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Abstract

In this paper, we provide statistical guarantees for over-parameterized deep nonparametric
regression in the presence of dependent data. By decomposing the error, we establish non-
asymptotic error bounds for deep estimation, which is achieved by effectively balancing
the approximation and generalization errors. We have derived an approximation result
for Hölder functions with constrained weights. Additionally, the generalization error is
bounded by the weight norm, allowing for a neural network parameter number that is
much larger than the training sample size. Furthermore, we address the issue of the curse of
dimensionality by assuming that the samples originate from distributions with low intrinsic
dimensions. Under this assumption, we are able to overcome the challenges posed by high-
dimensional spaces. By incorporating an additional error propagation mechanism, we derive
oracle inequalities for the over-parameterized deep fitted Q-iteration.
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1 Introduction

Consider the following regression model

Y = f0(X) + ε, (1)

where Y ∈ R is the response, X ∈ Rd is the covariate, ε is the random error with
mean zero, and f0 : Rd → R denotes the underlying regression function. Our purpose
is to estimate f0 with the over-parameterized ReLU neural networks given observations
{Zi}ni=1 := {Xi, Yi}ni=1 which may not be independently and identically distributed (i.i.d.).

In this paper, we consider dependent samples assumed to be strictly stationary β-mixing
(Yu, 1994; Antos et al., 2007, 2008; Lazaric et al., 2012). Here, strictly stationarity indicates
that the samples admit the same distribution. This assumption generalizes applications of
model (1) in i.i.d. cases, which allows for many statistical and machine learning problems
including longitudinal data analysis, time series analysis, estimations in stochastic differ-
ential equation and reinforcement learning, etc. To estimate f0 at the population level, we
consider the expected risk

R(f) = EZ [ℓ(f(X), Y )] ,

where ℓ(·, ·) : R2 → [0,∞) is the loss function. The global minimizer f∗ is defined as

f∗ = argmin
f

R(f).

It can be deduced that f0 = f∗ for certain cases including the mean and quantile regressions
where E [ε|X] = 0 or the conditional quantile of ε given X is zero, respectively. In order
to estimate f0 in (1) from samples, we consider the empirical risk minimization (ERM)
problem as given by

f̂n = argmin
f∈F

Rn(f) :=
1

n

n∑
i=1

ℓ(f(Xi), Yi), (2)

where F denotes the deep neural network class with certain structures. A goal of our
theoretical study is to estimate the excess risk, which is given as

R(f̂n)−R (f∗) := EZ
[
ℓ(f̂n(X), Y )

]
− EZ [ℓ(f∗(X), Y )] .

More recently, regression using deep neural network has attracted much attention (Bauer
and Kohler, 2019; Kohler and Langer, 2021; Schmidt-Hieber, 2020; Nakada and Imaizumi,
2020; Farrell et al., 2021; Jiao et al., 2021; Suzuki, 2018; Suzuki and Nitanda, 2021; Shen
et al., 2021; Fan et al., 2022, among others) in the framework of nonparametric estima-
tion (Stone, 1982; Gyorfi et al., 2002; Tsybakov, 2009). The convergence results given in
the aforementioned elegant works provided an under-parameterized statistical guarantee on
those deep estimators as the amount of samples is more than that of parameters. However,
over-parametrization is one of the key tricks for model training in deep learning, see Jacot
et al. (2018); Allen-Zhu et al. (2019); Du et al. (2019); Zou and Gu (2019); Liu et al. (2022);
Chizat et al. (2019) and the reference therein. The reason why over-parameterized reinforce-
ment learning works well is not fully understood, and it is still a theoretically fundamental
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but challenging problem to provide statistical guarantees under over-parameterized regimes
in deep learning (Belkin, 2021; Bartlett et al., 2021; Berner et al., 2021).

Many efforts have been made to understand the role of over-parametrization in linear
and kernel models (Belkin et al., 2018, 2019a; Hastie et al., 2022; Belkin et al., 2019b;
Liang and Rakhlin, 2020; Nakkiran et al., 2020; Bartlett et al., 2020; Tsigler and Bartlett,
2023; Belkin, 2021; Bartlett et al., 2021; Tsigler and Bartlett, 2023). However, Kohler and
Krzyzak (2021) gave an negative result by showing that the empirical risk minimization
estimator in deep non-parametric regression with over-parametrization can be inconsistent.

Technically, the challenge of theoretical analysis of those over-parameterized deep non-
parametric estimators roots in the current bias variance trade-off between the approximation
and statistical errors. Modern neural network approximation results use those network pa-
rameters such as depth, width and size to bound the approximation error which decreases
as the values of these parameters increase (Telgarsky, 2016; Yarotsky, 2017, 2018; Petersen
and Voigtlaender, 2018; Zhou, 2020; Shen et al., 2019; Shen, 2020; Lu et al., 2021). The
statistical error which measures the supremum of the empirical process indexed by neural
network class is bounded by a ratio of a certain complexity measure of the considered neural
network, such as the pseudo dimension, to the corresponding sample size using localized
methods (Bartlett et al., 2005) (or square root of the sample size using the chaining directly
(Van Der Vaart et al., 1996)). Taking deep ReLU neural network as an example, its pseudo
dimension is further bounded by its parameter numbers (Bartlett et al., 2019). Hence, only
those results for under-parameterization can be established by choosing depth, width and
size of neural networks in terms of sample sizes to balance those two errors.

