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Abstract

We introduce a computational efficient data-driven framework suitable for quantifying the
uncertainty in physical parameters and model formulation of computer models, represented
by differential equations. We construct physics-informed priors, which are multi-output GP
priors that encode the model’s structure in the covariance function. This is extended into a
fully Bayesian framework that quantifies the uncertainty of physical parameters and model
predictions. Since physical models often are imperfect descriptions of the real process, we
allow the model to deviate from the observed data by considering a discrepancy function.
For inference Hamiltonian Monte Carlo is used. Further, approximations for big data are
developed that reduce the computational complexity from O(N3) to O(N · m2), where
m� N. Our approach is demonstrated in simulation and real data case studies where the
physics are described by time-dependent ODEs (cardiovascular models) and space-time
dependent PDEs (heat equation). In the studies, it is shown that our modelling framework
can recover the true parameters of the physical models in cases where 1) the reality is
more complex than our modelling choice and 2) the data acquisition process is biased while
also producing accurate predictions. Furthermore, it is demonstrated that our approach is
computationally faster than traditional Bayesian calibration methods.

Keywords: Gaussian process, model discrepancy, physics-informed prior, inverse prob-
lem, arterial Windkessel, Heat equation, physics-informed ML

1. Introduction

Physical models are mathematical representations of the phenomenon under study and are
commonly described by (systems of) differential equations. They are usually deduced from
first principles and aim to describe the underlying physics explicitly. In contrast to purely
data-driven models, they allow predictions in regions where we do not have observed data
(extrapolation). For example, we can predict the future evolution of heat in a material
at time tpred given observed data up to time tobs, where tobs < tpred. To enable model
predictions, we have to estimate a set of unknown parameters based on observations. Con-
ventional methods for estimating the unknown parameters use the observed data in curve
fitting algorithms. However, even under the best set of these parameters, the fit to the
observed data often suffers from systematic discrepancies.
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We consider the situation that we have a possible imperfect model based on linear
differential equations and that the aim is to estimate these parameters based on noisy data.
Such parameters often have a concrete scientific interpretation. For example, in our case
studies using the Windkessel model, the hemodynamical parameters, arterial compliance,
and total peripheral resistance can provide insights into the development of hypertension.
Hence, the parameters are of interest on their own. Another common situation is that
predictions are the main interest, but to be able to use the physical models for predictions,
the unknown parameters are needed.

In this paper, we propose and demonstrate a new method for computationally efficiently
estimating the model parameters, including possible prior knowledge and the possibility for
model discrepancy. We achieve this by combining the framework of Bayesian calibration
for accounting for imperfect models (Kennedy and O’Hagan, 2001) with physics-informed
priors for linear differential equations (Raissi et al., 2017).

Notation We consider physical models formulated as linear parametric differential equa-
tions Lφxu(x) = f(x), where L is the linear differential operator and φ = (φ1, . . . , φp) is
the vector of physical parameters. For example, for the first order non-homogeneous dif-
ferential equation, φ1

du(x)
dx + φ−12 u(x) = f(x) we want to estimate the parameters φ1 and

φ2 (an example of first-order differential equation can be found in Section 3). We denote
the observed data of the function u at Xu = (Xu1 , . . . , Xunu

) as yu = (yu1 , . . . , yunu
) and

similarly for the function f at Xf = (Xf1 , . . . , Xfnf
) as yf = (yf1 , . . . , yfnf

), where nu and

nf is the number of observed data for the functions u and f, respectively.

1.1 Accounting for Model Discrepancy using Bayesian Calibration

It has been twenty years since the seminal paper of Kennedy and O’Hagan (2001) (KOH)
where they introduced the idea of Bayesian calibration by accounting for model discrep-
ancy. In their model formulation, they added a functional discrepancy term, δ(x) to ac-
count for the model-form uncertainty which arises from a low-fidelity physical model. More
specifically, they modelled the noise-corrupted observed data, y, by the physical model, η
and the systematic model discrepancy as y(x) = η(x,φ) + δ(x) + ε, where x is the ob-
served inputs and φ is the set of (unknown) physical parameters. A flexible Gaussian
process (GP) prior (Williams and Rasmussen, 2006) was used for the model discrepancy,
δ(x) ∼ GP (0,Kδ(x, x

′)), where K denotes the covariance function.

The KOH formulation has been applied in many fields of science, including engineering
(Bayarri et al., 2009a), hydrology (Reichert and Mieleitner, 2009), ecology (Arhonditsis
et al., 2008), health sciences (Strong et al., 2012; Spitieris et al., 2022), biology (Henderson
et al., 2009), climate modelling (Forest et al., 2008; Goldstein and Rougier, 2009; Salter
et al., 2019) and astrophysics (Habib et al., 2007).

Often the main challenge of this approach is that the numerical simulator of the physical
model η is computationally expensive, and KOH replaced the model with an emulator
(Sacks et al., 1989), which is a statistical approximation to the model. A typical choice
for an emulator is a GP model trained on the numerical simulator runs created according
to an experimental design on [X,φ]−space. For inference, simulation data of size N and
observed data of size n are used, where N � n. However, the physical model outputs are
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usually functional, and more than one, hence the O((N + n)3) computational complexity
of the GP model can be prohibitive in such cases.

Higdon et al. (2004) utilized this formulation for models for which the numerical sim-
ulators are not expensive to evaluate, and therefore there is no need for constructing an
emulator. To deal with the computational complexity of the emulator in the case of mul-
tivariate and time-dependent outputs, principal components analysis (PCA) has been used
to reduce the dimensionality of the problem (Higdon et al., 2008a,b). Other approaches
involve the modification of the GP emulator, for example, through a composite likelihood
(Chang et al., 2015), local approximate GP regression (Gramacy and Apley, 2015) and basis
representations (Bayarri et al., 2007; Chang and Guillas, 2019). Recent advances in Deep
GPs (Damianou and Lawrence, 2013) with random feature expansion (Cutajar et al., 2017)
have allowed more complex modelling structures (Marmin and Filippone, 2022).

Furthermore, Brynjarsdóttir and O’Hagan (2014) showed through a motivating example
that not accounting for model discrepancy in a low-fidelity physical model can lead to biased
and over-confident physical parameter estimates.

1.2 Physics-Informed Priors

Let u(x) ∼ GP (0,Kuu(x, x′)), denote a GP with mean 0 and kernel Kuu(x, x′) where
Kuu(x, x′) is the covariance between the process u(x) at location x and x′, Kuu(x, x′) =
Cov(u(x), u(x′)), which typically involves parameters that we will denote θ, but are sup-
pressed for now. A key property that enables the construction of physics-informed priors is
that the derivatives of a Gaussian process are also a Gaussian process (Adler, 2010, Theorem
2.2.2). We then have that

Cov

(
u(x),

∂u(x′)

∂x′

)
=
∂Kuu(x, x′)

∂x′
and Cov

(
∂u(x)

∂x
,
∂u(x′)

∂x′

)
=
∂2Kuu(x, x′)

∂x∂x′
. (1)

Eq. (1) is valid only if the covariance function is differentiable, thus a convenient choice

can be the squared exponential kernel, K(x, x′) = σ2exp

(
−0.5

(
x−x′
l

)2)
where l is a

parameter scaling the strength of the dependency. To build physics-informed priors for
linear differential equations, we follow the idea of Raissi et al. (2017) where they as-
sume that u(t) ∼ GP (0,Kuu(x, x′)), and then by using eq. (1) we have that f(t) ∼
GP (0,Kff (x, x′)), where Kff (x, x′) = LφxLφx′Kuu(x, x′), and also the covariances between

u and f are Kuf (x, x′) = Lφx′Kuu(x, x′) and Kfu(x, x′) = LφxKuu(x, x′). Note that the co-
variance functions Kff and Kuf are functions of the physical parameters φ. The advantage
of this approach is that we have built a multi-output GP (of u and f), which bypasses the
need to solve the differential equation numerically, which can be computationally inefficient
and also the physical parameters φ are now hyperparameters of the kernel. Raissi et al.
(2017) obtained point estimates of the physical parameters by maximizing the marginal
log-likelihood.

This work is motivated by a medical Digital Twin for prevention and treatment of
hypertension (or high blood pressure). Physical models of the cardiovascular system allow
for estimating physical parameters that are important to hypertension and can not be
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measured directly. For example, a low-fidelity model of the cardiovascular system, the
Windkessel model (Westerhof et al., 2009) (introduced in Section 3), is a linear differential
equation linking blood pressure and blood flow. It has two physical parameters, arterial
compliance C and resistance R. These are unknown in practice but can be estimated by
fitting the physical model to the observed blood pressure and inflow data measured by
sensors.

We know that low-fidelity cardiovascular models are imperfect mathematical represen-
tations of the real process, and if we do not account for model discrepancy, the parameter
estimates are biased (Brynjarsdóttir and O’Hagan, 2014). Therefore, we want to incorpo-
rate a model discrepancy term in the model formulation to account for the model’s missing
physics, as suggested by Kennedy and O’Hagan (2001). The differential equations typically
use numerical solvers to simulate data from the model, and their computational cost can
be prohibitive for an MCMC scheme. For this reason, KOH built an emulator, which is a
GP model trained on simulator data. More specifically, to obtain data for the emulator,
we run the simulator on an experimental design on the input and physical parameter space
(for example, a Latin hypercube design). The challenges for employing this approach in a
Digital Twin technology are 1) in order to run the simulator, initial and boundary condi-
tions might be needed, which might not be known in practice, 2) the KOH approach and
methods discussed in Section 1.1 utilize two sources of information, the N simulator data
and n observed data and have complexity O((N +n)3), which might be prohibitive for Dig-
ital Twin technologies, 3) finding an appropriate experimental design can be a challenging
task that is hard to automate, and also the design can significantly affect the result of the
KOH approach.

