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Abstract

We develop an augmented transfer regression learning (ATReL) approach that intro-
duces an imputation model to augment the importance weighting equation to achieve dou-
ble robustness for covariate shift correction. More significantly, we propose a novel semi-
non-parametric (SNP) construction framework for the two nuisance models. Compared
with existing doubly robust approaches relying on fully parametric or fully non-parametric
(machine learning) nuisance models, our proposal is more flexible and balanced to address
model misspecification and the curse of dimensionality, achieving a better trade-off in terms
of model complexity. The SNP construction presents a new technical challenge in control-
ling the first-order bias caused by the nuisance estimators. To overcome this, we propose a
two-step calibrated estimating approach to construct the nuisance models that ensures the
effective reduction of potential bias. Under this SNP framework, our ATReL estimator is
n1/2-consistent when (i) at least one nuisance model is correctly specified and (ii) the non-
parametric components are rate-doubly robust. Simulation studies demonstrate that our
method is more robust and efficient than existing methods under various configurations.
We also examine the utility of our method through a real transfer learning example of the
phenotyping algorithm for rheumatoid arthritis across different time windows. Finally, we
propose ways to enhance the intrinsic efficiency of our estimator and to incorporate modern
machine-learning methods in the proposed SNP framework.
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1. Introduction

1.1 Background

The shift in the predictor distribution, often referred to as covariate shift, is one of the key
contributors to poor transportability and generalizability of a supervised learning model
from one data set to another. An example that arises often in modern biomedical research
is the between health system transportability of prediction algorithms trained from elec-
tronic health records (EHR) data (Weng et al., 2020). Frequently encountered heterogeneity
between hospital systems includes the underlying patient population and how the EHR sys-
tem encodes the data. For example, the prevalence of rheumatoid arthritis (RA) among
patients with at least one billing code of RA differs greatly among hospitals (Carroll et al.,
2012). On the other hand, the conditional distribution of the disease outcome given all im-
portant EHR features may remain stable and similar for different cohorts. Nevertheless, a
shift in the distribution of these features can still have a large impact on the performance of
a prediction algorithm trained in one source cohort on another target cohort (Rasmy et al.,
2018). Thus, correcting for the covariate shift is crucial to successful knowledge transfer
across multiple heterogeneous studying cohorts.

The robustness of covariate shift correction is an important topic and has been widely
studied in the recent literature on statistical learning. A branch of work including Wen
et al. (2014); Chen et al. (2016); Reddi et al. (2015); Liu and Ziebart (2017) focused on the
covariate shift correction methods that are robust to the extreme importance weight incurred
by the high dimensionality. The main concern of their work is the robustness of a learning
model’s prediction performance on the target data to a small amount of high magnitude
importance weight. However, there is a paucity of literature on improving the validity and
efficiency of statistical inference under covariate shift, with respect to the robustness of
the misspecification or poor estimation of the importance weight model. In this paper,
we propose an augmented transfer regression learning (ATReL) procedure in the context
of covariate shift by specifying flexible machine learning models for the importance weight
model and the outcome model. We establish the validity and efficiency of the proposed
method under possible misspecification in one of the specified models. We next state the
problem of interest and then highlight the contributions of this paper.

1.2 Problem Statement

The source data S, indexed by S = 1, consist of n labeled samples with observed response
Y and covariates X = (X1, . . . , Xp) while the target data T , indexed by S = 0, consist
of N unlabeled samples with only observed on X. We write the full observed data as
{(SiYi,Xi, Si) : i = 1, 2, . . . , n + N}, where without loss of generality we let the first n
observations be from the source population with Si = I(1 ≤ i ≤ n) and remaining from the
target population. We assume that (Y,X) | S = s ∼ ps(x)q(y | x), where ps(x) denotes the
probability density measure of X | S = s and q(y | x) is the conditional density of Y given
X, which is the same across the two populations. The conditional distribution of Y | X
shared between the two populations, could be complex and difficult to specify correctly. It
is often of interest to infer E0(Y | A) = E(Y | A, S = 0), the model of Y ∼ A on S, where
A ∈ Rd is a sub-vector of X = (AT,W T)T and W consists of the adjustment covariates.
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We assume Y | X to be the same between S and T but the target Y | A can be different.
This key assumption, as well as why Y | A (but not Y ∼ X) is of our primary interest, is
explained and connected with several real-world application fields in Remark 1.

We consider a working model g(ATβ)→ E0(Y | A) and define the regression parameter
β0 as the solution to the estimating equation in the target population S = 0:

E [A{Y − g(ATβ)} | S = 0] ≡ E0[A{Y − g(ATβ)}] = 0, (1)

where Es is the expectation operator on the population S = s and g(·) is a link function,
e.g. g(θ) = θ represents linear regression and g(θ) = 1/(1 + e−θ) for logistics regression.
Although g(ATβ) may often be misspecified, i.e., E0(Y | A) 6= g(ATβ), the target β could
still provide reasonable importance measures and risk prediction (Eguchi and Copas, 2002).

Directly solving an empirical estimating equation for (1) using the source data to es-
timate β0 may result in inconsistency due to the covariate shift. It is important to note
that even when E0(Y | A) = g(ATβ0) holds, E1{A(Y − g(ATβ0)} may not be zero in the
presence of covariate shift. To correct for the covariate shift bias, it is natural to incorpo-
rate importance sampling weighting and estimate β0 as β̂IW, the solution to the weighted
estimating equation

1

n

n∑
i=1

ω̂(Xi)Ai{Yi − g(AT
iβ)} = 0, (2)

where ω̂(X) is an estimate for the density ratio w(X) = p0(X)/p1(X). However, the
validity of β̂IW heavily relies on the consistency of ω̂(X) for w(X) and can perform poorly
when the density ratio model is misspecified or not well estimated.

Remark 1 There are a number of real-world applications in which one is primarily inter-
ested in Y ∼ A rather than the model of Y against X = (AT,W T)T. For example, in
EHR and Biobank based genetic studies (Zhou et al., 2022, e.g.), we are interested in the
association between certain genetic variants A and disease Y . Adjustment covariates W
are taken as EHR proxies (e.g., counts of diagnostic codes) for Y , which are usually strong
surrogates of Y . Hence Y | A may differ between two distinguished (gender, ethnicity, etc)
cohorts S and T , while Y | A,W is transferable from S to T .

In clinical studies, A is the treatment or key risk factors at the baseline, Y is a long-term
outcome of our interest, and W is some early-point surrogates or mediators (VanderWeele,
2013) such as the post-treatment tumor response rate that can affect the long-term Y and
vary between S and T . In this case, the model of Y ∼ A is more useful for clinical decision-
making and, thus, of the primary interest. Meanwhile, it is still more reliable to assume
Y | A,W to be shared by S and T but not Y | A, due to the distributional shift of W .
In EHR phenotyping studies, A represents widely available codified features and W may
include features extracted from narrative notes via natural language processing (NLP), which
can be available for research studies but too costly to include when implementing risk models
for broad patient populations. This again makes Y ∼ A chosen as the target risk model.

1.3 Literature review and our contribution
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We propose an augmented transfer regression learning (ATReL) method for doubly robust
estimation of a potentially misspecified regression model. Our method leverages an outcome
model m(X) imputing the missing Y for the target data to augment the importance-
weighted estimating equation (2). More importantly, to construct the nuisance density ratio
and outcome models, we propose a novel semi-non-parametric (SNP) approach that is more
flexible and balanced between model and rate robustness than existing fully parametric and
nonparametric approaches. Meanwhile, our SNP framework presents a uniquely challenging
problem of (the first-order) bias inflation, as described in equation (6), and overcome it
through a novel calibration approach introduced in Section 2.2. In the remaining part of
this section, we shall review relevant literature and highlight the novelty and contribution
of our proposed SNP approach.

Doubly robust estimators have been extensively studied for missing data and causal
inference problems (Bang and Robins, 2005; Qin et al., 2008; Cao et al., 2009; van der
Laan and Gruber, 2010; Tan, 2010; Vermeulen and Vansteelandt, 2015). Estimation of av-
erage treatment effect on the treated (ATT) can be viewed as an analog to our covariate
shift problem. To improve the DR estimation for ATT, Graham et al. (2016) proposed an
auxiliary-to-study tilting method and studied its efficiency. Zhao and Percival (2017) pro-
posed an entropy balancing approach that achieves double robustness without augmentation
and Shu and Tan (2018) proposed a DR estimator attaining local and intrinsic efficiency.
Besides, existing works like Rotnitzky et al. (2012) and Han (2016) are similar to ours
in the sense that their parameters of interest are multidimensional regression coefficients.
Properties including intrinsic efficiency and multiple robustness have been studied in their
work.

However, all these above-reviewed methods used low dimensional parametric nuisance
models (e.g., generalized linear models), which are prone to bias due to model misspecifica-
tion in practice. For example, in biomedical studies, the risks of many age-related diseases
are characterized by an underlying biological age and thus change non-linearly with the ob-
served age (Kim et al., 2021). As another example, in EHR phenotyping, total healthcare
utilization, as a normalization factor, is typically adjusted through non-linear models (Yu
et al., 2017; Liao et al., 2019).

To improve robustness to model misspecifications, Chen et al. (2008) studied the semi-
parametric efficient generalized method of moments (GMM) estimation in the presence of
auxiliary data, with the nuisance model estimated by the nonparametric sieve estimators;
also see Hirano et al. (2003) and Cattaneo (2010). Chernozhukov et al. (2018a) extended
classic nonparametric constructions to the modern machine learning setting with cross-
fitting. Their proposed double machine learning (DML) framework facilitates the use of
general machine learning methods in semiparametric estimation. This general framework
has been recently explored under various settings like the semiparametric logistic model
(Liu et al., 2021), the conditional average treatment effect (CATE) characterized by the
best linear predictor (Semenova and Chernozhukov, 2021), nonparametric CATE predic-
tors (Kennedy, 2020), and handling in-consistent machine learning estimators (Dukes et al.,
2021). Among them, Semenova and Chernozhukov (2021) is the most relevant one to our
work as they also aimed at estimating regression coefficients of a potentially misspecified
parametric model. In contrast to the parametric approaches, the fully nonparametric strat-
egy is free of misspecification of the nuisance models. However, it is impacted by the
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excessive fitting errors of nonparametric models with higher complexity than parametric
models, and thus subject to the so-called “rate double robustness” assumption (Smucler
et al., 2019). Usually, classic nonparametric regression methods like kernel smoothing could
not achieve the desirable convergence rates even under a moderate dimensionality, as shortly
discussed in Remark 2.

Remark 2 Assume that the nuisance models are a-times continuously differentiable in x ∈
Rp, and estimated using the standard sieve estimation as studied in Chen et al. (2008);
also see Hirano et al. (2003) and Cattaneo (2010). Then by Chen et al. (2008) (see their
Assumption 4 and Theorem 7), the doubly robust (or the semiparametric efficient) estimator
is possible to achieve the

√
n-consistency only when p < 2(a + 1). Consequently, when

a = 1, i.e., the nuisance models are continuously differentiable, the desirable
√
n-consistency

of the estimators constructed using the classic nonparametric regression approaches is not
guaranteed even if the dimension of X is as small as 4.

Though the “curse of dimensionality” discussed in Remark 2 could be relieved by modern
machine learning methods like neural network, theoretical justification for the performance
of these methods are relatively inadequate. Even though their convergence rates can some-
times be justified according to recent literature (Farrell et al., 2020, 2021), just similar to
the classic smoothing regression, these approaches still require conditions of simultaneously
having (i) moderate or large enough sample sizes, (ii) relatively low dimensionality, and
(iii) strong enough smoothness, to ensure satisfactory estimation errors. This drawback has
become a main concern about the fully nonparametric and DML approaches, which can be
seen from our numerical studies.

Our proposed SNP framework can be viewed as a mitigation of the parametric and
nonparametric methods, enabling better trade-off on model complexity. It specifies the two
nuisance models as generalized partially linear models combining a parametric parts and a
nonparametric function of a subset in X. Compared to the fully parametric and nonpara-
metric strategies, SNP cannot strictly weaken the model and rate robustness conditions.
For example, when reducing the complexity of the nonparametric part, it will become less
susceptible to the curse of dimensionality but will be more prone to model misspecification
at the same time. However, the SNP framework is more flexible for one to specify the nui-
sance models and attain more balanced construction, neither too simple as the parametric
methods, nor too complex like the nonparametric ones.

In addition, the flexibility of the SNP construction allows us to take advantages of the
prior knowledge (if available) on the nuisance models. Taking studies of age-related disease
as an example, age may have a non-linear effect on phenotypes like Alzheimer’s disease
while other covariates like gene variants tend to show small and linear effects. In this case,
the SNP construction with nonparametric modeling on age and parametric modeling on
other factors can give us more balanced model and rate robustness.

As is highlighted in Section 2.2, the proposed SNP approach is not a trivial extension
of the two existing strategies since excessive first-order bias can be caused by the fitting
error of the nonparametric components under model misspecification. This presents a new
challenge in achieving a

√
n-consistent doubly robust estimator that is unique to the SNP

framework. To overcome this challenge, our approach constructs the moment equations of
the nuisance models more elaborately to calibrate them and achieve certain orthogonality
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that is effective in removing the potential first-order bias. We take the SNP models with
kernel or sieve estimator as our main example for realizing this calibration approach and
also present other possibilities including the general machine learning construction. We
show that the proposed estimator is n1/2-consistent and asymptotically normal when at
least one nuisance model is correctly specified and both nonparametric components attain
the commonly used op(n

−1/4) convergence rate.

Recent work has been developed to construct model doubly robust estimators using high
dimensional sparse parametric nuisance models (Smucler et al., 2019; Tan, 2020; Ning et al.,
2020; Dukes and Vansteelandt, 2020; Ghosh and Tan, 2020; Liu et al., 2021, e.g.). Compared
with the low-dimensional parametric setting, their main challenge is to remove the exces-
sive high-dimensional regularization bias when the nuisance models could be misspecified,
under which the Neyman orthogonality is not naturally satisfied as in the DML framework.
To address this problem, they calibrate the potentially wrong nuisance models by solving
moment equations corresponding to the Neyman orthogonality. Technically speaking, we
adapt a similar high-level idea of calibration in our SNP framework. Nevertheless, our prob-
lem setup is essentially different from this track of work. In addition, compared to them,
the parametric part in our framework can be specified by arbitrary estimating equations,
which provides more flexibility, as well as the possibility to achieve intrinsic efficiency as
discussed in Section 6 and Appendix C.3.

We note that a similar idea of constructing semi-non-parametric nuisance models has
been considered by Chakrabortty (2016) and Chakrabortty and Cai (2018) to improve the
efficiency of linear regression under a semi-supervised setting without any covariate shift
between the labeled and unlabeled data. They proposed a refitting procedure to adjust
for the bias incurred by the nonparametric components in the imputation model while our
method can be viewed as their extension leveraging the importance weights and imputation
models to correct for the bias of each other, which is substantially more challenging. Also,
we use the semi-non-parametric models in estimating the parametric parts of the nuisance
models, to ensure their correctness and validity. Chakrabortty (2016) and Chakrabortty
and Cai (2018) did not actually elaborate on this point and only used parametric regression
to estimate the parametric part, which does not guarantee the model double robustness
property achieved by our method.

