,z2,z3) = ms(z1,z2)

}
=

∫ 1
3

0

(1− 3x)2 2dx =
2

9
,

which is strictly larger than 1/6. We shall see in Theorem 7 that, by strengthening the assumptions of
the theorem with the introduction of the non-associativity Property 5, inequality in (29) turns into an
equality and this provides lower bounds on the probability of change of compression in addition to the
upper bound of the present theorem.
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where γ is defined as the value of the optimization problem

γ = sup
m+
k,m∈M

+

m=0,1,..., k=0,...,m

N∑
k=0

(
N

k

)∫
(εk,1]

dm+
k,N (32)

subject to:
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m = 1, m = 0, 1, . . .

m+
k,m+1 − (1− α)m+

k,m ∈M
−, m = 0, 1, . . . ; k = 0, . . . ,m.

To evaluate γ, we consider a truncated version of problem (32) that only includes the mea-
sures m+

k,m for m ≤ M (we take M ≥ N). We then dualize the truncated problem and let
M increase.

The truncated problem is

γM = sup
m+
k,m∈M

+

m=0,...,M, k=0,...,m

N∑
k=0

(
N

k

)∫
(εk,1]

dm+
k,N (33a)

subject to:

m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m = 1, m = 0, . . . ,M (33b)

m+
k,m+1 − (1− α)m+

k,m ∈M
−,

m = 0, . . . ,M − 1; k = 0, . . . ,m. (33c)

As M increases, one adds new constraints (which also contain new variables), while the cost
function and previous constraints remain unchanged. Hence, γM does not increase with M
and

γ ≤ γM , (34)

for all M . To dualize (33), consider the Lagrangian:

L =

N∑
k=0

(
N

k

)∫
(εk,1]

dm+
k,N −

M∑
m=0

λm

(
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m − 1

)

−
M−1∑
m=0

m∑
k=0

∫
[0,1]

µ+k,m(α) d[m+
k,m+1 − (1− α)m+

k,m], (35)

which is a function of

� m+
k,m ∈M

+, m = 0, . . . ,M, k = 0, . . . ,m,

and the Lagrange multipliers

� λm ∈ R, m = 0, . . . ,M ,
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� µ+k,m ∈ C0
+[0, 1], m = 0, . . . ,M − 1, k = 0, . . . ,m,

where C0
+[0, 1] is the set of positive and continuous functions over [0, 1].

We show below that29

γM
(A)
= sup

{m+
k,m}

inf
{λm}
{µ+k,m}

L
(B)
= inf

{λm}
{µ+k,m}

sup
{m+

k,m}
L

(C)
= γ∗M , (36)

where γ∗M is the value of the dual of problem (33) (1 denotes the indicator function):

γ∗M = inf
λm, m=0,...,M

µ+k,m∈C
0
+[0,1], m=0,...,M−1, k=0,...,m

M∑
m=0

λm (37a)

subject to:

(
m

k

)
1α∈(εk,1]1m=N + (1−α)µ+k,m(α)1m6=M

≤ λm
(
m

k

)
+ µ+k,m−1(α)1m 6=k, ∀α ∈ [0, 1],

k = 0, . . . ,M ; m = k, . . . ,M (37b)

(note that in (37b) the indexes run over a range such that there appear functions, for
instance µ+0,−1, that are not listed as optimization variables; however, these functions are
all multiplied by an indicator function that is zero and they therefore disappear; we have
used this way of writing the constraints because it simplifies the notation).

Proof of (A) in (36): If measures m+
k,m do not satisfy the constraints in (33b) and

(33c), then inf{λm},{µ+k,m}
L is equal to −∞. This is true for (33b) because, if for some

m the term (
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m − 1

)
in the right-hand side of (35) is not null, then λm can be taken any large with sign equal
to that of that term, bringing L down to arbitrary large negative values. Likewise, if
(33c) is not satisfied for a given pair (k,m), then the last term in the right-hand side of
(35) can be made any large negative by selecting a suitable positive large continuous
function µ+k,m.30 Hence, the sup{m+

k,m}
of inf{λm},{µ+k,m}

L is attained at measures m+
k,m

29. In various parts of this paper from here onward, the set of measures m+
k,m, m = 0, . . . ,M, k = 0, . . . ,m,

is indicated by the notation {m+
k,m}, where the range of variability for m and k is suppressed for brevity.

Similar notations apply to λm and µ+
k,m and other collections alike.

30. Intuitively, this is achieved by a function µ+
k,m that is concentrated over the domain where m+

k,m+1 −
(1− α)m+

k,m is positive. In this footnote, we provide the interested reader with a formal construction of

such a function µ+
k,m. Note that, if condition (33c) is not satisfied for a given pair (k,m), then there is

a Borel set B in [0, 1] such that ∫
B

dm+
k,m+1 −

∫
B

(1− α) dm+
k,m > 0. (38)
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satisfying (33b) and (33c) and, once (33b) and (33c) hold, inf{λm},{µ+k,m}
L is achieved

by setting the second and third terms in the right-hand side of (35) to zero (choose
λm to be any value and µ+k,m, e.g., equal to zero for all m and k). This leads to the
conclusion that sup{m+

k,m}
inf{λm},{µ+k,m}

L equals γM of problem (33). ?

Proof of (B) in (36): This long and technical proof is provided in Appendix C. ?

Proof of (C) in (36): First note that the Lagrangian can be rewritten as follows (in
the second last term we have used the change of running index j = m+1)

L =
M∑
m=0

m∑
k=0

∫
[0,1]

(
m

k

)
1α∈(εk,1]1m=N dm+

k,m −
M∑
m=0

m∑
k=0

∫
[0,1]

λm

(
m

k

)
dm+

k,m

+

M∑
m=0

λm −
M∑
j=0

j∑
k=0

∫
[0,1]

µ+k,j−1(α)1j 6=k dm+
k,j

+
M∑
m=0

m∑
k=0

∫
[0,1]

µ+k,m(α) · (1− α)1m6=M dm+
k,m.

Letting m be the measure m+
k,m+1 +m+

k,m, B can be sandwiched between a closed set C and an open set
O (C ⊆ B ⊆ O, note that O ⊆ R, but it may not be restricted to [0, 1]) such that m(O)− m(C) < ε for
any arbitrarily small ε (Theorem 12.3 in Billingsley, 1995). Let now

g(α) =
dist(α,Oc)

dist(α,Oc) + dist(α,C)
, ∀α ∈ R,

where dist(α,X) = inf{|α−x| : x ∈ X} and Oc is the complement of O. g is a continuous function with
codomain [0,1] and g(α) = 0 on Oc while g(α) = 1 on C. We have that∫

[0,1]

g(α) d[m+
k,m+1 − (1− α)m+

k,m]

=

∫
[0,1]

g(α) dm+
k,m+1 −

∫
[0,1]

g(α) · (1− α) dm+
k,m

=

∫
O

g(α) dm+
k,m+1 −

∫
O

g(α) · (1− α) dm+
k,m

(since O can expand beyond [0, 1] but m+
k,m+1 and m+

k,m are supported in [0, 1])

≥
∫
C

g(α) dm+
k,m+1 −

∫
C

g(α) · (1− α) dm+
k,m − ε

(since 0 ≤ g(α) · (1− α) ≤ 1 for α ∈ [0, 1] and

∫
O\C

dm+
k,m < ε)

=

∫
C

dm+
k,m+1 −

∫
C

(1− α) dm+
k,m − ε

≥
∫
B

dm+
k,m+1 − ε−

∫
B

(1− α) dm+
k,m − ε

(since

∫
B\C

dm+
k,m+1 < ε)

> 0, for ε small enough and using (38).

Taking µ+
k,m to be an arbitrarily rescaled version of the restriction of g to [0, 1], one obtains that the last

term in the right-hand side of (35) can be made any large negative.
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By renaming j asm in the second last term and re-arranging the summations
∑M

m=0

∑m
k=0

as
∑M

k=0

∑M
m=k, we then obtain:

L =
M∑
m=0

λm +
M∑
k=0

M∑
m=k

∫
[0,1]

[(
m

k

)
1α∈(εk,1]1m=N + (1− α)µ+k,m(α)1m6=M

−λm
(
m

k

)
− µ+k,m−1(α)1m6=k

]
dm+

k,m. (39)

Now, if for some pair (k,m) the constraint in (37b) is not satisfied for a given α = ᾱ,
then sup{m+

k,m}
L can be sent to +∞ by choosing m+

k,m that has an arbitrarily large

mass concentrated in ᾱ. Hence, the inf{λm},{µ+k,m}
of sup{m+

k,m}
L is attained at λm’s

and µ+k,m’s satisfying (37b) and, once (37b) holds, sup{m+
k,m}

L is achieved by setting

the second term in the right-hand side of (39) to zero (choose, e.g., m+
k,m = 0 for all

k and m). This leads to the conclusion that inf{λm},{µ+k,m}
sup{m+

k,m}
L equals γ∗M of

problem (37). ?

Next we want to evaluate γ∗M of problem (37).

For a better visualization of the constraints in (37b), we write them more explicitly in
groups indexed by k as follows:

k = 0, . . . , N−1

(1−α)µ+k,k(α) ≤ λk
(
k
k

)
m=k

(1−α)µ+k,k+1(α) ≤ λk+1

(
k+1
k

)
+ µ+k,k(α) m=k+1

...

(1−α)µ+k,N−1(α) ≤ λN−1
(
N−1
k

)
+ µ+k,N−2(α) m=N−1(

N
k

)
1α∈(εk,1] + (1−α)µ+k,N (α) ≤ λN

(
N
k

)
+ µ+k,N−1(α) m=N

(1−α)µ+k,N+1(α) ≤ λN+1

(
N+1
k

)
+ µ+k,N (α) m=N+1

...

(1−α)µ+k,M−1(α) ≤ λM−1
(
M−1
k

)
+ µ+k,M−2(α) m=M−1

0 ≤ λM
(
M
k

)
+ µ+k,M−1(α) m=M

k = N (
N
N

)
1α∈(εN ,1] + (1−α)µ+N,N (α) ≤ λN

(
N
N

)
m=N

(1−α)µ+N,N+1(α) ≤ λN+1

(
N+1
N

)
+ µ+N,N (α) m=N+1

...

(1−α)µ+N,M−1(α) ≤ λM−1
(
M−1
N

)
+ µ+N,M−2(α) m=M−1

0 ≤ λM
(
M
N

)
+ µ+N,M−1(α) m=M

(40a)
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k = N+1, . . . ,M − 1

(1−α)µ+k,k(α) ≤ λk
(
k
k

)
m=k

(1−α)µ+k,k+1(α) ≤ λk+1

(
k+1
k

)
+ µ+k,k(α) m=k+1

...

