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Abstract
Segmentation has emerged as a fundamental field of computer vision and natural language process-
ing, which assigns a label to every pixel/feature to extract regions of interest from an image/text.
To evaluate the performance of segmentation, the Dice and IoU metrics are used to measure the
degree of overlap between the ground truth and the predicted segmentation. In this paper, we es-
tablish a theoretical foundation of segmentation with respect to the Dice/IoU metrics, including the
Bayes rule and Dice-/IoU-calibration, analogous to classification-calibration or Fisher consistency
in classification. We prove that the existing thresholding-based framework with most operating
losses are not consistent with respect to the Dice/IoU metrics, and thus may lead to a suboptimal
solution. To address this pitfall, we propose a novel consistent ranking-based framework, namely
RankDice/RankIoU, inspired by plug-in rules of the Bayes segmentation rule. Three numerical
algorithms with GPU parallel execution are developed to implement the proposed framework in
large-scale and high-dimensional segmentation. We study statistical properties of the proposed
framework. We show it is Dice-/IoU-calibrated, and its excess risk bounds and the rate of conver-
gence are also provided. The numerical effectiveness of RankDice/mRankDice is demonstrated in
various simulated examples and Fine-annotated CityScapes, Pascal VOC and Kvasir-SEG datasets
with state-of-the-art deep learning architectures. Python module and source code are available on
GITHUB at https://github.com/statmlben/rankseg.

Keywords: Segmentation, Bayes rule, ranking, Dice-calibrated, excess risk bounds, Poisson-
binomial distribution, normal approximation, GPU computing

1. Introduction

Segmentation is one of the key tasks in the field of computer vision and natural language processing,
which groups together similar pixels/features of an input that belong to the same class (Ronneberger
et al., 2015; Badrinarayanan et al., 2017). It has become an essential part of image and text under-
standing with applications in autonomous vehicles (Assidiq et al., 2008), medical image diagnostics
(Wang et al., 2018), face/fingerprint recognition (Xin et al., 2018), and video action localization
(Shou et al., 2017).

The primary aim of segmentation is to label each foreground feature/pixel of an input with a cor-
responding class. Specifically, for a feature vector or an image X ∈ Rd , a segmentation function δδδ :
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Rd→{0,1}d yields a predicted segmentation δδδ (X) = (δ1(X), · · · ,δd(X))ᵀ, where δ j(X) represents
the predicted segmentation for the j-th feature X j, and I(δδδ (X)) = { j : δ j(X) = 1; for j = 1, · · · ,d}
is the index set of the segmented features of X provided by δδδ . Correspondingly, Y ∈ {0,1}d is a
feature-wise label of a ground truth segmentation, where Yj = 1 indicates that the j-th feature/pixel
X j is segmented, and I(Y) =

{
j : Y j = 1; for j = 1, · · · ,d

}
is the index set of the ground-truth

features.
To access the performance for a segmentation function δδδ , the Dice and IoU metrics are intro-

duced and widely used in the literature (Milletari et al., 2016), both of which measure the overlap
between the ground truth and the predicted segmentation:

Diceγ(δδδ ) = E
(2
∣∣I(Y)∩ I(δδδ (X))

∣∣+ γ

|I(Y)|+ |I(δδδ (X))|+ γ

)
= E

( 2Yᵀδδδ (X)+ γ

‖Y‖1 +‖δδδ (X)‖1 + γ

)
,

IoUγ(δδδ ) = E
(∣∣I(Y)∩ I(δδδ (X))

∣∣+ γ∣∣I(Y)∪ I(δδδ (X))
∣∣+ γ

)
= E

( Yᵀδδδ (X)+ γ

‖Y‖1 +‖δδδ (X)‖1−Yᵀδδδ (X)+ γ

)
, (1)

where | · | is the cardinality of a set, and γ ≥ 0 is a smoothing parameter. When γ = 0, Diceγ(δδδ ) =
E
(
2TP/(2TP+FP+FN)

)
, IoUγ(δδδ ) = E

(
TP/(TP+FP+FN)

)
where TP is the true positive, FP

is the false positive, and FN is the false negative. Both metrics are similar and will be treated
in a unified fashion; however, as to be seen in the sequel, searching for the optimal segmentation
function with respect to the IoU metric may require extra computation than its Dice counterpart.
Thus, for clarity of presentation, we first focus on the Dice metric and postpone the discussion on
the relationships between the Dice and IoU metrics in Section 4.2.

The recent success of fully convolutional networks has enabled significant progress in segmen-
tation. In literature, the mainstream of recent works devoted to designing and developing neural
network architectures under different segmentation scenarios, including FCN (Long et al., 2015),
U-Net (Ronneberger et al., 2015), DeepLab (Chen et al., 2018), and PSPNet (Zhao et al., 2017).
Despite their remarkable performance, most existing models primarily focus on predicting seg-
mentation using a classification framework, without considering the inherent disparities between
classification and segmentation (as discussed in Section 1.1). We find this framework leading to
an inconsistent solution and suboptimal performance with respect to the Dice/IoU metrics, and we
address this pitfall by developing a novel consistent ranking-based framework, namely RankSEG
(RankDice to the Dice metric and RankIoU to the IoU metric), to improve the segmentation perfor-
mance.

1.1 Existing methods

Most existing segmentation methods are developed under a threshold-based framework with two
types of loss functions.

As indicated in Figure 1, the existing threshold-based segmentation framework, inspired by
binary classification, provides a predicted segmentation via a two-stage procedure: (i) estimating
a decision function or a probability function based on a loss; (ii) predicting feature-wise labels by
thresholding the estimated decision function or probabilities. Specifically, given a training dataset
(xi,yi)

n
i=1, the prediction provided by the threshold-based framework for a new instance x can be

formulated as:

q̂ = argmin
q∈Q

1
n

n

∑
i=1

l
(
yi,q(xi)

)
+λ‖q‖2, δ̂δδ (x) = 1(q̂(x)≥ 0.5), (2)
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RANKSEG: A CONSISTENT RANKING-BASED FRAMEWORK FOR SEGMENTATION

Figure 1: The existing and the proposed (RankDice) frameworks for segmentation. The upper panel is the
existing threshold-based segmentation framework, and the lower panel is the proposed RankDice framework.

where l(·, ·) is an operating loss, q : Rd → [0,1]d is a candidate probability function with q j being
the candidate probability of the j-th pixel, Q is a class of candidate probability functions, ‖q‖ is
a regularization term, λ > 0 is a tuning parameter to balance the overfitting and underfitting, and
1(·) is an indicator function. For ease of presentation, q j(x) is specified as a probability function
and a predicted segmentation is produced by thresholding at 0.5, yet it can be equally extended
to a general decision function. For example, we may formulate q j(x) as a decision function with
range in R, and the prediction is produced by thresholding at 0, analogous to SVMs in classification
(Cortes and Vapnik, 1995). Next, under the framework (2), two different types of operating loss
functions are considered, namely the classification-based losses and the Dice-approximating losses.
Classification-based losses completely characterize segmentation as a classification problem, with
examples such as the cross-entropy (CE; Cox (1958)) and the focal loss (Focal; Lin et al. (2017)):

(CE) lCE
(
y,q(x)

)
=−

d

∑
j=1

(
y j log

(
q j(x)

)
+(1− y j) log

(
1−q j(x)

))
, (3)

(Focal) lfocal
(
y,q(x)

)
=−

d

∑
j=1

(
y j(1−q j(x))ϑ log

(
q j(x)

)
+(1− y j)qϑ

j (x) log
(
1−q j(x)

))
,

where ϑ ≥ 0 is a hyperparameter for the focal loss (Lin et al., 2017). Other margin-based losses such
as the hinge loss, in principle, can be included as classification-based losses with a decision function
ranged in R thresholding at 0, although they are less frequently used in a multiclass problem (Tewari
and Bartlett, 2007). Therefore, we focus on the probability-based classification loss in the sequel.
Dice-approximating losses aim to approximate the Dice/IoU metric and conduct a direct optimiza-
tion. Typical examples are the soft-Dice (Sudre et al., 2017) and the Lovasz-softmax loss (Berman
et al., 2018):

(Soft-Dice) lSoftD
(
y,q(x)

)
= 1− 2yᵀq(x)

‖y‖1 +‖q(x)‖1
,

(Lovasz-softmax) ll-softmax
(
y,q(x)

)
=V

(
y◦ (1−q(x))+(1−y)◦q(x)

)
,

where V (·) is the Lovasz extension of the mis-IoU error (Berman et al., 2018), and ◦ is the element-
wise product. Specifically, the soft-Dice loss replaces the binary segmentation indicator δδδ (x) ∈
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{0,1}d in the Dice metric by a candidate probability function q(x) ∈ [0,1]d to make the compu-
tation feasible. The Lovasz-softmax directly takes a convex extension of IoU based on a softmax
transformation. Moreover, other losses including the Tversky loss (Salehi et al., 2017), the Lovasz-
hinge loss (Berman et al., 2018), and the log-Cosh Dice loss (Jadon, 2021) can be also categorized
as Dice-approximating losses.

The threshold-based framework (2) with a classification-based loss or a Dice-approximating loss
is a commonly used approach for segmentation. Although encouraging performance is delivered,
we show that the minimizer from (2) (based on the cross-entropy and the focal loss) is inconsistent
(or suboptimal) to the Dice metric, see Lemma 9. For Lovasz convex losses, it is still unclear if
they are able to yield an optimal segmentation (convex closure is usually not enough to ensure the
consistency (Bartlett et al., 2006)). Moreover, in practice, only a small number of pixel predictions
are taken into account in one stochastic gradient step. Therefore, the Lovasz-softmax loss cannot
directly optimize the segmentation metric (see Section 3.1 in Berman et al. (2018)).

Another line of work (Bao and Sugiyama, 2020; Nordström et al., 2020; Lipton et al., 2014)
has been centered on a linear-fractional approximation of the Dice and IoU metrics which are not
decomposable per instance. In particular, Bao and Sugiyama (2020) and Nordström et al. (2020)
proposed to approximate the utility by tractable surrogate functions with a sample-splitting proce-
dure and showed that their methods are consistent in optimizing the target utility. Yet, splitting
the sample may undermine the efficiency. Lipton et al. (2014) indicated that the optimal threshold
maximizing the F1 metric is equal to half of the optimal F1 value. However, their definitions of
Dice and IoU metrics may overlook small instances, which is undesirable in many applications; see
Appendix A for technical discussion.

To summarize, the current frameworks with existing losses may either yield a suboptimal solu-
tion or suffer from an inappropriate target metric, demanding efforts to further improve the perfor-
mance, robustness and sustainability of the existing segmentation framework.

1.2 Our contribution

In this paper, we propose a novel Dice-calibrated ranking-based segmentation framework, namely
RankDice, to address the inconsistency of the existing framework. RankDice is primarily inspired
by the Bayes rule of Dice-segmentation. We summarize our major contribution as follows:

1. To our best knowledge, the proposed ranking-based segmentation framework RankDice, is
the first consistent segmentation framework with respect to the Dice metric (Dice-calibrated).

2. Three numerical algorithms with GPU parallel execution are developed to implement the
proposed framework in large-scale and high-dimensional segmentation.

3. We establish a theoretical foundation of segmentation with respect to the Dice metric, such
as the Bayes rule and Dice-calibration. Moreover, we present Dice-calibrated consistency
(Lemma 10) and a convergence rate of the excess risk (Theorem 11) for the proposed RankDice
framework, and indicate inconsistent results for the existing methods (Lemma 9).

4. Our experiments in three simulated examples and three real datasets (CityScapes dataset, Pas-
cal VOC 2021 dataset, and Kvasir-SEG dataset) suggest that the improvement of RankDice
over the existing framework is significant for various loss functions and network architectures
(see Tables 9-6).
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It is worth noting that the results are equally applicable to the proposed RankIoU framework in
terms of the IoU metric.

2. RankDice

It is reasonable to assume that all information on a feature-wise label is solely based on input
features, that is, Yi ⊥ Yj|X for any i 6= j. In Appendix B.3, we provide a probabilistic perspective
to suggest the necessity of this assumption in segmentation tasks. Without loss of generality, we
further assume that p j(X) := P(Yj = 1|X) are distinct for j = 1, · · · ,d with probability one.

2.1 Bayes segmentation rule

To begin with, we call segmentation with respect to the Dice metric as “Dice-segmentation”. Then,
we discuss Dice-segmentation at the population level, and present its Bayes (optimal) segmentation
rule in Theorem 1 akin to the Bayes classifier for classification.

Theorem 1 (The Bayes rule for Dice-segmentation) A segmentation rule δδδ ∗ is a global maxi-
mizer of Diceγ(δδδ ) if and only if it satisfies that

δ
∗
j (x) =

{
1 if p j(x) ranks top τ∗(x),
0 otherwise.

The optimal volume (the optimum total number of segmented features) τ∗(x) is given as

τ
∗(x) = argmax

τ∈{0,1,··· ,d}

(
∑

j∈Jτ (x)

d−1

∑
l=0

2
τ + l + γ +1

p j(x)P
(
Γ9 j(x) = l

)
+

d

∑
l=0

γ

τ + l + γ
P
(
Γ(x) = l

))
, (4)

where Jτ(x) =
{

j : ∑
d
j′=1 1

(
p j′(x)≥ p j(x)

)
≤ τ
}

is the index set of the τ-largest conditional proba-
bilities with J0(x) = /0, Γ(x) = ∑

d
j=1 B j(x), and Γ9 j(x) = ∑ j′ 6= j B j′(x) are Poisson-binomial random

variables, and B j(x) is a Bernoulli random variable with the success probability p j(x). See the
definition of the Poisson-binomial distribution in Appendix B.2.

Two remarkable observations emerge from Theorem 1. First, the Bayes segmentation operator
can be obtained via a two-stage procedure: (i) ranking the conditional probability p j(x), and (ii)
searching for the optimal volume of the segmented features τ(x). Second, both the Bayes segmen-
tation rule δδδ ∗(x) and the optimal volume function τ∗(x) are achievable when the conditional proba-
bility p(x) = (p1(x), · · · , pd(x))ᵀ is well-estimated. Therefore, our proposed framework RankDice
is directly inspired by a general plug-in rule of the Bayes segmentation rule.

Moreover, Lemma 9 (and examples provided in its proof) indicates that the segmentation rule
produced by existing frameworks, such as the threshold-based framework, can significantly differ
from the optimum in Theorem 1. In fact, Lemma 9 further proves that the cross-entropy loss, the
focal loss, and even a general classification-calibrated loss (Zhang, 2004; Bartlett et al., 2006), are
not Dice-calibrated. See the definition of Dice-calibrated (Definition 8), and the negative results for
existing frameworks (Lemma 9) in Section 4.1. Besides, the Bayes rule for IoU-segmentation is
presented in Lemma 13.
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Remark 2 (Suboptimal of a fixed-thresholding framework) The Bayes rule of Dice-segmentation
can be also regarded as adaptive thresholding of conditional probabilities. Specifically, for each in-
put x, the optimal segmentation rule can be rewritten as:

δ
∗
j (x) = 1

(
p j(x)≥ p jτ∗(x)(x)

)
, where p jτ∗(x)(x) is the top-τ∗(x) largest probability over p(x).

Alternatively, Theorem 1 indicates that the Bayes rule for Dice-segmentation is unlikely to be ob-
tained by a fixed thresholding framework, since the optimal threshold p jτ∗(x)(x) varies greatly across
different inputs. Therefore, (tuning a threshold on) a fixed thresholding-based framework leads to a
suboptimal solution.

Remark 2 also explains the heterogeneity of optimal thresholds in various datasets indicated
in Bice et al. (2021), and the suboptimality of a fixed-thresholding framework is also empirically
supported by Table 10 and Figure 7 for simulated examples, and Table 7 and Figure 4 for real
datasets. Furthermore, the fact that fixed-thresholding is suboptimal for Dice-segmentation should
be compared with the existing results in classification. For binary classification, the optimal thresh-
old maximizing the F1 metric is equal to half of the optimal F1 value, which is fixed (Lipton et al.,
2014). This disparity stems from a different definition of the Dice metric (or F1) for binary classifi-
cation, where F1-score (for binary classification) can be regard as a linear fractional utility of Dice
defined in (1); see more discussion in Appendix A.

2.2 Proposed framework

Suppose a training dataset (xi,yi)
n
i=1 is given, where xi ∈ Rd and yi ∈ {0,1}d are the input fea-

tures and the true label for the i-th instance. Inspired by Theorem 1, we develop a ranking-based
framework RankDice for Dice-segmentation (Steps 1-3).
Step 1 (Conditional probability estimation): Estimate the conditional probability based on logis-
tic regression (the cross-entropy loss):

q̂(x) = argmin
q∈Q

−
n

∑
i=1

d

∑
j=1

(
yi j log

(
q j(xi)

)
+(1− yi j) log

(
1−q j(xi)

))
+λ‖q‖2, (5)

where Q is a class of candidate probability functions, ‖q‖ is a regularization for a candidate func-
tion, and λ > 0 is a hyperparameter to balance the loss and regularization. For example, q ∈ Q is
usually a deep convolutional neural network for image segmentation, and ‖q‖ can be a matrix norm
of weight matrices in the network.
Step 2 (Ranking): Given a new instance x, rank its estimated conditional probabilities decreasingly,
and denote the corresponding indices as j1, · · · , jd , that is, q̂ j1(x)≥ q̂ j2(x)≥ ·· · ≥ q̂ jd (x).
Step 3 (Volume estimation): From (4), we estimate the volume τ̂(x) by replacing the true condi-
tional probability p(x) by the estimated one q̂(x):

τ̂(x) = argmax
τ∈{0,··· ,d}

τ

∑
s=1

d−1

∑
l=0

2
τ + l + γ +1

q̂ js(x)P
(
Γ̂9 js(x) = l

)
+

d

∑
l=0

γ

τ + l + γ
P
(
Γ̂(x) = l

)
, (6)

where Γ̂(x) = ∑
d
j=1 B̂ j(x) and Γ̂9 js(x) = ∑ j 6= js B̂ j(x) are Poisson-binomial random variables, and

B̂ j(x) are independent Bernoulli random variables with success probabilities q̂ j(x); for j = 1, · · · ,d.
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Finally, the predicted segmentation δ̂δδ (x) = (δ̂1(x), · · · , δ̂d(x))ᵀ is given by selecting the indices
of the top-τ̂(x) conditional probabilities:

δ̂ j(x) = 1, if j ∈ { j1, · · · , jτ̂(x)}; δ̂ j(x) = 0, otherwise. (7)

The proposed RankDice framework (Steps 1-3) provides a feasible solution to the Bayes seg-
mentation rule in terms of the Dice metric. Note that Step 1 is a standard conditional probability
estimation, and Step 2 simply ranks the estimated conditional probabilities. Next, we focus on
developing a scalable computing scheme for Step 3.