Contributions (i) Contributions from physics-informed priors point of view: We extend
the idea of physics-informed priors in a fully Bayesian framework that allows for quanti-
fying the uncertainty in physical parameters. Further, we incorporate a functional model
discrepancy in the physics-informed prior formulation to account for imperfect models.
(ii) Contribution from Bayesian calibration point of view: We replace the computationally
expensive emulator with the physics-informed prior, and this reduces the complexity from
O((N + n)3) to O(n3), since the model is evaluated only on the observed data.
(iii) Modelling flexibility contribution: Using the physics-informed prior in a fully Bayesian
framework allows for more flexible modelling, and we demonstrate this flexibility by con-
sidering a case where the data acquisition process is biased.
(iv) Approximations for big data: We derive approximations for our models that reduce the
computational cost from O(n3) to O(n ·m2), where m� n.

The remainder of the paper is organized as follows. In Section 2, we formally define
the physics-informed prior models. First, the fully Bayesian extension (Section 2.1), then
the Bayesian calibration framework with model discrepancy (Section 2.2) and finally the
model for biased data acquisition process (Section 2.3). In Section 3, we consider a simu-
lation study with the Windkessel models, which are time-dependent differential equations
where we account for model discrepancy. In Section 4, we use the Heat equation, which
is space and time-dependent differential equation, where we consider a simulation study
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with biased sensor data. In Section 5, we demonstrate a real data case study with the
Windkessel physics-informed prior model. In Section 6, we compare the proposed approach
with methods it improves. In Section 7, we derive approximations for our method, which
reduce the computational complexity to O(n · m2). Finally, in Section 8, we discuss the
results and further work. The code to replicate all the results in the paper is available at
https://github.com/MiSpitieris/BC-with-PI-priors.

2. Bayesian Calibration with Physics-Informed Priors

In this section, we introduce the Bayesian calibration framework for computer models de-
scribed by linear parametric differential equations, Lφxu(x) = f(x), using physics-informed
priors. In Section 2.1, we extend this in a fully Bayesian framework. To account for imper-
fect physical models, the model formulation is extended, incorporating a functional model
discrepancy in Section 2.2. Section 2.3 introduces the model formulation for biased data.

2.1 Fully Bayesian Analysis with Physics-Informed Priors

For the linear differential equation, Lφxu(x) = f(x) we follow Raissi et al. (2017) and build
physics-informed priors assuming u(x) ∼ GP (µu(x),Kuu(x, x′)). Unlike Raissi et al. (2017)

we also include a mean function, µu(x | β), and this results in µf (x | β, φ) = Lφxµu(x),
where β is the vector of the mean function parameters. The observed data, yu and yf
are modelled by the physics-informed prior with i.i.d. Gaussian noise, εu ∼ N(0, σ2u) and
εf ∼ N(0, σ2f ), respectively,

yu = u(xu) + εu,

yf = f(xf ) + εf .

This results in the following multi-output GP

p(y | θ,φ, σu, σf ) = N (µ,K + S) (2)

where y =

[
yu

yf

]
, K =

[
Kuu(Xu,Xu | θ) Kuf (Xu,Xf | θ,φ)
Kfu(Xf ,Xu | θ,φ) Kff (Xf ,Xf | θ,φ)

]
, S =

[
σ2uIu 0

0 σ2fIf

]
,

µ =

[
µu(Xu | β)
µf (Xf | β, φ)

]
and θ is the parameters of the kernel of the GP prior for u.

We assign priors to the physical model parameters φ that reflect underlying scientific
knowledge and also assign priors to the mean, kernel and noise parameters. For convenience,
we denote all the parameters collectively ξ = (φ,β,θ, σu, σf ). To sample the posterior
distribution of ξ standard sampling methods can be used. In this paper, we use Hamiltonian
Monte Carlo (HMC) sampling and, more specifically, the No U-Turn Sampler (NUTS)
(Hoffman et al., 2014) variation implemented in the probabilistic programming language
STAN (Carpenter et al., 2017).

Suppose now that we want to make predictions at new points X∗u, u(X∗u) = u∗. The
conditional distribution p(u∗ | X∗u,X,y, ξ) is multivariate Gaussian (see Appendix A.1 for
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derivation) and more specifically

p(u∗ | X∗u,X,y, ξ) = N (µ∗u,Σ
∗
u)

µ∗
u = µu(X∗u) + V∗u

T (K + S)−1(y − µ)

Σ∗
u = Kuu(X∗u,X

∗
u)−V∗u

T (K + S)−1V∗u,

where V∗u
T =

[
Kuu(X∗u,Xu) Kuf (X∗u,Xf )

]
.

Similarly, at new points X∗f , for the predictions f(X∗f ) = f∗ we have that

p(f∗ | X∗f ,X,y, ξ) = N (µ∗f ,Σ
∗
f )

µ∗
f = µf (X∗f ) + V∗f

T (K + S)−1(y − µ)

Σ∗
f = Kff (X∗f ,X

∗
f )−V∗f

T (K + S)−1V∗f ,

where V∗f
T =

[
Kfu(X∗f ,Xu) Kff (X∗f ,Xf )

]
.

2.2 Physics-Informed Priors for Imperfect Models

Physical models are often imperfect representations of reality. To incorporate this in the
model formulation, we follow Kennedy and O’Hagan (2001) and include a functional model
discrepancy. For simplicity, we assume discrepancy only on the function u(x) and we get
the following model formulation

yu = u(xu) + δu(xu) + εu, where δu(x) ∼ GP (0,Kδu(x, x′))

yf = f(xf ) + εf .

We follow Section 2.1 and assume Gaussian i.i.d. noise and physics-informed priors. This
results in the following multi-output GP

p(y | θ,θδu ,φ, σu, σf ) = N (µ,Kdisc + S) (3)

where y =

[
yu

yf

]
, Kdisc =

[
Kuu(Xu,Xu | θ) +Kδ(Xu,Xu | θδ) Kuf (Xu,Xf | θ,φ)

Kfu(Xf ,Xu | θ,φ) Kff (Xf ,Xf | θ,φ)

]
,

S =

[
σ2uIu 0

0 σ2fIf

]
and µ =

[
µu(Xu | β)
µf (Xf | β, φ)

]
.

Considering the covariance matrix Kdisc the only change compared to the covariance
matrix of (2) is an added term corresponding to the covariance matrix for the discrepancy
for the yu part. We have augmented the parameters in the vector θδ. As in Section 2.1, we
use a fully Bayesian approach where we assign prior distributions to all unknown parameters
denoted jointly as ξdisc = (φ,β,θ,θδ, σu, σf ) and inference is performed using HMC.

In order to make predictions at new points X∗u, u(X∗u) = u∗ we use that the conditional
distribution p(u∗ | X∗u,X,y, ξdisc) is multivariate Gaussian and more specifically

p(u∗ | X∗u,X,y, ξδ) = N (µ∗u,Σ
∗
u)

µ∗
u = µu(X∗u) + V∗u

T (Kdisc + S)−1(y − µ)

Σ∗
u = Kuu(X∗u,X

∗
u) +Kδ(X

∗
u,X

∗
u)−V∗u

T (Kdisc + S)−1V∗u,
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where V∗u
T =

[
Kuu(X∗u,Xu) +Kδ(X

∗
u,Xu) Kuf (X∗u,Xf )

]
. In comparison to model 2, the

predictive equations now includes the discrepancy δ(x) which models the missing physics.
The conditional distribution p(f∗ | X∗f ,X,y, ξ) is multivariate Gaussian and more specif-

ically

p(f∗ | X∗f ,X,y, ξδ) = N (µ∗f ,Σ
∗
f )

µ∗
f = µf (X∗f ) + V∗f

T (Kdisc + S)−1(y − µ)

Σ∗
f = Kff (X∗f ,X

∗
f )−V∗f

T (Kdisc + S)−1V∗f ,

where V∗f
T =

[
Kfu(X∗f ,Xu) Kff (X∗f ,Xf )

]
. The prediction equations for f∗ are similar

to those presented in Section 3.3. For more details on the derivation of equations p(u∗ |
X∗u,X,y, ξδ) and p(f∗ | X∗f ,X,y, ξδ) see Appendix A.2.

2.3 Physics-Informed Priors for Biased Data Acquisition

We now consider the setting where the physical model is perfect, but the observation errors
are dependent. For simplicity, suppose that only the data for the function u(x), yu is biased.
A model for this situation can be set up as

yu = u(xu) + Bias(xu) + εu, where Bias(x) ∼ GP (0,KBiasu(x, x′))

yf = f(xf ) + εf .

