
Journal of Machine Learning Research 24 (2023) 1-43 Submitted 6/22; Revised 11/22; Published 3/23

A General Theory for Federated Optimization with
Asynchronous and Heterogeneous Clients Updates

Yann Fraboni yann.fraboni@inria.fr
Université Côte d’Azur, Inria Sophia Antipolis, Epione Research Group, France
Accenture Labs, Sophia Antipolis, France

Richard Vidal richard.vidal@accenture.com
Accenture Labs, Sophia Antipolis, France

Laetitia Kameni laetitia.kameni@accenture.com
Accenture Labs, Sophia Antipolis, France

Marco Lorenzi marco.lorenzi@inria.fr

Université Côte d’Azur, Inria Sophia Antipolis, Epione Research Group, France

Editor: Martin Jaggi

Abstract

We propose a novel framework to study asynchronous federated learning optimization with
delays in gradient updates. Our theoretical framework extends the standard FedAvg ag-
gregation scheme by introducing stochastic aggregation weights to represent the variability
of the clients update time, due for example to heterogeneous hardware capabilities. Our
formalism applies to the general federated setting where clients have heterogeneous datasets
and perform at least one step of stochastic gradient descent (SGD). We demonstrate conver-
gence for such a scheme and provide sufficient conditions for the related minimum to be the
optimum of the federated problem. We show that our general framework applies to existing
optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and
FedBuff. The theory here provided allows drawing meaningful guidelines for designing
a federated learning experiment in heterogeneous conditions. In particular, we develop in
this work FedFix, a novel extension of FedAvg enabling efficient asynchronous feder-
ated training while preserving the convergence stability of synchronous aggregation. We
empirically demonstrate our theory on a series of experiments showing that asynchronous
FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate
the improvements of FedFix over synchronous and asynchronous FedAvg.

Keywords: federated learning, asynchronous optimization, data heterogeneity, gradient
descent, convergence rate.

1. Introduction

Federated learning (FL) is a training paradigm enabling different clients to jointly learn a
global model without sharing their respective data. Federated learning is a generalization

©2023 Fraboni, Vidal, Kameni, Lorenzi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0689.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0689.html


Fraboni, Vidal, Kameni, Lorenzi

of distributed learning (DL), which was first introduced to optimize a given model in star-
shaped networks composed of a server communicating with computing machines (Bertsekas
and Tsitsiklis, 1989; Nedić et al., 2001; Zinkevich et al., 2009). In DL, the server owns
the dataset and distributes it across machines. At every optimization round, the machines
return the estimated gradients, and the server aggregates them to perform an SGD step. DL
was later extended to account for SGD, and FL extends DL to enable optimization without
sharing data between clients. Typical federated training schemes are based on the averaging
of clients model parameters optimized locally by each client, such as in FedAvg (McMahan
et al., 2017), where at every optimization round clients perform a fixed amount of stochastic
gradient descent (SGD) steps initialized with the current global model parameters, and
subsequently return the optimized parameters to the server. The server computes the new
global model as the average of the clients updates weighted by their respective data ratio.

A key methodological difference between the optimization problem solved in FL and the
one of DL lies in the assumption of potentially non independent and identically distributed
(iid) data instances (Kairouz et al., 2019; Yang et al., 2019). Proving convergence in the
non-iid setup is more challenging, and in some settings, FedAvg has been shown to converge
to a sub-optimum, e.g. when each client performs a different amount of local work (Wang
et al., 2020a), or when clients are not sampled in expectation according to their importance
(Cho et al., 2020).

A major drawback of FedAvg concerns the time needed to complete an optimization
round, as the server must wait for all the clients to perform their local work to synchronize
their update and create a new global model. As a consequence, due to the potential hetero-
geneity of the hardware across clients, the time for an optimization round is conditioned to
the one of the slowest update, while the fastest clients stay idle once they have sent their
updates to the server. To address these limitations, asynchronous FL has been proposed to
take full advantage of the clients computation capabilities (Xu et al., 2021; Nguyen et al.,
2018; Koloskova et al., 2019; De Sa et al., 2015). In the asynchronous setting, whenever
the server receives a client’s contribution, it creates a new global model and sends it back
to the client. In this way, clients are never idle and always perform local work on a differ-
ent version of the global model. While asynchronous FL has been investigated in the iid
case (Stich and Karimireddy, 2020), a unified theoretical and practical investigation in the
non-iid scenario is currently missing.

This work introduces a novel theoretical framework for asynchronous FL based on the
generalization of the aggregation scheme of FedAvg, where asynchronicity is modeled as
a stochastic process affecting clients’ contribution at a given federated aggregation step.
More specifically, our framework is based on a stochastic formulation of FL, where clients are
given stochastic aggregation weights dependent on their effectiveness in returning an update.
Based on this formulation, we provide sufficient conditions for asynchronous FL to converge,
and we subsequently give sufficient conditions for convergence to the FL optimum of the
associated synchronous FL problem. Our conditions depend on the clients computation
time (which can be eventually estimated by the server), and are independent from the
clients data heterogeneity, which is usually unknown to the server.

With asynchronous FL, the server only waits for one client contribution to create the new
global. As a result, optimization rounds are potentially faster even though the new global
improves only for the participating client at the detriment of the other ones. This aspect

2



Federated Optimization with Asynchronous Clients Updates

may affect the stability of asynchronous FedAvg as compared to synchronous FedAvg and,
as we demonstrate in this work, even diverge in some cases. To tackle this issue, we propose
FedFix, a robust asynchronous FL scheme, where new global models are created with all
the clients contributions received after a fixed amount of time. We prove the convergence
of FedFix and verify experimentally that it outperforms standard asynchronous FedAvg
in the considered experimental scenarios.

The paper is structured as follows. In Section 2, we introduce our aggregation scheme
and the close-form of its aggregation weights in function of the clients computation ca-
pabilities and the considered FL optimization routine. Based on our aggregation scheme,
in Section 3, we provide convergence guarantees, and we give sufficient conditions for the
learning procedure to converge to the optimum of the FL optimization problem. In Section
4, we apply our theoretical framework to synchronous and asynchronous FedAvg, and show
that our work extends current state-of-the-art approaches to asynchronous optimization in
FL. Finally, in Section 5, we demonstrate experimentally our theoretical results.

2. Background

We define here the formalism required by the theory that will be introduced in the following
sections. We first introduce in Section 2.1 the FL optimization problem, and we adapt it
in section 2.2 to account for delays in client contributions. We then generalize in Section
2.3 the FedAvg aggregation scheme to account for contributions delays. In Section 2.4, we
introduce the notion of virtual global models as a direct generalization of gradient descent,
and introduce in Section 2.5 the final asynchronous FL optimization problem. Finally, we
introduce in Section 2.6 a formalization of the concept of data heterogeneity across clients.

2.1 Federated Optimization Problem

We have M participants owning ni data points {zk,i}ni
k=1 independently sampled from a

fixed unknown distribution over a sample space {Zi}Mi=1. We have zk,i = (xk,i,yk,i) for
supervised learning, where xk,i is the input of the statistical model, and yk,i its desired
target, while we denote zk,i = xk,i for unsupervised learning. Each client optimizes the
model’s parameters θ based on the estimated local loss l(θ, zk,i). The aim of FL is solving
a distributed optimization problem associated with the averaged loss across clients

L(θ) := Ez∼Ẑ [l(θ, z)] =
1∑M
i=1 ni

M∑
i=1

ni∑
k=1

l(θ, zk,i), (1)

where the expectation is taken with respect to the sample distribution Ẑ across the M
participating clients. We consider a general form of the federated loss of equation (1) where
clients local losses are weighted by an associated parameter pi such that

∑n
i=1 pi = 1, i.e.

L(θ) =
M∑
i=1

piLi(θ) s.t. Li(θ) =
1

ni

ni∑
k=1

l(θ, zk,i). (2)

The weight pi can be interpreted as the importance given by the server to client i in the
federated optimization problem. While any combination of {pi} is possible, we note that in

3



Fraboni, Vidal, Kameni, Lorenzi

typical FL formulations, either (a) every client has equal importance, i.e. pi = 1/M , or (b)
every data point is equally important, i.e. pi = ni/

∑M
i=1 ni.

2.2 Asynchronicity in Clients Updates

An optimization round starts at time tn with global model θn, finishes at time tn+1 with
the new global model θn+1, and takes ∆tn = tn+1 − tn time to complete. No assumptions
are made on ∆tn, which can be a random variable, and we set for convenience t0 = 0. In
this section, we introduce the random variables needed to develop in Section 2.3 the server
aggregation scheme connecting two consecutive global models θn and θn+1.

We define the random variable Ti representing the update time needed for client i to
perform its local work and send it to the server for aggregation. Ti depends on the client
computation and communication hardware, and is assumed to be independent from the
current optimization round n. If the server sets the FL round time to ∆tn = maxi Ti, the
aggregation is performed by waiting for the contribution of every client, and we retrieve the
standard client-server communication scheme of synchronous FedAvg.

With asynchronous FedAvg, we need to relate Ti to the server aggregation time ∆tn.
We introduce ρi(n) the index of the most recent global model received by client i at opti-
mization round n and, by construction, we have 0 ≤ ρi(n) ≤ n. We define by

Tni := Ti − (tn − tρi(n))

the remaining time at optimization round n needed by client i to complete its local work.
Comparing Tni with ∆tn indicates whether a client is participating to the optimization

round or not, through the stochastic event I(Tni ≤ ∆tn). When I(Tni ≤ ∆tn) = 1, the
local work of client i is used to create the new global model θn+1, while client i does not
contribute when I(Tni ≤ ∆tn) = 0. With synchronous FedAvg, we retrieve I(Tni ≤ ∆tn) =
I(Ti ≤ maxi Ti) = 1 for every client.

Figure 1 illustrates the notations described in this section in a FL process with M = 2
clients.

2.3 Server Aggregation Scheme

We consider ∆i(n) the contribution of client i received by the server at optimization round
n. In the rest of this work, we consider that clients perform K steps of SGD on the
model they receive from the server. By calling their trained model θn,ki after k SGD, we

can rewrite clients contribution for FedAvg as ∆i(n) := θn,Ki − θn, and the FedAvg
aggregation scheme as

θn+1 := θn +

M∑
i=1

pi∆i(n). (3)

With FedAvg, the server waits for every client to send its contribution ∆i(n) to create the
new global model. To allow for partial computation within the server aggregation scheme,
we introduce the aggregation weight di(n) corresponding to the weight given by the server
to client i at optimization round n. We can then define the stochastic aggregation weight
ωi(n) given to client i at optimization step n as

ωi(n) := I(Tni ≤ ∆tn)di(n), (4)

4



Federated Optimization with Asynchronous Clients Updates

𝜃0 𝜃1 𝜃2

𝜃1
0 𝜃1

1

𝜃2
0

𝑇1
0 = 𝑇1 𝑇1

1 = 𝑇1

𝑇2
0 = 𝑇2

𝑇2
1

Δ𝑡1Δ𝑡0

𝑡0 𝑡1 𝑡2

𝜃2𝑛 𝜃2𝑛+1 𝜃2𝑛+2

𝜃1
2𝑛 𝜃1

2𝑛+1

𝜃2
𝜌2(2𝑛+1) = 𝜃2

2𝑛

𝑇1
2𝑛 = 𝑇1 𝑇1

2𝑛+1 = 𝑇1

𝑇2
2𝑛 = 𝑇2

𝑇2
2𝑛+1

Δ𝑡2𝑛+1Δ𝑡2𝑛

𝑡2𝑛 𝑡2𝑛+1 𝑡2𝑛+2

S

C1

C2

Flow of Models

Global model

Local model of C1

Local model of C2

Received model

Sent model

Figure 1: Illustration of the time notations introduced in Section 2.2 with M = 2 clients.
The frequency of the updates of Client 1 (C1) is twice the one of Client 2 (C2).
If the server (S) creates the new global model after every fixed waiting time
(∆tn = ∆t), C1 contributes at every optimization round, while C2 contributes
once every two rounds. This aggregation policy define the federated learning
strategy FedFix (Section 4.4).

with ωi(n) = di(n) if client i updated its work at optimization round n and ωi(n) = 0
otherwise. In the general setting, client i receives θρi(n) and its contribution is ∆i(ρi(n)) =

θ
ρi(n),K
i − θρi(n). By weighting each delayed contribution ∆i(ρi(n)) with its stochastic

aggregation weight ωi(n), we propose the following aggregation scheme

θn+1 := θn + ηg

M∑
i=1

ωi(n)∆i(ρi(n)), (5)

where ηg is a global learning rate that the server can use to mitigate the disparity in clients
contributions (Reddi et al., 2021; Karimireddy et al., 2020; Wang et al., 2020b). Equation
(5) generalizes FedAvg aggregation scheme (3) (ηg = 1 and ∆tn = maxi Ti), and the one of
Fraboni et al. (2022) based on client sampling.

We introduce with Algorithm 1 the implementation of the optimization schemes satis-
fying aggregation scheme (5) with stochastic aggregation weights satisfying equation (4).

2.4 Expressing FL as cumulative GD steps

To obtain the tightest possible convergence bound, we consider a convergence framework
similar to the one of Li et al. (2020b) and Khaled et al. (2020). We introduced the aggrega-
tion rule for the server global models {θn} in Section 2.3, and we generalize it in this section
by introducing the virtual sequence of global models θn,k. This sequence corresponds to the
virtual global model that would be obtained with the clients contribution at optimization
round n computed on k ≤ K SGD, i.e.

θn,k := θn + ηg

M∑
i=1

ωi(n)
[
θ
ρi(n),k
i − θρi(n)

]
.

5



Fraboni, Vidal, Kameni, Lorenzi

Algorithm 1 Asynchronous Federated Learning based on equation (5)

Require: server learning rate ηg, aggregation weights {di(n)}, number of SGD K, learning
rate ηl, batch size B, aggregation time policy ∆tn.