2.3 Scalable computing schemes

This section develops scalable computing schemes for volume estimation in (6). Note that (6) can
be rewritten as:

τ̂(x) = argmax
τ∈{0,··· ,d}

πτ(x); πτ(x) = ωτ(x)+ντ(x),

ωτ(x) =
d−1

∑
l=0

2ωτ,l(x)
τ + l + γ +1

, ωτ,l(x) =
τ

∑
s=1

q̂ js(x)P(Γ̂9 js(x) = l), ντ(x) =
d

∑
l=0

γP(Γ̂(x) = l)
τ + l + γ

. (8)

The computational complexity of solving (8) is intimately related to the dimension of input fea-
tures. Therefore, we develop numerical algorithms for low- and high-dimensional segmentation
separately.

2.3.1 EXACT ALGORITHMS FOR LOW-DIMENSIONAL SEGMENTATION

Exact algorithm based on FFT. When the dimension is low (d ≤ 500), we consider an exact
algorithm to evaluate ωτ and ντ . According to the definition of ωτ,l , it can be computed by the
following recursive formula (τ = 1, · · · ,d):

ωωωτ(x) =ωωωτ−1(x)+ q̂ jτ (x)
(
P(Γ̂− jτ (x) = 0), · · · ,P(Γ̂− jτ (x) = d−1)

)ᵀ
, ωωω0(x) = 0, (9)

where ωωωτ(x) = (ωτ,0(x), · · · ,ωτ,d−1(x))ᵀ. On this ground, it suffices to evaluate P(Γ̂(x) = l) and
P(Γ̂9 jτ (x) = l), which are the probability mass functions of Poisson-binomial random variables Γ̂(x)
and Γ̂9 jτ (x), respectively. As indicated in Hong (2013), they can be efficiently evaluated by a fast
Fourier transformation (FFT). Based on the numerical results in Hong (2013), the computing time
for FFT evaluation with d ≤ 500 is generally negligible (less than ten milliseconds). Moreover, it is
worth noting that our algorithm in (9) needs not store the entire auxiliary matrix (ωωω1(x), · · · ,ωωωd(x)),
since the τ-th row ωωωτ can be computed from the previous row ωωωτ−1. Hence, only O(d) storage is
required in (9). The detailed algorithm is summarized in Algorithm 1 with approx=False.

2.3.2 APPROXIMATION ALGORITHMS FOR HIGH-DIMENSIONAL SEGMENTATION

For high-dimensional segmentation, especially for image segmentation, it is challenging to solve (6)
by a grid searching over τ ∈ {0, · · · ,d}. To address this issue, we use shrinkage and approximation
techniques to reduce the computational complexity of (6). First, Lemma 3 is developed to shrink
the searching range of τ .
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Lemma 3 (Shrinkage) If ∑
τ
s=1 q̂ js(x)≥ (τ + γ +d)q̂ jτ+1(x), then πτ(x)≥ πτ ′(x) for all τ ′ > τ .

Lemma 3 can be viewed as an early stopping of the grid searching, which draws from the prop-
erty of Poisson binomial distribution (c.f. Lemma 17). Accordingly, we can shrink the grid search
in (6) from {0, · · · ,d} to {0, · · · ,d0(x)}, which significantly reduces the computational complexity.
Specifically,

τ̂(x) = argmax
τ∈{0,··· ,d0(x)}

πτ(x); d0(x) = min
{

τ = 1, · · · ,d :
τ

∑
s=1

q̂ js(x)/q̂ jτ+1(x)≥ τ + γ +d
}
. (10)

In many applications, d0(x) is upper bounded by a small integer, that is, d0(x) < dU � d, called
the well-separated segmentation. For example, there exists a small number of features/pixels whose
probabilities (close to 1) are much larger than the others.
Truncated refined normal approximation (T-RNA). Note that the cumulative distribution func-
tion (CDF), and thus the probability mass function, of a Poisson-binomial random variable can be
efficiently evaluated by a refined normal approximation when the dimension is large (Hong, 2013;
Neammanee, 2005). For instance,

P(Γ̂(x)≤ l) ← P̃(Γ̂(x)≤ l) := Ψ
(
σ̂
−1(l +1/2− µ̂(x))

)
,

P(Γ̂9 j(x)≤ l) ← P̃(Γ̂9 j(x)≤ l) := Ψ9 j
(
σ̂
−1
9 j (l +1/2− µ̂9 j(x))

)
, (11)

where Ψ(u) = Φ(u) + η̂(x)(1− u2)φ(u)/6 and Ψ9 j(u) = Φ(u) + η̂9 j(x)(1− u2)φ(u)/6 are two
skew-corrected refined normal CDFs, Φ(·) is the CDF of the standard normal distribution, and
(µ̂(x), µ̂9 j(x)), (σ̂2(x), σ̂2

9 j(x)), (η̂(x), η̂9 j(x)) are mean, variance and skewness of the Poisson-
binomial random variables Γ̂(x) and Γ̂9 j(x), respectively. See the definitions of variance and skew-
ness of the Poisson-binomial distribution in Appendix B.2.

On this ground, it is unnecessary to compute all P(Γ̂9 j(x) = l) and P(Γ̂(x) = l) for l = 1, · · · ,d,
since they are negligibly close to zero when l is too small or too large. In other words, many
P(Γ̂9 j(x) = l) and P(Γ̂(x) = l) can be ignored when evaluating ωτ and ντ . Therefore, according to
the refined normal approximation in (11), ωτ and ντ can be approximated by only taking a partial
sum over a subset of l = 0, · · · ,d:

ω̃τ(x) = ∑
l∈L(ε)

2ω̃τ,l(x)
τ + l + γ +1

, ν̃τ(x) = ∑
l∈L(ε)

γP̃(Γ̂(x) = l)
τ + l + γ

, ω̃τ,l(x) =
τ

∑
s=1

q̂ js(x)P̃(Γ̂9 js(x) = l),

L(ε) =
{
bσ̂(x)Ψ−1(ε)+ µ̂(x)− 3

2
c, · · · ,bσ̂(x)Ψ−1(1− ε)+ µ̂(x)− 1

2
c
}⋂
{0, · · · ,d}, (12)

where P̃(Γ̂(x) = l) := P̃(Γ̂(x)≤ l)− P̃(Γ̂(x)≤ l−1), P̃(Γ̂9 j(x) = l) := P̃(Γ̂9 j(x)≤ l)− P̃(Γ̂9 j(x)≤
l−1), Ψ−1(·) is the quantile function of the refined normal distribution, and ε is a custom tolerance
error. The detailed algorithm is summarized in Algorithm 1 with approx=‘T-RNA’. Moreover, the
following lemma quantifies the approximation error of the proposed approximate algorithm.

Lemma 4 For (ωτ ,ντ) and (ω̃τ , ν̃τ) defined in (8) and (12) respectively, if σ̂2(x) ≥ 25, then for
any τ ∈ {0, · · · ,d}, we have

|ω̃τ −ωτ | ≤
4τ

τ + γ +1
(ε +

C0

σ̂2(x)
)+

C0 min(µ̂(x),τ)
σ̂2(x)−1/4

(
log
(
1+d

)
+1
)
,

|ν̃τ −ντ | ≤
2γ

τ + γ
(ε +

C0

σ̂2(x)
)+

C0γ

σ̂2(x)

(
log
(
1+d

)
+1
)
,

8



RANKSEG: A CONSISTENT RANKING-BASED FRAMEWORK FOR SEGMENTATION

where C0 = 0.1618 if σ̂2(x) ≥ 100, and C0 = 0.3056 if σ̂2(x) ≥ 25. Moreover, when d → ∞, we
have

|π̃τ −πτ | ≤
( 4τ

τ + γ +1
+

2γ

τ + γ

)
ε +O(

min(µ̂(x),τ) log(d)
σ̂2(x)

).

Here we define 0/0 := 0 for γ/(τ + γ) when τ = γ = 0.

Note that σ̂2(x) = ∑
d
j=1 q̂ j(x)(1− q̂ j(x)) is the variance of Γ̂(x), which often tends to infinity as

d → ∞. In image segmentation, the dimension d varies from 1024 (32x32) to 262144 (512x512).
Therefore, the error bound is practical for high-dimensional segmentation. Moreover, ε is the tol-
erance error to balance the approximation error and computation complexity. For instance, when ε

becomes smaller, the approximation error decreases, the computation complexity increases with an
enlarged L(ε). Typically, Ψ−1(1− ε)−Ψ−1(ε) ≤ 7.438 when ε = 1e−4. Based on the approxi-
mation formula (12), the worst-case computational complexity is reduced to O(dσ̂(x)) for general
segmentation and O(σ̂(x)) for well-separated segmentation (d0(x)≤ dU ). The computational com-
plexity is summarized in Table 1 (based on ε = 1e−4).

Although T-RNA significantly reduces the computational complexity, yet this algorithm uses
recursive updates, making it difficult in parallel computing on GPUs. For example, due to the
memory issues, recursive function calls are restricted in the CUDA (Compute Unified Device Ar-
chitecture) kernels (Nickolls et al., 2008). Next, we propose the blind approximation algorithm to
exploit GPU-computing for the proposed RankDice.
Blind approximation (BA). In high-dimensional segmentation, the difference in distributions be-
tween Γ̂(x) and Γ̂9 j(x) is negligible. Inspired by this fact, we propose a novel approximation algo-
rithm, namely the blind approximation, to simultaneously evaluate the score functions with a small
error tolerance. Specifically, based on the refined normal approximation, we further simplify the
evaluation formulas by replacing P̃(Γ̂9 js(x) = l) as P̃(Γ̂(x) = l):

ω̃
b
τ (x) = 2

τ

∑
s=1

q̂ js(x) ∑
l∈L(ε)

P̃(Γ̂(x) = l)
τ + l + γ +1

, ν̃
b
τ (x) = ν̃τ(x) = ∑

l∈L(ε)

γP̃(Γ̂(x) = l)
τ + l + γ

,

where L(ε) = {lL, · · · , lU} is defined in (12). Then, for any 1 ≤ d0 ≤ d, ω̃ωω
b
1:T = (ω̃b

1 , · · · , ω̃b
T )

ᵀ and
ν̃νν

b
1:T = (ν̃b

1 , · · · , ν̃b
T )

ᵀ can be simultaneously computed over τ = 0, · · · ,d0 based on cross-correlation
(flipped convolution (Tahmasebi et al., 2012)):

ω̃ωω
b
1:d0

= 2̂s1:d0(x)◦
((

P̃(Γ̂(x) = lL), · · · , P̃(Γ̂(x) = lU)
)ᵀ
?
( 1

ll + γ +1
, · · · , 1

lU + γ +d0 +1
))

,

ν̃νν
b
1:d0

= γ

((
P̃(Γ̂(x) = lL), · · · , P̃(Γ̂(x) = lU)

)ᵀ
?
( 1

ll + γ
, · · · , 1

lU + γ +d0

))
, (13)

where ŝ(x) = (ŝ1(x), · · · , ŝd(x))ᵀ and ŝK(x) = ∑
K
k=1 q̂ jk(x) is the cumulative sum of sorted estimated

probabilities, ◦ is element-wise product of two vectors, and ? is the cross-correlation operator
(flipped convolution) of two vectors (Tahmasebi et al., 2012). Notably, the cross-correlation can
be efficiently implemented by a fast Fourier transform (Bracewell and Bracewell, 1986) with time
complexity O((d0 + σ̂(x)) log(d0 + σ̂(x))). Besides, the overall time complexity with CUDA im-
plementation on GPUs can be further reduced by parallel computing. The detailed algorithm is
summarized in Algorithm 1 with approx=‘BA’. Next, Lemma 5 shows the approximation error of
the proposed blind approximation algorithm.

9
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Algorithm 1: Computing schemes for the proposed RankDice framework.
Input : Training set: (xi,yi)

n
i=1; A new testing instance: x; Approx method: approx

Output: The predicted segmentation for the testing instance δ̂δδ (x)
1 Conditional prob est. Estimate conditional prob q̂ via (5) based on training set (xi,yi)

n
i=1;

2 Ranking. Rank estimated conditional probabilities for x, and denote the indices in sorted
order as j1, · · · , jd , that is, q̂ j1(x)≥ q̂ j2(x)≥ ·· · ≥ q̂ jd (x);

3 Volume estimation.
4 Compute and store the cumulative sum of sorted estimated probabilities ŝ(x);
5 Compute d0(x) based on ŝ(x) via (10);
6 if approx is None then
7 L= {0, · · · ,d};
8 else
9 L= L(ε) = {lL, · · · , lU} based on (12);

10 end
11 Compute and store P(Γ̂(x) = l) for l ∈ L;
12 if approx is BA then
13 Compute and store ω̃b

1:d0(x) and ν̃b
1:d0(x) based on (13);

14 else
15 Initialize ωold = 0;
16 for τ = 1, · · · ,d0(x) do
17 Update ωnew as

ωnew,l ← ωold,l + q̂ jτ (x)P(Γ̂− jτ (x) = l), for l ∈ L, ωold ← ωnew,

where Γ̂9 j(x) is Poisson binomial r.v. with the success probabilities q̂9 j(x);
18 Compute and store πτ = ωτ +ντ = ∑l∈L

1
τ+l+1 ωnew,l +∑l∈L

γ

τ+l+γ
P(Γ̂(x) = l);

19 end
20 end
21 Estimate τ̂(x) = argmaxτ=0,··· ,d0(x) πτ via (8);
22 Prediction. The predicted segmentation is provided as:

δ̂ j(x) = 1, if j ∈ { j1, · · · , jτ̂(x)}; δ̂ j(x) = 0, otherwise.

return The predicted segmentation δ̂δδ (x) = (δ̂1(x), · · · , δ̂d(x))ᵀ.

10
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Lemma 5 For (ωτ ,ντ) and (ω̃b
τ , ν̃

b
τ ) defined in (8) and (13) respectively, if σ̂2(x) ≥ 25, then for

any τ ∈ {0, · · · ,d}, and any γ ≥ 0, we have∣∣ω̃b
τ −ωτ

∣∣≤ 4τ

τ + γ +1
(ε +

C0

σ̂2(x)
)+

C0 min(µ̂(x),τ)
σ̂2(x)−1/4

(
log
(
1+d

)
+1
)

+
1

4
√

2π

( 1/(2
√

e)
σ̂2(x)−1/4

+
4√

σ̂2(x)−1/4
+

4m̂3(x)
(σ̂2(x)−1/4)3/2

)(
log
(
1+d

)
+1
)
,

where m̂3(x) = ∑
d
j=1 q̂ j(x)(1− q̂ j(x))(1−2q̂ j(x)), C0 = 0.1618 if σ̂2(x)≥ 100, and C0 = 0.3056 if

σ̂2(x)≥ 25. Specifically, when d→ ∞, we have

|π̃τ −πτ | ≤
( 4τ

τ + γ +1
+

2γ

τ + γ

)
ε +O

((min(µ̂(x),τ)
σ̂2(x)

+
1

σ̂(x)
)

log(d)
)
.

In contrast to the truncated refined normal approximation, the blind approximation algorithm sig-
nificantly reduces the time complexity and enables GPU parallel execution. On the other hand, the
blind approximation leads to an additional σ̂−1(x) in Lemma 5 compared with that of T-RNA in
Lemma 4, yet the error bound is still acceptable in practice.

Taken together, we summarize the foregoing computational schemes in Algorithm 1, and their
inference (after obtaining conditional probabilities) computational complexity (worst-case) is indi-
cated in Table 1. For the threshold-based framework, thresholding the estimated probabilities takes
O(d) time complexity. For the proposed method, Step 2 takes O(d log(d)) based on the merge sort
(Ajtai et al., 1983), and Step 3 takes O(d0(x)σ̂(x)) based on T-RNA in (10) and (11), and takes
O
(
d0(x) log(d0(x))

)
based on BA in (13).

SEG framework Time Time (well-separated) Memory

Threshold-based SEG O(d) O(d) O(d)
RankDice (our) O(d log(d)+dd0(x)) O(d log(d)) O(d)
RankDice-RNA (our) O(d log(d)+ σ̂(x)d0(x)) O(d log(d)) O(d)
RankDice-BA (our) O(d log(d)+d0(x) log(d0(x))) O(d log(d)) O(d)

Table 1: Inference (prediction) computational complexity for the segmentation frameworks. Here “Time”
denotes the time complexity, “Memory” denotes the amount of storage needed including probability out-
comes, “Time (well-separated)” denotes the time complexity on well-separated segmentation (d0(x) ≤ dU ),
and d0(x) ≤ d is the reduced dimension defined in (10), σ̂(x) is the standard deviation of Γ̂(x) with at most
an order of O(

√
d). Note that the time complexity of RankDice-BA can be further reduced by GPU imple-

mentation. See more detailed discussion in Section 2.3.