(1−α)µ+k,M−1(α) ≤ λM−1
(
M−1
k

)
+ µ+k,M−2(α) m=M−1

0 ≤ λM
(
M
k

)
+ µ+k,M−1(α) m=M

k = M

0 ≤ λM
(
M
M

)
m=M

(40b)

For any given k ∈ {0, . . . ,M}, consider the corresponding set of inequalities and multiply
both sides of the first inequality by (1−α)0, both sides of the second inequality by (1−α)1,
and so on till the last inequality, which is multiplied by (1− α)M−k. Then, summing side-
by-side the so-obtained inequalities, and noting that all functions µ+k,m(α) cancel out, one
obtains that the constraints in (40) imply the following inequalities:

k = 0, . . . , N

(
N

k

)
(1− α)N−k1α∈(εk,1] ≤

M∑
m=k

λm

(
m

k

)
(1− α)m−k

k = N+1, . . . ,M 0 ≤
M∑
m=k

λm

(
m

k

)
(1− α)m−k. (41)

We next show that the optimal value of problem (37) equals the optimal value of an opti-
mization problem with the same cost function as in problem (37) and the constraints (41)
complemented with the condition λm = 0 for m = N + 1, . . . ,M , viz.

γ∗M = inf
λm, m=0,...,M

M∑
m=0

λm (42a)

subject to:

(
N

k

)
(1− α)N−k1α∈(εk,1] ≤

M∑
m=k

λm

(
m

k

)
(1− α)m−k,

∀α ∈ [0, 1], k = 0, . . . , N (42b)

0 ≤
M∑
m=k

λm

(
m

k

)
(1− α)m−k, ∀α ∈ [0, 1],

k = N + 1, . . . ,M (42c)

λm = 0 for m = N + 1, . . . ,M (42d)

(clearly, (42c) is automatically satisfied in view of (42d)).

To show that the values of γ∗M given by (37) and (42) are actually the same, start by
noting that adding the condition λm = 0 for m = N + 1, . . . ,M to problem (37) does not
change its optimal value. This requires a short proof:

The constraints in (40) imply that λm ≥ 0 for m = 0, . . . ,M as it can be seen from
the first inequality (m = k) of each group (k = 0, . . . ,M) evaluated at α = 1. Now,
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given a feasible point of (40) that does not have λm = 0 for m = N + 1, . . . ,M ,
consider a modified point by setting λm = 0 for m = N + 1, . . . ,M and µ+k,m = 0
for k = 0, . . . ,M − 1 and m = max{k,N}, . . . ,M − 1, while maintaining the original
choices for all other λm and µ+k,m. This point is still feasible for (40) because, for all
k, all the inequalities for m ≥ N + 1 become 0 ≤ 0, the inequality for m = N is
a-fortiori satisfied (recall that function µ+k,N in the left-hand side of this inequality is
≥ 0 so that setting it to 0 relaxes the constraint) and all other inequalities are not
affected. On the other hand, the value of problem (37) corresponding to the modified
point outdoes the value at the original point since all λm in the original feasible point
were nonnegative and some of them have been set to zero in the modified point.

Since the condition λm = 0 for m = N + 1, . . . ,M in (42d) can be added to (37) without
affecting its optimal value, and considering that the other constraints in (42) for k =
0, . . . ,M are implied by those already present in (37) (as shown before equation (41)), the
optimal value of (42) is not bigger than the optimal value of (37). The reverse inequality
that the optimal value of (37) is not bigger than the optimal value of (42) is proven by
showing that for any feasible point of (42) one can find a feasible point of (37) that attains
the same value. This is shown in the following.

Consider a feasible point of (42). Evaluating all constraints (42b) for k = 0, . . . , N ,
at α = 1, one sees that λm ≥ 0 for m = 0, . . . , N . Moreover, it holds that λm = 0 for
m = N + 1, . . . ,M . To find the sought feasible point of (37), consider the same λm as
those for the feasible point of (42) and complement them with the following functions
µ+k,m. For k = 0, . . . ,M − 1, m = max{k,N}, . . . ,M − 1, take µ+k,m = 0. With
this choice, all the inequalities in (40) for k = 0, . . . ,M , m = max{k,N + 1}, . . . ,M
become 0 ≤ 0 and are therefore satisfied. The expressions of µ+k,m for the remaining
indexes are first defined over [0, 1) and then extended to the closed interval [0, 1]. Over
[0, 1), consider the inequalities in (40) for k = 0, . . . , N − 1, m = k, . . . , N − 1 and
take µ+k,m(α) such that these inequalities are satisfied with equality, starting from top
and then proceeding downwards. This gives

µ+k,k(α) =
λk
(
k
k

)
1− α

,

µ+k,k+1(α) =
λk+1

(
k+1
k

)
1− α

+
λk
(
k
k

)
(1− α)2

... (43)

µ+k,N−1(α) =

N−1∑
j=k

λj
(
j
k

)
(1− α)N−j

.

Since λm ≥ 0, the obtained µ+k,m(α)’s are all positive and, moreover, are continuous
over [0, 1). We next show that choice (43) satisfies over [0, 1) the remaining inequalities
(those in (40) for k = 0, . . . , N and m = N). For k = 0, . . . , N − 1 and m = N ,
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substituting µ+k,N−1(α) =
∑N−1

j=k

λj(jk)
(1−α)N−j and µ+k,N (α) = 0 gives(

N

k

)
1α∈(εk,1] ≤

N∑
j=k

λj

(
j

k

)
1

(1− α)N−j
, (44)

while for k = N and m = N , substituting µ+N,N (α) = 0 we have(
N

N

)
1α∈(εN ,1] ≤ λN

(
N

N

)
. (45)

Equations (44) and (45) are satisfied because they coincide with (42b) (recall that
λm = 0 for m = N + 1, . . . ,M – see (42d)). As for α = 1, note that functions µ+k,m
defined in (43) tend to infinity when α → 1. This poses a problem of existence for
α = 1, which, however, can be easily circumvented by truncating the functions µ+k,m
in the interval α ∈ [1−ρ, 1] at the value µ+k,m(1−ρ) to obtain

µ+,ρk,m(α) =

{
µ+k,m(α) α < 1− ρ
µ+k,m(1−ρ) α ≥ 1− ρ,

and noting that all the inequalities are satisfied over [0, 1] if ρ is chosen small enough.

Summarizing the results so far, we have

P {φN > εk}
(31)

≤ γ
(34)

≤ γM
(36)
= γ∗M , (46)

where γ∗M is given by (42). Notice now that increasing M beyond N in (42) does not change
the problem because λm = 0 for m ≥ N + 1, so that γ∗M = γ∗N for all M ≥ N . The proof
of the theorem (under condition (21)) is concluded by showing that γ∗N ≤ δ, which is what
we do next.

For M = N , problem (42) becomes

γ∗N = inf
λm, m=0,...,N

N∑
m=0

λm (47)

subject to:

(
N

k

)
(1− α)N−k1α∈(εk,1] ≤

N∑
m=k

λm

(
m

k

)
(1− α)m−k,

α ∈ [0, 1], k = 0, . . . , N.

Take λm = δ
N for m = 0, . . . , N −1 and λN = 0, so that

∑N
m=0 λm = δ. We show that these

λm’s are feasible for (47) so that γ∗N ≤
∑N

m=0 λm = δ. The inequality for k = N is satisfied
because the left-hand side is 0 (recall that εN = 1 so that the indicator function is 1 over
an empty set). For k = 0, . . . , N − 1, the inequalities for α = 1 become 0 ≤ λk, which is
true, while for α ∈ [0, 1) the inequalities can be rewritten as

1α∈(εk,1] ≤
δ

N

N−1∑
m=k

(
m
k

)(
N
k

)(1− α)−(N−m), k = 0, . . . , N − 1,
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and are satisfied in view of the definition of εk, see (1). This concludes the proof under
condition (21).

Next we remove condition (21).

Let us augment each random element zi with a random variable θi uniformly distributed
over [0, 1] and independent of zi so as to form an i.i.d. sequence z′1 = (z1,θ1), z

′
2 =

(z2,θ2), . . ..
31 Clearly, condition (21) applies (mutatis mutandis) to z′i, viz.

P
{
z′i = z′

}
= 0, ∀z′ ∈ Z × [0, 1]. (48)

Given a multiset of augmented examples ms(z′1, . . . , z
′
n), let

proj[ms(z′1, . . . , z
′
n)] = ms(z1, . . . , zn),

i.e., proj is the extractor of the zi components. We define a compression c′ to be ap-
plied to multisets of augmented examples as the compression that satisfies the follow-
ing rule: proj[c′(z′1, . . . , z

′
n)] = c(z1, . . . , zn) and, among sub-multisets of ms(z′1, . . . , z

′
n)

whose projections is c(z1, . . . , zn), c′ favors augmented examples with lower second com-
ponents θi. We next show that c′ inherits from c the preference property. Suppose that
c′(z′1, . . . , z

′
n, z
′) ⊆ ms(z′1, . . . , z

′
n). This implies that c(z1, . . . , zn, z) ⊆ ms(z1, . . . , zn). Then,

proj[c′(z′1, . . . , z
′
n, z
′)] = c(z1, . . . , zn, z)

= c(z1, . . . , zn) (because of the preference property of c)

= proj[c′(z′1, . . . , z
′
n)]

and, hence, the z components of c′(z′1, . . . , z
′
n, z
′) and those of c′(z′1, . . . , z

′
n) coincide. More-

over, also the θ components coincide by the rule that favors lower second components. This
establishes the preference property of c′.

In view of (48) and the fact that c′ has the preference property, we are in the position
to apply to c′ the proof that has been developed before under the assumption of no concen-
trated mass. Defining φ′N = P{c′(c′(z′1, . . . ,z′N ), z′N+1) 6= c′(z′1, . . . ,z

′
N )|z′1, . . . ,z′N} and

k′ = |c′(z′1, . . . ,z′N )|, we have
P{φ′N > εk′} ≤ δ.

On the other hand,
c(c(z1, . . . , zN ), zN+1) 6= c(z1, . . . , zN )

implies that
c′(c′(z′1, . . . , z

′
N ), z′N+1) 6= c′(z′1, . . . , z

′
N )

(while the vice-versa does not hold), which gives φN ≤ φ′N P-almost surely. Moreover,
k = k′. Hence,

P{φN > εk} ≤ P{φ′N > εk} = P{φ′N > εk′} ≤ δ.

This concludes the proof. ?

31. Note that the augmented random elements z′i are mere mathematical tools used to draw conclusions on
zi, which remain the measured and relevant variables.
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5.3 Proof of Theorem 7

We prove the equivalent statement that

P
{
φN < εk or φN > εk

}
≤ δ.

The proof parallels that of Theorem 4 and we highlight here the differences.

Result (22) holds unaltered in the present context, with the only notational difference
that εk is now εk. By proving a similar equation for P{φN < εk}, we come to the result

P
{
φN < εk or φN > εk

}
=

N∑
k=0

(
N

k

)∫
[0,εk)∪(εk,1]

dm+
k,N . (49)

One main difference arises next in connection with (i) and (ii): while (i) holds as before,
(ii) holds in this context with equality, which we write in the following way:

(ii)′ For m = 0, 1, . . . and k = 0, . . . ,m, it holds that

m+
k,m+1 − (1− α)m+

k,m = 0.

Proof of (ii)′: Follow the derivation of (ii) till equation (29). Next, we prove that, in
the present context of Theorem 7, equation (29) also holds with reversed inequality,
so proving that the two sides of (29) are in fact equal. To see this, notice that in
the event under the sign of probability in the right-hand side of (29) it holds that
c(z1, . . . , zm) = ms(z1, . . . , zk), which, owing to the preference Property 2, implies

c(z1, . . . , zk, zi) = ms(z1, . . . , zk), i = k + 1, . . . ,m,

and
c(z1, . . . , zk) = ms(z1, . . . , zk).

