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Abstract

Most work in neural networks focuses on estimating the conditional mean of a contin-
uous response variable given a set of covariates. In this article, we consider estimating
the conditional distribution function using neural networks for both censored and un-
censored data. The algorithm is built upon the data structure particularly constructed
for the Cox regression with time-dependent covariates. Without imposing any model
assumptions, we consider a loss function that is based on the full likelihood where the
conditional hazard function is the only unknown nonparametric parameter, for which un-
constrained optimization methods can be applied. Through simulation studies, we show
that the proposed method possesses desirable performance, whereas the partial likelihood
method and the traditional neural networks with L2 loss yields biased estimates when
model assumptions are violated. We further illustrate the proposed method with several
real-world data sets. The implementation of the proposed methods is made available at
https://github.com/bingqing0729/NNCDE.

Keywords: conditional distribution estimation, neural networks, predictive interval,
survival analysis, time-varying covariates

1. Introduction

Neural networks are widely used in prediction. Depending on the nature of the outcome (or
response) variable of interest, most of the current work falls into two categories: classification
for a categorical outcome variable and mean prediction for a continuous outcome variable.
For the classification problem, one approach is to estimate the conditional distribution func-
tion of a categorical response variable given a set of predictors, also called covariates, then
to classify a new data point into one of the categories of the response variable based on the
estimated predicting probabilities given the new covariate values. A typical example is to
use the logistic model for predicting a binary outcome. For a continuous response variable,
however, the focus has been primarily on the center of its conditional distribution function
which is used to predict a new data point. In fact, estimating the conditional distribution
function of a continuous response variable nonparametrically is of greater interest (Hall
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et al., 1999). It is a challenge, however, to estimate the conditional distribution function
given multiple continuous covariates (Hall and Yao, 2005). Nevertheless, with continuous
predictors, the conditional distribution can provide a richer characterization of the relation-
ship between the predictors and the response and allows for the construction of prediction
intervals (Hall et al., 1999). We propose to estimate the conditional distribution function
of a continuous random variable given multiple covariates using neural networks.

Our work is inspired by the estimation of the conditional survival function for censored
failure time data with time-dependent covariates. In the survival analysis literature, a condi-
tional survival function is usually estimated by fitting the semiparametric Cox proportional
hazards model (Cox, 1972). Although it has been widely used, particularly in health stud-
ies, the Cox model requires strong modeling assumptions that can be violated in practice.
To alleviate the modeling assumptions, kernel smoothing methods have been applied for es-
timating the hazard function (Spierdijk, 2008; Selingerova et al., 2021). In Spierdijk (2008),
for example, a nonparametric estimator for the conditional hazard function is obtained by
taking a ratio of the local linear estimators for the conditional density and the survival
function. For multi-dimensional covariates, however, kernel smoothing methods suffer poor
accuracy, reflected in slow convergence rates (Hall and Yao, 2005). Researchers have been
exploring the application of neural networks in survival analysis since the 1990s. One line
of research uses neural networks to replace the linear component in a Cox model and the
negative (logarithm of) partial likelihood as the loss function, see e.g., Faraggi and Simon
(1995) and Xiang et al. (2000).

Recently, Katzman et al. (2018) revisited the Cox model and applied modern deep
learning techniques (standardizing the input, using new activation functions, new optimizers
and learning rate scheduling) to improve training. Their neural network model, called
DeepSurv, outperforms Cox regressions evaluated via the C-index (Harrell et al., 1984) on
several real data sets. In simulation studies, DeepSurv outperforms Cox regression when
the proportional hazards assumption is violated and the two methods perform similarly
when the proportional hazards assumption is satisfied.

Following a similar modeling strategy, Ching et al. (2018) developed the neural network
model Cox-nnet for high-dimensional genetics data. Building upon the methodology of
nested case-control studies, Kvamme et al. (2019) proposed to use a loss function that
modifies the partial likelihood by subsampling the risk sets. Their neural network models,
Cox-MLP(CC) and Cox-Time, are computationally efficient and scale well to large data
sets. Both models are relative risk models with the same modified partial likelihood but
Cox-Time further removes the proportionality constraint by including time as a covariate
in the relative hazard. Cox-MLP(CC) and Cox-Time were compared to the classical Cox
regression, DeepSurv and a few other models on five real-world data sets and found to be
highly competitive. We will compare our method to Cox-MLP(CC) and Cox-Time on four
of these data sets (those in which the the number of tied survival times are negligible). In all
of the aforementioned methods, the semi-parametric nature of the model is retained, hence
the baseline hazard function needs to be estimated in order to estimate the conditional
survival function, whereas our method estimates the conditional hazard function directly
without specifying any baseline hazard function.

Another commonly used approach is to partition the time axis into a set of fixed intervals
so that the survival probabilities are estimated on the set of discrete time points. Biganzoli
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et al. (1998) proposed a model called PLANN in which the neural networks contain a input
vector of covariates and a discrete time point, and an output of the hazard rate at this
time point. They used the negative logarithm of a Bernoulli likelihood as the loss function.
Street (1998) proposed a model that outputs a vector with each element representing the
survival probability at a predefined time point, and used a modified relative entropy error
(Solla et al., 1988) as the loss function. Brown et al. (1997) also discretized the time, but
used an ad hoc loss function that is the sum of squared errors, where for each subject
at each time interval, the error is the difference between 1 (if a failure is observed in the
interval) or 0 (otherwise) and the corresponding hazard component. More recent work
includes Nnet-survival (Gensheimer and Narasimhan, 2019) and RNN-SURV (Giunchiglia
et al., 2018). Both models require fixed and evenly partitioned time intervals, where Nnet-
survival includes a convolutional neural network structure (CNN) and RNN-SURV uses a
recurrent neural network structure (RNN). They all use Bernoulli type loss functions with
differently created binary variables, where RNN-SURV adds an upper bound of the negative
C-index into the loss function.