3. mDice-segmentation and mRankDice

In this section, we discuss the extension of the proposed RankDice framework to segmentation with
multiclass/multilabel outcomes evaluated by the mDice metric. Overall, multiclass/multilabel seg-
mentation differs from Dice-segmentation in a number of important aspects. First, a new evaluation
metric called mDice is introduced. Second, multiclass/multilabel outcomes provide two different
ways of probabilistic modeling. Third, whether (or not) to allow for overlapping segmentation re-
sults among different classes leads to different problem setups. These aspects will be discussed in
detail in the following subsections.
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3.1 The mDice metric

For multiclass/multilabel segmentation, (X,Y·1, · · · ,Y·K) is available, where X ∈ Rd represents a
feature vector, K is the total number of classes of interest, Y·k ∈ {0,1}d is the true feature-wise
segmentation label for the k-th class, where Yjk = 1 indicates that the j-th feature X j is segmented
under the k-th class, and I(Y·k) =

{
j : Yjk = 1; for j = 1, · · · ,d

}
is the class-specific index set for

all segmented features.
On this ground, a class-specific segmentation operator ∆∆∆k : Rd → {0,1}d(k = 1, · · · ,K) is in-

troduced, where ∆ jk(x) ∈ {0,1} is the predicted segmentation for the class k of the j-th feature,
and I(∆∆∆k(X)) = { j : ∆ jk(X) = 1; for j = 1, · · · ,d} is the class-specific index set of features for
the predicted segmentation. Then, given a segmentation operator ∆∆∆ = (∆∆∆1, · · · ,∆∆∆K), the multi-Dice
(mDice) metric is defined as:

mDiceγ(∆∆∆) =
K

∑
k=1

αkDiceγ,k(∆∆∆k)

=
K

∑
k=1

αkE
(2
∣∣I(Y·k)∩ I(∆∆∆k(X))

∣∣+ γ

|I(Y·k)|+ |I(∆∆∆k(X))|+ γ

)
=

K

∑
k=1

αkE
( 2Yᵀ

·k∆∆∆k(X)+ γ

‖Y·k‖1 +‖∆∆∆k(X)‖1 + γ

)
, (14)

where Diceγ,k(·) is the Dice metric under the k-th class, ααα = (α1, · · · ,αK)
ᵀ ≥ 0K is a weight vector

for classes with ‖ααα‖1 = 1. For example, αk = 1/K yields that each class has the same contribution
to segmentation performance. More generally, ααα ≥ 0K can be a custom weight vector indicating the
relative importance of segmentation classes. In practice, given a new instance (x,y), the weight is
an average over classes excluding those are not present and not predicted, that is,

αk = 0, if ‖y·k‖1 = ‖∆∆∆k(x)‖1 = 0; αk =
1

∑
K
k=1 1(‖y·k‖1 +‖∆∆∆k(x)‖1 > 0)

, otherwise. (15)

Following our convention, we shall call multiclass/multilabel segmentation with respect to
the mDice metric as “mDice-segmentation”. As indicated in Figure 2, unlike Dice-segmentation,
mDice-segmentation provides more flexibility in probabilistic modeling (multiclass or multilabel)
and the decision-making in prediction (taking argmax or thresholding at 0.5), resulting in different
operating losses and the construction of predictive functions.

3.2 Multilabel/multiclass outcomes

In this section, we describe two probabilistic models (multilabel or multiclass) of Y j|X, where
Y j = (Yj1, · · · ,YjK)

ᵀ is the true label for the j-th feature.
For multilabel modeling, we assume each feature could be assigned to multiple classes, that is,

‖Y j‖1 ∈ {0, · · · ,K}, for j = 1, · · · ,d. As a result, the index sets of segmented features may overlap
among classes. In this case, we formulate and estimate q jk(x) under a multilabel probabilistic
model. For example, for deep learning models, we use the sigmoid function as the output layer
activation function of a neural network with the binary cross-entropy loss.

For multiclass modeling, each feature is assigned to one and only one class, that is, ‖Y j‖1 = 1
for j = 1, · · · ,d. An instance is the panoptic annotation in image segmentation. In this case, we
formulate and estimate q j(x) = (q j1(x), · · · ,q jK(x))ᵀ under a multiclass model with additional sum-
to-one constraints ‖q j(x)‖1 = 1 for j = 1, · · · ,d and x ∈Rd . Specifically, for deep learning models,
we use the softmax function as the output layer activation function of a neural network, which
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automatically enforces the sum-to-one constraints. Correspondingly, a multiclass loss is used as
an operating loss, including the multiclass cross-entropy. Note that the Dice-approximating losses,
such as the soft-Dice loss, can be adopted into the multilabel/multiclass modeling.

In literature, once the estimation is done, the predicted segmentation is produced by taking
argmax or thresholding at 0.5 on the estimated probabilities. Indeed, argmax and thresholding are
inspired by the decision-making in multiclass and multilabel classification, respectively. In segmen-
tation, it is possible to attempt ad-hoc combinations, such as multiclass modeling + thresholding,
and multilabel modeling + argmax. The major purpose of argmax is to provide non-overlapping
prediction (e.g., the panoptic prediction in image segmentation). We discuss overlapping/non-
overlapping segmentation in the next section.

Figure 2: The existing and the proposed frameworks under multiclass/multilabel modeling. The upper panel
is threshold-/argmax-based segmentation, and the lower panel is the proposed mRankDice framework.

3.3 Overlapping or non-overlapping mDice-segmentation

Specifically, whether (or not) to allow for overlapping results among distinct classes leads to differ-
ent decision-making procedures, namely overlapping/non-overlapping mDice-segmentation:

(Overlapping) argmax
∆∆∆

mDiceγ(∆∆∆), (Non-overlapping) argmax
∆∆∆

mDiceγ(∆∆∆),
K

∑
k=1

∆∆∆k(·) = 1d .

(16)

In the overlapping setting, there is no restriction on a segmentation operator, thus the predicted
segmentation for different classes may overlap. On the other hand, the overlapping is ruled out in
non-overlapping formulation due the additional sum-to-one constraint. Lemma 6 presents the Bayes
rule for overlapping segmentation, yielding that mDice-segmentation is reduced to class-specific
Dice-segmentation subproblems if overlapping is allowed.

Lemma 6 (The Bayes rule for overlapping mDice-segmentation) An overlapping (allowing) seg-
mentation operator ∆∆∆∗ is a global maximizer of mDiceγ(∆∆∆) if and only if ∆∆∆∗k is the Bayes rule (global
maximizer) of Diceγ,k(∆∆∆k) on (X,Y·k) for all k ∈ {1≤ k ≤ K : αk > 0}.
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Therefore, it suffices to consider Dice-segmentation of each class separately in overlapping
mDice-segmentation, and the proposed RankDice is readily extended to mRankDice; see Section
3.4.

Next, we investigate the Bayes rule for non-overlapping mDice-segmentation. To proceed, we
denote ∆∆∆∗ as the Bayes rule (global maximizer) of non-overlapping mDice-segmentation in (16),
and τττ∗(·) as the volume function of the Bayes segmentation rule: τττ∗(x) = (τ∗1 (x), . . . ,τ∗K(x))ᵀ =
(‖∆∆∆∗1(x)‖1, · · · ,‖∆∆∆∗K(x)‖1)

ᵀ.

Lemma 7 Suppose τττ∗(·) is pre-known, then solving the Bayes rule for non-overlapping mDice-
segmentation in (16) is equivalent to an assignment problem.

As indicated in Lemma 7, even when the optimal volume function is pre-given, solving the Bayes
rule for non-overlapping segmentation is nontrivial. For example, the most successful assignment
algorithms, including the Hungarian method (Kuhn, 1955; Edmonds and Karp, 1972; Tomizawa,
1971) and its variants Jonker-Volgenant algorithm (Crouse, 2016), generally achieves an O(d3) run-
ning time complexity in our content, which is time-consuming for high-dimensional segmentation.
In sharp contrast, for the overlapping case, when τ∗(x) is given, the Bayes rule is simply ranking all
the conditional probabilities with O(d log(d)). Moreover, when τττ∗(x) is unknown, the optimization
for non-overlapping segmentation becomes a nonlinear integer optimization which is NP-hard in
general (Murty and Kabadi, 1985; D’Ambrosio et al., 2020). Therefore, a fast O(d log(d)) greedy
approximation algorithm is more feasible in practical implementation. We leave pursuing this topic
as future work.

Next, we summarize the proposed mRankDice framework under three scenarios.

3.4 mRankDice

In this section, we present the proposed mRankDice framework for mDice-segmentation. Before we
proceed, we highlight the different roles of multiclass/multilabel modeling and the overlapping/non-
overlapping constraint. Multiclass/multilabel modeling determines the probabilistic models (say
the softmax or the sigmoid activation in a neural network) and an operating loss in probability
estimation (say the cross-entropy or the binary cross-entropy). Meanwhile, the overlapping/non-
overlapping constraint affects the segmentation prediction after the probabilities are estimated.

Therefore, we consider following segmentation three cases: “multilabel + overlapping”, “mul-
ticlass + overlapping”, and “multilabel/multiclass + non-overlapping”.
mRankDice (multilabel + overlapping segmentation) is a straightforward extension of RankDice
in Dice-segmentation (inspired by Lemma 6). Given a training dataset (xi,yi,1:d,1, · · · ,yi,1:d,K)

n
i=1,

with the same manner, the conditional probability function is estimated under a multilabel logistic
regression (the binary cross-entropy loss):

Q̂(x) = argmin
Q∈Q

n

∑
i=1

d

∑
j=1

K

∑
k=1

(
yi jk log

(
q jk(xi)

)
+(1− yi jk) log

(
1−q jk(xi)

))
+λ‖Q‖2, (17)

where Q = (q jk) : Rd→ [0,1]d×K is a matrix function, and q jk(x) is a candidate estimator of p jk(x).
Then, given a new instance x, the class-specific segmentation ∆̂∆∆k(x) is generated based on Steps 2-3
in Section 2.2 with the estimated conditional probabilities Q̂k(x) (the k-th column of Q̂(x)). We
summarize the foregoing computational scheme in Algorithm 2.

14



RANKSEG: A CONSISTENT RANKING-BASED FRAMEWORK FOR SEGMENTATION

mRankDice (multiclass + overlapping segmentation) yields a different probability estimation
procedure, where the conditional probability function is estimated under a multiclass logistic re-
gression (the multiclass cross-entropy loss):

Q̂(x) = argmin
Q∈Q

n

∑
i=1

d

∑
j=1

K

∑
k=1

yi jk log
(
q jk(xi)

)
+λ‖Q‖2, s.t.

K

∑
k=1

q jk(·) = 1; for j = 1, · · ·d, (18)

where Q = (q jk) : Rd → [0,1]d×K is a matrix function, and q j(x) is a candidate estimator of p j(x).
Although the probability estimation (18) differs from (17), the downstream ranking and volume
estimation remain the same according to Lemma 6. We also summarize the foregoing computational
scheme in Algorithm 2.

Algorithm 2: mRankDice for overlapping mDice-segmentation.
Input : Training set: (xi,yi,1:d,1, · · · ,yi,1:d,K)

n
i=1; A new testing instance: x

Output: The predicted segmentation for the testing instance ∆̂∆∆(x)
1 if multilabel outcome then
2 Multilabel Prob Est. Estimate the prob function Q̂ via (17);
3 end
4 if multiclass outcome then
5 Multiclass Prob Est. Estimate the prob function Q̂ via (18);
6 end
7 for k = 1, · · · ,K do
8 Class-specific RankDice. Obtain ∆̂∆∆k(x) from Lines 2-22 in Algorithm 1 based on the

estimated prob Q̂k(x).
9 end

10 return The predicted segmentation ∆̂∆∆(x) = (∆̂∆∆1(x), · · · ,∆̂∆∆K(x))

mRankDice (multiclass/multilabel + non-overlapping segmentation) is a quite difficult scenario
for developing mRankDice from RankDice in Dice-segmentation. As indicated in Lemma 7, search-
ing for an optimal non-overlapping mDice-segmentation operator is NP-hard in general. We leave
pursuing this topic as future work.

4. Theory

In this section, we establish a theoretical foundation of segmentation, including the concept of Dice-
calibration, the excess risk of the Dice metric, and the rate of convergence with respect to the excess
risk of the proposed RankDice framework. For illustration, we focus on Dice-segmentation, and the
results can be extended to mDice-segmentation, and RankIoU in terms of the IoU metric.

4.1 Dice-calibrated segmentation

In Theorem 1, the Bayes rule of Dice-segmentation is obtained. To carry this agenda further,
we propose concept of “Dice-calibrated”, following the same philosophy of Fisher consistency
or classification-calibration in Lin (2004); Zhang (2004); Bartlett et al. (2006). Intuitively, Dice-
calibration is the weakest possible condition on a consistent segmentation method with respect to
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the Dice metric, this is, at population level, a method ultimately searches for the Bayes rule that
achieves the optimal Dice metric. Figure 3 indicates the overview and logical relations among the
theoretic results in this section.

Figure 3: Flowchart of the theory for RankDice in Section 4.1, indicating the logical relations among the
developed theorems.

To proceed, let P be the class of all probability measures PX,Y on (Borel) measurable subsets
of Rd ×{0,1}d such that (X,Y) ∼ PX,Y, (X,Y) ∈ Rd ×{0,1}d , and Yi ⊥ Yj|X for i 6= j. Denote
D as the class of all (Borel) measurable segmentation operators δδδ : x ∈ Rd → δδδ (x) ∈ {0,1}d . The
definition of Dice-calibrated segmentation is given as follows.

Definition 8 (Dice-calibrated segmentation) Given γ ≥ 0, a (population) segmentation method
Mγ : P →D is Dice-calibrated if, for any PX,Y ∈ P ,

Diceγ

(
Mγ(PX,Y)

)
= Diceγ(δδδ

∗),

where δδδ ∗ is the Bayes rule for Dice-segmentation defined in Theorem 1.

Now, we show that most existing loss functions, under the framework (2), are not Dice-calibrated.

Lemma 9 Given a loss function l(·, ·), defineMγ(PX,Y) under the framework (2), that is,

Mγ(PX,Y)(x) := 1(q̃l(x)≥ 0.5), q̃l = argmin
q

E
(
l(Y,q(X))

)
.

Then,Mγ(PX,Y) is not Dice-calibrated for γ = 0 when l(·, ·) is any classification-calibrated loss,
including the cross-entropy loss and the focal loss.

Lemma 9 indicates that the existing framework (2) with most losses ultimately yields a sub-
optimal solution to Dice-segmentation, even if a “classification-calibrated” loss, such as the cross-
entropy loss or the focal loss (Charoenphakdee et al., 2021), is used. Meanwhile, as indicated in
Bertels et al. (2019), the optimization with the soft-Dice loss can introduce a volumetric bias for
tasks with high inherent uncertainty. In sharp contrast, the proposed RankDice method is Dice-
calibrated (Lemma 10) and its asymptotic convergence rate in terms of the Dice metric is provided
in Theorem 11.

To proceed, we give the definition of RankDice at population level in Appendix B.1, which
replaces the average in (5) by the population expectation. Moreover, the cross-entropy loss in (5)
can be extended to an arbitrary strictly proper loss (Gneiting and Raftery, 2007). The most common
strictly proper losses are the cross-entropy loss and the squared error loss.
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Lemma 10 (Dice-calibrated) The proposed RankDice framework with a strictly proper loss is
Dice-calibrated.

Next, we present an excess risk bound in terms of the Dice metric, that is, Dice(δδδ ∗)−Dice(δ̂δδ ).

Theorem 11 (Excess risk bounds) Given γ ≥ 0, let q̂(·) be an estimated probability of p(·), and
δ̂δδ (·) be the RankDice segmentation function defined in (7) based on q̂(·), then

Diceγ(δδδ
∗)−Diceγ(δ̂δδ )≤C1EX‖q̂(X)−p(X)‖1, (19)

where C1 > 0 is a universal constant depending only on γ .

As indicated in Theorem 11, the excess risk of the Dice metric for the proposed RankDice frame-
work is upper bounded by the total variation (TV) distance between the estimated probability q̂
and the true probability p. Note that the Kullback-Leibler divergence (the excess risk for the cross-
entropy) dominates the TV distance. It follows that if the KL divergence between p j and q̂ j goes to
0, then q̂ converges to p in the TV sense, and so does Diceγ(δ̂δδ ) to Diceγ(δδδ

∗).
Taken together, we present the rate of convergence for the empirical estimator obtained from the

proposed RankDice framework (Steps 1-3) in Section 2.2.