1: The server sends to the M clients the learning parameters (K, ηl, B) and the initial
global model θ0.

2: for n ∈ {0, ..., N − 1} do

3: Clients in Sn = {i : Tni ≤ ∆tn} send their contribution ∆i(ρi(n)) = θ
ρi(n),K
i −θρi(n)

to the server.
4: The server creates the new global model θn+1 = θn + ηg

∑
i∈Sn

di(n)∆i(ρi(n)),
equation (5).

5: The global model θn+1 is sent back to the clients in Sn.
6: end for

We retrieve θn,0 = θn and θn,K = θn+1,0 = θn+1. The server has not access to θn,k when
k 6= 0 or k 6= K. Hence the name virtual for the model θn,k.

The difference between two consecutive global models in our virtual sequence depends on

the sum of the differences between local models θ
ρi(n),k+1
i − θρi(n),ki = −ηl∇Li(θ

ρi(n),k
i , ξi),

where ξi is a random batch of data samples of client i. Hence, we can rewrite the aggregation
process as a GD step with

θn,k+1 = θn,k − ηgηl
M∑
i=1

ωi(n)∇Li(θρi(n),ki , ξi).

2.5 Asynchronous FL as a Sequence of Optimization Problems

For the rest of this work, we define qi(n) := E [ωi(n)], the expected aggregation weight of
client i at optimization round n. No assumption is made on qi(n) which can vary across
optimization rounds. The expected clients contribution

∑M
i=1 qi(n)∆i(n) help minimizing

the optimization problem Ln defined as

Ln(θ) :=

M∑
i=1

qi(n)Li(θ).

We denote by θ̄n the optimum of Ln and by θ∗ the optimum of the optimization problem L
defined in equation (2). Finally, we define by qi = 1

N

∑N−1
n=0 qi(n) the expected importance

given to client i over the N server aggregations during the FL process, and by q̃i(n) the
normalized expected importance q̃i(n) = qi(n)/(

∑M
i=1 qi(n)). We define by L̄ the associated

optimization problem

L̄(θ) :=
M∑
i=1

qiLi(θ) =
1

N

N−1∑
n=0

Ln(θ), (6)

and we denote by θ̄ the associated optimum.

6



Federated Optimization with Asynchronous Clients Updates

Finally, we introduce the following expected convergence residual, which quantifies the
variance at the optimum in function of the relative clients importance qi(n)

Σ :=
M∑
i=1

qi Eξi

[∥∥∇Li(θ̄, ξi)∥∥2] .
The convergence guarantees provided in this work (Section 3) are proportional to the ex-
pected convergence residual and extend the ones provided for the synchronous setting in
the work of Khaled et al. (2020). The quantity Σ is finite and serves as a natural measure
of variance in local optimization methods. Σ is positive and null only when clients have
the same loss function and perform GD steps for local optimization. The work of Khaled
et al. (2020) shows how considering Σ provides tighter convergence guarantees than when
assuming, for each client’s gradient estimator, a bounded variance σ2. This is a common
assumption in synchronous FL (Li et al., 2020b; Wang et al., 2020a). A thorough analysis
of the relationship between Σ and σ2 is provided in Appendix A.1.

2.6 Formalizing Heterogeneity across Clients

We assume the existence of J ≤ M different clients feature spaces Zi and, without loss of
generality, assume that the first J clients feature spaces are different. This formalism allows
us to represent the heterogeneity of data distribution across clients. In DL problems, we
have J < M when the same dataset split is accessible to many clients. When clients share
the same distribution, we assume that their optimization problem is equivalent. In this case,
we call Fj(θ) their loss function with optimum θ∗j . The federated problem of equation (2)
can thus be formalized with respect to the discrepancy between the clients feature spaces
Zi. To this end, we define Qj the set of clients with the same feature space of client j, i.e.
Qj := {i : Zi = Zj}. Each feature space as thus importance rj =

∑
i∈Qj

pi, and expected

importance sj(n) =
∑

i∈Qj
qi(n) such that

L(θ) =
J∑
j=1

rjFj(θ) and Ln(θ) =
J∑
j=1

sj(n)Fj(θ).

As for q̃i(n), we define s̃j(n) = sj(n)/
∑M

i=1 sj(n).
In Table 1, we summarize the different weights used to adapt the federated optimization

problem to account respectively for heterogeneity in clients importance and data distribu-
tions across rounds.

3. Convergence of Federated Problem (2)

In this section, we prove the convergence of the optimization based on the stochastic ag-
gregation scheme defined in equation (5), with implementation given in Algorithm 1. We
first introduce in Section 3.1 the necessary assumptions and then prove with Theorem 1 the
convergence of the sequence of optimized models (Section 3.2). We show in Section 3.3 the
implications of Theorem 1 on the convergence of the federated problem (2), and propose
sufficient conditions for the learnt model to be the associated optimum. Finally, with two
additional assumptions, we propose in Section 3.4 simpler and practical sufficient conditions
for FL convergence to the optimum of the federated problem (2).

7



Fraboni, Vidal, Kameni, Lorenzi

Client i Sample distribution j

Importance pi rj
Stochastic aggregation weight ωi(n) -

Aggregation weight di(n) -
Expected agg. weight qi(n) sj(n)

Normalized expected agg. weight q̃i(n) s̃j(n)
Expected agg. weight over N rounds qi sj

Table 1: The different weights used to account for the importance of clients or data distri-
butions at every optimization round and during the full FL process.

3.1 Assumptions and Property

We make the following assumptions regarding the Lipschitz smoothness and convexity of the
clients local loss functions (Assumption 1 and 2), unbiased gradients estimators (Assumption
3), and finite answering time for the clients (Assumption 4). Assumption 3 (Khaled et al.,
2020) considers unbiased gradient estimators without assuming bounded variance, giving in
turn more interpretable convergence bounds.

Assumption 1 (Smoothness) Each client’s local objective function is L-Lipschitz smooth,
that is, ∀i ∈ {1, ..., n}, ‖∇Li(x)−∇Li(y)‖ ≤ L ‖x− y‖.

Assumption 2 (Convexity) Clients local objective functions are convex.

Assumption 3 (Unbiased Gradient) Every client stochastic gradient gi(x) = ∇Li(x, ξi)
of a model with parameters x evaluated on batch ξi is an unbiased estimator of the local
gradient, i.e. Eξi [gi(x)] = ∇Li(x).

Assumption 4 (Finite Answering Time) The server receives a client local work in at
most τ := maxi,n(n− ρi(n)) optimization steps, which satisfy P(τ <∞) = 1.

Finally, before focusing our attention on the convergence of Algorithm 1, we introduce
Property 1 which states that the covariance between two aggregation weights can be ex-
pressed as the product of their expected aggregation weight up to a multiplicative factor
α.

Property 1 There exists α ∈ [−1, 1] such that E [ωi(n)ωj(n)] ≤ αqi(n)qj(n).

The proof of Property 1 follows from the definition of the clients aggregation weights,
equation (4), which gives

E [ωi(n)ωj(n)] = P(Tni ≤ ∆tn, Tnj ≤ ∆tn)di(n)dj(n) ≤ qi(n)qj(n).

This last equality shows that Property 1 is always verified by α = 1. In Section 4, we show
that there exists α such that Property 1 is an equality for synchronous FL, asynchronous
FL, and FedFix. We also derive such an α in close-form as function of the different
training parameters. The work of Fraboni et al. (2022) shows that Property 1 also holds
as an equality for numerous client samplings and provides for each of them related α in
close-form.

8



Federated Optimization with Asynchronous Clients Updates

3.2 Convergence of Algorithm 1

Before providing convergence guarantees for the federated optimization problem (2), we
first prove with Theorem 1 the convergence of Algorithm 1.

Theorem 1 Under Assumptions 1 to 4, with ηl ≤ 1/48KLmin
(
1, 1/3ρ2ηg(τ + 1)

)
, we

obtain the following convergence bound:

1

N

N−1∑
n=0

1

K

K−1∑
k=0

[
E
[
Ln(θn,k)

]
− Ln(θ̄n)

]
≤ R({Ln}) + εF + εK + εα + εβ,

where

R({Ln}) =
1

N

N−1∑
n=0

[
Ln(θ̄)− Ln(θ̄n)

]
, εF =

1

η̃KN

∥∥θ0 − θ̄∥∥2 ,
εK = O

(
η2l (K − 1)2 [R({Ln}) + Σ]

)
, εα = O

(
α
[
η̃ + η̃2K2τ2

]
[R({Ln}) + max qi(n)Σ]

)
,

εβ = O
(
β
[
η̃ + η̃2K2τ2

]
[R({Ln}) + Σ]

)
, η̃ = ηgηl, β := max{di(n)− αqi(n)},

and O accounts for numerical constants and the loss function Lipschitz smoothness L.

Theorem 1 is proven in Appendix A. The convergence guarantee provided in Theorem 1 is
composed of 5 terms: R({Ln}), εF , εK , εα, εβ. In the following, we describe these terms
and explain their origin in a given optimization scheme.

Optimized expected residual R({Ln}). The residual R({Ln}) quantifies the sensi-
tivity of Ln between its optimum θ̄n and the optimum θ̄ of the overall expected minimized
problem across optimization rounds L̃. As such, the residual accounts for the heterogeneity
in the history of optimized problems, and is minimized to 0 when the same optimization
problem is minimized at every round n, i.e. Ln = L̃. This condition is always satisfied
when clients have identical data distributions, but requires for the server to set properly
every client aggregation weight di(n) in function of the server waiting time policy ∆tn and
the clients hardware capabilities Tni in the general case (Section 3.3 and 3.4).

Initialization quality εF . εF only depends of the quality of the initial model θ0

through its distance with respect to the optimum θ̄ of the overall expected minimized
problem across optimization rounds L̃. This convergence term can only be minimized by
performing as many serial SGD steps KN .

Clients data heterogeneity εK . This term accounts for the disparity in the clients
updated models, and is proportional to the clients amount of local work K (quadratically)
and to the heterogeneity of their data distributions Zi through Σ1. When K = 1, every
client perform its SGD on the same model, which reduces the server aggregation to a
traditional centralized SGD. We retrieve εK = 0.

Gradient delay τ through εα and εβ. Decreasing the server time policy ∆tn allows
faster optimization rounds but decreases a client’s participation probability P(Tni ≤ ∆tn)
resulting in an increased maximum answering time τ . In turn, we note that εα and εβ are
quadratically proportional to the maximum amount of serial SGD Kτ . This latter terms
quantifies the maximum amount of SGD integrated in the global model θn.

9



Fraboni, Vidal, Kameni, Lorenzi

3.3 Sufficient Conditions for Minimizing the Federated Problem (2)

Theorem 1 provides convergence guarantees for the history of optimized models {Ln}. Un-
der the same assumptions of Theorem 1, we can provide convergence guarantees for the
original FL problem L(θ) (proof in Appendix B).

Theorem 2 Under the same conditions of Theorem 1, we have

1

N

N−1∑
n=0

1

K

K−1∑
k=0

E
[∥∥∥∇L(θn,k)

∥∥∥2]
≤ O (R({Ln})) + P ({Ln}) + U({Ln}) +O (εF ) + εK + εα + εβ,

where

P ({Ln}) = O

 1

N

N−1∑
n=0

χ2
n

∑
j∈Wn

s̃j(n)
[
Fj(θ̄

n)− Fj(θ∗j )
] ,

U({Ln}) = O

 1

N

N−1∑
n=0

1

K

K−1∑
k=0

∑
j /∈Wn

rj

[
E
[
Fj(θ

n,k)
]
− Fj(θ∗j )

] ,

χ2
n =

∑
j∈Wn

(rj − s̃j(n))2/s̃j(n), and Wn = {j : sj(n) > 0}.

Theorem 2 provides convergence guarantees for the optimization problem (2) and generalizes
the Theorem 2 in the work of Wang et al. (2020a) developed for the synchronous setting.

We retrieve the components of the convergence bound of Theorem 1. The terms εF to ετ
can be mitigated by choosing an appropriate local learning rate ηl, but the same cannot be
said for R({Ln}), P ({Ln}), U({Ln}). Behind these three quantities, Theorem 2 shows that
proper expected representation of every dataset type is needed, i.e. sj(n) = rj . Indeed, if
a client is poorly represented, i.e. sj(n) 6= rj , then R({Ln}) > 0 and P ({Ln}) > 0, while if
a client is not represented at all, i.e. sj(n) = 0, then U({Ln}) > 0. Therefore, we propose,
with Corollary 3, sufficient conditions for any FL optimization scheme satisfying Algorithm
1 to converge to the optimum of the federated problem (2).

We also note that the discussions made in Section 3.2 on the implications of Theorem
1 to provide tighter convergence guarantees (regarding the expected residuals, initializa-
tion quality, data heterogeneity, and gradient delay) can be translated to Theorem 2 and
Corollary 3, therefore providing relevant insights on the rate of convergence to reach the
optimum in asynchronous FL.

Corollary 3 Under the conditions of Theorem 1, if every client data distribution satisfies
s̃j(n) = rj, the following convergence bound for optimization problem (2) can be obtained

1

N

N−1∑
n=0

1

K

K−1∑
k=0

[
E
[
L(θn,k)

]
− L(θ∗)

]
≤ εF + εK + εα + εβ.

Proof Follows directly. s̃j(n) = rj implies χ2
n = 0, Wn = ∅, Ln = q(n)L, and θ̄n = θ∗.