1.4 Outline of the paper

Remaining of the paper will be organized as follow. In Section 2, we introduce the general
doubly robust estimating equation, our semi-non-parametric framework, and specific pro-
cedures to estimate the parametric and nonparametric components of nuisance models. In
Section 3, we present the large sample properties of our proposed ATReL estimator, i.e. its
double robustness concerning model specification and estimation. In Section 4, we present
simulation results evaluating the finite sample performance of our ATReL estimator and its
relevant performance compared with existing methods under various settings. In Section 5,
we apply our ATReL estimation on transferring a phenotyping algorithm for bipolar disor-
der across two EHR cohorts. Finally, we propose and comment on some potential strategies
for improving and extending our method in Section 6.

6



ATReL

2. Method

2.1 General form of the doubly robust estimating equation

Let m(x) denote an imputation model used to approximate µ(x) = E(Y | X = x), which
is equal to E0(Y | X = x) and E1(Y | X = x) under our covariate shift assumption, and
m̂(x) denote the estimate of m(x) by fitting the model to the labeled source data. We
augment the importance sampling weighted estimating equation (2) with the term

1

N

N+n∑
i=n+1

Ai{m̂(Xi)− g(AT
iβ)} − 1

n

n∑
i=1

ω̂(Xi)Ai{m̂(Xi)− g(AT
iβ)}, (3)

which results in the augmented estimating equation:

ÛDR(β) ≡ 1

n

n∑
i=1

ω̂(Xi)Ai{Yi − m̂(Xi)}+
1

N

N+n∑
i=n+1

Ai{m̂(Xi)− g(AT
iβ)} = 0. (4)

We denote its solution as β̂DR. Construction (4) is in a similar spirit with the DR estimators
of the average treatment effect on the treated studied in existing literature (Graham et al.,
2016; Shu and Tan, 2018, e.g.). When the density ratio model is correctly specified and
consistently estimated, equation (4) converges to E0[Ai(Yi − g(AT

iβ)}] = 0 and hence β̂DR

is consistent for β0. When the imputation model is correct, the first term of ÛDR(β) in
(4) converges to 0 and the second term converges to E0[Ai{E0(Yi | Xi) − g(AT

iβ)}] =
E0[Ai{Yi − g(AT

iβ)}] and hence β̂DR is also expected to be consistent for β0. Thus, the
augmented estimating equation (4) is doubly robust to the specification of the two nuisance
models.

2.2 Semi-non-parametric (SNP) nuisance models

Now we introduce an SNP construction for the nuisance models in (4) that captures more
complex effects in w(X) and µ(X) from a subset of X, denoted by Z ∈ Rpz , along with
simpler effects for the remainder of X that can be explained via linear effects on a finite set
of pre-specified functional bases for approximating w(X) and µ(X), respectively denoted
by Ψ = ψ(X) ∈ Rpψ and Φ = φ(X) ∈ Rpφ . For example, in EHR data analysis, Z
may represent measures of healthcare utilization which may differ greatly across healthcare
systems and have complex effects on patient outcomes. Similarly, in genetic studies such
as Cai et al. (2022), the adjustment variable age usually has a non-linear relationship with
many diseases, e.g., chronic or age-related diseases such as cardiovascular disease and type
II diabetes. In contrast, the genetic variants tend to have moderate and linear effects. In
this case, it is appealing to choose our Z in the SNP models as age.

Under this framework, we specify the SNP nuisance models as

ω(X) = exp{ΨTα+ h(Z)} and m(X) = gm{ΦTγ + r(Z)} (5)

for w(X) and µ(X), where ΨTα and ΦTγ represent parametric components, the un-
known functions h(z) and r(z) represent the nonparametric components, and gm(·) is a
pre-specified link function that may be either the same or different from g(·). To avoid non-
identifiability between the parametric and nonparametric parts, we rule out the scenario
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that some components in Φ or Ψ are fully determined by Z. For example, in our real-world
case study, we first specify Z as a subset of covariates in X. Then for Ψ and Φ, we only
include X-z (covariates in X excluding Z) and the interaction terms in X, without any ba-
sis functions of Z in them. In the asymptotic analysis, common non-singularity conditions
like our Assumption A1 (iii) can be used to distinguish the parametric and nonparametric
spaces and avoid the non-identifying issue, which is necessary for the convergence of the
SNP nuisance estimators.

Correspondingly, we denote the estimators used in (4) as ω̂(X) = exp{ΨTα̂ + ĥ(Z)}
and m̂(X) = gm{ΦTγ̂ + r̂(Z)}. Here and in the sequel, we let β̂ATReL denote the ATReL
estimator derived from (4) with this specific construction of m̂(·) and ω̂(·). Unlike α̂ and
γ̂, estimation errors of ĥ(·) and r̂(·) are larger in rate than the desirable parametric rate
n−1/2 since they are estimated using non-parametric approaches like kernel smoothing.
In addition, removing the large non-parametric estimation biases from the biases of the
resulting β̂ATReL is particularly challenging due to the bias and variance trade-off in non-
parametric regression. To motivate our strategy for mitigating such biases, we consider the
estimation of cTβ0, an arbitrary linear functional of β0 where ‖c‖2 = 1, and study the first
order (over-fitting) bias incurred by ĥ(·) and r̂(·) in cTβ̂ATReL. The essential bias terms of
n1/2(cTβ̂ATReL − cTβ0) arising from the non-parametric components can be asymptotically
expressed as

∆1 =
1√
n

n∑
i=1

ω̄(Xi)κi,β0 {Yi − m̄(Xi)} {ĥ(Zi)− h̄(Zi)};

∆2 =
1√
n

n∑
i=1

ω̄(Xi)κi,β0 ğm{m̄(Xi)}{r̂(Zi)− r̄(Zi)}

−
√
n

N

N+n∑
i=n+1

κi,β0 ğm{m̄(Xi)}{r̂(Zi)− r̄(Zi)},

(6)

where κi,β = cTJ−1
β Ai ğm(a) = ġm{g−1

m (a)}, ġm(x) = dgm(x)/dx > 0, Jβ = E0{ġ(ATβ)AAT}
is the limit of Ĵβ = N−1

∑n+N
i=n+1 ġ(AT

iβ)AiA
T
i , ω̄(X) = exp{ΨTᾱ + h̄(Z)}, m̄(X) =

gm{ΦTγ̄ + r̄(Z)}, h̄(Z), r̄(Z), ᾱ, γ̄, and β̄ are the respective limits of ĥ(Z), r̂(Z), α̂, γ̂
and β̂ATReL. These limiting values are not necessarily true model parameter values due to
potential model misspecification.

When m(X) and ω(X) are specified fully nonparametrically as those in Rothe and Firpo
(2015) and Chernozhukov et al. (2018a), a standard cross-fitting strategy can removing
terms like ∆1 and ∆2 by leveraging m̄(X) = µ(X) and ω̄(X) = w(X) and utilizing the
orthogonality between the “residual” of S or Y on the covariates X and the functional
space of X. However, simply adopting cross-fitting is not sufficient for the current setting
because such orthogonality does not hold due to the potential misspecification of m(·) and
ω(·) in (5). To overcome this challenge, we impose moment condition constraints on the
nonparametric components r̄(Z) and h̄(Z) in that: for any measurable function f(·) of the
covariates Z,

E1

[
w(X)κβ0 (Y − gm {ΦTγ̄ + r̄(Z)}) f(Z)

]
= 0; (7)

E1

[
exp{ΨTᾱ+ h̄(Z)}κβ0 ğm{µ(X)}f(Z)

]
= E0

[
κβ0 ğm{µ(X)}f(Z)

]
. (8)
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Remark 3 When the density ratio model is correct, moment condition (8) is naturally sat-
isfied, and solving (8) for h̄(·) leads to the true h0(·). Constructing r̄(·) under the moment
condition (7) will enable us to remove excess bias arising from the empirical error in es-
timating h̄(·). On the other hand, when the imputation model m(X) is correct, condition
(7) holds and solving (7) for r̄(·) leads to r0(·). And similarly, constructing h̄(·) under (8)
will enable us to remove bias from the error in estimating r̄(·). See our theoretical analyses
given in Section 3 and Appendix A for more details on these points.

Note that when the corresponding nuisance models are wrong, r̄(·) and h̄(·) could only
be interpreted as some bias-calibration functions introduced due to technical reasons. This
interpretability issue also appeared in recent methods calibrating high-dimensional sparse
nuisance models to construct doubly robust estimation (Tan, 2020; Smucler et al., 2019,
e.g.). One could show that when the true distribution functions of the data are smooth on
Z, the above-defined r̄(·) and h̄(·) will be also smooth even under wrongly specified models.
This enables us to derive good estimators of them. See Remark A1 for a detailed discussion
on this point.

2.3 Estimation Procedure for β̂ATReL

We next detail estimation procedures for β̂ATReL under the constraints of the moment condi-
tions (7) and (8). Here we mainly focus on classic local regression approaches for low dimen-
sional and smooth nonparametric components r(·) and h(·). In Appendix C.2, we propose
a more general construction procedure that can learn r(·) and h(·) using arbitrary modern
machine learning algorithms (e.g. random forest and neural network). Similar to Cher-
nozhukov et al. (2018a), we adopt cross-fitting on the source sample to eliminate the depen-
dence between the estimators and the samples on which they are evaluated and remove the
first order bias ∆1 and ∆2 through concentration. Specifically, we randomly split the source
samples into K equal sized disjoint sets, indexed by I1, . . . , IK , with {1, ..., n} = ∪Kk=1Ik
and denote I-k = {1, .., n} \ Ik.

Equations (7) and (8) involve not only r(·) and h(·) but also other unknown parameters
that needed to be estimated. To this end, we propose a two-step construction procedure
that first obtains preliminary estimators for ω(X) and m(X) via standard semiparametric

regression as ω̃[-k](X) = exp{ΨTα̃[-k] + h̃[-k](Z)} and m̃[-k](X) = gm{ΦTγ̃[-k] + r̃[-k](Z)}
on I-k ∪ {n + 1, . . . , n + N}, where the nonparametric components can be estimated with
either sieve (Beder, 1987) or profile kernel (Lin and Carroll, 2006). Here, we take the
sieve as an example. Let b(Z) be some basis of Z with growing dimension, e.g. the
Hermite polynomials, and the partitioning-based series. Denote by Ψb = (ΨT, b(Z)T)T and
Φb = (ΦT, b(Z)T)T. We solve

K

n(K − 1)

∑
i∈I-k

Ψb
i exp(θT

wΨb
i ) + λ1(0,θT

w,-1)T =
1

N

n+N∑
i=n+1

Ψb
i ; with θw = (αT,ηT)T (9)

K

n(K − 1)

∑
i∈I-k

Φb
i

{
Yi − gm(θT

mΦb
i )
}

+ λ2(0,θT
m,-1)T = 0, with θm = (γT, ξT)T (10)

9



Liu, Zhang, Liao, and Cai

to obtain the estimators θ̃
[-k]

w = (α̃[-k]T , η̃[-k]T)T, θ̃
[-k]

m = (γ̃[-k]T , ξ̃
[-k]T

)T for θw and θm, and

h̃[-k](Z) = bT(Z)η̃[-k], r̃[-k](Z) = bT(Z)ξ̃
[-k]

. Here we include ridge penalties to improve the
training stability, with the two tuning parameters λ1, λ2 = op(n

−1/2). Suppose that ω̃[-k](X)
and m̃[-k](X) approach some limiting models denoted as ω∗(X) = exp{ΨTα∗+h∗(Z)} and
m∗(X) = gm{ΦTγ∗ + r∗(Z)}. Certainly, we have that ω∗(X) = w(X) when the density
ratio model is correctly specified, and m∗(X) = µ(X) when imputation model is correct.
Then we solve the estimating equation for β:

K

n(K − 1)

∑
i∈I-k

ω̃[-k](Xi)Ai{Yi − m̃[-k](Xi)}+
1

N

N+n∑
i=n+1

Ai{m̃[-k](Xi)− g(AT
iβ)} = 0,

Denote its solution as β̃
[-k]

, a preliminary estimator consistent for β0 when at least one
nuisance model is correct but typically not achieving the desirable parametric rate as our
final goal.

One might improve the convergence rate of the remainder bias of α̃[-k] and γ̃[-k] by further
using cross-fitting on the nonparametric components in estimating equations (9) and (10);

see Newey and Robins (2018). While α̃[-k] and γ̃[-k] can be shown to be n1/2-consistent and
asymptotically normal under certain smoothness and regularity conditions (Shen, 1997;
Chen, 2007; Belloni et al., 2015; Cattaneo et al., 2020), and thus satisfy our requirement

(see Assumption 3 and Proposition 1). Therefore, one could simply set α̂[-k] = α̃[-k] and

γ̂[-k] = γ̃[-k] as the estimator of the parametric components in the final nuisance models.
Consequently, their limiting (true) values are also identical: ᾱ = α∗ and γ̄ = γ∗. In the
following part of this section, we choose this construction.

Remark 4 Equations (9) and (10) are not the only choices for specifying α and γ. In
our framework, α and γ could be estimated through any estimating equations ensuring their
n1/2-consistency for some limiting parameters equal to the true ones when the corresponding
nuisance models are correct. This flexibility is particularly useful when the intrinsic effi-
ciency (Tan, 2010; Rotnitzky et al., 2012) of our estimator is further desirable, i.e. cTβ̂ATReL

is the most efficient among all the doubly robust estimators when ω(·) is correct and m(·)
has some wrong specification. Interestingly, we find that one could elaborate an estimating
procedure for γ to realize this property and shall leave relevant details in Appendix C.3.

Then as the second step, we construct the calibrated estimating equations for the non-
parametric nuisance components based on α̂[-k], γ̂[-k] and the preliminary estimators. Let
K(·) represent some kernel function satisfying

∫
Rpz K(z)dz = 1 and define that Kh(z) =

K(z/h). Localizing the terms in (7) and (8) with Kh(·), we solve for r(z) and h(z) respec-
tively from

1

|I-k|
∑
i∈I-k

Kh(Zi − z)κ̂
i,β̂[-k]

ω̃[-k](Xi)
[
Yi − gm

{
ΦT
i γ̂

[-k] + r(z)
}]

= 0;

1

|I-k|
∑
i∈I-k

Kh(Zi − z)κ̂
i,β̂[-k]

ğm{m̃[-k](Xi)} exp
{

ΨT
i α̂

[-k] + h(z)
}

=
1

N

n+N∑
i=n+1

Kh(Zi − z)κ̂
i,β̂[-k]

ğm{m̃[-k](Xi)}.

(11)

10
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where κ̂i,β = cTĴ
−1

β Ai. Equations in (11) calibrate the nonparametric components to
ensure the orthogonality between their score functions and the functional space of Z, which
is necessary for removing the bias terms introduced in (6). In contrast, the parametric
component could include different sets of covariates from Z, and there is no need to calibrate
them. This substantially distinguishes our framework from existing methods (Smucler et al.,
2019; Tan, 2020, e.g.) utilizing a similar calibration idea to handle high dimensional sparse
nuisance models.

