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Abstract

The phenomenon of benign overfitting, where a predictor perfectly fits noisy training data
while attaining near-optimal expected loss, has received much attention in recent years,
but still remains not fully understood beyond well-specified linear regression setups. In
this paper, we provide several new results on when one can or cannot expect benign over-
fitting to occur, for both regression and classification tasks. We consider a prototypical
and rather generic data model for benign overfitting of linear predictors, where an arbi-
trary input distribution of some fixed dimension k is concatenated with a high-dimensional
distribution. For linear regression which is not necessarily well-specified, we show that
the minimum-norm interpolating predictor (that standard training methods converge to)
is biased towards an inconsistent solution in general, hence benign overfitting will generally
not occur. Moreover, we show how this can be extended beyond standard linear regression,
by an argument proving how the existence of benign overfitting on some regression prob-
lems precludes its existence on other regression problems. We then turn to classification
problems, and show that the situation there is much more favorable. Specifically, we prove
that the max-margin predictor (to which standard training methods are known to converge
in direction) is asymptotically biased towards minimizing a weighted squared hinge loss.
This allows us to reduce the question of benign overfitting in classification to the simpler
question of whether this loss is a good surrogate for the misclassification error, and use it
to show benign overfitting in some new settings.
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1. Introduction

The ability of learning algorithms to succeed despite overfitting is a curious phenomenon
in statistical learning, which has received much interest in the past few years. A particular
version of it, commonly denoted as “benign overfitting” (Bartlett et al., 2020), refers to
situations which combine the following: (1) The trained predictor interpolates the data, in
the sense that it achieves perfect prediction accuracy on the training data; (2) No predictor
in the relevant hypothesis class can achieve perfect accuracy w.r.t. the underlying data
distribution; yet (3) The trained predictor has near-optimal accuracy w.r.t. the underlying
data distribution. The combination of (1) and (2) implies that the predictor overfits (in the
sense that the training error is significantly smaller than the test error), and (3) implies that
this overfitting is “benign” (in the simple sense that the predictor still performs well). This
phenomenon is intriguing, because some version of it appears to occur frequently in large-
scale learning problems, yet it cannot be easily explained using standard learning theoretic
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tools such as uniform convergence (which requires the performance on the training data
and the underlying distribution to be similar). This has led to a flurry of papers in the past
few years, attempting to understand why and when benign overfitting occurs, and whether
uniform convergence can or cannot explain its occurence (see discussion of related work
below).

So far, most of the theoretical work on benign overfitting has focused on linear (or kernel)
regression problems using the square loss, with some works extending this to classification
problems. The relatively most well-understood situation is plain linear regression in a
well-specified setting, where we are training a linear predictor x 7→ x>w, w ∈ Rd with
respect to the square loss, and when the outputs y satisfy y = x>w∗ + ξ for some w∗ ∈
Rd, where ξ is zero-mean noise. In this setting, we know that benign overfitting occurs
(roughly speaking) whenever the dimension of the input x is sufficiently large, and the
distribution has many directions of small (but non-zero) variance that the trained predictor
can utilize to perfectly fit the training data, without significantly affecting the distribution
of the predictions on new samples. A helpful feature of this setting is that there is a
closed-form expression for the predictor returned by standard gradient-based methods, when
trained to convergence on the average square loss – namely, the minimum-norm interpolating
predictor. For classification, the situation is more complicated, because the predictor that
standard gradient-based methods converge to with appropriate losses (namely, the max-
margin predictor) does not have a closed-form expression in general. Thus, most recent
works on classification focused on more specific setups (as discussed in the related work
section below).

In this paper, we provide several new results on benign overfitting, which can be used to
analyze when benign overfitting may – or may not – occur in settings beyond those studied
so far in the literature. We focus on a prototypical data model for benign overfitting, where
for some fixed integer k, the input distribution in Rd is composed of an arbitrary distribution
on the first k coordinates, and a high-dimensional distribution on the last d−k coordinates
(in the sense that i.i.d. samples from that distribution are approximately orthogonal). As
we discuss later on, such a setting is essentially necessary for benign overfitting to occur,
even for well-specified linear regression. In this setting, we study benign overfitting by
considering the asymptotic consistency of the predictor learned by standard gradient-based
methods, as both d and the sample size m diverge to infinity, and d increases sufficiently
faster than m. Our results can be informally summarized as follows:

• Beginning with linear regression, we show that once the distribution is not well-specified,
the minimum-norm interpolating predictor (a.k.a. min-norm predictor) returned by stan-
dard training methods will generally not be consistent, and hence benign overfitting will
generally not occur. A bit more concretely, in our data model a consistent predictor ŵ
should be such that asymptotically,

ŵ|k ≈
(
E
[
xx>

]−1
)
k

E[yx] , (1)

where v|k of a vector v denote its first k coordinates, and
(
E
[
xx>

]−1
)
k

refers to the first

k rows of the inverse covariance matrix. In other words, we expect the first k coordinates
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to converge to the first k coordinates of the least-squares solution w.r.t. the underlying
distribution. In contrast, we prove that the min-norm predictor asymptotically satisfies

ŵ|k ≈ E

[
x|kx

>
|k

‖x|d−k‖2

]−1

E
[

yx|k

‖x|d−k‖2

]
, (2)

where x|d−k are the last d − k coordinates of x. Clearly, the expressions in Eq. (1) and
Eq. (2) are generally not the same, except in some special cases (an important one, as
we shall see, being a well-specified setting). Thus, we argue that one should not expect
benign overfitting to generally occur in linear regression with the square loss.

• We show that benign overfitting will generally not occur in some natural extensions of
linear regression with the square loss, even in a well-specified setting. These include (1)
regression with generalized linear models (or equivalently, with a single neuron predictor);
and (2) regression with losses other than the square loss. To do so, we present a new
observation that may be of independent interest. Roughly speaking, we argue that any
interpolating predictor can be seen as returning the optimum of the average loss, but
simultaneously, it is also the optimum of many other types of average loss objectives,
which reflect rather different learning problems with different optimal predictors. The
trained predictor does not “know” which of these learning problems it is actually solving,
so benign overfitting (with the trained predictor achieving low expected loss) can only
occur in some of them. As a result, benign overfitting is implicitly “biased” towards
certain learning problems, and its occurence in one problem precludes its occurence in
another. We note that this is somewhat reminiscent of the paper Muthukumar et al.
(2021), which pointed out that interpolating predictors can be insensitive to the type of
loss function used for training, but we take this in a rather different direction.

• Having discussed regression problems, we turn to binary classification problems (where
our goal is to minimize misclassification error), and show that the situation there is
rather different. Concretely, we consider linear predictors under the same data model as
before, and the max-margin predictor ŵ (to which gradient-based methods are known
to asymptotically converge in direction). Perhaps surprisingly, we prove that ŵ has a
rather clean asymptotic characterization: Its first k coordinates asymptotically minimize
the expectation of a (weighted) squared hinge loss on those coordinates,

ŵ|k ≈ arg min
v∈Rk

E

[
[1− yx>|kv]2+

‖x|d−k‖2

]
,

(where [z]+ := max{0, z}), and the last d− k coordinates of ŵ are asymptotically imma-
terial. Thus, we get that the existence of benign overfitting in our model is reduced to a
simpler question: Whether the data distribution is such that minimizing the expectation
of this weighted squared hinge loss is a good surrogate for minimizing misclassification
error. Although not true in the worst case, it is reasonable to assume that it will be true in
many cases, because this loss still encourages the sign of x>|kŵk to accord with the output
y. This is in contrast to regression, in which our results suggest that benign overfitting
is more brittle. Also, we note that unlike many previous works on benign overfitting in

3



Shamir

classification, our result does not require that the distribution is such that the min-norm
and max-margin predictors coincide. Based on this result, we study more specifically
the case of linearly separable distributions with label noise, and provide a few positive
results: For example, for just about any choice of distribution on the first k coordinates,
we will have benign overfitting at least for some positive amount of label noise. Moreover,
under some stronger assumptions on the input distribution (e.g., a mixture of symmetric
distributions), we will have benign overfitting for any non-trivial level of label noise.

Overall, we hope that the results provided in this paper will allow us to understand the
phenomenon of benign overfitting beyond the settings studied so far.

The paper is structured as follows: After discussing related work below, we study linear
regression with the square loss in Section 3, and other regression settings in Section 4. We
then turn to classification problems in Section 5, and conclude with a discussion in Section 6.
The formal proofs of all our results appear in Appendix A.

1.1 Related Work

Papers such as (Zhang et al., 2017) popularized the notion that modern learning systems
(such as deep learning) tend to perfectly fit the training data, while still performing well on
test data. The literature on the theory of this phenomenon is by now very large, and we
will only discuss here the papers most relevant to our work (see for example Belkin (2021)
for a more comprehensive survey).

A line of works (e.g., Belkin et al. (2018a,b,b, 2019b); Mei and Montanari (2019); Liang
and Rakhlin (2020); Belkin et al. (2019a)) showed that this phenomenon is not reserved
to deep learning, and occurs already in linear and kernel learning. More recently, papers
such as Bartlett et al. (2020); Hastie et al. (2019); Belkin et al. (2020) studied conditions
for benign overfitting in linear regression with the square loss in a well-specified setting.
In particular, Bartlett et al. (2020) considered general distributions, and showed how the
occurrence of benign overfitting can be characterized in terms of the eigenvalues of the
input covariance matrix, and how having many low-variance directions is in some sense
necessary for benign overfitting to occur. Koehler et al. (2021); Zhou et al. (2021) showed
how these results can be recovered and extended from a uniform convergence perspective,
again for well-specified linear regression. Other works which study benign overfitting and
its relationship to classical learning theory include Nagarajan and Kolter (2019); Negrea
et al. (2020); Yang et al. (2021); Bartlett and Long (2021); Bachmann et al. (2021); Koehler
et al. (2021); Zhou et al. (2020); Muthukumar et al. (2021).

Understanding benign overfitting in classification problems has been more challenging,
since the max-margin predictor to which gradient-based methods are known to converge
to (in direction) does not have a closed-form solution. Many of the existing works focus
on settings where the max-margin predictor and the (closed-form) least squares predictor
coincide (as originally argued in Muthukumar et al. (2021)). Wang and Thrampoulidis
(2021) and Cao et al. (2021) use this to study a setting where the two classes are a symmetric
mixture of Gaussian (or subgaussian) distributions, without label noise. Chatterji and Long
(2021) studies a setting where the two classes are a mixture of two product distributions,
and with label noise, by studying the trajectory of gradient descent on the training data.
Montanari et al. (2019) considers classification problem where the inputs are Gaussian, and
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the labels are generated according to a logistic link function, and derives a formula for the
asymptotic prediction error of the max-margin classifier, in a setting where the ratio of the
dimension and the sample size converges to some fixed positive limit. Recently, Frei et al.
(2022) managed to prove the existence of benign overfitting in two-layer neural networks
with smoothed leaky ReLU activations, assuming the data comes from a mixture of two well-
separated distributions. Other works studying benign overfitting and classification include
Liang and Recht (2021); McRae et al. (2021); Poggio and Liao (2019); Thrampoulidis (2020);
Hu et al. (2021); Wang et al. (2021).

2. Preliminaries

Notation. We use bold-faced letter to denote vectors, and assume that they are in column
form unless specified otherwise. Given a vector w ∈ Rd, we let wi denote its i-th coordinate,
w|k ∈ Rk to denote its first k coordinates, and w|d−k ∈ Rd−k to denote its last d − k
coordinates. We also use this notation when the vector already has a subscript for a different
purpose, e.g. xi|k refers to the first k coordinates of xi. Given two vectors u,v of the
same size, u � v means that ui ≥ vi for all i. We use [·]+ to denote the ReLU function
z 7→ max{0, z}. Given a vector v, [v]+ refers to applying the ReLU function entry-wise. 1(·)
to denote the indicator function. [m] is shorthand for {1, . . . ,m}. I denotes the identity
matrix (whose size should be clear from context). Given a matrix A, Ai,j refers to its
entry at row i column j, λmin(A) refers to its minimal eigenvalue, Tr(A) to its trace, ‖A‖
refers to its spectral norm, and ‖A‖F refers to the Frobenius norm. It is well known that
‖A‖ ≤ ‖A‖F .

Convergence in probability and the law of large numbers. For the asymptotic
results in our paper, we will often consider a sequence of real-valued random variables {Xd}
indexed by d, and say that they converge in probability to some fixed number a (or Xd

P→ a)

if Pr(|Xd − a| ≥ ε)
d→∞−→ 0 for all ε ≥ 0. Note that this slightly extends the usual notion

of convergence in probability, in that we do not require the random variables to share the
same probability space. In addition, we will often utilize the following version of the (weak)
law of large numbers for such sequences:

Lemma 1 If supd E[X2
d ] <∞, then for any sequence of positive integers {md}∞d=1 diverging

to ∞, if we let {Xd,i}mdi=1 be md i.i.d. copies of Xd, then 1
md

∑md
i=1Xd,i − E[Xd]

P→ 0.

The proof immediately follows from Chebyshev’s inequality, which implies that since E[X2
d ] <

σ2 for some finite σ2 and any d, then Pr
(∣∣∣ 1

md

∑md
i=1Xd,i − E[Xd]

∣∣∣ ≥ ε) ≤ σ2

m2
dε

2

d→∞−→ 0 for

all ε > 0. This law of large numbers trivially extends to vector-valued and matrix-valued
random variables of some fixed dimension k.