10



Federated Optimization with Asynchronous Clients Updates

These theoretical results provide relevant insights for different FL scenarios.
iid data distributions, Zi = Z. Consistently with the extensive literature on syn-

chronous and asynchronous distributed learning, when clients have data points sampled
from the same data distribution, FL always converges to its optimum (Corollary 3). In-
deed, s̃j(n) = rj = 1 regardless of which clients are participating, and what importance pi
or aggregation weight di(n) a client is given.

non-iid data distributions. The convergence of FL to the optimum requires to op-
timize by considering every data distribution type fairly at every optimization round, i.e.
s̃j(n) = rj (Corollary 3). This condition is weaker than requiring to treat fairly every client
at every optimization round, i.e. qi(n) = pi. Ideally, only one client per data type needs to
have a non-zero participating probability, i.e. P(Tni ≤ ∆tn) > 0, and an appropriate di(n)
such that s̃j(n) = rj is satisfied. In practice, knowing the clients data distribution is not
possible. Therefore, ensuring FL convergence to its optimum requires at every optimization
round q̃i(n) = pi (Wang et al., 2020a).

We provide in Example 1 an illustration on these results based on quadratic loss functions
to show that considering fairly data distributions is sufficient for an optimization scheme
satisfying Algorithm 1 to converge to the optimum of the optimization problem (2), since
s̃j(n) = rj is satisfied at every optimization round, while q̃i(n) 6= pi may not be satisfied.

Example 1 Let us consider four clients with data distributions such that their loss can
be expressed as Li(θ) = 1

2 ‖θ − θ
∗
i ‖

2 with θ∗1 = θ∗2 (Z1), θ∗3 = θ∗4 (Z2), and identical
client importance, i.e. pi = 1/4. Therefore, each data type has identical importance, i.e.
rj = 1/2, and the optimum satisfies θ∗ = 1

2 [θ∗1+θ∗3]. We consider that clients with odd index
participate at odd optimization rounds while the ones with even index at even optimization
rounds, i.e. q2n+1

1 = q2n+1
3 = q2n2 = q2n4 = 1/2 and q2n1 = q2n2 = q2n+1

3 = q2n+1
4 = 0 which

gives s̃1(n) = s̃2(n) = 1/2 and q̃i(n) = 0 or q̃i(n) = 1/2 but not q̃i(n) = 1/4. With ηg = 1,
equation (5) can be rewritten as

θn+2 = θn+1 +
1

2

[
(θn+1

1 − θn) + (θn+1
3 − θn)

]
. (7)

Clients update can be rewritten as θn+1
i −θn = φ(θ∗i −θn), where φ = 1−(1−ηl)K . Equation

(7) can thus be rewritten as

θn+2 − θn+1 + φθn = φθ∗. (8)

Solving equation (8) proves FL asymptotic convergence to the optimum θ∗.

3.4 Relaxed Sufficient Conditions for Minimizing the Federated Problem (2)

Theorem 2 holds for any client’s update time Ti and optimization scheme satisfying Al-
gorithm 1, and provides finite convergence guarantees for the optimization problem (2).
Corollary 3 shows that for the asymptotic convergence of FL, data distribution types should
be treated fairly in expectation, i.e. s̃j(n) = rj . This sufficient condition is not necessarily
realistic, since the server cannot know the clients data distributions and participation time,
and thus needs to give to every client an aggregation weight di(n) such that q̃i(n) = pi
without knowing Ti.

11



Fraboni, Vidal, Kameni, Lorenzi

In Example 1, we note that we have 1
2

[
q2ni + q2n+1

i

]
= pi. Therefore, every client is given

proper consideration every two optimization rounds. Based on Example 1, in Theorem 4 we
provide weaker sufficient conditions than the ones of Corollary 3. To this end, we introduce
Property 2 stating that, in a window of size W optimization rounds, clients are always
contributing according to their expected importance qi.

Property 2 (Window) ∃W ≥ 1 such that ∀s, 1
W

∑(s+1)W−1
n=sW qi(n) = qi.

Property 2 states that over a cycle of W aggregations, the sum of a client’s expected
aggregation weights qi(n) is constant. By definition of qi, Property 2 is always satisfied for
W = N . In addition, we show in Section 4 that Property 2 holds for all the asynchronous
optimization schemes used in our work, and provide W in close-form depending on M , the
amount of participating clients, and their associated update time.

Finally, we consider with Assumption 5 that clients gradients are bounded. This as-
sumption has been considered in previous work on federated optimization including Li
et al. (2020b); Stich (2019), and can be justified by the use of gradient clipping during
the practical optimization of deep learning models to prevent exploding gradients. With
gradient clipping, a given threshold B is introduced, and gradients with norm exceeding
this threshold are clipped to norm B.

Assumption 5 (Bounded Gradients) The expected squared norm of gradients is uni-

formly bounded, i.e. ∃B > 0 such that Eξi
[
‖∇Li(x, ξi)‖2

]
≤ B2 .

Therefore, using Assumption 2, Assumption 5 and the Cauchy Schwartz inequality gives

E
[
Li(θn,k+1)

]
− E

[
Li(θn,k)

]
≤ E

[
〈∇Li(θn,k+1),θn,k+1 − θn,k〉

]
≤ ηgηlq(n)B2. (9)

Finally, using equation (9) and Property 2, the performance history on the optimized prob-
lem can be bounded as follows

(s+1)W−1∑
n=sW

K−1∑
k=0

qi E
[
Li(θn,k)

]
≤

(s+1)W−1∑
n=sW

K−1∑
k=0

qi(n)
[
E
[
Li(θn,k)

]
+ ηgηlK(W − 1)B2

]
.

(10)

Theorem 4 Under Assumption 1 to 5, and considering that W is a divider of N , we get
the following convergence bound for the optimization problem (6):

1

N

N−1∑
n=0

1

K

K−1∑
k=0

[
E
[
L̄(θn,k)

]
− L̄(θ̄)

]
≤ ε := εF + εK + εα + εβ + εW ,

where εW = O(ηgηl(W−1)K). Furthermore, we obtain the following convergence guarantees
for the federated problem (2):

1

N

N−1∑
n=0

1

K

K−1∑
k=0

E
[∥∥∥∇L(θn,k)

∥∥∥2] ≤ ε+O(χ2[L̄(θ̄)−
J∑
j=1

sjFj(θ
∗
j )]),

where χ2 =
∑J

j=1
(rj−s̃j)2

s̃j
.

12



Federated Optimization with Asynchronous Clients Updates

Proof

1

N

N−1∑
n=0

1

K

K−1∑
k=0

[
E
[
L̄(θn,k)

]
− L̄(θ̄)

]
≤ 1

N

N−1∑
n=0

1

K

K−1∑
k=0

qi(n)
[
E
[
Li(θn,k)

]
+ η̃K(W − 1)B2

]
− L̄(θ̄)

≤ R({Ln}) + ε+
1

N

N−1∑
n=0

Ln(θ̄n)− L̄(θ̄) = ε,

where we use equation (10) for the first inequality and Theorem 1 for the second inequality.
Finally, we can obtain convergence guarantees on the optimization problem (2) with

Theorem 2 by considering the minimization of the optimization problem L̄. Therefore, the
bound of Theorem 2 can be simplified noting that Ln = L̄, θ̄n = θ̄, Wn = ∅, χ2

n = χ2, and
by adding εW , which completes the proof.

Theorem 4 shows that the condition s̃j = rj is sufficient to minimize the optimization
problem (2). In practice, for privacy concerns, clients may not want to share their data
distribution with the server, and thus the relaxed sufficient condition becomes q̃i = pi. This
condition is weaker than the one obtained with Corollary 3, at the detriment of a looser
convergence bound including an additional asymptotic term εW linearly proportional to the
window size W . Therefore, for a given learning application, the maximum local work delay
τ and the window size W need to be considered when selecting an FL optimization scheme
satisfying Algorithm 1. Also, the server needs to properly allocate clients aggregation
weight di(n) such that Property 2 is satisfied while keeping at a minimum the window
size W . We note that W depends of the considered FL optimization scheme and clients
hardware capabilities. Based on the results of Theorem 4, in the following section, we
introduce FedFix, a novel asynchronous FL setting based on a waiting policy over fixed
time windows ∆tn.

Finally, the following example illustrates a practical application of the condition q̃i = pi.

Example 2 We consider two clients, i = 1, 2, with Li(θ) = 1
2 ‖θ − θ

∗
i ‖

2 where clients have
identical importance, i.e. p1 = p2 = 1/2. Client 1 contributes at even optimization rounds
and Client 2 at odd ones, i.e. q2n1 = q1, q2n+1

2 = q2, and q2n+1
1 = q2n2 = 0. Hence, we have

θn
n→∞−−−→ q1θ

∗
1 + q2θ

∗
2

q1 + q2
,

which converges to the optimum of problem (2) if and only if 1
2

[
q̃2ni + q̃2n+1

i

]
= pi (Theorem

4).

The conditions of Corollary 3 and Theorem 4 are equivalent when W = 1, where we
retrieve εW = 0. They are also equivalent when clients have the same data distributions,
and we retrieve s̃j = rj = 1 at every optimization round, which also implies that W = 1.

The convergence guarantee proposed in Theorem 4 depends on the window size W ,
and to the maximum amount of optimizations needed for a client to update its work τ .

13



Fraboni, Vidal, Kameni, Lorenzi

We provide sufficient conditions in Corollary 5 for the parameters W , and τ , such that an
optimization scheme satisfying Algorithm 1 converges to the optimum of the optimization
problem (2).

Corollary 5 Let us assume there exists a ≥ 0 and b ≥ 0 such that W = O(Na), τ = O(N b),
and ηl ∝ N−c. The convergence bound of Theorem 4 asymptotically converges to 0 if

W = o(N), τ = o(N), and max(a, b) < c < 1.

Proof The bound of Theorem 4 converges to 0 if the following quantities also do: ηlW ,
1
ηlN

, τηl, ηl. We get the following conditions on a, b, and c: −c+a < 0, c−1 < 0, b− c < 0,
−c < 0, which completes the proof.

By construction and definition of qi, Property 2 is always satisfied with W = N . How-
ever, Corollary 5 shows that when W = N , no learning rate ηl can be chosen such that
the learning process converges to θ∗. Also, Corollary 5 shows that Assumption 4 can be
relaxed. Indeed, Assumption 4 implies that τ = O(1) and Corollary 5 shows that τ = o(N)
is sufficient. We show in Section 4 that all the considered optimization schemes satisfy
τ = O(1) and W = O(1), and also depend of the clients hardware capabilities and amount
of participating clients M .

4. Applications

In this section, we show that the formalism of Section 2 can be applied to a wide-range
of optimization schemes, demonstrating the validity of the conclusions of Corollary 3 and
Theorem 4 (Section 3). When clients have identical data distributions, the sufficient con-
ditions of Corollary 3 are always satisfied (Section 3). In the heterogeneous case, these
conditions can also (theoretically) be satisfied. It suffices that every client has a non-null
participation probability, i.e. P(Tni ≤ ∆tn) > 0 such that there exists an appropriate di(n)
satisfying q̃i(n) = pi. Yet, in practice clients generally may not even know their update
time distribution P(Tni ) making the computation of di(n) intractable. In what follows, we
thus focus on Theorem 4 to obtain the close-form of ε, which only requires from the server
to know the clients time τi.

Theorem 4 provides a close-form for the convergence bound ε of an optimization scheme
in function of the amount of server aggregation rounds N . We first introduce in Section
4.1 our considerations for the clients hardware and data to instead express ε in function of
the training time T . The quantity ε also depends on the optimization scheme time policy
∆tn through α, β and τ , and on the clients data heterogeneity through R({Ln}) and W .
We provide their close-form for synchronous FedAvg (Section 4.2), asynchronous FedAvg
(Section 4.3), and FedFix (Section 4.4), a novel asynchronous optimization scheme mo-
tivated by Section 3.4. Finally, in Section 4.5, we show that the conclusions drawn for
synchronous/asynchronous FedAvg and FedFix can also be extended to other distributed
optimization schemes with delayed gradients. Of course, similar bounds can seamlessly be
derived for centralized learning and client sampling, which we differ to Appendix C to focus
on asynchronous FL in this section.

14



Federated Optimization with Asynchronous Clients Updates

4.1 Heterogeneity of clients hardware and data distributions

Clients importance. We restrict our investigation to the case where clients have identical
aggregation weights during the learning process, i.e. di(n) = di. We also consider identical
client importance pi = 1/M . We can therefore define the averaged optimum residual Σ
defined as the average of the clients SGD evaluated on the global optimum, i.e.

Σ :=
1

M

M∑
i=1

Eξi

[
‖∇Li(θ∗, ξi)‖2

]
.

When clients have identical data distributions, Σ can be simplified as Σ = Eξ

[
‖∇L(θ∗, ξ)‖2

]
,

and Σ = 0 when clients perform GD. We note that in the DL and FL literature Σ is often
simplified by assuming bounded variance of the stochastic gradients, i.e. Σ ≤ σ2, where σ2

is the bounded variance of any client SG.

Clients computation time. In the rest of this work, we consider that clients guarantee
reliable computation and communication, although with heterogeneous hardware capabil-
ities, i.e. ∃τi ∈ R, s.t. Ti = τi. Without loss of generality, we assume that clients are
ordered by increasing τi, i.e. τi ≤ τi+1, where the unit of τi is such that τi is an integer. In
what follows, we provide the close form of di for all the considered optimization schemes.
This derivation still holds for applications where clients have unreliable hardware capabil-
ities that can be modeled as an exponential distribution, i.e. Ti ∼ exp(τ−1i ) which gives
E [Ti] = τi.

Clients data distributions. Unless stated otherwise, we will consider the FL setting
where each client has its unique data distribution. Therefore, clients have heterogeneous
hardware and non-iid data distributions. The obtained results can be simplified for the DL
setting where a dataset is made available to M processors. In this special case, clients have
iid data distributions (Zi = Z1) , and identical computation times (τi = τ1, W = M , and
τ = M − 1).

Learning rates. For sake of clarity, we ignore the server learning rate when expressing
the convergence bounds ε, i.e. ηg = 1. Also, we consider a local learning rate ηl inversely
proportional to the serial amount of SGD included in the global model, i.e. ηl ∝ 1/

√
KN ,

consistently with the rest of the distributed optimization literature.

We propose Table 2 to summarize the close form or bounds of the different parameters
used in Section 3.