Remark 5 If the weights κ̂
i,β̂[-k]

= cTĴ
−1

β̃
[-k]Ai have the same sign for a majority of the

subjects i ∈ I-k∪{n+1, . . . , n+N}, both equations in (11) have an unique solution for each
z, denoted as r̂[-k](Z) and ĥ[-k](Z). In practice, it is more likely that κ̂

i,β̂[-k]
can be positive

for some subjects and negative for others, in which case (11) can be irregular and ill-posed,
leading to inefficient estimation. One simple strategy to overcome this is to expand the
nuisance imputation models to allow h and r to differ among those with κ̂

i,β̂[-k]
≥ 0 versus

those with κ̂
i,β̂[-k]

. Specifically, we may solve for

1

|I-k|
∑
i∈I-k

[
Î

[-k]
+,i

Î
[-k]
−,i

]
Kh(Zi − z)κ̂

i,β̂[-k]
ω̃[-k](Xi)

[
Yi − gm

{
ΦT
i γ̂

[-k] + Î
[-k]
+,i r+(z) + Î

[-k]
−,i r−(z)

}]
= 0;

1

|I-k|
∑
i∈I-k

[
Î

[-k]
+,i

Î
[-k]
−,i

]
Kh(Zi − z)κ̂

i,β̂[-k]
ğm{m̃[-k](Xi)} exp

{
ΨT
i α̂

[-k] + Î
[-k]
+,i h+(z) + Î

[-k]
−,i h−(z)

}

=
1

N

n+N∑
i=n+1

[
Î

[-k]
+,i

Î
[-k]
−,i

]
Kh(Zi − z)κ̂

i,β̂[-k]
ğm{m̃[-k](Xi)},

(12)

where Î
[-k]
+,i = I(κ̂

i,β̂[-k]
≥ 0) and Î

[-k]
−,i = I(κ̂

i,β̂[-k]
< 0). Then we take

m̂[-k](Xi) = gm{ΦT
i γ̂

[-k] + Î
[-k]
+,i r+(Zi) + Î

[-k]
−,i r−(Zi)};

ω̂[-k](Xi) = exp
{

ΨT
i α̂

[-k] + Î
[-k]
+,i h+(Zi) + Î

[-k]
−,i h−(Zi)

}
.

With this modification, our construction still effectively removes ∆1 and ∆2 as one could
trivially analyze the two disjoint sets of samples separately, and combine their convergence
rates at last.

After obtaining r̂[-k](·) and ĥ[-k](·) for each k ∈ {1, 2, . . . ,K}, we take ω̂[-k](Xi) =

exp{ΨT
i α̂

[-k]+ĥ[-k](Zi)}, m̂[-k](Xi) = gm{ΦT
i γ̂

[-k]+r̂[-k](Zi)}, m̂(Xi) = K−1
∑K

k=1 m̂
[-k](Xi),

and plug them into the cross-fitted version of the estimating equation (4) written as:

1

n

K∑
k=1

∑
i∈Ik

ω̂[-k](Xi)Ai

{
Yi − m̂[-k](Xi)

}
+

1

N

N+n∑
i=n+1

Ai{m̂(Xi)− g(AT
iβ)} = 0. (13)

Let the solution of (13) be β̂ATReL and we take cTβ̂ATReL as the estimation for cTβ0. For uncer-
tainty quantification and interval estimation of cTβ0, we use a standard multiplier bootstrap
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approach. Since the first-order impact of the nonparametric component estimators has been
removed through calibration, we only need to refit α̂[-k] = α̃[-k] and γ̂[-k] = γ̃[-k] with the
bootstrap samples and plug them into the bootstrap version of the equation (13) to solve
for the resampled cTβ̂ATReL. Implementation details are presented in Appendix D. Alterna-
tively, one can estimate the standard error of cTβ̂ATReL by directly estimating its asymptotic
variance (with the method of moments), whose form is given by equation (A7) in Appendix
A. Based on the asymptotic normality of n1/2(cTβ̂ATReL − cTβ0) given by Theorem 1 in the
next section, both the bootstrap and the straightforward moment estimation can provide
consistent uncertainty quantification and valid confidence intervals (under Assumptions 1–3
to be introduced in the next section).

3. Theoretical analysis

Assume that ρ = n/N = O(1), K = O(1). For any vector a, let ‖a‖2 represent its `2-norm.
Let Z and X represent the domains of Z and X respectively. Assume that dimensionality
of A, pφ and pψ are fixed. We then introduce three sets of assumptions as follows.

Assumption 1 (Regularity conditions) There exists a constant CL > 0 such that |ġ(a)−
ġ(b)| ≤ CL|a− b| and |ġm(a)− ġm(b)| ≤ CL|a− b| for any a, b ∈ R. β0 belongs to a compact
space. Ai belong to a compact set and has a continuous differential density on both popula-
tions S and T . There exists a constant CU > 0 such that Ej |Y |2+E1ω̄

4(X)+Ej ğ4
m{m̄(X)}+

Ej‖Φ‖42 + Ej‖Ψ‖82 < CU , for j ∈ {0, 1}. The information matrix Jβ0
has its all eigenvalues

bounded away from 0 and ∞.

Assumption 2 (Specification of the nuisance models) At least one of the following
two conditions holds (i) w(X) = exp{ΨTα0+h0(Z)} for some α0 and h0(·); or (ii) µ(X) =
gm{ΦTγ0 + r0(Z)} for some γ0 and r0(·).

Assumption 3 (Estimation error of the nuisance models) The nuisance estimators

satisfy that (i) n1/2(α̂[-k]− ᾱ) and n1/2(γ̂[-k]− γ̄) is asymptotically normal with mean 0 and
finite variance; (ii) for every k ∈ {1, 2, . . . ,K} and j ∈ {0, 1}:

E1{ĥ[-k](Z)− h̄(Z)}2 + Ej{r̂[-k](Z)− r̄(Z)}2 = op(n
−1/2);

sup
z∈Z
|ĥ[-k](z)− h̄(z)|+ |r̂[-k](z)− r̄(z)| = op(1).

Remark 6 Assumption 1 is reasonable and commonly used for the asymptotic analysis of
M -estimation such as logistic regression (Van der Vaart, 2000). The assumption on the
compactness of the domain of Ai could be relaxed to accommodate unbounded covariates
with regular tail behaviors. Assumption 2 assumes that at least one nuisance model is
correctly specified, and the nonparametric component in the possibly wrong model satisfies
the moment constraints (7) or (8). Similar to the classic double robustness condition for
the parametric nuisance models (Bang and Robins, 2005; Qin et al., 2008), the parametric
part from the wrong model in our method could be arbitrarily specified.

Assumption 3(ii) assumes that both the nonparametric components have their mean
squared errors (MSE) below op(n

−1/2), known as the rate doubly robust assumption (Smu-
cler et al., 2019). With a similar spirit to Chernozhukov et al. (2018a), our Assumption 3 is
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imposed directly on the calibrated estimators ĥ[-k](·) and r̂[-k](·) regardless of their specific
estimation procedures, to preserve the generality. Justification of Assumption 3 for the
nuisance estimators obtained through smooth regression introduced in Section 2.3 is not
standard because the estimating equations in (11) involve the nuisance preliminary estima-
tors impacting the calibrated estimator through their empirical errors. We present this as
Proposition 1 and include its proof in Appendix B, obtained leveraging results established
in early literature about sieve and kernel methods (Carroll et al., 1998; Chen, 2007). We
note that sharper results for the nuisance estimators might be derived using recent literature
like Belloni et al. (2015) and Cattaneo et al. (2020); see more discussion in Appendix B.

Proposition 1 Under Assumption 1 and Assumptions A1–A3 presented in Appendix B
about regularity, smoothness, and specification of the sieve and kernel functions, Assumption
3 holds for our mainly proposed nuisance estimators in Section 2.3.

In Proposition 1, we use under-smoothing on sieve to achieve the asymptotic normality
and unbiasedness of the parametric parts α̂[-k] and γ̂[-k]; see Assumption A3(i). We note that
recent robust bias correction methods for kernel and sieve (Calonico et al., 2018; Qu et al.,
2022, e.g.) can be used as an alternative strategy to under-smoothing that could minimize
the coverage error and improve robustness to tuning parameter choice when performing
inference. Since the variation of α̂[-k] and γ̂[-k] affects the asymptotic behaviour of β̂ATReL

(see Remark 7), this could further enhance the validity of our interval estimation of β̂ATReL.

Different from the sieve and kernel approaches introduced in Section 2.3, when there
is high dimensional Z and the nonparametric components are estimated using modern
machine learning approaches like lasso and random forest, our debiased method introduced
in Appendix C is used to construct the parametric nuisance components. We demonstrate in
Appendix C that such debiased estimation will satisfy Assumptions 3(i) when the machine
learning estimators for the nonparametric components have good quality.

Compared to the fully parametric and nonparametric methods, our (model and rate)
doubly robust assumptions, i.e., Assumptions 2 and 3 are neither strictly stronger nor
strictly weaker. When more covariates are included in the nonparametric parts, Assumption
2 will become weaker. As a price to pay, Assumption 3 will be harder to satisfy due to the
increasing dimensionality of Z. Thus, the SNP models need to be carefully designed to
make Assumptions 2 and 3 reasonable at the same time. This has a similar spirit with
the well-known bias-variance trade-off in statistical learning theory. The fully parametric
and nonparametric strategies are actually the two extreme choices in terms of the model
complexity. The main advantage of the SNP framework is that one can specify the nuisance
models more flexibly to balance the model correctness and rate conditions, achieving a
better trade-off on model complexity.

Now we present the main theoretical results about the consistency and asymptotic va-
lidity of our estimator cTβ̂ATReL in Theorem 1 with its proof found in Appendix A.

Theorem 1 Under Assumptions 1 to 3, it holds that ‖β̂ATReL − β0‖2 = op(1) and

√
n(cTβ̂ATReL−cTβ0) =

1√
n

n∑
i=1

cTFSi +

√
n

N

n+N∑
n+1

cTF Ti +
√
nζT

α(α̂−ᾱ)+
√
nζT

γ(γ̂− γ̄)+op(1),
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where FSi = ω̄(Xi)Ai {Yi − m̄(Xi)}, F Ti = Ai{m̄(Xi)− g(AT
iβ)},

ζα = E1ω̄(X)κβ0 [Y − gm{ΦTγ̄ + r̄(Z)}] Ψ,

ζγ = E1ω̄(X)κβ0 ğm{m̄(X)}Φ− E0κβ0 ğm{m̄(X)}Φ,

α̂ = K−1
∑K

k=1 α̂
[-k], and γ̂ = K−1

∑K
k=1 γ̂

[-k]. Consequently, n1/2(cTβ̂ATReL − cTβ0) weakly
converges to Gaussian distribution with mean 0 and the variance given by equation (A7) in
Appendix A.

Remark 7 When Assumption 2(i) holds, i.e. the density ratio is correctly specified, we have

that ζγ = 0 so γ̂[-k]−γ̄ has no impact on the asymptotic expansion cTβ̂ATReL. Similarly, when

the imputation model is correct, ζα = 0 and α̂[-k] − ᾱ has no impact on cTβ̂ATReL. Thus,
when both nuisance models are correctly specified, estimating equations for the nuisance
estimators will not affect the asymptotic efficiency of our estimator.

4. Simulation studies

We conduct simulation studies to investigate the performance of the ATReL method and
compare it with existing doubly robust approaches. We consider four different data-
generating mechanisms concerning the specification of the nuisance models. Throughout,
we let n = 500 and N = 1000. In this and the next sections, we take both the link functions
as g(a) = gm(a) = ea/(1 + ea). To generate the data, we first generate V = (V1, V2, ..., V7)T

from N (0,ΣV ) where ΣV = (σij)7×7, σij = 1 when i = j, σij = 0.3 when (i, j) or (j, i) ∈
{(1, 2), (1, 3), (3, 4), (3, 5)}, σij = 0.15 when (i, j) or (j, i) ∈ {(1, 6), (1, 7), (5, 6), (5, 7)}, and

σij = 0 otherwise. Then we obtain each X̃j by truncating Vj with (−1.5, 1.5) and standard-
izing it, and take

W =

1, exp(0.5X̃1),
X̃2

1 + exp(X̃3)
,

(
X̃1X̃3

5
+ 0.6

)3

, X̃4, ..., X̃7


T

as a nonlinear transformation of X̃ = (1, X̃1, X̃2, . . . , X̃7)T. Based on this, we consider
four configurations for the underlying data-generating mechanisms introduced below as the
configurations indexed by (i)–(iv). First, we set Z = X̃1 and generate the source indication

S given X̃ by P(S = 1 | X̃) = gm{aT
wW + aT

xX̃ + hx(Z)} where

(i) aw = (−1, 0,−0.4,−0.4,−0.15,−0.15, 0, 0)T, ax = 0, and hx(Z) = 0.6Z2 · I(|Z| <
1.5) + {0.6(|Z| − 1.5) + 1.35} · I(|Z| ≥ 1.5).

(ii) The same as Configurations (i).

(iii) aw = 0, ax = (0,−0.2,−0.4,−0.4,−0.2,−0.2, 0, 0)T, and hx(Z) = 0.5|Z|3 · I(|Z| <
1.5) + {0.5 · 1.53 + (|Z| − 1.5)} · I(|Z| ≥ 1.5).

(iv) aw = 0, ax = (0,−0.4,−0.4,−0.4,−0.15,−0.15, 0, 0)T, and hx(Z) = 0.
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In Configurations (i) and (ii), set the observed covariates as X = (1, X1, X2, . . . , X7)T where

X2 = 0.8X̃2 − 0.2sin(
3

4
πX̃1) · I(S = 0); X3 = 0.8X̃3 − 0.2sin(

3

4
πX̃1) · I(S = 0),

and Xj = X̃j for all j 6= 2, 3. While in Configurations (iii) and (iv), we simply set X = X̃.
Then we generate Y by P(Y = 1 |X) = gm{bT

wW + bT
xX + rx(Z)}, where

(i) bw = 0, bx = (0, 0.5, 0.5, 0.5, 0.3, 0.3, 0.15, 0.15)T, rx(Z) = −0.4 · sin(3
4πZ).

(ii) bw = 0, bx = (0, 0.5, 0.5, 0.5, 0.3, 0.3, 0.15, 0.15)T, rx(Z) = 0.

(iii) bw = (−0.5, 0.5, 0.8, 0.3,−0.3,−0.2, 0.15, 0.15)T, bx = 0, rx(Z) = −0.6 · sin(3
4πZ).

(iv) bw = (−0.8, 0.5, 0.5, 0.5, 0.3, 0.3, 0.15, 0.15)T, bx = 0, rx(Z) = −0.4 · sin(3
4πZ).

In all four configurations, we set A = (1, X1, ..., X3)T. For each generated data set, we fit
the following nuisance models to estimate β0:

(a) Parametric nuisance models (Parametric): the importance weight model is chosen as
the logistic model of S against Ψ = X and the imputation model is specified as the
logistic model of Y against Φ = X.

(b) SNP nuisance models (ATReL): P(S = 1 | X) = gm{ΨTα + h(Z)} and P(Y = 1 |
X) = gm{ΦTγ+r(Z)}, where Ψ = X-1, Φ = X-1, and Z = X1, where X-j represents
the vector of components in X excluding Xj .

(c) Double machine learning with flexible basis expansions (DMLBE): the nuisance models
regress Y or S on features combining togetherX, natural splines of each Xj with order
4 and all the interaction terms of these natural splines. Due to the high dimensionality
of the bases, we use a combination of `1 and `2 penalties for regularization.

(d) Double machine learning with kernel machine (DMLKM): both models are estimated
using the support vector machine with the radial basis function kernel.

Our data generation and model specification have a similar spirit as Kang and Schafer
(2007) and Tan (2020). In Configurations (i) and (ii), our SNP imputation model correctly
characterizes Y | X while our importance weight model is misspecified. Parametric ap-
proach (a) has its imputation model correctly specified under Configuration (ii) but misses
the nonlinear function r(Z) under (i). Also note that under (ii), the nonparametric com-
ponent included in the imputation model of our method is redundant for the logistic linear
model of P(Y = 1 |X). Similar logic applies to Configurations (iii) and (iv) with the status
of the imputation model and importance weight model interchanged. More implementing
details of (a)–(d) are presented in Appendix D.