Mathematically the model formulation is similar to the model in Section 2.2 with the dif-
ference that the discrepancy kernel, Kδ is replaced by the Bias kernel KBias, but these have
the same prior formulation. Hence, the differences are in the interpretation of the discrep-
ancy/bias term and its consequences for predictions. Here we want to account for bias in
the observed data and then remove the bias in the model predictions. The physics-informed
prior is identical to Section 2.2, and the vector of the parameters ξ has been augmented with
the vector θB, which is the Bias GP hyperparameters, and we denote the kernel parameters
ξBias = (θ,θB,φ, σu, σf ). In order to make predictions at new points X∗u, u(X∗u) = u∗ we
have that the conditional distribution p(u∗ | X∗u,X,y, ξBias) is multivariate Gaussian (see
Appendix A.3) and more specifically

p(u∗ | X∗u,X,y, ξBias) = N (µ∗u,Σ
∗
u)

µ∗
u = µu(X∗u) + V∗u

T (KBias + S)−1(y − µ)

Σ∗
u = Kuu(X∗u,X

∗
u)−V∗u

T (KBias + S)−1V∗u,

where V∗u
T =

[
Kuu(X∗u,Xu) Kuf (X∗u,Xf )

]
. In contrast to Section 2.2 where we learn the

missing physics, and this helps to improve model predictions, we now remove the bias in
the predictions.
The conditional distribution p(f∗ | X∗f ,X,y, ξ) is multivariate Gaussian and more specifi-
cally

p(f∗ | X∗f ,X,y, ξB) = N (µ∗f ,Σ
∗
f )

µ∗
f = µf (X∗f ) + V∗f

T (KBias + S)−1(y − µ)

Σ∗
f = Kff (X∗f ,X

∗
f )−V∗f

T (KBias + S)−1V∗f ,

where V∗f
T =

[
Kfu(X∗f ,Xu) Kff (X∗f ,Xf )

]
.
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3. Synthetic Case Studies with Windkessel (WK) Models

In this section, we present a case study where the real physical process is more complex than
our modelling choice. More specifically, we use the arterial Windkessel models, which are
deterministic physical models describing the hemodynamics of the heart. First, we consider
a synthetic case study where we use noisy simulated data from the physical model. Our
goal is to use the fully Bayesian physics-informed prior in order to infer and quantify the
uncertainty of the physical and noise parameters but also to generate model predictions. In
a second synthetic case study, we simulate data from a more complex physical model than
our modelling choice. These models have mathematical connections that are described in
Section 3.1. Our goal is to infer the parameters of the more complex model by incorporating
in the physics-informed prior a discrepancy function. We also demonstrate the flexibility of
this approach by considering different kernel functions.

3.1 Windkessel Models

The arterial Windkessel models (Westerhof et al., 2009) describe the hemodynamics of the
heart in terms of physically interpretable parameters. The simplest model, the Windkessel
2 parameters model (WK2) describes the relationship between blood pressure, P (t) and
blood inflow, Q(t) by two key physical parameters, the total vascular resistance R and
arterial compliance, C and it is defined by the following linear differential equation

Q(t) =
1

R
P (t) + C

dP (t)

dt
. (4)

This model is the basis for building more complex physical models. For example, the
Windkessel 3 (WK3) parameters model introduce a second resistive parameter R1 and is
given by the following linear differential equation

dP (t)

dt
+
P (t)

R2C
=
Q(t)

C

(
1 +

R1

R2

)
+R1

dQ(t)

dt
. (5)

The inclusion of the third parameter increases flexibility and might improve fitting to the
observed data. However, it overestimates the total arterial compliance, C (Segers et al.,
2008). In Figure 1, we see the blood pressure waveform for the WK2 model (red) and
for a range of R1 values of the WK3 model (grey). From a modelling perspective, the R1

parameter controls the discrepancy between the two models. An important connection for
the synthetic case study is that the ratio of mean pressure over inflow equals R in the WK2
model, while for the WK3 model, this ratio is equal to R1 +R2 (Westerhof et al., 2009).

3.2 WK Case Study 1: Fully Bayesian Analyses

In this study, we simulate noisy data from the deterministic WK2 model (4) and use a
physics-informed probabilistic WK2 model to estimate the physical parameters and quantify
the uncertainty. We also produce model predictions for blood pressure, P (t) and blood
inflow, Q(t). To demonstrate this approach’s flexibility and do a sensitivity analysis of the
GP prior choice, we also consider three kernels. The squared exponential (SE), the rational
quadratic (RQ) and the periodic kernel (Per). The periodic kernel is a natural choice as the
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Figure 1: Blood pressure generated from
the WK2 model (red) and for a range of
R1 values [0.01, 0.2] from the WK3 model
(grey). The inflow and C values are iden-
tical for both models. The amplitude of
WK3-generated curve decreases linearly
with R1, while the models become equiv-
alent for R1 = 0.

blood pressure is a periodic phenomenon that repeats at each cardiac cycle (time between
two consecutive heartbeats).

To simulate blood pressure data, P (t) from the deterministic WK2 model, we choose
a given observed blood inflow, Q(t) (see Figure 3, bottom) and set parameter values, R =
1, C = 1.1. Gaussian i.i.d. noise is added to both pressure and inflow as follows, yP =
P (t) + εP and yQ = Q(t) + εQ, where εP ∼ N(0, 42) and εQ ∼ N(0, 102). We simulated
replicates at each observed temporal location, ti by synchronizing three blood pressure
cycles in one (see Figure 3, where the third column of plots is the unsynchronized data and
in the first column is the synchronized). Replicates are used as this helps to separate the
signal from noise.

We construct physics-informed prior for the WK2 model by assuming a GP prior on
pressure, PWK2(tP ) ∼ GP (µP ,KPP (tP , t

′
P )). Three models with different covariance func-

tions (squared exponential, rational quadratic and periodic) are considered. For all three
models, we assume a constant mean µ and the WK2 physics-informed prior is defined as
follows

yP = PWK2(tP ) + εP

yQ = QWK2(tQ) + εQ,
(6)

where PWK2(tP ) ∼ GP (µP ,K(tP , t
′
P )), εP ∼ N(0, σ2P ) and εQ ∼ N(0, σ2Q). This results in

the following multi-output GP prior

p(y | θ,φ, σP , σQ) = N (µ,K), (7)

where

y =

[
yP

yQ

]
, µ =

[
µP

R−1µP

]
and K =

[
KPP (tP , tP | θ) + σ2P IP KPQ(tP , tQ | θ,φ)
KQP (tQ, tP | θ,φ) KQQ(tQ, tQ | θ,φ) + σ2QIQ

]
(see Appendix B.1 for more details on the elements of the matrix K).

Furthermore, uniform priors are assigned on the physical parameters of interest on a range
of reasonable values, R,C ∼ U(0.5, 3) and also weakly informative priors to the other model
hyperparameters (see Appendix B.1, WK2 model).

We fit the fully Bayesian physics-informed WK2 model to the observed data. In Figure
2, the posterior distributions for the physical and noise parameters are plotted. We see
that all three models estimate the resistance value, R, accurately and the uncertainty is
relatively small. The posteriors for the squared exponential (SE) and the rational quadratic
(RQ) kernels are identical, while for the periodic kernel, the uncertainty is slightly reduced,
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Figure 2: Posterior distributions of the physical and noise parameters for the models: SE
(squared exponential), RQ (rational quadratic) and Per (periodic).

and this is probably because we impose more prior information by encoding on the model
that the phenomenon repeats itself exactly after some length p (here p = 1 sec., see Figure
2, right). The posterior of the compliance parameter, C, is concentrated around the true
value with small uncertainty and is also identical for all three models. All models also
estimate the pressure noise, σP well. The difference is found for the posterior of the blood
inflow noise parameter, σQ. In Figure 10, bottom plots, we see that the inflow is constant
two-thirds of the time and equals 0 (this happens during diastole, where the aortic valve
is closed, and consequently, the blood inflow is 0). Therefore, it is harder for the models
to smooth the observed data. However, this is an advantage of taking a fully Bayesian
approach since the true value of the noise parameter is within the 90% credible intervals.
In Figure 3, we see that all three models predict well blood pressure and blood inflow with
relatively small uncertainty.
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Figure 3: Predictions for all kernels. SE (squared exponential), RQ (rational quadratic)
and Per (periodic).
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3.3 WK Case Study 2: Model Discrepancy

In this synthetic case study, the ground truth is a more complex model than our modelling
choice. We simulate noisy data from the WK3 model and use the WK2 model as our
modelling choice. More specifically, for a given inflow Q(t), we simulate data from the
deterministic WK3 model, P (t) = PWK3(Q(t), R1 = 0.05, R2 = 1, C = 1.1). To create
the observed pressure, yP and inflow yQ data, we add i.i.d. Gaussian noise as follows,
yP = P (t) + εP , where εP ∼ N(0, 42) and yQ = Q(t) + εQ, where εQ ∼ N(0, 102). As
described in Section 3.1 we expect that RWK2 = RWK3

1 + RWK3
2 and CWK2 = CWK3 when

the WK2 model is fitted to the WK3 data. We consider two probabilistic models. The first
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Figure 4: Posterior distributions for all kernels denoted as SE (squared exponential), RQ
(rational quadratic) and Per (periodic) in a single plot (see colours). The first row of plots is
the resulting posteriors if not accounting for model discrepancy (WK2), and the second row
shows the posteriors of the model accounting for functional model discrepancy (WK2+δ(t)).

model does not account for model discrepancy, and it is identical to the model in Section
3.2. The second model incorporates a functional discrepancy δ(t) in the physics-informed
prior formulation and is defined as follows

yP = PWK2(tP ) + δ(tP ) + εP

yQ = QWK2(tQ) + εQ,
(8)

where PWK2(tP ) ∼ GP (µP ,K(tP , t
′
P )), εP ∼ N(0, σ2P ) and εQ ∼ N(0, σ2Q) as in Sec-

tion 3.2. In addition, we assume a GP prior for the model discrepancy δ(tP ), δ(tP ) ∼
GP (µP ,Kδ(tP , t

′
P )), resulting in the following multi-output GP prior

p(y | θ,θδ,φ, σP , σQ) = N (µ,K) (9)
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where y =

[
yP

yQ

]
, µ =

[
µP

R−1µP

]
and

K =

[
KPP (tP , tP | θ) +Kδ(tP , tP | θδ) + σ2P IP KPQ(tP , tQ | θ,φ)

KQP (tQ, tP | θ,φ) KQQ(tQ, tQ | θ,φ) + σ2QIQ

]
.