4.2 FedAvg, Synchronous Federated Learning

As described for FedAvg in Section 2.3, at every optimization round, the server sends to the
clients the current global model to perform K SGD steps on their own data before returning
the resulting model to the server. Once every client performs its local work, the new global
model is created as the weighted average of the clients contribution. The time required
for an optimization step is therefore the one of the slowest client (∆tn = maxi(T

n
i )), and

every client is considered (P(Tni ≤ ∆tn) = 1). Hence, α = 1, β = 0, and setting di = pi is
sufficient to satisfy the conditions of Corollary 3 (and thus the ones of Theorem 4) ensuring

15



Fraboni, Vidal, Kameni, Lorenzi

Sync. FedAvg Async. FedAvg FedFix

di = pi =
[∑M

i=1
1
τi

]
τipi = dτi/∆te pi

N T/τM
∑M

i=1 T/τi T/∆t
∆t = maxTni = minTni = ∆t
α 1 0 1
β 0 max di ≤ τm/τ0 0
τ 0 Ω(M), O(MτM/τ0) 0, bτm/τ0c
W 1 Ω(M), O(M(τM )M ) 1, M dτm/τ0eM

R({Ln}) = 0 = 1
M

∑M
i=1 [Li(θ∗)− Li(θ∗i )] ≤ 1

M

∑M
i=1 [Li(θ∗)− Li(θ∗i )]

Table 2: The different variables used to account for the importance of clients or data distri-
butions at every optimization round and during the full FL process. For τ and W ,
we give two values which correspond to their respective lower and upper bound.

that FL converges to its optimum (Wang et al., 2020a). The term ε then reduces to

εFedAvg =
1√
KN

∥∥θ0 − θ∗∥∥2 +O
(
K − 1

N
Σ

)
+O

(
1√
KN

1

M
Σ

)
. (11)

The second element of equation (11) accounts for the clients update disparity through their
amount of local work K between two server aggregations, and is proportional to the SG
variance Σ. The third element benefits of the distributed computation by being proportional
to 1/M . Equation (11) is consistent with literature on convex distributed optimization with
FedAvg including Wang et al. (2020a); Khaled et al. (2020).

4.3 Asynchronous FedAvg

With FedAvg, every client waits for the slowest one to perform its local work, and cannot
contribute to the learning process during this waiting time. To remove this bottleneck, with
asynchronous FedAvg, the server creates a new global model whenever it receives a client
contribution before sending it back to this client. For in depth discussion of Asynchronous
FedAvg, please refer to Xu et al. (2021).

With asynchronous FedAvg, clients always compute their local work but each on a
different global model, giving ∆tn = mini T

n
i , α = 0, and β = maxi di. In addition, while

the slowest client updates its local work, other clients performs a fix amount of updates (up
to dτM/τie). By scaling this amount of updates by the amount of clients sending updates
to the server, we have

τ = O
(
τM
τ0

(M − 1)

)
.

We define lcm({xi}) the function returning the least common multiplier of the set of
integers {xi}. Hence, after every ν := lcm({τi}) time, each client has performed ν/τi
optimization rounds and the cycle of clients update repeats itself. Thus, the smallest window

16



Federated Optimization with Asynchronous Clients Updates

W satisfies

W =
M∑
i=1

ν/τi.

By construction, ν ≥ τM and thusW = Ω(M), withW = M when clients have homogeneous
hardware (τM = τ0). In the worse case, every τi is a prime number, and we have ν/τi ≤
(τM )M−1, which gives W = O(M (τM )M−1). In a cycle of W optimization rounds, every
client participates ν/τi times to the creation of a new global model. Therefore, we have
qi(n) = di for the ν/τi participation of client i, and qi(n) = 0 otherwise. Hence, the sufficient
conditions of Theorem 4 are satisfied when

qi =
1

W

(k+1)W−1∑
n=kW

qi(n) =
1∑M

i=1 ν/τi

ν

τi
di = pi ⇒ di =

[
M∑
i=1

1

τi

]
τipi. (12)

The client weight calculated in equation (12) is constant and only depends on the client
importance pi (set and thus known by the server), and on the clients computation time τi
(eventually estimated by the server after some clients updates). The condition on di can
be further simplified by accounting for the server learning rate ηg. Coupling equation (5)
with equation (12) gives ηgdi ∝ τipi, which is sufficient to guarantee the convergence of
asynchronous FL to its optimum. Finally, by bounding τi, we also have β = maxi di ≤
τM/τ0, bounded the hardware computation time heterogeneity.

The disparity between the optimized objectivesR({Ln}) at different optimization rounds
also slows down the learning process. Indeed, at every optimization round, only a single
client can participate with probability 1. As such, we have Ln = diLi which, thanks to the
assumption pi = 1/M , yields

R({Ln}) =
1

M

M∑
i=1

[Li(θ∗)− Li(θ∗i )] .

Finally, we simplify the close-form of ε (Theorem 4) for asynchronous FedAvg to get

εAsync =
1√
KN

∥∥θ0 − θ∗∥∥2 +O
(
K − 1

N
Σ

)
+O

(
τM
τ0

1√
KN

[R({Ln}) + Σ]

)
+O

((
τM
τ0

)3 K

N
M2 [R({Ln}) + Σ]

)
+O

(
1√
KN

(W − 1)

)
. (13)

With equation (13), we can compare synchronous and asynchronous FedAvg. The first
and second asymptotic terms are identical for the two learning algorithms, while the third
asymptotic term is scaled by the hardware characteristics τM/τ0 instead of 1/M in FedAvg,
with the addition of a non null residual R({Ln}) for asynchronous FedAvg. However, the
fourth and fifth term are unique to asynchronous FedAvg, and explains why its convergence
gets more challenging as the amount of clients M increases. The impact of the hardware
heterogeneity is also identified through the importance of τM/τ0 in the third term. With
no surprise, for a given optimization round, synchronous FedAvg outperforms its asyn-
chronous counterpart. However, in T time, the server performs

N =
M∑
i=1

T/τi

17



Fraboni, Vidal, Kameni, Lorenzi

aggregations with asynchronous FedAvg against T/τM for synchronous FedAvg. With
asynchronous FedAvg, the server thus performs at least M times more aggregations than
with synchronous FedAvg. As a result, the first two terms of equation (13), which are
proportional to how good the initial model is ‖θ0 − θ∗‖, decrease faster with asynchronous
FedAvg at the detriment of an higher convergence residual coming for the two last terms.

Comparison with asynchronous DL and FedAvg literature. The convergence
rates obtained in the convex distributed optimization literature relies on additional assump-
tions to ours, with which we retrieve their proposed convergence rate. To the best of our
knowledge, only Zinkevich et al. (2009) considers non-iid data distributions for the clients.
When assuming W = O(τ) and ηl ∝ 1/

√
τN , we retrieve a convergence rate

√
τ/N .

We also match convergence rates for literature with iid client data distributions and
K = 1. With M = O(

√
N), then we have O(1/

√
N) (Agarwal and Duchi, 2011; Lian et al.,

2015). When ηl = O(1/τ
√
KN), we retrieve τ/N + 1/

√
N (Stich and Karimireddy, 2020;

Stich et al., 2021).

4.4 FedFix

The analysis of asynchronous FedAvg (Section 4.3) and its comparison with synchronous
FedAvg (Section 4.2), shows that asynchronous FedAvg is not scalable to large cohort of
clients. We thus propose FedFix combining the strong points of synchronous and asyn-
chronous FedAvg, where the server creates the new global model at a fixed time tn with
the contributions received since tn−1. Therefore, the server does not wait for every client,
contrarily to synchronous FedAvg, and considers more than one client per aggregation to
have more stable aggregations, contrarily to asynchronous FedAvg. We provide in Figure
1 an illustration of FedFix with two clients.

With FedFix, an iteration time ∆tn = tn+1 − tn is decided by the server and is inde-
pendent from the clients remaining update time Tni . For sake of convenience, we further
assume that the time between optimization rounds is identical, i.e. ∆tn = ∆t, but the
following results can be derived for other fixed time policies {∆tn}. Therefore, Tni and Tnj
are independent, and so are ωi and ωj , which gives α = 1 and β = 0.

Every client sends an update to the server in N ′i = dTi/∆te optimization steps. Con-
trarily to asynchronous FedAvg, we thus have τ = dτm/∆te = O(1), which is independent
from the amount of participating clients M . In this case, the smallest window W satisfies
W = lcm({N ′i}), and clients update W/N ′i times their work to the server during the window
W . Therefore, satisfying the conditions of Theorem 4 requires

di =
⌈ τi

∆t

⌉
pi. (14)

With equation (14), we can notice the relationship between FedFix and synchronous or
asynchronous FedAvg. When ∆t ≥ τi, client i participates to every optimization round
and is thus considered synchronously, which gives di = pi. When ∆t ≥ τM , we retrieve
synchronous FL and di = pi for every client. On the contrary, for asynchronous FL, when
∆t� τi, we obtain dτi/∆te ≈ τi/∆t and we retrieve ηgdi = ηg [τi/∆t] pi ∝ τipi.

Regarding the disparity between the local objectives R{Ln}, we know that a client
participates to an optimization round with qi(n) = di. We thus have Ln =

∑
i∈Sn

diLi,
where Sn is the set of the participating clients at optimization step n. Considering that

18



Federated Optimization with Asynchronous Clients Updates

Ln(θ̄n) ≥
∑

i∈Sn
diLi(θ∗i ), the close form of FedFix is bounded by the one of of asyn-

chronous FedAvg, i.e.

R({Ln}) ≤ 1

M

M∑
i=1

[Li(θ∗)− Li(θ∗i )] .

Finally, we simplify the close-form of ε (Theorem 4) for FedFix to get

εFedFix =
1√
KN

E
[∥∥θ0 − x∥∥2]+O

(
K − 1

N
[R({Ln}) + Σ]

)
+O

([
1√
KN

+
K

N

⌈τm
∆t

⌉2] [
R({Ln}) +

⌈τm
∆t

⌉ 1

M
Σ

])
+O

(
1√
KN

(W − 1)

)
.(15)

The first two elements of equation (15) are identical for FedFix, synchronous and asyn-
chronous FedAvg. However, thanks to lower values for the different variables (cf Table 2),
the last two asymptotic terms of the convergence bound are smaller for FedFix than for
asynchronous FedAvg, equation (15). Similarly, these two terms are larger with FedFix
than with synchronous FedAvg. The hardware heterogeneity and the amount of partic-
ipating clients still impacts the convergence bound through dτM/∆te and W , but can be
mitigated with proper selection of ∆t. Therefore, after N optimization rounds, synchronous
FedAvg outperforms FedFix which outperforms in turn asynchronous FedAvg. However,
in T time, the server performs N = T/∆t aggregations with FedFix against T/τM for syn-
chronous FedAvg. With asynchronous FedAvg, the server thus performs at least τM/∆t
times more aggregations than with synchronous FedAvg. Overall, ∆t can be considered
as the level of asynchronicity given to Algorithm 1, with FedAvg when ∆t = τM and
asynchronous FedAvg when ∆t ≥ τM .

In the DL case, clients have identical computation time (τ1 = τm), and we retrieve the
convergence bound of synchronous FedAvg.

In addition, we can increase the waiting time for the clients update, since the learning
process converges and gets closer to the optimum of optimization problem (2), to reach a
behavior similar to the one of synchronous FL. Indeed, for Theorem 4 to hold, we only need
the same optimization time rounds ∆t over a window W

4.5 Generalization

Coupled with the theoretical method developed in Wang et al. (2020a), the proof of Theorem
1 can account for FL regularization methods (Li et al., 2020a, 2019; Acar et al., 2021), other
SGD solvers (Kingma and Ba, 2015; Ward et al., 2019; Li and Orabona, 2019; Yu et al.,
2019a,b; Haddadpour et al., 2019), and/or gradient compression/quantization (Reisizadeh
et al., 2020; Basu et al., 2019; Wang et al., 2018; Koloskova* et al., 2020).

We also note that Theorem 4 can be applied to other distributed optimization schemes
using different waiting time policy ∆tn. With FedBuff (Nguyen et al., 2021), the server
waits for m client updates to create the new global model. The server then communicates
to these clients the new global model, while the other clients keep performing local work on
the global model they received.

In this section, the sufficient conditions of Theorem 4 regarding the expected aggregation
weights qi(n) were applied to obtain proper aggregation weight di. We keep identical clients

19



Fraboni, Vidal, Kameni, Lorenzi

local learning rate ηl and amount of local work K. We could instead get the close-form
of a client specific learning rate ηl(i) or amount of local work K(i) using the gradient
formalization of Wang et al. (2020a). Specifically, our conclusions can also be applied to
federated optimization schemes where clients perform the same amount of SGD steps on
their data over the whole optimization process while asynchronously aggregating the clients’
delayed updates (Lian et al., 2018; Avdiukhin and Kasiviswanathan, 2021). Finally, with
minor modifications to the aggregation scheme (5), our convergence guarantees can also be
extended to federated optimization schemes where the server balances the clients’ hardware
heterogeneity by using every client latest contribution during each aggregation step (Gu
et al., 2021; Yang et al., 2022).

5. Experiments

In this section, we experimentally demonstrate the theoretical claims of Section 3 and 4.
We first introduce the information needed to understand how the experiments are run in
Section 5.1. Finally, in Section 5.2, we provide our experiments and their interpretation.

5.1 Experimental Setting

We introduce in this subsection the dataset and the predictive models used for federated
optimization, the hardware scenarios proposed to simulate hardware heterogeneity, the
clients aggregation weights strategies, and how the different hyperparameters are set1.

Optimization Problems. We consider learning a predictive model for optimization
problem (2) where clients have identical importance (pi = 1/M) based on the following
datasets with their associated learning scenarios.