Corollary 12 (Convergence rate) Let q̂(·) and δ̂δδ (·) be obtained by the proposed RankDice frame-
work (Steps 1-3) in Section 2.2, and

ECE(q̂) := E
(

lCE
(
Y, q̂(X)

))
−E
(

lCE
(
Y,p(X)

))
= OP(εn),

where lCE(·, ·) is defined in (3). Then,

Diceγ(δδδ
∗)−Diceγ(δ̂δδ ) = OP(

√
dε

1/2
n ). (20)

Note that ECE is the excess risk of the cross-entropy loss or the negative conditional log-likelihood
in (5), and its asymptotics as well as a rate of convergence can be established based on statistical
learning theory of empirical risk minimization (Pollard, 1984; Shen, 1997; Bartlett et al., 2005;
Giné and Koltchinskii, 2006; Cucker and Zhou, 2007), which depends on the sample size and the
complexity of the probability class. Then, the rate of convergence of the excess risk in terms of the
Dice metric is obtained via (20). Note that both (19) and (20) are derived for a fixed dimension, and
the upper bounds can be extended and improved when the dimension of segmentation grows with
the sample size.

Finally, we briefly discuss the connections of the developed theory (i.e., Lemma 10, Theorem
11 and Corollary 12) with the existing results. For example, Popordanoska et al. (2021) derived
an upper bound for the volume bias ‖EX(q̂(X)−p(X))‖1 in terms of the TV distance. It is worth
noting that the volume bias focuses on conditional probability estimation and a small volume bias
may not necessarily yield a consistent segmentation rule in terms of the Dice metric. In contrast, our
result on the excess risk Dice(δδδ ∗)−Dice(δ̂δδ ) characterizes the performance of segmentation rule δ̂δδ .
Besides, Bao and Sugiyama (2020) proved the consistency of their method under a linear fractional
approximation of Dice metric (see Appendix A), which seems not directly comparable to ours.
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4.2 Relation between Dice and IoU metrics

In this section, we consider the relation and difference between Dice and IoU metrics, and present
the Bayes rule for IoU-segmentation.

Lemma 13 A segmentation rule δδδ ∗ is a global maximizer of IoUγ(δδδ ) if and only if it satisfies that

δ
∗
j (x) =

{
1 if p j(x) ranks top τ∗(x),
0 otherwise.

The optimal volume τ∗(x) is given as

τ
∗(x) = argmax

τ∈{0,1,··· ,d}

(
∑

j∈Jτ (x)
p j(x)+ γ

) d−τ

∑
l=0

1
τ + l + γ

P
(
Γ9Jτ (x)(x) = l

)
, (21)

where Jτ(x) =
{

j : ∑
d
j′=1 I

(
p j′(x)≥ p j(x)

)
≤ τ
}

is the index set of the τ-largest conditional proba-
bilities with J0(x) = /0, and Γ9Jτ (x)(x) = ∑ j′ /∈Jτ (x) B j′(x) is a Poisson-binomial random variable, and
B j(x) is a Bernoulli random variable with the success probability p j(x).

In view of Lemma 13, IoU-segmentation shares a substantial similarity with Dice-segmentation
in terms of the Bayes rule. On this ground, a consistent RankIoU framework is also developed
based on a plug-in rule by replacing p(x) as q̂(x). Specifically, RankIoU comprises three steps,
where Steps 1-2 are the same as in RankDice; see Section 2.2.
Step 3′ (IoU volume estimation): From (4), we estimate the volume τ̂(x) by replacing the true
conditional probability p(x) with the estimated one q̂(x):

τ̂(x) = argmax
τ∈{0,1,··· ,d}

(
∑

j∈Jτ (x)
q̂ j(x)+ γ

) d−τ

∑
l=0

1
τ + l + γ

P
(
Γ̂9Jτ (x)(x) = l

)
,

where Γ̂9Jτ (x)(x) = ∑ j/∈Jτ (x) B̂ j(x) is a Poisson-binomial random variable, and B̂ j(x) are independent
Bernoulli random variables with success probabilities q̂ j(x); for j = 1, · · · ,d.

Similar to RankDice, the predicted IoU-segmentation δ̂δδ (x) = (δ̂1(x), · · · , δ̂d(x))ᵀ is produced
by taking the top-τ̂(x) conditional probabilities:

δ̂ j(x) = 1, if j ∈ { j1, · · · , jτ̂(x)}; δ̂ j(x) = 0, otherwise.

For multiclass/multilabel segmentation, the conditional probability estimation (17) and (18) are
carried over into mRankIoU and the subsequent ranking and volume estimation remain the same as
Step 2 and Step 3′ in binary segmentation.

Computationally, RankIoU involves the evaluation of P
(
Γ̂9Jτ (x)(x) = l

)
in Step 3′. The FFT

algorithm and the truncated refined normal approximation (T-RNA) are applicable after minor mod-
ifications; however, the blind approximation (BA) may not be appropriate due to the discrepancy of
Γ̂(x) and Γ̂9Jτ (x)(x), especially when the size of Jτ(x) is large; see Section 2.3. Thus, the computa-
tion scheme of RankIoU might be relatively expensive in high-dimensional segmentation. Here, we
present a parallel result of Lemma 3 to narrow down the searching range in Step 3′ of RankIoU.
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Lemma 14 If

τ

∑
s=1

q̂ js(x)+ γ ≥
q̂ jτ+1(x)

1− q̂ jτ+1(x)
max

(
d + γ,

((d− τ)q̂ jτ+1(x)+ τ + γ)2

τ + γ

)
,

then ϖτ(x)≥ ϖτ ′(x) for all τ ′ > τ , where

ϖτ(x) =
(

∑
j∈Jτ (x)

q̂ j(x)+ γ

) d−τ

∑
l=0

1
τ + l + γ

P
(
Γ̂9Jτ (x)(x) = l

)
.

Theoretically, the concept of “IoU-calibrated” can be established (by replacing Dice as IoU in
Definition 8) and the excess risk bounds can be derived in parallel to Dice-segmentation.

Theorem 15 Given γ ≥ 0, let q̂(·) be an estimated probability of p(·), and δ̂δδ (·) be the RankIoU
segmentation function based on q̂(·), then

IoUγ(δδδ
∗)− IoUγ(δ̂δδ )≤C2EX‖q̂(X)−p(X)‖1,

where C2 > 0 is a universal constant depending only on γ . Consequently, if ECE(q̂) = OP(εn), then

IoUγ(δδδ
∗)− IoUγ(δ̂δδ ) = OP(

√
dε

1/2
n ).

5. Numerical experiments

This section describes a set of simulations and real datasets that demonstrate the segmentation
performance of the proposed RankDice and mRankDice frameworks compared with the existing
argmax- and thresholding-based frameworks using various loss functions and network architec-
tures. For illustration, the segmentation performances for all numerical experiments are evaluated
by empirical Dice/IoU metrics with γ = 0, see Appendix A. For the mDice/mIoU metric, the class-
specific weight is defined as in (15). All experiments are conducted using PyTorch and CUDA on
an NVIDIA GeForce RTX 3080 GPU. All Python codes are available for download at our GitHub
repository (https://github.com/statmlben/rankseg).

5.1 Simulation

In this section, we mainly compare the proposed RankDice framework with the thresholding-based
framework (2) in various simulated examples. Note that for Dice-segmentation with binary out-
comes, threshold- and argmax-based frameworks yield the same solution. Both frameworks require
an estimation of conditional probability function in the first stage. Therefore, in order to convinc-
ingly demonstrate the difference between two frameworks, in our simulation, we assume the true
conditional probabilities p j(x) = P(Yj|x); j = 1, · · · ,d are perfectly estimated, and report the Dice
metric of the downstream segmentation produced by two different frameworks.
Example 1. To mimic the spatial smoothness in practical segmentation problem, especially for
image segmentation, the simulated dataset based on matrix response (d = W ×H) is generated as
follows. First, the true probability matrix P = (pwh)W×H are generated by two patterns:

• Step decay: pwh ∼U(0.5,1), if w≤ bρWc and h≤ bρHc; pwh ∼ N[0,1](β ,0.1), otherwise.
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• Exponential decay: pwh = exp
(
−β (w+h)

)
, as visualized in the upper panel of Figure 6.

• Linear decay: pwh = 1−β (w+h)/(W +H), as visualized in the lower panel of Figure 6.

Here β is a decay parameter, U(0,1) is the uniform distribution, and N[0,1](β ,0.1) is the truncated
normal distribution with mean β and standard deviation 0.1. In our simulation, we consider β =
0.1,0.3,0.5 with ρ = 0.1 for step decay, β = 1.01,1.05,1.10 for exponential decay, and β = 1,2,4
for linear decay. For each case, four different dimensions are considered: W = H = 28,64,128,256,
and therefore d increases from 784 to 65,536. Then, the proposed RankDice framework and the
thresholding-based framework (at 0.5) are conducted on the true probability matrix P. Both de-
cay scenarios are replicated 100 times, and the averaged Dice metrics and its standard errors are
summarized in Table 9.
Example 2. As indicated in Theorem 1 and Remark 2, the optimal segmentation volume (or the
optimal threshold) varies significantly across different inputs. This example aims to illustrate the
suboptimality of (tuning a threshold of) a fixed thresholding based on step decay in Example 1. To
this end, the conditional probability matrices (Pi)i=1,··· ,n of inputs are generated as follows. First,
ρi ∼U(0,1) to mimic the different segmentation scales/patterns over images in real applications.
Next, Pi is generated by step decay based on β = 0.1 and ρ = ρi. Then, the proposed RankDice
framework and the fixed thresholding-based framework (at 0.1. · · · , 0.9) are applied as the same
manner in Example 1. All methods are applied with n = 2000 and W = H = 64, and the averaged
Dice metrics and its standard errors are summarized in Table 10. In this example, the heterogeneous
conditional probabilities yield different optimal segmentation volumes (or thresholds) for images,
thus (tuning a threshold on) a fixed thresholding leads to a suboptimal solution. To better illustrate
the adaptiveness over optimal thresholds, we also present the optimal thresholds for different images
with various generating parameters (β ,ρ) on segmentation patterns of Example 2 in Figure 7, and
similar results are demonstrated in Figure 4 for Pascal VOC 2012 dataset.

The major conclusions on the simulated examples are listed as follows.

• It is evident that RankDice significantly outperforms the thresholding-based (at 0.5) frame-
work in both decay scenarios with various dimensions (Table 9). The substantial improvement
is consistent with the findings of Lemma 1, which indicates that segmentation and classifica-
tion are entirely distinct problems.

• Interestingly, the amount of improvement is gradually increased when the decay of probabili-
ties becomes progressively faster (for exponential decay and linear decay). This suggests that
the proposed RankDice might be even more advantageous in well-separated segmentation.

• As suggested in Table 10, the proposed RankDice generally outperforms a fixed thresholding
framework (with any threshold). This because that the optimal threshold can vary greatly
across inputs, as indicated in Figure 7. Moreover, tuning the threshold may improve the
performance of the thresholding-based framework, yet it still leads to a suboptimal solution
compared with the proposed RankDice.

5.2 Real datasets

This section examines the performance of the proposed RankDice framework in the PASCAL VOC
2012 (Everingham et al., 2012), the fine-annotated CityScapes semantic segmentation benchmark
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Figure 4: The heatmap for averaged (over all validation samples) optimal thresholding probabilities (i.e. the
probability cutpoint q̂ jτ̂ ) provided by the proposed RankDice, see Remark 2 for more details. Here, the x-axis
indicates the class, and the results are provided by a PSPNet trained with the cross-entropy loss.

(Cordts et al., 2016), and Kvasir SEG dataset polyp segmentation dataset (Ajtai et al., 1983).
Three different neural network architectures are considered: DeepLab-V3+ (Chen et al., 2018) with
resnet101 as the backbone, PSPNet with resnet50 as the backbone, and FCN8 with resnet101 as
the backbone. We report both mDice and mIoU metrics of the segmentation produced by Thresh-
old, Argmax and RankDice on the same estimated network/probability. Note that only overlapping
segmentation is considered.
Fine-annotated Cityscapes dataset contains 5,000 high quality pixel-level annotated images. For
all methods, we employ SGD on the learning rate (lr) schedule lr schedule=‘poly’, and the
initial learning rate initial lr=0.01, weight decay=100, momentum=0.9, crop size 512x512,
batch size 6, and 300 epochs. The performance on validation set is measured in terms of the mDice
and mIoU averaged across 19 object classes (Table 2).
Pascal VOC 2012 dataset contains 20 foreground object classes and one background class. The
dataset contains 1,464 training and 1,449 validation pixel-level annotated images. We augment
the dataset by using the additional annotations provided by Hariharan et al. (2011). For all meth-
ods, we employ SGD on lr schedule=‘poly’, and the initial learning rate initial lr=0.01,
weight decay=100, momentum=0.9, crop size 480x480, batch size 8, and an early stop with pa-
tient 10 based on validation loss. The performance on validation set is measured in terms of the
mDice and mIoU averaged across the 20 object classes (Table 3). In this dataset, we also present a
heatmap (Figure 4) for averaged minimal estimated probabilities for segmented features (i.e. q̂ jτ̂ )
by the proposed RankDice, to highlight its difference to the thresholding-based framework.
Kvasir SEG dataset contains 1000 polyp images and their ground truth segmentation (a single
class) from the Kvasir dataset. The scale of the images varies from 332x487 to 1920x1072 pix-
els. For all methods, we employ SGD on lr schedule=‘poly’, and the initial learning rate
initial lr=0.01, weight decay=100, momentum=0.9, crop size 320x320, batch size 8, and
140 epochs. The performance on testing set is measured in terms of the Dice and IoU (Table 4).
Multiclass/multilabel loss. In both datasets, we use six loss functions (including multiclass and
multilabel losses) in the implementation, including the cross-entropy (CE), the focal loss (Focal),
the binary cross-entropy (BCE), the soft-Dice loss (Soft-Dice), the binary soft-Dice loss (B-Soft-
Dice), and the LovaszSoftmax loss (LovaszSoftmax). For multiclass losses, including CE, Focal,
Soft-Dice, and LovaszSoftmax, we use the softmax function as the output layer activation function
of a neural network. For multilabel losses, including BCE and B-Soft-Dice, we use the sigmoid
function as the output layer activation function of a neural network.
Dice-segmentation based on a single class. For the first two datasets, when we focus on a single
object class, it reduces to a Dice-segmentation with binary outcomes. To examine the performance
for the proposed RankDice in binary segmentation, we also report the Dice/IoU metric for each label
separately. In principle, we need to train a model only on the binary label for an object class, then
produce the segmentation prediction by thresholding (or argmax) and RankDice. However, based
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on our empirical study, a model trained from full labels is significantly better than the one trained
from a single binary label. We thus train a model based the same procedure in the aforementioned
segmentation with multiclass/multilabel losses on full labels, and then produce the prediction based
on the estimated probability for each object class separately. The best two performances (“PSPNet +
CE” and “PSPNet + BCE”) for both datasets are summarized in Tables 5 and 6. The performance for
other models and losses can be found in the supplementary. In Figure 5, we present the segmentation
results on illustrative examples for all methods to demonstrate the difference between the proposed
RankDice and the existing methods.
The fixed-thresholding framework with different thresholds. As indicated in Remark 2 and
Example 2 in Section 5.1, the optimal segmentation volume (or the optimal thresholding) varies
significantly across different images, thus (tuning on) a fixed-thresholding yields a suboptimal so-
lution. In Tables 7 and 10, we also report the numerical performance based on different thresholds
for real datasets and Example 2, respectively.
Probability calibration via Temperature scaling (TS). According to Theorem 11, the consistency
of the proposed method holds if the estimated conditional probabilities are calibrated. Alternatively,
improving the probability calibration may improve the segmentation performance for the proposed
framework. Therefore, in Table 8, we examine the numerical results of the proposed method via
TS (with different tuning temperatures), which is one of the most effective probability calibration
methods as suggested by Guo et al. (2017).

Model Loss Threshold (at 0.5) Argmax mRankDice (our)
(mDice, mIoU) (×.01) (mDice, mIoU) (×.01) (mDice, mIoU) (×.01)

DeepLab-V3+ CE (56.00, 48.40) (54.20, 46.60) (57.80, 49.80)
(resnet101) Focal (54.10, 46.60) (53.30, 45.60) (56.50, 48.70)

BCE (49.80, 24.90) (44.20, 22.10) (54.00, 27.00)
Soft-Dice (39.50, 35.90) (39.50, 35.90) (39.50, 35.90)
B-Soft-Dice (41.00, 20.50) (27.60, 13.80) (41.10, 20.50)
LovaszSoftmax (55.20, 47.60) (52.30, 45.10) (55.50, 47.80)

PSPNet CE (57.50, 49.60) (56.50, 48.50) (59.30, 51.00)
(resnet50) Focal (56.00, 48.20) (55.80, 47.70) (58.20, 50.00)

BCE (51.40, 25.70) (47.60, 23.80) (55.10, 27.60)
Soft-Dice (49.10, 43.50) (48.70, 43.20) (49.30, 43.60)
B-Soft-Dice (46.30, 23.10) (32.70, 16.40) (46.20, 23.10)
LovaszSoftmax (56.80, 48.90) (55.40, 47.70) (56.70, 49.10)

FCN8 CE (51.40, 43.70) (50.50, 42.60) (53.50, 45.30)
(resnet101) Focal (48.50, 41.20) (49.60, 41.60) (51.50, 43.70)

BCE (39.40, 19.70) (39.40, 19.70) (41.30, 20.60)
Soft-Dice (28.30, 24.30) (28.30, 24.30) (28.30, 24.80)
B-Soft-Dice (29.10, 14.60) (29.10, 14.60) (29.10, 14.60)
LovaszSoftmax (48.10, 40.40) (42.90, 35.80) (48.90, 40.90)

Table 2: Averaged mDice and mIoU metrics of Threshold, Argmax, and the proposed mRankDice
based on state-of-the-art models/losses on Fine-annotated CityScapes val set. Gray color indicates that
RankDice/mRankDice is inappropriately applied to a loss function which is not strictly proper. The best
performance in each model is bold-faced.