As in the unbiased physical model case study, we assign uniform priors on the physical
parameters of interest, R,C ∼ U(0.5, 3) and weakly informative priors to the other model
hyperparameters (see Appendix B.1, WK2 + δ(t) model). Finally, for the models with
squared exponential (SE) and rational quadratic (RQ) kernels, we use the squared expo-
nential kernel for δ(t), while for the model with the periodic (Per) kernel, we use a periodic
kernel for δ(t) as well.

Models not accounting and accounting for model discrepancy are fitted. Results are
found in Figures 4, 5 and 6. Results for models not accounting for discrepancy are in
upper rows, and corresponding models accounting for model discrepancy in lower rows. In
the upper row in Figure 4, we find that if we do not account for model discrepancy, the
posteriors of the physical parameters (R and C) are biased and overconfident. In particular,
the resistance parameter R is underestimated for the square exponential (SE) and rational
quadratic (RQ) covariance models, while for the periodic (Per) model, the uncertainty is
very small. For the compliance parameter, C, the posterior distributions of all three models
are almost identical with a relatively small uncertainty, and the true value is at the tail of
the posteriors. The physics-informed WK2 models can not capture the observed blood data
well (see Figure 5), resulting in overestimating the noise parameter σP (see Figure 4).
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Figure 5: Blood pressure predictions for all kernels denoted as SE (squared exponential),
RQ (rational quadratic) and Per (periodic). The first row of plots is the model without
accounting for discrepancy (WK2), and the second row the model accounting for model
discrepancy.
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Accounting for model discrepancy (WK2 + δ(t) in Figures 4, 5 and 6) results in a more
reasonable quantification of the uncertainty in the physical parameters (R and C, Figure
4, bottom row plots). The parameter uncertainties have now increased, which is sensible
given that the WK2 model is a simplification of the real data-generating process. However,
now it covers the true resistance value R. This also holds for the compliance parameter C.
Further, the noise parameter σP is estimated accurately, and this means that the model
has learned the discrepancy between the two models. We also produce blood pressure
and blood inflow predictions. In Figure 5, we see that if we do not account for model
discrepancy (WK2), the models (SE, RQ and Per) can not fit the observed data well the
prediction uncertainty is quite large. By accounting for model discrepancy (WK2 + δ(t)
model), the probabilistic model has learned the missing physics, and this has significantly
reduced the uncertainty in the model predictions. In Figure 6, we see that for both the
WK2 and the WK2+ δ(t) models, the predictions are accurate with small uncertainty since
there is not any discrepancy in the data generating process for the blood inflow.

As mentioned in Section 3.1, the R1 parameter controls the discrepancy between the
WK3 and WK2 models. We simulate noisy data from the WK3 model again, but now for a
range of R1 values, R1 = 0.03, . . . , 0.08, and we fit the two models (WK2 and WK2 + δ(t))
again in order to obtain the posterior distribution of the physical and noise parameters.
In Figure 7, top left plot, we observe that with increasing discrepancy (corresponds to in-
creased R1 value) the bias of the resistance parameter R for the WK2 model (red posteriors)
increases as well while accounting for model discrepancy (blue posteriors) produces reason-
able quantification of the uncertainty for all R1 values. In the top-right plot of Figure 7, we
observe that for the WK2 model (red posteriors), the true value of the compliance parame-
ter C is at the tail of the posterior in all cases while accounting for model discrepancy (blue
posteriors) produces reasonable quantification of the uncertainty and the posterior covers
the true value again. In the bottom left plot, we see that the overestimation of σP increases
with the discrepancy between the two models. While accounting for discrepancy, the model
estimates the pressure noise parameter σP accurately. Furthermore, in the bottom right
plot, we see that noise estimates for both models are identical since the blood inflow has no
discrepancy.

4. Synthetic Case Studies: Heat Flow

In this section, we consider the Heat equation, which is one of the most important differential
equations in science and engineering. To demonstrate our approach, we use only one spatial
dimension. First, we briefly describe the physical model and its physics-informed prior and
then consider two synthetic case studies. In the first study, we simulate data from the model
and add i.i.d. Gaussian noise. In the second study, we assume that the data acquisition
process is biased and that this bias can be described by a non-linear function. Our goal is
to estimate the model’s physical and noise parameters and quantify their uncertainty. We
also produce model predictions.
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Figure 6: Blood inflow predictions for all kernels denoted as SE (squared exponential),
RQ (rational quadratic) and Per (periodic). The first row of plots is the model without
accounting for discrepancy (WK2), and the second row is the model accounting for model
discrepancy.

4.1 Heat Equation

The non-homogeneous Heat equation is given by the following space-time dependent differ-
ential equation

∂u

∂t
− α∇2u = f, (10)

where u describes the heat distribution in space and time and f is the forcing (heat gen-
eration source). We treat the thermal conductivity parameter, α as unknown and we wish
to infer its value using noisy observed data. In the 1D case the heat equation describes the
distribution of heat, u(t, x) in a thin metal rod and the differential equation reduces to

∂u(t, x)

∂t
− α∂

2u(t, x)

∂2x
= f(t, x). (11)

For α = 1, the functions f(t, x) = exp(−t)(4π2−1) sin(2πx) and u(t, x) = exp(−t) sin(2πx)
satisfy this equation. This solution is used to simulate data for the synthetic case studies.

4.2 HF Case Study 1: Fully Bayesian Analysis

We simulate data from the model for α = 1 and the solution given in Section 4.1 and
add i.i.d. noise. More specifically, we simulate 35 data points for u(t, x) and 20 data
points for f(t, x) sampled randomly on [0, 1]2 (see Figure 8). We add Gaussian noise to
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Figure 7: Posterior distributions for a range of R1 values. Larger R1 values result in larger
discrepancy between the deterministic WK3 (true) and WK2 (modelling choice) models.
For both probabilistic models (WK2 and WK2 + δ(t)) the squared exponential kernel is
used.

the simulated u and f values and we obtain the observed data as follows,yu = u(t, x) + εu,
where εu ∼ N(0, 0.22) and yf = f(t, x) + εf , where εf ∼ N(0, 12).

To develop the physics-informed prior for the Heat equation, we assume that the heat
follows a GP prior, u(t, x) ∼ GP (µ,K((t, x), (t′, x′))) where we use an anisotropic squared
exponential kernel,

Kuu((t, x), (t′, x′)) = σ2 exp

(
− 1

2l2t
(t− t′)2

)
exp

(
− 1

2l2x
(x− x′)2

)
and µ is a constant. We derive the physics-informed prior, which is a multi-output GP
of u(t, x) and f(t, x) as detailed in Section 2. We use a uniform prior for α, α ∼ U [0, 10]
and weakly informative priors for the hyperparameters of the physics-informed prior (see
Appendix B.2, for details on the kernel hyperparameters and the physics-informed kernel).
To infer the parameters, we use Hamiltonian Monte Carlo sampling. In Figure 9, we
observe that for the physical parameter α, the posterior density is concentrated around
the true value, and the uncertainty is relatively small. The same holds for the forcing
noise estimation (Figure 9, right), while the heat noise is slightly underestimated (Figure 9,
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Figure 9: Posterior distributions for the parameters of interest (α is the diffusion parameter
and σu and σf are the heat and forcing noise standard deviations respectively). The red
dashed line is the true value.

middle). However, the 90% credible interval covers the true value and this is an advantage
of the fully Bayesian approach. In Figure 10, we produce predictions for both u and f. We
see that both prediction means are very accurate, and also the prediction uncertainty is
small.

4.3 HF Case Study 2: Biased Sensor Observations

For the hemodynamics models (introduced in Section 3), we know that they are imperfect
representations of the real process, and thus it is reasonable to incorporate a discrepancy
function in the model formulation. In contrast, we now assume that the heat equation can
accurately describe the true process. However, the sensors that measure the heat, u(t, x),
create bias to the measurements, yu in a non-linear way. More specifically, to demonstrate a
synthetic case study, we generate bias in the observational process by the following function,
b(t, x) = sin(4πx)/3 + 2t2(1 − t)2. We use the previously simulated data (unbiased sensor
data), and we add bias according to this non-linear function. In Figure 11, we see that this
function increases the absolute value of u(x, t) towards the boundaries of the spatial domain
and decreases the absolute value of u(x, t) towards 0 in the middle.
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Figure 10: Predictions for unbiased sensor data, plotted as time evolution snapshots. The
solid line represents the mean and the shaded region is the 90% credible interval, while the
dashed line is the true heat distribution.
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Figure 11: The left plot (u(t, x)) is the true heat distribution in space,x and time while the
right plot (u(x, t) + Bias(x,t)) is the heat distribution obtained from biased measurements.
The black dots represent the observation points.

The approach now is similar to the approach where we considered a discrepancy function,
but now this function is under the name Bias. The main reason for this is that this function
does not learn the missing physics of the process. It is used as an auxiliary process, and it
is removed when we use the model to predict. This also results in increased uncertainty in
model predictions, as we will see shortly.

For the biased simulated data, we fit two models. The first model does not account for
bias in the measurement process (u(t, x) in Figures 12 and 13) and is the same model fitted
in the case of unbiased sensor data (Section 6.2). The second model accounts for bias in
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the measurements by incorporating in the physics-informed prior a bias function as follows

yu = u(t, x) + Bias(t, x) + εu, where Bias(t, x) ∼ GP (0,KBias((t, x), (t′, x′)))

yf = f(t, x) + εf

and KBias((t, x), (t′, x′))) = σ2B exp
(
− 1

2lB2
t
(t− t′)2

)
exp

(
− 1

2lB2
x
(x− x′)2

)
. So we introduce

to the model three additional hyperparameters (σB, lBt and lBx).