The min-norm predictor. In linear regression problems with the square loss, we
attempt to find a predictor w minimizing the expected squared loss E(x,y)[(x

>w − y)2]. It
is well-known that if we attempt this by running standard gradient-based methods on the
empirical risk objective 1

m

∑m
i=1(x>i w − yi)2 (for some training sample {(xi, yi)}mi=1), and

the dimension is at least m, these methods will generally converge to the (unique) point

ŵ := arg min
w∈Rd

‖w‖ :
1

m

m∑
i=1

(x>i w − yi)2 = 0
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(e.g., Zhang et al. (2021)). This predictor is also referred to as the minimum-norm inter-
polating predictor, or simply the min-norm predictor. For our purposes, we will need a
somewhat more general result. Concretely, instead of the square loss specifically, suppose
we have some loss function `(x>w; y), which for any y is minimized at some unique pre-
diction value x>w. As before, suppose that we attempt to minimize the expected loss by
running a standard gradient-based method over the empirical risk objective, which is now
1
m

∑m
i=1 `(x

>
i w; yi), assuming we converge to a globally minimal solution ŵ. The following

proposition shows that under a mild assumption, ŵ is still the minimum-norm interpolating
predictor:

Proposition 2 Fix a function L(w) = 1
m

∑m
i=1 `(x

>
i w; yi), where each `(·; yi) is a non-

negative continuous function which equals 0 at some unique point denoted as `−1
yi (0). Suppose

we run an arbitrary iterative training method, that converges to a point ŵ such that L(ŵ) =
0 and ŵ ∈ span{x1, . . . ,xm}. Then ŵ is the unique point in arg minw ‖w‖ : L(w) = 0.

Since gradient-based methods rely on iterative updates along the gradient of L(·) (or gra-
dients of single loss functions `(x>i w; yi)), they generally remain in span{x1, . . . ,xm} as-
suming we initialize at 0, and thus the theorem implies that such methods will converge to
minimum-norm solutions that minimize the empirical risk.

Benign overfitting for regression. For linear prediction problems, benign overfitting
is inherently a high-dimensional phenomenon (since when the dimension is fixed, uniform
convergence generally occurs). Thus, the most appropriate way to study benign overfitting
is to consider a sequence of input distributions over Rd (indexed by d), and study the
performance of the learned predictors as both d and the training set size diverge to infinity.
Concretely, for the setting studied in the previous paragraph, a standard way to formally
define benign overfitting is as follows:

Definition 3 (Benign Overfitting for the min-norm predictor) Given a non-negative
function `(p; y) on R2, a sequence of distributions {Dd}∞d=k+1 on Rd×R satisfies benign over-
fitting, if there exists a monotonically increasing sequence of positive integers {md}∞d=k+1

such that the following holds:

• For any sufficiently large d, if we sample md samples {(xi, yi)}mdi=1 i.i.d. from Dd, then
with probability approaching 1, 1

md

∑md
i=1 `(x

>
i w; yi)) = 0 for some w ∈ Rd.

• Picking ŵd = arg minw ‖w‖ : 1
m

∑md
i=1 `(x

>
i w; yi)) = 0 to be the min-norm predictor,

and defining Rd(w) := E(x,y)∼Dd
[
`(x>w; y))

]
, it holds that infd infw∈Rd Rd(w) > 0 as

well as Rd(ŵd)− infw∈Rd Rd
P−→ 0.

In other words, the min-norm predictor ŵd is asymptotically optimal, in the sense that its
expected loss converges to the best possible expected loss among linear predictors, as the
sample size and d diverge to infinity at an appropriate rate. Moreover, this holds despite
overfitting, in the sense that the training error (which is 0) does not converge to the (strictly
positive) expected loss.

The max-margin predictor, and benign overfitting for classification. In linear
binary classification problems, we consider distributions where the examples (x, y) are such
that y ∈ {−1,+1}, and the predictor (specified by a vector w) is x 7→ sign(x>w). In this
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case, we generally care only about the direction of the predictor w, and its expected mis-
classification error, namely Pr(x,y)(yx

>w ≤ 0). Whereas in regression, standard methods
converge to the minimum-norm interpolating predictor, the characterization in classification
is a bit different. Concretely, using standard convex classification losses with exponential
tails (such as the logistic or cross-entropy loss), it is by now well-known that gradient-based
methods ran on the average loss w.r.t. a given dataset {xi, yi}mi=1 converge in direction to
the max-margin predictor

ŵ = arg min
w∈Rd

‖w‖ : min
i∈[m]

yix
>
i w ≥ 1

(Soudry et al., 2018; Ji and Telgarsky, 2020), which by definition achieves zero misclas-
sification error on the dataset. In this setup, we can define benign overfitting as follows:
Similar to the case of regression, we need to consider a sequence of distributions {Dd}∞d=k+1

(this time on Rd × {−1,+1}) and sample sizes {md}∞d=k+1, which induce a sequence of
max-margin predictors {ŵd}∞d=k+1 (as defined above) when trained on samples {xi, yi}mdi=1.

Letting Rd(w) = Pr(x,y)∼Dd(yx
>w ≤ 0), we say that the sequence {Dd}∞d=k+1 satisfies

benign overfitting, if ŵd exists with probability approaching 1 (as d→∞), and

inf
d

inf
w∈Rd

Rd(w) > 0 as well as Rd(ŵd)− inf
w∈Rd

Rd(w)
P−→ 0 . (3)

Note that this definition is similar to the one we had for regression (Definition 3), except
that Rd(·) is defined with respect to misclassification error, and ŵd is now defined as the
max-margin predictor.

3. Linear Regression with the Square Loss

We begin by considering the setting of linear regression with the square loss, where our goal
is to minimize E[(x>w − y)2] with respect to an underlying distribution over (x, y). As
discussed in the previous section, taking an i.i.d. sample of m training examples, and run-
ning standard training methods to convergence, generally results in the min-norm predictor
interpolating the data, ŵ = arg min ‖w‖ : ∀i ∈ [m] ,x>i w = yi. The question we ask
here is whether this predictor is asymptotically consistent and satisfies benign overfitting.

To motivate our approach, let us first consider the well-specified setting, where E[y|x] =
x>w∗ for some fixed w∗, and x is zero-mean. This setting was studied in detail in Bartlett
et al. (2020); Hastie et al. (2019); Belkin et al. (2020). In particular, an important corollary
of the results of Bartlett et al. (2020) is that for benign overfitting to occur, it is neces-
sary that for some k, the smallest d − k eigenvalues of the covariance matrix Σ, namely

λk+1, . . . , λd, satisfy m ·
∑
i>k λ

2
i

(
∑
i>k λi)

2 → 0. Letting Σ = Σk ⊕ Σd−k be the decomposition

of Σ with respect to the first k and last d − k eigenvalues, this is equivalent to requiring

m · ‖Σd−k‖
2
F

Tr2(Σd−k)
→ 0. The following simple lemma implies that this in turn is equivalent to

requiring the distribution of x|d−k to be high-dimensional, in the sense that inner products
of independent copies of x|d−k will be very small compared to the “typical” size of x|d−k:

Lemma 4 Let z, z′ be two i.i.d. random vectors in Rn such that E[zz>] = Σ. Then

E[(z>z′)2] = ‖Σ‖2F . Thus, if m · ‖Σ‖
2
F

Tr2(Σ)
→ 0, then m · E[(z>z′)2]

E2[‖z‖2]
→ 0 as well.
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Proof The proof follows from the observation that Tr(Σ) = E[‖z‖2], and that E[(z>z′)2]
equals

E

( n∑
i=1

ziz
′
i

)2
 =

n∑
i,j=1

E[zizjz
′
iz
′
j ] =

n∑
i,j=1

E[zizj ] · E[z′iz
′
j ] =

n∑
i,j=1

Σ2
i,j = ‖Σ‖2F .

Thus, we see that to get benign overfitting even in a well-specified setting, we generally need
to consider distributions which have a very high-dimensional component “spread” in many
directions. Intuitively, this component will be (approximately) mutually orthogonal across
different samples, thus allowing the linear predictor to fit the training data, but without
significantly affecting the prediction on new samples. A prototypical example to keep in
mind is any spherically symmetric distribution in Rd−k, in which case it is not difficult to
show that

m · E[(z>z′)2]

E2[‖z‖2]
= m ·

‖E[zz>]‖2F
E2[‖z‖2]

=
m

d− k
,

which goes to zero as d → ∞ sufficiently faster than m. Moreover, assuming ‖z‖ does not

fluctuate too wildly, the empirical quantity m ·
(
z>z′

‖z‖2

)2
will strongly concentrate around 0

as d→∞.

Motivated by this, we focus on distributions where the inputs vectors x ∈ Rd are such
that the first k coordinates x|k (for some fixed k independent1 of d) have some arbitrary
distribution, whereas the last d− k coordinates x|d−k form a high-dimensional distribution,
in the sense that given an i.i.d. sample {(xi, yi)}mi=1, it holds with high probability that
supi 6=j |x>i|d−kxj|d−k|

mini ‖xi|d−k‖2
converges to 0 (as the dimension d increases sufficiently fast compared

to m). We note that assuming such a split to the first k and last d − k coordinates is
mostly to simplify the presentation, and is without much loss of generality: Indeed, by a
suitable rotation of the coordinate system, all our results extend to distributions which can
be split into a high-dimensional distribution in some d − k-dimensional subspace, and an
arbitrary distribution in the complementary k-dimensional subspace. Moreover, variants
of this assumption, or related assumptions, are very common in the literature on benign
overfitting (e.g., the “junk features” model of Zhou et al. (2020), or the “weak features”
model of Muthukumar et al. (2021)), although these tend to assume some particular (e.g.,
Gaussian) distribution on the first k coordinates, whereas we allow that distribution to be
rather generic. Finally, we note that we generally do not assume how y depends on x (unless
specified otherwise).

3.1 A Deterministic Perturbation Bound

Focusing on data samples from such distributions, let us now turn to analyze what form
the min-norm predictor takes, as a function of some training data {(xi, yi)}mi=1. Intuitively,
the analysis rests on viewing the high-dimensional components of the data, {xi|d−k}mi=1, as

1. Our proof techniques readily extend to the case of k growing with d at a sufficiently slow rate, but we
choose to consider k fixed for simplicity.
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a perturbation of perfectly orthogonal vectors. To quantify this, we introduce the pertur-
bation matrix E ∈ Rm×m, defined as

Ei,j = x>i|d−kxj|d−k · 1(i 6= j) ∀i, j ∈ [m] . (4)

Note that if {xi|d−k}mi=1 are perfectly orthogonal, then E is the zero matrix. Also, we will

use Ê[f(x, y)] as shorthand for 1
m

∑m
i=1 f(xi, yi) for any function f . The key technical result

we will need is the following deterministic perturbation bound, which bounds the distance
of ŵ|k (the first k coordinates) from a certain expression, as well as bounding the norm of
the last d− k coordinates ŵ|d−k.

Theorem 5 Fix some k ∈ [d−1] and {(xi, yi)}mi=1 ⊆ Rd×R, such that {xi}mi=1 are linearly

independent, ‖E‖
mini∈[m] ‖xi|d−k‖2

≤ 1
2 , and 1

m ≤
1
2λmin

(
Ê
[

x|kx
>
|k

‖x|d−k‖2

])
. Then the min-norm

predictor ŵ exists and satisfies∥∥∥∥∥∥ŵ|k −
(
Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

Ê
[

yx|k

‖x|d−k‖2

]∥∥∥∥∥∥
≤

2
∥∥∥Ê [ yx|k

‖x|d−k‖2

]∥∥∥
λmin

(
Ê
[

x|kx
>
|k

‖x|d−k‖2

])2 ·
1

m
+

2
√
Ê[‖x|k‖2] · Ê[y2]·

mini∈[m] ‖xi|d−k‖4
·m · ‖E‖ ,

as well as

‖ŵ|d−k‖ ≤

√
Ê[‖x|d−k‖2] · Ê[y2]

mini∈[m] ‖xi|d−k‖2
·
(

1 +
2‖E‖

mini∈[m] ‖xi|d−k‖2

)
·m .

The key take-away from this theorem is as follows: Assuming various ratios and empirical
moments of the dataset are bounded, then∥∥∥∥∥∥ŵ|k −

(
Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

Ê
[

yx|k

‖x|d−k‖2

]∥∥∥∥∥∥ ≤ O
(

1

m
+m · ‖E‖

)
,

where E → 0 as the inner products between pairs of vectors in {xi|d−k}mi=1 go to zero.
Assuming this convergence to zero is sufficiently fast compared to m, that m → ∞, and
that the law of large numbers hold, we get that

ŵ|k →

(
E

[
x|kx

>
|k

‖x|d−k‖2

])−1

E
[

yx|k

‖x|d−k‖2

]
.

As to ŵ|d−k, we effectively bound its norm by O(m), which scales with m but not with
the dimension. If the input distribution on the last d − k coordinates is sufficiently high-
dimensional, this implies that given a new sample x, the contribution of x>|d−kŵ|d−k to the

predicted value (namely x>ŵ = x>|kŵ|k+x>|d−kŵ|d−k) is asymptotically negligible. Thus, the
asymptotic expression of ŵ|k eventually determines the behavior of the learned predictor.

9
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Before continuing, let us provide an informal and partial proof sketch, explaining where
the approximate expression for ŵ|k in Theorem 5 comes from. To that end, let X be a
matrix whose i-th row is xi, and y = (y1, . . . , ym). By standard results, ŵ = arg minw ‖w‖ :
Xw = y has the closed-form expression X>(XX>)−1y. Letting X|k be the first k columns

of X, it follows that ŵ|k = X>|k((XX>)−1y) = X>|k(X|kX
>
|k + X|d−kX

>
|d−k)y. Suppose for

simplicity that {xi|d−k}mi=1 are precisely orthogonal (so that E = 0 in the theorem above, and

X|d−kX
>
|d−k equals a diagonal matrix D). As a result, we get ŵ|k = X>|k

(
X|kX

>
|k +D

)−1
y.

By the Woodbury matrix identity and some algebraic manipulations, this equals(
I +X>|kD

−1X|k

)−1
X>|kD

−1y, or equivalently,

(
1

m
I +

1

m
X>|kD

−1X|k

)−1( 1

m
X>|kD

−1y

)
=

(
1

m
I + Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

· Ê
[

yx|k

‖x|d−k‖2

]
,

which approaches

(
Ê
[

x|kx
>
|k

‖x|d−k‖2

])−1

· Ê
[

yx|k
‖x|d−k‖2

]
as m increases.