Overall, the empirical results show that the proposed RankDice/mRankDice framework yields
good performance in three segmentation benchmarks. The major empirical conclusions on the
proposed RankDice are listed as follows.
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Model Loss Threshold (at 0.5) Argmax mRankDice (our)
(mDice, mIoU) (×.01) (mDice, mIoU) (×.01) (mDice, mIoU) (×.01)

DeepLab-V3+ CE (63.60, 56.70) (61.90, 55.30) (64.01, 57.01)
(resnet101) Focal (62.70, 55.01) (60.50, 53.20) (62.90, 55.10)

BCE (63.30, 31.70) (59.90, 29.90) (64.60, 32.30)
Soft-Dice — — —
B-Soft-Dice — — —
LovaszSoftmax (57.70, 51.60) (56.20, 50.30) (57.80, 51.60)

PSPNet CE (64.60, 57.10) (63.20, 55.90) (65.40, 57.80)
(resnet50) Focal (64.00, 56.10) (63.90, 56.10) (66.60, 58.50)

BCE (64.20, 32.10) (65.20, 32.60) (67.10, 33.50)
Soft-Dice (59.60, 54.00) (58.80, 53.20) (60.00, 54.30)
B-Soft-Dice (63.30, 31.60) (54.00. 27.00) (64.30, 32.20)
LovaszSoftmax (62.00, 55.20) (60.80, 54.10) (62.20, 55.40)

FCN8 CE (49.50, 41.90) (45.30, 38.40) (50.40, 42.70)
(resnet101) Focal (50.40, 41.80) (47.20, 39.30) (51.50, 42.50)

BCE (46.20, 23.10) (44.20, 22.10) (47.70, 23.80)
Soft-Dice — — —
B-Soft-Dice — — —
LovaszSoftmax (39.80, 34.30) (37.30, 32.20) (40.00, 34.40)

Table 3: Averaged mDice and mIoU of threshold, argmax, and the proposed mRankDice based on state-of-
the-art models/losses on PASCAL VOC 2012 val set. “—” indicates that either the performance is signif-
icantly worse or the training is unstable. Gray color indicates that RankDice/mRankDice is inappropriately
applied to a loss function which is not strictly proper. The best performance in each model is bold-faced.

Model Loss Threshold/Argmax mRankDice (our)
(Dice, IoU) (×.01) (Dice, IoU) (×.01)

DeepLab-V3+ CE (87.9, 80.7) (88.3, 80.9)
(resnet101) Focal (86.5, 87.3) (83.1, 73.2)

Soft-Dice (85.7, 77.8) (85.8, 77.9)
LovaszSoftmax (84.3, 77.3) (84.5, 77.4)

PSPNet CE (86.3, 79.2) (87.1, 79.8)
(resnet50) Focal (83.8, 75.4) (81.8, 72.4)

Soft-Dice (83.5, 75.9) (83.7, 76.1)
LovaszSoftmax (86.0, 79.2) (86.0, 79.2)

FCN8 CE (81.9, 73.5) (82.1, 73.6)
(resnet101) Focal (78.5, 69.0) (70.3, 58.3)

Soft-Dice — —
LovaszSoftmax (82.0, 73.4) (82.0, 73.4)

Table 4: Averaged mDice and mIoU of threshold/argmax, and the proposed mRankDice based on state-of-
the-art models/losses on Kvasir SEG dataset (with a single class segmentation). “—” indicates that either
the performance is significantly worse. Gray color indicates that RankDice is inappropriately applied to a
loss function which is not strictly proper. The best performance in each model is bold-faced.

• As suggested in Tables 2 and 3, the proposed RankDice framework consistently outperforms
the threshold-based and argmax-based frameworks based on the same trained model/network.
The percentage of improvement on the best performance (for each framework) are 3.13%
(over threshold) and 4.96% (over argmax) for CityScapes dataset (PSPNet + CE), and 3.87%
(over threshold) and 2.91% (over argmax) for Pascal VOC 2012 dataset (PSPNet + CE/BCE),
and 0.926% for Kvasir SEG dataset (PSPNet + CE).
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• For Dice-segmentation based on a single class, as suggested in Tables 5 and 6, the proposed
RankDice framework consistently outperforms the threshold-/argmax-based framework for
each class. The largest percentage of class-specific improvement in terms of the Dice metric
on the best performance (for each framework) is 23.6% for CityScapes dataset, and 26.9%
for Pascal VOC 2021 dataset.

• The proposed RankDice works significantly better in “difficult” segmentation. As indicated
in Tables 5 and 6, the improvements by RankDice are negatively correlated with the resulting
Dice/IoU metrics. It is also suggested by Figure 5, where we illustrate three images from
classes cat (no improvement) and chair (26.9% improvement). As presented in all examples
of chair and the last example of cat, the improvement is significant when segmentation is
difficult (the target object is either occluded or similar with other objects).

• As suggested in Table 7, the empirical results are in line with Remark 2 (theoretically) and
Table 10 (numerically), suggesting that the proposed RankDice generally outperforms a fixed
thresholding framework (with any threshold). This because that the optimal threshold can
vary greatly across images, as indicated in Figure 4. Moreover, tuning the threshold may
improve the performance of the fixed-thresholding framework, yet it still leads to a suboptimal
solution compared with the proposed RankDice.

• As suggested in Table 8, the segmentation performance can be potentially improved by TS
probability calibration method, especially 4.59% improvement for CE loss and 3.28% im-
provement for BCE in Pascal VOC 2021 dataset. Yet, the TS demands an additional valida-
tion dataset to tune the optimal temperature, thus more numerical experiments are required
to suggest the effectiveness of this promising method. We leave pursuing this topic as future
work.

• As expected, the proposed RankDice/mRankDice performs well for strictly proper loss func-
tions, including CE and BCE. In addition, we show that the performance is continuously im-
proved compared with existing frameworks for some classification calibrated (only) losses,
such as the focal loss. It is possible that this phenomenon is due to the relationship between
the estimated scores (from focal loss) and the true conditional probabilities (cf. Charoen-
phakdee et al. (2021); Liu et al. (2021)). We leave this topic as future work.

• Although the RankDice/mRankDice framework is developed for Dice/mDice optimization,
the performance in terms of the IoU/mIoU metric is also consistently improved.

Moreover, we also present some important observations based on our experiments about losses,
frameworks, and models.

• CE, Focal and BCE are the top three losses for Dice-segmentation. While some Dice approx-
imating losses, such as Soft-Dice and binary Soft-Dice, usually lead to suboptimal solutions.

• It seems that the multiclass modeling and multiclass losses are more preferred for both datasets.
Moreover, the threshold-based framework usually outperforms the argmax-based framework
for both multiclass and multilabel losses.
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• For multiclass losses, including CE Focal, Soft-Dice, and LovaszSoftmax, the Dice and IoU
metrics are consistent, i.e., a higher Dice yields a higher IoU score. For multilabel losses, in-
cluding BCE and B-Soft-Dice, there is a significant difference between Dice and IoU metrics.

Object class Threshold/Argmax RankDice (our) imps.
(Dice, IoU) (×.01) (Dice, IoU) (×.01) (best vs. best)

CE Focal BCE CE Focal BCE (Dice)

road (85.7, 77.2) (86.1, 77.9) (92.2, 46.1) (85.6, 77.1) (86.0, 77.7) (92.2, 46.1) ∼
sidewalk (57.3, 47.8) (53.6, 43.8) (43.8, 21.9) (60.8, 50.8) (58.7, 48.4) (54.0, 27.0) 6.1%
building (84.6, 76.2) (83.4, 74.8) (79.4, 39.7) (85.1, 76.7) (83.6, 74.7) (82.1, 41.0) ∼

wall (17.4, 13.6) (16.1, 12.4) (04.9, 02.4) (21.0, 16.4) (21.5, 16.8) (08.3, 04.2) 23.6%
fence (14.7, 10.9) (12.4, 08.9) (15.2, 07.6) (15.8, 11.7) (13.7, 09.8) (19.1, 09.5) 25.7%
pole (41.9, 29.0) (34.7, 23.4) (27.1, 13.5) (46.0, 31.7) (35.6, 23.1) (36.4, 18.2) 9.8%

traffic light (34.9, 26.5) (31.5, 24.0) (18.7, 09.4) (37.4, 28.3) (33.5, 24.7) (21.3, 10.6) 7.2%
traffic sign (49.9, 39.0) (45.9, 35.1) (35.3, 17.6) (51.4, 40.1) (46.6, 35.1) (39.6, 19.8) 3.0%
vegetation (90.2, 84.1) (90.2, 83.8) (89.0, 44.5) (90.3, 84.1) (89.6, 82.8) (89.4, 44.7) ∼

terrain (25.7, 20.1) (24.1, 18.5) (19.8, 09.9) (29.4, 23.1) (28.7, 22.7) (25.3, 12.7) 14.4%
sky (83.6, 77.0) (82.0, 75.2) (80.1, 40.0) (84.5, 77.8) (83.1, 76.2) (80.7, 40.3) 1.1%

person (45.1, 36.3) (42.6, 34.1) (32.8, 16.4) (49.5, 40.0) (47.6, 38.2) (38.6, 19.3) 9.8%
rider (35.1, 27.3) (31.2, 24.0) (18.6, 09.3) (37.2, 29.2) (33.9, 26.3) (24.0, 12.0) 6.0%
car (84.1, 76.9) (83.4, 76.2) (80.8, 40.4) (84.0, 76.6) (81.8, 74.0) (81.2, 40.6) ∼

truck (24.7, 21.9) (25.6, 22.7) (21.8, 10.9) (26.6, 23.3) (28.1, 24.8) (26.8, 13.4) 9.8%
bus (46.8, 42.2) (48.8, 43.8) (36.3, 18.2) (51.3, 46.5) (51.5, 46.8) (39.2, 19.6) 5.5%

train (34.9, 30.7) (36.3, 31.0) (33.8, 16.9) (35.8, 31.5) (37.3, 32.2) (34.7, 17.4) 2.8%
motorcycle (19.7, 15.8) (20.4, 16.1) (07.0, 03.5) (22.2, 17.7) (21.1, 16.8) (08.7, 04.4) 8.8%

bicycle (41.4, 32.5) (42.1, 32.9) (32.9, 16.5) (41.9, 32.6) (42.0, 32.5) (36.7, 18.4) ∼

Table 5: Averaged class-specific Dice and IoU metrics of Threshold/Argmax, and the proposed RankDice
based on various losses of PSPNet + resnet50 on Fine-annotated CityScapes val set. The class-specific
improvement in terms of the Dice metric of the proposed RankDice framework is computed in “imps.”,
where ∼ indicates that the difference between Threshold/Argmax and RankDice is smaller than 1.0%.

6. Conclusions and future work

Summary. In this paper, we proposed a ranking-based framework for segmentation called RankSEG
that comprises three steps: conditional probability estimation, ranking, and volume estimation.
Specifically, we have focused on the Dice metric and developed RankDice, a version of RankSEG
for optimal Dice-segmentation. We introduced a key concept “Dice-calibrated” and demonstrated
that RankDice is able to recover the optimal segmentation rule, as opposed to the existing fixed-
thresholding frameworks that are suboptimal with respect to the Dice metric. Computationally,
we have developed efficient exact/approximate numerical methods, including GPU-enabled algo-
rithms, to carry out RankDice. Moreover, we established general theoretical results, including
excess risk bounds and a rate of convergence for RankDice, showing that RankDice is consistent
when the conditional probability estimation is well-calibrated. Empirical experiments suggested
that the proposed framework performs consistently well on a variety of segmentation benchmarks
and state-of-the-art deep learning architectures. In parallel to RankDice, we also developed the
framework RankIoU for the IoU metric. The theoretical results are similar, while the computation
for the optimal IoU-segmentation could be more expensive in high-dimensional situation.
Limitation and future work. (i) For multiclass/multilabel segmentation, our results in this paper
cover the overlapping (allowing) case; however, computing the optimal segmentation for the non-
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Figure 5: Comparison of segmentation results between the proposed method and existing methods for classes
cat (upper panel) and chair (lower panel). Column 1 indicates original images, Column 2 indicates ground
truths, and Columns 3-5 indicate the predicted segmentation produced by argmax, thresholding, and the
proposed RankDice, respectively. The results are provided by a PSPNet trained with the cross-entropy loss.
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Object class Threshold/Argmax RankDice (our) imps.
(Dice, IoU) (×.01) (Dice, IoU) (×.01) (best vs. best)

CE Focal BCE CE Focal BCE (Dice)

Aeroplane (71.2, 63.4) (68.4, 59.2) (72.9, 36.5) (71.3, 63.4) (72.7, 64.1) (75.3, 37.6) 3.3%
Bicycle (37.1, 25.9) (19.6, 12.4) (14.6, 7.30) (38.7, 27.3) (30.5, 20.6) (23.1, 11.5) 4.3%

Bird (76.0, 68.2) (74.3, 65.2) (74.2, 37.1) (76.6, 68.7) (75.8, 66.4) (76.3, 38.1) ∼
Boat (51.1, 42.7) (59.5, 49.1) (55.5, 27.8) (51.3, 42.9) (61.9, 51.5) (61.0, 30.5) 4.0%

Bottle (42.8, 35.8) (36.2, 30.0) (39.1, 19.6) (44.2, 36.8) (37.6, 31.4) (41.1, 20.6) 3.3%
Bus (72.8, 68.3) (72.3, 67.5) (74.8, 37.4) (74.1, 69.6) (73.5, 68.8) (75.9, 37.9) 1.5%
Car (53.5, 47.5) (51.1, 45.6) (48.9, 24.4) (55.0, 49.0) (53.6, 47.9) (51.7, 25.9) 2.7%
Cat (75.0, 69.2) (74.1, 67.9) (73.1, 36.6) (75.5, 69.7) (75.4, 68.7) (75.1, 37.6) ∼

Chair (17.5, 12.8) (16.7, 11.6) (10.2, 5.10) (19.6, 14.4) (22.2, 16.1) (14.5, 7.30) 26.9%
Cow (65.3, 58.6) (60.1, 53.7) (64.9, 32.4) (66.5, 59.9) (62.3, 56.0) (68.4, 34.2) 4.8%

Diningtable (32.9, 27.5) (33.6, 27.4) (31.7, 15.9) (34.5, 29.2) (38.6, 32.4) (35.3, 17.6) 14.9%
Dog (64.6, 57.9) (71.0, 63.4) (71.7, 35.9) (65.5, 58.7) (72.5, 64.9) (74.4, 37.2) 3.8%

Horse (63.9, 55.3) (67.3, 58.3) (67.0, 33.5) (65.3, 56.6) (69.5, 60.1) (70.9, 35.4) 5.4%
Motorbike (69.7, 60.6) (65.5, 56.7) (66.9, 33.5) (71.6, 62.6) (67.0, 57.9) (70.1, 35.1) 2.7%

Person (67.0, 57.7) (65.0, 55.4) (67.4, 33.7) (67.4, 58.1) (67.2, 57.6) (69.7, 34.8) 3.4%
Pottedplant (26.9, 20.2) (22.4, 17.3) (25.5, 12.8) (29.1, 22.0) (26.9, 20.7) (28.6, 14.3) 8.2%

Sheep (53.9, 47.4) (62.8, 55.4) (62.1, 31.1) (54.3, 47.9) (66.0, 58.6) (66.9, 33.4) 6.5%
Sofa (29.8, 25.0) (29.8, 24.4) (33.7, 16.8) (32.0, 26.9) (34.6, 29.0) (38.9, 19.4) 14.5%
Train (77.7, 71.0) (75.8, 68.9) (80.3, 40.1) (77.9, 71.1) (77.3, 70.4) (82.1, 41.1) 2.2%

Tvmonitor (48.4, 41.4) (50.7, 41.6) (53.7, 26.8) (49.2, 42.0) (54.1, 45.4) (56.4, 28.2) 5.0%

Table 6: Class-specific Dice and IoU of Threshold/Argmax, and the proposed RankDice based on various
losses of PSPNet + resnet50 on PASCAL VOC 2012 val set. The class-specific improvement in terms of
the Dice metric of the proposed RankDice framework is computed in “imps.”, where ∼ indicates that the
difference between Threshold/Argmax and the proposed RankDice is smaller than 1.0%.