In addition, in the same event it also holds that (simply substitute c(z1, . . . , zm) with
ms(z1, . . . , zk) in the first condition that defines the event)

c(z1, . . . , zk, zm+1) = ms(z1, . . . , zk).

Hence,

P
{
c(c(z1, . . . ,zm), zm+1) = c(z1, . . . ,zm)

and c(z1, . . . ,zm) = ms(z1, . . . ,zk) and φm ∈ B
}

≤ P
{
c(z1, . . . ,zk, zi) = c(z1, . . . ,zk), i = k + 1, . . .m+ 1

and c(z1, . . . , zk) = ms(z1, . . . , zk) and φm ∈ B
}

≤ P
{
c(z1, . . . ,zm+1) = ms(z1, . . . ,zk) and φm ∈ B

}
,

where the last inequality follows from the non-associativity Property 5. This estab-
lishes the reversed inequality of (29) and, therefore, that (29) and (30) hold with
equality. The final part of the proof of (ii)′ consists in re-writing the right-hand side
of (30) as is done in the proof of (ii). ?
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We are now ready to upper-bound P
{
φN < εk or φN > εk

}
by taking the sup of (49)

under conditions (i) and (ii)′ (in addition to the fact that measures m+
k,m belong to the cone

M+ of positive finite measures on [0, 1]). This gives

P
{
φN < εk or φN > εk

}
≤ γ, (50)

where γ is defined as the value of the optimization problem

γ = sup
m+
k,m∈M

+

m=0,1,..., k=0,...,m

N∑
k=0

(
N

k

)∫
[0,εk)∪(εk,1]

dm+
k,N

subject to:
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m = 1, m = 0, 1, . . .

m+
k,m+1 − (1− α)m+

k,m = 0, m = 0, 1, . . . ; k = 0, . . . ,m.

To evaluate γ, we consider as before a truncated version of the problem

γM = sup
m+
k,m∈M

+

m=0,...,M, k=0,...,m

N∑
k=0

(
N

k

)∫
[0,εk)∪(εk,1]

dm+
k,N (51a)

subject to:

m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m = 1, m = 0, . . . ,M (51b)

m+
k,m+1 − (1− α)m+

k,m = 0,

m = 0, . . . ,M − 1; k = 0, . . . ,m. (51c)

and observe that
γ ≤ γM , (52)

for all M . In evaluating γM by dualization one important difference with the proof of
Theorem 4 occurs in the Lagrangian

L =

N∑
k=0

(
N

k

)∫
[0,εk)∪(εk,1]

dm+
k,N −

M∑
m=0

λm

(
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m − 1

)

−
M−1∑
m=0

m∑
k=0

∫
[0,1]

µk,m(α) d[m+
k,m+1 − (1− α)m+

k,m], (53)

because functions µk,m ∈ C0[0, 1] are now required only to be continuous, while their sign is
arbitrary (this difference stems from the equality condition on measures in (ii)′ as opposed
to the inequality condition in (ii)).

Tantamount to (36), we here have

γM
(A)
= sup

{m+
k,m}

inf
{λm}
{µk,m}

L
(B)
= inf

{λm}
{µk,m}

sup
{m+

k,m}
L

(C)
= γ∗M , (54)
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where γ∗M is the value of the dual of problem (51):

γ∗M = inf
λm, m=0,...,M

µk,m∈C0[0,1], m=0,...,M−1, k=0,...,m

M∑
m=0

λm (55a)

subject to:

(
m

k

)
1α∈[0,εk)∪(εk,1]1m=N + (1−α)µk,m(α)1m6=M

≤ λm
(
m

k

)
+ µk,m−1(α)1m 6=k, ∀α ∈ [0, 1],

k = 0, . . . ,M, m = k, . . . ,M. (55b)

Proof of (A) in (54): If measures m+
k,m do not satisfy the constraints in (51b) and

(51c), then inf{λm},{µk,m} L is equal to −∞. The reason why this is true for (51b)
is the same as the reason why this is true for (33b) in the proof of (A) in Theorem
4. As for (51c), note that in the present context functions µk,m have more flexibility
than µ+k,m in Theorem 4 because they need not be positive. By concentrating on

µk,m’s that are indeed positive, we have as before that m+
k,m+1 − (1− α)m+

k,m ∈M
−;

similarly, with negative µk,m’s one concludes that m+
k,m+1 − (1− α)m+

k,m ∈ M
+, and

these two facts together imply (51c). To close the proof of (A), we simply notice that
the Lagrangian (53) with (51b) and (51c) in place reduces to (51a). ?

Proof of (B) in (54): As in the proof of Theorem 4, matters of convenience suggest
to introduce a modified Lagrangian Lτ that corresponds to a continuous cost func-
tion. To this aim, for k = 0, 1, . . . , N , the integral

∫
[0,εk)∪(εk,1]

dm+
k,N in the first term

of the Lagrangian is rewritten as
∫
[0,1] 1α∈[0,εk)∪(εk,1]dm

+
k,N and the indicator function

1α∈[0,εk)∪(εk,1] is replaced with a continuous function ϕk,τ (α) that perturbs the La-
grangian in a vanishing way as τ → ∞. Precisely, to obtain a continuous transition,
we tilt the edges of the indicator function by a small enough quantity τ (which creates
linear slopes over the intervals (εk, εk + τ ] and [εk − τ, εk) while leaving the indicator
function unaltered for other values of α) with the only advice that: if εk = 0 (so that
the left edge does not exist), then ϕk,τ (α) continues at the value 0 till α = 0; likewise,
ϕk,τ (α) continues at value 0 till α = 1 if εk = 1. The modified Lagrangian is

Lτ =

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τ (α) dm+
k,N −

M∑
m=0

λm

(
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m − 1

)

−
M−1∑
m=0

m∑
k=0

∫
[0,1]

µk,m(α) d
[
m+
k,m+1 − (1− α)m+

k,m

]
.

In full analogy with (83) in Theorem 4, the proof consists in showing the validity of
the following relations:

sup{m+
k,m}

inf {λm}
{µk,m}

Lτ = inf {λm}
{µk,m}

sup{m+
k,m}

Lτ

↓τ↓0 ≤

sup{m+
k,m}

inf {λm}
{µk,m}

L ≤ inf {λm}
{µk,m}

sup{m+
k,m}

L,
(56)
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where the only difference with (83) is that the positive functions µ+k,m are now the
functions µk,m that are undefined in sign. Here, as in Theorem 4, we need only to
show the validity of the = at top and the convergence ↓τ↓0 on the left.

To show the validity of the top equality

sup
{m+

k,m}
inf
{λm}
{µk,m}

Lτ = inf
{λm}
{µk,m}

sup
{m+

k,m}
Lτ , (57)

one follows the same argument as in Theorem 4 after noting that there is no need here
to introduce the positive measures p+k,m (in Theorem 4, the p+k,m’s served the purpose

of making null the measures qk,m = m+
k,m+1−(1−α) m+

k,m+p+k,m to evaluate the value

V and the supervalue V̄ ; this is not needed here because m+
k,m+1 − (1 − α) m+

k,m is
downright zero and not just negative). Hence, for precise reference, we make explicit
that set H in the present context becomes

H :=
{

(v, {rm},
{
qk,m

}
) ∈ R× RM+1 ×M

(M+1)M
2 :

v =
N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τ (α) dm+
k,N ,

{rm} =

{
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m − 1

}
,{

qk,m
}

=
{
m+
k,m+1 − (1− α) m+

k,m

}
,

where, for all m and k, m+
k,m ∈M

+
}
. (58)

All derivations from here till the equivalent of equation (89) are identical to those
developed in Theorem 4 with the only notice that functions µεk,m must not be non-
negative in the present context (hence, delete from the derivations in Theorem 4
the sentence “Moreover, noting . . . in place of µεk,m.”). This way one arrives in the
present context to the following equivalent of (89), which only differs from (89) because
functions µk,m, which have undefined sign, take the place of µ+k,m:

inf
{λm}
{µk,m}

sup
(v,{rm},{qk,m})∈H

{
v −

M∑
m=0

λmrm −
M−1∑
m=0

m∑
k=0

∫
[0,1]

µk,m(α) dqk,m

}
≤ V̄ . (59)

By recalling the expression of v, rm, qk,m in the definition of H given in (58) and
noticing that the curly bracket in the left-hand side is nothing but Lτ (in Theorem 4 we
had to digress to take care of measures p+k,m), (59) immediately gives the counterpart
of (91):

inf
{λm}
{µk,m}

sup
{m+

k,m}
Lτ ≤ V̄ .

The last portion after (91) holds unaltered in the present context to conclude that

inf
{λm}
{µk,m}

sup
{m+

k,m}
Lτ = V̄ .
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The next step that V = V̄ becomes simpler in the present context. Indeed, one has
just to suppress p+,ik,m wherever encountered to show the validity of equations (96) and
(97), while, by a derivation similar to that used to obtain (96) and (97), one obtains
from (94) (without p+k,m) relation∫

[0,1]
gj(α) d[m̄+

k,m+1 − (1− α) m̄+
k,m] = 0,

∀gj(α), j = 1, 2, . . . , m = 0, 1, . . . ,M − 1, k = 0, . . . ,m. (60)

The last part now becomes: Taking now any function f in C0[0, 1] and noting that f
can be arbitrarily approximated in the sup norm by a function gj , (60) yields∫

[0,1]
f(α) d[m̄+

k,m+1 − (1− α) m̄+
k,m] = 0,

from which
m̄+
k,m+1 − (1− α) m̄+

k,m = 0 (61)

(recall Footnote 30). In the light of (96), (97) and (61) one sees that {m̄+
k,m} maps

into the point (V̄ , {rm = 0},
{
qk,m = 0

}
), which proves that this point is in H. Hence,

it holds that V = V̄ and equation (57) remains proven.

Turning now to equation

lim
τ→0

sup
{m+

k,m}
inf
{λm}
{µk,m}

Lτ = sup
{m+

k,m}
inf
{λm}
{µk,m}

L (62)

(which is the only remaining relation to prove in (56)), we notice that this is a step
that contains some major differences from Theorem 4, for which reason we prefer to
repeat the whole derivation even at the price of duplicating some parts already con-
tained in the proof of Theorem 4.

Notice that, in both sides of (62), the inf operator sends the value to −∞ when-
ever the constraints in (51b) or (51c) are not satisfied by {m+

k,m}: hence, (51b) and
(51c) must be satisfied and are always assumed from now on. Under (51b) and (51c),
(62) is rewritten as

lim
τ→0

sup
{m+

k,m}

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τ (α) dm+
k,N

= sup
{m+

k,m}

N∑
k=0

(
N

k

)∫
[0,1]

1α∈[0,εk)∪(εk,1] dm+
k,N . (63)

To show the validity of (63), we discretize τ into τi, i = 1, 2, . . ., τi → 0, and consider
a sequence {m̆+,i

k,m}, i = 1, 2, . . . (where measures m̆+,i
k,m satisfy (51b) and (51c) for any

i), such that

lim
i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̆+,i
k,N
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equals the left-hand side of (63) (for this to hold, m̆+,i
k,m must achieve a progressively

closer and closer approximation of sup{m+
k,m}

in the left-hand side of (63) as i in-

creases); then, we construct from {m̆+,i
k,m} a new sequence {m̃+,i

k,m}, i = 1, 2, . . . (still
satisfying (51b) and (51c)), such that

lim
i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̆+,i
k,N ≤ lim

i→∞

N∑
k=0

(
N

k

)∫
[0,1]

1α∈[0,εk)∪(εk,1] dm̃+,i
k,N , (64)

which shows that the left-hand side of (63) is upper-bounded by a value that is no big-
ger than the right-hand side of (63). Since, on the other hand, the left-hand side of (63)
cannot be smaller than the right-hand side of (63) because ϕk,τ (α) ≥ 1α∈[0,εk)∪(εk,1],
(63) remains proven.