3.2 Asymptotic Characterization of the min-norm predictor

Let us now turn to show how Theorem 5 can lead to a formal asymptotic characterization
of the min-norm predictor ŵ, in a statistical setting where the training data is sampled
from some underlying distribution. To do so, we will need to impose assumptions on the
distribution, which ensure that the perturbation matrix E from Theorem 5 indeed converges
to 0, and that the various quantities in the bounds are well-behaved. One such set of
sufficient conditions is the following:

Assumption 1 Suppose {Dd}∞d=k+1 is a sequence of distributions on Rd×R, and {md}∞d=k+1

a monotonically increasing sequence of positive integers diverging to ∞, such that the fol-
lowing hold:

1. Letting Ed be shorthand for E(x,y)∼Dd, it holds that

sup
d

max

{
Ed[‖x‖4] , Ed[y4] , Ed

[
‖yx|k‖2

‖x|d−k‖4

]
, Ed

[
‖x|k‖4

‖x|d−k‖4

]}
<∞ ,

and infd λmin

(
Ed
[

x|kx
>
|k

‖x|d−k‖2

])
> 0.

2. If we sample md i.i.d. samples {xi, yi}mdi=1 from Dd, then with probability approaching
1, {xi}mdi=1 are linearly independent, and mini∈[md] ‖xi|d−k‖ is at least some c > 0
independent of d.

3. md · ‖E‖
P→ 0, where E is as defined in Eq. (4).

4. m2
d · ‖Ed[x|d−kx>|d−k]‖ → 0 .

Since the assumptions are rather technical, let us provide one simple example to keep
in mind, which satisfies the above:

10
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Example 1 Suppose that limd→∞
m3
d log(d)
d = 0, and that Dd is defined as follows: (x|k, y)

has some fixed distribution (independent of d), with bounded moments up to order 4 and
such that E[x|kx

>
|k] is positive definite; And x|d−k is an independent zero-mean Gaussian

with covariance matrix 1
d−k · I.

In this case, ‖x|d−k‖ strongly concentrates around 1 as d → ∞ increases, and {xi|d−k}mdi=1

are linearly independent with probability 1, hence conditions 1 and 2 in the assumption
clearly holds. As to conditions 3 and 4, letting Z ∈ Rm×(d−k) be the matrix whose rows are
xi|dk , and D the diagonal of ZZ>, we have ‖E‖ = ‖ZZ> −D‖ ≤ ‖ZZ> − I‖ + ‖I −D‖,
which is at most O(

√
md log(d)/d) with probability converging to 1 as d → ∞ (see for

example (Zhu, 2012)). Also, clearly ‖E[x|d−kx
>
|d−k]‖ = 1

d−k . Combined with the assumption

limd→∞
m3
d log(d)
d = 0, conditions 3,4 follow.

We remark that in the example, we require limd→∞
m3
d log(d)
d = 0, which is a stronger

assumption on the scaling of d vs. md compared to previous work on linear regression (which
usually consider md/d→ 0 under similar distributional assumptions). On the flip side, the
proof technique allows us to analyze more general settings which go beyond well-specified
linear regression.

In any case, we emphasize that Assumption 1 applies far more broadly than Example 1:
For instance, it generally applies to any spherically-symmetric distribution of x|d−k (possibly
dependent on x|k, y) so that ‖x|d−k‖ is bounded (or at least concentrated) in some fixed
interval bounded away from 0. Also, Assumption 1 itself is not the most general possible, in
the sense that it focuses on situations where ‖x‖, y and 1

‖x|d−k‖
are scaled so that they are

essentially bounded independent of d. Moreover, using Theorem 5 above one can analyze
even more general situations: For example, that the data norm scales with d, while only
bounding various ratios between relevant quantities.

Under Assumption 1, let us now proceed to formally state our asymptotic characteriza-
tion of the min-norm predictor:

Theorem 6 Suppose {Dd}∞d=k+1 and {md}∞d=k+1 satisfy Assumption 1. For any d, let

ŵd = arg min ‖w‖ : ∀i ∈ [md], x>i w = yi be the min-norm predictor w.r.t. a training set of
size md sampled i.i.d. from Dd. Then as d→∞, ŵd exists with probability approaching 1,
and satisfies∥∥∥∥∥∥ŵd|k −

(
Ed

[
x|kx

>
|k

‖x|d−k‖2

])−1

Ed
[

yx|k

‖x|d−k‖2

]∥∥∥∥∥∥ P−→ 0 and Ed
[
(x>ŵd − x>|kŵd|k)

2
]

P−→ 0 .

3.3 Implications for benign overfitting in regression

Having established this asymptotic characterization of ŵ, we now turn to discuss its im-
plications to benign overfitting in linear regression. Our bottom-line message is that in
general, ŵd is asymptotically not an optimal predictor, and hence benign overfitting will
not occur.

To see this, consider any sequence of distributions {Dd} as in Theorem 6. For any Dd,
the expected loss has the form

Rd(w) := E(x,y)∼Dd [(x
>w − y)2] = w>Ed[xx>]w − 2Ed[yx>]w + Ed[y2] .

11
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Assuming Ed[xx>] is positive definite, it follows that the unique minimizer equals w =
E[xx>]−1E[yx], and in particular

w|k =
(
Ed[xx>]−1

)
k
Ed[yx] ,

where
(
Ed[xx>]−1

)
k

refers to the first k rows of the inverse covariance matrix. Thus, for
benign overfitting to occur, we need that the min-norm predictor ŵd will be such that ŵd|k
equals this expression, at least asymptotically. However, Theorem 6 implies that ŵd|k is

asymptotically biased towards a different expression, namely

(
Ed
[

x|kx
>
|k

‖x|d−k‖2

])−1

Ed
[

yx|k
‖x|d−k‖2

]
.

Thus, unless the two expressions somehow exactly coincide, there is no reason to believe that
benign overfitting to occur, even though the covariance structure of the inputs x can be a
textbook case of amenability to benign overfitting (in terms of the conditions of Theorem 6
or previous papers on benign overfitting in regression). The following example illustrates
this:

Example 2 In the setting of Theorem 6, suppose k = 1, x1 (the first coordinate of x)
is uniform on the interval [−a, a] for some arbitrary a > 0, y = exp(x1), and for all

j ∈ {2, . . . , d}, xj =
√

y
d−1 · rj, where each rj is an independent standard Gaussian random

variable. Then E[x1xj ] = E[yxj ] = 0 for all j > 1, and therefore

Rd(w) = E(x,y)∼Dd [(x
>w − y)2] = w>E[xx>]w − 2E[yx]>w + E[y2]

= E[x2
1] · w2

1 +
E[y]

d− 1
·

d∑
j=2

w2
j − 2E[yx1] · w1 + E[y2] .

By differentiating the above w.r.t. w, it is easily verified that Rd(·) achieves a minimal value

only when wj = 0 for all j > 1, and w1 = E[yx1]
E[x21]

= E[exp(x1)x1]
E[x21]

, which is a strictly positive

number dependent only on a. However, by Theorem 6 and standard concentration results for
the Gaussian distribution, the first coordinate of ŵd converges in probability to the different

value E
[

yx1
exp(x1)

]
/ E

[
x21

exp(x1)

]
= E[x1]

E[x21 exp(−x1)]
= 0. It follows that Rd(ŵd)− infwRd(w)

is lower bounded by a positive number independent of d, and therefore we do not have benign
overfitting.

The reader familiar with previous literature might wonder how this can possibly accord
with previous results (such as Bartlett et al. (2020)), which show that benign overfitting
does occur for linear regression with the square loss, under the kind of input distributions
we study here. The reason is that these results assume a well-specified setting, where
E[y|x] = x>w∗ for some fixed w∗ (see for example Assumption 4 in Definition 1 of Bartlett
et al. (2020)). In the example above, this does not hold, since E[y|x] = exp(x1) is not a
linear function of x. Had we been in a well-specified setting with E[y|x] = x>|kw

∗
|k for some

w∗, benign overfitting would generally occur, because then we have that(
E

[
x|kx

>
|k

‖x|d−k‖2

])−1

· E
[

yx|k

‖x|d−k‖2

]
=

(
E

[
x|kx

>
|k

‖x|d−k‖2

])−1

· E

[
x|kx

>
|k

‖x|d−k‖2

]
w∗|k = w∗|k ,

which now coincides with the optimal solution on the first k coordinates. However, a well-
specified distribution is the exception rather than the rule in practice.
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4. Linear Regression Beyond the Square Loss

In the previous section, we studied linear regression with the square loss, with our main con-
clusion being that benign overfitting should not be expected in general, beyond well-specified
distributions. In this section, we study what happens if we do focus on well-specified distri-
butions, but consider more general regression problems (beyond linear regression with the
square loss). We will see that here again, benign overfitting can generally fail to hold.

Concretely, suppose that instead of the square loss, we have some non-negative loss
function `(x>w; y), which is relevant for regression in the sense that for any y, it equals 0
at some unique value `−1

y (0). As discussed in Section 2 and Proposition 2, we still expect
standard gradient-based training methods to converge to a minimum-norm interpolating
predictor, assuming they manage to drive the average loss on the training set to 0: Namely,
given a dataset {xi, yi}mi=1, the unique point in arg minw ‖w‖ : 1

m

∑m
i=1 `(x

>
i w; yi) = 0. The

question now is whether this predictor enjoys benign overfitting.
To answer this question, one option is to try and repeat the analysis from the previous

section, depending on the choice of `(·). However, we will take a different approach, which
allows us to study this using the results we already developed for linear regression with the
square loss. Our crucial observation can be phrased as the following, very simple lemma:

Lemma 7 Given a dataset {xi, yi}mi=1 and non-negative loss `(·) as above,

arg min
w
‖w‖ :

1

m

m∑
i=1

`(x>i w; yi) = 0 equals arg min
w
‖w‖ :

1

m

m∑
i=1

(x>i w − `−1
yi (0))2 = 0 .

The proof of the lemma trivially follows from the observation that if 1
m

∑m
i=1 `(x

>
i w; yi) = 0,

then `(x>i w; yi) = 0 for all i, hence by assumption, (x>i w − `−1
yi (0))2 = 0 for all i.

The lemma implies that the same method that converges to the minimum-norm mini-
mizer of the average loss w.r.t. `(·), also simultaneously converges to the minimum-norm
minimizer of the average loss w.r.t. the square loss with target values `−1(yi). How-
ever, assuming that the training set {(xi, yi)}mi=1 is sampled i.i.d. from some underlying
distribution, it is evident that they represent empirical risk minimization of two distinct
statistical learning problems: One being minimizing E[`(x>w; y)], and the other minimizing
E[(x>w− `−1

y (0))2]. In general, these are different learning problems, with distinct optima
with respect to the underlying data distribution, yet the returned ŵ is exactly the same one.
Thus, if we have benign overfitting in one problem (with the trained predictor ŵ having
near-minimal expected loss), we generally cannot expect to have benign overfitting in the
other problem. Thus, the very fact that we can show benign overfitting in settings such as
well-specified linear regression with the square loss, precludes the possibility of having benign
overfitting in other learning problems.

In what follows, we exemplify this observation on two types of well-specified regression
problems. The first setting we study is a generalized linear model. Concretely, we consider
predictors of the form x 7→ σ(x>w), where w is the parameter vector and σ(·) is some
strictly monotonic non-linear function, and assume that E[y|x] = σ(x>w∗) for some w∗. In
the context of neural networks, this can also be viewed as training a single neuron using some
nonlinear activation function σ(·). In this setting, standard gradient-based methods trained
on the average square loss (i.e., minw

1
m

∑m
i=1(σ(x>i w)−yi)2) will indeed generally converge

13
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to the min-norm predictor, namely arg minw ‖w‖ : 1
md

∑md
i=1(σ(x>i w) − yi)2 = 0 (see for

example the proof of Yehudai and Shamir (2020, Thm. 3.2), combined with Proposition 2).
The following corollary of our previous results implies that for just about any choice of input
distribution on the first k coordinates, and just about any choice of a strictly monotonic
non-linear σ(·), we generally cannot expect benign overfitting to occur, even if the model is
well-specified:

Corollary 8 Suppose that σ : R→ R is a function whose inverse σ−1(·) exists and is Lips-
chitz continuous. Consider any sequence of distributions {Dd}∞d=k+1 and integers {md}∞d=k+1

satisfying Assymption 1, such that for any d and (x, y) ∼ Dd, y = σ(x>|kw
∗) + ξ for some

fixed w∗ ∈ Rk and random variable ξ. Then the min-norm predictor ŵd satisfies∥∥∥∥∥∥ŵd|k −

(
Ed

[
x|kx

>
|k

‖x|d−k‖2

])−1

· Ed

σ−1
(
σ(x>|kw

∗) + ξ
)

x|k

‖x|d−k‖2

∥∥∥∥∥∥ P−→ 0

and E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

P−→ 0

The corollary follows immediately from the observation that since σ is invertible, ŵd is
also the minimum-norm minimizer of 1

md

∑md
i=1(x>i w−σ−1(yi))

2 = 0, and that the moment

conditions in Assumption 1 are still satisfied if we replace y by σ−1(y) (since |σ−1(y)| ≤
cσ(1 + |y|) for some cσ > 0 dependent only on σ). Applying Theorem 6 on ŵd with y
replaced by σ−1(y), we get that∥∥∥∥∥∥ŵd|k −

(
Ed

[
x|kx

>
|k

‖x|d−k‖2

])−1

Ed

[
σ−1(y)x|k

‖x|d−k‖2

]∥∥∥∥∥∥ P−→ 0 ,

and plugging in y = σ(x>|k) + ξ results in the theorem.