Framework Thold (Dice, IoU) (×.01)

threshold-based 0.1 (49.10, 24.60)
0.2 (53.00, 26.50)
0.3 (53.60, 26.80)
0.4 (52.90, 26.50)
0.5 (51.40, 25.70)
0.6 (49.60, 24.80)
0.7 (47.00, 23.50)
0.8 (43.40, 21.70)
0.9 (37.40, 18.70)

RankDice(our) — (55.10, 27.60)

Framework Thold (Dice, IoU) (×.01)

threshold-based 0.1 (56.80, 28.40)
0.2 (63.90, 32.00)
0.3 (65.70, 32.80)
0.4 (65.60, 32.80)
0.5 (64.20, 32.10)
0.6 (62.30, 32.00)
0.7 (59.30, 29.60)
0.8 (54.20, 27.10)
0.9 (43.40, 21.70)

RankDice(our) — (67.10, 33.50)

Table 7: The averaged Dice and IoU metrics and their standard errors (in parentheses) of the proposed
RankDice framework and the fixed-thresholding (with different thresholds) framework in Fine-annotated
CityScapes (left) and PASCAL VOC 2012 (right) datasets. The performance is reported based on PSPNet
+ resnet50 with the BCE loss.

overlapping case is NP-hard. Thus, it would be interesting to develop a scalable approximating
algorithm to utilize the proposed framework in the non-overlapping setting. (ii) The conditional
independence, Yi ⊥Yj|X for any i 6= j, is crucial for Theorem 1 and subsequent theorems in Section
4. In some segmentation applications, it is of interest to extend the proposed frameworks and
theorems with locally dependent outcomes. (iii) When given the testing features, the proposed
method can be extended to maximize the F1-score in classification tasks.
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Dataset Temp Threshold RankDice (our)
(Dice, IoU) (×.01) (Dice, IoU) (×.01)
CE BCE CE BCE

CityScapes 1.0 (57.50, 49.60) (51.40, 25.70) (59.30, 51.00) (55.10, 27.60)
1.2 (57.40, 49.60) / (59.40, 51.20) (54.70, 26.30)
1.5 (56.90, 49.20) / (59.40, 51.20) (50.60, 25.30)
1.7 (56.20, 48.50) / (59.10, 51.00) (47.20, 23.60)
2.0 (54.40, 46.90) / (58.00, 50.10) (47.20, 23.60)
2.2 (52.80, 45.40) / (57.10, 49.30) (44.70, 22.40)
2.5 (49.80, 42.50) / (55.40, 48.00) (41.50, 20.70)

VOC 2012 1.0 (64.60, 57.10) (64.20, 32.10) (65.40, 57.80) (67.10, 33.50)
1.2 (64.50, 57.50) / (66.10, 58.30) (68.80, 34.40)
1.5 (65.30, 57.70) / (66.90, 59.10) (69.30, 34.60)
1.7 (65.30, 57.70) / (67.60, 59.80) (69.00, 34.50)
2.0 (64.80, 57.10) / (68.30, 60.50) (68.00, 34.00)
2.2 (63.80, 56.00) / (68.40, 60.60) (67.00, 33.50)
2.5 (61.30, 53.40) / (67.90, 60.20) (65.10, 32.50)

Table 8: The averaged Dice and IoU metrics and their standard errors (in parentheses) of the proposed
RankDice framework and the fixed-thresholding framework based on temperature-scaling calibration meth-
ods with different temperature tuning parameters in Fine-annotated CityScapes and PASCAL VOC 2012
datasets. ‘/’ indicates that the performance of the thresholding-based framework over different temperatures
are all the same under BCE loss. The performance is reported based on PSPNet + resnet50.
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Appendix A. Empirical evaluation of the Dice metric

Recall the definition of the Dice and IoU metrics in (1), their empirical evaluation based on a vali-
dation/testing dataset (x̃i, ỹi)i=1,··· ,m, can be written as:

D̂iceγ(δδδ ) =
1
m

m

∑
i=1

2ỹᵀi δδδ (x̃i)+ γ

‖ỹi‖1 +‖δδδ (x̃i)‖1 + γ
=

1
m

m

∑
i=1

2TPi + γ

2TPi +FPi +FNi + γ
,

ÎoUγ(δδδ ) =
1
m

m

∑
i=1

( ỹᵀi δδδ (x̃i)+ γ

‖ỹi‖1 +‖δδδ (x̃i)‖1− ỹᵀi δδδ (x̃i)+ γ

)
=

1
m

m

∑
i=1

TPi + γ

TPi +FPi +FNi + γ
, (22)

where TPi, FPi and FNi are defined at the instance level. In general, the empirical Dice and IoU
metrics are not equal to the evaluation criteria used in some literature:

D̂iceγ(δδδ ) 6= Diceγ(δδδ ) :=
1
m ∑

m
i=1 2ỹᵀi δδδ (x̃i)+ γ

1
m ∑

m
i=1 ‖ỹi‖1 +

1
m ∑

m
i=1 ‖δδδ (x̃i)‖1 + γ

P−→
E
(
2Yᵀδδδ (X)

)
+ γ

E
(
‖Y‖1)+E

(
‖δδδ (X)‖1)+ γ

,

ÎoUγ(δδδ ) 6= IoUγ(δδδ ) :=
1
m ∑

m
i=1 ỹᵀi δδδ (x̃i)+ γ

1
m ∑

m
i=1 ‖ỹi‖1 +

1
m ∑

m
i=1 ‖δδδ (x̃i)‖1− 1

m ∑
m
i=1 ỹᵀi δδδ (x̃i)+ γ

P−→
E
(
2Yᵀδδδ (X)

)
+ γ

E
(
‖Y‖1)+E

(
‖δδδ (X)‖1)−E

(
Yᵀδδδ (X)

)
+ γ

. (23)

Here P→ denotes convergence in probability following from the law of large numbers and Slutsky’s
theorem. Clearly, both empirical and population evaluations in (23) do not match with the empirical
verisons in (22) and the population Dice in (1). Although the empirical evaluation in (23) is widely
used, it inherently discounts the effects of instances with small segmented features/pixels, leading
to bias in the empirical evaluation. The issues of Diceγ(δδδ ) and IoUγ(δδδ ) are also indicated in some
recent literature, including Cordts et al. (2016) and Berman et al. (2018).

Therefore, it is highly recommended using the empirical Dice in (22) in implementation, and
our numerical results in Section 5 are reported based on (22).

Appendix B. Auxiliary definitions

B.1 Population RankSEG

In this section, we present the definition of population RankSEG, including the proposed frame-
works RankDice and RankIoU. In other words, we work with population of (X,Y) ∈ Rd×{0,1}d .
DenoteQ as the class of all measurable functions q : x∈Rd→ q(x) = (q1(x), · · · ,qd(x))ᵀ ∈ [0,1]d .
Step 1 (Conditional probability estimation): Estimate the conditional probability based on a
strictly proper loss l(·, ·):

q̂ = argmin
q∈Q

E
(
l(Y,q(X))

)
. (24)

Step 2 (Ranking): Given a new instance x, sort its estimated conditional probabilities decreasingly,
and denote the corresponding indices as j1, · · · , jd , that is, q̂ j1(x)≥ q̂ j2(x)≥ ·· · ≥ q̂ jd (x).
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Step 3 (Volume estimation): From (4), we estimate the volume τ̂(x) by replacing the true condi-
tional probability p(x) by the estimated one q̂(x):

(RankDice) τ̂(x) = argmax
τ∈{0,··· ,d}

τ

∑
s=1

d−1

∑
l=0

2
τ + l + γ +1

q̂ js(x)P
(
Γ̂9 js(x) = l

)
+

d

∑
l=0

γ

τ + l + γ
P
(
Γ̂(x) = l

)
,

(RankIoU) τ̂(x) = argmax
τ∈{0,1,··· ,d}

(
∑

j∈Jτ (x)
q̂ j(x)+ γ

) d−τ

∑
l=0

1
τ + l + γ

P
(
Γ̂9Jτ (x)(x) = l

)
,

where Γ̂(x) = ∑
d
j=1 B̂ j(x), Γ̂9 js(x) = ∑ j 6= js B̂ j(x), and Γ̂9Jτ (x)(x) = ∑ j/∈Jτ (x) B̂ j(x) denote Poisson-

binomial random variables, and B̂ j(x) is a Bernoulli random variable with the success probability
q̂ j(x); for j = 1, · · · ,d.

B.2 Poisson-binomial distribution

The Poisson binomial distribution is the discrete probability distribution of a sum of independent
non-identical Bernoulli trials. Specifically, suppose B1, · · · ,Bd are independent Bernoulli random
variables, with probabilities of success p = (p1, · · · , pd)

ᵀ, then Γ = ∑
d
j=1 B j is a Poisson-Binomial

random variable with parameter p, denoted as Γ∼ PB(p), and its probability mass function is:

P
(
Γ = l

)
= ∑

b:‖b‖1=l

d

∏
j=1

(
b j p j +(1−b j)

(
1− p j

))
,

where b = (b1, · · · ,bd)
ᵀ ∈ {0,1}d . Moreover, the mean, variance, and skewness for Γ∼ PB(p) are

listed as follows.

µ := E(Γ) =
d

∑
j=1

p j, σ
2 := Var(Γ) =

d

∑
j=1

p j(1− p j), η := Skew(Γ) =
1

σ3

d

∑
j=1

p j(1− p j)(1−2p j).

B.3 Conditional independence in segmentation

In this section, we adopt a probabilistic perspective on the likelihood of the segmentation task, to
suggest that the conditional independence (Yj ⊥ Yj′ | X for j 6= j′) is implicitly assumed to ensure
the validity of the cross-entropy (CE) loss, and widely accepted due to the high dimensional nature
of segmentation data.

Suppose (Xi,Yi)
iid∼ PX,Y, the negative conditional log-likelihood function of q for the proba-

bilistic model is:

Ln(q) :=− log
( n

∏
i=1

Pq(Y = yi | X = xi)
)
=− log

( n

∏
i=1

d

∏
j=1

q j(xi)
yi j(1−q j(xi))

1−yi j
)

=−
n

∑
i=1

d

∑
j=1

(yi j log(q j(xi))+(1− yi j) log(1−q j(xi))) =
n

∑
i=1

lCE(yi,q(xi)),

where the second equality follows from the conditional independence assumption Yj ⊥ Yj′ | X for
j 6= j′, which connects the CE loss to the negative conditional log-likelihood function. In this
sense, the conditional independence is naturally (and implicitly) assumed by CE to presuppose the
probabilistic interpretation of its estimator.
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Figure 6: Simulation setting in Section 5.1 with different decay patterns and dimensions/shapes (28x28
- 256x256). Upper panel. Heatmaps for the simulated probabilities with step decay (β = 0.1,0.3,0.5).
Middle panel. Heatmaps for the simulated probabilities with exponential decay (base=1.01, 1.05, 1.10).
Lower panel. Heatmaps for the simulated probabilities with linear decay (slope=1, 2, 4). The performance
for the proposed RankDice and thresholding-based frameworks is summarized in Table 9.

Moreover, the conditional independence is widely accepted due to the high dimensional nature
of segmentation data. For example, given a 512x512 image, it is infeasible to consider 5124 pairs
of label-dependence, which can even be adaptive with respect to x.

Appendix C. Simulation results and Implementation details

C.1 Simulation setting and results

This subsection includes the simulation setting demonstration (Figure 6) and the numerical results
(Tables 9 and 10, and Figure 7).
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Decay Shape Threshold (at 0.5) RankDice (our)

step(0.1) 28x28 0.049(.000) 0.274(.001)
64x64 0.083(.000) 0.279(.000)

128x128 0.081(.000) 0.278(.000)
256x256 0.089(.000) 0.279(.000)

step(0.3) 28x28 0.022(.001) 0.499(.001)
64x64 0.038(.000) 0.517(.001)

128x128 0.036(.000) 0.518(.000)
256x256 0.040(.000) 0.518(.000)

step(0.5) 28x28 0.708(.000) 0.708(.000)
64x64 0.707(.000) 0.707(.000)

128x128 0.708(.000) 0.708(.000)
256x256 0.708(.000) 0.708(.000)

exp(1.01) 28x28 0.870(.000) 0.870(.000)
64x64 0.669(.000) 0.714(.000)

128x128 0.410(.000) 0.551(.000)
256x256 0.286(.000) 0.450(.000)

exp(1.05) 28x28 0.427(.001) 0.551(.001)
64x64 0.296(.001) 0.446(.001)

128x128 0.276(.001) 0.427(.001)
256x256 0.274(.001) 0.427(.001)

exp(1.10) 28x28 0.332(.002) 0.467(.002)
64x64 0.301(.001) 0.439(.002)

128x128 0.300(.002) 0.438(.002)
256x256 0.298 (.002) 0.436(.002)

Decay Shape Threshold (at 0.5) RankDice (our)

linear(1.00) 28x28 0.679(.001) 0.717(.001)
64x64 0.672(.000) 0.711(.000)

128x128 0.669(.000) 0.709(.000)
256x256 0.668(.000) 0.707(.000)

linear(2.00) 28x28 0.578(.001) 0.647(.001)
64x64 0.575(.001) 0.642(.001)

128x128 0.573(.000) 0.638(.000)
256x256 0.573(.000) 0.637(.000)

linear(4.00) 28x28 0.588(.003) 0.663(.002)
64x64 0.580(.001) 0.646(.001)

128x128 0.575(.001) 0.642(.001)
256x256 0.574(.000) 0.639(.000)

Table 9: The averaged Dice metrics and its standard errors (in parentheses) of the proposed RankDice frame-
work and the thresholding-based (or argmax-based) framework in Example 1 (see Fig 6) in Section 5.1.

Framework Threshold Dice

threshold-based 0.1 0.481(.005)
0.2 0.560(.005)
0.3 0.560(.005)
0.4 0.560(.005)
0.5 0.560(.005)
0.6 0.528(.005)
0.7 0.471(.005)
0.8 0.377(.005)
0.9 0.230(.004)

RankDice(our) — 0.601(0.005)

Table 10: The averaged Dice metrics and its stan-
dard errors (in parentheses) of the proposed RankDice
framework and the thresholding-based (with different
thresholds) framework in Example 2 in Section 5.1.

Figure 7: The optimal thresholds for different images
with various generating parameters (β ,ρ) in Example
2 in Section 5.1.

C.2 Implementation details

The experiment protocol of our numerical sections basically follows a well-developed Github repos-
itory PYTORCH-SEGMENTATION (Ouali, 2022). The major difference lies in the empirical evalua-
tion of the Dice and IoU metrics. In our experiments, we report the unbiased evaluations m̂Diceγ(·)
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and m̂IoUγ(·), yet the biased evaluations mDiceγ(·) and mIoUγ(·) are usually used for existing
literature, see more discussion and definitions in Appendix A.

To justify the effectiveness of our experiment protocol, we also report mDiceγ(·) and mIoUγ(·)
under our setting based on the argmax-based framework and compare the performance with the
existing benchmarks. Specifically, in our setting, the performance is, DeepLab: (i) CityScapes:
mIoU 63.20%; mDice 76.10%; (ii) VOC: mIoU 74.40%; mDice 84.30%; PSPNet: (i) CityScapes:
mIoU 65.20%; mDice 77.60%; (ii) VOC test: mIoU 79% (which is provided by Ouali (2022) with
the same configuration expect batch size=16); FCN8: VOC: mIoU 55.60%; mDice 70.40%.

The experiment protocol, including learning rate, crop size, backbone, and batch size,
on the existing networks are summarized as follows.

DeepLab (Chen et al., 2018). The experiment on the Fine-annotated CityScapes dataset is set as
follows: backbone is “Xception-65”. The final mIoU is 79.14%; The experiment on the PASCAL
VOC 2012 dataset is set as follows: learning rate is 0.007 with poly schedule; crop size is
513x513, backbone is “resnet101”, batch size is 16. The final mIoU is 78.21%;
PSPNet (Zhao et al., 2017). The experiment on the Fine-annotated CityScapes dataset is set as
follows: learning rate is 0.01. The final mIoU is 78.4%; The experiment on the PASCAL VOC
2012 dataset is set as follows: learning rate is 0.01, batch size is 16. The final mIoU based
on the VOC test datset is 82.6%;
FCN8 (Long et al., 2015). The experiment on the PASCAL VOC 2012 dataset is set as follows:
learning rate is 0.0001, batch size is 20, backbone is “VGG16”. The final mIoU is 62.2%;

Note that the suboptimal performance of our experiment may be caused by a small batch/crop
size, different specified backbone models, and other fitting hyperparameters. The current experi-
ment can be further improved by carefully tuning the hyperparameters, yet it provides a fair numer-
ical comparison of all frameworks (threshold-based, argmax-based, and the proposed RankDice).

Appendix D. Technical proofs

D.1 Proof of Theorem 1

Proof It suffices to consider the point-wise maximization:

δδδ
∗(x) = argmax

v∈{0,1}d
Diceγ(v|x), Diceγ(v|x) = E

( 2Yᵀv+ γ

‖Y‖1 +‖v‖1 + γ

∣∣∣X = x
)
.

Let y9 j = (y1, · · · ,y j−1,y j+1, · · · ,yd)
ᵀ, I(v) = I(δδδ (x)) = { j : v j = 1} be the index set of segmented

features by δδδ (x), and ‖v‖1 = τ , we have

Diceγ(v|x) = E
( 2Yᵀv
‖Y‖1 + τ + γ

∣∣∣X = x
)
+E
(

γ

‖Y‖1 + τ + γ

∣∣∣X = x
)
.

Note that the second term is only related to τ , and the first term can be rewritten as:

E
( 2Yᵀv
‖Y‖1 + τ + γ

∣∣∣X = x
)
= ∑

y∈{0,1}d

2yᵀvP(Y = y|x)
τ +‖y‖1 + γ

= ∑
y∈{0,1}d

d

∑
j=1

2y jv jP(Y = y|x)
τ +‖y‖1 + γ

= ∑
j∈I(v)

∑
y∈{0,1}d

2y jP(Y = y|x)
τ +‖y‖1 + γ

= ∑
j∈I(v)

∑
y9 j∈{0,1}d−1

y j=1

2P(Y = y|x)
τ +‖y‖1 + γ

= ∑
j∈I(v)

s j(τ).