There are several limitations in the current literature of survival analysis using neural
networks. Cox-type neural network models are relative risk models with baseline hazards,
which retain certain model structure, and the networks only output the relative risks. Others
use loss functions that are often constructed by approximations or heuristic criteria other
than the true likelihood function. Moreover, these methods only deal with time-independent
covariates.

To overcome these limitations, we propose a new method to estimate the conditional
hazard function directly using neural networks. In particular, inspired by the standard
data-expansion approach for the Cox regression with time-varying covariates, we input time-
varying covariates together with observed time points into a simple feed-forward network
and output the logarithm of instantaneous hazard. We build the loss function from the
logarithm of the full likelihood function, in which all functions, including the conditional
hazard function, the conditional cumulative hazard function, and covariate processes, are
evaluated only at the observed time points. Compared to existing methods, our new method
has a number of advantages. First, we can handle time-varying covariates. Second, we
make the least number of assumptions that only include conditional independent censoring
and that the instantaneous hazard given entire covariate paths only depends on values
of covariates observed at the current time. Third, estimating the (logarithm of) hazard
function without imposing any constraints to the optimization automatically leads to a
valid survival function estimator that is always monotone decreasing and bounded between
0 and 1. Furthermore, because our loss function does not need to identify the risk set,
scalable methods (e.g., training with batches in stochastic gradient descent) can be easily
implemented to avoid blowing up the computer memory.

An estimator of the conditional hazard function for censored survival data yields an
estimator of the conditional survival function, and hence, the conditional distribution func-
tion, on the support of censored survival time given covariates. When there is no censoring,
the problem naturally reduces to a general regression analysis, where the conditional distri-
bution function is of interest. This clearly expands the scope of the current literature that
primarily focuses on certain characteristic of the conditional distribution, for example, the
conditional mean that corresponds to the mean regression. Once we obtain an estimator
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of the conditional distribution function, we can easily calculate the conditional mean given
covariates, which provides a robust alternative approach to the mean regression that uses
the L2 loss. Note that the mean regression often assumes that the error term has constant
variance and is uncorrelated with any of the covariates, which can be easily violated. Our
likelihood estimating approach, however, does not need such an assumption.

This article is organized as follows. We introduce our new methods in Section 2, dis-
cuss simulation studies in Section 3, and illustrate comparisons to competing methods by
analyzing several real world data sets in Section 4. Finally, we provide a few final remarks
in Section 5.

2. The Estimating Method Using Neural Networks

In this section, we start with the likelihood-based loss function for estimating the condi-
tional survival function given a set of time-varying covariates, then generalize the approach
to estimating the conditional distribution function for an arbitrary continuous response
variable, and finally provide an estimating procedure using neural networks.

2.1 Survival Analysis with Time-Varying Covariates

We first describe the notation and assumptions for the problem of interest, then provide
the full likelihood function and the expanded data structure for minimizing the discretized
loss function that is constructed from the full likelihood.

2.1.1 Data and Notation

For subject i, we denote the time-varying covariate vector as Xi(t), the underlying failure
time as Ti, and the underlying censoring time as Ci, where Ti possesses a Lebesgue density.
Let the observed time be Yi = min{Ti, Ci} and the failure indicator be ∆i = I(Ti ≤ Ci).
We have n independent and identically distributed (i.i.d.) observations {Yi,∆i, X̃i(·) : i =
1, . . . , n}, where X̃i(t) denotes the covariate history up to time t, that is, X̃i(t) = {Xi(s), 0 ≤
s ≤ t}. We assume each of the processes Xi(t) has left continuous sample path with right
limit. Let f(t|X̃i(∞)) be the conditional Lebesgue density function of Ti, fC(t|X̃i(∞)) be
the conditional density function of Ci, S(t|X̃i(∞)) be the conditional survival function of
Ti, and SC(t|X̃i(∞)) be the conditional survival function of Ci.

Noting that the conditional survival probability given time-varying covariate is not
well-defined if there is an internal covariate, we assume that all covariates are external
(Kalbfleisch and Prentice, 2002). Specifically, the conditional hazard function of Ti is inde-
pendent of future covariate values and, furthermore, only depends on the current values of
covariate processes:

λ
[
t
∣∣∣X̃i(∞)

]
= λ

[
t
∣∣∣X̃i(t)

]
= λ [t |Xi(t) ] .

Let h(t,Xi(t)) = log λ(t|Xi(t)). Then the conditional cumulative hazard function given
covariate history has the following form:

Λ
[
t
∣∣∣X̃i(∞)

]
= Λ

[
t
∣∣∣X̃i(t)

]
=

∫ t

0
λ
[
s
∣∣∣X̃i(t)

]
ds =

∫ t

0
eh[s,Xi(s)]ds,
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i start time stop time δij covariates

1 t0 = 0 t1 0 x1(t1)
1 t1 t2 0 x1(t2)
...