In Figure 12, in the top row, we see the posteriors of the model that does not account for
sensor bias. We observe that the physical parameter α is overestimated, and the posterior
uncertainty (90% CI) does not cover the true value. The same holds for the heat noise
parameter, σu, and it captures the inability of the model to fit the observed data well, while
for the unbiased forcing data, f(t, x), the model estimates the noise parameter, σf well with
reasonable quantification of the uncertainty. In the second row of plots in Figure 12, we
observe that the model that accounts for bias (U(x, t) + Bias) produces more reasonable
quantification of uncertainty for α, and also the posterior density is concentrated very close
to the true value. The noise parameter, σu, is underestimated. However, the true value is
within the 90% credible interval, and also the posterior of the forcing noise parameter, σf
is almost identical to the model without bias.

In Figure 13, we produce predictions for both models. In the first row (u(t, x) model)
we observe that when not accounting for bias, the model do not capture the true heat
distribution shape, especially at the boundaries of the x domain. By acknowledging in the
model formulation that the data are biased (u(t, x)+Bias model) we see that the predictions
capture the shape of the true heat distribution more accurately. However, this increases
the uncertainty slightly in model predictions (shaded regions).
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Figure 12: Posterior distributions for the parameters of interest (α is the diffusion param-
eter, σu is the heat noise sd and σf is the forcing noise sd). The red dashed line is the true
value.

18



Bayesian Calibration with Physics-Informed Priors

0 sec 0.16 sec 0.32 sec 0.47 sec 0.68 sec 0.84 sec 1 sec
u

(x,t)
u

(x,t) +
 B

ia
s

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

−2

−1

0

1

2

−2

−1

0

1

2

x

90% CI mean true

Figure 13: Predictions (time evolution snapshots) for biased sensor data. The first row
is the heat distribution at several temporal locations when not accounting for bias in the
measurements, while the second row is the model which accounts for bias.

5. Real data–WK Models

This case study is based on observations of blood flow and blood pressure from one individual
that took part in a randomized controlled trial described in Øyen (2020). Our primary aim
is to estimate the physical parameters vascular resistance, R and arterial compliance, C.

The observations available are brachial blood pressure measured with Finometer PRO
(Finapres Medical Systems, Enschede, Netherlands) on the right arm (see Figure 15, left)
and blood inflow using Doppler flow (see Figure 15, right). We use three cycles for both
pressure and flow.

All analyses in this Section are based on is the WK2 model (4) with physics-informed
periodic kernel prior as described in Section 3. The priors for the physical model parameters
(R and C) and the kernel hyperparameters are as in Section 3 with one exception, the
observation noise prior σ2u. We know that the aortic valve is closed during diastole and the
inflow is zero Q(t) = 0. In Figure 15, we find that the blood inflow is zero, Q(t) = 0 for
≈ 2/3 of each cardiac cycle. We introduce this knowledge into the model by setting the
inflow noise, εQ, to be 0 during the diastole;

σQ =

{
sQ, if t = tsys

0, if t = tdia
,

where tdia is for measurements during diastole and tsys is during systole.

We fit two models to these observations, the full Bayesian model (referred to as WK2)
and the models accounting for model discrepancy (referred to as WK2 + δ), as described
and specified in Sections 3.2 and 3.3.

19



Spitieris and Steinsland

0

1

2

3

4

0 1 2 3
R

0

2

4

6

0 1 2 3
C

0.0

0.5

1.0

1.5

2.0

0 5 10
σP

0.0

0.1

0.2

0 20 40 60
σQ

WK2 WK2 + δ(t)

Figure 14: Posterior distributions for physical parameters (R,C) and noise parameters
(σP , σQ) for the two models (WK2, WK2 + δ(t)).

The posterior distributions of the physical parameters (R,C) and noise parameters
(σP , σQ) are found in Figure 14, and blood inflow and pressure prediction with 90% posterior
prediction intervals are given in Figure 15. The most striking differences are that the noise
parameters σQ and σP for the model without discrepancy (WK2) are much larger than for
the model with discrepancy WK2 + δ(t). The inflow noise standard deviation, σQ for the
WK2 model suggests that the observed inflow can be up to 60% noise, which is not realistic
in Figure 15, right. Further, the vascular resistant parameter R is smaller for the model,
including discrepancy. For the arterial compliance parameter C, the WK2 + δ model gives
larger uncertainty and larger posterior mean than the WK2 model.

In Figure 15, the predictions, as defined in Sections 2.1 and 2.2, for both pressure and
inflow for the two models are plotted. We observe that the WK2 model doesn’t reproduce
the blood pressure waveform, and the prediction uncertainty is large, especially for the blood
inflow. However, by accounting for model discrepancy (WK + δ), the missing physics is
learned from data, resulting in model predictions with reduced uncertainty in both pressure
and inflow.

When comparing the result from fitting the WK2 and WK2 + δ(t) models to the real
data, we see the same pattern as in Section 3.3. There synthetic data from WK3 models
were fitted to WK2 models with and without discrepancy. We, therefore, find it reasonable
to suspect that using a WK2 model without accounting for model discrepancy gives us too
large R, overconfidence for C and too large observation noise.

6. Baseline Comparison

In this Section, the Bayesian calibration with physics-informed priors (BCPI) is compared
with the two methods it is based on–1) the Bayesian calibration framework proposed by
Kennedy and O’Hagan (2001) (KOH) and 2) the physics-informed Gaussian process priors
(Raissi et al., 2017). We start by describing the main ingredients of the KOH modelling
framework.
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Figure 15: Predictions of blood pressure, P (t) (left) and blood inflow, Q(t) (right) for both
models. The points represent the observed data, the solid lines are the mean predictions
and the shaded regions are the 90% credible intervals.

KOH modelled the noisy observed data y as follows

y(x) = η(x,φ) + δ(x) + ε, (12)

where η is the physical model, x is the observed inputs, φ is the vector of physical parame-
ters, δ is the model discrepancy and ε is the noise term. A GP prior is also assumed on the
model discrepancy δ(x) ∼ GP (0,Kδ(x,x

′)). As mentioned in Section 1.1, KOH replace the
physical model η(x,φ) with an emulator trained on data obtained by the (physical model)
numerical simulator on a [x,φ]− space design. The emulator is another GP model trained
on N data points obtained by the simulator. Therefore, the final KOH model utilizes two
sources of information, n observed data and N simulator data. Hence the computational
cost is O((N + n)3), where typically N � n.

We consider a simulation study similar to Section 3.3. More specifically, we simulate
data from the WK3 model and use the WK2 as a modelling choice. Since the physical model
consists of two functional outputs (blood pressure, P (t) and blood flow Q(t)) we should use
a multi-output GP emulator. However, this is not feasible due to the computational cost of
the KOH model. Therefore, we assume blood flow is a known input to the model. For the
other two models, blood inflow is modelled as an output, observed with noise, as in Section
3.3.

In order to build an emulator for the KOH model, we use as response the simulated blood
pressure data, PWK2 from the WK2 model and as inputs to the emulator model, the blood
inflow Q, time tP and the physical parameters R and C. To simulate blood pressure data,
we run the model on 12 different physical parameter values obtained from an experimental
design on the space R×C = [0.5, 3]2. Note that the experimental design values can greatly
influence the results of the KOH approach. This is a strength of the BCPI method since it
uses only observed data and therefore does not need any simulator data. Another strength
is that it does not need any initial or boundary conditions in order to build a numerical
simulator for the physical model, which in practice it might be hard to know.
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R C σP σQ # par RMSE runtime (sec)

True 1.05 1.10 4 10

PI opt 0.93 (NA,NA) 0.96 (NA,NA) 7.89 (NA,NA) 8.35 (NA,NA) 6 6.85 2
KOH 1.15 (0.69,1.65) 1.04 (0.94,1.13) 3.94 (3.17,4.88) NA (NA,NA) 11 1.91 483
BCPI 1.06 (0.8,1.46) 1.08 (0.73,1.74) 4.10(3.21,5.19) 8.68 (7.09,10.69) 8 1.61 23

Table 1: Baseline comparison results. PI opt is the physics-informed prior model proposed
by Raissi et al. (2017). KOH is the Bayesian calibration approach proposed by Kennedy
and O’Hagan (2001). BCPI is the proposed method, Bayesian calibration with physics-
informed priors. The PI opt model provides only point estimates of the model parameters,
while both the KOH and the proposed method (BCPI) provide the posterior distribution
of the parameters. The point estimates for KOH and proposed (BCPI) are the posterior
means. The # par is the number of parameters for each model.

The results are summarized in Table 1. The estimated values of the physical parameters
R,C and the noise parameters σP , σQ as well as the prediction root mean square error
(RMSE) and the runtime, are presented. The PI opt model is the approach proposed by
Raissi et al. (2017), where the parameters of the physics-informed GP prior are optimized.
Therefore the uncertainty of the physical parameters is not included, and the model also does
not account for model discrepancy. We observe that the model produces biased estimates
for both R and C and also overestimates the pressure noise parameter σP , which is similar
to the Bayesian alternative of the model (see Figures 4 and 7). The KOH model produces
more reliable estimates of the physical parameters, where the posterior distribution covers
the true values. However, this comes with a computational cost. The PI opt model takes
2 seconds to run, while the KOH model takes 483 seconds. Observe also that the KOH
model, in this case, does not account for the uncertainty in the inflow data. The proposed
approach, Bayesian calibration with physics-informed priors (BCPI) produces more reliable
parameter estimates. It takes only 23 seconds to run, which is a considerable reduction
compared to the KOH model, while it also models uncertainty in both outputs (P (t) and
Q(t)). Note that the KOH model has 11 unknown parameters while the proposed approach
has 8. The extra two parameters compared to the PI opt model are the parameters in the
discrepancy process. To make runtimes comparable, we use HMC sampling implemented
in STAN for both the KOH and the proposed method (BCPI) models. Finally, we see
that the PI opt model, which does not account for model discrepancy, produces unreliable
predictions having an RMSE of 6.85. The KOH has a much lower RMSE of 1.91, while the
proposed method (BCPI) has the smallest RMSE (1.61) of all three methods.