When ξ is independent zero-mean noise, and σ(·) (and hence σ−1(·)) is a linear function,
then the asymptotic expression for ŵd|k in the theorem above reduces to w∗, which is
indeed the optimal vector we would hope to converge to. However, when σ(·) is nonlinear,
the expression is not w∗ in general, and hence we do not get asymptotic consistency. To
give just one simple example, suppose that ‖x|d−k‖ = 1 with probability 1, σ(0) = 0,
w∗ = 0 and E[x|k] 6= 0. In this case the asymptotic expression for ŵd|k in the theorem

reduces to,
(
E[x|kx

>
|k]
)−1

E[x|k] · E[σ−1(ξ)]. For this to equal w∗ (namely 0), we need that

E[σ−1(ξ)] = 0. However, since σ(·) (and hence σ−1(·)) is non-linear, the equation above
will not hold for ”most“ zero-mean distributions of ξ. In other words, even if we fix the
input distribution, then just by playing around with the distribution of the noise term ξ,
we can easily encounter situations where benign overfitting does not hold. Concretely, the
following lemma (whose proof is in the appendix) shows that no nonlinear σ(·) can possibly
satisfy E[σ−1(ξ)] = 0 for all zero-mean distributions:

Lemma 9 Suppose that σ−1(·) is a function on R such that E[σ−1(ξ)] = 0 for all zero-mean
random variables ξ with support of size at most 2. Then σ−1(·) (and hence σ(·)) must be a
homogeneous linear function (that is, ∃c ∈ R s.t. ∀z ∈ R, σ−1(z) = cz).
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Next, we go back to linear regression, but now assume that we use some convex loss which
is not necessarily the square loss (say, the absolute loss). Here again, standard gradient
methods trained on the average loss will generally converge to a min-norm interpolating
predictor (thanks to convexity and Proposition 2). However, we cannot expect benign
overfitting to occur in general for this predictor:

Corollary 10 Consider any sequence of distributions {Dd}∞d=k+1 and integers {md}∞d=k+1

satisfying Assumption 1. Suppose we use the loss function `(x>w; y) = f(x>w − y) for
some non-negative function f which has a unique root at 0. Then the min-norm predictor

ŵ satisfies E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

P−→ 0 and

∥∥∥∥∥∥ŵd|k −

(
Ed

[
x|kx

>
|k

‖x|d−k‖2

])−1

· Ed
[

yx|k

‖x|d−k‖2

]∥∥∥∥∥∥ P−→ 0 .

The proof is immediate from observing that ŵd is also arg min ‖w‖ : 1
md

∑md
i=1(x>i w−yi)2 =

0, and applying Theorem 6 on this related linear regression problem. Crucially, note that
ŵd|k has the same asymptotic characterization as if we have used the square loss, and there
is no reason to believe that this is also an optimal solution (w.r.t. the first k coordinates) of
E[f(x>w−y)] when f(·) is not the square loss. Let us illustrate this with a simple example:

Example 3 In the setting of Corollary 10, suppose f(z) = |z| is the absolute loss, k = 1,
x1 = 1 with probability 1, and y = x1 + ξ for some independent random variable ξ. Then
the first coordinate of ŵd converges in probability to E[yx1]/E[x2

1] = 1 + E[ξ]. However,

the expected absolute loss is Rd(w) = E[|x>w − y|] = E
[∣∣∣w1 +

∑d
j=2 xjwj − (1 + ξ)

∣∣∣],
which is easily verified to be minimized only when w1 = 1 + med(ξ) (where med(ξ) is the
median of ξ). Thus, whenever med(ξ) 6= E[ξ] (which generally occurs when ξ has a non-
symmetric distribution), Rd(ŵd)− infwRd(w) does not converge to 0, and we do not have
benign overfitting.

Remark 11 (Implicit bias towards a weighted square loss problem) In Theorem 6,
for linear regression with the square loss, we saw that ŵd|k asymptotically equals

(
Ed

[
x|kx

>
|k

‖x|d−k‖2

])−1

Ed
[

yx|k

‖x|d−k‖2

]
.

This can be equivalently seen as the minimum-norm optimum of the objective function

Ed

[(
x>

‖x|d−k‖
w − y

‖x|d−k‖

)2
]
.

In other words, even though ŵ minimizes 1
m

∑m
i=1(x>i w − yi)2, and should asymptotically

minimize E[(x>w − y)2] for benign overfitting to occur, its first k coordinates actually op-
timize a weighted version of this problem, where both x, y are scaled down by ‖x|d−k‖.
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This can be explained via the approach developed in this section: It trivially holds that
ŵ = arg minw ‖w‖ : 1

m

∑m
i=1(x>i w − yi)2 = 0 also equals

arg min
w
‖w‖ :

1

m

m∑
i=1

(
x>i

‖xi|d−k‖
w − yi

‖xi|d−k‖

)2

= 0 ,

and in terms of asymptotic behavior, it turns out that ŵ is actually “consistent” with respect
to the statistical problem associated with the latter, weighted loss function, and not the
former unweighted one.

5. Linear Binary Classification

The results in the previous section suggest that many natural extensions of well-specified
linear regression with the square loss will generally not satisfy benign overfitting. These
were all regression problems, where to get low loss the prediction value must be close to
some optimal value.

In this section, we turn to consider binary linear classification setups, where we only
care about the sign of x>w rather than its exact value, and see that the situation there
is much more favorable. As in the case of regression, we will focus on input distributions
which can be decomposed to some arbitrary distribution on the first k coordinates, and
a high-dimensional distribution on the last d − k coordinates (for example, a spherically
symmetric distribution).

As discussed in Section 2, whereas for regression we care about the minimum-norm
interpolating predictor, for classification we care about the max-margin predictor, ŵ =
arg minw : mini∈[m] yix

>
i w ≥ 1. To study benign overfitting for such problems, we need an

asymptotic characterization of ŵ, similar to what we have done for regression. However,
this might seem difficult, since unlike the min-norm predictor, the max-margin predictor
does not have a closed-form expression. In fact, many previous analyses of benign overfitting
in classification resorted to additional assumptions which make the max-margin predictor
coincide with the min-norm solution, arg minw ‖w‖ : 1

md

∑md
i=1(x>i w − yi)2 = 0. We take

a different route, which applies even when the max-margin and min-norm solutions do not
coincide: We show that at least for distributions falling within our framework, the first k
coordinates of ŵd asymptotically minimize the expectation of a (weighted) squared hinge

loss on those coordinates, namely arg minv∈Rk E
[

[1−yx>|kv]2+
‖x|d−k‖2

]
. As in the case of regression,

we will first show how to derive this using a deterministic perturbation bound (depending
on the extent to which the high-dimensional components in the data are far from being
perfectly orthogonal), followed by a probabilistic asymptotic characterization of the max-
margin predictor, and finally discuss its implications.

5.1 A deterministic perturbation bound

Recall that our analysis for regression relied on the assumption that the input distribution
on the last d − k coordinates is high-dimensional, in the sense that x>i|d−kxj|d−k ≈ 0 for
i 6= j. With this scenario in mind, we present the following deterministic perturbation
bound, which characterizes ŵ|k and the norm of ŵ|d−k when such inner products are small.
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As in the case of regression, we utilize a perturbation matrix E ∈ Rm×m, which is now
defined as

Ei,j = yiyjx
>
i|d−kxj|d−k · 1(i 6= j) ∀i, j ∈ [m] , (5)

and use Ê[f(x, y)] as shorthand for 1
m

∑m
i=1 f(xi, yi) for any function f .

Theorem 12 Fix some k ∈ [d − 1] and {(xi, yi)}mi=1 ⊆ Rd × {−1,+1}. Suppose that

ε0 :=
2‖E‖·maxi∈[m] ‖xi|d−k‖2

mini∈[m] ‖xi|d−k‖4
≤ 1

2 . Then the max-margin predictor ŵ = arg min ‖w‖ : ∀i ∈
[m], yix

>
i w ≥ 1 (assuming it exists) satisfies the following:

ŵ|k = arg min
v∈Rk

(1+εv)·Ê

[
[1− yx>|kv]2+

‖x|d−k‖2

]
+
‖v‖2

m
and ‖ŵ|d−k‖2 ≤

5m

mini∈[m] ‖xi|d−k‖2
,

where εv satisfies supv∈Rk |εv| ≤ ε0, and.

Thus, we see that ŵ|k is essentially the minimizer of the empirical average of the (weighted)
squared hinge loss discussed earlier, plus a certain regularization term which decays with
the data size m. This is modified by a (1 + εv) multiplicative parameter, where |εv| ≤ ε0
converges uniformly to 0 as ‖E‖ → 0. As to ŵ|d−k, as in the case of regression, we
bound its norm by an expression generally scaling with m but not with d, which implies
that its contribution to the prediction (assuming a high-dimensional distribution on these
coordinates) is negligible as d→∞.

Before continuing, let us informally explain how this squared hinge loss arises in our
analysis (with the formal proof deferred as usual to the appendix). To simplify matters, let
us suppose that {xi|d−k}mi=1 are precisely orthogonal (so that E = 0 in the theorem above).
In that case, the max-margin predictor ŵ can be equivalently written as

arg min
w∈Rd

‖w|k‖2 + ‖w|d−k‖2 : ∀i ∈ [m], yix
>
i|kw|k + yix

>
i|d−kw|d−k ≥ 1 . (6)

For any fixed w|k, we therefore wish to make ‖w|d−k‖2 as small as possible, while satisfying

the constraints, which can also be written as ∀i ∈ [m], yix
>
i|d−kw|d−k ≥ 1 − yix

>
i|kw|k.

Since {yixi|d−k}mi=1 are orthogonal, it is easy to see that we should pick ŵ|d−k as follows: If

1 − yix>i|kw|k ≤ 0, we should make yix
>
i|d−kw|d−k = 0, and if 1 − yix>i|kw|k > 0, we should

make yix
>
i|d−kw|d−k = 1− yix>i|kw|k. By orthogonality of the {xi|d−k}mi=1 vectors, it follows

that the optimal ŵ|d−k equals∑
i:1−yix>i|kw|k>0

(
1− yix>i|kw|k

)
·
yixi|d−k

‖xi|d−k‖2
=
∑
i

[
1− yix>i|kw|k

]
+
·
yixi|d−k

‖xi|d−k‖2
.

Again by orthogonality, it follows that ‖w|d−k‖2 =
∑

i

[1−yix>i|kw|k]2+
‖xi|d−k‖2

. Plugging this into

Eq. (6), we get that ŵ|k equals

arg min
w|k∈Rk

‖w|k‖2 +
m∑
i=1

[1− yix>i|kw|k]
2
+

‖xi|d−k‖2
= arg min

w|k∈Rk

‖w|k‖2

m
+

1

m

m∑
i=1

[1− yix>i|kw|k]
2
+

‖xi|d−k‖2
.

Substituting v instead of w|k results in the expression for ŵ|k appearing in the theorem (with
εv = 0). The proof of Theorem 12 essentially generalizes this argument to the case where
{xi|d−k}mi=1 are only approximately orthogonal, and also provides a bound for ‖ŵ|d−k‖.
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5.2 Asymptotic characterization of the max-margin predictor

Having established the perturbation bound in the previous section, let us now show how
this can lead to an asymptotic characterization of the max-margin predictor, under suitable
distributional assumptions. As in the case of regression, we present a set of sufficient
conditions (which are not the most general possible):

Assumption 2 Suppose {Dd}∞d=k+1 is a sequence of distributions on Rd×R, and {md}∞d=k+1

a monotonically increasing sequence of positive integers diverging to ∞, such that the fol-
lowing hold:

1. Letting Ed be shorthand for E(x,y)∼Dd, it holds that supd Ed
[

1+‖yxk‖4
‖x|d−k‖4

]
<∞.

2. With probability approaching 1 over sampling md samples from Dd, the max-margin

predictor ŵd exists, and maxi∈[md] max
{

1
‖xi|d−k‖

, ‖xi|d−k‖
}
≤ c for some constant

c > 0 independent of d.

3. md · ‖E‖
P→ 0, where E is as defined in Eq. (5) w.r.t. an i.i.d. sample of size md from

Dd.

4. md · ‖Ed[x|d−kx>|d−k]‖ → 0.

5. There exists some constant c′ > 0 independent of d, such that with probability ap-

proaching 1, the function ĝd(v) := Êd
[

[1−yx>|kv]2+
‖x|d−k‖2

]
= 1

md

∑md
i=1

[1−yix>i|kv]2+
‖xi|d−k‖2

has a mini-

mizer with norm at most c′.

6. Letting

gd(v) := Ed

[
[1− yx>|kv]2+

‖x|d−k‖2

]
,

it holds that infv lim supd (gd(v)− infu gd(u)) = 0.

The first four conditions are similar to the condition in Assumption 1 for regression,
with the only differences being that conditions 1 and 2 require slightly different functions
of the data to be bounded. The rest of the assumptions are very mild when we think
of the distribution of y,x|k, ‖x|d−k‖ as converging to some fixed distribution as d → ∞
(for instance, in the setting of Example 1). In that case, we would expect the minimum-

norm minimizers of Êd
[

[1−yx>|kv]2+
‖x|d−k‖2

]
to converge to some fixed limit (as d,md → ∞), and

therefore condition 5 should automatically hold. Similarly, condition 6 should also hold,
as it is equivalent to requiring that the set of near-minimizers of the functions {gd(·)}
asymptotically overlap.

With these conditions at hand, we can now state our asymptotic characterization of the
max-margin predictor, in terms of the expected (weighted) squared hinge loss function gd(·)
defined above:
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Theorem 13 Suppose {Dd}∞d=k+1 and {md}∞d=k+1 satisfy Assumption 2. Then the max-

margin predictor ŵd = arg min ‖w‖ : ∀i ∈ [md], yix
>
i w ≥ 1 satisfies

gd(ŵd|k)− inf
v
gd(v)

P−→ 0 and Ed
[
(x>ŵd − x>|kŵd|k)

2
]

P−→ 0 .