...
...

...
...

1 · · · y1 δ1 x1(y1)
2 t0 = 0 t1 0 x2(t1)
2 t1 t2 0 x2(t2)
...

...
...

...
...

2 · · · y2 δ2 x2(y2)
...

...
...

...
...

Table 1: The expanded data set for survival problem with time varying covariate, where
(t1, . . . , tn) are sorted values of (y1, . . . , yn) from the training set.

and the conditional survival function is given by

S
[
t
∣∣∣X̃i(∞)

]
= S

[
t
∣∣∣X̃i(t)

]
= exp

{
−Λ

[
t
∣∣∣X̃i(t)

]}
= exp

{
−
∫ t

0
eh[s,Xi(s)]ds

}
. (1)

Using h instead of λ in the above expression removes the positivity constraint for λ, hence
simplifies the optimization algorithm for estimating the conditional survival function (1).
Furthermore, equation (1) is always a valid survival function for any function h.

2.1.2 Likelihood

Assume censoring time is independent of failure time given covariates. Then given observed
data {yi, δi, xi(·)}, i = 1, . . . , n, the full likelihood function becomes

Ln =

n∏
i=1

{f [yi|x̃i(yi)]SC [yi|x̃i(yi)]}δi {fC [yi|x̃i(yi)]S[yi|x̃i(yi)]}1−δi

∝
n∏
i=1

λ[yi|xi(yi)]δiS[yi|x̃i(yi)]

=
n∏
i=1

exp{h[yi, xi(yi)]δi} exp

{
−
∫ yi

0
eh[t,xi(t)]dt

}
.

Thus, the log likelihood is given by

`n =

n∑
i=1

{
h[yi, xi(yi)]δi −

∫ yi

0
eh[t,xi(t)]dt

}
. (2)

2.1.3 Data Structure and Discretized Loss

When fitting the Cox model with time-varying covariates, the data set is usually expanded
to the structure given in Table 1 so each row is treated as an individual observation, where
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(t1, . . . , tn) are sorted values of observed times (y1, . . . , yn) and δij = δiI(tj = yi). Specif-
ically, the time axis is partitioned naturally by observed times. The same data structure
can be applied to maximizing the log likelihood function (2) at the grid points (t1, . . . , tn),
or equivalently, minimizing the following loss function:

loss(h) =
1

n

n∑
i=1

n∑
j=1

I(tj ≤ yi)
{
eh[tj ,xi(tj)](tj − tj−1)− h[tj , xi(tj)]δij

}
, (3)

where t0 = 0. It becomes clear that the expanded data set in Table 1 provides a natural
way of implementing numerical integration in the negative log likelihood −n−1`n based on
empirical data. Once an estimator of h is obtained using neural networks (see Subsection
2.3 for details), the conditional survival function can be estimated by plugging the estimated
h into Equation 1.

2.2 Estimation of Conditional Distribution for Uncensored Data

If there is no censoring, then δi = 1 for all i ∈ {1, . . . , n} in the log likelihood function (2).
Now consider an arbitrary continuous response variable Y ∈ (−∞,∞) that is no longer
“time.” Note that the time variable T ∈ [0,∞). We are interested in estimating F (y|x), the
conditional distribution function of Y given covariates X = x, where X is a random vector.
Since there is no time component in general, covariates are no longer “time-varying.”

Assume {Yi, Xi}, i = 1, . . . , n, are i.i.d. Denote the observed data as {yi, xi}, i =
1, . . . , n. We generalize the idea of using hazard function in survival analysis to estimate
F (y|x) for an arbitrary continuous random variable Y . Again, let λ(t|xi) = eh(t,xi). Then
the conditional cumulative hazard function becomes

Λ(t|xi) =

∫ t

−∞
λ(s|xi)ds =

∫ t

−∞
eh(s,xi)ds,

which gives the conditional distribution function

F (t|xi) = 1− exp [−Λ(t|xi)] . (4)

Hence, the log likelihood function is given by

`n =
n∑
i=1

[
h(yi, xi)−

∫ yi

−∞
eh(t,xi)dt

]
. (5)

Note that the above log likelihood has the same form as (2) except that the covariates
are not time-varying, δi = 1 for all i, and integrals start from −∞. As a way of evaluating
integrals in the log likelihood, the expanded data structure in Table 1 can be useful in
estimating h(y, x) with slight modifications given in Table 2.

To be numerically tractable, we assign 1/n to be the value of the distribution function
at t1, in other words, we make F (t1|xi) = 1/n, which is the empirical probability measure
of Y at t1. Thus Λ(t1|xi) = − log(1 − 1/n). Letting δij = I(tj = yi) and evaluating the
integrals in (5) on grid points (t1, . . . , tn) that are sorted values of (y1, . . . , yn), we obtain
the following loss function:
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i start stop δij covariates

1 t0 = −∞ t1 0 x1
1 t1 t2 0 x1
...

...
...

...
...

1 ... y1 1 x1
2 t0 = −∞ t1 0 x2
2 t1 t2 0 x2
...

...
...

...
...

2 ... y2 1 x2
...

...
...

...
...