The construction of {m̃+,i
k,m} is in three steps:

Step 1. [construction of {m̌+,i
k,m}] For all k ≤ N for which εk 6= 1 and for all m, move the

probabilistic mass of m̆+,i
k,m contained in the interval (εk−τi, εk] into a concentrated

mass in point εk + τi and, for all k ≤ N for which εk 6= 0 and for all m, move the
probabilistic mass of m̆+,i

k,m contained in the interval [εk, εk+τi) into a concentrated

mass in point εk − τi; let m̌+,i
k,m be the corresponding measures.

Step 2. [construction of {m̂+,i
k,m}] The mass shift in Step 1 can lead to measures m̌+,i

k,m that

violate condition (51c) in εk + τi and/or εk − τi; the new measures m̂+,i
k,m restore

the validity of condition (51c). The construction is in two steps that focus on
εk + τi and εk − τi, respectively. For all k > N and all k ≤ N for which εk = 1,

let m̂
+,i(1)
k,m = m̌+,i

k,m, for all m = k, . . . ,M . For all other k’s, let m̂
+,i(1)
k,k = m̌+,i

k,k ;
then, verify sequentially for m = k, . . . ,M − 1 whether the condition

m̌+,i
k,m+1({εk + τi})− (1− (εk + τi)) m̂

+,i(1)
k,m ({εk + τi}) = 0 (65)

is satisfied; if yes, let m̂
+,i(1)
k,m+1 = m̌+,i

k,m+1, otherwise trim m̌+,i
k,m+1({εk + τi}) to the

value (1−(εk+τi)) m̂
+,i(1)
k,m ({εk+τi}) and define m̂

+,i(1)
k,m+1 as the trimmed version of

m̌+,i
k,m+1.

32 Likewise, we need to restore validity of condition (51c) in εk−τi. Since
we again want to trim – i.e., reducing rather than raising – measures (for reasons
that will become clear in Step 3) and in this case the mass shift is leftward, we
are well-advised to scan the values of m from bottom to top. For all k > N and

all k ≤ N for which εk = 0, let m̂+,i
k,m = m̂

+,i(1)
k,m , for all m = k, . . . ,M . For all

other k’s, let m̂+,i
k,M = m̂

+,i(1)
k,M ; then, verify sequentially for m = M−1,M−2 . . . , k

whether the condition

m̂+,i
k,m+1({εk − τi})− (1− (εk − τi)) m̂

+,i(1)
k,m ({εk − τi}) = 0

32. Note that, if (65) is violated, its left-hand side is necessarily greater than zero (so that the “trimming”
operation achieves its intended goal). Reason is that the initial masses in (εk − τi, εk] are balanced (i.e.,
m̆+,i
k,m+1(εk − τi, εk]−

∫
(εk−τi,εk]

(1−α)dm̆+,i
k,m = 0) and the shift to εk + τi reduces the coefficient (1−α)

in the second term, which is the negative one.
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is satisfied; if yes, let m̂+,i
k,m = m̂

+,i(1)
k,m , otherwise trim m̂

+,i(1)
k,m ({εk − τi}) to the

value m̂+,i
k,m+1({εk − τi})/(1− (εk − τi)) and define m̂+,i

k,m as the trimmed version

of m̂
+,i(1)
k,m .

Step 3. [construction of {m̃+,i
k,m}] The trimming operation in Step 2 may have unbalanced

some equalities in (51b), i.e., it may be that

m∑
k=0

(
m

k

)∫
[0,1]

dm̂+,i
k,m < 1

for some m. If so, re-gain balance by adding to measure m̂+,i
m,m a suitable proba-

bilistic mass concentrated in α = 1, while leaving other measures m̂+,i
k,m, k 6= m,

unaltered. The so-obtained measures are m̃+,i
k,m. Note that this operation pre-

serves the validity of condition m̃+,i
m,m+1−(1−α) m̃+,i

m,m = 0 (since we have altered

measures m̂+,i
m,m only in α = 1 where coefficient (1 − α) is null), so that {m̃+,i

k,m}
satisfies (51c) besides (51b).

Since the mass shift in Step 1 has only moved masses into points where ϕk,τi(α)

is bigger, this mass shift can only increase
∑N

k=0

(
N
k

) ∫
[0,1] ϕk,τi(α) dm̆+,i

k,N ; moreover,
any trimming and re-balancing in Steps 2 and 3 involve vanishing masses as τi → 0.
Therefore,

lim
i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̆+,i
k,N ≤ lim

i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̃+,i
k,N . (66)

On the other hand, by construction, ϕk,τi(α) = 1α∈[0,εk)∪(εk,1] if εk = 0 and εk = 1,

while, for εk 6= 0 and/or εk 6= 1, ϕk,τi(α) 6= 1α∈[0,εk)∪(εk,1] only occurs where m̃+,i
k,N is

null. Hence,

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̃+,i
k,N =

N∑
k=0

(
N

k

)∫
[0,1]

1α∈[0,εk)∪(εk,1] dm̃+,i
k,N ,

which, substituted in (66), gives (64). This concludes the proof of (B). ?

Proof of (C) in (54): The proof of point (C) follows, mutatis mutandis, that of
Theorem 4. Here, the Lagrangian can be re-written as

L =

M∑
m=0

λm +

M∑
k=0

M∑
m=k

∫
[0,1]

[(
m

k

)
1α∈[0,εk)∪(εk,1]1m=N + (1− α)µk,m(α)1m 6=M

−λm
(
m

k

)
− µk,m−1(α)1m6=k

]
dm+

k,m,

and the argument is closed as in Theorem 4, in which derivation one has only to
substitute µ+k,m with µk,m. ?
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Next we want to evaluate γ∗M for problem (55).

In the present context, the constraints can be rewritten more explicitly as in (40) with
the only change that all functions µ+k,m, for any index m, k, need not be positive, so that
the superscript “+” must be dropped everywhere and, moreover, the indicator function
1α∈(εk,1] now becomes 1α∈[0,εk)∪(εk,1]. The discussion that follows (40) remains the same
with only a major difference: the discussion leading up to the conclusion that one can add
the constraints λm = 0 for m = N + 1, . . . ,M ceases to be valid here because it was
grounded on the fact that functions µ+k,m were positive, while here functions µk,m do not
undergo this requirement. Hence, one comes to the following problem:

inf
λm, m=0,...,M

M∑
m=0

λm (67a)

subject to:

(
N

k

)
(1− α)N−k1α∈[0,εk)∪(εk,1] ≤

M∑
m=k

λm

(
m

k

)
(1− α)m−k,

∀α ∈ [0, 1], k = 0, . . . , N (67b)

0 ≤
M∑
m=k

λm

(
m

k

)
(1− α)m−k, ∀α ∈ [0, 1],

k = N + 1, . . . ,M (67c)

and the claim is that it returns the same optimal value γ∗M as (55). The fact that the
optimal value of (67) is not bigger than the optimal value of (55) is obvious. The converse
result that the optimal value of (55) is not bigger than the optimal value of (67) is proven
by showing that for any feasible point of (67) one can find a feasible point of (55) that
attains the same value, which is shown in the following.

Consider a feasible point of (67). To find the sought feasible point of (55), consider
the same λm as those for the feasible point of (67) and augment them with the
functions µk,m defined as follows. Consider the inequalities in (40) where the µ+k,m’s
are replaced by the µk,m’s as it must be in the present context. The inequality for
k = M and m = M is satisfied in view of (67c) for k = M . Next, satisfy the
inequalities corresponding to k = 0, . . . ,M − 1, m = max{k,N} + 1, . . . ,M with
equality starting from bottom and then proceeding upward. This gives:

µk,M−1(α) = −λM
(
M

k

)
,

µk,M−2(α) = −λM−1
(
M − 1

k

)
− λM

(
M

k

)
(1− α)

... (68)

µk,max{k,N}(α) = −
M∑

j=max{k,N}+1

λj

(
j

k

)
(1− α)j−max{k,N}−1.

Note that for k = N + 1, . . . ,M − 1, this choice also satisfies the inequalities for
m = k in view of (67c). The expression of µk,m over [0, 1) for the remaining indexes
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are instead defined as in Theorem 4 by equations (43). We show that choices (68)
and (43) satisfy over [0, 1) the remaining inequalities (those for k = 0, . . . , N and m =

N). Substituting µk,N−1(α) =
∑N−1

j=k

λj(jk)
(1−α)N−j and µk,N (α) = −

∑M
j=N+1 λj

(
j
k

)
(1 −

α)j−N−1 in these inequalities gives(
N

k

)
1α∈[0,εk)∪(εk,1] ≤

N∑
j=k

λj

(
j

k

)
1

(1− α)N−j
+

M∑
j=N+1

λj

(
j

k

)
(1− α)j−N . (69)

Equation (69) is satisfied because it coincides with (67b). As for α = 1, note that
functions µk,m defined in (43) tend to infinity when α → 1. This poses a problem of
existence for α = 1, which, however, can be easily circumvented as in Theorem 4 by
truncating the functions µk,m in the interval α ∈ [1−ρ, 1] at the value µk,m(1−ρ) to
obtain

µρk,m(α) =

{
µk,m(α) α < 1− ρ
µk,m(1−ρ) α ≥ 1− ρ,

and noting that all the inequalities are satisfied over [0, 1] if ρ is chosen small enough.

Summarizing the results so far, we have

P
{
φN < εk or φN > εk

} (50)

≤ γ
(52)

≤ γM
(54)
= γ∗M ,

where γ∗M is given by (67). Choose now M = 4N . The proof of the theorem is concluded
by showing that γ∗4N ≤ δ, which is what we do next.

Take λm = δ
2N for m = 0, . . . , N − 1, λN = 0 and λm = δ

6N for m = N + 1, . . . , 4N ,

so that
∑4N

m=0 λm = δ. Inequalities (67c) are clearly satisfied because all λm are non-
negative. The inequalities in (67b) for α = 1 are satisfied because they become 0 ≤ λk (for
k < N , the term (1 − α)N−k in the left-hand side of (67b) annihilates, while for k = N
it is the indicator function that annihilates because εN = 1). For α ∈ [0, 1), (67b) can be
rewritten as

1α∈[0,εk)∪(εk,1] ≤
δ

2N

N−1∑
m=k

(
m
k

)(
N
k

)(1− α)−(N−m) +
δ

6N

4N∑
m=N+1

(
m
k

)(
N
k

)(1− α)m−N ,

k = 0, . . . , N − 1,

1α∈[0,εN ) ≤
δ

6N

4N∑
m=N+1

(
m

N

)
(1− α)m−N , k = N,

and are satisfied in view of the definition of εk and εk, see (4) and (5). This concludes the
proof. ?