There are many alternatives or improvements to the KOH approach that we do not
include in this comparison. For example, a commonly used approach in practice is the
modularized KOH approach (Bayarri et al., 2009b) or a recently developed method that
uses deep GPs (Marmin and Filippone, 2022), which might improve the standard KOH
approach through more complex modelling structures. An important difference between
BCPI and the methods mentioned above and in Section 1.1 is that it does not need any
(physical model) simulator data to fit the model. However, the ideas mentioned above or
other ideas on how to deal with big data might be applied to our approach. For example,
in Section 7 we develop two approximations for big data based on two popular GP methods
for big data.
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7. Approximations for Big Data

In this Section, we develop two approximations for the physics-informed prior models de-
scribed in Section 2. These approximations are based on two of the most influential GP
models for big data, the Fully Independent Training Conditional (FITC) (Snelson and
Ghahramani, 2005) and the Variational Free Energy (VFE) (Titsias, 2009).

Compared to the standard flexible GP models, the physics-informed GP priors are quite
informative since they are constructed in a way that they satisfy the differential equation.
More specifically, the models incorporate information about the physical process in the
covariance (and the mean) function. Therefore, our assumption is that we do not need a
large number of data to reliably infer the latent functions and the physical model parameters.

A similar assumption is made in two of the most popular GP approaches for big data.
The FITC and VFE approximations assume that most of the observed data are redundant
and reduce the effective number of input data from N to m, where m � N . The m
data points are called inducing points (or pseudo inputs), and both methods reduce the
computational cost from O(N3) to O(N ·m2).

In Section 7.1, we derive the physics-informed FITC and VFE approximations and the
predictive equations. Sections 7.2 and 7.3, consider two experiments with the Windkessel
models, with and without model discrepancy, respectively.

7.1 Physics-Informed FITC and VFE Approximations

In the regression setting, we model the latent function g(·) using a zero mean GP prior,
g ∼ GP (0,K) for which we have noisy observed outputs yi, i = 1, . . . , N, at the input
locations xi, i = 1, . . . , N. We assume Gaussian i.i.d. noise ε ∼ N(0, σ2nI), and we have
that p(g) = N (0,Kgg) and p(y | g) = N (g, σ2nI). The FITC and VFE approximations
introduce a set of m inducing variables w = (w1, . . . , wm) at the corresponding inputs
Z = (z1, . . . , zm), where wi = g(zi). As in the standard GP model, inference is based on the
log marginal likelihood, which is given by the following expression for both models (Bauer
et al., 2016)

L = logN (0, Qgg + Λ)− 1

2σ2n
tr(T ), (13)

where Qgg = KgwKwwKwg is a low-rank matrix, which reduces size of the matrix inversion
from N to m. The terms Λ and T differ between the two models and are given as follows

ΛFITC = diag(Kgg −Qgg) + σ2nI TFITC = 0 (14)

ΛVFE = σ2nI TVFE = Kgg −Qgg. (15)

The prediction equations at new points X∗, g(X∗) = g∗ are given for both FITC and VFE
by the following expression

p(g∗) = N (µ∗ , Σ∗) (16)

µ∗ = µ(X∗) +K∗w(Kww +KwgΛ−1Kgw)−1Λ−1(y − µ)

Σ∗ = K∗∗ −K∗wKwwKw∗ +K∗w(Kww +KwgΛ−1Kgw)−1Kw∗,
(17)

where Λ is given as in equations (14) and (15) for FITC and VFE respectively.
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The models in Section 2 are multi-output Gaussian process models. Sparse approxima-
tions for multi-output (or multi-task) GPs have already been introduced in the literature
(Alvarez and Lawrence, 2008; Álvarez et al., 2010), with kernels based on convolution pro-
cesses. The main difference is that our kernels are based on the differential equation that
the multi-output process describes.

To derive approximations for the physics-informed GP models of Section 2, we keep
the notation similar to the standard GP model described above but with some differences.
Recall that the models are built for the differential equations Lφxu(x) = f(x). Therefore,
the vector of latent variables g now represents the two vectors u and f as g = (u, f).
Similarly, we consider mu inducing variables wu for the function u(·) and mf inducing
variables wf for the function f(·), w = (wu,wf ) at the input locations Z = (Zu,Zf ), where
wui = u(Zui), i = 1, . . . ,mu and wfj = f(Zfj), j = 1, . . . ,mf . The covariance function K
of the FITC and VFE approximations is now replaced by the physics-informed covariance
function of Section 2

KPI =

[
Kuu(Xu,Xu) Kuf (Xu,Xf )
Kfu(Xf ,Xu) Kff (Xf ,Xf )

]
, (18)

where the kernel hyperparameters are dropped for notational convenience. The marginal
log-likelihood is given by the following expression

LPI = logN (µPI, QPI
gg + ΛPI)− tr(S−1TPI), (19)

where QPI
gg = KPI

gwK
PI
wwK

PI
wg is a low-rank matrix, which reduces size of the matrix inversion

from Nu +Nf to mu +mf , and

KPI
ww =

[
Kuu(Zu,Zu) Kuf (Zu,Zf )
Kfu(Zf ,Zu) Kff (Zf ,Zf )

]
and KPI

gw =

[
Kuu(Xu,Zu) Kuf (Xu,Zf )
Kfu(Xf ,Zu) Kff (Xf ,Zf )

]
. (20)

The terms ΛPI and TPI for the two models and are given as follows

ΛPI
FITC = diag(KPI

gg −QPI
gg) + S TPI

FITC = 0 (21)

ΛPI
VFE = S TPI

VFE = KPI
gg −QPI

gg, (22)

where S =

[
σ2uIu 0

0 σ2fIf

]
. Note that if we account for model discrepancy or biased data,

we replace the covariance matrix Kuu of equation (18) with Kuu +Kδ and Kuu +KBias re-
spectively. The physics-informed FITC and VFE approximations reduce the computational
cost from O((Nu + Nf )3) to O((Nu + Nf ) · (mu + mf )2), where mu � Nu and mf � Nf ,
and Nu, Nf are the number of data for the functions u and f respectively.

To make predictions at new points X∗u, u(X∗u) = u∗, the predictive distribution is mul-
tivariate Gaussian and more specifically

p(u∗) = N (µ∗ , Σ∗) (23)

µ∗ = µ(X∗u) + V∗wu

T (Kww +KwgΛ−1Kgw)−1Λ−1(y − µ)

Σ∗ = K∗∗ −V∗wu

TKwwV∗wu
+ V∗wu

T (Kww +KwgΛ−1Kgw)−1V∗wu
,

(24)
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where V∗wu

T =
[
Kuu(X∗u,Zu) Kuf (X∗u,Zf )

]
. Including model discrepancy in the formula-

tion gives V∗wu

T =
[
Kuu(X∗u,Zu) +Kδ(X

∗
u,Zu) Kgf (X∗u,Zf )

]
. Note that the superscript

PI is dropped for notational convenience. Similarly, if we want to make predictions at
new points X∗f , f(X∗f ) = f∗, the predictive distribution is multivariate Gaussian and more
specifically

p(f∗) = N (µ∗ , Σ∗) (25)

µ∗ = µ(X∗f ) + V∗wf

T (Kww +KwgΛ−1Kgw)−1Λ−1(y − µ)

Σ∗ = K∗∗ −V∗wf

TKwwV∗f + V∗wf

T (Kww +KwgΛ−1Kgw)−1V∗wf
,

(26)

where V∗wf

T =
[
Kfu(X∗f ,Zu) Kff (X∗f ,Zf )

]
.

7.2 Experiments: Full Bayes Model without Discrepancy

We consider a simulation study similar to Section 3.2, where the physical parameters are
R = 1, C = 1.1, and the noise parameters are σP = 4 and σQ = 10. We assume that we
have 100 inflow observations, nQ = 100 and 90 blood pressure observations nP = 90. This
amount of data could be handled by the methods described in Section 2, though here, it
is considered for illustration purposes. For a given inflow, Q(t), we simulate pressure data
from the deterministic WK2 model, PWK2, and we add to both i.i.d. zero mean Gaussian
noise, as in Section 3.2. We fit the physics-informed prior for the WK2 model as in Section
3.2 using the FITC and VFE approximations derived in Section 7.1. Eight inducing points
for the blood pressure, mP = 8 and ten inducing points for the blood inflow, mQ = 10 are
used for both the FITC and VFE approximations.

To fit the models, a modular approach is used. First, we optimize the marginal log-
likelihood with respect to kernel hyperparameters and the inducing point locations. Then
we fix the inducing locations at the estimated values and sample the physic-informed model
parameters using HMC sampling as in Section 3.2. The posterior distributions of the
physical and noise parameters, along with point estimates from the first step, are presented
in Figure 16 for the FITC and VFE approximations. Both models estimate the physical
parameters accurately with relatively small uncertainty and is similar to Figure 2. Observe
that the MAP (maximum a posteriori) estimate is quite accurate. However, the FITC
model underestimates the noise while the VFE overestimates the noise parameters, which
are known characteristics of the two approximations (Bauer et al., 2016).