Table 2: The expanded data set for estimating the conditional distribution function of a
continuous response variable, where (t1, . . . , tn) are sorted values of (y1, . . . , yn)
from the training set.

loss(h) =
1

n

n∑
i=1

− log(1− 1/n) +
n∑
j=2

I(tj ≤ yi)
[
eh(tj ,xi)(tj − tj−1)− h(tj , xi)δij

]
=

1

n

n∑
i=1

n∑
j=2

I(tj ≤ yi)
[
eh(tj ,xi)(tj − tj−1)− h(tj , xi)δij

]
+ Constant. (6)

Once an estimator of h, denoted by ĥ, is obtained, the conditional distribution function (4)
can be estimated by

F̂ (y|x) = I(t1 ≤ y)

1− n− 1

n
exp

− n∑
j=2

I(tj ≤ y)eĥ(tj ,x)(tj − tj−1)

 . (7)

Remark 1 If the support of the continuous response variable has a fixed finite lower bound,
then the integration for the conditional cumulative hazard function is the same as that for
survival data. In other words, there is no need to assign a point mass of 1/n at t1.

2.3 Neural Networks, Hyperparameters and Regularization

We propose to estimate the arbitrary function h[t, xi(t)], or h(t, xi) when covariates are not
time-varying, by minimizing the respective loss function (3) or (6) using neural networks.
We then obtain the estimated conditional survival curve or the conditional distribution
function from Equation 1 or Equation 7, respectively. The input of neural networks is
[tj−1, tj , xi(tj)] or (tj−1, tj , xi) in each row of Table 1 or Table 2, and the output is ĥ[t, xi(t)]

or ĥ(t, xi), respectively. Note that the first row for each i in Table 2 is excluded from the
calculation.

We use tensorflow.keras (Chollet et al., 2015) to build and train the neural networks.
The network structure is a fully connected feed forward neural network with two hidden
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Figure 1: An example of fully connected feed forward neural networks with 2 hidden layers.
In this example, the input dimension is 4 plus an intercept term, each hidden
layer contains 10 nodes plus an intercept node and the output is a single value.
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layers and a single output value. The input layer consists of tj−1, tj , and covariates. In
addition, an intercept term is included in each layer (see Figure 1). The relu function is
used as the activation function between input and hidden layers, and the linear function is
used for the output so that the output value is not constrained. We use Adam (Kingma
and Ba, 2014) as the optimizer. Other hyperparameters include the number of nodes in
each layer, the batch size and the initial learning rate. In our simulations, the number of
nodes in each hidden layer is 64, the batch size is 100, and the initial learning rate is 0.001.
To have a fair comparison in real-world data examples, we tune the hyperparameters from
the set of all combined values with the number of nodes in each hidden layer taken from
{64, 128, 256}, the initial learning rate from {0.1, 0.01, 0.001, 0.0001}, and the batch size
from {64, 128, 256}.

We use early stopping to avoid over-fitting. According to Goodfellow et al. (2016), early
stopping has the advantage over explicit regularization methods in that it automatically
determines the correct amount of regularization. Specifically, we randomly split the original
data into training set and validation set with 1:1 proportion. When the validation loss is no
longer decreasing in 10 consecutive steps, we stop the training. To fully use the data, we fit
the neural networks again by swapping the training and the validation sets, then average
both outputs as the final result.

3. Simulations

In this section, we conduct simulation studies to evaluate our proposed methods for both
censored and uncensored data.

3.1 Censored Data with Time-Varying Covariates

For censored survival data with time-varying covariates, we compare our method of using
neural networks to the partial likelihood method for the Cox model under two different
setups. In the first setup, we generate data following the proportional hazards assumption
in which case the Cox model is the gold standard. In the second setup, we generate data from
the model with a quadratic term and an interaction term in the log relative hazard function
so the Cox model with original covariates as linear predictors is misspecified. Details are
given below.

1. In both setups, we use the hazard function of a scaled beta distribution as the baseline
hazard:

λ0(t) =
f0(t/τ)

1− F0(t/τ)
,

where f0(.) and F0(.) are the density and the distribution functions of Beta (8, 1),
respectively. We use τ = 100 so that t ∈ [0, 100].

2. Generate time-varying covariates on a fine grid of [0, τ ]. For t ∈ {0,∆s, 2∆s, ...., τ}
with ∆s = 0.01, i ∈ {1, 2, ..., n}, we generate random variables αi1, . . . , αi5 indepen-
dently from a Uniform (0, 1) distribution, and qi independently from a Uniform (0, τ)
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distribution, and construct two time-varying covariates as follows:

x1i(t) = αi1 + αi2 sin(2πt/τ) + αi3 cos(2πt/τ) + αi4 sin(4πt/τ) + αi5 cos(4πt/τ),

x2i(t) =

{
0, if t ≤ qi;
1, if t > qi.

The sample paths of both covariates are left-continuous step functions with right limit.
We also generate three time-independent covariates:

x3i ∼ Bernoulli (0.6),

x4i ∼ Poisson (2), truncated at 5,

x5i ∼ Beta (2, 5).

3. In Setup 1, the conditional hazard function is

λ[t|xi(t)] = λ0(t)e
2x1i(t)+2x2i(t)+2x3i+2x4i+2x5i , (8)

and in Setup 2,
λ[t|xi(t)] = λ0(t)e

2x1i(t)
2+2x2i(t)+2x3ix4i+2x5i . (9)

Clearly, fitting the Cox model λ[t|xi(t)] = λ0(t) exp{β1x1i(t) + β2x2i(t) + β3x3i +
β4x4i+β5x5i} with data generated from (9) in Setup 2 will not yield desirable results.