Remark 30 Theorem 7 preserves its validity under the following slightly weaker assumption
than the non-concentrated mass Property 6 (while maintaining the preference and non-
associativity Properties 2 and 5): with probability 1, if for some n an example z appears in
c(z1, . . . ,zn), then it appears in c(z1, . . . ,zn) as many times as it does in ms(z1, . . . ,zn).
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Clearly, the non-concentrated mass property implies the assumption stated here because
the non-concentrated mass property gives that any multiset does not have repetitions with
probability 1. To instead prove that Theorem 7 preserves its validity under this extension,
one proceeds similarly to the last part of the proof of Theorem 4 (where the temporary
condition of non-concentrated mass was removed). Precisely, define z′i, c′, φ′N , and k′

as it was done there. Then, the preference property of c′ holds as shown in the proof of
Theorem 4, while the non-associativity property of c′ follows from the non-associativity of
c along a similar argument. Moreover, z′i satisfies the non-concentrated mass property by
construction. Using Theorem 7 for z′i, c

′, φ′N , and k′ now gives

P{εk′ ≤ φ′N ≤ εk′} ≥ 1− δ.

Then, to prove Theorem 7 for the initial setting, one has to show that k = k′ and φN =
φ′N , with probability 1. k = k′ is obviously true. As for φN = φ′N , in the proof of
Theorem 4, it was already noted that c(c(z1, . . . , zN ), zN+1) 6= c(z1, . . . , zN ) implies that
c′(c′(z′1, . . . , z

′
N ), z′N+1) 6= c′(z′1, . . . , z

′
N ). On the other hand, the assumption introduced

in the present remark straightforwardly gives that c′(c′(z′1, . . . , z
′
N ), z′N+1) 6= c′(z′1, . . . , z

′
N )

implies that c(c(z1, . . . , zN ), zN+1) 6= c(z1, . . . , zN ), except for at most a probability zero
event. This gives φN = φ′N , and we therefore have

P{εk ≤ φN ≤ εk} = P{εk′ ≤ φ′N ≤ εk′} ≥ 1− δ.

?

5.4 Proof of Proposition 8

We first establish that k
N ≤ εk ≤ εk. The result is obvious for k = N since εk = 1 = εk.

For k < N , recall that εk is the unique solution to Ψk,δ(α) = 1, while εk is the solution
to Ψ̃k,δ(α) = 1 bigger than k

N . Notice that Ψ̃k,δ(α) = 1
2Ψk,δ(α) + νk,δ(α), where νk,δ(α) =

δ
6N

∑4N
m=N+1

(mk )
(Nk )

(1− α)m−N . Using the same argument given in Appendix A to show that

Ψ̃k,δ(
k
N ) < 1, it is easy to prove that νk,δ(

k
N ) ≤ δ

2 <
1
2 , which, along with the fact that νk,δ(α)

is strictly decreasing over the interval of interest (0, 1), yields νk,δ(α) < 1
2 for α ∈ [ kN , 1).

Since εk >
k
N (remember that Ψk,δ(α) is monotonically increasing and the argument in

Appendix A can be used again to show that Ψk,δ(
k
N ) ≤ δ < 1), we have that

Ψ̃k,δ(εk) = 1
2Ψk,δ(εk) + νk,δ(εk)

= 1
2 + νk,δ(εk) (since Ψk,δ(εk) = 1)

< 1. (since νk,δ(εk) <
1
2)

This, along with the fact that Ψ̃k,δ(α) is first decreasing and then increasing, gives εk ≤ εk.

We next prove equations (7) and (8).

For k = 0, 1, . . . , N − 1, consider the equation (note that the left-hand side is not ex-
actly equal to function Ψ̃k,δ in (3) because a “2” in the first term has been substituted with
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a “6”)

δ

6N

N−1∑
m=k

(
m
k

)(
N
k

)(1− α)m−N +
δ

6N

4N∑
m=N+1

(
m
k

)(
N
k

)(1− α)m−N = 1. (70)

For every α in (−∞, 1), the left-hand side is no bigger than Ψ̃k,δ(α) and, as a function of
α, it has a behavior similar to Ψ̃k,δ (i.e., it is first decreasing and then increasing, diverging
to +∞ for both α→ −∞ and α→ 1). Thus, (70) admits exactly two solutions in (−∞, 1),
one smaller than k/N and one bigger than k/N , and these solutions give a lower bound and
an upper bound to εk and εk, respectively. Since (1 − α)N−k 6= 0 over (−∞, 1), equation
(70) is equivalent to

δ

6N

4N∑
m=k

(
m

k

)
(1− α)m−k =

(
1 +

δ

6N

)(
N

k

)
(1− α)N−k, (71)

which is obtained by multiplying both sides of (70) by
(
N
k

)
(1−α)N−k and then adding on the

left and on the right the term δ
6N

(
N
k

)
(1− α)N−k. Notice that (71) is meaningful for k = N

too, and is indeed equivalent to the equation defining εN , i.e., Ψ̃N,δ(α) = 1 (for k = N ,
(71) admits only one solution, which coincides with εN ). Thus, summarizing, the solution
to (71) smaller than k/N provides a lower bound to εk for all k = 0, 1, . . . , N , while the so-
lution greater than k/N , which exists for k = 0, 1, . . . , N−1, provides an upper bound to εk.

We now rewrite (71) in a form that is better suited to obtain an explicit evaluation of
its solutions.

For k = 0, the summation in the left-hand side of (71) is

4N∑
m=0

(1− α)m =
1− (1− α)4N+1

α
,

and, noticing that for a generic k it holds that

4N∑
m=k

(
m

k

)
(1− α)m−k =

(−1)k

k!
· dk

dαk

[
4N∑
m=0

(1− α)m

]
,

a cumbersome, but straightforward, computation gives the following general formula for the
left-hand side of (71)

δ

6N

4N∑
m=k

(
m

k

)
(1− α)m−k =

δ

6N

1−
∑k

i=0

(
4N+1
i

)
αi(1− α)4N+1−i

αk+1
. (72)

Substituting in (71) and multiplying on the left and on the right by Nαk+1, we then obtain

δ

6

(
1−

k∑
i=0

(
4N + 1

i

)
αi(1− α)4N+1−i

)
=

(
1 +

δ

6N

)
N

(
N

k

)
αk+1(1− α)N−k, (73)
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which, in view of the multiplication by Nαk+1, is equivalent to (71) for α 6= 0. In what
follows, the usage of equation (73) to investigate the solutions to (71) will be limited to
the interval (0, 1) (and, hence, the condition α 6= 0 becomes irrelevant). As is clear, this
is always the case for the solution greater than k/N , which upper bounds εk, while for the
solution lower than k/N , which lower bounds εk, a sufficient condition for this solution to
be in (0, 1) is that

k > ln(3/δ), (74)

as shown in the following derivation.

Start by noticing that

k > ln(3/δ)⇒ δ

6
ek+1 > 1⇒ δ

6
· 4k+1

k + 1
> 1,

where the latter implication follows from 4x/x > ex for x ≥ 0. Since 4N+1
N+ δ

6

> 4 and

4N−i
N−i ≥ 4 for i = 0, 1, . . . , k − 1, the previous inequality implies that

δ

6
· 4N + 1

N + δ
6

· 4N

N
· · · 4N + 1− k

N + 1− k
· 1

k + 1
> 1,

which, re-arranging the terms and dividing the left-hand and right-hand sides by k!,
yields

δ

6N

(4N + 1) · · · (4N + 1− k)

(k + 1) · k!
>

(
1 +

δ

6N

)
N · · · (N + 1− k)

k!
,

or, in a more compact form, δ
6N

(
4N+1
k+1

)
>
(
1 + δ

6N

) (
N
k

)
. Using in this last expression

the hockey-stick identity (which asserts that
(
4N+1
k+1

)
=
∑4N

m=k

(
m
k

)
), one concludes that

δ

6N

4N∑
m=k

(
m

k

)
>

(
1 +

δ

6N

)(
N

k

)
.

This means that the left-hand side of (71) evaluated at α = 0 is larger than the right-
hand side evaluated at α = 0, and this implies that the two solutions of (71) (and,
thereby, those of (73)) are both within the interval (0, 1).

Apart from the factor δ
6 , the left-hand side of (73) is a so-called Beta(k+1,4N+1−k) cumu-

lative distribution function and, as such, it takes value 0 for α = 0 and is strictly increasing
in (0, 1) converging to the value 1. The right-hand side, instead, for k = 0, . . . , N − 1 takes
value 0 for both α = 0 and α = 1 and is first increasing and then decreasing, while for
k = N is 0 for α = 0 only and it is increasing. A graphical illustration of the typical
trend for the left-hand and right-hand sides of (73) for ln(3/δ) < k ≤ N − 1 is given in
Figure 7 (solid blue lines). Given this state of things, it is clear that if the left-hand side of
(73), call it L(α), is replaced by a function that lies below L(α), while the right-hand side,
call it R(α), is replaced by a monotonically decreasing function that stays above R(α), the
so-obtained equation has the property that any solution to it upper bounds the solution
to (73) bigger than k/N , which in turn upper bounds εk. Similarly, keeping the same re-
placement for the left-hand side of (73), but this time substituting the right-hand side R(α)

54



Compression, Generalization and Learning

Figure 7: Graph of the left-hand and right-hand sides of (73) (solid blue lines) and of the
curves that are used to obtain suitable lower and upper bounds to the solutions
to (73) (dashed red lines).

with a monotonically increasing function that stays above R(α), an equation is obtained
whose solutions provide lower-bounds to εk. In the following, the sought upper bound to εk
and lower bound to εk will be obtained by replacing L(α) with a suitable constant function
and the right-hand side R(α) with a decreasing exponential and an increasing exponential
function, respectively. See again Figure 7 for a graphical illustration (dashed red lines).

� Upper bound to εk

Consider (73) for k = 0, 1, . . . , N − 1. Start with the left-hand side and notice that

δ

12
≤ δ

6

(
1−

k∑
i=0

(
4N + 1

i

)
αi(1− α)4N+1−i

)
(75)

for α ≥ k+1
4N+2 . As a matter of fact, k+1

4N+2 is the mean of the Beta distribution having

cumulative distribution function 1 −
∑k

i=0

(
4N+1
k

)
αi(1 − α)4N+1−i and the mean of this

Beta distribution is greater than its median, see Payton et al. (1989).
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As for the right-hand side of (73), pick any number c > 1 and notice that33(
1 +

δ

6N

)
N

(
N

k

)
αk+1(1− α)N−k

≤
(

1 +
δ

6N

)
(k + 1)

(
N + 1

k + 1

)
αk+1(1− α)N+1−(k+1)

≤ 7

6
(k + 1)

k+1∑
i=0

(
N + 1

i

)
αi(1− α)N+1−i

≤ 7

6
(k + 1)ck+1

k+1∑
i=0

(
N + 1

i

)(α
c

)i
(1− α)N+1−i

≤ 7

6
(k + 1)ck+1

N+1∑
i=0

(
N + 1

i

)(α
c

)i
(1− α)N+1−i

=
7

6
(k + 1)(1− (1− c))k+1

(
1− αc− 1

c

)N+1

≤ 7

6
(k + 1)e−(1−c)(k+1)e−α

c−1
c

(N+1)

≤ 7

6
(k + 1)e−(1−c)(k+1)e−α

c−1
c
N ,

where the second-last inequality derives from relation 1− x ≤ e−x. Taking now

c = 1 +

√
ln(k + 1) + ln 14

δ√
k + 1

,

one obtains (
1 +

δ

6N

)
N

(
N

k

)
αk+1(1− α)N−k

≤ 7

6
(k + 1)e

√
ln(k+1)+ln 14

δ

√
k+1

e
−α
√

ln(k+1)+ln 14
δ
·N

√
k+1+
√

ln(k+1)+ln 14
δ , (76)

where the right-hand side is a monotonically decreasing function of α. Using (75) and (76)
together, in view of the argument given after (73) we have that the solution to

δ

12
=

7

6
(k + 1)e

√
ln(k+1)+ln 14

δ

√
k+1

e
−α
√

ln(k+1)+ln 14
δ
·N

√
k+1+
√

ln(k+1)+ln 14
δ (77)

upper bounds εk as long as the solution turns out to be no smaller than k+1
4N+2 (which is the

condition to ensure that (75) is indeed true). Solving (77) for α gives

α =
k + 1

N
+ 2

√
k + 1

√
ln(k + 1) + ln 14

δ

N
+

ln(k + 1) + ln 14
δ

N
,

33. This computation is insipred by Alamo et al. (2015).
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which is always greater than k+1
4N+2 . Thus, it follows that, for k = 0, 1, . . . , N − 1,

εk ≤
k + 1

N
+ 2

√
k + 1

√
ln(k + 1) + ln 14

δ

N
+

ln(k + 1) + ln 14
δ

N
.