• MNIST iid (Lecun et al., 1998) and MNIST non-iid. MNIST is a dataset of 28x28
pixel grayscale images of handwritten single digits between 0 and 9 composed of 60 000
training and 10 000 testing samples split equally among the clients. We use a logistic
regression to predict the images class. Clients are randomly allocated digits to match
their number of samples. With MNIST non-iid, we split instead data samples among
clients using a Dirichlet distribution of parameter 0.1, i.e. Dir(0.1).Therefore, with
MNIST iid and non-iid, we evaluate our theory on a convex optimization problem.

• CIFAR10/100 (Krizhevsky, 2009). The dataset consists of 10/100 classes of 32x32
images with three RGB channels. There are 50000 training and 10000 testing exam-
ples. The model architecture was taken from (McMahan et al., 2017) which consists
of two convolutional layers and a linear transformation layer to produce logits. Clients
get the same amount of samples but their percentage for each class vary and is deter-
mined with a Dirichlet distribution of parameter 0.1, i.e. Dir(0.1) (Harry Hsu et al.,
2019).

• CIFAR∗10/100. Clients get the same samples as with CIFAR10/100. However, with
CIFAR∗10/100, we use a logistic regression to predict the image class to evaluate our
theory on a convex optimization problem as for MNIST iid and non-iid.

1. Code and data are available at https://github.com/Accenture/Labs-Federated-Learning/tree/

asynchronous_FL

20

https://github.com/Accenture/Labs-Federated-Learning/tree/asynchronous_FL
https://github.com/Accenture/Labs-Federated-Learning/tree/asynchronous_FL


Federated Optimization with Asynchronous Clients Updates

• Shakespeare (Caldas et al., 2018). We study a LSTM model for next character
prediction on the dataset of The Complete Works of William Shakespeare. The model
architecture is composed of a two-layer LSTM classifier containing 100 hidden units
with an 8 dimensional embedding layer taken from (Li et al., 2020a). The model
takes as an input a sequence of 80 characters, embeds each of the characters into a
learned 8-dimensional space and outputs one character per training sample after 2
LSTM layers and a fully connected one.

Hardware Scenarios. In the following experimental scenarios, clients computation
time are obtained according to the time policy FX. We consider that clients have fixed
update times that can be up to X% faster than the slowest client. Clients computation
time are uniformly distributed from the lower to the upper bound set at 1 unit of time.
Clients have thus identical hardware with F0. To simulate heterogeneous clients hardware,
we consider the time scenario F80.

Clients Aggregation Weights. To compare asynchronous FL with and without the
close-form of di provided in Section 4, we introduce Identical where di = 1 for every
client regardless of the time scenario FX, and Time-based where di satisfies equation (12)
derived in Section 4.

Hyperparameters. Unless specified otherwise, we consider a global learning rate
ηg = 1. We finetune the local learning rate ηl with values ranging from 10−5 to 1. We
consider a batch size B = 64 for every dataset. We report mean and standard deviation
on 5 random seeds. Every comparison of Identical with Time-Based is done using the
same local learning rate. We give an advantage to Identical by finetuning the learning
rate on this clients aggregation weight scenario.

5.2 Experimental Results

We experimentally show that asynchronous FL has better performances with Time-based
than with Identical, and thus we demonstrate the correctness of Theorem 4 with Figure
2 in Section 5.2.1. Finally, we compare synchronous FedAvg and asynchronous FedAvg
in Figure 3.

5.2.1 Impact of the Clients Aggregation Weights on Asynchronous FedAvg

Figure 2(a) experimentally shows the interest of coupling asynchronous FL with Time-
based instead of Identical for different convex applications (MNIST iid, MNIST non-iid,
CIFAR∗10, and CIFAR∗100). The learnt model with Time-based has better minima on
the federated problem (2). In addition, Figure 2(b) shows that losses across clients are more
homogeneous with Time-based, resulting in generally lower standard deviations.

Focusing on MNIST iid and non-iid, we see the impact of data heterogeneity on the learnt
model performances. With Identical, asynchronous FL converges to a suboptimum point
and the differences between the learnt model losses is twice as large for MNIST non-iid than
for MNIST iid, Figure 2(a). Figure 2(b) shows a similar result concerning the clients loss
heterogeneity. Therefore, data heterogeneity degrades the suboptimum loss and cannot be
ignored in asynchronous FL applications. Indeed, Identical and Time-based curves are
significantly different even for the simplest application on MNIST iid, where the dataset
is uniformly distributed across M = 10 clients. Hence, the assumption of identical data

21



Fraboni, Vidal, Kameni, Lorenzi

0.0 0.5 1.0 1.5 2.0
0.15

0.20

0.25
(a

) F
P 

M
ea

n
MNIST iid

Identical
Time-based

0.0 0.5 1.0 1.5 2.0
0.10

0.15

0.20
MNIST non-iid

0.0 0.5 1.0 1.5 2.0
1.3

1.4

1.5
CIFAR * 10

0.0 0.5 1.0 1.5 2.0

2

3
CIFAR * 100

0.0 0.5 1.0 1.5 2.0

0.01
0.02
0.03

(b
) F

P 
St

d

0.0 0.5 1.0 1.5 2.0

0.04

0.06

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.0 0.5 1.0 1.5 2.0
0.15

0.20

0.25

(c
) S

P 
M

ea
n

0.0 0.5 1.0 1.5 2.0
0.10

0.15

0.20

0.0 0.5 1.0 1.5 2.0
1.3

1.4

1.5

0.0 0.5 1.0 1.5 2.0

2

3

0.0 0.5 1.0 1.5 2.0
Time (×105)

0.02

0.04

(d
) S

P 
St

d

0.0 0.5 1.0 1.5 2.0
Time (×105)

0.04

0.06

0.0 0.5 1.0 1.5 2.0
Time (×105)

0.1

0.2

0.3

0.0 0.5 1.0 1.5 2.0
Time (×105)

0.2

0.4

Figure 2: We consider the loss evolution over time of federated problem (2) (FP) and
surrogate problem (6) (SP) for MNIST iid, MNIST non-iid, CIFAR∗10, and
CIFAR∗100; and the respective standard deviation of the loss over clients in
(b) and (d). We consider M = 10 for a time scenario F80 with K = 1.

distributions should generally not be made and the aggregation scheme Time-based should
be used instead for any asynchronous FL (or DL).

With Figure 2(c), we can also appreciate the performances of the learning procedure
on the surrogate problem (6) based on the clients computation times Ti. Due to clients
hardware heterogeneity, in the scenario F80, clients communicate with the server up to 5
more times than the slowest one. Time-based balances this amount of updates disparity
across clients. As a result, Identical has better performances than Time-based on the
surrogate problem (6) for MNIST iid/non-iid and CIFAR∗10/100.

5.2.2 Partial Asynchronicity with FedFix

The theory derived in Section 3 can be applied to asynchronous FL but also synchronous
FL, FedAvg, and other asynchronous FL schemes like FedFix (Section 4) and Fed-
Buff (Nguyen et al., 2021). We show with Figure 3 that allowing asynchronicity does
not necessarily provide faster learning processes, e.g. comparison between synchronous and
asynchronous FedAvg above, but FedFix outperforms FedAvg by balancing convergence
speed and stability.

With a small enough learning rate ηl, asynchronous FedAvg outperforms FedFix and
FedBuff, which outperforms synchronous FL (see Figure 4 to 7 in Appendix D). Indeed,
in this case, global models change slowly and we can consider that the server receives
contributions with no gradient delay. As such, the learning procedure including the most
serial contributions in the global model is the fastest. However, in the other cases, the

22



Federated Optimization with Asynchronous Clients Updates

0 1000 2000 3000 4000 5000
10 5

10 4

10 3

10 2

10 1

100

FP
 m

ea
n

CIFAR10, M=20, F0

0 1000 2000 3000 4000 5000

10 5

10 4

10 3

10 2

10 1

100

CIFAR10, M=20, F80

0 1000 2000 3000 4000 5000
10 5

10 4

10 3

10 2

10 1

100

CIFAR10, M=50, F0

0 1000 2000 3000 4000 5000
10 5

10 4

10 3

10 2

10 1

100

CIFAR10, M=50, F80

0 1000 2000 3000 4000 5000
Time

10 1

100

FP
 m

ea
n

Shakespeare, M=20, F0
FL
Async. FL
FedBuff
FedFix

0 1000 2000 3000 4000 5000
Time

10 1

100

Shakespeare, M=20, F80

0 1000 2000 3000 4000 5000
Time

100

Shakespeare, M=50, F0

0 1000 2000 3000 4000 5000
Time

100

Shakespeare, M=50, F80

Figure 3: Evolution of federated problem (2) (FP) loss for CIFAR10 and Shakespeare and
time scenario F0 and F80, with M = 20 and M = 50. We consider ηg = 1 and
K = 10. The server creates the new global model after ∆t = 0.5 for FedFix and
after receiving c = 10 delayed contributions with FedBuff.

learning rate ηl does not mitigate the discrepancy between clients update, which slows
down convergence for asynchronous FL, and can even prevent it.

Identifying the fastest optimization scheme must be done by comparing optimization
schemes based on their best local learning rate ηl (Figure 3). Synchronous FL outperforms
asynchronous FL when clients have homogeneous (F0) or heterogeneous (F80) hardware.
Indeed, the server needs to increase the amount of contributions at each aggregation to
balance convergence speed and convergence stability. We see that FedFix-0.5 provides
this trade-off and outperforms synchronous FL by performing twice as many server aggre-
gations in the heterogeneous hardware scenario (F80). We also see that FedBuff always
outperforms asynchronous FL by considering more clients at every aggregation without nec-
essarily outperforming synchronous FL. Hence, FedFix better balances convergence speed
and stability than FedBuff.

We note that, even for synchronous FL, FL convergence is not monotonous. Indeed, for
synchronous FL to have a better convergence speed than asynchronous FL, the server needs
to consider a high local learning rate leading to convergence instability. Figure 3 shows this
instability for Shakespeare and t > 2500, and Figure 4 to 7 in Appendix D provides the
evolution of this instability as the learning rate ηl increases.

We note that even when clients have homogeneous hardware (F0), FedFix can out-
perform synchronous FL. This can be explained by the close-form of FedFix weights di,
equation (14), which accounts for server aggregations where no client participates. As a
result, FedFix behaves as asynchronous FL but with an higher server learning rate ηg = 2
which provides faster convergence.

23



Fraboni, Vidal, Kameni, Lorenzi

6. Discussion

This work introduces equation (5) which generalizes the expression of FedAvg aggregation
scheme by introducing stochastic aggregation weights ωi(n) to account for asynchronous
client updates. We prove the convergence of FL schemes satisfying equation (5) with Theo-
rem 1. A similar aggregation scheme has been derived in Fraboni et al. (2022) for unbiased
client sampling, which this work generalizes. In addition, we show that aggregation scheme
(5) is satisfied by asynchronous FL, FedFix, and FedBuff, Section 4. Finally, we assume
fixed clients update time Ti such that we can consider di(n) = di, and give in Section 4
its close-form to ensure any FL optimization scheme converges to the optimum of problem
(2). Our work remains relevant for applications with di(n) 6= di but we let the specific
derivations to the reader.

This work shows theoretically and experimentally that asynchronous FedAvg does not
always outperform its synchronous counterpart. By creating the new global model with the
contribution of only one client, asynchronous FedAvg convergence speed is very sensitive
to the choice of learning rate and amount of local work K. These two hyperparameters need
to be fine-tuned to properly balance convergence speed and stability. Due to the hardware
constraints inherent to the FL setting, fine-tuning is a challenging step for FL and is not
necessarily feasible. Therefore, we proposed FedFix, an FL algorithm where the server,
after a fixed amount of time, creates the new global model with the contribution of all
the participating clients. We prove the convergence of FedFix with our theoretical frame-
work, and experimentally demonstrate its improvement over FedAvg in all the considered
scenarios.

Appendix A. Proof of Theorem 1

We first provide in Section A.2 the basic inequalities used in our proofs, and in Section A.3
the basic notations used to provide clearer proofs.

A.1 Bounding the convergence residual Σ

As defined in Section 2.5, the convergence residual is defined as

Σ :=
M∑
i=1

qi Eξi

[∥∥∇Li(θ̄, ξi)∥∥2] .
When considering that the clients gradient estimator are bounded by σ2, then each client
gradient estimator satisfies

Eξi

[∥∥∇Li(θ̄, ξi)−∇Li(θ̄)
∥∥2] ≤ σ2.

Under this assumption, we can bound Σ as follows

Σ ≤
M∑
i=1

qi
∥∥∇Li(θ̄)

∥∥2 + q(n)σ2 (16)

≤ 2L

M∑
i=1

qi
[
Li(θ̄)− Li(θ∗i )

]
+ q(n)σ2, (17)

24



Federated Optimization with Asynchronous Clients Updates

where the first inequality follows from the unbiasedness of the gradient estimator, Assump-
tion 3, and the second inequality from the Lipschitz smoothness of every client loss function,
Assumption 1. With both equation (16) and (17), the convergence guarantees of Theorem 1
can be extended to account for bounded gradient estimator bounded variance, an additional
assumption unneeded in this work.

A.2 Basic Inequalities

We provide the following basic inequalities used in our proofs.
Let us consider f a L-Lipschitz smooth and convex function with optimum x∗. For any

vector x and y, we have

‖∇f(x)‖2 ≤ 2L[f(x)− f(x∗)], and ‖∇f(x)−∇f(y)‖2 ≤ L2 ‖x− y‖2 .

Let us consider g a convex function and d vectors {xk} each with importance pk such
that

∑d
k=1 pk = 1. With Jensen inequality, we have

g(

d∑
k=1

pkxk) ≤
d∑

k=1

pkg(xk).

Let us consider the random variable X, we have

E
[
‖X − E [X]‖2

]
≤ E

[
‖X‖2

]
.

A.3 Additional Notation

In Table 1, we synthesize the different random variables associated to the clients aggregation
weights. In Table 3, we synthesize the remaining random variables.