4. Once covariates are generated, we numerically evaluate the conditional cumulative
hazard function and the conditional survival function on the fine grid of survival
time. Specifically, for s ∈ {0,∆s, 2∆s, . . . , τ},

Λ[t|x̃i(t)] = ∆s
∑
s≤t

λi[s|xi(s)],

S[t|x̃i(t)] = exp {−Λi[t|x̃i(t)]} .

5. For i ∈ {1, 2, ..., n}, we generate random variable ui from a Uniform (0, 1) distribution,
then obtain the failure time by ti = sup {t : Si[t|x̃i(t)] ≥ ui}.

6. We generate the censoring time ci from an exponential distribution. Then we have
yi = ti ∧ ci and δi = I(ti ≤ ci). The parameter of the exponential distribution is
chosen to yield a censoring rate around 20% in setup (8), and about 50% in setup (9).

For each simulation setup, we independently generate a training set and a validation set
with equal sample size, then fit our model using neural networks. We refit the model by
swapping training and validation sets, and take the average as our estimator. For the Cox
regression, we maximize the partial likelihood using all data. We repeat the process for N
independent data sets, and calculate the average and sample variance of theseN estimates at
each time point on the fine grid for another set of randomly generated covariates. Finally, we
plot the sample average of conditional survival curves estimated by neural networks together
with the empirical confidence band, the average conditional survival curves estimated from
the Cox regression, and the true conditional survival curve for a comparison.
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Figure 2: Conditional survival curves for 9 different sets of covariates when the Cox model
is corrected specified (censoring rate around 20%).

The simulation results illustrated in both Figure 2 and Figure 3 are based on a sample
size of n = 3000 (1500 for training and 1500 for validation) with 100 repetitions, where the
curves for 9 different sets of covariates are presented. The green dashed line is the average
estimated curve by using the partial likelihood method, the orange dash-dot line is the
average estimated curve by our proposed neural networks method, and the black solid line
is the truth curve. The dotted orange curves are the 90% confidence band obtained from the
100 repeated simulation runs using the proposed method. From Figure 2 we see that when
the Cox model is correctly specified, both the partial likelihood method and our proposed
neural networks method perform well, with estimated survival curves nicely overlapping with
the corresponding true curves. When the Cox model is misspecified, Figure 3 shows that
the partial likelihood approach yields severe biases, whereas the proposed neural network
method still works well with a similar performance to that in Setup 1 shown in Figure 2
even with a higher censoring rate.
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Figure 3: Conditional survival curves for 9 different sets of covariates when the Cox pro-
portional hazards assumption is violated (censoring rate around 50%).
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3.2 Uncensored Data

For uncensored continuous outcomes, the traditional neural network method with the com-
monly used L2 loss function gives the conditional mean estimator. Then the conditional
distribution function given a set of covariate values can be estimated by shifting the center
of the empirical distribution of training set residuals to the estimated conditional mean.
This would yield a valid estimator under the assumption that the errors (outcomes subtract
their conditional means) are i.i.d. and uncorrelated with conditional means. We will eval-
uate the impact of this widely imposed condition for the mean regression via simulations.
On the other hand, an estimator of the conditional distribution function gives a conditional
mean estimator as follows:∫ ∞

−∞
tdF̂ (t|x) =

n∑
i=1

ti

(
F̂ (ti|x)− F̂k(ti−1|x)

)
.

Thus, we will compare our method to the method with L2 loss on the estimation of the
conditional distribution function as well as the estimation of the conditional mean.

In the following simulation studies, we consider i.i.d. data generated from the following
model:

yi = x21i + x2ix3i + x3ix4i + x5i + εig(xi),

i = 1, . . . , n, where xi denotes the i-th vector of all covariates, εi is mean-zero given all
covariates, and g is a function of covariates, so εig(xi) is the i-th error term with zero-
mean. We consider two simulation setups. In the first setup, the error is uncorrelated
with the mean and has constant variance. In the second setup, the error is correlated
with the mean and has non-constant variance. We would expect our new method either
performs similarly or outperforms the method with L2 loss since our loss function is based
on the nonparametric likelihood function that is free of any model assumption. Specifically,
covariate values x1i, . . . , x5i are generated from the following distributions:

x1i ∼ N (0, 1), truncated at ± 3,

x2i ∼ Uniform (0, 1),

x3i ∼ Beta (0.5, 0.5),

x4i ∼ Bernoulli (0.5),

x5i ∼ Poisson (2), truncated at 5.

The two setups are:

Setup 1 (uncorrelated error with constant variance): generate another covariate x6i ∼
N (1, 1) independently, then generate εi ∼ a mixture distribution of N (−2, 1), N (0, 1),
and 0.5x26i with mixture probabilities (0.1, 0.7, 0.2), and let g(xi) = c, where c is a
constant.

Setup 2 (correlated error with non-constant variance): generate another covariate
x6i ∼ N (1 + 0.5x1i, 0.75), such that(

x1i
x6i

)
∼ N

((
0
1

)
,

(
1 0.5

0.5 1

))
,
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then generate εi ∼ a mixture distribution of N (−2, 1), N (0, 1), and 0.5x26i with mixture
probabilities (0.1, 0.7, 0.2), and let g(xi) = cx21i, where c is a constant.