We use the posterior distributions of the parameters and the fixed inducing locations to
produce predictions. The prediction means, along with the 90% credible intervals and the
inducing input locations for both functions, are presented in Figure 17. The FITC model
produces accurate predictions for both functions, where the heteroscedastic nature of the
predictions can be a desired property. The VFE model underfits both inflow and blood
pressure with relatively large prediction uncertainty. This is also a known characteristic of
the VFE approximation (Lázaro-Gredilla and Figueiras-Vidal, 2009), though this might be
an optimization issue (Bauer et al., 2016). As a remedy to this problem, we use a sample of
the observed blood pressure and inflow data and we fit independent standard GP models to
obtain point estimates of the noise parameters σu and σf . Then, we predict with the VFE
model by fixing the noise parameter values to the estimated ones. In Figure 18, right, we
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Figure 16: Physics-informed FITC and VFE models without discrepancy; Posterior distri-
butions.
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Figure 17: Physics-informed FITC and VFE models without discrepancy; Predictions.

see that the prediction accuracy of the VFE model has significantly improved compared to
using the overestimated noise parameter values (same Figure left).
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Figure 18: Physics-informed VFE without discrepancy; Predictions with fixed noise.

7.3 Experiments: Accounting for Model Discrepancy

We consider a similar experimental setup to Section 7.2, but now we simulate from a more
complex model than our modelling choice. More specifically, as in Section 3.3, for a given
inflow Q(t), we simulate data from the deterministic WK3 model, P (t) = PWK3(Q(t), R1 =
0.05, R2 = 1, C = 1.1), and we add i.i.d. Gaussian noise as in Section 7.2. Our modelling
choice is the WK2 model with model discrepancy (WK2 + δ(t)) as in Section 3.3, and we
use 12 inducing points for the blood pressure mP = 12 and 10 inducing points for inflow
mQ = 10.

To fit the models, we use the same modular approach as in Section 7.2. The posterior
distributions of the physical and noise parameters for both models, along with the point
estimates of the optimization step, are presented in Figure 19. The posterior distributions of
physical parameters cover the true values for both models, where the posterior uncertainty
for the VFE model is smaller. The MAP estimates of the physical parameters R and C
are also quite close to the true value. Hence in cases where the data size is quite large,
and MCMC is not feasible, MAP estimates might be a practical solution. The FITC model
estimates the pressure noise parameter σP accurately while it underestimates the inflow
noise parameter, σQ, again. As is Section 7.2, the VFE model overestimates the noise for
blood pressure and inflow.

Further predictions are produced based on the posterior distributions of the parame-
ters and the fixed inducing locations. The prediction means, along with the 90% credible
intervals and the inducing point locations for the FITC and VFE approximations, are pre-
sented in Figure 20. The FITC approximation produces accurate predictions for both blood
pressure and inflow, while the VFE approximation does not fit the data well with large pre-
diction uncertainty as in Section 7.2. To improve predictions of the VFE model, we use the
same approach as in Section 7.2. First, independent standard GP models are fitted on a
sample of blood pressure and inflow data and point estimates of σP and σQ are obtained.
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Figure 19: Physics-informed FITC and VFE models with discrepancy; Posterior distribu-
tions.

Predictions are obtained using the posteriors of the parameters and the fixed inducing lo-
cations, but now we fix the noise parameters to the point estimates. Comparing the right
and left plot in Figure 21, we see that by fixing the noise parameters to more reasonable
values, the VFE model can produce much more reliable predictions.
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Figure 20: Physics-informed FITC and VFE models with discrepancy; Predictions.
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Figure 21: Physics-informed FITC and VFE models with discrepancy; Predictions with
plug-in point estimates for noise parameters.

8. Discussion and Conclusion

We have presented a Bayesian framework for calibration of computer models represented by
differential equations of the following form, Lφxu(x) = f(x), using physics-informed priors.
Compared to other Bayesian calibration frameworks, our approach is more exact in the
sense that we do not use a model emulator, which is an approximation to the physical
model trained on data obtained by simulations. Rather, we use a physics-informed prior, a
probabilistic model that satisfies the differential equation. This also gives a computational
advantage since we do not have to carry through inference from simulations of the differential
equation, which is often the main computational bottleneck. Instead, the model is evaluated
on observed data only. We took a fully Bayesian approach using HMC sampling for learning
the model parameters since our primary interest is quantifying the uncertainty of physical
parameters.

The computational cost of the proposed methods is O(n3), where n is the total number
of observations of functions u and f, and in applications of physical models, the number
of observed data is typically small. However, in cases where n is large, the cubic cost is
prohibitive. For this reason, we derived approximations for our method that reduce the
computational cost to O(n ·m2), where m� n. We also found in experimental studies that
the approximations produce accurate estimates of the physical parameters and predictions.

Our approach can be generalized for systems of differential equations, based on Särkkä
(2011). When the physical model is described by non-linear differential equations, recent
ideas on how to construct physics-informed priors for non-linear ODEs and PDEs can be
used (Raissi et al., 2018; Chen et al., 2022).

We demonstrated the flexibility of this approach using a time-dependent ODE, the
arterial Windkessel model, and a space-time PDE, the heat equation, for both real and
simulated data in cases of model discrepancy and biased sensor data. In a simulation
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study, we demonstrated that by accounting for model discrepancy in a low-fidelity model,
we could recover the true parameter values of a more complex model and produce more
accurate predictions. In the case of biased sensor data, we showed that by accounting for
this bias in the model formulation, we could recover the true value of the physical parameter
(diffusivity constant) and produce more reliable model predictions. However, uncertainty
is not reduced because the bias that the model learned should be removed in predictions
compared to the model discrepancy case, where we learn the missing physics and use this
information in predictions.

In applications, we might have to deal with both model discrepancy and biased data.
In such cases, the model should account for both sources of uncertainty and can be written
as y(x) = η(x,φ) + δ(x) + Bias(x) + ε. If we assume flexible noninformative GP priors for
both the discrepancy, δ ∼ GP (0,Kδ(x,x

′)) and Bias ∼ GP (0,KBias(x,x
′)) there will be

identifiability issue between the two processes and, therefore it will be hard to separate δ
from Bias. In cases that we have prior information for δ or Bias, we might use informative
priors to improve identifiability or a restrictive parametric form (Oliver and Alfonzo, 2018).
If there is no prior information available, and hence the two processes can not be separated,
we can use a flexible GP to account for both δ and Bias, which results in the original KOH
formulation, y(x) = η(x,φ) + δ(x) + ε. Therefore, the term δ will absorb the effect of both
the discrepancy and data bias, and there will be able to recover the physical parameter
values. However, this model can not be used for predictions since the data bias can not be
removed from the predictive equations.

A potential issue in Bayesian calibration is the identifiability between the discrepancy
function and model parameters. The requirements for identifiability have been studied by
Arendt et al. (2012a), showing that identifiability can be achieved under the mild assump-
tion of a smooth discrepancy function. Arendt et al. (2012b) showed that using multiple
functions that they depend on the same set of physical parameters can improve identifiabil-
ity, or in other words using a multi-output GP model. Note that the models of the proposed
method are by default multi-output GPs. Other ideas for enhancing identifiability in the
KOH formulation include the introduction of shape constraints in the discrepancy func-
tion when prior information is available (Brynjarsdóttir and O’Hagan, 2014; Riihimäki and
Vehtari, 2010; Wang and Berger, 2016) or forcing the discrepancy function δ(·) to be orthog-
onal to the emulator of the physical model (Plumlee, 2017). Both ideas can be incorporated
to our modelling framework.
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Appendix

Appendix A. Prediction Equations

In general if f ∼ GP (µ(X),K(X,X′)), at new points X∗ the joint distribution of the noise
corrupted data y = f(X) + ε, ε ∼ N(0, σ2I) and f(X∗) = f∗ is expressed as[

y
f∗

]
∼ N

([
µ(X)
µ(X∗)

]
,

[
K + σ2I K∗

KT
∗ K∗∗

])
, (27)

where K = K(X,X), K∗ = K(X,X∗) and K∗∗ = K(X∗,X∗). The conditional distribution
p(f∗ | X∗,X,y) is also multivariate normal and more specifically

p(f∗ | X∗,X,y) = N (µ∗,Σ∗)

where µ∗ = µ(X∗) + KT
∗ (K + σ2I)−1(y − µ(X))

and Σ∗ = K∗∗ −KT
∗ (K + σ2I)−1K∗ .

.

A.1 Physics-Informed Priors Prediction Equations

For the differential equation Lφxu(x) = f(x), by assuming that u(x) ∼ GP (µu(x),Kuu(x, x′)),
for the noisy corrupted data yu = u(Xu) + εu, εu ∼ N (0, σuIu) and yf = f(Xf ) + εf , εf ∼
N (0, σfIf ), we derive the physics-informed prior, which is the following multi-output GP

p(y | θ,φ, σu, σf ) = N (µ,K + S) (28)

where y =

[
yu

yf

]
, µ =

[
µu(Xu)
µf (Xf )

]
, K =

[
Kuu(Xu,Xu | θ) Kuf (Xu,Xf | θ,φ)
Kfu(Xf ,Xu | θ,φ) Kff (Xf ,Xf | θ,φ)

]
and

S =

[
σ2uIu 0

0 σ2fIf

]
.

Applying the same logic as in eq. (27) at new points X∗u we derive the prediction equations
of u∗ = u(X∗u) as follows [

y
u∗

]
∼ N

([
µ(X)
µ(X∗u)

]
,

[
K + S K∗
KT
∗ K∗∗

])
, (29)

For convenience we denote the vector of unknown parameters as ξ = (θ,φ, σu, σf ). The
conditional distribution p(u∗ | X∗u,X,y, ξ) is multivariate Gaussian and more specifically

p(u∗ | X∗u,X,y, ξ) = N (µ∗u,Σ
∗
u)

µ∗
u = µu(X∗u) + V∗u

T (K + S)−1(y − µ)

Σ∗
u = Kuu(X∗u,X

∗
u)−V∗u

T (K + S)−1V∗u,

where V∗u
T =

[
Kuu(X∗u,Xu) Kuf (X∗u,Xf )

]
.