We introduce the following notations to provide clear and compact proofs. When-
ever considering a function f(n, k), we define f(n) := 1/K

∑K−1
k=0 f(n, k), and f̄(N) :=

1/N
∑N−1

n=0 f(n). We introduce the following quantities

D(x, n, k) := E

[
〈
M∑
i=1

qi(n)∇Li(θρi(n),ki ),θn,k − x〉

]
, Q(n) := E

[∥∥θn+1,0 − θn,0
∥∥2] ,

R(n, k) := E

∥∥∥∥∥
M∑
i=1

q̃i(n)gi(θ
ρi(n),k
i )

∥∥∥∥∥
2
 , S(n, k) :=

M∑
i=1

q̃i(n)E
[∥∥∥gi(θρi(n),ki )

∥∥∥2] ,

Z(n, k) = Ln(θn,k)− Ln(θ̄n), ∆(n, k) := E
[∥∥∥θn,k+1 − x

∥∥∥2]− E
[∥∥∥θn,k − x∥∥∥2] ,

φ(n, k) :=

M∑
i=1

q̃i(n)E
[∥∥∥θρi(n),ki − θn,k

∥∥∥2] , σ1(n) :=

M∑
i=1

q̃i(n)E
[∥∥∇Li(θ̄n, ξi)∥∥2] ,

25



Fraboni, Vidal, Kameni, Lorenzi

Table 3: Common Notation Summary (addition to Table 1).
Symbol Description

M Number of clients.
K Number of local SGD.
ηg, ηl Global/Local learning rate.
η̃ Effective learning rate, η̃ = ηlηg.
θn Global model at server iteration n.

θn+1
i Local update of client i on model θn.

θ∗, θ∗i Optimum of the federated problem (2)/client i.

θn,k, θn,ki Global/Local update after k SGD on global model θn.
α Covariance parameter.
β Defined in Theorem 1.

L(·),Li(·) Federated/local loss function.
gi(·) SG. We have Eξi [gi(·)] = ∇Li(·) with Assumption 3.
ξi Random batch of samples from client i of size B.
L Lipschitz smoothness parameter, Assumption 1.
Ti Computation time of client i.
tn Time at aggregation n.
Tni Remaining computation time of client i at time tn.
∆tn Time elapsed between two server aggregations.
ρi(n) Last index at which a client i received its global model.
ρ Highest sum of aggregation weights, i.e. ρ := max (1, q(n))

26



Federated Optimization with Asynchronous Clients Updates

σ2(n) :=
M∑
i=1

q̃2i (n)E
[∥∥∇Li(θ̄n, ξi)∥∥2] , and Ξ(n, k) = Ln(θn,k)− Ln(x).

Finally, we define gi(y) = ∇Li(y, ξi) the SG of client i evaluated on model parameters y

and batch ξi. We will thus write gi(θ
ρi(n)
i,k ) instead of ∇Li(θρi(n)i,k , ξ

ρi(n)
i,k ).

A.4 Useful Lemmas

Lemma 6 Let us consider n vectors xi, ...,xn. We have

ESn

∥∥∥∥∥
M∑
i=1

ωi(n)xi

∥∥∥∥∥
2
 =

M∑
i=1

γi(n) ‖xi‖2 + α

∥∥∥∥∥
M∑
i=1

qi(n)xi

∥∥∥∥∥
2

,

where γi(n) = ESn

[
ω2
i (n)

]
−αq2i (n) ≥ 0, and γi(n) ≤ βqi(n) with β := max{di(n)−αqi(n)}.

Proof We first propose the following intermediary result. For any y ∈ R, we have

ESn [ωi(n)ωj(n)] y ≤ αqi(n)qj(n)y. (18)

When y ≥ 0, equation (18) follows directly from Property 1. When y < 0, equation (18)
follows from providing a lower bound to the joint probability of two Bernoullis and the fact
that α ∈ [−1, 1]. Indeed, in that case, we have

P(Tni ≤ ∆tn, Tnj ≤ ∆tn) ≥ P(Tni ≤ ∆tn)P(Tnj ≤ ∆tn) ≥ αP(Tni ≤ ∆tn)P(Tnj ≤ ∆tn).

Going back to the stochastic sum of vectors, we have

ESn

∥∥∥∥∥
M∑
i=1

ωi(n)xi

∥∥∥∥∥
2
 =

M∑
i=1

ESn

[
ω2
i (n)

]
‖xi‖2 +

M∑
i=1

M∑
j=1
j 6=i

ESn [ωi(n)ωj(n)] 〈xi,xj〉

≤
M∑
i=1

ESn

[
ω2
i (n)

]
‖xi‖2 +

M∑
i=1

M∑
j=1
j 6=i

αqi(n)qj(n)〈xi,xj〉, (19)

where we use equation (18) to obtain the inequality. In addition, we have

M∑
i=1

M∑
j=1
j 6=i

〈qi(n)xi, qj(n)xj〉 =

∥∥∥∥∥
M∑
i=1

qi(n)xi

∥∥∥∥∥
2

−
M∑
i=1

q2i (n) ‖xi‖2 . (20)

Substituting equation (20) in equation (19) completes the first claim.
Considering that ESn

[
ω2
i (n)

]
= Var [ωi(n)]+q2i (n) ≥ q2i (n) and α ≤ 1, we have γi(n) ≥ 0

which completes the second claim.
Finally, the third claim follows directly from the close-form of the clients aggregation

weights, equation (4).

27



Fraboni, Vidal, Kameni, Lorenzi

Remark. We can also provide the following lower bound for equation (20) using Jensen
inequality

M∑
i=1

M∑
j=1
j 6=i

〈qi(n)xi, qj(n)xj〉 ≥

∥∥∥∥∥
M∑
i=1

qi(n)xi

∥∥∥∥∥
2

− max qi(n)

q(n)

∥∥∥∥∥
M∑
i=1

qi(n)xi

∥∥∥∥∥
2

≥ 0.

Therefore, ESn

[∥∥∥∑M
i=1 ωi(n)xi

∥∥∥2] is linearly proportional to α.

Lemma 7 The following equation holds for any vector x:

∆(n) ≤ −2η̃D(x, n) + η̃2αq2(n)R(n) + η̃2βq(n)S(n).

Proof We consider Sn, the set of participating clients at optimization round n, i.e. Sn =
{n : Tni ≤ ∆tn}. We have

ESn

[∥∥∥θn,k+1 − θ∗
∥∥∥2] = ESn

[∥∥∥(θn,k+1 − θn,k) + (θn,k − θ∗)
∥∥∥2]

=
∥∥∥θn,k − θ∗∥∥∥2 + 2〈ESn

[
θn,k+1 − θn,k

]
,θn,k − θ∗〉

+ ESn

[∥∥∥θn,k+1 − θn,k
∥∥∥2] . (21)

By construction, we have θn,k+1−θn,k = −η̃
∑M

i=1 ωi(n)gi(θ
ρi(n),k
i ). Taking the expectation

over Sn, we can simplify the second term of equation (21) with ESn

[
θn,k+1 − θn,k

]
=

−η̃
∑M

i=1 qi(n)gi(θ
ρi(n),k
i ). Finally, using Lemma 6, we can bound the third term. Therefore,

we have

ESn

[∥∥∥θn,k+1 − θ∗
∥∥∥2] =

∥∥∥θn,k − θ∗∥∥∥2 + 2η̃〈
M∑
i=1

qi(n)gi(θ
ρi(n),k
i ),θn − θ∗〉

+ η̃2
M∑
i=1

γi(n)
∥∥∥gi(θρi(n),ki )

∥∥∥2 + η̃2α

∥∥∥∥∥
M∑
i=1

qi(n)gi(θ
ρi(n),k
i )

∥∥∥∥∥
2

.

Considering γi(n) ≤ βqi(n), taking the expected value over the iteration random batches
ξρi(n),k, and finally taking the expected value over the remaining random variables gives

∆(n, k) ≤ −2η̃D(x, n, k) + η̃2αq2(n)R(n, k) + η̃2βq(n)S(n, k).

Taking the mean over K completes the proof.

28



Federated Optimization with Asynchronous Clients Updates

Lemma 8 Under Assumption 3 and 1, and D := 6η2l (K − 1)2L2 ≤ 1/2, we have

φ(n) ≤ 4q(n)τ
τ∑
s=1

Q(n− s) + 4D
1

L
q−1(n)Z(n) + 6η2l (K − 1)2σ1(n),

and S(n) ≤ 12q(n)L2τ
τ∑
s=1

Q(n− s) + 12Lq−1(n)Z(n) + 6σ1(n).

Proof Let us decompose the difference θ
ρi(n),k
i − θn,k as

θ
ρi(n),k
i − θn,k =

[
θρi(n) − ηl

k−1∑
l=0

gi(θ
ρi(n),l
i )

]
−

[
θn − ηl

k−1∑
l=0

M∑
i=1

q̃i(n)gi(θ
ρi(n),l
i )

]
.

Using Jensen inequality, we split the difference between the global models and the one
between the gradients to get

∥∥∥θρi(n),ki − θn,k
∥∥∥2 ≤ 2

∥∥∥θρi(n) − θn∥∥∥2 + 2η2l k
k−1∑
l=0

∥∥∥∥∥gi(θρi(n),li )−
M∑
i=1

q̃i(n)gi(θ
ρi(n),l
i )

∥∥∥∥∥
2

. (22)

Therefore, by taking the expectations of equation (22) and summing over M gives

φ(n, k) ≤ 2
M∑
i=1

q̃i(n)E
[∥∥∥θρi(n) − θn∥∥∥2]

+ 2η2l k
k−1∑
l=0

M∑
i=1

q̃i(n)E

∥∥∥∥∥gi(θρi(n),li )−
M∑
i=1

q̃i(n)gi(θ
ρi(n),l
i )

∥∥∥∥∥
2


≤ 2

M∑
i=1

q̃i(n)E
[∥∥∥θρi(n) − θn∥∥∥2]+ 2η2l k

k−1∑
l=0

M∑
i=1

q̃i(n)E
[∥∥∥gi(θρi(n),li )

∥∥∥2] , (23)

where we see that S(n, l) appears in the second term of equation (23). We consider now
bounding S(n, k), and first note that a stochastic gradient can be bounded as follow

E
[∥∥∥gi(θρi(n),ki )

∥∥∥2] ≤ 3E
[∥∥∥∇Li(θρi(n),ki , ξ

ρi(n)
i,k )−∇Li(θn,k, ξρi(n)i,k )

∥∥∥2]
+ 3E

[∥∥∥∇Li(θn,k, ξi)−∇Li(θ̄n, ξi)∥∥∥2]+ 3E
[∥∥∇Li(θ̄n, ξi)∥∥2] .(24)

When summing equation (24) over M , and considering the clients loss functions Lipschitz
smoothness, Assumption 1, we have

S(n, k) =
M∑
i=1

q̃i(n)E
[∥∥∥gi(θρi(n),ki )

∥∥∥2] ≤ 3L2φ(n, k) + 6Lq−1(n)Z(n, k) + 3σ1(n). (25)

29



Fraboni, Vidal, Kameni, Lorenzi

We also note the following intermediary results

K−1∑
k=0

k
k−1∑
l=0

xl ≤ (K − 1)
K−1∑
k=1

k−1∑
l=0

xl ≤ (K − 1)2
K−2∑
k=0

xk ≤ (K − 1)2
K−1∑
k=0

xk. (26)

We substitute equation (25) in equation (23) such that D appears, take the mean over K
to introduce φ(n) on the two sides of the equation, and use equation (26). We have

φ(n) ≤ 2

M∑
i=1

q̃i(n)E
[∥∥∥θρi(n) − θn∥∥∥2]+Dφ(n) + 2D

1

L
q−1(n)Z(n) + 6η2l (K − 1)2σ1(n).

Finally, reminding that D ≤ 1/2, which gives 1 − D ≥ 1/2, and using Assumption 4 to

bound E
[∥∥θρi(n) − θn∥∥2] with Jensen inequality completes the first claim for φ(n), i.e.

E
[∥∥∥θρi(n) − θn∥∥∥2] ≤ τ τ∑

s=1

E
[∥∥θn−s+1 − θn−s

∥∥2] = τ
τ∑
s=1

Q(n− s).

Substituting the close-form of φ(n) in equation (25) completes the claim for S(n, k).

Lemma 9 Under Assumption 2 and 3, we have

−2D(x, n) ≤ −2Ξ(n) + 4Lq(n)τ
τ∑
s=1

Q(n− s) + 4DZ(n) + 6η2l (K − 1)2q(n)Lσ1(n).

Proof Follows directly from using Lemma 12 in Khaled et al. (2020) on D(x, n, k), taking
the mean over K, and using Lemma 8 to bound φ(n) completes the proof.

Lemma 10 Under Assumption 1 and 3, and considering D ≤ 1/2, we have

R(n) ≤ 12L2τ
τ∑
s=1

Q(n− s) + 24Lq−1(n)Z(n) + 3Dσ1(n) + 6σ2(n).