Note that different values of constant c yield different signal to noise ratios in both setups.

For each setup, we generate independent training and validation data sets with equal
sample size, then fit both models with our general loss given in (6) and the L2 loss using
the same neural network architecture. Figure 4 and Figure 5 illustrate the comparisons of
estimated conditional distribution functions given 9 different sets of covariates between these
two methods with a sample size of 5000 and 100 replications. In these figures, the black
solid curve represents the true conditional distribution function, the green dashed curve
represents the estimated conditional distribution function using L2 loss, and the orange
dash-dot curve represents the estimated conditional distribution using our method. The
orange dotted curves are the 90% confidence band estimated using our method from the
100 repeated experiments. Figure 4 illustrates that when the error is uncorrelated with the
covariates and has constant variance (Setup 1), both methods perform well in estimating the
conditional distribution functions. When the error becomes correlated with the covariates
and has non-constant variance (Setup 2), the traditional neural network method using L2

loss fails, which is illustrated in Figure 5.

Further more, we compare the conditional mean estimates of both methods under two
different sample sizes (n = 1000 and n = 5000) and two different magnitudes of noises
(c = 0.5 and c = 1). We evaluate the performance of both methods by averaging the
mean and median squared prediction errors, respectively, of 500 independently generated
test data points over 100 replications, and summarize the results in Table 3. Coverage
rates of 90% and 95% predictive intervals obtained using our method are also presented
in Table 3. In Setup 1, both methods have similar mean squared prediction error, and
our method yields slightly smaller median squared prediction error. In Setup 2, our model
yields slightly better mean squared error, and significantly better median squared error.
Our model provides reasonable prediction coverage rates in both setups, with improved
performance as the sample size increases.

Additionally, we provide more detailed evaluation of the performance of conditional
distribution estimates using test data by comparing sample proportions (empirical cumula-
tive probabilities) at several estimated percentiles to corresponding population cumulative
probabilities. We consider two cases in the above simulations: Setup 1 and Setup 2 when
n = 1000 and c = 0.5. In each case, for a considered (target) probability we obtain the
estimated percentile for each individual in the test set, then calculate the frequency of indi-
viduals with response values less than or equal to their estimated percentiles. We average
the results over 100 independent replications, which are summarized in Table 4. From
Table 4 we see that our method provides reasonably accurate estimates of the conditional
distribution functions for a moderate sample size.

3.3 Comparisons to Kernel Methods for Uncensored Data

It is advantageous of using neural networks for estimating the conditional distribution when
there are several continuous covariates. For low dimensional continuous covariates, espe-
cially 1-D or 2-D, kernel methods can be applied for estimating conditional distributions
(Hall et al., 1999). We first consider the following example of Hall et al. (1999) with 1-D
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Figure 4: Conditional distribution functions given 9 different sets of covariate values for
uncensored data generated in Setup 1 with c=0.5.
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Figure 5: Conditional distribution functions given 9 different sets of covariate values for
uncensored data generated in Setup 2 with c=0.5.
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Sample size n 1000 5000

Setup 1
c 0.5 1 0.5 1

L2 method mean squared error 0.50 1.83 0.45 1.73
new method mean squared error 0.51 1.84 0.44 1.73
L2 method median squared error 0.17 0.59 0.14 0.52
new method median squared error 0.16 0.56 0.13 0.51
new method 90% coverage rate 0.90 0.90 0.90 0.90
new method 95% coverage rate 0.95 0.95 0.95 0.96

Setup 2
c 0.5 1 0.5 1

L2 method mean squared error 1.79 6.90 1.65 6.47
new method mean squared error 1.74 6.84 1.58 6.34
L2 method median squared error 0.09 0.27 0.04 0.13
new method median squared error 0.02 0.08 0.01 0.05
new method 90% coverage rate 0.87 0.87 0.91 0.91
new method 95% coverage rate 0.91 0.91 0.95 0.94

Table 3: Average mean/median squared errors of both methods and the prediction coverage
rate of the new method over 100 replications.

Target probability 0.10 0,20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Setup 1 0.11 0.20 0.30 0.40 0.51 0.62 0.72 0.82 0.91
Setup 2 0.09 0.18 0.29 0.40 0.52 0.63 0.74 0.83 0.92

Table 4: Average empirical cumulative probabilities of 100 repeated test sets at several
estimated percentiles (n = 1000, c = 0.5).
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(a) (b)

Figure 6: Boxplots of MADEs for the NW method and our proposed method. (a) 1-D
covariate, n = 1000, (b) 2-D covariates, n = 1000.

covariate to compare our method with the Nadaraya-Watson (NW) estimator:

Yi = 2 sin(3.1416Xi) + εi,

where {Xi} and {εi} are two independent sequences of independent random variables having
a common distribution with density 1 − |x| on [−1, 1]. Following Hall et al. (1999), we
estimate the conditional distribution function of Y given X on a regular grid defined by
steps .067 and .054 in x- and y-axes, and evaluate the performance of estimators via mean
absolute deviation error (MADE), which is defined as follows:

MADE =

∑
i |F̂ (yi|xi)− F (yi|xi)|I(.001 ≤ F (yi|xi) ≤ .999)∑

i I(.001 ≤ F (yi|xi) ≤ .999)

For the NW approach, we select bandwidth via a 5-fold cross-validation using mean
square errors. For the neural network method, we use the fixed hyperparameters discussed
in Section 2.3. Other combinations of hyperparameters yield similar results. The boxplots
of MADEs in Figure 6a illustrates the results of simulations with a sample size of 1000 over
100 replications. We can see that NW method yields slightly better MADEs.