Performance of the four approaches is evaluated through root mean square error, bias,
and coverage probability of the 95% confidence interval in terms of estimating and inferring
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β0, β1, β2, β3, as summarized in Tables A2–A5 of Appendix D for configurations (i)–(iv)
respectively. The mean square error and absolute bias averaged over the target parameters,
and the maximum deviance of the coverage probability from the nominal level 0.95 among
all parameters are summarized in Table 1.

Table 1: Average root mean square error (RMSE), average absolute bias (|Bias|), and
maximum deviance of coverage probability (CP) of the constructed CI from its nominal level
0.95 over all parameters of the doubly robust estimators with different modeling strategies
for the nuisance models: Parametric, ATReL, DMLBE and DMLKM under Configurations
(i)–(iv), as introduced in Section 4.

Configurations Parametric ATReL DMLBE DMLKM

(i) Average RMSE 0.141 0.123 0.179 0.153
Average |Bias| 0.065 0.030 0.108 0.058
Deviance of CP 0.04 0.02 0.11 0.10

(ii) Average RMSE 0.117 0.123 0.186 0.148
Average |Bias| 0.005 0.016 0.114 0.061
Deviance of CP 0.04 0.02 0.13 0.05

(iii) Average RMSE 0.207 0.134 0.142 0.144
Average |Bias| 0.092 0.019 0.036 0.062
Deviance of CP 0.13 0.02 0.02 0.09

(vi) Average RMSE 0.131 0.122 0.145 0.128
Average |Bias| 0.005 0.009 0.058 0.044
Deviance of CP 0.01 0.02 0.22 0.09

Under all configurations, ATReL achieves better performance, especially at least 48%
smaller average bias, than the two DML approaches. Also, ATReL performs well in inter-
val estimation with coverage probabilities on all parameters under all configurations falling
in ±0.02 of the nominal level. In comparison, the Parametric method fails obviously on
interval estimation of β1 under (iii) because in the importance weighting model, the non-
parametric component is placed on the corresponding predictor. The two DML approaches
fail apparently on interval estimation of certain parameters, for example, Additive fails on
interval estimation of β0 under Configuration (i), (ii), and (iv), and kernel machine fails
on β1 under Configuration (i), (iii) and (iv). These demonstrate that our method achieves
better balance on the model complexity than the fully nonparametric/machine learning
constructions, leading to consistently better performance on point and interval estimation.

Our method has a significantly smaller root mean square error than Parametric under (i)
(relative efficiency being 0.89) and (iii) (relative efficiency being 0.65), with nonlinear effects
in the nuisance models captured by our method and missed by the parametric approach.
Under these two configurations, our method also has a smaller average absolute bias than
Parametric (55% under (i) and 79% under (iii)). While for (ii) and (iv) with the nonpara-
metric components in our construction being redundant, the performance of our method is
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close to the parametric approach. Thus, our nonparametric components modeling helps to
reduce bias and improve estimation efficiency in the presence of nonlinear effects while they
basically do not hurt the efficiency when being redundant.

One should note that the above-discussed advantages of our method rely on Assumption
2, the correctness of the SNP nuisance models. When both models are severely misspec-
ified, one cannot expect ATReL to be valid and efficient. We demonstrate this limitation
in Appendix D, through an additional simulation study in which the nuisance models’
non-linearity creates large covariate shift bias and is not adequately captured by our SNP
construction. See Appendix D for more details about data generation and Table A1 for
the results. In this scenario, ATReL produces a large estimation bias, e.g., around 1.3 on
β2 that occupies a large proportion of its RMSE. The Parametric method fails in a similar
way. In comparison, DMLKM with fully nonparametric nuisance estimators has a small bias
of 0.05 on β2. Thus, in practice, one needs to be aware of the danger of severe model
misspecification when specifying the nuisance models in ATReL.

5. Transfer EHR phenotyping of rheumatoid arthritis across different
time windows

The growing availability of EHR data opens more opportunities for translational biomed-
ical research (Kohane et al., 2012). However, a major obstacle to realizing the full trans-
lational potential of EHR is the lack of precise definitions of disease phenotypes needed
for clinical studies. With a small number of gold standard labels for phenotypes, machine
learning phenotyping algorithms based on both codified EHR features and clinical note
mentions extracted using natural language processing (NLP) have been derived to improve
the phenotype definition Liao et al. (2019). For example, several phenotyping algorithms
for rheumatoid arthritis (RA), a common autoimmune disease, have been developed and
validated at multiple institutions in recent years (Liao et al., 2010; Carroll et al., 2012; Yu
et al., 2017). Once the phenotyping algorithms become available, they are used to classify
disease status for downstream tasks such as genomic association studies using EHR-linked
biobank data (Kohane, 2011).

Once a phenotyping algorithm is developed, it is often used repeatedly to classify disease
status for patients in an EHR database which is often updated over time. For example,
the RA algorithm developed by Liao et al. (2010) at Mass General Brigham (MGB) was
trained in 2009 and validated again in 2020 Huang et al. (2020). Significant changes have
occurred between 2009 and 2020: the EHR system at MGB was switched to EPIC and the
International Classification of Diseases (ICD) system was changed from version 9 to version
10 around 2015 - 2016. Although the algorithm trained in Liao et al. (2010) appears to have
stable performance for the 2020 data Huang et al. (2020), it had poorer performance in 2016.
Thus, we investigated to what extent transfer learning can be used to automatically update
the phenotyping algorithm over time, particularly in 2016 when the algorithm performed
less well. To this end, we considered training an RA EHR phenotyping algorithm to classify
RA status for patients with EHR data from 2016 at MGB using training data from 2009.

There are a total of 200 labeled patients with true RA status, Y , manually annotated
via chart review. There are a total of p = 9 demographic or EHR features, X, available for
training RA algorithm, including the total healthcare utilization (X1), NLP count of RA
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(X2), NLP mention of tumor necrosis factor (TNF) inhibitor (X3), NLP mention of bone
erosion (X4), age (X5), gender (X6), ICD count of RA (X7), presence of TNF inhibitor
prescription (X8), and tested negative for rheumatoid factor (X9), where we use x →
log(x+ 1) transformation for all count variables. Since NLP mentions of clinical terms are
less sensitive to changes to the EHR coding system, we aim to develop an NLP feature-only
model for predicting Y using A = (X1, X2, X3, X4)T, for the EHR cohort of 2016 using
labeled data from 2009 via transfer learning. Due to the co-linearity among A, we convert
X2 into its orthogonal complement to X1. For simplicity, we still denote the transformed
covariates as (X1, X2, X3, X4)T.

We implemented the doubly robust transfer learning approaches introduced in Section
4, including Parametric, ATReL, DMLBE, and DMLKM. The specific construction of the
nuisance models in the four approaches is presented in Appendix E. We also include the
logistic model for Y ∼ A simply fitted on the source data without adjusting for covariate
shift, named Source. For ATReL, we choose Z as the NLP count of RA for non-parametric
modeling as it is believed to be the most predictive feature (see Table A6 in Appendix).
If the pattern of effects was similar across all predictors in X, this choice could help us to
capture as much non-linear effect as possible under the SNP framework.

To evaluate the performance of the transfer learning, we additionally performed chart-
reviewing on 150 subjects from the target population in 2016, denoted as L16. We fit a
logistic regression Y ∼ A using these labeled observations in L16 and denote the estimate
for β as β̂Valid to serve as a gold standard benchmark. Fitted intercepts and coefficients of all
methods are presented in Table A6 of Appendix E. To evaluate the estimation performance
of a derived estimator β̂ according to our practical needs, we calculate the following metrics:

AUC. Area under the receiver operating characteristic (ROC) curve evaluated with
the labels. For the Target estimator β̂Valid, we use repeated sample-splitting for eval-
uation.

RMSPE. Relative mean square prediction error to β̂Valid evaluated on the target data:

Ê0{g(ATβ̂Valid)− g(ATβ̂)}2

Ê0{g(ATβ̂Valid)}2
.

CC with β̂Valid. Classifier’s correlation with that of β̂Valid:

Ĉorr0

{
I
(
g(ATβ̂Valid) ≥ Ê0[g(ATβ̂Valid)]

)
, I
(
g(ATβ̂) ≥ Ê0[g(ATβ̂)]

)}
,

FCR v.s. β̂Valid. False classification rate of β̂’s classifier against that of β̂Valid:

P̂0

{
I
(
g(ATβ̂Valid) ≥ Ê0[g(ATβ̂Valid)]

)
6= I

(
g(ATβ̂) ≥ Ê0[g(ATβ̂)]

)}
.

Here Ê0, P̂0, and Ĉorr0(·, ·) represent the empirical expectation, probability measure, and
Pearson correlation on the target population. Evaluation results obtained with the target
data and the validation labels are presented in Table 2. Our ATReL method attains the
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smallest estimation error among all the methods under comparison, with its relative effi-
ciency of RMSPE being 0.21 to the naive source estimator, 0.23 to doubly robust estimator
with parametric nuisance models, 0.17 to DML with flexible basis expansions, and 0.46 to
DML with kernel machine. Also, among Source and all the transfer learning estimators,
ATReL produces the largest AUC, as well as the closest classifiers to the gold standard
target data estimator, i.e. attaining the largest CC with β̂Valid and smallest FCR v.s. β̂Valid.
Thus, by trading off the parametric and nonparametric modeling strategies in a better way
to adjust for the covariate shift, our method achieves better estimation performance than
all existing methods.

Table 2: Estimation performance of the source or transfer learning estimators evaluated
with the validation labeled data and validation estimator denoted as Target. All included
methods are as described in Sections 4 and 5. The evaluation metrics, as introduced in
Section 5, include AUC: area under the ROC curve; RMSPE: relative mean square predic-
tion error; CC with β̂Valid: classifier’s correlation with that of β̂Valid; FCR v.s. β̂Valid: false
classification rate against β̂Valid.

Source Parametric ATReL DMLBE DMLKM Target

AUC 0.908 0.904 0.916 0.907 0.911 0.922
RMSPE 0.052 0.048 0.011 0.064 0.024 0

Prevalence 0.376 0.336 0.323 0.329 0.330 0.340

CC with β̂Valid 0.89 0.88 0.97 0.91 0.93 1

FCR v.s. β̂Valid 0.05 0.06 0.01 0.05 0.03 0

6. Discussion

Contribution and limitation. In this paper, we propose ATReL, a transfer regression
learning approach using an imputation model to augment the importance weighting equa-
tion to achieve double robustness. Interestingly, our target β is defined as the solution to
some pre-specified estimating equations but not necessarily underlying true models. This
fact connects our work to the comprehensive semiparametric inference literature. Moreover,
we propose a novel SNP framework to construct the two nuisance models that achieves a
better model complexity trade-off than existing doubly robust or DML approaches. To con-
trol the excessive first-order bias incurred by the nonparametric component under model
misspecification, appearing as a unique challenge of the SNP construction, we develop a
novel set of calibrating estimating equations constructed through a two-step procedure.
The n1/2-consistency of our proposed estimator is guaranteed by a hybrid of the model
double robustness of the parametric component and the rate double robustness of the non-
parametric component. Simulation studies and a real example also demonstrate that our
method is more robust and efficient than the existing methods.

Note that the covariate shift studied in this paper is closely relevant to the standard
causal inference problems (Imbens and Rubin, 2015, e.g.). Our indicator of the source data
S ∈ {0, 1} can be viewed as an analog of the treatment variable. We shall comment on
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the connection between the standard causal assumptions and ours, which sheds light on
the potential generalization of the proposed SNP framework. First, the unconfoundedness
assumption corresponds to our assumption that the distribution of Y | X remains the
same between the source and target populations. Second, the strict overlap (positivity)
assumption, i.e., the importance weights staying away from δ and δ−1 for some δ > 0, is
actually implied by our Assumption A1 (i, ii). At last, under our data generation mechanism
with independent samples from both S and T , the consistency assumption and the stable
unit treatment value assumption (SUTVA) are as given.

Proper choices of Z in the nonparametric part are crucial. In our additional simulation
described in Appendix D, the failure of capturing the strong non-linear effects in the nui-
sance models causes severe bias in our method. Besides leveraging potential prior knowledge
mentioned in Section 2.2, the users could try to put (moderately) more variables in Z if
model misspecification is really the main concern in their applications. It is desirable to
further develop data-driven approaches for model selection among different choices on Z.
This could be more challenging than the usual model selection since the purpose here is to
find SNP nuisance estimators leading to a small bias on the target estimator. In addition,
compared to the parametric doubly robust and DML approaches, the implementation of
ATReL, including fitting the preliminary SNP nuisance models, and calibrating the estima-
tors, is more complicated and involve more tuning parameters to select. This could raise
concerns about the stability of ATReL’s performance, as well as its utility in practice.

The covariate shift correction problem is closely related to the estimation of ATT, whose
semiparametric efficiency under both correct nuisance models has been well-studied (Hahn,
2004; Shu and Tan, 2018). So one could further study the efficiency of our estimator by
extending the previous work on ATT to our case. Also, we currently specify the paramet-
ric parts in our nuisance models with some low-dimensional bases. Our method could be
extended to address high-dimensional Φ and Ψ with sparse coefficients. For this purpose,
some recent bias-correction methods like Kozbur (2021) and Tan (2020) need to be incor-
porated to handle the excessive estimation errors of the nonparametric and the parametric
parts respectively. Meanwhile, we find more concrete ideas and directions to generalize
our current proposal and introduce them shortly as below with more details presented in
Appendix C.

Sieve or modern machine learning estimation of the nonparametric parts. We
propose some other choices in constructing the nuisance estimators alternative to the kernel
smoothing method introduced in Section 2.3. Detailed construction procedures under these
choices, including sieve and modern (black-box) machine learning algorithms are presented
in Appendix C. First, we note that the sieve can be naturally incorporated to solve the
calibrated equations in (11) and achieve the same convergence properties as the kernel
estimators. More importantly, we propose a construction procedure using arbitrary modern
(nonparametric) machine learning algorithms to learn the nonparametric components in
the nuisance models under our framework. This is substantially more challenging than
the kernel or sieve constructions since we consider arbitrary black-box machine learning
algorithms with no special forms, and thus it becomes more involving to derive nuisance
estimators satisfying the moment conditions (7) and (8). To our best knowledge, a similar
problem has not been solved in the existing literature.
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The N � n scenario. In many application fields like EHR phenotyping studied in this
paper, the sample size of unlabeled data N can usually be much larger than the size of
labeled data n. Analysis of our method under such a N � n scenario is of particular
interest. It has been established that semi-supervised learning with N � n unlabeled
samples enables estimating various types of target parameters more efficiently than the
supervised method (Kawakita and Kanamori, 2013; Azriel et al., 2016; Gronsbell and Cai,
2018; Chakrabortty and Cai, 2018; Gronsbell et al., 2020, e.g.). However, existing work is
restricted to the setting where the unlabeled and labeled data are from the same population.
In the presence of covariate shift, it is of interest to further investigate whether having
N � n (unlabeled) target samples would benefit our estimator. When the importance
weight model is correct, similar results as Kawakita and Kanamori (2013) should apply
in our case and the asymptotic variance of ATReL could be reduced compared with the
estimator obtained under the N � n or N < n scenarios. The study of this problem
warrants future work.