It is interesting to note that the max-margin predictor is asymptotically characterized
in terms of a squared hinge loss, even though this loss does not appear explicitly in its
definition (and moreover, the max-margin predictor itself arises from training gradient-
based methods on losses which are definitely not the squared hinge loss). Instead, the loss
naturally arises from our analysis. We note that this loss achieves the same value as the
square loss for examples (x, y) where x>ŵd = y, but is otherwise distinct. Thus, there is
no contradiction with previous results on benign overfitting in classification that focused on
situations where the max-margin and min-norm predictors coincide.

5.3 Implications for benign overfitting in classification

Theorem 13 implies that in our binary classification model, the max-margin predictor ŵ
is such that its last d − k coordinates are asymptotically immaterial, whereas the first k

coordinates asymptotically minimize the function gd(v) = Ed
[

[1−yx>|kv]2+
‖x|d−k‖2

]
. Thus, the

next natural step is to understand whether the minimizers of this function on the first k
coordinates result in good predictors with respect to the misclassification error Pr(yx>w ≤
0). We note that since this loss is not identical to misclassification error, we cannot hope this
to hold in the worst-case: Indeed, see Appendix B for an explicit example. . However, it is

also not an unreasonable requirement, since predictors that attempt to minimize
[1−yx>|kv]2+
‖x|d−k‖2

over v will also tend to make yx>|kv positive, and hence (since the last d − k coordinates

have negligible effect) make the expected misclassification error Pr(yx>w ≤ 0) small. A
different way to phrase this question is whether the data distribution is such that the

weighted squared hinge loss function v 7→
[1−yx>|kv]2+
‖x|d−k‖2

is a good surrogate loss function for

the misclassification error. We note that this question has already been studied for other
surrogate losses (see Frei et al. (2021); Ji et al. (2022) for some recent examples).

Our results imply that asymptotically, the max-margin predictor depends only on the
joint distribution of x|k, ‖x|d−k‖, y. Thus, to simplify the discussion in the remainder of this
section, we will assume this distribution is fixed for all d, and satisfies some mild conditions:

Assumption 3 The distribution sequence {Dd}∞d=k+1 on (x, y) ∈ Rd × {−1,+1} is such
that the joint distribution of (x|k, ‖x|d−k‖, y) is the same under any d. Moreover, this

distribution D is such that E[x|kx
>
|k] is positive definite, and Pr(‖x|d−k‖ ∈ [l, u]) = 1 for

some [l, u] ⊂ (0,∞).

To give a simple example, consider the case where Dd is defined as some fixed distribution
over (x|k, y), and the marginal distribution of x|d−k is uniform over some origin-centered
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Figure 1: Graphical illustration of the function `p(·) from Eq. (7) for different values of p.

sphere2. Under this assumption, the function gd can be rewritten as

g(v) := Ex|k,z,y

[
z · [1− yx>|kv]2+

]
, v ∈ Rk

for some fixed distribution over x|k ∈ Rk, y ∈ {−1,+1}, and z ∈ (0,∞).
Our goal now will be to illustrate how our characterization allows us to prove that benign

overfitting does occur in some classification setups, which to the best of our knowledge have
not been explicitly studied before.

For benign overfitting to occur, we need situations where no predictor attains zero error
w.r.t. the underlying data distribution. In binary classification setups, the simplest (and
most well-studied) case where this occurs is when we have an underlying distribution Dclean

which is linearly separable w.r.t. (x|k, y) (i.e., there is some unit vector w∗ ∈ Rk such that

PrDclean
(yx>|kw

∗ < γ) = 0 for some margin parameter γ > 0), but where there is random

label noise (with each y flipped to −y with some probability p > 0), resulting in a final
distribution D. In such a distribution, w∗ is still an optimal predictor, but now necessarily
its expected misclassification error equals p. To model this setting, it will be convenient
to assume that (x|k, y) is still distributed as Dclean, and that we wish to find a predictor

w satisfying PrDclean(yx>|kw ≤ 0) = 0. However, the predictor ŵ we learn is with respect
to the “noisy” labels, and is characterized by the weighted squared hinge loss: Namely, by
Theorem 13, ŵd|k is asymptotically the minimizer of

Lp(w) := E(x|k,z,y)∼Dclean

[
(1− p) · z · [1− yx>|kw]2+ + p · z · [1 + yx>|kw]2+

]
(7)

= E(x|k,z,y)∼Dclean
E[z · `p(yx>|kw)] where `p(β) := (1− p) · [1− β]2+ + p · [1 + β]2+

(see Figure 1 for a graphical illustration). It is easily verified that for any p ∈ (0, 1
2), `p

is a strongly convex function, and therefore Lp(·) is a strongly convex function, as long as

2. One can also consider the case of x|d−k being a zero-mean Gaussian with covariance matrix σ2

d−k I for

some σ2 > 0, in which case ‖x|d−k‖ will concentrate around σ. In the assumption, we slightly simplify
this by assuming ‖x|d−k‖ already has such a limit distribution.
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E[z · x|kx>|k] is positive definite (see Lemma 19 in the appendix for a formal definition of

strong convexity and a proof). Therefore, Lp(·) has a unique minimizer w∗p, to which ŵd|k
converges to. Overall, we get that for benign overfitting, it is sufficient that w∗p is an optimal
predictor in terms of misclassification error on the “clean” labels. This is formalized in the
following theorem:

Theorem 14 Under the conditions of Theorem 13 and Assumption 3, define Rd(w) to
equal Pr(x,y)∼Dd(yx

>w ≤ 0). Also, suppose that the distribution of (x|k, y) corresponds to

some linearly separable distribution Dclean with labels flipped with some probability p ∈ (0, 1
2).

Then benign overfitting (as defined in Eq. (3)) holds under the following condition: The
(unique) minimizer w∗p of Lp(w) satisfies Pr(x|k,y)∼Dclean

(yx>|kw
∗
p ≤ 0) = 0.

Focusing on such linearly-separable-with-label-noise distributions, we now turn to study
some cases where the condition on w∗p in Theorem 14 indeed holds. For example, the fol-
lowing theorem implies that under mild assumptions, just about any choice of distribution
Dclean satisfies benign overfitting, for some non-trivial (distribution-dependent) regime of
label noise. As far as we can surmise, this is not at all obvious from the original characteri-
zation of the max-margin predictor, where the data points appear as constraints and where
introducing label noise changes these constraints in possibly complicated ways. However,
using our characterization and properties of the squared hinge loss, the result follows from
a rather straightforward continuity argument.

Theorem 15 Fix any distribution Dclean over (x|k, z, y) satisfying Assumption 3, which
is linearly separable w.r.t. (x|k, y), and where x|k has bounded support. Then there exists

some a ∈ (0, 1
2) (dependent on Dclean), such that for all p ∈ (0, a), the minimizer w∗p of

Lp(·) satisfies Pr(x|k,y)∼Dclean
(yx>|kw

∗
p ≤ 0) = 0.

Intuitively, the proof proceeds by arguing that w∗p is continuous in p ∈ (0, 1
2), and as p→ 0,

necessarily converges to some predictor which separates the data with positive margin.
Hence, small perturbations of the predictor will maintain linear separability, and therefore
w∗p will remain a linear separator for small positive values of p.

This result holds for generic linearly separable distributions, but does not specify the
amount of label noise under which benign overfitting occurs. In the following theorem, we
identify one simple class of distributions where benign overfitting occurs with any amount
of label noise up to 1

2 :

Theorem 16 Fix any distribution Dclean on (x|k, z, y) satisfying Assumption 3, such that
the distribution of (x|k, y) is linearly separable. Moreover, suppose that for some unit vector

u, and conditioned on any value of y, u>x and (I − uu>)x are mutually independent, and
the distributions of (I −uu>)x and −(I −uu>)x are identical. Then for all p ∈ (0, 1

2), the
minimizer w∗p of Lp(·) satisfies PrDclean

(yx>|kw
∗
p ≤ 0) = 0.

The conditions in the theorem refer to a situation where there is some distinguished direc-
tion u, such that conditioned on y, x|k = βu + s for some mutually independent random
variables β, s where s is orthogonal to u and has a symmetric distribution. Examples where
this occurs include any one-dimensional distribution, and a mixture of any two symmetric
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distributions with means in span(u) (one for y = 1 and one for y = −1, and assuming linear
separability). Note that unlike most previous results on benign overfitting in classification,
the distributions do not need to be identical nor satisfy any additional structural properties.

6. Discussion

In this paper, we presented several new results on benign overfitting, for both regression and
classification. For linear regression with the square loss, we argued that benign overfitting
should not be expected to hold in general, once we go beyond well-specified distributions.
Moreover, we showed how this can be extended beyond linear regression with the square
loss, by an argument proving how the existence of benign overfitting on some regression
problems precludes its existence on other regression problems. On the more positive side,
for classification problems, we showed that the max-margin is implicitly biased towards min-
imizing a weighted squared hinge loss w.r.t. the underlying distribution (at least in a model
where an arbitrary k-dimensional distribution is concatenated with a high-dimensional dis-
tribution). We use it to show benign overfitting in various settings, by considering cases
where this squared hinge loss is a good surrogate for the misclassification error.

Overall, we hope that our observations here will allow us to understand benign overfit-
ting beyond the settings studied so far in the literature. For example, it would be interesting
to identify other settings where the structure of the squared hinge loss means that the max-
margin predictor will have benign overfitting properties. Moreover, our results focused on
input distributions with a clean separation between a few “important” coordinates, and
a high dimensional distribution on the other coordinates. Although this is a prototypi-
cal setting for benign overfitting, our insights can potentially be extended to other input
distributions, and identifying them can be an interesting direction for future research.

Another, more technical issue is that our asymptotic characterization of the min-norm or
max-margin predictor require the high-dimensional distribution to be sufficiently “spread”,
which ultimately requires the dimension d to scale sufficiently faster than the sample size md.
For instance, as discussed in Example 1, if we consider a distribution on x ∈ Rd such that
x|d−k is zero-mean Gaussian with covariance matrix 1

d−k · I, then we need m3
d log(d)/d→ 0

for the perturbation matrix E to decay sufficiently fast, and for Theorem 6 to hold. A
similar requirement also applies to our classification results. For the purposes of our paper,
this is not a major issue, since our goal was to understand when benign overfitting might or
might not occur assuming the dimension is sufficiently large, and indeed we did not attempt
to optimize this condition. Nevertheless, since other papers usually assume a milder scaling
of d vs. md, it would be interesting to understand whether results similar to ours can be
obtained under such conditions.
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Appendix A. Proofs

A.1 Proof of Theorem 5

We will utilize the following matrix inverse perturbation result:

Lemma 17 Let A be some positive definite matrix with minimal eigenvalue λmin(A) > 0.

Then for any symmetric matrix E of the same size such that ‖E‖ ≤ λmin(A)
2 , it holds that

A+ E is invertible and

‖(A+ E)−1 −A−1‖ ≤ 2

λmin(A)2
‖E‖.

Proof By Weyl’s inequality, λmin(A+E) ≥ λmin(A)− ‖E‖ ≥ λmin(A)
2 > 0, hence A+E is

invertible. Moreover, by the Woodbury matrix identity,

(A+ E)−1 = A−1 −A−1E(I +A−1E)−1A−1 ,

which implies

‖(A+ E)−1 −A−1‖ ≤ ‖A−1‖2 · ‖E‖ · ‖(I +A−1E)−1‖ ≤ ‖A−1‖2 · ‖E‖
1− ‖A−1‖ · ‖E‖

.

Noting that ‖A−1‖ = 1
λmin(A) and ‖E‖ ≤ λmin(A)

2 , it follows that the above is at most
1

λmin(A)2
‖E‖

1− 1
λmin(A)

·λmin(A)

2

= 2
λmin(A)2

‖E‖.

We now turn to the proof itself. Let X ∈ Rm×d be the matrix whose i-th row is
xi, and let X|k, X|d−k be its first k and last d − k columns respectively (so that the i-
th row of X|k is xi|k, and that of X|d−k is xi|d−k). Also, let y = (y1, . . . , ym). Since

{xi}mi=1 are linearly independent, X has full row rank. Therefore, XX> is invertible, and
ŵ = arg min ‖w‖ : Xw = y can be written in closed form as

ŵ = X>(XX>)−1y = X>
(
X|kX

>
|k +X|d−kX

>
|d−k

)−1
y = X>

(
D +X|kX

>
|k + E

)−1
y ,

where E is as defined in the theorem statement (namely, the off-diagonal entries ofX|d−kX
>
|d−k),

and
D := X|d−kX

>
|d−k − E = diag(‖xi|d−k‖2, . . . , ‖xm|d−k‖2)

is a diagonal matrix. In what follows, it will be useful to note that λmin(D) = mini∈[m] ‖xm|d−k‖2.
Continuing, we have by the representation of ŵ above that

ŵ = X>(D+X|kX
>
|k)−1y+X>E′y where E′ = (D+X|kX

>
|k +E)−1− (D+X|kX

>
|k)−1 .

(8)
Considering the first k and last d− k coordinates separately, it follows that

ŵ|k = X>|k(D+X|kX
>
|k)−1y+X>|kE

′y and ŵ|d−k = X>|d−k(D+X|kX
>
|k)−1y+X>|d−kE

′y ,
(9)
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where E′ is as defined in Eq. (8).

Applying Lemma 17 with A = D+X|kX
>
|k (noting that λmin(D+X|kX

>
|k) ≥ λmin(D) =

mini∈[m] ‖xi|d−k‖2 > 0 and that we assume ‖E‖ ≤ λmin(D)
2 ), it follows that ‖E′‖ ≤ 2

λmin(D)2
‖E‖.

As a result, and using the fact that the spectral norm is upper bounded by the Frobenius
norm, we have

‖X>|kE
′y‖ ≤ ‖X|k‖ · ‖y‖ · ‖E′‖ ≤ m ·

√
1

m
‖X|k‖2F ·

√
1

m
‖y‖2 · 2

λmin(D)2
‖E‖

=
2m‖E‖
λmin(D)2

·
√
Ê[‖x|k‖2] · Ê[y2] .