We further examine the case with two continuous covariates. Specifically, we add another
random covariate to the above mean structure:

Yi = 2 sin(3.1416X1i) +X2i + εi,

where {X1i} and {εi} are still from a distribution with density 1− |x| on [−1, 1], and {X2i}
is from uniform(-1,1). We estimate the conditional distribution function on a grid defined
by steps .067, .067 and .054 in x1-, x2- and y-axes. The boxplots of MADEs obtained from
100 simulations with a sample size of 1000 are presented in Figure 6b, which show that the
NW method loses its edge when the covariate dimension increases. It is well-known that
going to any higher dimension will be difficult for kernel methods.

4. Real-World Data Sets

In this section, we illustrate our proposed methods using several real-world data examples,
including both cases with censored and uncensored data.
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4.1 Censored Data Examples

There are five real-world data sets analyzed by Kvamme et al. (2019). We re-analyze all
these data sets using our method and compare with Kvamme et al. (2019), except one data
set that contains too many ties for which a discrete survival model would be more appropri-
ate. Theses four data sets are: the Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT), the Molecular Taxonomy of Breast Cancer Interna-
tional Consortium (METABRIC), the Rotterdam tumor bank and German Breast Cancer
Study Group (Rot.& GBSG), and the Assay Of Serum Free Light Chain (FLCHAIN).

The first three data sets are introduced and preprocessed by Katzman et al. (2018).
The fourth data set is from the survival package of R (Therneau (2021)) and preprocessed
by Kvamme et al. (2019). These four data sets have sample sizes of a few thousand and
the covariate numbers range from 7 to 14. The covariates in these data sets are all time-
independent.

To compare with their method, we use the same 5-fold cross-validated evaluation criteria
described in Kvamme et al. (2019), including concordance index (C-index), integrated Brier
score (IBS) and integrated binomial log-likelihood (IBLL). The time-dependent C-index
(Antolini et al., 2005) estimates the probability that the predicted survival times of two
comparable individuals have the same ordering as their true survival times,

C-index = P [Ŝ(Ti|xi) < Ŝ(Ti|xj)|Ti < Tj ,∆i = 1].

The generalized Brier score (Graf et al., 1999) can be interpreted as the mean squared error
of the probability estimates. To account for censoring, the scores are weighted by inverse
censoring survival probability. In particular, for a fixed time t,

BS(t) =
1

n

n∑
i=1

 Ŝ(t|xi)2I(Yi ≤ t,∆i = 1)

Ĝ(Yi)
+

[
1− Ŝ(t|xi)

]2
I(Yi > t)

Ĝ(t)

 .

where Ĝ(t) is the Kaplan-Meier estimate of the censoring time survival function. The
binomial log-likelihood is similar to the Brier score,

BLL(t) =
1

n

n∑
i=1

 log
[
1− Ŝ(t|xi)

]
I(Yi ≤ t,∆i = 1)

Ĝ(Yi)
+

log
[
Ŝ(t|xi)

]
I(Yi > t)

Ĝ(t)

 .

The integrated Brier score IBS and the integrated binomial log-likelihood score IBLL are
calculated by numerical integration over the time duration of the test set.

The results of our method are summarized in Table 5, together with the results of
Kvamme et al. (2019) for a comparison. For SUPPORT and METABRIC data, our model
yields the best integrated brier score and integrated binomial log-likelihood.

For Rot.&GBSG data, our model has the best C-index. The other results are comparable
to that from the Kvamme et al. (2019). Note that in the 5-fold cross validation procedure,
we use the set-aside data only as the test set for evaluation of the criteria and the rest of
the data for training and validation of the neural networks, whereas Kvamme et al. (2019)
use the set-aside data as both the test set and the validation set which would lead to more
favorable evaluations.
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C-Index IBS IBLL
a b c a b c a b c

SUPPORT 0.613 0.629 0.609 0.213 0.212 0.195∗∗ -0.615 -0.613 -0.574∗∗

METABRIC 0.643 0.662 0.652∗ 0.174 0.172 0.166∗∗ -0.515 -0.511 -0.496∗∗

Rot.&GBSG 0.669 0.677 0.680∗∗ 0.171 0.169 0.176 -0.509 -0.502 -0.524
FLCHAIN 0.793 0.790 0.788 0.093 0.102 0.102∗ -0.314 -0.432 -0.336∗

Table 5: Comparisons of different methods (a: Cox-MLP (CC); b: Cox-Time; c: our new
method) for analyzing four real data sets. The result of our method is marked
with ** when it outperforms both Cox-MLP(CC) and Cox-Time, and is marked
with * when it outperforms one of the models.