Moreover, the bound turns out to be valid for k = N too, since εN = 1, while the right-
hand side of the previous inequality is greater than 1 for k = N . Using the fact that√

ln(k + 1) + ln 14
δ ≤

√
ln(k + 1) +

√
ln(14) +

√
ln 1

δ in the previous expression, and re-

arranging the terms, one obtains:

εk ≤
k

N
+

2
√
k + 1

(√
ln(k + 1) +

√
ln(14)

)
+ ln(k + 1) + ln(14) + 1

N
+2

√
k + 1

√
ln 1

δ

N
+

ln 1
δ

N
.

It is easy to verify that ln(k + 1) + ln(14) + 1 < 4
√
k + 1; using this fact in the numerator

of the second term together with
√

ln(14) + 2 < 4 yields

εk ≤
k

N
+ 2

√
k + 1

N

(√
ln(k + 1) + 4

)
+ 2

√
k + 1

√
ln 1

δ

N
+

ln 1
δ

N
,

which is the bound in (7).

� Lower bound to εk

Consider (73) again, this time for k > ln(3δ ) as given in (74) (which, as we have seen,
ensures that the solution lower than k/N takes value in the interval (0, 1)). The right-hand
side of (73) is upper bounded as follows (c is any number bigger than 1):(

1 +
δ

6N

)
N

(
N

k

)
αk+1(1− α)N−k

≤
(

1 +
δ

6N

)
(k + 1)

(
N + 1

k + 1

)
αk+1(1− α)N+1−(k+1)

≤ 7

6
(k + 1)

N+1∑
i=k+1

(
N + 1

i

)
αi(1− α)N+1−i

≤ 7

6
(k + 1)

1

ck+1

N+1∑
i=k+1

(
N + 1

i

)
(αc)i(1− α)N+1−i

≤ 7

6
(k + 1)

1

ck+1

N+1∑
i=0

(
N + 1

i

)
(αc)i(1− α)N+1−i

=
7

6
(k + 1)

(
1 + α(c− 1)

)N+1(
1 + (c− 1)

)k+1

≤ 7

6
(k + 1)eα(c−1)(N+1)e

−
(
c−1− (c−1)2

2

)
(k+1)

,
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where the last inequality derives from ex−
x2

2 ≤ 1 + x ≤ ex for x ≥ 0. With the choice

c = 1 +

√
ln(k + 1) + ln 14

δ√
k + 1

,

we now obtain(
1 +

δ

6N

)
N

(
N

k

)
αk+1(1− α)N−k

≤ 7

6
(k + 1)e

α

√
ln(k+1)+ln 14

δ
·(N+1)

√
k+1 e

−
√

ln(k+1)+ln 14
δ

√
k+1+ 1

2(ln(k+1)+ln 14
δ ), (78)

where the right-hand side is an increasing function of α. Using (75) and (78) together, in
view of the argument given after (73) we have that the solution to

δ

12
=

7

6
(k + 1)e

α

√
ln(k+1)+ln 14

δ
·(N+1)

√
k+1 e

−
√

ln(k+1)+ln 14
δ

√
k+1+ 1

2(ln(k+1)+ln 14
δ ) (79)

lower bounds εk as long as the solution turns out to be no smaller than k+1
4N+2 (which is the

condition to ensure that (75) is indeed true). Solving (79) for α gives

α =
k + 1

N + 1
− 3

2

√
k + 1

N + 1

√
ln(k + 1) + ln

14

δ
. (80)

Hence, for those k for which α ≥ k+1
4N+2 , we have that εk ≥ α, which also clearly gives the

looser inequality

εk ≥
k + 1

N + 1
− 3

√
k + 1

N + 1

√
ln(k + 1) + ln

14

δ
. (81)

On the other hand, if k is such that α < k+1
4N+2 , then, substituting the expression for α given

in (80) in relation α < k+1
4N+2 yields

3

2

√
k + 1

N + 1

√
ln(k + 1) + ln

14

δ
>

k + 1

N + 1
− k + 1

4N + 2
>

1

2
· k + 1

N + 1
,

from which
k + 1

N + 1
− 3

√
k + 1

N + 1

√
ln(k + 1) + ln

14

δ
< 0,

and, since εk ≥ 0 by definition, we conclude that (81) remains valid in this case as well.

Go now back to re-consider condition k > ln(3δ ) introduced at the beginning of this part
about lower bounding εk, and consider the opposite case that k ≤ ln(3δ ). If so, it also holds

that k + 1 ≤ 3
√
k + 1

√
ln(k + 1) + ln 14

δ , which in turn implies that the right-hand side of

(81) is no bigger than 0. This, in view of relation εk ≥ 0, proves that (81) is valid in this
case as well. Hence, we conclude that (81) is valid for all k = 0, 1, . . . , N . Since k+1

N+1 ≥
k
N ,
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1
N+1 < 1

N , and
√

ln(k + 1) + ln 14
δ ≤

√
ln(k + 1) +

√
ln(14) +

√
ln 1

δ , from (81) we also

obtain

εk ≥
k

N
− 3

√
k + 1

N

(√
ln(k + 1) +

√
ln(14)

)
− 3

√
k + 1

√
ln 1

δ

N
.

The bound in (8) is finally obtained by noticing that
√

ln(14) < 2.

This concludes the proof. ?
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Appendix A. A study of the graph of Ψ̃k,δ

For k = 0, 1, . . . , N − 1, the derivative of Ψ̃k,δ, i.e.,

dΨ̃k,δ

dα
(α) =

δ

2N

N−1∑
m=k

(
m
k

)(
N
k

)(N −m)(1−α)−(N−m+1)− δ

6N

4N∑
m=N+1

(
m
k

)(
N
k

)(m−N)(1−α)m−N−1,

is a strictly increasing function with limit −∞ for α → −∞ and limit +∞ for α → 1.
Hence, over the interval (−∞, 1), Ψ̃k,δ is first decreasing and then increasing, with a unique
minimum. Since Ψ̃k,δ → +∞ for both α → −∞ and α → 1, to prove that the equation
Ψ̃k,δ(α) = 1 has indeed two solutions, it is enough to exhibit an ᾱ ∈ (−∞, 1) for which
Ψ̃k,δ(ᾱ) < 1. To this aim, consider ᾱ = k

N and notice that

Ψ̃k,δ(k/N) =
δ

2

[
1

N

N−1∑
m=k

(
m
k

)(
N
k

) NN−m

(N − k)N−m
+

1

3N

4N∑
m=N+1

(
m
k

)(
N
k

) (N − k)m−N

Nm−N

]
. (82)

For m = k, . . . , N − 1, we have(
m
k

)(
N
k

) NN−m

(N − k)N−m
=

N−m−1∏
i=0

(
N − k − i
N − i

· N

N − k

)
≤ 1,

where the inequality is satisfied since each term N−k−i
N−i ·

N
N−k in the product is no bigger

than 1. Similarly, for m = N + 1, . . . , 4N we have(
m
k

)(
N
k

) (N − k)m−N

Nm−N =
m−N∏
i=1

(
N + i

N − k + i
· N − k

N

)
≤ 1

(again it is straightforward to verify that each term N+i
N−k+i ·

N−k
N is no bigger than 1).

We therefore see that both sums in the square brackets in the right-hand side of (82) are
arithmetic means of quantities no bigger than 1, and therefore they are no bigger than 1 as
well. This gives Ψ̃k,δ(k/N) ≤ δ < 1, and it also shows that αk <

k
N < αk.

Appendix B. MATLAB code

In this Appendix, we provide efficient bisection algorithms in the MATLAB computing
environment for the evaluation of εk, εk and εk. The algorithms take advantage of some
reformulations of the equations Ψk,δ(α) = 1 and Ψ̃k,δ(α) = 1 as discussed in the beginning
of the proof of Proposition 8 in Section 5.4. A summary of these reformulations are provided
before the MATLAB codes.

B.1 Bisection algorithm for the computation of εk

Equation Ψk,δ(α) = 1 for k = 0, . . . , N − 1 can be rewritten as

δ

N

N−1∑
m=k

(
m

k

)
(1− α)m−k =

(
N

k

)
(1− α)N−k,
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and, using a formula analogous to (72) in Section 5.4, but with N − 1 in place of 4N , this
equation is shown to be equivalent over the interval (0, 1) to

δ

(
1−

k∑
i=0

(
N

k

)
αi(1− α)N−i

)
= αN

(
N

k

)
αk(1− α)N−k.

The only solution to this equation in (0, 1) is εk and it can be computed by bisection
starting from 0 and 1 as initial extremes. Apart from the coefficient δ, the left-hand side is
an incomplete Beta function with parameters k+ 1 and N − k, which can be efficiently and
accurately evaluated with the betainc function of MATLAB. Similarly, apart from the term
αN , the right-hand side can be computed as the difference of two incomplete beta functions.
The following code provides a ready-to-use implementation of the bisection algorithm in the
MATLAB environment.

function eps = find_eps(k,N,delta)

if k==N

eps = 1;

else

t1 = 0;

t2 = 1;

while t2-t1 > 1e-10

t = (t1+t2)/2;

left = delta*betainc(t,k+1,N-k);

right = t*N*(betainc(t,k,N-k+1)-betainc(t,k+1,N-k));

if left > right

t2=t;

else

t1=t;

end

end

eps = t2;

end

end

B.2 Bisection algorithm for the computation of εk and εk

Following the same argument given in the proof of Proposition 8 to derive (71) (see Section
5.4), it is easy to see that equation Ψ̃k,δ(α) = 1 can be reformulated as

δ

3N

N−1∑
m=k

(
m

k

)
(1− α)m−k +

δ

6N

4N∑
m=k

(
m

k

)
(1− α)m−k =

(
1 +

δ

6N

)(
N

k

)
(1− α)N−k.