Intrinsic efficient estimator. When the importance weight model is correctly specified
while the imputation model may be wrong, the asymptotic variance of our estimator is
dependent on the parameters γ̄ and r̄(·). For purely fixed dimensional parametric nuisance
models, there exist certain moment equations for the imputation parameters that grant one
to get the most efficient doubly robust estimator among those with the same specification of
the imputation model. This property is known as intrinsic efficiency (Tan, 2010; Rotnitzky
et al., 2012). Under our semi-nonparametric framework, flexibility in specifying the para-
metric parts of the nuisance models makes the intrinsic efficiency of our proposed estimator
worthwhile considering. In Appendix C.3, we introduce a modified construction procedure
for m̂[-k](·) that calibrates its nonparametric part and ensures the intrinsic efficiency of the
estimator of cTβ0, or more generally, any given smooth function of β0.
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Appendix

Appendix A. Proof of Theorem 1

Proof Let ‖ · ‖∞ represent the maximum norm of a vector or matrix. Without loss of
generality, assume ‖c‖2 = 1. First, we derive the error rate for the whole β̂ATReL vector,
which is above the parametric rate but useful in analyzing the second-order error terms.
Inspired by Chen et al. (2016), we expand the left side of (13) as

1

n

K∑
k=1

∑
i∈Ik

ω̂[-k](Xi)Ai

{
Yi − m̂[-k](Xi)

}
+

1

N

N+n∑
i=n+1

Ai{m̂(Xi)− g(AT
iβ)}

=
1

n

n∑
i=1

ω̄(Xi)Ai {Yi − m̄(Xi)}+
1

N

N+n∑
i=n+1

Ai{m̄(Xi)− g(AT
iβ)}

+
1

n

K∑
k=1

∑
i∈Ik

{ω̂[-k](Xi)− ω̄(Xi)}Ai{m̂[-k](Xi)− m̄(Xi)}

+
1

n

K∑
k=1

∑
i∈Ik

ω̄(Xi)Ai{m̂[-k](Xi)− m̄(Xi)} −
1

N

N+n∑
i=n+1

Ai{m̂(Xi)− m̄(Xi)}

+
1

n

K∑
k=1

∑
i∈Ik

{ω̂[-k](Xi)− ω̄(Xi)}Ai {Yi − m̄(Xi)}

=:V (β) + ∆a + ∆b + ∆c.

(A1)

By Assumption 3, independence between ω̂[-k](·) and data from Ik or data from the target
population, and using the central limit theorem (CLT), we have that: for each k,

K

n

∑
i∈Ik

{ω̂[-k](Xi)− ω̄(Xi)}2 − E1{ω̂[-k](X)− ω̄(X)}2 = op(n
−1/2);

K

n
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1

N
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−1/2)

Also, by Assumption 3 and Assumption 1, we have that: for each k,
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and that each j ∈ {0, 1},

Ej{m̂[-k](X)− m̄(X)}2

=E1

[
ğ2{m̄(X)}
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Thus, we have K
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N
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−1/2). Combining these with Assump-
tion 1, we have that
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−1/2);

‖∆b‖∞ ≤max
i
‖Ai‖∞

n−1
K∑
k=1

∑
i∈Ik

ω̄2(Xi)

 1
2
n−1

K∑
k=1

∑
i∈Ik

{m̂(Xi)− m̄(Xi)}2
 1

2

+ max
i
‖Ai‖∞

[
N−1

N+n∑
i=n+1

{m̂(Xi)− m̄(Xi)}2
] 1

2

= op(n
−1/4);

‖∆c‖∞ ≤max
i
‖Ai‖∞

n−1
K∑
k=1

∑
i∈Ik

Y 2
i + m̄2(Xi)

 1
2
n−1

K∑
k=1

∑
i∈Ik

{ω̂(Xi)− ω̄(Xi)}2
 1

2

= op(n
−1/4).

Thus, β̂ATReL solves: V (β) + op(n
−1/4) = 0. Let the solution of EV (β) = 0 be β̄. When

ω̄(·) = w(·),

EV (β) =E1w(X)X{Y − g(ATβ)}+ [E1w(X){g(ATβ)− m̄(X)} − E0{g(ATβ)− m̄(X)}]
=E0X{Y − g(ATβ)}+ 0.

As m̄(·) = µ(·), EV (β) = 0 + E0{µ̄(X) − g(ATβ)}. Both cases lead to that β0 solves
EV (β) = 0. So under Assumption 2, we have β̄ = β0. By Assumption 1, V (β) is continuous
differential on β. Then using Theorem 8.2 of Pollard (1990), we have ‖β̂ATReL − β0‖2 =
op(n

−1/4) = op(1).

Then we consider the asymptotic expansion of cTβ̂ATReL. Noting that β̂ATReL is consistent
for β0, by Theorem 5.21 of Van der Vaart (2000), we expand (A1) with respect to cTβ̂ATReL

2
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as:

√
n(cTβ̂ATReL − cTβ0)

=n−
1
2

n∑
i=1

ω̄(Xi)c
TĴ
−1

β̆ Ai {Yi − m̄(Xi)}+

√
ρ

√
N

N+n∑
i=n+1

cTĴ
−1

β̆ Ai{m̄(Xi)− g(AT
iβ0)}

+ n−
1
2

K∑
k=1

∑
i∈Ik

{ω̂[-k](Xi)− ω̄(Xi)}cTĴ
−1

β̆ Ai {Yi − m̄(Xi)}

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)c
TĴ
−1

β̆ Ai{m̂[-k](Xi)− m̄(Xi)} −
n

1
2

N

N+n∑
i=n+1

cTĴ
−1

β̆ Ai{m̂(Xi)− m̄(Xi)}

+ n−
1
2

K∑
k=1

∑
i∈Ik

cTĴ
−1

β̆ Ai{ω̂[-k](Xi)− ω̄(Xi)}{m̂[-k](Xi)− m̄(Xi)}

=:V + Ξ1 + Ξ2 + ∆3,

(A2)

where β̆ is some vector lying between β0 and β̂ATReL. First, we shall show that ‖Ĵ
−1

β̆ −
J−1
β0
‖∞ = Op(n

−1/4). Since the dimensionality of A, d is fixed, we have∥∥∥Ĵ−1

β̆ − J−1
β0

∥∥∥
∞

=
∥∥∥Ĵ−1

β̆ J
−1
β0

(Ĵ β̆ − Jβ0
)
∥∥∥
∞
≤ d3

∥∥∥Ĵ−1

β̆

∥∥∥
∞

∥∥∥J−1
β0

∥∥∥
∞

∥∥∥Ĵ β̆ − Jβ0

∥∥∥
∞
.

Denote by Ai = (A1i, . . . , Adi)
T. By Assumption 1 and CLT, there exists a constant C > 0

such that for j, ` ∈ {1, . . . , d},∣∣∣∣∣N−1
n+N∑
i=n+1

AjiA`iġ(AT
i β̆)− E0AjiA`iġ(AT

iβ0)

∣∣∣∣∣
≤

∣∣∣∣∣N−1
n+N∑
i=n+1

AjiA`i{ġ(AT
i β̆)− ġ(AT

iβ0)}

∣∣∣∣∣+

∣∣∣∣∣N−1
n+N∑
i=n+1

AjiA`iġ(AT
iβ0)− E0AjiA`iġ(AT

iβ0)

∣∣∣∣∣
≤

∣∣∣∣∣N−1
n+N∑
i=n+1

|AjiA`i|CL|AT
i β̆ −AT

iβ0|

∣∣∣∣∣+Op(n
−1/2) ≤ C‖β̂ATReL − β0‖2 +Op(n

−1/2) = op(n
−1/4).

Also noting that ‖J−1
β0
‖∞ is bounded by Assumption 1, we have∥∥∥Ĵ−1

β̆ − J−1
β0

∥∥∥
∞

= op(n
−1/4). (A3)

Under Assumption 2, and similar to the deduction above, the expectation of

n−
1
2

n∑
i=1

ω̄(Xi)Ai {Yi − m̄(Xi)}+

√
ρ

√
N

N+n∑
i=n+1

Ai{m̄(Xi)− g(AT
iβ0)}

3
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is 0. So by Assumption 1, equation (A3), CLT, and Slutsky’s Theorem, we have that V
weakly converges to N(0, σ2) where σ2 represents the asymptotic variance of V and is order
1. We then consider the remaining terms separately. First, we have

Ξ1 =n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)c
TĴ
−1

β̆ Ai [Yi − gm{ΦTγ̄ + r̄(Z)}]
[
ΨT
i (α̂

[-k] − ᾱ) +Op({ΨT
i (α̂

[-k] − ᾱ)}2)
]

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)κi,β0 [Yi − gm{ΦTγ̄ + r̄(Z)}] ∆h[-k](zj)

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)c
T(Ĵ

−1

β̆ − J−1
β0

)Ai [Yi − gm{ΦTγ̄ + r̄(Z)}] ∆h[-k](zj)

=:U1 + ∆11 + ∆12,

(A4)

where ∆h[-k](zj) = ĥ[-k](Zi)− h̄(Zi) +Op({ĥ[-k](Zi)− h̄(Zi)}2). Recall that

ζα = E1ω̄(X)κβ0 [Y − gm{ΦTγ̄ + r̄(Z)}] Ψ.

Again using (A3) and Assumption 1, we have that

n−1
K∑
k=1

∑
i∈Ik

ω̄(Xi)c
TĴ
−1

β̆ Ai [Yi − gm{ΦTγ̄ + r̄(Z)}] p−→ ζα.

Combining this with Assumption 1, Assumption 3 that
√
n(α̂[-k]− ᾱ) is asymptotic normal

with mean 0 and covariance of order 1, and using Slutsky’s Theorem, we have that U1 is
asymptotically equivalent with

√
nζT

α(α̂−ᾱ), which weakly converges to normal distribution
with mean 0 and variance of order 1.

For ∆11, by Assumption 2, the moment condition:

E1

[
ω̄(X)κβ0 (Y − gm{ΦTγ̄ + r̄(Z)})

∣∣∣Z] = 0

holds because under Assumption 2(i), both limiting parameters ω∗(·) = ω̄(·) = ω(·) and
r̄(·) solves (7) while under 2(ii), E1[Y |X] = gm{ΦTγ̄ + r̄(Z)}, leading to

E1

[
ω̄(X)κβ0 (Y − gm{ΦTγ̄ + r̄(Z)})

∣∣∣X] = 0.

Combining this with the fact that ĥ[-k](·) is independent of the data in Ik due to the use
of cross-fitting, we have E1∆11 = E1[∆11 | ĥ[-k](·)] = 0 + n1/2Op({ĥ[-k](Zi) − h̄(Zi)}2). By
Assumptions 1 and 3(ii), we have that

Var1

(
ω̄(Xi)κi,β0 [Yi − gm{ΦTγ̄ + r̄(Z)}] {ĥ[-k](Zi)− h̄(Zi)}

∣∣∣ĥ[-k](·)
)

=O(E1[ω̄2(Xi) + Y 2
i + m̄2(Xi)]) · op(1) = op(1),

4
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where Var1 and Var0 represent the variance operator of the source and target population
respectively. Then by CLT and Assumption 3(ii), we have that

∆11 =
(

∆11 − E1[∆11|ĥ[-k](·)]
)

+E1[∆11|ĥ[-k](·)] = op(1)+n1/2Op({ĥ[-k](Zi)−h̄(Zi)}2) = op(1).

For term ∆12, by (A3) and Assumptions 1 and 3, there exists constant C12 > 0 such that

|∆12| ≤p C12 max
i
‖Ai‖∞

∥∥∥Ĵ−1

β̆ − J−1
β0

∥∥∥
∞

n−1
K∑
k=1

∑
i∈Ik

ω̄2(Xi){ĥ[-k](Zi)− h̄(Zi)}2
 1

2

= op(1).

Therefore, we come to that Ξ1 is asymptotically equivalent with
√
nζT

α(α̂ − ᾱ). Similarly,
we write the term Ξ2 as

Ξ2 =n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)c
TĴ
−1

β̆ Aiğm{m̄(Xi)}
[
ΦT
i (γ̂

[-k] − γ̄) +Op({ΦT
i (γ̂

[-k] − γ̄)}2)
]

− n
1
2

N

N+n∑
i=n+1

cTĴ
−1

β̆ Aiğm{m̄(Xi)}

[
K−1

K∑
k=1

ΦT
i (γ̂

[-k] − γ̄) +Op({ΦT
i (γ̂

[-k] − γ̄)}2)

]

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)κi,β0 ğm{m̄(Xi)}∆r[-k](Zi)−
n

1
2

N

N+n∑
i=n+1

κi,β0 ğm{m̄(Xi)}∆r(Zi)

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)c
T

[
Ĵ
−1

β̆ − J−1
β0

]
Aiğm{m̄(Xi)}∆r[-k](Zi)

− n
1
2

N

N+n∑
i=n+1

cT
[
Ĵ
−1

β̆ − J−1
β0

]
Aiğm{m̄(Xi)}∆r(Zi)

=:U2 + ∆21 + ∆22,

(A5)

where ∆r[-k](Zi) = r̂[-k](Zi)−r̄(Zi)+Op({r̂[-k](Zi)−r̄(Zi)}2), ∆r(Zi) = K−1
∑K

k=1 ∆r[-k](Zi),
U2 represents the difference of the first two terms, and ∆22 represents the difference of the
last two terms. Similar to U1, by (A3) and Assumption 1,

1

n

K∑
k=1

∑
i∈Ik

ω̄(Xi)c
TĴ
−1

β̆ Aiğm{m̄(Xi)}Φi −
1

N

N+n∑
i=n+1

cTĴ
−1

β̆ Aiğm{m̄(Xi)}Φi
p−→ ζγ .

Again, combining this with Assumptions 1 and Assumption 3, and using Slutsky’s Theorem,
we have that U2 is asymptotically equivalent with

√
nζT

γ(γ̂− γ̄), which weakly converges to
normal distribution with mean 0 and variance of order 1.

For ∆21, by Assumptions 2 and 3, as well as the use of cross-fitting, we have that

E1

 1

n

K∑
k=1

∑
i∈Ik

ω̄(Xi)κi,β0 ğm{m̄(Xi)}∆r[-k](Zi)


− E0

(
1

N

N+n∑
i=n+1

κi,β0 ğm{m̄(Xi)}∆r[-k](Zi)

)
= op(n

−1/2).

5
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Here, we follow the same idea as that for ∆11: if Assumption 2(i) holds, we have ω̄(·) = w(·)
and

E1

[
exp{ΨTᾱ+ h̄(Z)}κβ0 ğm{m̄(X)}f(X)

]
= E0

[
κβ0 ğm{m̄(X)}f(X)

]
holds for all measurable function of X, f(·); when Assumption 2(ii) holds, we have that
m∗(·) = m̄(·) = µ(·) and thus h̄(·) solves (8). Also, note that

Var1

(
ω̄(Xi)κi,β0 ğm{m̄(Xi)}{r̂[-k](Zi)− r̄(Zi)}

∣∣∣r̂[-k](·)
)

=O(E1[ω̄2(Xi) + ğ2
m{m̄(Xi)}]) · op(1) = op(1);

Var0

(
κi,β0 ğm{m̄(Xi)}{r̂[-k](Zi)− r̄(Zi)}

∣∣∣r̂[-k](·)
)

= O(E1ğ
2
m{m̄(Xi)}) · op(1) = op(1);

Then similar to ∆12, we come to ∆22 = op(1). Thus, the term Ξ2 is asymptotically equiv-
alent with

√
nζT

γ(γ̂ − γ̄), which weakly converges to the normal distribution with mean 0
and variance of order 1.