(25)
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As indicated in (25), when τ is given, Diceγ(v|x) is an additive function with respect to j ∈ I(v).
Therefore, maximizing Diceγ(v|x) suffices to find the indices of top τ largest s j(τ). Toward this
end, we consider the differenced score function:

D j j′(τ) = s j(τ)− s j′(τ) = ∑
y9 j∈{0,1}d−1

y j=1

2P(Y = y|x)
τ +‖y‖1 + γ

− ∑
y9 j′∈{0,1}d−1

y j′=1

2P(Y = y|x)
τ +‖y‖1 + γ

= ∑
y9 j j′∈{0,1}d−2

y j=1;y j′=0

2P(Y = y|x)
τ +‖y‖1 + γ

− ∑
y9 j j′∈{0,1}d−2

y j=0,y j′=1

2P(Y = y|x)
τ +‖y‖+ γ

= ∑
y9 j j′∈{0,1}d−2

y j=1;y j′=0

2∏i6={ j, j′}P(Yi = yi|x)P(Yj = 1|x)P(Yj′ = 0|x)
τ +1+‖y9 j j′‖1 + γ

− ∑
y9 j j′∈{0,1}d−2

y j=0;y j′=1

2∏i 6={ j, j′}P(Yi = yi|x)P(Yj = 0|x)P(Yj′ = 1|x)
τ +1+‖y9 j j′‖1 + γ

=
(
P(Yj = 1|x)−P(Yj′ = 1|x)

)
∑

y9 j j′∈{0,1}d−2

2∏i 6= j, j′ P(Yi = yi|x)
τ +1+‖y9 j j′‖1 + γ

, (26)

where y9 j j′ is y removing y j and y j′ , the second last equality follows from the conditional indepen-
dence of Yj and Yj′ given X for any pair j and j′. According to (26), we have

D j j′(τ)≥ 0 ⇐⇒ P(Yj = 1|x)−P(Yj′ = 1|x)≥ 0,

thus sorting s j(τ) is equivalent to sorting P(Yj = 1|x) for any given τ . Let Jτ =
{

j : ∑
d
j′=1 1

(
P(Yj′ =

1|x) ≥ P(Yj = 1|x)
)
≤ τ
}

be the index set of the τ-largest conditional probabilities, it suffices to
solve

τ
∗ = argmax

τ=0,··· ,d
∑
j∈Jτ

E
( 2Yj

‖Y‖1 + τ + γ

)
+E
( γ

‖Y‖1 + τ + γ

)
= argmax

τ=0,··· ,d
∑
j∈Jτ

d−1

∑
l=0

2p j(x)
τ + l + γ +1

P
(
‖Y9 j‖1 = l|X = x

)
+

d

∑
l=0

γ

τ + l + γ
P
(
‖Y‖1 = l|X = x

)
,

where ‖Y9 j‖1 = ∑ j′ 6= j Yj′ is a Poisson-binomial random variable with success probabilities p9 j(x),
since Yj ( j = 1, · · · ,d) is an independent Bernoulli random variable given X = x. The desirable
result then follows.

D.2 Proof of Lemma 3

Proof To proceed, we denote ξl(x) = P(Γ̂(x) = l), and ξ jl(x) = P(Γ̂9 j(x) = l), and πτ = ωτ(x)+
ντ(x). For simplicity in presentation, we assume that q̂1(x) ≥ ·· · ≥ q̂d(x). Then, for any τ ′ > τ ,
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since ντ ≥ ντ ′ , and

πτ(x)−πτ ′(x)
2(τ ′− τ)

≥
τ

∑
j=1

q̂ j(x)
d−1

∑
l=0

ξ jl(x)
(τ + l +1+ γ)(τ ′+ l +1+ γ)

− 1
τ ′− τ

τ ′

∑
j=τ+1

q̂ j(x)
d−1

∑
l=0

ξ jl(x)
τ ′+ l + γ +1

≥
τ

∑
j=1

q̂ j(x)
d−1

∑
l=0

ξτl(x)
(τ + l + γ +1)(τ ′+ l + γ +1)

− q̂τ+1(x)
d−1

∑
l=0

ξτl(x)
τ ′+ l + γ +1

≥ q̂τ+1(x)
d−1

∑
l=0

(τ + γ +d)ξτl(x)
(τ + l + γ +1)(τ ′+ l + γ +1)

− q̂τ+1(x)
d−1

∑
l=0

ξτl(x)
τ ′+ l + γ +1

≥ 0,

(27)

where the second inequality follows from Lemma 17 with ζl = (τ + l + γ + 1)(τ ′+ l + γ + 1) and
ζl = τ ′+ l+ γ +1, and q̂1(x)≥ ·· · ≥ q̂τ(x)≥ ·· · ≥ q̂τ ′(x), and the third inequality follows from the
condition that ∑

τ
j=1 q̂ j(x)/q̂τ+1(x)≥ τ + γ +d. The desirable result then follows. The upper bound

provided by Lemma 3 is illustrated in Figure 8 based on a random example of Example 1.

Figure 8: Dice score vs. τ based on a random example of Example 1. Note that Lemma 3 indicates the
optimal τ (red line) is always obtained before the upper bound (green line). Thus, the searching region of τ

can be shrunk.

D.3 Proof of Lemma 4

Proof Without loss of generality, assume L(ε) ⊂ {0, · · · ,d − 1}. Denote lL = bσ̂(x)Ψ−1(ε) +

µ̂(x)c−1 and lU = d−σ̂(x)Ψ−1(ε)+ µ̂(x)e, ξl =P
(
Γ̂(x)= l

)
, ξ̃l = P̃

(
Γ̂(x)= l

)
, ξ9 j,l =P

(
Γ̂9 j(x)=
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l
)
, ξ̃9 j,l = P̃

(
Γ̂9 j(x) = l

)
, we treat

∣∣ω̃τ −ωτ

∣∣ and
∣∣ν̃τ −ντ

∣∣ separately. First,∣∣ω̃τ −ωτ

∣∣≤ ∑
l>lU

2
τ + l + γ +1

ωτ,l + ∑
0≤l<lL

2
τ + l + γ +1

ωτ,l + ∑
lL≤l<lU

2
τ + l + γ +1

∣∣∣ωτ,l− ω̃τ,l

∣∣∣
=: S1 +S2 +S3.

Next, we turn to bound S1 - S3 separately.

S1 = ∑
l>lU

2
τ + l + γ +1

τ

∑
s=1

q̂ js(x)P
(
Γ̂9 js(x) = l

)
≤ 2

τ + lU + γ +1

τ

∑
s=1

∑
l>lU

P
(
Γ̂9 js(x) = l

)
≤ 2

τ + lU + γ +1

τ

∑
s=1

(
1−P

(
Γ̂9 js(x)≤ lU

))
≤ 2τ

τ + lU + γ +1
P
(
Γ̂(x)> lU

)
,

where the last inequality follows from Lemma 16. For S2, we have

S2 ≤
2

τ + γ +1

τ

∑
s=1

∑
0≤l<lL

P
(
Γ̂9 js(x) = l

)
≤ 2τ

τ + γ +1
P
(
Γ̂(x)≤ lL +1

)
,

where the last inequality follows from Lemma 16. Next, according to Theorem 1.1 in Neammanee
(2005),

P
(
Γ̂(x)≤ lL +1

)
≤ P

(
Z ≤Ψ

−1(ε)
)
+

C0

σ̂2(x)
= ε +

C0

σ̂2(x)
,

and
P
(
Γ̂(x)> lU

)
≤ P

(
Z ≥Ψ

−1(1− ε)
)
+

C0

σ̂2(x)
= ε +

C0

σ̂2(x)
,

where Z is a random variable following the refined normal distribution. For S3,

S3 ≤
d−1

∑
l=0

2
τ + l + γ +1

τ

∑
s=1

q̂ js(x)|ξ̃9 j,l−ξ9 j,l| ≤
τ

∑
s=1

q̂ js(x)
d−1

∑
l=0

2
τ + l + γ +1

max
j=1,··· ,τ

|ξ̃9 j,l−ξ9 j,l|

≤min(µ̂(x),τ)
d−1

∑
l=0

2
τ + l + γ +1

max
s=1,··· ,τ

C0

σ̂2(x)− q̂ js(x)
(
1− q̂ js(x)

)
≤ 2C0 min(µ̂(x),τ)

σ̂2(x)−1/4

d

∑
l=1

1
τ + l + γ

=
2C0 min(µ̂(x),τ)

σ̂2(x)−1/4
(
Hτ+d+γ −Hτ+γ

)
≤ 2C0 min(µ̂(x),τ)

σ̂2(x)−1/4

(
log
(
1+

d
τ + γ

)
+1− 1

τ + γ

)
,

where HK = ∑
K
k=1 1/k is the harmonic number, and the last inequality follows from the fact that

log(K)+1/K ≤ HK ≤ log(K)+1. Taken together,∣∣ω̃τ −ωτ

∣∣≤ 4τ

τ + γ +1
(
ε +

C0

σ̂2(x)
)
+

2C0 min(µ̂(x),τ)
σ̂2(x)−1/4

(
log
(
1+

d
τ + γ

)
+

τ + γ−1
τ + γ

)
.

Similarly, for |ν̃τ −ντ |,

|ν̃τ −ντ | ≤
2γ

τ + γ
ε +

γC0

σ̂2(x)

(
log
(
1+

d
τ + γ−1

)
+1− 1

τ + γ−1

)
.

This completes the proof.
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D.4 Proof of Lemma 5

Proof With the same argument in the proof of Lemma 4, it suffices to consider

∣∣P̃(Γ̂(x) = l)− P̃(Γ̂9 j(x) = l)
∣∣≤ l

∑
l′=l−1

∣∣P̃(Γ̂(x)≤ l′)− P̃(Γ̂9 j(x)≤ l′)
∣∣.

Denote I = σ̂(x)−1(l +1/2− µ̂(x)) and I9 j = σ̂9 j(x)−1(l +1/2− µ̂9 j(x)), we have∣∣P̃(Γ̂(x)≤ l)− P̃(Γ̂9 j(x)≤ l)
∣∣= ∣∣Ψ(I)−Ψ9 j(I9 j)

∣∣
≤
∣∣Φ(I)−Φ(I9 j)

∣∣+ 1
6

∣∣η̂(x)(1− I2)φ(I)− η̂9 j(x)(1− I2
9 j)φ(I9 j)

∣∣=: T1 +
1
6

T2.

Next, we turn to treat T1 and T2 separately. Without loss generalization, we assume |I9 j| ≥ |I|, then

T1 ≤
∣∣∫ I9 j

I
φ(x)dx

∣∣≤ |I9 j− I|φ(I)

=
(
|σ̂−1(x)− σ̂

−1
9 j (x)|

∣∣l +1/2− µ̂(x)
∣∣+ σ̂

−1
9 j (x)

∣∣µ̂(x)− µ̂9 j(x)
∣∣)φ(I)

= σ̂
−1
9 j (x)(σ̂(x)− σ̂9 j(x))|I|φ(I)+ σ̂

−1
9 j (x)q̂ j(x)φ(I)

≤
q̂ j(x)(1− q̂ j(x))

σ̂9 j(x)
(
σ̂9 j(x)+ σ̂(x)

) |I|φ(I)+ 1√
2πσ̂9 j(x)

≤ 1
4
√

2π

( 1
2
√

e(σ̂2(x)−1/4)
+

4√
σ̂2(x)−1/4

)
,

where the last inequality follows the fact that |u|φ(u) ≤ 1/
√

2eπ and 0 ≤ φ(u) ≤ 1/
√

2π . For T2,
let g(u) = (1−u2)φ(u), we have

T2 ≤
∣∣η̂(x)(1− I2)φ(I)

∣∣+ ∣∣η̂9 j(x)(1− I2
9 j)φ(I9 j)

∣∣≤ 1√
2π

m̂3(x)
(σ̂2(x)−1/4)3/2 ,

where the last inequality follows from the fact that |g(u)| ≤ 1/
√

2π , and m̂3(x) = ∑
d
j=1 p̂ j(x)(1−

p̂ j(x))(1−2 p̂ j(x)). Taken together, using the same argument in the proof of Lemma 4, we have

∣∣ω̃b
τ − ω̃τ

∣∣≤ 1
4
√

2π

( 1/(2
√

e)
σ̂2(x)−1/4

+
4√

σ̂2(x)−1/4
+

4m̂3(x)
(σ̂2(x)−1/4)3/2

)(
log
(
1+

d
τ + γ

)
+1
)
.

Combining Lemma 4, the desirable result then follows.

D.5 Proof of Lemma 6

Proof Denote K+ = {1 ≤ k ≤ K : αk > 0}. We first prove the necessity. Suppose ∆∆∆∗k is a global
minimizer of Dicek(·), for k ∈ K+. Then for any ∆∆∆ = (∆∆∆1, · · · ,∆∆∆K), we have

mDiceγ(∆∆∆
∗) = ∑

k∈K+

αkDiceγ,k(∆∆∆
∗
k)≤ ∑

k∈K+

αkDiceγ,k(∆∆∆k),
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yields that ∆∆∆∗ is a global minimizer of mDiceγ(·). We next prove the sufficiency by contradiction.
Suppose ∆∆∆∗ is a global minimizer of mDiceγ(·), yet there exists k0 ∈K+ such that ∆∆∆∗k0

is not a mini-

mizer of Diceγ,k0(·). Thus, there exists a segmentation rule ∆̃∆∆ such that Diceγ,k0(∆̃∆∆)< Diceγ,k0(∆∆∆
∗
k0
),

then let ∆̃∆∆ = (∆∆∆∗1, · · · ,∆∆∆∗k0−1,∆̃∆∆k0 ,∆∆∆
∗
k0+1, · · · ,∆∆∆∗K)

mDiceγ(∆∆∆
∗) = ∑

k∈K+

αkDiceγ,k(∆∆∆
∗
k)> ∑

k∈K+

αkDiceγ,k(∆̃∆∆) = mDiceγ(∆̃∆∆),

which leads to contradiction of that ∆∆∆∗ is a global minimizer of mDiceγ(·). The desirable result then
follows.

D.6 Proof of Lemma 7

Proof Given a segmentation rule ∆∆∆(X) = (∆∆∆1(X), · · · ,∆∆∆K(X)), mDiceγ(·) can be rewritten as

mDiceγ(∆∆∆) =
K

∑
k=1

αkDiceγ,k(∆∆∆k(X)).

Similarly, it is equivalent to consider the point-wise minimization conditional on X = x:

∆∆∆
∗(x) = argmax

V∈{0,1}d×K
mDiceγ(V|x), s.t.

K

∑
k=1

Vk = 1d ,

mDiceγ(V|x) =
K

∑
k=1

αkDiceγ,k(Vk|x),

where Vk is the k-th column of V. According to (25), we have

mDiceγ(V|x) =
K

∑
k=1

αk ∑
j∈I(Vk)

∑
y9 j,k∈{0,1}d−1

y j,k=1

2P(Yk = yk|x)
τk +‖yk‖1 + γ

+
K

∑
k=1

αkE
(

γ

‖Y·k‖1 + τk + γ

)

=
K

∑
k=1

d

∑
j=1

R jk(τk)v jk +
K

∑
k=1

αkν(τk),

where v jk ∈ {0,1} is the segmentation indicator of the j-th feature under the class-k, and R jk(·) is a
reward function defined as:

R jk(τk) = αk ∑
y9 j,k∈{0,1}d−1

y j,k=1

2P(Yk = yk|x)
τk +‖yk‖1

.
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Now, suppose the optimal volume function τττ∗(x) = (τ∗1 (x), · · · ,τ∗K(x))ᵀ is given, then ν(τ∗k ) be-
comes a constant, and the point-wise maximization on mDiceγ is equivalent to:

max
V∈{0,1}d×K

K

∑
k=1

d

∑
j=1

R∗jkv jk,

subject to
d

∑
j=1

v jk = τ
∗
k (x),

K

∑
k=1

v jk = 1,

for k = 1, · · · ,K; for j = 1, · · · ,d, (28)

where R∗jk = R jk(τ
∗
k (x)) is the reward under τ∗k (x). Note that (28) is the formulation for the assign-

ment problem (Kuhn, 1955). This completes the proof.

D.7 Proof of Lemma 9

Proof For simplicity, we construct a counter example based on γ = 0 and d = 2, that is, Y=(Y1,Y2)
ᵀ

and p(x) = (p1(x), p2(x))ᵀ. Without loss generality, we assume p1(x)> p2(x).
First, we derive the Bayes rule in Theorem 1 for this case. Note that it suffices to compare the

scores for τ = 1 (v = (1,0)ᵀ) and τ = 2 (v = (1,1)ᵀ).

Dice((1,0)ᵀ|x) = p1(x)−
1
3

p1(x)p2(x), Dice((1,1)ᵀ|x) = 2
3
(p1(x)+ p2(x))−

1
3

p1(x)p2(x).

Therefore, the Bayes rule for Dice optimal segmentation is:

δδδ
∗(x) = (1,0)ᵀ, if

1
2

p1(x)> p2(x), δδδ
∗(x) = (1,1)ᵀ, otherwise.

Now, we check the Dice-calibrated for classification-calibrated losses. For example, p1(x) =
0.45 and p2(x) = 0.44, then

δ̃δδ (x) = 1(p(x)≥ 0.5) = (0,0)ᵀ 6= (1,1)ᵀ = δδδ
∗(x),

where the first equality follows from the definition of a classification-calibrated loss: the decision
rule must agree with the conditional probabilities. Therefore, Dice(δ̃δδ ) < Dice(δδδ ∗) yields that a
classification-calibrated loss with thresholding at 0.5 is not Dice-calibrated.