Using again formula (72) for the second term in the left-hand side and its variant with N−1
in place of 4N for the first term, one obtains that Ψ̃k,δ(α) = 1 is equivalent over the interval

61



M.C. Campi and S. Garatti

(0, 1) to the equation

δ

3

(
1−

k∑
i=0

(
N

k

)
αi(1− α)N−i

)
+
δ

6

(
1−

k∑
i=0

(
4N + 1

k

)
αi(1− α)4N+1−i

)

=

(
1 +

δ

6N

)
αN

(
N

k

)
αk(1− α)N−k,

where, again, the left- and the right-hand sides can be conveniently computed via the
incomplete Beta function. A bisection algorithm with k

N and 1 as extremes can be used to

compute αk = εk for k = 0, . . . , N−1; instead, for k = 0, . . . , N , using 0 and k
N as extremes,

the bisection algorithm converges to αk = εk when αk > 0 and to 0 = εk when αk ≤ 0. The
following code provides an implementation in MATLAB.

function [epsL, epsU] = find_epsLU(k,N,delta)

t1 = 0;

t2 = k/N;

while t2-t1 > 1e-10

t = (t1+t2)/2;

left = delta/3*betainc(t,k+1,N-k)+delta/6*betainc(t,k+1,4*N+1-k);

right = (1+delta/6/N)*t*N*(betainc(t,k,N-k+1)-betainc(t,k+1,N-k));

if left > right

t1=t;

else

t2=t;

end

end

epsL = t1;

if k==N

epsU = 1;

else

t1 = k/N;

t2 = 1;

while t2-t1 > 1e-10

t = (t1+t2)/2;

left = (delta/2-delta/6)*betainc(t,k+1,N-k)+delta/6*betainc(t,k+1,4*N+1-k);

right = (1+delta/6/N)*t*N*(betainc(t,k,N-k+1)-betainc(t,k+1,N-k));

if left > right

t2=t;

else

t1=t;

end

end

epsU = t2;
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end

end

Appendix C. Proof of (B) in (36)

Let τ > 0 be a number smaller than 1 − εk for all k’s for which εk 6= 1. Matters of
convenience (as shown later) suggest to introduce a modified Lagrangian that corresponds
to a continuous cost function as follows

Lτ =
N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τ (α) dm+
k,N −

M∑
m=0

λm

(
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m − 1

)

−
M−1∑
m=0

m∑
k=0

∫
[0,1]

µ+k,m(α) d
[
m+
k,m+1 − (1− α)m+

k,m

]
,

where: for all k for which εk 6= 1, ϕk,τ (α) is a continuous function equal to 0 for α ∈ [0, εk−τ ],
equal to 1 for α ∈ [εk, 1], and with a linear slope connecting 0 to 1 in between; while ϕk,τ (α)
is identically zero when εk = 1. We show below the validity of the following relations:

sup
{m+

k,m}
inf
{λm}
{µ+k,m}

Lτ = inf
{λm}
{µ+k,m}

sup
{m+

k,m}
Lτ

↓τ↓0 ≤

sup
{m+

k,m}
inf
{λm}
{µ+k,m}

L ≤ inf
{λm}
{µ+k,m}

sup
{m+

k,m}
L.

(83)

Notice that the above relations imply the sought result that

sup
{m+

k,m}
inf
{λm}
{µ+k,m}

L = inf
{λm}
{µ+k,m}

sup
{m+

k,m}
L

because
inf
{λm}
{µ+k,m}

sup
{m+

k,m}
L

is in sandwich between
sup
{m+

k,m}
inf
{λm}
{µ+k,m}

L

and
inf
{λm}
{µ+k,m}

sup
{m+

k,m}
Lτ ,

two quantities that converge one onto the other as τ ↓ 0.

The two inequalities in (83) are justified as follows: the ≤ at the bottom of (83) is valid

63



M.C. Campi and S. Garatti

because relation “sup inf ≤ inf sup” is always true, while the ≤ on the right follows from
the fact that ϕk,τ (α) in Lτ is greater than or equal to 1α∈(εk,1] in L.

What remains to show is thus the = at the top of (83) and the convergence ↓τ↓0 on the left.

We first show that

sup
{m+

k,m}
inf
{λm}
{µ+k,m}

Lτ = inf
{λm}
{µ+k,m}

sup
{m+

k,m}
Lτ , (84)

for which purpose we need to introduce a proper topological vector space, Rudin (1991), as
specified in the following.

Consider the vector spaceM of finite signed measures m with support on [0, 1]. More-
over, let LF be the vector space of linear functionals onM of the form

∫
[0,1] µ(α) dm,

where µ is a continuous function (µ ∈ C0[0, 1]). In M, introduce the weak topology
induced by LF , see Section 3.8 in Rudin (1991). This weak topology makesM into a
locally convex topological vector space whose dual space coincides with LF , see Theo-
rem 3.10 in Rudin (1991).34 By also considering the standard topology of R generated
by open intervals, the ambient space in which we are going to work is the topological

vector space given by R×RM+1×M
(M+1)M

2 =: S equipped with the product topology.

The interpretation of S is that it is the codomain of an operator that maps m+
k,m,

m = 0, 1, . . . ,M , k =, 0, . . . ,m into an element of S according to the rule:

{
m+
k,m

}
m=0,1,...,M
k=0,...,m

→


∑N

k=0

(
N
k

) ∫
[0,1] ϕk,τ (α) dm+

k,N (∈ R){∑m
k=0

(
m
k

) ∫
[0,1] dm

+
k,m − 1

}
m=0,1,...,M

(∈ RM+1){
m+
k,m+1 − (1− α) m+

k,m

}
m=0,1,...,M−1
k=0,...,m

(∈M
(M+1)M

2 )

(note that this operator returns various terms that are found in Lτ ). We next consider
the image of this operator, that is, the range of points in S that are reached as {m+

k,m}

varies in its domain (M+)
(M+2)(M+1)

2 . To this image, we further add an arbitrary
positive measure p+k,m to each term m+

k,m+1 − (1 − α) m+
k,m (the reason for this will

become clear shortly). The final set that is obtained as {m+
k,m} and {p+k,m} vary over

34. For the applicability of Theorem 3.10, one needs that LF “separates” M, a fact that follows from
Footnote 30.
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their domains is denoted by H:

H :=
{

(v, {rm},
{
qk,m

}
) ∈ R× RM+1 ×M

(M+1)M
2 :

v =

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τ (α) dm+
k,N ,

{rm} =

{
m∑
k=0

(
m

k

)∫
[0,1]

dm+
k,m − 1

}
,{

qk,m
}

=
{
m+
k,m+1 − (1− α) m+

k,m + p+k,m
}
,

where, for all m and k, m+
k,m ∈M

+, p+k,m ∈M
+
}
. (85)

The closure of H in the topology of S is denoted by H̄.35 The following definitions
refer to the restrictions of H and H̄ to the line where all rm and qk,m are set to 0 (i.e.,
the zero element in R and M, respectively): quantities

V := sup
{
v : (v, {rm = 0},

{
qk,m = 0

}
) ∈ H

}
V̄ := sup

{
v : (v, {rm = 0},

{
qk,m = 0

}
) ∈ H̄

}
are called value and supervalue, respectively.36 With this notation, we have

sup
{m+

k,m}
inf
{λm}
{µ+k,m}

Lτ = V

(this fact easily follows from an argument similar to the proof of equality (A) in (36)
after noting that V in the present context plays the same role as γM in left-hand side
of(36)). On the other hand, we also have

inf
{λm}
{µ+k,m}

sup
{m+

k,m}
Lτ = V̄ , (86)

which requires the proof given below, based on Hahn-Banach theorem. After showing
this, the proof of (84) is concluded by proving that V = V̄ .

To prove (86), note that H̄ is convex and closed and, for any ε > 0, point sε :=
(V̄ + ε, {rm = 0}, {qk,m = 0}) /∈ H̄. By an application of Hahn-Banach theorem

35. The closure H̄ is formed by all contact points of H, where a point is of contact if any neighborhood of
the point contains at least one point in H; clearly, any point h ∈ H also belongs to H̄.

36. Note that, in the definition of V , sup is taken over a nonempty set. As a matter of fact, owing to (24)
and (25), any compression scheme satisfying the preference property gives rise to measures m+

k,m such

that rm = 0 for all m and qk,m = 0 for all m and k by choosing p+k,m = −(m+
k,m+1 − (1 − α) m+

k,m). It

is also worth noticing that V̄ (and hence V too) is finite and no bigger than 1. In fact, by the definition
of H, every point in H satisfies v ≤ rN + 1. On the other hand, if it were that V̄ > 1, then there would
exist a contact point of H such that v > 1 and rN = 0, which is in contradiction with the fact that
v ≤ rN + 1 for all points in H.
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(see Theorem 3.4 in Rudin, 1991), one can therefore find a linear continuous
functional defined over S that “separates” H̄ from sε in such a way that the
functional computed at any point of H̄ is strictly smaller than the functional
computed at sε.

A generic linear continuous functional defined over S is written as

a · v −
M∑
m=0

λmrm −
M−1∑
m=0

m∑
k=0

∫
[0,1]

µk,m(α) dqk,m, (87)

where a, λm ∈ R and µk,m ∈ C0[0, 1], and hence the separation condition yields

aε · v −
∑M

m=0 λ
ε
mrm −

∑M−1
m=0

∑m
k=0

∫
[0,1] µ

ε
k,m(α) dqk,m < aε · (V̄ + ε),

∀(v, {rm}, {qk,m}) ∈ H̄,
(88)

where aε, λεm, µ
ε
k,m(α) are specific choices of a, λm, µk,m(α) in (87). Specializing

(88) to a point in H̄ with {rm = 0} and {qk,m = 0} yields aε·v < aε·(V̄ +ε), which
implies aε > 0. Moreover, noting that qk,m contains p+k,m, which is positive and
arbitrarily large, one concludes that µεk,m must be non-negative for the inequality

to hold over the whole H̄. To take notice of this fact, in subsequent derivations
we write µε,+k,m in place of µεk,m. Dividing by aε, inequality (88) now gives

v−
M∑
m=0

λεm
aε
rm −

M−1∑
m=0

m∑
k=0

∫
[0,1]

µε,+k,m(α)

aε
dqk,m < V̄ + ε, ∀(v, {rm}, {qk,m}) ∈ H̄.

Given the arbitrariness of ε and restricting attention to H ⊆ H̄, one concludes
that

inf
{λm}
{µ+k,m}

sup
(v,{rm},{qk,m})∈H

{
v −

M∑
m=0

λmrm −
M−1∑
m=0

m∑
k=0

∫
[0,1]

µ+k,m(α) dqk,m

}
≤ V̄ .