Similarly, at new points X∗f we derive the prediction equations of f∗ = f(X∗f ) as follows[
y
f∗

]
∼ N

([
µ(X)
µ(X∗f )

]
,

[
K K∗
KT
∗ K∗∗

])
. (30)
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The conditional distribution p(f∗ | X∗f ,X,y, ξ) is multivariate Gaussian and more specifi-
cally

p(f∗ | X∗f ,X,y, ξ) = N (µ∗f ,Σ
∗
f )

µ∗
f = µf (X∗f ) + V∗f

T (K + S)−1(y − µ)

Σ∗
f = Kff (X∗f ,X

∗
f )−V∗f

T (K + S)−1V∗f ,

where V∗f
T =

[
Kfu(X∗f ,Xu) Kff (X∗f ,Xf )

]
.

A.2 Accounting for Model Discrepancy Prediction Equations

By assuming a zero mean GP prior on the model discrepancy, δ(x) ∼ GP (0,Kδ(x, x
′ | θδ))

the model is similar to the Appendix A.1 with the main difference that the discrepancy
kernel is added to the first element of the covariance matrix K. More specifically, we have
now that

Kdisc =

[
Kuu(Xu,Xu | θ) +Kδ(Xu,Xu | θδ) Kuf (Xu,Xf | θ,φ)

Kfu(Xf ,Xu | θ,φ) Kff (Xf ,Xf | θ,φ)

]
.

The vector of the parameters ξ has been augmented with the vector θδ and we denote all
the kernel parameters collectively with ξδ = (θ,θδ,φ, σu, σf ). Following the same logic as
in the Appendix A.1 we have that

p(u∗ | X∗u,X,y, ξδ) = N (µ∗u,Σ
∗
u)

µ∗
u = µu(X∗u) + V∗u

T (Kdisc + S)−1(y − µ)

Σ∗
u = Kuu(X∗u,X

∗
u) +Kδ(X

∗
u,X

∗
u)−V∗u

T (Kdisc + S)−1V∗u,

where V∗u
T =

[
Kuu(X∗u,Xu) +Kδ(X

∗
u,Xu) Kuf (X∗u,Xf )

]
.

The conditional distribution p(f∗ | X∗f ,X,y, ξ) is multivariate Gaussian and more specifi-
cally

p(f∗ | X∗f ,X,y, ξδ) = N (µ∗f ,Σ
∗
f )

µ∗
f = µf (X∗f ) + V∗f

T (Kdisc + S)−1(y − µ)

Σ∗
f = Kff (X∗f ,X

∗
f )−V∗f

T (Kdisc + S)−1V∗f ,

where V∗f
T =

[
Kfu(X∗f ,Xu) Kff (X∗f ,Xf )

]
.

A.3 Accounting for Biased Measurements Prediction Equations

This case is similar to the model discrepancy case but here we want to remove the Bias
in the model predictions. By assuming a zero mean GP prior on the Bias, Bias(x) ∼
GP (0,KBias(x, x

′ | θB)) the model is similar to the Appendix A.2 with the difference that
the discrepancy kernel, Kδ is replaced by the Bias kernel KBias. More specifically, we have
now that

KBias =

[
Kuu(Xu,Xu | θ) +KB(Xu,Xu | θB) Kuf (Xu,Xf | θ,φ)

Kfu(Xf ,Xu | θ,φ) Kff (Xf ,Xf | θ,φ)

]
.
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The vector of the parameters ξ has been augmented with the vector θB and we denote all
the kernel parameters collectively with ξB = (θ,θB,φ, σu, σf ). Following the same logic as
in the Appendix A.1 we have that

p(u∗ | X∗u,X,y, ξB) = N (µ∗u,Σ
∗
u)

µ∗
u = µu(X∗u) + V∗u

T (KBias + S)−1(y − µ)

Σ∗
u = Kuu(X∗u,X

∗
u)−V∗u

T (KBias + S)−1V∗u,

where V∗u
T =

[
Kuu(X∗u,Xu) Kuf (X∗u,Xf )

]
.

The conditional distribution p(f∗ | X∗f ,X,y, ξ) is multivariate Gaussian and more specifi-
cally

p(f∗ | X∗f ,X,y, ξB) = N (µ∗f ,Σ
∗
f )

µ∗
f = µf (X∗f ) + V∗f

T (KBias + S)−1(y − µ)

Σ∗
f = Kff (X∗f ,X

∗
f )−V∗f

T (KBias + S)−1V∗f ,

where V∗f
T =

[
Kfu(X∗f ,Xu) Kff (X∗f ,Xf )

]
.

Appendix B. Details on the Physics-Informed Models

B.1 Windkessel Models

WK2 model The observed pressure, yP and inflow, yQ data are modelled by the physics-
informed prior corrupted by Gaussian i.i.d. noise εP and εQ respectively as follows

yP = PWK2(tP ) + εP

yQ = QWK2(tQ) + εQ.
(31)

To construct the physics-informed prior for the WK2 model we assume a GP prior on
the pressure, PWK2 ∼ GP (µP ,KPP (t, t′) | θ). Then we have that

KPQ(t, t′) = R−1KPP (t, t′) + C
∂KPP (t, t′)

∂t′

KQP (t, t′) = R−1KPP (t, t′) + C
∂KPP (t, t′)

∂t

KQQ(t, t′) = R−2KPP (t, t′) + C2∂
2KPP (t, t′)

∂t∂t′

(32)

This holds for the following three models where KPP is replaced by KSE,KRQ and KPer.

M1. Squared Exponential Kernel (SE), KSE(t, t′) = σ2exp

(
−0.5

(
t−t′
l

)2)
R,C ∼ U(0.5, 3)

`WK2 ∼ Half-N (0, 1/3)

σWK2 ∼ Half-N (0, 50)

σP , σQ ∼ Half-N (0, 15).

(33)
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M2. Rational Quadratic Kernel (RQ), KRQ(t, t′) = σ2
(

1 + (t−t′)2
2α`2

)−α
The same priors as the SE kernel are used with the addition of a uniform prior on α,
α ∼ U(0, 10).

M3. Periodic Kernel (Per), KPer(t, t
′) = σ2 exp

(
−2 sin2(π(t−t′)/p)

`2

)
The same priors as the SE kernel are used for R,C, σWK2,σP and σQ with the addition of a
uniform prior on p, p ∼ U(0.8, 1.2) and `WK2 ∼ Half-N (0, 1)

WK2 + δ(t) model The observed pressure now is described by the WK2 model and a
functional model discrepancy, δ(t) corrupted by i.i.d. noise as well, while the observed
inflow, yQ is as before (eq. 31) and more specifically

yP = PWK2(tP ) + δ(tP ) + εP

yQ = QWK2(tQ) + εQ.
(34)

The priors on PWK2, the physical parameters R,C and hyperparameters θ are the same as
in the WK2 models (M1,M2 and M3). In addition, we assume a GP prior on the model
discrepancy, δ(tP ) ∼ GP (0,Kδ(tP , t

′
P ) | θδ). The three following models are fitted:

For M1 (SE) and M2 (RQ), a squared exponential kernel is used for the GP prior on the
discrepancy function δ(t), where

`δ ∼ Half-N (0, 1/3)

σδ ∼ Half-N (0, 50).
(35)

For M3 (Per), a periodic kernel is used for the GP prior on the discrepancy function δ(t),
where `δ ∼ Half-N (0, 1), σδ ∼ Half-N (0, 50) and the same periodic parameter p is used.

B.2 Heat Equation

u(t,x) model To develop the physics-informed prior, we assume that the heat follows a
GP prior, u(t, x) ∼ GP (µu,Kuu((t, x), (t′, x′))) where we use an anisotropic squared expo-

nential kernel, Kuu((t, x), (t′, x′)) = σ2 exp
(
− 1

2l2t
(t− t′)2

)
exp

(
− 1

2l2x
(x− x′)2

)
and µ is a

constant. Then we have that

Kuf ((t, x), (t′, x′)) =
∂Kuu((t, x), (t′, x′))

∂t′
− α∂

2Kuu((t, x), (t′, x′))

(∂x′)2

Kfu((t, x), (t′, x′)) =
∂Kuu((t, x), (t′, x′))

∂t
− α∂

2Kuu((t, x), (t′, x′))

(∂x)2

Kff ((t, x), (t′, x′)) =
∂2Kuu((t, x), (t′, x′))

∂t∂t′
+ α2∂

4Kuu((t, x), (t′, x′))

(∂x)2(∂x′)2

(36)
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We use the following weakly informative priors:

α ∼ U(0, 10)

`x ∼ Half-N (0, 1/3)

`t ∼ Half-N (0, 1)

σ ∼ Half-N (0, 1/3)

µ ∼ Half-N (0.5, 1)

σu ∼ U(0, 0.5)

σf ∼ U(0, 3).

(37)

u(t,x) + Bias(t,x) model The model priors are the same as for the u(t, x) model. In
addition, we assume a GP prior on Bias, Bias(t, x) ∼ GP (0,KBias((t, x), (t′, x′))) with an

anisotropic squared exponential kernel, KBias((t, x), (t′, x′))) = σ2B exp
(
− 1

2lB2
t
(t− t′)2

)
exp

(
− 1

2lB2
x
(x− x′)2

)
. The Bias kernel hyper-parameter priors are

`Bx ∼ Half-N (0, 1/3)

`Bt ∼ Half-N (0, 1)

σB ∼ Half-N (0, 1/3).

(38)
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