D.8 Proof of Lemma 10

Proof By the definition of a strictly proper loss, see Gneiting and Raftery (2007) and references
herein, and the formulation in (24), we have q̂(x) = p(x) =

(
P(Y1 = 1|X = x), · · · ,P(Yd = 1|X =

x)
)ᵀ. Then the estimation of τ̂(x) and δ̂δδ (x) agrees with the definition of τ∗(x) and δδδ ∗(x). This

completes the proof.
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D.9 Proof of Theorem 11

Proof First, we consider point-wise approximation of the Dice metric under probabilities p and q̂.
For any δδδ , such that δ j(x) = 1 for j = j1, · · · , jτ , and δ j(x) = 0 otherwise. Define

D̂iceγ(δδδ (x)|X = x) :=
τ

∑
s=1

d−1

∑
l=0

2q̂ js(x)P
(
Γ̂9 js(x) = l

)
τ + l + γ +1

+
d

∑
l=0

γP
(
Γ̂(X) = l

)
τ + l + γ

=
τ

∑
s=1

2q̂ js(x)E
( 1

τ + γ +1+ Γ̂9 js(x)

)
+ γE

( 1

τ + γ + Γ̂(x)

)
Diceγ(δδδ (x)|X = x) :=

τ

∑
s=1

d−1

∑
l=0

2p js(x)P
(
Γ9 js(x) = l

)
τ + l + γ +1

+
d

∑
l=0

γP
(
Γ(X) = l

)
τ + l + γ

=
τ

∑
s=1

2p js(x)E
( 1

τ + γ +1+Γ9 js(x)
)
+ γE

( 1
τ + γ +Γ(x)

)
.

Now, we have∣∣D̂iceγ(δδδ (x)|X = x)−Diceγ(δδδ (x)|X = x)
∣∣

≤
∣∣∣2 τ

∑
s=1

(
q̂ js(x)E

( 1

τ + γ +1+ Γ̂9 js(x)

)
− p js(x)E

( 1
τ + γ +1+Γ9 js(x)

))∣∣∣
+ γ

∣∣∣E( 1

τ + γ + Γ̂(x)

)
−E
( 1

τ + γ +Γ(x)
)∣∣∣

≤
∣∣∣2 τ

∑
s=1

q̂ js(x)
(
E
( 1

τ + γ +1+ Γ̂9 js(x)

)
−E
( 1

τ + γ +1+Γ9 js(x)
))∣∣∣

+
∣∣∣2 τ

∑
s=1

(
q̂ js(x)− p js(x)

)
E
( 1

τ + γ +1+Γ9 js(x)
))∣∣∣+ γ

∣∣∣E( 1

τ + γ + Γ̂(x)

)
−E
( 1

τ + γ +Γ(x)
)∣∣∣

≤ 2
τ

∑
s=1

∣∣∣E(Γ9 js(x)− Γ̂9 js(x)
)

(τ + γ +1)2

∣∣∣+2
τ

∑
s=1

∣∣q̂ js(x)− p js(x)
∣∣

τ + γ +1
+ γ

∣∣∣E(Γ(x)− Γ̂(x)
)

(τ + γ)2

∣∣∣
≤ 2

τ

∑
s=1

|‖q̂(x)‖1−‖p(x)‖1|+ |q̂ js(x)− p js(x)|
(τ + γ +1)2 +2

τ

∑
s=1

∣∣q̂ js(x)− p js(x)
∣∣

τ + γ +1
+ γ
|‖q̂(x)‖1−‖p(x)‖1|

(τ + γ)2

≤
( 3

2(1+ γ)
+ c1

)
‖q̂(x)−p(x)‖1,

where the second inequality follows from the triangle inequality, c1 = 0 if γ = 0, c1 = 1/γ if γ > 0.
Therefore,

Diceγ(δδδ
∗)−Diceγ(δ̂δδ ) = Diceγ(δδδ

∗)− D̂iceγ(δδδ
∗)+ D̂iceγ(δδδ

∗)− D̂iceγ(δ̂δδ )+ D̂iceγ(δ̂δδ )−Diceγ(δ̂δδ )

≤ Diceγ(δδδ
∗)− D̂iceγ(δδδ

∗)+ D̂iceγ(δ̂δδ )−Diceγ(δ̂δδ )

≤ EX
∣∣D̂iceγ(δδδ

∗(X)|X)−Diceγ(δδδ
∗(X)|X)

∣∣+EX
∣∣D̂iceγ(δ̂δδ (X)|X)−Diceγ(δ̂δδ (X)|X)

∣∣
≤
( 3

1+ γ
+2c1

)
E‖q̂(X)−p(X)‖1,
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where the first inequality follows from the definition of δ̂δδ such that D̂iceγ(δδδ
∗)− D̂iceγ(δ̂δδ )≤ 0. This

completes the proof.

D.10 Proof of Corollary 12

Proof According to the Pinsker’s inequality, we have

EX‖q̂(X)−p(X)‖1 =
d

∑
j=1

EX|q̂ j(X)− p j(X)| ≤
d

∑
j=1

EX

√
1
2

KL
(
P(Yj|X), P̂(Yj|X)

)
≤

√√√√d
2

d

∑
j=1

EXKL
(
P(Yj|X), P̂(Yj|X)

)
=

√
d
2

√
E
(

lCE
(
Y, q̂(X)

))
−E
(

lCE
(
Y,p(X)

))
,

where the last inequality follows from the Cauchy-Schwarz inequality and the Jensen’s inequality,
and KL

(
P(Yj|x), P̂(Yj|x)

)
:= p j(x) log

(
p j(x)/q̂ j(x)

)
+(1− p j(x)) log((1− p j(x))/(1− q̂ j(x))) is

the KL divergence between P(Yj|x) under p and P̂(Yj|x) under q̂. The desirable result then follows
by combining (19) in Theorem 11. This completes the proof.

D.11 Proof of Lemma 13

Proof Denote yI = (y j : j ∈ I)ᵀ, y9I = (y j : j /∈ I)ᵀ, and let I(v) = I(δδδ (x)) = { j : v j = 1} be a
segmentation index set, and ‖v‖1 = τ . Again, consider the point-wise maximization:

δδδ
∗(x) = argmax

v∈{0,1}d
IoUγ(v|x),

where IoUγ(v|x) is defined as

IoUγ(v|x) = E
( ‖YI(v)‖1 + γ

‖Y9I(v)‖1 +‖v‖1 + γ

∣∣∣X = x
)

= E
( ‖YI(v)‖1

‖Y9I(v)‖1 + τ + γ

∣∣∣X = x
)
+E
(

γ

‖Y9I(v)‖1 + τ + γ

∣∣∣X = x
)

=
(
E(‖YI(v)‖1|X = x)+ γ

)
E
( 1
‖Y9I(v)‖1 + τ + γ

∣∣∣X = x
)
,

where the last equality follows from the fact that YI(v) ⊥ Y9I(v) | X. Fix τ = ‖v‖1. The first term is
maximized at v∗ = (v∗1, · · · ,v∗d) with

v∗j =

{
1 if p j(x) ranks top τ,

0 otherwise,
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and the maximum value is ∑ j∈Jτ (x) p j(x)+ γ . The second term is

E
( 1
‖Y9I(v)‖1 + τ + γ

∣∣∣X = x
)
= E

( 1
Γ9I(v)(x)+ τ + γ

)
.

Given I(v) 6= I(v∗), we have Γ9I(v)(x) = ∑
d−τ

j=1 B j and Γ9I(v∗)(x) = ∑
d−τ

j=1 B∗j , where B j and B∗j are
independent Bernoulli variables with success probability p j ≥ p∗j , respectively, for j = 1, · · · ,d−
τ . By Theorem 2.2.9 of Belzunce et al. (2015), Γ9I(v)(x) is stochastically greater than Γ9I(v∗)(x),
namely

P(Γ9I(v)(x)≤ ς)≤ P(Γ9I(v∗)(x)≤ ς)

for any ς ∈ R. Thus,

E
( 1

Γ9I(v)(x)+ τ + γ

)
=
∫

∞

0
P
( 1

Γ9I(v)(x)+ τ + γ
≥ ς

)
dς

≤
∫

∞

0
P
( 1

Γ9I(v∗)(x)+ τ + γ
≥ ς

)
dς = E

( 1
Γ9I(v∗)(x)+ τ + γ

)
.

As a result, the second term is also maximized at v∗. Therefore, v∗ maximizes IoUγ(v|x) for a fixed
τ . The desired result follows.

D.12 Proof of Lemma 14

Proof Without loss of generality, assuming q̂1(x)≥ ·· · ≥ q̂d(x) are fixed, then for any τ ′ > τ ,

ϖτ(x)−ϖτ ′(x)

=
( τ

∑
j=1

q̂ j(x)+ γ

)
E
( 1

Γ̂9Jτ (x)+ τ + γ

)
−
( τ ′

∑
j=1

q̂ j(x)+ γ

)
E
( 1

Γ̂9J
τ ′ (x)+ τ ′+ γ

)
=
( τ

∑
j=1

q̂ j(x)+ γ

)
E
( 1

Γ̂9J
τ ′ (x)+∑

τ ′
j=τ+1 B̂ j(x)+ τ + γ

)
−
( τ ′

∑
j=1

q̂ j(x)+ γ

)
E
( 1

Γ̂9J
τ ′ (x)+ τ ′+ γ

)
= E

((∑τ
j=1 q̂ j(x)+ γ)(Γ̂9J

τ ′ (x)+ τ ′+ γ)− (∑τ ′
j=1 q̂ j(x)+ γ)(Γ̂9J

τ ′ (x)+∑
τ ′
j=τ+1 B̂ j(x)+ τ + γ)

(Γ̂9J
τ ′ (x)+∑

τ ′
j=τ+1 B̂ j(x)+ τ + γ)(Γ̂9J

τ ′ (x)+ τ ′+ γ)

)
= E

( (∑τ
j=1 q̂ j(x)+ γ)(τ ′− τ−∑

τ ′
j=τ+1 B̂ j(x))

(Γ̂9J
τ ′ (x)+∑

τ ′
j=τ+1 B̂ j(x)+ τ + γ)(Γ̂9J

τ ′ (x)+ τ ′+ γ)

)
−E
(

∑
τ ′
j=τ+1 q̂ j(x)

Γ̂9J
τ ′ (x)+ τ ′+ γ

)
≥

(∑τ
j=1 q̂ j(x)+ γ)(τ ′− τ−∑

τ ′
j=τ+1 q̂ j(x))

((d− τ ′)q̂τ+1(x)+ τ ′+ γ)2 −
∑

τ ′
j=τ+1 q̂ j(x)

τ ′+ γ

≥
(∑τ

j=1 q̂ j(x)+ γ)(τ ′− τ)(1− q̂τ+1(x))
((d− τ ′)q̂τ+1(x)+ τ ′+ γ)2 − (τ ′− τ)q̂τ+1(x)

τ ′+ γ
≥ 0,

whenever
τ

∑
j=1

q̂ j(x)+ γ ≥ q̂τ+1(x)
1− q̂τ+1(x)

max
τ ′>τ

((d− τ ′)q̂τ+1(x)+ τ ′+ γ)2

τ ′+ γ

=
q̂τ+1(x)

1− q̂τ+1(x)
max

(
d + γ,

((d− τ)q̂τ+1(x)+ τ + γ)2

τ + γ

)
.
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This completes the proof.

D.13 Proof of Theorem 15

Proof Similar to the proof of Theorem 11, we consider point-wise approximation of IoU metric
under p and q̂. For any δ such that δ j(x) = 1 for j ∈ Jτ(x) and δ j(x) = 0 otherwise. Define

ÎoUγ(δδδ (x)|X = x) :=
( τ

∑
s=1

q̂ js(x)+ γ

) d−τ

∑
l=0

P
(
Γ̂9Jτ (x)(x) = l

)
τ + l + γ

=
( τ

∑
s=1

q̂ js(x)+ γ

)
E
( 1

τ + γ + Γ̂9Jτ (x)(x)

)
,

IoUγ(δδδ (x)|X = x) :=
( τ

∑
s=1

p j(x)+ γ

) d−τ

∑
l=0

P
(
Γ9Jτ (x)(x) = l

)
τ + l + γ

=
( τ

∑
s=1

p j(x)+ γ

)
E
( 1

τ + γ +Γ9Jτ (x)(x)
)
.

We have∣∣ÎoUγ(δδδ (x)|X = x)− IoUγ(δδδ (x)|X = x)
∣∣

≤
∣∣∣ τ

∑
s=1

(
q̂ js(x)E

( 1

τ + γ + Γ̂9Jτ (x)(x)

)
− p js(x)E

( 1
τ + γ +Γ9Jτ (x)(x)

))∣∣∣
+ γ

∣∣∣E( 1

τ + γ + Γ̂9Jτ (x)(x)

)
−E
( 1

τ + γ +Γ9Jτ (x)(x)
)∣∣∣

≤
∣∣∣ τ

∑
s=1

q̂ js(x)
(
E
( 1

τ + γ +1+ Γ̂9Jτ (x)(x)

)
−E
( 1

τ + γ +1+Γ9Jτ (x)(x)
))∣∣∣

+
∣∣∣ τ

∑
s=1

(
q̂ js(x)− p js(x)

)
E
( 1

τ + γ +1+Γ9Jτ (x)(x)
))∣∣∣

+ γ

∣∣∣E( 1

τ + γ + Γ̂9Jτ (x)(x)

)
−E
( 1

τ + γ +Γ9Jτ (x)(x)
)∣∣∣

≤
τ

∑
s=1

∣∣∣E(Γ9Jτ (x)(x)− Γ̂9Jτ (x)(x)
)

(τ + γ +1)2

∣∣∣+ τ

∑
s=1

∣∣q̂ js(x)− p js(x)
∣∣

τ + γ +1
+ γ

∣∣∣E(Γ9Jτ (x)(x)− Γ̂9Jτ (x)(x)
)

(τ + γ)2

∣∣∣
≤

τ

∑
s=1

‖q̂(x)−p(x)‖1

(τ + γ +1)2 +
τ

∑
s=1

∣∣q̂ js(x)− p js(x)
∣∣

τ + γ +1
+ γ
‖q̂(x)−p(x)‖1

(τ + γ)2

≤C2‖q̂(x)−p(x)‖1,

where C2 is a constant that may depend on γ . Then the rest of the proof follows from the same
arguments for Theorems 11 and 12 with Dice replaced by IoU, and is omitted.
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Appendix E. Auxiliary Lemmas

Lemma 16 Suppose Γ = ∑
d
j=1 B j is a Poisson binomial random variable, and B j( j = 1, · · · ,d) are

independent Bernoulli trials with success probabilities p1, · · · , pd . Then, for any j = 1, · · · ,d, we
have

P
(
Γ9 j ≤ l−1

)
≤ P

(
Γ≤ l

)
≤ P

(
Γ9 j ≤ l

)
,

where Γ9 j = ∑ j′ 6= j B j′ .

Proof Note that Γ = Γ9 j +B j, then

P(Γ≤ l) = P(Γ9 j +B j ≤ l) = P(Γ9 j ≤ l | B j = 0)(1− p j)+P(Γ9 j ≤ l−1 | B j = 1)p j

= P(Γ9 j ≤ l)(1− p j)+P(Γ9 j ≤ l−1)p j,

where the last equality follows from the fact that B j ⊥ B j′ for j 6= j′. The desirable result then
follows since P(Γ9 j ≤ l)≥ P(Γ9 j ≤ l−1).

Lemma 17 Suppose Γ = ∑
d
j=1 B j is a Poisson binomial random variable, and B j( j = 1, · · · ,d) are

independent Bernoulli trials with success probabilities p1 ≥ p2 ≥ ·· · ≥ pd . Then, for an arbitrary
positive non-decreasing sequence ζl (l = 0, · · · ,d−1),

Q j =
d−1

∑
l=0

1
ζl
P(Γ9 j = l)

is a non-increasing function with respect to j = 1, · · · ,d.

Proof Note that for any j′ 6= j, Γ9 j = ∑i6= j Bi = ∑i6= j, j′ Bi +B j′ =: Γ9 j j′ +B j′ . Denote ξ9 j j′,l =
P
(
Γ9 j j′ = l

)
, we have

P
(
Γ9 j = l

)
= (1− p j′)ξ9 j j′,l + p j′ξ9 j j′,l−1.

Then,

Q j−Q j′ =
d

∑
l=0

1
ζl

(
(1− p j′)ξ9 j j′,l + p j′ξ9 j j′,l−1− (1− p j)ξ9 j j′,l− p jξ9 j j′,l−1

)
= (p j− p j′)

( d

∑
l=0

1
ζl

ξ9 j j′,l−
d

∑
l=0

1
ζl

ξ9 j j′,l−1

)
= (p j− p j′)

( d

∑
l=0

( 1
ζl
− 1

ζl+1
)ξ9 j j′,l

)
,

where the first equality follows from the fact that P(Γ9 j = d) = 0, and the last equality follows from
the fact that ξ9 j j′,l = 0 for l < 0 or l = d. Hence, we have Q j−Q j′ has the same sign with p j− p j′ ,
and the desirable result then follows.

Lemma 18 Let Γ be a Poisson-binomial random variable with the success probability (p j) j=1,··· ,d ,
then for any τ ≥ 1, we have

(
d

∑
j=1

p j + τ)−1 ≤ E
( 1

Γ+ τ

)
≤ (

d +1
d

d

∑
j=1

p j + τ−1)−1.
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Proof According to the corollary in Chao and Strawderman (1972), we have

E
( 1

Γ+ τ

)
=
∫ 1

0
tτ−1PΓ(t)dt =

∫ 1

0
tτ−1( d

∏
j=1

(1− p j + p jt)
)
dt ≤

∫ 1

0
tτ−1(1− p̄+ p̄t)ddt

= E
( 1

Λ+ τ

)
≤ (

d +1
d

d

∑
j=1

p j + τ−1)−1,

where p̄ = d−1
∑

d
j=1 p j, the first inequality follows from the inequality of arithmetic and geometric

means, the last equality follows from Section 3.1 of Chao and Strawderman (1972), and the last
inequality follows from (25) in Wooff (1985). This completes the proof.
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