Finally, we consider ∆3 in (A2). By Assumption 1, the boundness of |cTĴ
−1

β̆ Ai| and our

derived bounds for n−1
∑K

k=1

∑
i∈Ik{ω̂

[-k](Xi)− ω̄(Xi)}2 and n−1
∑K

k=1

∑
i∈Ik{m̂

[-k](Xi)−
m̄(Xi)}2,

|∆3| =O

n− 1
2

K∑
k=1

∑
i∈Ik

|ω̂[-k](Xi)− ω̄(Xi)||m̂[-k](Xi)− m̄(Xi)|


≤
√
nO


n−1

K∑
k=1

∑
i∈Ik

{ω̂[-k](Xi)− ω̄(Xi)}2
 1

2
n−1

K∑
k=1

∑
i∈Ik

{m̂[-k](Xi)− m̄(Xi)}2
 1

2

 ,

which is again op(1). Combining this with the asymptotic properties derived for V , Ξ1

and Ξ2 and the expansion (A2), we can finish the proof for the asymptotic normality of√
n(cTβ̂ATReL − cTβ0).

At last, for the purpose of uncertainty quantification, we derive the form of the asymp-
totic variance of

√
n(cTβ̂ATReL − cTβ0). We start with the expansion:

√
n(cTβ̂ATReL−cTβ0) =

1√
n

n∑
i=1

cTFSi +

√
n

N

n+N∑
n+1

cTF Ti +
√
nζT

α(α̂−ᾱ)+
√
nζT

γ(γ̂− γ̄)+op(1),

(A6)
where FSi = ω̄(Xi)Ai {Yi − m̄(Xi)}, F Ti = Ai{m̄(Xi)− g(AT

iβ)},

ζα = E1ω̄(X)κβ0 [Y − gm{ΦTγ̄ + r̄(Z)}] Ψ,

ζγ = E1ω̄(X)κβ0 ğm{m̄(X)}Φ− E0κβ0 ğm{m̄(X)}Φ,

α̂ = K−1
∑K

k=1 α̂
[-k], and γ̂ = K−1

∑K
k=1 γ̂

[-k]. Let

√
n(α̂− ᾱ) =

1√
n

(
n∑
i=1

FS,αi +
n

N

n+N∑
i=n+1

F T ,αi

)
;
√
n(γ̂ − γ) =

1√
n

n∑
i=1

F γi .

6
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Here FS,αi , F T ,αi , and F γi are dependent on sample i, with their specific forms depending

on the estimating equations for α̂[-k] and γ̂[-k] (which is flexible and upon one’s choice in

our framework). As an example, when α̂[-k] = α̃[-k] and γ̂[-k] = γ̃[-k] are estimated through
equations (9) and (10), we will have

FS,αi = −J̄−1
α Ψi exp {ΨT

iα
∗ + h∗(Zi)} ,

F T ,αi = J̄
−1
α Ψi, , F γi = J̄

−1
γ Φi [Yi − gm {ΦT

i γ
∗ + r∗(Zi)}] ,

where

J̄α =E1 exp {ΨT
iα
∗ + h∗(Zi)}

(
Ψi −

E1[exp {ΨT
iα
∗ + h∗(Zi)}Ψi|Zi]

E1[exp {ΨT
iα
∗ + h∗(Zi)} |Zi]

)⊗2

,

J̄γ =E1ġm {ΦT
i γ
∗ + r∗(Zi)}

(
Φi −

E1[ġm {ΦT
iα
∗ + r∗(Zi)}Φi|Zi]

E1[ġm {ΦT
iα
∗ + r∗(Zi)} |Zi]

)⊗2

,

and u⊗2 = uuT. Plugging the expansions of α̂ and γ̂ into equation (A6), we have

√
n(cTβ̂ATReL−cTβ0) =

1√
n

n∑
i=1

(cTFSi +ζT
αF
S,α
i +ζT

γF
γ
i )+

√
n

N

n+N∑
n+1

(cTF Ti +ζT
αF
T ,α
i )+op(1),

which implies the asymptotic variance of
√
n(cTβ̂ATReL − cTβ0) to be

σ2 = Var
(
cTFSi + ζT

αF
S,α
i + ζT

γF
γ
i

)
+
n

N
Var

(
cTF Ti + ζT

αF
T ,α
i

)
. (A7)

Empirically, one could obtain a consistent estimation of σ2 using the standard method of
moments, with all the parameters replaced by their plug-in estimators. Clearly, by Slutsky’s
Theorem, the CIs constructed using the asymptotic normality of

√
n(cTβ̂ATReL − cTβ0) and

the consistent estimator of σ2 will be asymptotically valid.

7
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Appendix B. Additional assumptions and justification of Proposition 1

In this section, we present the additional assumptions and justification for Proposition
1 that establishes the convergence rates and asymptotic behavior of our mainly studied
nuisance estimators defined in Section 2.3. Our results are largely based on early literature
of kernel and sieve methods like Fan et al. (1995), Newey (1997), Shen (1997), Carroll et al.
(1998) and Chen (2007). We would also suggest that refined and sharper results could be
potentially obtained inspired by recent literature like Belloni et al. (2015) and Cattaneo
et al. (2020). For example, Belloni et al. (2015) substantially weakened the upper-bound
condition on the dimension of the approximating functions for more general types of sieve
estimators. For partitioning sieve estimation, Cattaneo et al. (2020) proposed an integrated
mean squared error (IMSE) expansion method that can produce IMSE-optimal estimators.
They also established bias-corrected inference procedures in this scheme.

Denote by Gm(x) =
∫ x
−∞ gm(t)dt. Let Λα∗ , Λγ∗ , Λh∗ , Λr∗ , Λh̄ and Λr̄ represent the

parameter space of α∗, γ∗, h∗, r∗, h̄ and r̄ respectively. Let Z be the domain of Z ∈ Rpz

and Ck(Z) represent all the k-times differentiable continuous functions on Z. The Hölder
(or ν-smooth) class Σ(ν, L) is defined as the set of functions f ∈ C[ν](Z) with its [ν]-times
derivative satisfying

sup
z1,z2∈Z

‖f ([ν])(z1)− f ([ν])(z2)‖2
‖z1 − z2‖2

≤ L.

Assumption A1 (i) Φ, Ψ and Z have compact domain and continuous differentiable prob-
ability density functions (as given for discrete variables).

(ii) There exists C1 > 0 that for all z ∈ Z,

‖α∗‖∞, ‖γ∗‖∞, |h∗(z)|, |r∗(z)|, |h̄(z)|, |r̄(z)| ≤ C1.

(iii) There exists C2 > 0 such that

C−1
2 ≤

∂
∂τ E1 exp{ΨT[α1 + τ(α2 −α1)] + h1(Z) + τ [h2(Z)− h1(Z)]}

‖α1 −α2‖22 + E1[h1(Z)− h2(Z)]2
≤ C2;

C−1
2 ≤

∂
∂τ E1Gm{ΦT[γ1 + τ(γ2 − γ1)] + r1(Z) + τ [r2(Z)− r1(Z)]}

‖γ1 − γ2‖22 + E1[r1(Z)− r2(Z)]2
≤ C2,

for any τ ∈ [0, 1], α1,α2 ∈ Λα∗, h1, h2 ∈ Λh∗, γ1,γ2 ∈ Λγ∗, and r1, r2 ∈ Λr∗.

(iv) It holds that κβ0
≥ 0 with probability 1. There exists C3 > 0 that for all z ∈ Z,

C−1
3 ≤

∣∣h−pzE1Kh(Z − z)ω∗(X)κβ0
ġm {ΦTγ̄ + r̄(z)}

∣∣ ≤ C3;

C−1
3 ≤

∣∣h−pzE1Kh(Z − z) exp(ΨTᾱ)κβ0
ğm{m∗(X)} exp{h̄(z)}

∣∣ ≤ C3.

Assumption A2 There exists ν, L > 0 such that all population-level nonparametric com-
ponents h∗(z), r∗(z), h̄(z) and r̄(z) belong to the Hölder class Σ(ν, L) with the degree of
smoothness ν satisfying ν > pz.

8
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Assumption A3 (Specification of the sieve and kernel functions) (i) The basis func-
tion b(Z) is taken as the tensor product of bj(Zj) for j = 1, 2, . . . , pz, where each bj(Zj) is
the Hermite polynomial basis of the univariate Zj with its order s � n1/(pz+ν). (ii) The ker-
nel function K is symmetric, bounded, and of order [ν] and the bandwidth h � n−1/(pz+2ν).
The tuning parameters λ1, λ2 = o(n−1/2).

Remark A1 Similar to Assumption 1 in the main paper, Assumptions A1(i) and A1(ii)
are used to regular the distribution of X and the parameter spaces. Assumption A1(iii) is
in a similar spirit of Condition 4.5 in Chen (2007), used to control the asymptotic variance

of
√
n(α̃[-k] −α∗) and

√
n(α̃[-k] −α∗). Assumption A1(iv) requires the weighting term κβ0

to be positive-definite to ensure the regularity of the calibration equations. As we remark in
Remark 5, this assumption can be granted by splitting the samples by the sign of κ

β̃
when

it is not always positive or always negative.

Assumption A2 imposes the common smoothness conditions on the nuisance nonpara-
metric components that are also used in semiparametric inference existing literature like
Chen et al. (2008) and Rothe and Firpo (2015). Although h∗(·), r∗(·), h̄(·) and r̄(·) may
come from integral equations with misspecified models, it is not hard to show that they will
be smooth as long as the distribution function of Z and the true conditional models w(·) and
µ(·) are smooth (on Z). Thus, Assumption A2 could be implied by standard and reasonable
smoothness assumptions on the true data-generation functions.

In Assumption A3, we choose the order of sieve of the preliminary nuisance estimators
to be under-smoothed optimal since

√
n-consistency of the parametric part in these models

is required. While the bandwidth h used in the calibrated estimating equation (11) can be
rate-optimal since we do not need to estimate the parametric components in this step.

Proof [Proof of Proposition 1] Since we simply pick α̂[-k] = α̃[-k] and γ̂[-k] = γ̃[-k] in Section
2.3, Assumptions 1 and A1–A3 are sufficient for Assumption 3(i) by Lemma A3(b) presented
and justified in this section. And Assumption 3(ii) is directly given by Lemma A4 that is
proved based on Lemmas A1–A3.

Lemma A1 establishes the desirable convergence properties of the preliminary nuisance
estimators based on the existing analysis of sieve M-estimation (Shen, 1997; Chen, 2007).

Lemma A1 ((Shen, 1997; Chen, 2007)) Under Assumptions 1 and A1–A3, the pre-
liminary nuisance estimators solved from equations (9) and (10) satisfy that:
(a) For j ∈ {0, 1},

E1{r̃[-k](Z)− r∗(Z)}2 + Ej{h̃[-k](Z)− h∗(Z)}2 = op(n
−1/2);

sup
z∈Z
|r̃[-k](z)− r∗(z)|+ |h̃[-k](z)− h∗(z)| = op(1);

(b)
√
n(α̃[-k]−α∗) and

√
n(α̃[-k]−α∗) weakly converge to gaussian distributuon with mean

zero and finite variance.

9
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Proof We based on Theorem 3.5 of Chen (2007) to show (a) of Lemma A1. First, note
that for both preliminary nuisance models, Conditions 3.9, 3.10, 3.11 and 3.13 of Chen
(2007) are implied by Assumptions 1, A1(i) and A1(ii). Their Condition 3.12 is implied by
Assumption A1(iii). Then by their Theorem 3.5, it holds that

‖γ̃[-k] − γ∗‖22 + E1{r̃[-k](Z)− r∗(Z)}2 = Op

(
kn
n

+ ρ2
2n

)
;

‖α̃[-k] −α∗‖22 + E1{h̃[-k](Z)− h∗(Z)}2 = Op

(
kn
n

+ ρ2
2n

)
,

where kn and ρ2
2n respectively characterize the variance and approximation bias of sieve to

be specified as follows. Inspired by Proposition 3.6 of Chen (2007), under our Assumptions
A2 and A3(i), the specific rate of kn and ρ2

2n is given by

kn � spz , ρ2n � s−ν , where s is the order of each bj(Zj).

Then by Assumption A2 that ν > pz and Assumption A3(i) that s � n1/(pz+ν), we have

‖γ̃[-k] − γ∗‖22 + E1{r̃[-k](Z)− r∗(Z)}2 = op(n
−1/2);

‖α̃[-k] −α∗‖22 + E1{h̃[-k](Z)− h∗(Z)}2 = op(n
−1/2).

Similarly, it is not hard to justify that our Assumptions 1 and A1–A3 imply Conditions
3.1, 3.2, 3.4 and 3.5M of Chen (2007), which are sufficient for the consistency of sieve
M-estimation according to their Remark 3.3, i.e.,

sup
z∈Z
|r̃[-k](z)− r∗(z)|+ |h̃[-k](z)− h∗(z)| = op(1).

So we finish proving (a) of Lemma A1.

Next, we prove (b) based on (a) and using Theorem 4.3 of Chen (2007) (or early works
like Shen (1997)). Their Conditions 4.1(iii) and 4.4 are as given in our standard non-linear
M-estimation case. Since “f(θ)” in Chen (2007) are simply the parametric parts γ or α
in our case, their Conditions 4.1(i) and 4.2(ii) are trivially satisfied. Their Condition 4.5 is

implied by our Assumption A1(iii) that actually indicates
√
n(α̃[-k]−α∗) and

√
n(α̃[-k]−α∗)

will have bounded asymptotic variance. And their Conditions 4.2’ and 4.3’ are implied by
Assumption A1(i) and the continuity of the link function g. Therefore, we can combine our
Lemma A1(a) and Theorem 4.3 of Chen (2007) to finishe the proof of Lemma A1(b).

Using Lemma A1 and that at least one nuisance model is correctly specified (i.e., As-
sumption 2), Lemma A2 establishes the op(n

−1/4) convergence of the preliminary estimator

β̃
[-k]

to the true β0.

Lemma A2 Under Assumptions 1, 2 and A1–A3,

Ej{m̃[-k](X)−m∗(X)}2 + E1{ω̃[-k](X)− ω∗(X)}2 + ‖β̃
[-k]
− β0‖22 = op(n

−1/2).

10
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Proof It immediately follows from Lemma A1 that

Ej{m̃[-k](X)−m∗(X)}2 + E1{ω̃[-k](X)− ω∗(X)}2 = op(n
−1/2).

Then ‖β̃
[-k]
− β0‖22 = op(n

−1/2) can be proved by following the same proof procedures in
Theorem 1 for analyzing the terms defined in (A1).

For each z ∈ Z, let the estimators r̆[-k](z) and h̆[-k](z) respectively solve:

K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)κi,β0 [Yi − gm {ΦT
i γ̄ + r(z)}] = 0;

K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z) exp(ΨT
i ᾱ)κi,β0 ğm{m

∗(Xi)} exp{h(z)}

=
1

Nhpz

n+N∑
i=n+1

Kh(Zi − z)κi,β0 ğm{m
∗(Xi)},

(A8)

i.e. the “oracle” version of the estimating equations in (11), obtained by replacing all the
preliminary estimators plugged in (11) with their limits (true values). Also recall that h̄(z)
and r̄(z) are defined as the solutions to equations (7) and (8).

We introduce Lemma A3 to give the consistency op(n
−1/4) convergence of h̆[-k](z) and

r̆[-k](z) to h̄(z) and r̄(z), as a standard result of the higher–order kernel (or local polynomial)
estimating equation (Fan et al., 1995).

Lemma A3 Under Assumptions 1, 2 and A1–A3,

E1{r̆[-k](Z)− r̄(Z)}2 + E1{h̆[-k](Z)− h̄(Z)}2 = op(n
−1/2);

sup
z∈Z
|r̆[-k](z)− r̄(z)|+ |h̆[-k](z)− h̄(z)| = op(1).