Proof

R(n, k) ≤ 3E

∥∥∥∥∥
M∑
i=1

q̃i(n)
[
gi(θ

ρi(n),k
i )−∇Li(θn,k, ξρi(n)i,k )

]∥∥∥∥∥
2


+ 3E

∥∥∥∥∥
M∑
i=1

q̃i(n)
[
∇Li(θn,k, ξi)−∇Li(θn,k)

]∥∥∥∥∥
2


+ 3E

∥∥∥∥∥
M∑
i=1

q̃i(n)∇Li(θn,k)

∥∥∥∥∥
2
 . (27)

30



Federated Optimization with Asynchronous Clients Updates

We respectively call the three terms of equation (27), a(n, k), b(n, k), and c(n, k). Using
the local loss functions Lipschitz smoothness, Assumption 1, and Jensen inequality, we can
bound a(n, k) as

a(n, k) ≤ 3
M∑
i=1

q̃i(n)E
[∥∥∥gi(θρi(n),ki )−∇Li(θn,k, ξρi(n)i,k )

∥∥∥2] ≤ 3L2φ(n, k). (28)

Using the unbiasedness of the gradient estimator, Assumption 3, and the local loss function
Lipschitz smoothness, Assumption 1, we can bound b(n, k) as

b(n, k) = 3
M∑
i=1

q̃2i (n)E
[∥∥∥∇Li(θn,k, ξi)−∇Li(θn,k)∥∥∥2]

≤ 3

M∑
i=1

q̃2i (n)E
[∥∥∥∇Li(θn,k, ξi)∥∥∥2]

≤ 6
M∑
i=1

q̃2i (n)

[
E
[∥∥∥∇Li(θn,k, ξi)−∇Li(θ̄n, ξi)∥∥∥2]+ E

[∥∥∇Li(θ̄n, ξi)∥∥2]]

≤ 12Lmax
i

(q̃i(n))
[
L̃n(θn,k)− L̃n(θ̄n)

]
+ 6

M∑
i=1

q̃2i (n)E
[∥∥∇Li(θ̄n, ξi))∥∥2] . (29)

Using the Lipschitz smoothness of the local loss functions, Assumption 1 and Jensen
inequality, we can bound c(n, k) as

c(n, k) ≤ 3E
[∥∥∥∇L̃n(θn,k)−∇L̃n(θ̄n)

∥∥∥2] ≤ 6L
[
L̃n(θn,k)− L̃n(θ̄n)

]
. (30)

Substituting equation (28), equation (29), and equation (30) in equation (27), considering
that maxi(q̃i(n)) ≤ 1, and summing over K gives

R(n) ≤ 3L2φ(n) + 18Lq−1(n)Z(n) + 6σ2(n)

Using Lemma 8 to replace φ(n), and considering that D ≤ 1/2 < 1 completes the proof.

Lemma 11 Under Assumption 1 and 3, considering that γi(n) ≤ βqi(n), and considering
12ρ2 [α+ β] η̃2K2τ2L2 ≤ 1/2, we have

Q̄(N) ≤ 24ρ [2α+ β] η̃2K2LZ̄(N) + 6ρ2 [αD + 2β] η̃2K2Σ1(N) + 12ρ2αη̃2K2Σ2(N).

Proof Considering the proof of Lemma 7, using the fact that γi(n) ≤ βqi(n), and Jensen
inequality, we have

Q(n) ≤ q2(n)αη̃2 E

∥∥∥∥∥
M∑
i=1

q̃i(n)

K−1∑
k=0

gi(θ
ρi(n),k
i )

∥∥∥∥∥
2
+ q(n)βη̃2

M∑
i=1

q̃i(n)E

∥∥∥∥∥
K−1∑
k=0

gi(θ
ρi(n),k
i )

∥∥∥∥∥
2


≤ q2(n)αη̃2K2R(n) + q(n)βη̃2K2S(n)

31



Fraboni, Vidal, Kameni, Lorenzi

Using Lemma 10 to bound R(n) and Lemma 8 to bound S(n), we can thus bound Q(n) with
the previous global model distances to the optimum Q(s), where max(0, n− τ) ≤ s ≤ n−1,
we thus have

1

ρη̃2K2
Q(n) ≤ 12ρ [α+ β] τL2

τ∑
s=1

Q(n− s) + 12 [2α+ β]LZ(n)

+ 3ρ [αD + 2β]σ1(n) + 6ρασ2(n). (31)

We can thus define A(n) and B(n) such that the bound of of equation (31) can be rewrit-
ten as in equation (32), with its associated implications when taking the mean over N ,
reordering, and considering that τA(n) ≤ 1/2:

Q(n) ≤ A(n)

τ∑
s=1

Q(n− s) +B(n)⇒ Q̄(N) =
1

N

N−1∑
n=0

Q(n) ≤ 2
1

N

N−1∑
n=0

B(n). (32)

Therefore, considering 12ρ2 [α+ β] η̃2K2τ2L2 ≤ 1/2 completes the proof.

A.5 Proof of Theorem 1

Proof Using Lemma 7, we have

1

η̃
∆(n) ≤ −2D(x, n) + ρ2αη̃R(n) + ρβη̃S(n)

Using Lemma 9 to bound D(x, n), Lemma 10 to bound R(n), Lemma 8 to bound S(n),
and 3ρ [α+ β] η̃L ≤ 1, we get

1

η̃
∆(n) ≤ −2Ξ(n) + 8ρτL

τ∑
s=1

Q(n− s) + 4DZ(n) + 6ρη2l (K − 1)2Lσ1(n)

+ 12 [2α+ β] ρη̃LZ(n) + 3ρ2η̃ [αD + 2β]σ1(n) + 6ρ2αη̃σ2(n).

When considering the following intermediary result

N−1∑
n=0

K∆(n) = E
[∥∥θKN − x∥∥2]− ∥∥θ0 − x∥∥2 ≥ −∥∥θ0 − x∥∥2 ,

reordering the terms, and taking the mean over N , we get

2Ξ̄(N) ≤ 1

η̃KN
E
[∥∥θ0 − x∥∥2]+ 8ρLτ2Q̄(N) + 4DZ̄(N) + 6ρη2l (K − 1)2LΣ1(N)

+ 12ρ [2α+ β] η̃LZ̄(N) + 3ρ2 [αD + 2β] η̃Σ1(N) + 6ρ2αη̃Σ2(N).

Using Lemma 11 to bound Q̄(N), and with ν = 16ρL, we have

2Ξ̄(N) ≤ 1

η̃KN
E
[∥∥θ0 − x∥∥2]+ 4DZ̄(N) + 6ρη2l (K − 1)2LΣ1(N)

+ 12ρ [2α+ β]
[
η̃ + νη̃2K2τ2

]
LZ̄(N) + 3ρ2 [αD + 2β]

[
η̃ + νη̃2K2τ2

]
Σ1(N)

+ 6ρ2α
[
η̃ + νη̃2K2τ2

]
Σ2(N).

32



Federated Optimization with Asynchronous Clients Updates

We note that when Ξ̄(N) ≤ 0, the claim follows directly. Therefore, we consider Ξ̄(N) ≥ 0
for the rest of this proof. We first note that

Z̄(N) = Ξ̄(N) +R({Ln}), (33)

and consider ηl such that

2− 4D − 12ρ [2α+ β]
[
η̃ + νη̃2K2τ2

]
L ≥ 1,

which gives

Ξ̄(N) ≤ 1

η̃KN
E
[∥∥θ0 − x∥∥2]+ 4DR({Ln}) + 6ρη2l (K − 1)2LΣ1(N)

+ 12ρ [2α+ β]
[
η̃ + νη̃2K2τ2

]
LR({Ln}) + 3ρ2 [αD + 2β]

[
η̃ + νη̃2K2τ2

]
Σ1(N)

+ 6ρ2α
[
η̃ + νη̃2K2τ2

]
Σ2(N).

The 5th term can be simplified with the third one. Indeed, we consider a local learning rate
such that 3ρ2η̃L ≤ 1, 48ρ3η̃2K2τ2L2 ≤ 1, and we remind that α ≤ 1. We thus have

Ξ̄(N) ≤ 1

η̃KN
E
[∥∥θ0 − x∥∥2]+O

(
η2l (K − 1)2 [R({Ln}) + Σ1(N)]

)
+O

(
α
[
η̃ + η̃2K2τ2

]
[R({Ln}) + Σ2(N)]

)
+O

(
β
[
η̃ + η̃2K2τ2

]
[R({Ln}) + Σ1(N)]

)
. (34)

With
‖∇Li(θ, ξ)‖2 ≤ 2

∥∥∇Li(θ, ξ)−∇Li(θ̄, ξ)∥∥2 + 2
∥∥∇Li(θ̄, ξ)∥∥2 ,

we have
Σ2(N) ≤ max qi(n)Σ1(N) ≤ max qi(n) [4LR(Ln) + 2Σ] . (35)

Finally, substituting equation (33) and (35) in equation (34) completes the proof.

A.6 Simplifying the constraint on the learning rate

The constraints on the learning rate can be summarized as D = 6η2l (K − 1)2L2 ≤ 1/2
(Lemma 8), 12ρ2 [α+ β] η̃2K2τ2L2 ≤ 1/2 (Lemma 11), 3ρ [α+ β] η̃L ≤ 1 (Theorem 1),
2 − 4D − 12ρ [2α+ β]

[
η̃ + νη̃2K2τ2

]
L ≥ 1 (Theorem 1), 3ρ2η̃L ≤ 1 (Theorem 1), and

48ρ3η̃2K2τ2L2 ≤ 1 (Theorem 1).
We note that α ≤ 1, and β ≤ 1. We thus propose the following sufficient conditions to

satisfy the conditions above

48η2l (K − 1)2L2 ≤ 1, 144ρ2η̃L ≤ 1, and 2304ρ3η̃2K2τ2L2 ≤ 1,

which can further be simplified with

ηl ≤
1

48KL
min

(
1,

1

3ρ2ηg(τ + 1)

)
.

33



Fraboni, Vidal, Kameni, Lorenzi

Appendix B. Proof of Theorem 2

In this proof, we consider L̃n = q−1(n)Ln.

B.1 Useful Lemma

Lemma 12 The difference between the gradients of L(θ) and L(θ) can be bounded as follow

∥∥∥∇L(θ)−∇L̃n(θ)
∥∥∥2 ≤ 4Lχ2

n[L̃n(θ)−
∑
j∈Wn

s̃j(n)Lj(θ∗j )] + 4L
∑
j /∈Wn

rj [Lj(θ)− Lj(θ∗j )],

where Wn = {j : sj(n) > 0} and χ2
n =

∑
j∈Wn

(rj − s̃j(n))2/s̃j(n).

Proof We have
∑J

j=1 sj(n) =
∑M

i=1 qi(n) = q(n). Hence, by definition of L(θ) and Ln(θ),
we have

∇L(θ)−∇L̃n(θ) =

J∑
j=1

(rj − s̃j(n))∇Lj(θ)

=
∑
j∈Wn

rj − s̃j(n)√
s̃j(n)

√
s̃j(n)∇Lj(θ) +

∑
j /∈Wn

rj∇Lj(θ).

Applying Jensen and Cauchy-Schwartz inequality gives

∥∥∥∇L(θ)−∇L̃n(θ)
∥∥∥2 ≤ 2

∥∥∥∥∥∥
∑
j∈Wn

rj − s̃j(n)√
s̃j(n)

√
s̃j(n)∇Lj(θ)

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
∑
j /∈Wn

rj∇Lj(θ)

∥∥∥∥∥∥
2

≤ 2

∑
j∈Wn

(rj − s̃j(n))2

s̃j(n)

 J∑
j=1

s̃j(n) ‖∇Lj(θ)‖2

+ 2

∑
j /∈Wn

rj

 ∑
j /∈Wn

rj ‖∇Lj(θ)‖2

Considering the Lipschitz smoothness of the clients loss function, and
∑

j /∈Wn
rj ≤ 1 com-

pletes the proof.

34



Federated Optimization with Asynchronous Clients Updates

B.2 Proof of Theorem 2

Proof Using Jensen inequality and Lemma 12 gives

‖∇L(θ)‖2 ≤ 2

∥∥∥∥∇L(θ)− 1

q(n)
∇Ln(θ)

∥∥∥∥2 + 2

∥∥∥∥ 1

q(n)
∇Ln(θ)

∥∥∥∥2
≤ 4L

[
χ2
n

1

q(n)
+

1

q2(n)

]
[Ln(θ)− Ln(θ̄n)]

+ χ2
n

1

q(n)
4L[Ln(θ̄n)−

∑
j∈Wn

sj(n)Lj(θ∗j )]

+ 4L
∑
j /∈Wn

rj [Lj(θ)− Lj(θ∗j )]

We take the maximum of χ2
n and q(n), the mean over the KN serial SGD steps, and use

Theorem 1 to complete the proof .

Appendix C. Applying Theorem 4

This section extends Section 4, where we apply Theorem 4 to centralized learning (Section
C.1) and synchronous FedAvg with unbiased and biased client sampling (Section C.2 and
C.3 respectively).

C.1 Centralized Learning

In this setting, one client, i.e. M = 1, learns a predictive model on its own data. In this case,
we always have q̃1(n) = 1, and the resulting optimization problem is always proportional
to L = L1 which thus gives R({Ln}) ≤ R(L) = 0. There is no gradient delay (τ = 1), while
the clients always participate at each optimization round (α = 1 and β = 0), while the
global learning rate is redundant with the local learning rate (ηg = 1). The server performs
KN SGD steps. All these considered elements give

ε = O

(∥∥θ0 − θ∗∥∥2
ηlKN

)
+O

(
ηl Eξ

[
‖∇L(x, ξ)‖2

])
. (36)

With equation (36), we retrieve standard convergence guarantees for centralized ML derived
in Bottou et al. (2016).

C.2 Unbiased client sampling (qi(n) = pi)

We define by Sn the set of sampled clients performing their local work at optimization step
n. Setting ∆tn = maxi∈Sn Ti, with Ti = ∞ for the clients that are not sampled, and thus
not in Sn, gives P(Ti ≤ ∆tn) = P(i ∈ Sn). Sn is independent from the clients hardware
capabilities and is decided by the server. This allows to pre-compute P(Ti ≤ ∆tn) and to
allocate to each client the aggregation weight di such that qi = pi.

35



Fraboni, Vidal, Kameni, Lorenzi

Standard unbiased client sampling schemes include samplingm clients uniformly without
replacement (Li et al., 2020b) or sampling m clients according to a Multinomial distribution
(Li et al., 2020a). Fraboni et al. (2022) shows that both Uniform and MD sampling satisfy
Property 1. In particular, in those setting, the term α ≤ 1 is proportional to m, the amount
of sampled clients, while 1 ≥ β > 0 is inversely proportional to m. We get

ε = O
(

1

ηgηlKN

)
+O

(
ηgηlα

1

M
Σ

)
+O

(
η2l (K − 1)2Σ

)
+O (ηgηlβΣ) .