4.2 Uncensored Data Examples

We use QSAR Fish Toxicity data set (Cassotti et al., 2015) and Airfoil Self-Noise data set
(Brooks et al., 1989) to illustrate our method for uncensored data. QSAR Fish Toxicity
data set is collected for developing quantitative regression models to predict acute aquatic
toxicity towards the fish Pimephales promelas (fathead minnow) on a set of 908 chemicals.
Six molecular descriptors (representing the structure of chemical compounds) are used as
the covariates and the concentration that causes death in 50% of test fish over a test
duration of 96 hours, called LC50 96 hours (ranges from 0.053 to 9.612 with a mean of
4.064) was used as model response. The 908 data points are curated and filtered from
experimental data. The six molecular descriptors come from a variable selection procedure
through genetic algorithms. In their original research article, the authors used a k-nearest-
neighbours (kNN) algorithm to estimate the mean. The data set can be obtained from the
machine learning repository of the University of California, Irvine (https://archive.ics.
uci.edu/ml/datasets/QSAR+fish+toxicity).

Airfoil Self-Noise data set is collected for developing a noise prediction model. Self-
noise is defined as the noise generated when an airfoil passes through smooth non-turbulent
inflow conditions. The data set contains 1503 samples and six variables. The response
variable is scaled sound pressure level (dB) and the covariates are, frequency (Hz), angle
of attack (◦), chord length (m), free-stream velocity (m/s), and suction side displacement
thickness (m). The data set can also be obtained from the machine learning repository of the
University of California, Irvine (https://archive.ics.uci.edu/ml/datasets/Airfoil+
Self-Noise#).

We use 5-fold cross-validated R2, mean squared error and median squared error to
evaluate our method and the neural networks with L2 loss on these two real-world data sets
and summarize the results in Table 6. Our new method yields better prediction in all three
criteria for both data sets. The large advantage of our method for the Airfoil Self-Noise
data may be due to a very skewed distribution of the response variable. For each data
set, predicted conditional distribution functions given two different sets of covariate values
obtained by our method are presented in Figure 7 for an illustration.
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Fish Airfoil
L2 method New method L2 method New method

Mean squared error 0.86 0.82 19.76 8.52
Median squared error 0.22 0.20 8.24 2.38
R2 0.59 0.61 0.60 0.82

Table 6: Prediction results of the L2 method and the new method

(a) (b)

(c) (d)

Figure 7: Estimated conditional distribution functions for 4 individuals. (a)(b): Fish Tox-
icity, (c)(d): Airfoil. The three vertical lines illustrate locations of the predicted
mean, the predicted median and the observed value.
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5. Discussion

Early stopping based on a hold-out validation set is used to prevent over-fitting in this work.
It is well accepted in deep learning field that early stopping is an effective regularization
method. Goodfellow et al. (2016) pointed out that, in the case of a linear regression model
with a quadratic error function and using simple gradient descent, early stopping is equiva-
lent to L2 regularization. Thus, intuitively, the validation loss can be a good approximation
of the population loss, which implies the estimator obtained using early stopping can be a
good approximation of the minimizer of the population loss. A thorough investigation of
the asymptotic behavior of our approach using early stopping would be of great interest.

In this article, we focus on problems with relatively low dimensional inputs. For high
dimensional inputs, especially when the input dimension is greater the sample size, regu-
larization techniques that restrict the model complexity can be useful. For example, Ching
et al. (2018) uses ridge and dropout regularization. Another work (Feng and Simon, 2019)
adds a sparse group lasso penalty on the first-layer input weights, so that the neural net
would only use a small subset of the original features. It is worth exploring the integration
of these methods into our model for high-dimensional problems.

The data expansion technique used in this article provides a simple and natural way of
numerically evaluating the full likelihood based loss function. However, the data expansion
would increase the effective sample size from n to n2. This may not be a concern for the
survival problem with time-varying covariates because each covariate process needs to be
observed at least at all distinct time points, leading to an order of n2 number of distinct data
points. When covariates are random variables other than stochastic processes, the sample
size is indeed n, thus there should be a large room for developing more efficient numerical
approaches. In particular, a recent work by Tang et al. (2022b) comes to our attention,
which combines neural networks with an ordinary differential equation (ODE) framework to
estimate the conditional survival function given a set of baseline covariates, in other words,
time-independent covariates. They use ODE solver to integrate the cumulative hazard
function from an initial value and its derivative (the hazard function). Based on adjoint
sensitivity analysis, they are able to avoid going into the ODE solver in back propagation,
but use another ODE to calculate the gradient and update the parameters. They show
such an algorithm is faster than conventional methods, with a time complexity O(n) (Tang
et al., 2022a). We have compared our method to the ODE approach numerically using the
simulation setup 1 for uncensored data. The comparison is illustrated in Figure 8. It can
be seen that the ODE approach uses memory more efficiently as it does not require data
expansion; the time complexity of the ODE model is proportional to n; and our method is
faster than the ODE method for a broad range of sample sizes, indicating a memory-speed
trade-off of our method and a large coefficient of the ODE complexity. For much larger
sample sizes, we would expect the ODE method beats our method in speed (results not
obtained due to the memory limitation). On the other hand, the ODE method may loss its
advantage in estimating the survival function with time-varying covariates because of the
needed data expansion to a size of n2.

An anonymous reviewer has drawn our attention to an interesting recent work on the
nonparametric conditional distribution function estimation for uncensored data (Li et al.,
2022). The work of Li et al. (2022) is very different to ours. They first decompose the
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Figure 8: The memory and time cost vs. sample size for ODE model and our model

response variable and the covariates into resolutions and patterns via respective binary
expansions, and then fit a set of penalized logistic regressions. Their method essentially
estimates the conditional distribution using histograms, whereas our method directly esti-
mates the smooth conditional hazard function via neural networks.
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