An identical calculation implies that ‖X>|d−kE
′y‖ ≤ 2m‖E‖

λmin(D)2
·
√
Ê[‖x|d−k‖2] · Ê[y2]. Plugging

these bounds back into Eq. (9), it follows that

∥∥∥ŵ|k −X>|k(D +X|kX
>
|k)−1y

∥∥∥ ≤ 2m‖E‖
λmin(D)2

·
√

Ê[‖x|k‖2] · Ê[y2] (10)

and ∥∥∥ŵ|d−k −X>|d−k(D +X|kX
>
|k)−1y

∥∥∥ ≤ 2m‖E‖
λmin(D)2

·
√
Ê[‖x|d−k‖2] · Ê[y2] . (11)

We now turn to analyze X>|k(D+X|kX
>
|k)−1y and X>|d−k(D+X|kX

>
|k)−1y, starting with

the first expression. Using the Woodbury matrix identity, we have

(D +X|kX
>
|k)−1 = D−1 −D−1X|k(I +X>|kD

−1X|k)
−1X>|kD

−1

= D−1
(
I −X|k(I +X>|kD

−1X|k)
−1X>|kD

−1
)

(note that I+X>|kD
−1X|k is indeed invertible, since it is the sum of the identity matrix and

a positive semidefinite matrix). This implies that

X>|k

(
D +X|kX

>
|k

)−1
y = X>|kD

−1
(
I −X|k(I +X>|kD

−1X|k)
−1X>|kD

−1
)

y

=

(
I −X>|kD

−1X|k

(
I +X>|kD

−1X|k

)−1
)
X>|kD

−1y

=
((
I +X>|kD

−1X|k

)
−X>|kD

−1X|k

)(
I +X>|kD

−1X|k

)−1
X>|kD

−1y

=
(
I +X>|kD

−1X|k

)−1
X>|kD

−1y

=

(
1

m
I +

1

m
X>|kD

−1X|k

)−1( 1

m
X>|kD

−1y

)

=

(
1

m
I + Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

· Ê
[

yx|k

‖x|d−k‖2

]
. (12)
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Using Lemma 17 and the assumption that 1
m ≤

1
2λmin

(
Ê
[

x|kx
>
|k

‖x|d−k‖2

])
, it follows that∥∥∥∥∥∥

(
1

m
I + Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

−

(
Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1
∥∥∥∥∥∥ ≤ 2

λmin

(
Ê
[

x|kx
>
|k

‖x|d−k‖2

])2

·m
.

Combining this with Eq. (12) and the Cauchy-Schwarz inequality, it follows that∥∥∥∥∥∥X>|k
(
D +X|kX

>
|k

)−1
y −

(
Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

· Ê
[

yx|k

‖x|d−k‖2

]∥∥∥∥∥∥
=

∥∥∥∥∥∥
( 1

m
I + Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

−

(
Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1
 · Ê [ yx|k

‖x|d−k‖2

]∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1

m
I + Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

−

(
Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1
∥∥∥∥∥∥ ·
∥∥∥∥Ê [ yx|k

‖x|d−k‖2

]∥∥∥∥
≤ 2

λmin

(
Ê
[

x|kx
>
|k

‖x|d−k‖2

])2

·m
·
∥∥∥∥Ê [ yx|k

‖x|d−k‖2

]∥∥∥∥ .

Combining the above with Eq. (10) using a triangle inequality, it follows that∥∥∥∥∥∥ŵ|k −
(
Ê

[
x|kx

>
|k

‖x|d−k‖2

])−1

· Ê
[

yx|k

‖x|d−k‖2

]∥∥∥∥∥∥
≤

2
∥∥∥Ê [ yx|k

‖x|d−k‖2

]∥∥∥
λmin

(
Ê
[

x|kx
>
|k

‖x|d−k‖2

])2

·m
+

2m‖E‖
λmin(D)2

·
√
Ê[‖x|k‖2] · Ê[y2] .

Recalling that λmin(D) = mini∈[m] ‖xi|d−k‖2, the first bound in the theorem follows.
As to bound on ‖w|d−k‖ in the theorem, recalling Eq. (11), we need to analyze the

expression X>|d−k(D +X|kX
>
|k)−1y. By Cauchy-Schwarz, its norm is at most

‖X|d−k‖ ·
∥∥∥(D +X|kX

>
|k)−1

∥∥∥ · ‖y‖ =
‖X|d−k‖ · ‖y‖

λmin(D +X|kX
>
|k)
≤
‖X|d−k‖F · ‖y‖

λmin(D)

=
m ·

√
Ê[‖x|d−k‖2] · Ê[y2]

λmin(D)
.

Combining this with Eq. (11), it follows that

‖ŵ|d−k‖ ≤
m ·

√
Ê[‖x|d−k‖2] · Ê[y2]

λmin(D)
·
(

1 +
2‖E‖
λmin(D)

)
.

Recalling that λmin(D) = mini∈[m] ‖xi|d−k‖2, the second bound in the theorem follows.
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A.2 Proof of Theorem 6

Assumption 1 implies that the law of large numbers holds with respect to the random

variables ‖x|k‖2, ‖x|d−k‖2,
yx|k

‖x|d−k‖2
and

x|kx
>
|k

‖x|d−k‖2
, so their empirical average over md i.i.d.

instances (where md → ∞) converges in probability to their (finite) expectations. More-
over, by assumption 2, mini∈[md] ·‖xi|d−k‖ is at least some positive constant with prob-
ability approaching 1, and md‖E‖ becomes arbitrarily small by assumption 3. All this
implies that as d,md → ∞, then with probability approaching 1, the conditions of Theo-
rem 5 hold, and the upper bound in its first displayed equation is arbitrarily small. Hence,∥∥∥∥∥ŵd|k −

(
Êd
[

x|kx
>
|k

‖x|d−k‖2

])−1

Êd
[

yx|k
‖x|d−k‖2

]∥∥∥∥∥ P→ 0, where Êd[·] is the uniform distribution over

{xi, yi}mdi=1 sampled i.i.d. from Dd. To prove the first part of the theorem, it remains

to show that the expression

(
Êd
[

x|kx
>
|k

‖x|d−k‖2

])−1

Êd
[

yx|k
‖x|d−k‖2

]
converges in probability to(

Ed
[

x|kx
>
|k

‖x|d−k‖2

])−1

Ed
[

yx|k
‖x|d−k‖2

]
. This holds, because again by the law of large numbers

and our assumptions,∥∥∥∥Êd [ yx|k

‖x|d−k‖2

]
− Ed

[
yx|k

‖x|d−k‖2

]∥∥∥∥ P−→ 0 and

∥∥∥∥∥Êd
[

x|kx
>
|k

‖x|d−k‖2

]
− Ed

[
x|kx

>
|k

‖x|d−k‖2

]∥∥∥∥∥ P→ 0,

and moreover Ed
[

x|kx
>
|k

‖x|d−k‖2

]
is positive definite by assumption 1, hence the convergence also

holds with respect to the inverse of the matrices.

As to the second part, recalling that Ed is shorthand for E(x,y)∼Dd , and fixing some ŵd,
we have

Ed
[(

x>ŵd − x̂>|kŵd|k

)2
]

= Ed
[(

x>|d−kŵd|d−k

)2
]

= ŵ>d|d−kEd[xd−kx
>
|d−k]ŵd|d−k

≤ ‖ŵd|d−k‖2 · ‖Ed[xd−kx>|d−k]‖ .

Assumptions 1, 2, 3 and Theorem 5 imply that with probability approaching 1, ‖ŵd|d−k‖ ≤
c′ ·md, where c′ > 0 is a constant independent of d. Plugging into the displayed equation
above, and using assumption 4, implies that the bound in the displayed equation con-
verges to 0. This holds with probability approaching 1 over the choice of ŵd, hence overall

Ed
[(

x>ŵd − x̂>|kŵd|k

)2
]
P→ 0.

A.3 Proof of Lemma 9

Considering ξ which equals 0 almost surely, we clearly have σ−1(0) = 0. More generally, fix
some c ∈ R and z > 0, and consider the random variable

ξ =

{
−c w.p. z

z+1

cz w.p. 1
z+1 ,
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which is easily verified to be zero mean. The assumption E[σ−1(ξ)] = 0 translates to

z

z + 1
· σ−1(−c) +

1

z + 1
· σ−1(cz) = 0 =⇒ σ−1(cz) = −σ−1(−c) · z .

Fixing c = 1 and studying this equation as a function of z > 0, we see that σ−1(·) is
necessarily linear over [0,∞) (with slope −σ−1(−1)). Similarly, fixing c = −1, we get that
σ−1 is necessarily linear over (−∞, 0] (with slope σ−1(1)). Thus, it only remains to show
that −σ−1(−1) = σ−1(1), which follows by considering the random variable ξ uniformly
distributed on {−1, 1}, and noting that E[σ−1(ξ)] = 0 implies σ−1(−1) +σ−1(1) = 0 in this
case.

A.4 Proof of Theorem 12

Consider the optimization problem

min
α∈Rm

α>Dα : Dα � r ⇐⇒ min
α∈Rm

m∑
i=1

Di,iα
2
i : ∀i ∈ [m], Di,iαi ≥ ri

for some diagonal matrix D ∈ Rm×m with positive entries Di,i on the diagonal, and a vector

r ∈ Rm. Note that for this problem, it is easily verified that the optimum satisfies αi = [ri]+
Di,i

for all i ∈ [m], hence the optimal value is ‖[D−1/2r]+‖2 =
∑d

i=1
[ri]

2
+

Di,i
. The following key

technical lemma quantifies by how much the optimal value changes, if we perturb D be
some symmetric matrix E:

Lemma 18 Fix some integer m ≥ 1, some r ∈ Rm, a diagonal matrix D ∈ Rm×m with
positive diagonal entries, and an m × m symmetric matrix E such that ‖E‖ < λmin(D)

2 .
Then the set {α ∈ Rm : (D + E)α � r} is not empty. Moreover, letting

a∗ = min
α∈Rm

α>(D + E)α : (D + E)α � r , (13)

we have ∣∣∣a∗ − ‖[D−1/2r]+‖2
∣∣∣ ≤ 2‖E‖ · ‖D‖

λmin(D)2
· ‖[D−1/2r]+‖2 .

Proof The fact that {α ∈ Rm : (D +E)α � r} is not empty follows from the observation

that D + E is positive definite and hence invertible (since we assume ‖E‖ ≤ λmin(D)
2 ).

Thus, the set contains for instance the vector (D+E)−1r. Also, note that the minimum a∗

is indeed attained, as we are minimizing a strongly convex function with (feasible) linear
constraints.

To continue, let us perform the variable change β = (D + E)α (which is valid since
D + E is invertible), so α = (D + E)−1β, and

a∗ = min
β∈Rm

β>(D + E)−1β : β � r . (14)

By Lemma 17 and the assumption ‖E‖ ≤ λmin(D)
2 , it follows that

‖(D + E)−1 −D−1‖ ≤ 2‖E‖
λmin(D)2

.
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This implies that

D−1 +
2‖E‖

λmin(D)2
I � (D + E)−1 � D−1 − 2‖E‖

λmin(D)2
I,

where A � B for symmetric matrices A,B implies that A − B is positive semidefinite.
Plugging this back into Eq. (14), it follows that

min
β∈Rm:β�r

β>
(
D−1 +

2‖E‖
λmin(D)2

I

)
β ≥ a∗ ≥ min

β∈Rm:β�r
β>
(
D−1 − 2‖E‖

λmin(D)2
I

)
β .

Now, it is easily verified that for a diagonal matrix A ∈ Rm×m with non-negative diagonal
entries,

min
β:β�r

β>Aβ = min
β:∀i,βi≥ri

m∑
i=1

Ai,iβ
2
i =

m∑
i=1

Ai,i[ri]
2
+.

Plugging this into the previous displayed equation, it follows that

m∑
i=1

(
1

Di,i
+

2‖E‖
λmin(D)2

)
[ri]

2
+ ≥ a∗ ≥

m∑
i=1

(
1

Di,i
− 2‖E‖
λmin(D)2

)
[ri]

2
+ .

Therefore,∣∣∣∣∣a∗ −
m∑
i=1

[ri]
2
+

Di,i

∣∣∣∣∣ ≤
m∑
i=1

[ri]
2
+ ·

2‖E‖
λmin(D)2

=
m∑
i=1

[ri]
2
+

Di,i
· 2‖E‖Di,i

λmin(D)2
≤

m∑
i=1

[ri]
2
+

Di,i
· 2‖E‖ · ‖D‖
λmin(D)2

.

Noting that
∑m

i=1
[ri]

2
+

Di,i
= ‖[D−1/2r]+‖2 and plugging in the displayed equation above, the

bound in the lemma follows.

With this lemma in hand, we can now turn to prove the theorem. ŵ can be equivalently
written as

ŵ = arg min
w∈Rd

‖w‖2

m
: ∀i ∈ [m], yix

>
i w ≥ 1 .

writing w = (v,u) where v ∈ Rk,u ∈ Rd−k, the above is equivalent to

arg min
v∈Rk,u∈Rd−k

‖v‖2

m
+
‖u‖2

m
: ∀i ∈ [m], yix

>
i|d−ku ≥ 1− yix>i|kv . (15)

This in turn is equivalent to

arg min
v∈Rk

‖v‖2

m
+ fm(v) (16)

where

fm(v) = min
u∈Rd−k

‖u2‖
m

: ∀i ∈ [m], yix
>
i|d−ku ≥ 1− yix>i|kv .

Let Z|k, Z|d−k be m× (d− k) matrices whose i-th rows are (respectively) yixi and yixi|d−k.
Also, let 1 be the all-ones vector in Rm. Thus, we can write

fm(v) = min
u∈Rd−k

‖u‖2

m
: Z|d−ku � 1− Z|kv .