The second term, proportional to α/M , is reduced at the expense of the introduction of
a fourth term proportional to β. In turn, it still provides faster optimization rounds with
∆tn = maxi∈Sn Ti and N = O (T/E [maxi∈Sn Ti]). FedAvg with client sampling generalizes
FedAvg with full client participation (α = 1 and β = 0).

C.3 Biased client sampling (qi(n) 6= pi)

The condition qi(n) = pi imposes the design of new client sampling based on the clients data
heterogeneity. Nevertheless, we show convergence of biased client samplings where m clients
are selected according to a deterministic criterion, e.g. when selecting the m clients with
the highest loss (Cho et al., 2020), or when selecting the m clients with the most available
computation resources (Nishio and Yonetani, 2019). In this case, P(i ∈ Sn) = 0/1, with
1 if a client satisfies the criterion and 0 otherwise. In this case, no weighting scheme can
make an optimization round unbiased. We also have P({i, j} ∈ Sn) = P(i ∈ Sn)P(j ∈ Sn),
which gives α = 1 with β = 0. Without modification, this client sampling cannot satisfy the
relaxed sufficient conditions of Theorem 4 and thus converges to a suboptimum point. This
drawback can be mitigated by allocating a part of time in the window W to sample clients
according to the criterion, and the rest of the window to consider clients such that qi = pi
is satisfied over W optimization rounds. By denoting εFedAvg the convergence guarantees
(11), we have

ε = εFedAvg +O (ηgηl(W − 1)K) . (37)

We note that equation (37) provides a looser bound than equation (11) in term of opti-
mization rounds N . Still, this bound is informative and shows that, with minor changes,
biased clients sampling based on a deterministic criterion can be proven to converge to the
FL optimum.

Appendix D. Additional Experiments

36



Federated Optimization with Asynchronous Clients Updates

0 100 200
10 3

10 2

10 1

100

Lo
ss

 o
f F

P

l = 0.0001

0 100 200

10 3

10 2

10 1

100

l = 0.0002

0 100 200
10 4

10 3

10 2

10 1

100

l = 0.0005

0 100 200

10 2

100

102

l = 0.001

0 100 200
10 4

10 3

10 2

10 1

100

l = 0.002

0 100 200
Time

10 4

10 3

10 2

10 1

100

Lo
ss

 o
f F

P

l = 0.005

0 100 200
Time

10 4

10 3

10 2

10 1

100

l = 0.01

0 100 200
Time

10 4

10 3

10 2

10 1

100

l = 0.02

0 100 200
Time

10 4

10 2

100

l = 0.05

0 100 200
Time

10 4

10 2

100

l = 0.1

FL Async. FL FedBuff-5 FedBuff-10 FedFix-0.2 FedFix-0.5 FedFix-0.8

Figure 4: Evolution of federated problem (2) (FP) loss for CIFAR10 and time scenario F80,
with M = 20 and K = 10.

0 100 200

10 3

10 2

10 1

100

Lo
ss

 o
f F

P

l = 0.0001

0 100 200
10 4

10 3

10 2

10 1

100

l = 0.0002

0 100 200

10 3

10 2

10 1

100

l = 0.0005

0 100 200
10 4

10 3

10 2

10 1

100

l = 0.001

0 100 200
10 4

10 3

10 2

10 1

100

l = 0.002

0 100 200
Time

10 4

10 3

10 2

10 1

100

Lo
ss

 o
f F

P

l = 0.005

0 100 200
Time

10 4

10 3

10 2

10 1

100

l = 0.01

0 100 200
Time

10 3

10 1

101
l = 0.02

0 100 200
Time

10 4

10 2

100

l = 0.05

0 100 200
Time

100

2 × 100

3 × 100
l = 0.1

FL Async. FL FedBuff-5 FedBuff-10 FedFix-0.2 FedFix-0.5 FedFix-0.8

Figure 5: Evolution of federated problem (2) (FP) loss for CIFAR10 and time scenario F80,
with M = 50 and K = 10.

37



Fraboni, Vidal, Kameni, Lorenzi

0 100 200

100

2 × 100

3 × 100

4 × 100

Lo
ss

 o
f F

P

l = 0.0005

0 100 200

100

l = 0.001

0 100 200

100

l = 0.002

0 100 200

10 1

100

l = 0.005

0 100 200

10 1

100

l = 0.01

0 100 200
Time

10 1

100

Lo
ss

 o
f F

P

l = 0.02

0 100 200
Time

10 2

10 1

100

101

102 l = 0.05

0 100 200
Time

10 2

10 1

100

101

102

l = 0.1

0 100 200
Time

10 1

100

101

102

l = 0.2

0 100 200
Time

100

101

102

l = 0.5

FL Async. FL FedBuff-5 FedBuff-10 FedFix-0.2 FedFix-0.5 FedFix-0.8

Figure 6: Evolution of federated problem (2) (FP) loss for Shakespeare and time scenario
F80, with M = 20 and K = 10.

0 100 200

100

2 × 100

3 × 100

4 × 100

Lo
ss

 o
f F

P

l = 0.0005

0 100 200

100

6 × 10 1

2 × 100

3 × 100
4 × 100

l = 0.001

0 100 200
100

2 × 100

3 × 100

4 × 100

l = 0.002

0 100 200

100

2 × 100

3 × 100
4 × 100

l = 0.005

0 100 200

100

6 × 10 1

2 × 100

3 × 100
4 × 100

l = 0.01

0 100 200
Time

100

101

102

Lo
ss

 o
f F

P

l = 0.02

0 100 200
Time

100

101

102

l = 0.05

0 100 200
Time

100

101

102

l = 0.1

0 100 200
Time

100

101

102

103

l = 0.2

0 100 200
Time

100

101

102

103

l = 0.5

FL Async. FL FedBuff-5 FedBuff-10 FedFix-0.2 FedFix-0.5 FedFix-0.8

Figure 7: Evolution of federated problem (2) (FP) loss for Shakespeare and time scenario
F80, with M = 50 and K = 10.

38



Federated Optimization with Asynchronous Clients Updates

Acknowledgments

This work has been supported by the French government, through the 3IA Côte d’Azur
Investments in the Future project managed by the National Research Agency (ANR) with
the reference number ANR-19-P3IA-0002, and by the ANR JCJC project Fed-BioMed 19-
CE45-0006-01. The project was also supported by Accenture. The authors are grateful to
the OPAL infrastructure from Université Côte d’Azur for providing resources and support.

References

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. In Inter-
national Conference on Learning Representations, 2021.

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

Dmitrii Avdiukhin and Shiva Kasiviswanathan. Federated learning under arbitrary com-
munication patterns. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 425–435. PMLR, 18–24 Jul 2021.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Dis-
tributed sgd with quantization, sparsification and local computations. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numer-
ical Methods. Prentice-Hall, Inc., USA, 1989. ISBN 0136487009.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 60, 06 2016. doi: 10.1137/16M1080173.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Bren-
dan McMahan, Virginia Smith, and Ameet Talwalkar. LEAF: A Benchmark for Federated
Settings. (NeurIPS):1–9, 2018.

Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Con-
vergence analysis and power-of-choice selection strategies, 2020.

Christopher M De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré, and Christopher
Ré. Taming the wild: A unified analysis of hogwild-style algorithms. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 28. Curran Associates, Inc., 2015.

39



Fraboni, Vidal, Kameni, Lorenzi

Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. A general theory
for client sampling in federated learning. In International Workshop on Trustworthy
Federated Learning in conjunction with IJCAI 2022 (FL-IJCAI’22), 2022.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in
the presence of arbitrary device unavailability. Advances in Neural Information Processing
Systems, 34:12052–12064, 2021.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe.
Trading redundancy for communication: Speeding up distributed SGD for non-convex
optimization. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 2545–2554. PMLR, 09–15 Jun 2019.

Tzu Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv, 2019.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner,
Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zäıd
Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin
Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova,
Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar
Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel
Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun,
Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong,
Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems
in federated learning. CoRR, abs/1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich,
and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated
learning. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 5132–5143. PMLR, 13–18 Jul 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. Tighter theory for local sgd
on identical and heterogeneous data. In Silvia Chiappa and Roberto Calandra, editors,
Proceedings of the Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research, pages 4519–4529.
PMLR, 26–28 Aug 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimiza-
tion and gossip algorithms with compressed communication. In Kamalika Chaudhuri and

40



Federated Optimization with Asynchronous Clients Updates

Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine Learning Research, pages 3478–3487.
PMLR, 09–15 Jun 2019.

Anastasia Koloskova*, Tao Lin*, Sebastian U Stich, and Martin Jaggi. Decentralized deep
learning with arbitrary communication compression. In International Conference on
Learning Representations, 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.
726791.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smithy. Feddane: A federated newton-type method. In 2019 53rd Asilo-
mar Conference on Signals, Systems, and Computers, pages 1227–1231, 2019. doi:
10.1109/IEEECONF44664.2019.9049023.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In I. Dhillon, D. Papailiopou-
los, and V. Sze, editors, Proceedings of Machine Learning and Systems, volume 2, pages
429–450, 2020a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the conver-
gence of fedavg on non-iid data. In International Conference on Learning Representations,
2020b.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with
adaptive stepsizes. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics,
volume 89 of Proceedings of Machine Learning Research, pages 983–992. PMLR, 16–18
Apr 2019.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic
gradient for nonconvex optimization. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel
stochastic gradient descent. In International Conference on Machine Learning, pages
3043–3052. PMLR, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y
Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data.
In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 1273–1282. PMLR, 20–22 Apr 2017.

41



Fraboni, Vidal, Kameni, Lorenzi

A. Nedić, D. P. Bertsekas, and V. S. Borkar. Distributed asynchronous incremental sub-
gradient methods. Studies in Computational Mathematics, 8(C):381–407, 2001. ISSN
1570-579X. doi: 10.1016/S1570-579X(01)80023-9.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael G. Rabbat,
Mani Malekesmaeili, and Dzmitry Huba. Federated learning with buffered asynchronous
aggregation. ArXiv, abs/2106.06639, 2021.

Lam Nguyen, PHUONG HA NGUYEN, Marten van Dijk, Peter Richtarik, Katya Schein-
berg, and Martin Takac. SGD and hogwild! Convergence without the bounded gradients
assumption. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 3750–3758. PMLR, 10–15 Jul 2018.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heteroge-
neous resources in mobile edge. In ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), pages 1–7, 2019. doi: 10.1109/ICC.2019.8761315.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization.
In International Conference on Learning Representations, 2021.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin
Pedarsani. Fedpaq: A communication-efficient federated learning method with periodic
averaging and quantization. In Silvia Chiappa and Roberto Calandra, editors, Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, vol-
ume 108 of Proceedings of Machine Learning Research, pages 2021–2031. PMLR, 26–28
Aug 2020.

Sebastian Stich, Amirkeivan Mohtashami, and Martin Jaggi. Critical parameters for scal-
able distributed learning with large batches and asynchronous updates. In Arindam
Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 4042–4050. PMLR, 13–15 Apr 2021.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International
Conference on Learning Representations, 2019.

Sebastian U Stich and Sai Praneeth Karimireddy. The Error-Feedback framework: SGD
with Delayed Gradients. Journal of Machine Learning Research, 21(237):1–36, 2020.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and
Stephen Wright. Atomo: Communication-efficient learning via atomic sparsification. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling
the objective inconsistency problem in heterogeneous federated optimization. In Hugo

42



Federated Optimization with Asynchronous Clients Updates

Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020a.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
communication-efficient distributed sgd with slow momentum. In International Confer-
ence on Learning Representations, 2020b.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. AdaGrad stepsizes: Sharp convergence over
nonconvex landscapes. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 6677–6686. PMLR, 09–15 Jun 2019.

Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous federated
learning on heterogeneous devices: A survey, 2021.

Haibo Yang, Xin Zhang, Prashant Khanduri, and Jia Liu. Anarchic federated learning. In
International Conference on Machine Learning, pages 25331–25363. PMLR, 2022.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:
Concept and applications. ACM Trans. Intell. Syst. Technol., 10(2), jan 2019. ISSN
2157-6904. doi: 10.1145/3298981.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication effi-
cient momentum SGD for distributed non-convex optimization. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 7184–
7193. PMLR, 09–15 Jun 2019a.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel Restarted SGD with Faster Convergence
and Less Communication: Demystifying Why Model Averaging Works for Deep Learning.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):5693–5700, 2019b.
doi: 10.1609/aaai.v33i01.33015693.

Martin Zinkevich, John Langford, and Alex Smola. Slow learners are fast. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural
Information Processing Systems, volume 22. Curran Associates, Inc., 2009.

43


	Introduction
	Background
	Federated Optimization Problem
	Asynchronicity in Clients Updates
	Server Aggregation Scheme
	Expressing FL as cumulative GD steps
	Asynchronous FL as a Sequence of Optimization Problems
	Formalizing Heterogeneity across Clients

	Convergence of Federated Problem (2)
	Assumptions and Property
	Convergence of Algorithm 1
	Sufficient Conditions for Minimizing the Federated Problem (2)
	Relaxed Sufficient Conditions for Minimizing the Federated Problem (2)

	Applications
	Heterogeneity of clients hardware and data distributions
	FedAvg, Synchronous Federated Learning
	Asynchronous FedAvg
	FedFix
	Generalization

	Experiments
	Experimental Setting
	Experimental Results
	Impact of the Clients Aggregation Weights on Asynchronous FedAvg
	Partial Asynchronicity with FedFix


	Discussion
	Proof of Theorem 1
	Bounding the convergence residual 
	Basic Inequalities
	Additional Notation
	Useful Lemmas
	Proof of Theorem 1
	Simplifying the constraint on the learning rate

	Proof of Theorem 2
	Useful Lemma
	Proof of Theorem 2

	Applying Theorem 4
	Centralized Learning
	Unbiased client sampling (qi(n) = pi)
	Biased client sampling (qi(n) =pi)

	Additional Experiments