Proof By Assumption 2, at least one nuisance model is correctly specified. When the
importance weighting model is correct, w∗(x) = w̄(x) = w(x). So the first equation of (A8)
is (asymptotically) valid for r̄(Z) that solves (7). Also, since w(x) = exp(ψTα0 + h0(z))
and ᾱ = α0 when the importance weighting model is correct, the second equation of (A8)
is valid for h̄(z) = h0(z) that solves (8). So both equations in (A8) are valid. Similarly,
this also holds when the imputation model is correct. Then by Assumptions 1, and A1–A3
and following Appendix A of Fan et al. (1995), we can derive that supz∈Z |r̆[-k](z)− r̄(z)|+
|h̆[-k](z)− h̄(z)| = op(1) and

E1{r̆[-k](Z)− r̄(Z)}2 + E1{h̆[-k](Z)− h̄(Z)}2 = Op

(
1

nhpz
+ h2ν

)
= op(n

−1/2),

as the standard consistency and convergence results of kernel smoothing.
Note that (Fan et al., 1995) studied the local polynomial regression approach that is

not exactly the same as our used [ν]-th order kernel; see Assumption A3(ii). While the
derivation of these two approaches are basically the same due to the orthogonality between
a [ν]-th order kernel function and the polynomial functions of the order up to [ν].
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Finally, we come to Lemma A4 for the asymptotic properties of r̂[-k](Z) and ĥ[-k](Z).

Lemma A4 Under Assumptions 1, 2 and A1–A3, the calibrated nuisance estimators sat-
isfy:

E1{r̂[-k](Z)− r̄(Z)}2 + E1{ĥ[-k](Z)− h̄(Z)}2 = op(n
−1/2);

sup
z∈Z
|r̂[-k](z)− r̄(z)|+ |ĥ[-k](z)− h̄(z)| = op(1).

Proof We compare the estimating equations in (11) with those in (A8) to analyze the
additional errors incurred by the preliminary estimators in (11). By Assumption 1 and
equation (A3) derived in the proof of Theorem 1, we have that for each z,

0 =
K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω̃[-k](Xi)c
TĴ
−1

β̃
[-k]Ai

[
Yi − gm

{
ΦT
i γ̂

[-k] + r̂[-k](z)
}]

=
K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)κi,β0

[
Yi − gm

{
Φiγ̄ + r̂[-k](z)

}]
+

K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)κi,β0

[
gm

{
ΦT
i γ̄ + r̂[-k](z)

}
− gm

{
ΦT
i γ̂

[-k] + r̂[-k](z)
}]

+
K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)c
T

[
Ĵ
−1

β̃
[-k] − J−1

β0

]
Ai

[
Yi − gm

{
ΦT
i γ̂

[-k] + r̂[-k](z)
}]

+
K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z){ω̃[-k](Xi)− ω∗(Xi)}cTĴ
−1

β̃
[-k]Ai

[
Yi − gm

{
ΦT
i γ̂

[-k] + r̂[-k](z)
}]

=
K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)κi,β0

[
Yi − gm

{
ΦT
i γ̄ + r̂[-k](z)

}]
+Op

([
E1{ω̃[-k](X)− ω∗(X)}2

] 1
2

+ ‖β̃
[-k]
− β0‖2 + ‖γ̂[-k] − γ̄‖2 + n−1/2

)
=

K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)κi,β0

[
Yi − gm

{
ΦT
i γ̄ + r̂[-k](z)

}]
+ op(n

−1/4),

Comparing this with the estimating equation (A8) for r̆[-k](·), we have:

K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)κi,β0

[
gm

{
ΦT
i γ̄ + r̆[-k](z)

}
− gm

{
ΦT
i γ̄ + r̂[-k](z)

}]
= op(n

−1/4),

which combined with Assumption 1 that ġ(·) is Lipsitz, leads to

K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)κi,β0 ġm {Φ
T
i γ̄ + r̄(z)}

∣∣∣r̆[-k](z)− r̂[-k](z)
∣∣∣

=op(n
−1/4) +Op

(
[r̂[-k](z)− r̄(z)]2 + [r̆[-k](z)− r̄(z)]2

)
.
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Using Assumption 1(iv) and the weak law of large numbers, we can show that

K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z)ω∗(Xi)κi,β0 ġm {Φ
T
i γ̄ + r̄(z)} � 1.

Then by Lemma A3, we conclude that |r̂[-k](z)− r̄(z)| = op(1) uniformly for all z ∈ Z, and
E1{r̂[-k](Z)− r̄(Z)}2 = op(n

−1/2).

For ĥ[-k](·), we follow the same strategy to consider the difference between the second
equation of (11) and equation (A8), to derive that

K

n(K − 1)hpz

∑
i∈I-k

Kh(Zi − z) exp(ΨT
i ᾱ)κi,β0 ğm{m

∗(Xi)} exp{h̄(z)}
∣∣∣h̆[-k](z)− ĥ[-k](z)

∣∣∣
=Op

([
E1{m̃[-k](X)−m∗(X)}2

] 1
2

+ ‖β̃
[-k]
− β0‖2

)
+Op

(
[ĥ[-k](z)− h̄(z)]2 + [h̆[-k](z)− h̄(z)]2

)
=op(n

−1/4) +Op

(
[ĥ[-k](z)− h̄(z)]2 + [h̆[-k](z)− h̄(z)]2

)
.

Again combining this with Assumption 1(iv) and Lemma A3, we can derive that

sup
z∈Z
|ĥ[-k](z)− h̄(z)| = op(1); E1{ĥ[-k](Z)− h̄(Z)}2 = op(n

−1/2).

Thus we have finished proving Lemma A4.
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Appendix C. Details of the extension discussed in Section 6

C.1 Sieve estimator

We consider r(Z) = ξTb(Z) and h(Z) = ηTb(Z) where b(Z) represents some prespecified
basis function of Z, e.g. natural spline or Hermite polynomials with diverging dimension-
ality, and η and ξ represent their coefficients to estimate. In analog to (11), we propose to
estimate the coefficients ξ and η by solving

K

n(K − 1)

∑
i∈I-k

ω̃[-k](Xi)c
TĴ
−1

β̃
[-k]Aib(Zi)

[
Yi − gm

{
ΦT
i γ̂

[-k] + ξTb(Zi)
}]

= 0;

K

n(K − 1)

∑
i∈I-k

cTĴ
−1

β̃
[-k]Aiğm{m̃[-k](Xi)} exp{ΨT

i α̂
[-k] + ηTb(Zi)}b(Zi)

=
1

N

n+N∑
i=n+1

cTĴ
−1

β̃
[-k]Aiğm{m̃[-k](Xi)}b(Zi).

For one-dimensional Zi occurring in our numerical studies, this sieve approach should have
similar performance as kernel smoothing. While if pz > 1 and Zi = (Zi1, . . . , Zipz)T, classic
nonparametric approaches like kernel smoothing and sieve could have poor performance due
to the curse of dimensionality. One may use additive model of Zi1, . . . , Zipz (constructed
with the basis {bT(Zi1), . . . , bT(Zipz)}T) instead of the fully nonparametric model for Zi, to
avoid excessive model complexity.

C.2 General machine learning method

Given a response A, predictors C, and an arbitrary black-box learning algorithm L, we let
ÊL[A | C] and P̂L(A | C) denote the conditional expectation and conditional probability
density (or mass) function of A on C estimated using the learning algorithm L. Here, we
neglect the index of training samples in our notation for simplicity while in general, one
should follow the established work like Chernozhukov et al. (2018a), to adopt cross-fitting,
and ensure that ÊL[A | C] and P̂L(A | C) are estimated using training data independent
with their plug-in samples.

Without loss of generality, we assume that knowing X is sufficient to identify Z, Φ, and
Ψ. We propose novel procedures using L to estimate and calibrate the nuisance models.
First, we regress Y on X on S using learning algorithm L to obtain ÊL[Y |X], and regress
S on X to obtain P̂L(S = 1 | X). Also, we use L to learn P̂L(X | Z, S = 1), i.e. the
conditional distribution of X given Z on the source population. Then we solve:

K

n(K − 1)

∑
i∈I-k

Φi

{
ÊL[Yi |Xi]− gm[ΦT

i γ + r(Zi)]
}

= 0,∫
x∈X∩{z}

P̂L(x | Z = z, S = 1)
{
ÊL[Y |X = x]− gm[ΦT

i γ + r(z)]
}
dx = 0, for z ∈ Z,

(A9)

to obtain the preliminary estimators γ̃[-k] and r̃[-k](·), where x ∈ X ∩ {z} represents the
set of X belonging to its domain X and satisfying Z = z for the fixed z. To solve (A9)
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numerically, we adopt a Monte Carlo procedure introduced as follows. Let M be some pre-
specified number much larger than n, says 100n. For each i ∈ I [-k], sample Xi,1, Xi,2,...,

Xi,M independently from the estimated P̂L(Xi | Zi, Si = 1) given Zi,m = Zi for each
m ∈ {1, . . . ,M}. Then solve the estimating equation:

K

nM(K − 1)

∑
i∈I-k

M∑
m=1

Φi,m

{
ÊL[Yi,m |Xi,m]− gm(ΦT

i,mγ + ri)
}

= 0,

1

M

M∑
m=1

ÊL[Yi,m |Xi,m]− gm(ΦT
i,mγ + ri) = 0, for i ∈ I [-k],

to obtain the estimators γ̃[-k] and r̃i, and set r̃[-k](Zi) = r̃i for each i ∈ I [-k]. Based on these
estimators, we construct the debiased estimator for γ generally satisfying Assumption 3(i).

In specific, we use L to obtain the estimators ÊL[Φġm{(γ̃[-k])TΦ + r̃[-k](Z)}|Z, S = 1] and

ÊL[gm{(γ̃[-k])TΦ + r̃[-k](Z)}|Z, S = 1]. Then we let

δ̃i = (δ̃i1, . . . , δ̃ipΦ)T = Φi −
ÊL[Φiġm{(γ̃[-k])TΦi + r̃[-k](Zi)}|Zi, Si = 1]

ÊL[gm{(γ̃[-k])TΦi + r̃[-k](Zi)}|Zi, Si = 1]
,

solve

w̃
[-k]
j = min

w

K

n(K − 1)

∑
i∈I-k

ġm{(γ̃[-k])TΦi + r̃[-k](Zi)}
(
δ̃ij −wTδ̃i,-j

)2
,

for each j ∈ {1, . . . , pΦ}, and let ε̃i = (ε̃i1, . . . , ε̃ipΦ)T, where ε̃ij = δ̃ij − (w̃
[-k]
j )Tδ̃i,-j , and

σ̃2
j =

K

n(K − 1)

∑
i∈I-k

ε̃2ij ġm

{
(γ̃[-k])TΦi + r̃[-k](Zi)

}
.

Then we construct the debiased estimator γ̂[-k] = (γ̂
[-k]
1 , . . . , γ̂

[-k]
pΦ )T through:

γ̂
[-k]
j = γ̃

[-k]
j +

K

n(K − 1)

∑
i∈I-k

ε̃ij
σ̃j

[
Yi − gm{(γ̃[-k])TΦi + r̃[-k](Zi)}

]
. (A10)

Finally, the calibrated estimator of the nuisance component r(·) is obtained by solving r̂i
from:

1

M

M∑
m=1

ω̃[-k](Xi,m)cTĴ
−1

β̃
[-k]Ai,m

[
ÊL[Yi,m |Xi,m]− gm

{
ΦT
i,M γ̂

[-k] + ri

}]
= 0,

for each i, and set r̂[-k](Zi) = r̂i, where β̃
[-k]

is again solved through:

K

n(K − 1)

∑
i∈I-k

ω̃[-k](Xi)Ai{Yi − m̃[-k](Xi)}+
1

N

N+n∑
i=n+1

Ai{m̃[-k](Xi)− g(AT
iβ)} = 0.

Noting that our above-introduced procedure is applicable to any SNP M-estimation prob-
lem, so the preliminary estimator ω̃[-k](Xi) and the calibrated estimator for α and h(·) can
be obtained in the same way.
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Remark A2 Our construction procedure proposed in this section involves the estimation of
the probability density function, which is typically more challenging than purely estimating
the conditional mean for a machine learning method. Note that for linear, log-linear, and
logistic models, one can avoid estimating probability density function to construct the doubly
robust (or DML) estimators; see Dukes and Vansteelandt (2020); Ghosh and Tan (2020);
Liu et al. (2021). Thus, when the link function g(a) = a, g(a) = ea or g(a) = ea/(1 + ea),
our construction actually does not require estimating the probability density function with
L.

At last, we provide discussion and justification towards the n1/2-consistency and asymp-
totic normality of the debiased estimator γ̂[-k]. In specific, we take γ̄ = γ∗, and write (A10)
as:

γ̂
[-k]
j =γ̃

[-k]
j +

K

n(K − 1)

∑
i∈I-k

ε̃ij
σ̃j

[
Yi − E1[Yi |Xi] + E1[Yi |Xi]− gm{(γ∗)TΦi + r∗(Zi)}

+ gm{γ̄TΦi + r∗(Zi)} − gm{(γ̃[-k])TΦi + r̃[-k](Zi)}

]
.

Note that Yi − E1[Yi | Xi] is orthogonal to ε̃ij and its estimation error since the lat-
ter is deterministic on Xi. According to our moment equation for γ∗ and r∗(·), E1[Yi |
Xi]− gm{(γ∗)TΦi + r∗(Zi)} is orthogonal to arbitrary (regular) function of Zi and linear
function of Φi, so is also orthogonal to ε̃ij and its estimation error. In addition, through
our construction,

E1

(
Φi −

E1[Φiġm{(γ∗)TΦi + r∗(Zi)} | Zi]

E1[ġm{(γ∗)TΦi + r∗(Zi)} | Zi]

)
= 0,

and ε̃ij is orthogonal to any linear function of Φi,-j and δi,-j . So the first order error in

gm{γ̄TΦi + r∗(Zi)} − gm{(γ̃[-k])TΦi + r̃[-k](Zi)}, i.e. ġm{γ̄TΦi + r∗(Zi)}{(γ̃[-k] − γ̄)TΦi +
r∗(Zi) − r̃[-k](Zi)}, is orthogonal to ε̃ij for each j. Thus, all the first-order error terms in

γ̂
[-k]
j − γ̄ could be removed through our Neyman orthogonal construction.

Inspired by existing DML literature like Chernozhukov et al. (2018b) and Liu et al.
(2021), when the mean squared error of machine learning algorithm L has the convergence
rates op(n

−1/2) with respect to all the learning objectives included in this section, i.e. the
rate double robustness property, the machine learning estimator r̂[-k](·) satisfies Assumption

3(ii). Also, the second order error of γ̂
[-k]
j − γ̄ could be removed asymptotically. And

consequently, γ̂[-k] satisfy Assumption 3(i). Again, these arguments are applicable to the
nuisance estimators for α and h(·) derived in the same way. Therefore, our proposed
nuisance estimators introduced in this section tend to satisfy Assumption 3.

C.3 Intrinsic efficient construction

In this section, we introduce the intrinsic efficient construction of the imputation model
under our framework. For simplicity, we consider a semi-supervised setting with n labeled
source samples and N � n unlabeled target samples. The augmentation approach proposed
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by Shu and Tan (2018) could be used for extending our method to the N � n case. For

some given h(·), let the estimating equation of α̃[-k] be∑
i∈{n+1,...,n+N}∪I-k

S{δi,Xi;α, h(·)} = 0,

with S{δi,Xi;α, h(·)} representing the score function. For example, one can take

S{δi,Xi;α, h(·)} = δi exp{ΨT
iα+ h(Zi)}Ψi − |I-k|(1− δi)Ψi/N.