28



The Implicit Bias of Benign Overfitting

Clearly, the optimal u must lie in the row span of Z|d−k (otherwise, we can further reduce
‖u‖2 by projecting to that subspace, without violating the constraints). Thus, any optimal
u can be written as Z>|d−kα for some α ∈ Rm, so we can rewrite the displayed equation
above as

fm(v) = min
α∈Rm

1

m
α>
(
Z|d−kZ

>
|d−k

)
α : Z|d−kZ

>
|d−kα � 1− Z|kv .

Letting

Z|d−kZ
>
|d−k = D + E ,

where E is as defined in the theorem statement, and D being a diagonal matrix consisting
of the diagonal of Z|d−kZ

>
|d−k (namely (‖x1|d−k‖2, . . . , ‖xm|d−k‖2)), we can write the above

as

fm(v) = min
α∈Rm

1

m
α>(D + E)α : (D + E)α � 1− Z|kv .

Applying Lemma 18 on the equation above (and noting that ‖E‖ < λmin(D)
2 , which follows

from the assumption 2‖E‖·‖D‖
λmin(D)2

=
2‖E‖·maxi∈[m] ‖xi|d−k‖2

min i∈[m]‖xi|d−k‖4
≤ 1

2 < 1 and the fact that 1 ≤
‖D‖

λmin(D)), we get that∣∣∣∣fm(v)− 1

m
‖[D−1/2(1− Z|kv)]+‖2

∣∣∣∣ ≤ 2‖E‖ · ‖D‖
λmin(D)2

· 1

m
‖[D−1/2(1− Z|kv)]+‖2 . (17)

Plugging this back into Eq. (16), and plugging in 1
m‖[D

−1/2(1−Z|kv)]+‖2 = 1
m

∑m
i=1

[1−yix>i|kv]2+
‖xi|d−k‖2

(which holds by definition of D,Z|k), we get that

ŵ|k = arg min
v

‖v‖2

m
+ (1 + εv) · 1

m

m∑
i=1

[1− yix>i|kv]2+

‖xi|d−k‖2
, (18)

where εv ∈ R satisfies

sup
v∈Rk

|εv| ≤
2‖E‖ · ‖D‖
λmin(D)2

= ε0 ,

proving the first bound in the theorem.

To get the second bound, note that since ŵ|k minimizes the expression in Eq. (18),

which for v = 0 equals 1+εv
m

∑m
i=1

1
‖xi|d−k‖2

≤ 1+ε0
mini ‖xi|d−k‖2

= 1+ε0
λmin(D) , it must hold that

‖ŵ|k‖2

m
+ (1 + εŵ|k) · 1

m

m∑
i=1

[1− yix>i|kŵ|k]
2
+

‖xi|d−k‖2
≤ 1 + ε0

λmin(D)
,

and since 1 + εŵ|k ≥ 1− ε0 > 0, it follows that

1

m

m∑
i=1

[1− yix>i|kŵ|k]
2
+

‖xi|d−k‖2
≤ 1 + ε0

(1− ε0)λmin(D)
. (19)
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Next, recall from Eq. (16) and the fact that (ŵ|k, ŵ|d−k) jointly optimize Eq. (15) that

fm(ŵ|k) =
‖ŵ|d−k‖2

m
.

Combining with Eq. (17) (with v = ŵ|k), it follows that

‖ŵ|d−k‖2

m
≤
(

1 +
2‖E‖ · ‖D‖
λmin(D)2

)
· 1
m
‖[D−1/2

(
1− Z|kŵ|k

)
]+‖2 = (1 + ε0)· 1

m

m∑
i=1

[1− yix>i|kŵ|k]
2
+

‖xi|d−k‖2
,

where we recall that ε0 = 2‖E‖·‖D‖
λmin(D)2

. Combining this with Eq. (19), we get

‖ŵ|d−k‖2

m
≤ (1 + ε0)2

(1− ε0)λmin(D)
,

which is less than 5/λmin(D) (since ε0 ∈ [0, 1
2 ]). Multiplying both sides by m, and plugging

in λmin(D) = mini∈[m] ‖xi|d−k‖2, results in the second bound in the theorem.

A.5 Proof of Theorem 13

Assumptions 2 and 3 imply that with probability approaching 1 as d increases, ŵd exists
and the parameter ε0 from Theorem 12 is arbitrarily small. Under that event, Theorem 12
applies, and ‖ŵd|d−k‖2 ≤ c0 · md for some c0 > 0 independent of d. Therefore, with
probability approaching 1,

Ed
[(

x>ŵd − x>|kŵd|k

)2
]

= Ed
[(

x>|d−kŵd|d−k

)2
]

= ŵ>d|d−kEd[xd−kx
>
|d−k]ŵd|d−k

≤ ‖ŵd|d−k‖2 · ‖Ed[xd−kx>|d−k]‖ ≤ c0 ·md · ‖Ed[xd−kx>|d−k]‖ ,

which by assumption 4 converges to 0. All this implies that Ed
[(

x>ŵd − x>|kŵd|k

)2
]

P−→ 0.

We now turn to analyze ŵd|k, which by Theorem 12 and assumptions 2,3 satisfies

ŵd|k = arg min
v∈Rk

(1 + εd,v) · ĝd(v) +
‖v‖2

md
(20)

with probability approaching 1, where ĝd(v) := Êd
[

[1−yx>|kv]2+
‖x|d−k‖2

]
= 1

md

∑md
i=1

[1−yix>i|kv]2+
‖xi|d−k‖2

and

supv |εd,v| ≤ εd for some random variable εd satisfying mdεd
P−→ 0 as d→∞.

First, recalling that gd(v) = Ed
[

[1−yx>|kv]2+
‖x|d−k‖2

]
, we have by assumption 1 and the law of

large numbers that ĝd(v) − gd(v)
P→ 0 for any fixed v. Moreover, by assumption 2, both

gd(·) and ĝd(·) are cV -Lipschitz on any fixed compact set V in Rk (where cV depends on V
but not on d, and with probability approaching 1 for ĝd). Therefore, by a standard covering
number argument, it follows that

sup
v∈V
|ĝd(v)− gd(v)| P→ 0
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for any compact set V ⊂ Rk.
We now wish to argue that with probability approaching 1, ŵd|k lies in some compact

set {v ∈ Rk : ‖v‖ ≤ c′′} where c′′ is a constant independent of d. Applying the displayed
equation above, this would imply that

ĝd(ŵd|k)− gd(ŵd|k)
P→ 0 . (21)

To justify this, let us compare ŵd|k to v̂d, which we define as the minimum-norm minimizer
of3 ĝd(·). By Eq. (20), we have with probability approaching 1 for any large enough d that

(1− εd)ĝd(v̂d) +
‖ŵd|k‖2

md
≤ (1 + εd,ŵd|k)ĝd(ŵd|k) +

‖ŵd|k‖2

md

≤ (1 + εd,v̂d)ĝd(v̂d) +
‖v̂d‖2

md
≤ (1 + εd)ĝd(v̂d) +

‖v̂d‖2

md
.

Multiplying both sides by md and switching sides, it follows that

‖ŵd|k‖2 ≤ 2mdεd · gd(v̂d) + ‖v̂d‖2 ≤ 2c2mdεd + ‖v̂d‖2 ,

where the last transition follows from v̂d being a minimizer of ĝd(·), hence ĝd(v̂d) ≤ ĝd(0) =

Êd[ 1
‖x|d−k‖2

] ≤ c2 by assumption 2. Recalling that mdεd
P−→ 0, it follows in particular

‖ŵd|k‖2 ≤ 1 + ‖v̂d‖2 with probability approaching 1. By assumption 5 in the theorem,
‖v̂d‖ ≤ c′ for some constant c′ with probability approaching 1. Overall, we get that with
probability approaching 1, ŵd|k lies in some compact set {v ∈ Rk : ‖v‖ ≤ c′′} with c′′

independent of d, hence justifying Eq. (21) as discussed earlier.
Next, let us fix some reference vector v0 ∈ Rk. By assumption 3 and the law of large

numbers, ĝd(v0)− gd(v0)
P→ 0. Combined with Eq. (21), it follows that

δd :=
(
gd(ŵd|k)− gd(v0)

)
−
(
ĝd(ŵd|k)− ĝd(v0)

) P−→ 0

Thus, we have the following:

gd(ŵd|k)− gd(v0) = ĝd(ŵd|k)− ĝd(v0) + δd

= (1 + εd,ŵd|k) · ĝd(ŵd|k)− ĝd(v0) + δd − εd,ŵd|k · ĝd(ŵd|k)

≤ (1 + εd,ŵd|k) · ĝd(ŵd|k) +
‖ŵd|k‖2

md
− ĝd(v0) + δd − εd,ŵd|k · ĝd(ŵd|k)

Eq. (20)

≤ (1 + εd,v0) · ĝd(v0) +
‖v0‖2

md
− ĝd(v0) + δd − εd,ŵd|k · ĝd(ŵd|k)

= εd,v0 · ĝd(v0) +
‖v0‖2

md
+ δd − εd,ŵd|k · ĝd(ŵd|k) .

We now argue that all the terms in the bound above converge (deterministically or in

probability) to 0: As to the first term, we know that supv |εd,v|
P→ 0, and ĝd(v0) is at most

3. A minimizer of ĝd(·) always exists, since it is convex piecewise-quadratic with finitely many pieces. The
minimum-norm minimizer is unique, since if there were two minimizers of equal minimal norm, their
average would also be a minimizer by convexity of ĝd(·), and with a smaller norm which is a contradiction.
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some fixed value independent of d with probability approaching 1, by assumption 2 and
definition of ĝd(·). As to the second term, it converges to 0 since md → ∞. The third
term converges in probability to 0 as discussed above. As to the last term, we know that

supv |εd,v|
P→ 0, and ĝd(ŵd|k) is bounded by some constant independent of d with probability

approaching 1 (since ŵdk lies in some fixed compact set with probability approaching 1 as
discussed earlier, and the values of ĝd(·) are bounded independent of d on any fixed compact
set with probability approaching 1, by assumption 2).

The displayed equation above and the following discussion implies that for any β > 0,
Pr(gd(ŵd|k)−gd(v0) ≥ β)→ 0. This holds for any fixed v0. Combined with the assumption
infv lim supd(gd(v) − infu gd(u)) ≤ 0 (which implies that lim supd(gd(v0) − infv gd(v)) can
be made arbitrarily small by choosing v0 appropriately), it follows that Pr(gd(ŵd|k) −
infv gd(v) ≥ β) → 0 for all β > 0. But since gd(ŵd|k) − infv gd(v) is necessarily non-

negative, we get that gd(ŵd|k)− infv gd(v)
P→ 0.

A.6 Proof of Theorem 14

Since the labels are flipped with some probability p > 0, we have infd infw∈Rd Rd(w) > 0.
Thus, it remains to prove that under the condition stated in the theorem, Pr(x,y)∼Dd(yx

>ŵd)
converges in probability to p.

As discussed before the theorem, Lp(·) has a unique minimizer w∗p. Therefore, by

Theorem 13, ŵd|k
P→ w∗p. Since we assume Pr(x|k,y)∼Dclean

(yx>|kw
∗
p ≤ 0) = 0, we argue that

Pr
(x|k,y)∼Dclean

(yx>|kŵd|k ≤ 0)
P−→ 0 . (22)

We note that formally proving this requires some care, as Pr(yx>|kw ≤ 0) is not necessarily

continuous in w (otherwise Eq. (22) would follow immediately by continuity). To show
Eq. (22) formally, define for all γ > 0 the set Uγ := {u ∈ Rk : u>w∗p > γ, ‖u‖ ≤ 1

γ }.
Clearly, since Pr(x|k,y)∼Dclean

(yx>|kw
∗
p ≤ 0) = 0, we have

Pr
(x|k,y)∼Dclean

(yx|k ∈ Uγ)
γ→0−→ 1 . (23)

Moreover, since ŵd|k
P→ w∗p, it holds that yx>|kŵd|k

P→ yx>|kŵ
∗
p simultaneously for all vectors

yx|k of some bounded norm. Therefore, for any fixed γ,

Pr
(x|k,y)∼Dclean

(yx>|kŵd|k ≤ 0 | yx|k ∈ Uγ)

= Pr
(x|k,y)∼Dclean

(
yx>|kŵd|k ≤ 0 | yx>|kw

∗
p > γ, ‖yx|k‖ ≤

1

γ

)
P−→ 0 . (24)

Recalling that for any two events E,A over some probability space,

Pr(A) = Pr(A|E) · Pr(E) + Pr(A|¬E) · Pr(¬E) ≤ Pr(A|E) + Pr(¬E) ,

it follows that for any fixed γ,

Pr
(x|k,y)∼Dclean

(
yx>|kŵd|k ≤ 0

)
≤ Pr

(x|k,y)∼Dclean

(yx>|kŵd|k ≤ 0 | yx|k ∈ Uγ) + Pr(yx|k /∈ Uγ).
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Combined with Eq. (23) and Eq. (24), it follows that by picking γ sufficiently small, we can
make
Pr(x|k,y)∼Dclean

(
yx>|kŵd|k ≤ 0

)
asymptotically smaller than any positive number with arbi-

trarily high probability, from which Eq. (22) follows.
From Eq. (22) and the definition of Dclean, it follows that

Pr
(x,y)∼Dd

(yx>|kŵd|k ≤ 0)
P→ p .

By Theorem 13, we also have that

E(x,y)∼Dd

[
(x>ŵd − x>|kŵd|k)

2
]

P−→ 0 . (25)

Combining the last two observations, we can use similar arguments as above to prove that

Pr
(x,y)∼Dd

(yx>ŵd ≤ 0)
P−→ p , (26)

which as discussed earlier implies the theorem statement. Formally, let D̃d refer to Dd,
where y is distributed according to the “clean” distribution Dclean. Also, let Udγ = {u ∈ Rd :

u>|kw
∗
p > γ, ‖u‖ ≤ 1

γ }. Similar to before, we have

Pr
(x,y)∼D̃d

(yx ∈ Udγ )
γ→0−→ 1 .