(89)
On the other hand, recalling the expression of v, rm, qk,m in the definition of H
given in (85), the left-hand side of (89) can be rewritten as

inf
{λm}
{µ+k,m}

sup
{m+

k,m},{p
+
k,m}

{
Lτ −

M−1∑
m=0

m∑
k=0

∫
[0,1]

µ+k,m(α) dp+k,m

}
,

which further becomes

inf
{λm}
{µ+k,m}

 sup
{m+

k,m}
Lτ + sup

{p+k,m}

{
−
M−1∑
m=0

m∑
k=0

∫
[0,1]

µ+k,m(α) dp+k,m

} = inf
{λm}
{µ+k,m}

sup
{m+

k,m}
Lτ ,

(90)
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where in the last equality the second term has been suppressed because sup{p+k,m}

is taken over non-positive quantities and p+k,m = 0 is admissible. Altogether, (89)
and (90) give the relation

inf
{λm}
{µ+k,m}

sup
{m+

k,m}
Lτ ≤ V̄ . (91)

To prove (86), we show that strict inequality in (91) cannot hold. Indeed, in the
opposite, there would exist a linear continuous functional of the form (87) that
separates H from P̄ := (V̄ , {rm = 0}, {qk,m = 0}). If we now consider the open
set A obtained as counter-image of the reals greater than the value taken by this
functional at P̄ minus a small enough margin, then A contains P̄ , while A leaves
out all H, contradicting the fact that P̄ is a contact point of H.37

We now show that V = V̄ , so closing the proof of (84). We start by constructing a
sequence of neighborhoods of P̄ = (V̄ , {rm = 0}, {qk,m = 0}) that exhibit asymptotic
properties of interest. Consider a countable set of continuous functions g1, g2, . . . dense
in C0[0, 1] with respect to the sup norm (e.g., polynomials with rational coefficients,
see Theorem 7.26 in Rudin, 1976). For i = 1, 2, . . ., the neighborhoods of P̄ are defined
as follows:

Oi :=
{

(v, {rm}, {qk,m}) with |v − V̄ | < 1/i; |rm| < 1/i,m = 0, 1, . . . ,M ; and

max
j=1,...,i

∣∣∣∣∣
∫
[0,1]

gj(α) dqk,m

∣∣∣∣∣ < 1/i,m = 0, 1, . . . ,M − 1 and k = 0, . . . ,m
}
.

Further, for any m = 0, 1, . . . ,M and k = 0, 1, . . . ,m consider sequences m+,i
k,m and

p+,ik,m indexed in i such that, for each i = 1, 2, . . ., the pair ({m+,i
k,m}, {p

+,i
k,m}) maps into

a point of H that is also in Oi (such sequences certainly exist since P̄ is a contact
point of H, see Footnote 37). For these sequences we have

lim
i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τ (α) dm+,i
k,N = V̄ ; (92)

lim
i→∞

[
m∑
k=0

(
m

k

)∫
[0,1]

dm+,i
k,m − 1

]
= 0, m = 0, 1, . . . ,M ; (93)

lim
i→∞

∫
[0,1]

gj(α) d[m+,i
k,m+1 − (1− α) m+,i

k,m + p+,ik,m] = 0,

∀gj(α), j = 1, 2, . . . , m = 0, 1, . . . ,M − 1, k = 0, . . . ,m. (94)

In view of (93), for a given m and k, measures m+,i
k,m are uniformly bounded in i (i.e.,

m+,i
k,m([0, 1]) ≤ C, ∀i, for some positive constant C < +∞). Since measures m+,i

k,m are

37. P̄ is a contact point of H because V̄ is defined via a sup operation over contact points and, therefore,
any neighborhood of P̄ is also a neighborhood of a contact point (v, {rm = 0},

{
qk,m = 0

}
) with v close

enough to V̄ , so that the neighborhood must contain a point of H.
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supported in [0, 1], by Prokhorov’s theorem (see Shiryaev, 1996, Theorem 1, Section
2, Chapter III),38 we then conclude that there exists a sub-sequence of indexes ih
such that m+,ih

k,m has weak limit m̄+
k,m ∈ M

+. By repeating the same reasoning in a
nested manner, we can further find a sub-sequence of the indexes ih such that weak
convergence holds for a new choice of m and k. Proceeding the same way for all
choices of m and k, we conclude that there exists a sub-sequence of indexes (which,
with a little abuse of notation, we still indicate as ih) for which∫

[0,1]
f(α) dm̄+

k,m = lim
ih→∞

∫
[0,1]

f(α) dm+,ih
k,m , ∀ m, k, (95)

holds for any continuous function f ∈ C0[0, 1].

Since ϕk,τ , as well as the constant function equal to 1, are continuous, (95) together
with (92) and (93) yield

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τ (α) dm̄+
k,N = V̄ (96)

and
m∑
k=0

(
m

k

)∫
[0,1]

dm̄+
k,m − 1 = 0, m = 0, 1, . . . ,M. (97)

Turn now to consider (94), from which we have

lim
ih→∞

∫
[0,1]

gj(α) d[m+,ih
k,m+1 − (1− α) m+,ih

k,m ] = − lim
ih→∞

∫
[0,1]

gj(α) dp+,ihk,m , (98)

where the limit in (94) restricted to the sub-sequence ih can be broken up in the two
limits in (98) because the left-hand side of (98) exists due to the weak convergence of
measures m+,ih

k,m (note that gj(α) and gj(α)(1− α) are continuous functions). For the
functions gj that are non-negative (i.e., gj(α) ≥ 0, ∀α), which we henceforth write as
g+j to help interpretation, (98) gives

lim
ih→∞

∫
[0,1]

g+j (α) d[m+,ih
k,m+1 − (1− α) m+,ih

k,m ] ≤ 0. (99)

Taking now any non-negative function f+ in C0[0, 1] and noting that f+ can be
arbitrarily approximated in the sup norm by a function g+j ,39 weak convergence of

m+,ih
k,m to m̄+

k,m used in (99) yields∫
[0,1]

f+(α) d[m̄+
k,m+1 − (1− α) m̄+

k,m] ≤ 0,

38. In fact, a straightforward extended version of Prokhorov’s theorem for positive and uniformly bounded
measures.

39. Note that function f+(α) can be zero for some α, so that an approximant, however close, might as well
take negative values, against the requirement that the approximant is a non-negative g+j . Nonetheless,

any ε-close approximant of f+(α) + ε is non-negative and it is also a 2ε-close approximant of f+(α).
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from which m̄+
k,m+1 − (1− α) m̄+

k,m is a negative measure (recall Footnote 30).

If we now choose p̄+k,m = −[m̄+
k,m+1 − (1 − α) m̄+

k,m] (which is in M+), then in the

light of (96) and (97) one sees that ({m̄+
k,m}, {p̄

+
k,m}) maps into the point (V̄ , {rm =

0},
{
qk,m = 0

}
), which proves that this point is in H. Hence, it holds that V = V̄

and equation (84) remains proven.

We next show that
lim
τ→0

sup
{m+

k,m}
inf
{λm}
{µ+k,m}

Lτ = sup
{m+

k,m}
inf
{λm}
{µ+k,m}

L, (100)

which is the only relation in (83) that is still unproven, so concluding the proof.

Notice that, in both sides of (100), the inf operator sends the value to −∞ whenever
the constraints in (33b) or (33c) are not satisfied by {m+

k,m}: hence, (33b) and (33c)
must be satisfied and are always assumed from now on. Under (33b) and (33c), inf is
attained for λm = 0 and µ+k,m = 0 for all m and k, and (100) is therefore rewritten as

lim
τ→0

sup
{m+

k,m}

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τ (α) dm+
k,N = sup

{m+
k,m}

N∑
k=0

(
N

k

)∫
[0,1]

1α∈(εk,1] dm+
k,N .

(101)
To show the validity of (101), we discretize τ into τi, i = 1, 2, . . ., τi → 0, and consider
a sequence {m̆+,i

k,m}, i = 1, 2, . . . (where measures m̆+,i
k,m satisfy (33b) and (33c) for any

i), such that

lim
i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̆+,i
k,N

equals the left-hand side of (101) (for this to hold, m̆+,i
k,m must achieve a progressively

closer and closer approximation of sup{m+
k,m}

in the left-hand side of (101) as i in-

creases); then, we construct from {m̆+,i
k,m} a new sequence {m̃+,i

k,m}, i = 1, 2, . . . (still
satisfying (33b) and (33c)), such that

lim
i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̆+,i
k,N ≤ lim

i→∞

N∑
k=0

(
N

k

)∫
[0,1]

1α∈(εk,1] dm̃+,i
k,N , (102)

which shows that the left-hand side of (101) is upper-bounded by a value that is no
bigger than the right-hand side of (101). Since, on the other hand, the left-hand side of
(101) cannot be smaller than the right-hand side of (101) because ϕk,τ (α) ≥ 1α∈(εk,1],
(101) remains proven.

The construction of {m̃+,i
k,m} is in three steps:

Step 1. [construction of {m̌+,i
k,m}] For all k ≤ N for which εk 6= 1 and for all m, move the

probabilistic mass of m̆+,i
k,m contained in the interval (εk−τi, εk] into a concentrated

mass in point εk + τi; let m̌+,i
k,m be the corresponding measures.
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Step 2. [construction of {m̂+,i
k,m}] The mass shift in Step 1 can lead to measures m̌+,i

k,m that

violate condition (33c) in εk + τi; the new measures m̂+,i
k,m restore the validity of

this condition. For all k > N and all k ≤ N for which εk = 1 (so that no mass
shift has been performed in Step 1), let m̂+,i

k,m = m̌+,i
k,m, for all m = k, . . . ,M . For

all other k’s, let m̂+,i
k,k = m̌+,i

k,k ; then, verify sequentially for m = k, . . . ,M − 1
whether the condition

m̌+,i
k,m+1({εk + τi})− (1− (εk + τi)) m̂

+,i
k,m({εk + τi}) ≤ 0

is satisfied; if yes, let m̂+,i
k,m+1 = m̌+,i

k,m+1, otherwise trim m̌+,i
k,m+1({εk + τi}) to the

value (1 − (εk + τi)) m̂+,i
k,m({εk + τi}) and define m̂+,i

k,m+1 as the trimmed version

of m̌+,i
k,m+1.

Step 3. [construction of {m̃+,i
k,m}] The trimming operation in Step 2 may have unbalanced

some equalities in (33b), i.e., it may be that

m∑
k=0

(
m

k

)∫
[0,1]

dm̂+,i
k,m < 1

for some m. If so, re-gain balance by adding to measure m̂+,i
m,m a suitable prob-

abilistic mass (e.g., concentrated in α = 1), while leaving other measures m̂+,i
k,m,

k 6= m, unaltered. The so-obtained measures are m̃+,i
k,m. Note that this operation

preserves the validity of condition m̃+,i
m,m+1−(1−α) m̃+,i

m,m ∈M−, so that {m̃+,i
k,m}

satisfies (33c) besides (33b).

Since ϕk,τi(α) is non-decreasing in α, the mass shift in Step 1 can only increase∑N
k=0

(
N
k

) ∫
[0,1] ϕk,τi(α) dm̆+,i

k,N ; moreover, any trimming and re-balancing in Steps 2
and 3 involve vanishing masses as τi → 0. Therefore,

lim
i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̆+,i
k,N ≤ lim

i→∞

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̃+,i
k,N . (103)

On the other hand, by construction, ϕk,τi(α) = 1α∈(εk,1] if εk = 1, while, for εk 6= 1,

ϕk,τi(α) 6= 1α∈(εk,1] only occurs on the interval (εk− τi, εk] where m̃+,i
k,N is null. Hence,

N∑
k=0

(
N

k

)∫
[0,1]

ϕk,τi(α) dm̃+,i
k,N =

N∑
k=0

(
N

k

)∫
[0,1]

1α∈(εk,1] dm̃+,i
k,N ,

which, substituted in (103), gives (102).

This concludes the proof. ?
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