Denote that Si = S{δi,Xi; α̃
[-k], h̃[-k](·)} and let ΠI-k(εi;Si) be the empirical projection

operator of any variable εi to the space spanned by Si on the samples I-k and Π⊥I-k(εi;Si) =
εi−ΠI-k(εi;Si). When the importance weight model is correctly specified and N � n, the

empirical asymptotic variance for cTβ̂ATReL with nuisance parameters γ and r(·) can be
expressed as

K

n(K − 1)

∑
i∈I-k

[
ω̃[-k](Xi)Π

⊥
I-k

(
cTĴ

−1

β̃
[-k]Ai[Yi − gm{ΦT

i γ + r(Zi)}];Si
)]2

. (A11)

Then the intrinsically efficient construction of the imputation model is given by minimizing
(A11) subject to the moment constraint:

1

|I-k ∩ Ia|
∑

i∈I-k∩Ia
Kh(Zi − z)ω̃[-k](Xi)c

TĴ
−1

β̃
[-k]Ai [Yi − gm {ΦT

i γ + r(Z)}] = 0,

which is the same as the first equation of (11) except that both γ and r(Z) are unknown
here. This optimization problem could be solved with methods like profile kernel and back-
fitting (Lin and Carroll, 2006). Alternatively and more conveniently, one could use the
sieve estimation, as discussed in Appendix C.1, to model r(Zi) and use a constrained least
square regression: let b(Z) be some basis of z and solve

min
γ,ξ

∑
i∈I-k

[
ω̃[-k](Xi)Π

⊥
I-k

(
cTĴ

−1

β̃
[-k]Ai[Yi − gm{ΦT

i γ + bT(Zi)ξ}];Si
)]2

;

s.t.
∑

i∈I-k∩Ia
b(Zi)ω̃

[-k](Xi)c
TĴ
−1

β̃
[-k]Ai [Yi − gm {ΦT

i γ + bT(Zi)ξ}] = 0,

to obtain γ̃[-k] and r̃[-k](Z) = bT(Z)ξ̃
[-k]

simultaneously. To get the intrinsic efficient es-
timator for a nonlinear but differentiable function `(β0), with its gradient being ˙̀(·), we
first estimate the entries β0i using our proposed method for every i ∈ {1, 2, . . . , d} and
use them to form a preliminary

√
n-consistent estimator β̂(init). Then we estimate the lin-

ear function βT
0

˙̀{β̂(init)} with the intrinsically efficient estimator and utilize the expansion

`(β0) ≈ `{β̂(init)}+ {β0 − β̂(init)}T ˙̀{β̂(init)} for an one-step update.
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Appendix D. Implementing details and additional results of simulation

We introduce the multiplier bootstrap procedure used to quantify the uncertainty of our
estimator and construct confidence intervals for cTβ0 in our numerical studies. Let ε =
{ε1, . . . , εn, εn+1, . . . , εn+N} be N + n independent N(1, 1) (or Gamma(1, 1)) random vari-
ables sampling independent of the data. We first solve the re-weighted equations:

K

n(K − 1)

∑
i∈I-k

εiΨ
b
i exp(θT

wΨb
i ) + λ1(0,θT

w,-1)T =
1

N

n+N∑
i=n+1

εiΨ
b
i ; with θw = (αT,ηT)T

K

n(K − 1)

∑
i∈I-k

εiΦ
b
i

{
Yi − gm(θT

mΦb
i )
}

+ λ2(0,θT
m,-1)T = 0, with θm = (γT, ξT)T

to obtain the estimators θ̃
[-k]

w,ε = (α̃[-k]T

ε , η̃[-k]T

ε )T, θ̃
[-k]

m,ε = (γ̃[-k]T

ε , ξ̃
[-k]T

ε )T. Then we take

α̂[-k]
ε = α̃[-k]

ε , γ̂[-k]
ε = γ̃[-k]

ε ,

ω̂
[-k]
ε (Xi) = exp{ΨT

i α̂
[-k]
ε + ĥ[-k](Zi)}, m̂

[-k]
ε (Xi) = gm{ΦT

i γ̂
[-k]
ε + r̂[-k](Zi)},

and m̂ε(Xi) = K−1
∑K

k=1 m̂
[-k]
ε (Xi). Note that we do not need to refit and replace the

nonparametric components in ω̂ and m̂ since they do not create first-order impact (on the
asymptotic variance of our estimator as shown in Theorem 1).

Based on these, we solve

1

n

K∑
k=1

∑
i∈Ik

εiω̂
[-k]
ε (Xi)Ai

{
Yi − m̂[-k]

ε (Xi)
}

+
1

N

N+n∑
i=n+1

εiAi{m̂ε(Xi)− g(AT
iβ)} = 0,

to obtain β̂
ε

ATReL and take cTβ̂
ε

ATReL as the bootstrap estimator of cTβ0. We repeat sampling ε

and computing cTβ̂
ε

ATReL, and use the standard deviation of the samplers cTβ̂
ε

ATReL to estimate
the standard error of cTβ̂ATReL, which is consistent by the standard bootstrap theory.

To obtain the preliminary estimators ω̃[-k](·) and m̃[-k](·) of our method, we use semi-
parametric logistic regression with covariates including the parametric basis and the natural
splines of the nonparametric components Z with order [n1/4] for the imputation model and
[(N + n)1/4] for the importance weight model. In this process, we add ridge penalty tuned
by cross-validation with tuning parameter of order n−2/3 (below the parametric rate) to
enhance the training stability.

We set the loading vector c as (1, 0, 0, 0)T, (0, 1, 0, 0)T, (0, 0, 1, 0)T, and (0, 0, 0, 1)T to

estimate β0, β1, β2, β3 separately. For β1, β2, β3, the weights cTĴ
−1

β̃
[-k]Ai’s are not positive

definite so we split the source and target samples as I+ = {i : cTĴ
−1

β̃
[-k]Ai ≥ 0} and

I− = {i : cTĴ
−1

β̃
[-k]Ai < 0} as introduced in Remark 5, and use (12) to estimate their

nonparametric components. For β0, we find that cTĴ
−1

β̃
[-k]Ai is nearly positive definite under

all configurations but these weights are sometimes of high variation. So we also split the

source/target samples by cutting the cTĴ
−1

β̃
[-k]Ai’s with their median, to reduce the variance

of weights at each fold and improve the effective sample size. We use cross-fitting with
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K = 5 folds for our method and the two DML estimators. And all the tuning parameters
including the bandwidth of our method and kernel machine and the coefficients of the
penalty functions are selected by 5-folded cross-validation on the training samples. We
present the estimation performance (mean square error, bias, and coverage probability) on
each parameter in Tables A2–A5, for the four configurations separately.

At last, we carry out an additional simulation study to demonstrate the limitation of our
method, i.e., its failure when both nuisance models are severely misspecified. We generate
X = X̃ and W following the same way as Configuration (iii) in Section 4, and take

P(S = 1 |X) =gm{aT
wW + 2hx(X1) + 2hx(X2)};

P(Y = 1 |X) =gm{bT
wW + 2rx(X1) + 2rx(X2)},

with hx and rx set to be the same as Configuration (iii), aw = (0.5, 0.5, 0.5, 0.3, 0.3, 0.2, 0.2)T

and bw = (−0.5, 0.5, 0.8, 0.3,−0.3,−0.2, 0.15, 0.15)T. Implementation setups of the methods
are also the same as in Section 4. Different from Configurations (i)–(iv) in Section 4, this
data-generation mechanism violates the SNP model assumption on both nuisance models in
ATReL, with non-linear effects from X and strong covariate shift bias caused by 2hx(X1)+
2hx(X2) and 2rx(X1) + 2rx(X2). This confoundedness coming from X1 and X2 could not
be properly removed by our method since we set Z = X1 only.

The RMSE and bias are presented in Table A1. When the non-linear terms have a
strong impact and both the SNP nuisance models are wrong, both Parametric and ATReL
fail to output a reasonable estimator. For example, the bias of our estimator on β2 is as high
as 1.3, almost equaling its RMSE, which means the asymptotic normality and unbiasedness
property in Theorem 1 does not hold in this case. This is not unexpected considering the
severe violation of our model assumption. Meanwhile, the DML estimator constructed with
the fully nonparametric kernel machine shows better performance, e.g., a 0.05 bias on β2

that is also much smaller compared to its RMSE.

Table A1: Estimation performance under the simulation setting described in Appendix
D. Parametric: doubly robust estimator with parametric nuisance models; ATReL: our
method; DMLBE: DML with flexible basis expansions; DMLKM: DML with kernel machine.

Parametric ATReL DMLBE DMLKM

β0
RMSE 0.132 0.122 0.251 0.290
Bias 0.078 0.059 0.201 −0.044

β1
RMSE 0.576 0.215 0.195 0.351
Bias 0.563 0.162 0.066 0.222

β2
RMSE 1.304 1.445 0.532 0.359
Bias 1.288 1.434 0.475 0.054

β3
RMSE 0.108 0.111 0.162 0.264
Bias −0.003 −0.016 0.010 0.003
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Table A2: Estimation performance of the methods on parameters β0, β1, β2, β3 under Con-
figuration (i) described in Section 4. Parametric: doubly robust estimator with parametric
nuisance models; ATReL: our proposed doubly robust estimator using SNP nuisance models;
DMLBE: double machine learning with flexible basis expansions; DMLKM: double machine
learning with kernel machine. RMSE: root mean square error; CP: coverage probability of
the 95% confidence interval.

Estimator

Covariates Parametric ATReL DMLBE DMLKM

β0

RMSE 0.102 0.110 0.168 0.116
Bias −0.007 0.0005 0.112 0.010
CP 0.95 0.95 0.84 0.93

β1

RMSE 0.181 0.124 0.160 0.198
Bias −0.146 −0.056 −0.104 −0.163
CP 0.91 0.93 0.92 0.85

β2

RMSE 0.133 0.126 0.191 0.134
Bias 0.059 0.032 −0.109 −0.017
CP 0.99 0.97 0.94 0.98

β3

RMSE 0.137 0.133 0.195 0.150
Bias 0.049 0.030 −0.108 −0.040
CP 0.99 0.97 0.96 0.97
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Table A3: Estimation performance of the methods on parameters β0, β1, β2, β3 under Con-
figuration (ii) described in Section 4. Parametric: doubly robust estimator with parametric
nuisance models; ATReL: our proposed doubly robust estimator using SNP nuisance models;
DMLBE: double machine learning with flexible basis expansions; DMLKM: double machine
learning with kernel machine. RMSE: root mean square error; CP: coverage probability of
the 95% confidence interval.

Estimator

Covariates Parametric ATReL DMLBE DMLKM

β0

RMSE 0.108 0.114 0.186 0.124
Bias −0.004 0.004 0.136 0.018
CP 0.92 0.94 0.82 0.90

β1

RMSE 0.107 0.118 0.144 0.122
Bias −0.001 −0.015 −0.062 −0.046
CP 0.99 0.95 0.95 0.98

β2

RMSE 0.129 0.131 0.209 0.166
Bias −0.006 −0.024 −0.136 −0.084
CP 0.98 0.96 0.94 0.95

β3

RMSE 0.124 0.128 0.200 0.171
Bias −0.008 −0.019 −0.123 −0.097
CP 0.98 0.97 0.94 0.96
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Table A4: Estimation performance of the methods on parameters β0, β1, β2, β3 under Con-
figuration (iii) described in Section 4. Parametric: doubly robust estimator with parametric
nuisance models; ATReL: our proposed doubly robust estimator using SNP nuisance models;
DMLBE: double machine learning with flexible basis expansions; DMLKM: double machine
learning with kernel machine. RMSE: root mean square error; CP: coverage probability of
the 95% confidence interval.

Estimator

Covariates Parametric ATReL DMLBE DMLKM

β0

RMSE 0.113 0.112 0.134 0.114
Bias −0.052 −0.014 −0.064 −0.026
CP 0.93 0.95 0.93 0.95

β1

RMSE 0.341 0.151 0.152 0.189
Bias −0.300 −0.047 −0.043 −0.135
CP 0.82 0.93 0.95 0.86

β2

RMSE 0.145 0.133 0.141 0.133
Bias −0.006 −0.011 −0.035 −0.054
CP 0.95 0.94 0.95 0.91

β3

RMSE 0.143 0.137 0.139 0.131
Bias −0.008 0.004 0.003 −0.033
CP 0.94 0.95 0.95 0.91
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Table A5: Estimation performance of the methods on parameters β0, β1, β2, β3 under Con-
figuration (iv) described in Section 4. Parametric: doubly robust estimator with parametric
nuisance models; ATReL: our proposed doubly robust estimator using SNP nuisance models;
DMLBE: double machine learning with flexible basis expansions; DMLKM: double machine
learning with kernel machine. RMSE: root mean square error; CP: coverage probability of
the 95% confidence interval.

Estimator

Covariates Parametric ATReL DMLBE DMLKM

β0

RMSE 0.103 0.107 0.189 0.109
Bias −0.003 0.010 0.151 0.027
CP 0.95 0.95 0.73 0.95

β1

RMSE 0.140 0.128 0.132 0.156
Bias −0.008 0.008 0.035 0.100
CP 0.94 0.93 0.94 0.86

β2

RMSE 0.137 0.126 0.127 0.121
Bias −0.004 −0.004 −0.025 0.000
CP 0.96 0.96 0.95 0.90

β3

RMSE 0.139 0.126 0.121 0.122
Bias 0.005 0.015 0.022 0.050
CP 0.95 0.97 0.96 0.93
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Appendix E. Implementing details and additional results of real example

The specific nuisance model constructions are described as follows.

Method Importance weighting Imputation

Parametric Logistic model with features
(XT, X1X2, X1X3, X2X3)T.

Logistic model with features
taken as X.

ATReL Logistic model with Ψ =
(XT

-2, X1X2, X1X3, X2X3)T

and set Z = X2 for nonpara-
metric modeling

Logistic model with Φ = X-2

and set Z = X2 for nonpara-
metric modeling

DML with flexible basis
expansions

`1 + `2 regularized regression
including basis terms: X,
natural splines of X1, X2 and
X6 of order 5 and interaction
terms of these natural splines

`1 + `2 regularized regression
including basis terms: X,
natural splines of X1, X2 and
X6 of order 5 and interaction
terms of these natural splines

DML with kernel ma-
chine

Support vector machine with
the radial basis function ker-
nel

Support vector machine with
the radial basis function ker-
nel

We present the fitted coefficients of all the included approaches in Table A6.

Table A6: Estimators of the target model coefficients. β0, β1, β2, β3, β4 represent respec-
tively the intercept, coefficient of the total healthcare utilization (X1), coefficient of the
log(NLP+1) of RA (X2), coefficient of the indicator for NLP mention of tumor necrosis
factor (TNF) inhibitor (X3), and coefficient of the indicator for NLP mention of bone ero-
sion (X4). Parametric: doubly robust estimator with parametric nuisance models; ATReL:
our proposed doubly robust estimator using SNP nuisance models; DMLBE: double ma-
chine learning with flexible basis expansions; DMLKM: double machine learning with kernel
machine.

Source Parametric ATReL DMLBE DMLKM Target

β0 -5.70 -5.08 -5.75 -8.88 -5.73 -5.03
β1 0.03 0.12 -0.19 0.01 0.05 -0.31
β2 1.73 1.39 1.56 2.64 1.61 1.35
β3 0.69 0.62 0.78 0.77 0.66 0.94
β4 0.60 0.62 0.44 0.62 0.35 0.14
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