By applying Markov’s inequality on Eq. (25), it follows that for any γ > 0, the measure of
points yx ∈ Udγ such that |yx>ŵd − yx>|kŵd|k| > γ

2 goes to 0 in probability. For all other

points in Udγ , we have yx>|kŵd|k > γ ⇒ yx>ŵd >
γ
2 . Recalling that yx>|kŵd|k

P→ yx>|kw
∗
p

(which is > γ) uniformly for all yx ∈ Udγ , we get that

Pr
(x,y)∼D̃d

(yx>ŵd ≤ 0 | yx ∈ Udγ )
P−→ 0 .

Combining the two displayed equation above, and using the same arguments made in the
context of Eq. (23) and Eq. (24), it follows that by choosing γ small enough, the probability
Pr(x,y)∼D̃d(yx

>ŵd ≤ 0) can be made asymptotically smaller than any positive numbers with
arbitrarily high probability, from which it follows that

Pr
(x,y)∼D̃d

(yx>ŵd ≤ 0)
P−→ 0 .

Switching from D̃d to Dd (which involves flipping y randomly with probability p), Eq. (26)
follows.

A.7 Proof of Theorem 15

Recall that a function f : Rk → R is λ-strongly convex, if for any u,v ∈ Rk and α ∈ [0, 1],

f(αu + (1− α)v) ≤ α · f(u) + (1− α)f(v)− α(1− α) · λ
2
‖u− v‖2 . (27)
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Note that any λ-strongly convex function is also λ′ strongly convex for any λ′ ∈ [0, λ]. Also,
it is well-known that any convex function is 0-strongly convex, that if f is λ-strongly convex,
then c · f is c · λ-strongly convex, and that a sum of a λ-strongly convex function and a
λ′-strongly convex function is (λ+λ′)-strongly convex. Moreover, if f is λ-strongly convex,
it always has a finite unique minimizer w∗, and f(w)− f(w∗) ≥ λ

2‖w −w∗‖2 for any w.

We start with the following auxiliary lemma, which implies that Lp(·) is strongly convex
under Assumption 3 (since positive definiteness of E[x|kx

>
|k] implies positive definiteness of

E[z · x|kx>|k] for z bounded in a positive interval):

Lemma 19 If E[z ·x|kx>|k] is positive definite (with minimal eigenvalue λmin > 0), then for

any p ∈ (0, 1
2 ], Lp(·) (as defined in Eq. (7) is 2pλmin-strongly convex.

Proof We have Lp(w) = E[z · `p(yx>|kw)], where `p(β) = (1 − p)[1 − β]2+ + p[1 + β]2+.

We first argue that `p is 2p-strongly convex: Indeed, it can be easily verified that `p(β) =
pβ2 + (1 − 2p)[1 − β]2+ + h(β), where h(β) is a convex function that equals −2β + 1 on
(−∞,−1], β2 + 2 on [−1,+1], and 2β + 1 on [1,∞). Therefore, `p is the sum of the
2p-strongly convex function pβ2 and convex functions, hence is 2p-strongly convex itself.

Continuing, note that by the theorem’s assumptions,

E[z · (x>|ku− x>|kv)2] = (u− v)>E[z · x|kx>|k] · (u− v) ≥ λmin‖u− v‖2 .

Combining this with the strong convexity of `p, we get that for any uv ∈ Rk and α ∈ [0, 1],

Lp (αu + (1− α)v) = E
[
z · `p

(
αx>|ku + (1− α)x>|kv

)]
≤ E

[
zα`p(x

>
|ku) + z(1− α)`p(x

>
|kv)− pα(1− α)z(x>|ku− x>|kv)2

]
≤ αLp(u) + (1− α)Lp(v)− pα(1− α)λmin‖u− v‖2

Which by Eq. (27), implies that Lp is 2pλmin-strongly convex.

We now continue with the proof of the theorem. Recall that

Lp(w) = E
[
(1− p) · z · [1− yx>|kw]2+ + p · z · [1 + yx>|kw]2+

]
,

and in particular, L0(w) = E[z · [1− yx>|kw]2+], which by the linear separability assumption

achieves a minimal value of 0 at some w∗. For any p ∈ [0, 1
2), let

L̃p(w) = E[z·[1−yx>|kw]2+]+
p

1− 2p
·g(w) where g(w) := E[z·[1−yx>|kw]2++z·[1+yx>|kw]2+] .

It is easy to check that (1− 2p) · L̃p(w) = Lp(w) for all w, hence a minimizer w∗p of Lp(·) is

also a minimizer of L̃p(·), and w∗ is a minimizer of L̃0(·). Moreover, by Lemma 19, L̃p(w)

is 2pλmin
1−2p -strongly convex (which would also imply that its minimizer w∗p always exists and

is unique).
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Next, we argue that w∗p is continuous as a function of p in (0, 1
2): Otherwise, there is

some p0 ∈ (0, 1
2) and a sequence of values p1, p2, . . . converging to p0, such that w∗pj remains

bounded away from w∗p0 , say by some minimal distance δ > 0. Let us see why that is not

possible: By 2pλmin
1−2p -strong convexity of L̃p(·) and the fact that w∗p is a minimizer, it would

imply

L̃p(w
∗
p0)− L̃p(w∗p) ≥

pλmin

(1− 2p)
‖w∗p0 −w∗p‖2 ≥

pλminδ
2

1− 2p

if p = pj for some j. Similarly, by 2p0λmin
1−2p0

-strong convexity of L̃p0(·), and the fact that w∗p0
is a minimizer, we would have

L̃p0(w∗p)− L̃p0(w∗p0) ≥ p0λmin

1− 2p0
‖w∗p −w∗p0‖

2 ≥ p0λminδ
2

1− 2p0

for any p = pj . Summing the last two displayed equations for any p = pj , it follows that
(L̃pj (w

∗
p0)− L̃p0(w∗p0)) + (L̃p0(w∗pj )− L̃pj (w

∗
pj )) is bounded away from 0 as j →∞, but this

contradicts the fact that L̃pj (w
∗
p0)− L̃p0(w∗p0)

j→∞−→ 0 and L̃p0(w∗pj )− L̃pj (w
∗
pj )

j→∞−→ 0.

Now, since w∗p is a continuous function of p in (0, 1
2), it must have a limit point ŵ as

p → 0. Since limp→0 L̃p(w
∗) = L̃0(w∗) and L̃0(w∗) ≤ L̃0(w∗p) ≤ L̃p(w

∗
p) ≤ L̃p(w

∗), we

must have limp→0 L̃p(w
∗
p) = L̃0(w∗). But since w∗p

p→0−→ ŵ and L̃p is Lipschitz in any fixed
neighborhood of ŵ (with a uniform upper bound on the Lipschitz constant), it follows that

L̃p(ŵ)
p→0−→ L̃0(w∗). Recalling that L̃0(w∗) = L0(w∗) = 0, it follows that

lim
p→0

L̃p(ŵ) = 0 .

Combined with the fact that L̃p(ŵ) ≥ E[z·[1−yx>|kŵ]2+] ≥ E[ z41yx>|kŵ<
1
2
] ≥ l

4 Pr(yx>|kŵ <

1
2) regardless of p, it follows that

Pr

(
yx>|kŵ <

1

2

)
= 0 .

Now, let B be such that Pr(‖yx|k‖ ≤ B) = 1 (such a B exists by assumption). Note that

since w∗p
p→0−→ ŵ, then for any p > 0 sufficiently small, we must have ‖w∗p − ŵ‖ ≤ 1

4B . For

any y,x|k such that ‖yx|k‖ ≤ B, the event yx>|kw
∗
p <

1
4 implies

yx>|kŵ = yx>|kw
∗
p + yx>|k(ŵ −w∗p) <

1

4
+ ‖yx|k‖‖ŵ −w∗p‖ ≤

1

4
+

B

4B
=

1

2
.

But since we showed that yx>|kŵ < 1
2 occurs with probability 0, it follows that the event

yx>|kw
∗
p <

1
4 also occurs with probability 0, namely

Pr

(
yx>|kw

∗
p <

1

4

)
= 0 .

In particular, we get that for all sufficiently small p, the misclassification error probability
of w∗p is 0.
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A.8 Proof of Theorem 16

We first argue that for all p ∈ (0, 1
2 ], w∗p must be in span(u). Otherwise, suppose that

w∗p = αu + r for some α ∈ R and non-zero vector r orthogonal to u. Then we argue that
αu− r (which is distinct from w∗p) must also be a minimizer of Lp, because conditioned on
any y, z, the distribution of

x>|kw
∗
p = x>|k(αu + r) = αx>|ku + r>(I − uu>)x|k

is the same as
x>|k(αu− r) = αx>|ku− r>(I − uu>)x|k ,

and the the value of Lp(·) conditioned on any y, z depends just on these quantities. But
since Lp(·) is strongly convex, its minimizer must be unique, which is a contradiction.

Next, let w∗ ∈ Rk such that L0(w∗) = E[z · [1− yx>|kw
∗]2+] = 0 (such a vector exists by

the linear separability assumption). We argue that we can assume w∗ ∈ span(u) without
loss of generality: If not, and it equals αu+ r with r 6= 0 orthogonal to u, then by the same
arguments as above, αu− r also minimizes L0(·). But L0(·) is convex, so the average of the
two points (which is αu) is a minimizer of L0(·), and we can take w∗ to be that minimizer.

Finally, we argue that if we write w∗p as αpu, and w∗ as αu, then the sign of αp and α
must be the same. Indeed, suppose without loss of generality that α > 0 (otherwise, flip u
to −u, and note that α cannot be zero, since then w∗ = 0 and it cannot possibly satisfy
the theorem assumptions). Since L0(w∗) = E[z · [1 − yx>|kαu]2+] = 0 and z ≥ l > 0 with

probability 1, it follows that zyx>|ku > 0 with probability 1. Therefore,

d

dβ
Lp(βu) |β=0 = − 2(1− 2p)E[zyx>|ku] < 0

for any p ∈ (0, 1
2), which by convexity of β 7→ Lp(βu) implies that the (unique) minimizer

w∗p = αpu of Lp(·) must satisfy αp > 0. Overall, we have

Pr(yx>|kw
∗
p ≤ 0) = Pr(αpyx

>
|ku ≤ 0) = Pr(αyx>|ku ≤ 0) = Pr(yx>|kw

∗ ≤ 0) = 0 .

as required.

Appendix B. Minimizers of the Squared Hinge Loss Can Lead to Large
Misclassification Error

Fix some distribution D over examples (x, y) ∈ Rd×{−1,+1}. If the distribution is linearly
separable on the first k coordinates, it is easy to see that a minimizer of the expectation of the

weighted squared hinge loss, E
[

[1−yx>|kw]2+
‖x|d−k‖

]
will also minimize the expected misclassification

error (probability that yx>|kw ≤ 0), since it will return a point w such that 1− yx>|kw ≤ 0

with probability 1 (and such a point exists by the linear separability assumption). However,
this can badly break down when there isn’t linear separability. Concretely, suppose that
‖x|d−k‖ = 1 with probability 1, and that we introduce label noise, so that the sign of y is
flipped with some probability p. In this case, the expected loss can be written as

Lp(w) = E(x|k,y)

[
(1− p) · [1− yx>|kw]2+ + p · [1 + yx>|kw]2+

]
,
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where the expectation is with respect to the “clean” labels. In this case, the minimizer
of the above might have an expected misclassification error of 1/2 (even if p is arbitrarily
small). To see this, it is enough to produce some finite linearly-separable dataset, such that
50% of the points will be misclassified by the minimizer of Lp(·) (and then random label
flipping will keep the error rate at 50%). The existence of such a dataset was essentially
shown for a more general setting in Long and Servedio (2010), and below we instantiate
their analysis for our setting with more explicit guarantees:

Proposition 20 For any p ∈ (0, 1
12), there exists a dataset {xi, yi}4i=1 ⊆ R2 × {−1,+1},

where maxi ‖x‖i ≤ 1, such that:

• There exists a unit vector w∗ for which mini yix
>
i w∗ ≥ p

• If ŵ is a minimizer of Lp(w) = 1
4

∑4
i=1

(
(1− p) · [1− yix>i w]2+ + p · [1 + yix

>
i w]2+

)
,

then ŵ misclassifies two of the four points.

Proof
Let y1 = y2 = y3 = y4 = 1, and

x1 = x2 =

(
p
−p

)
, x3 =

(
1
0

)
, x4 =

(
p
5p

)
.

It is easily verified that w∗ = (p, 0) satisfies mini yix
>
i w∗ ≥ p. Also, by Lemma 19, it is

easily verified that Lp(·) is strongly convex. Therefore, the minimizer is unique, and we
claim that for any small enough p > 0, it equals

ŵ =

(
5− 16p

3 + 8p
,

1− p
3p(3 + 8p)

)
.

In that case, for the two points x1 = x2 = (p,−p),

x>1 ŵ = x>2 ŵ = − 1− 16p+ 48p2

9 + 24p
,

which is negative for any small enough p ∈ (0, 1
12), hence two of the four points are misclas-

sified. To verify that ŵ above is indeed the minimizer, let `p(z) := (1−p)[1−z]2+ +p[1+z]2+
(so that Lp(w) = E(x,y)[`p(yx

>w)]), and note that

4·∇Lp(ŵ) = 4·∇Lp(ŵ1, ŵ2) = 2p`′p(p(ŵ1−ŵ2))

(
1
−1

)
+`′p(w1)

(
1
0

)
+p`′p(p(ŵ1+5ŵ2))

(
1
5

)
,

(28)
where

`′p(z) = − 2(1− p)[1− z]+ + 2p[1 + z]+ .

A tedious but routine calculation shows that for any p ∈ (0, 1
12), it holds that p(ŵ1− ŵ2) ∈

[−1, 0), p(ŵ1 + 5ŵ2) ∈ [0, 1], and ŵ1 > 1. Plugging in the corresponding expressions for
`′p(z) into Eq. (28), we get the 0 vector. Hence, ∇Lp(ŵ), and since Lp(·) is convex, it follows
that ŵ is indeed its minimizer.
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