The development of linear regression from low dimensional models to high dimensional
ones may provide some insight into generalizing statistical guarantees for deep learning from
under-parametrization to over-parametrization. In fact, regularization controlling certain
norms of regression coefficients plays an important role in high-dimensional regression. Mo-
tivated by this idea, we demystify the reason why over-parameterized deep neural networks
works well by considering nonparametric regression model (1) using norm-constrained deep
ReLU neural networks.

Furthermore, we analyze the over-parameterized deep fittedQ-iteration (ODFQI) method
in reinforcement learning (Kaelbling et al., 1996; Sutton and Barto, 2018, RL) as an appli-
cation example, and also establish its theoretical results. RL is one of the most important
research areas of machine learning that deals with sequential decision-making problems.
In online reinforcement learning, an agent learns to maximize the expected future return
by interacting with the environment, which can be mathematically modeled as a Markov
decision process (MDP). Recently, deep reinforcement learning, which employs deep neural
networks to approximate value functions (Li, 2017; Henderson et al., 2018; François-Lavet
et al., 2018), has made significant progress in a wide range of areas including natural lan-
guage processing (Ranzato et al., 2015; Brakel et al., 2017; Bubeck et al., 2023), robotics
(Levine et al., 2016, 2018), video games (Mnih et al., 2015), AlphaGo method (Silver et al.,
2016), among others. However, the theoretical development of deep reinforcement learning
is far behind its empirical success. In this work, we establish the oracle inequalities for
ODFQI, a representative value-based RL algorithm, where the learner takes transition data
as its input and approximates the target value function with a properly chosen class of deep
neural networks (Ernst et al., 2005; Riedmiller, 2005).
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The main contributions of this work are summarized as follows.

� We have established the statistical guarantees for both over-parameterized deep non-
parametric regression and ODFQI, and provided a prior rule on setting the hyper-
parameters of depth, width and number of iterations to achieve the desired conver-
gence rate in terms of training sample size.

� We have shown that the deep estimation is adaptive to the smoothness of f0 and
the dimension of covariates. Thus, it circumvents the curse of dimensionality if the
distribution of samples is supported on a low-dimensional Riemannian manifold.

1.1 Outlines

The rest of the paper is organized as follows. In Section 2, we introduce the ReLU neural
networks with certain weight constraints. In Section 3, we carry out the error analysis
by establishing the oracle inequality error bound for the over-parameterized deep nonpara-
metric regression and reduce the curse of dimensionality by exploring the data structure
with possible low intrinsic dimension. In Section 4, we consider the application in RL to
formulate ODFQI in details and establish the corresponding oracle inequality. Concluding
remarks are then given in Section 5. Proofs for all the theorems are deferred to Appendix
A.

1.2 Notations

We end this section by introducing some notations used throughout this paper. For any
a, b ∈ R, ⌈a⌉ denotes the smallest integer no less than a, ⌊a⌋ denotes the largest integer less
than a, a ∨ b := max{a, b} and a ∧ b := min{a, b}, a ≲ b or b ≳ a denotes a ≤ Cb for some
constant C > 0 and a ≍ b when a ≲ b ≲ a. Let N0,N denote non-negative and strictly
positive integers, respectively. For a multi-index s = (s1, . . . , sd) ∈ Nd0, the symbol ∂s

denotes the partial differential operator ∂s := ( ∂
∂x1

)s1 . . . ( ∂
∂xd

)sd and we use the convention

that ∂s is the identity operator when s = 0. ∥x∥q = (
∑d

i=1 |xi|q)
1
q is the usual q-norm

(q ∈ [1,∞]) of a vector x = (x1, . . . , xd)
⊤ ∈ Rd. For probability measure µ and measurable

function Q : Rd → R1, we write ∥Q∥qLq(µ) = Ex∼µ|Q(x)|q.

2 ReLU neural networks with constraint weight

Let L,N1, . . . , NL ∈ N. We consider the function ψ : Rd → Rk that can be parameterized
by a ReLU neural network of the following form

ψ0(x) = x,

ψℓ+1(x) = σ (Aℓψℓ(x) + bℓ) , ℓ = 0, . . . , L− 1, (3)

ψ(x) = ALψL(x),

with Aℓ ∈ RNℓ+1×Nℓ , bℓ ∈ RNℓ+1 , N0 = d and NL+1 = k. The activation function σ(x) = x∨
0 is the ReLU function which operates element-wisely. The numbers G = max {N1, . . . , NL}
and L are the width and depth of the neural network, respectively. We use Fd,k(G,L) to
denote the space of functions that can be parameterized by ReLU neural networks with
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width G and depth L. When the input dimension d and the output dimension k are
clear from contexts, we simplify the notation as F(G,L). Sometimes, we use the notation
ψθ ∈ F(G,L) to emphasize that the neural network function ψθ is parameterized by θ =
((A0, b0) , . . . , (AL−1, bL−1) , AL) . Let ∥A∥ = max1≤i≤m

∑n
j=1 |ai,j | for A ∈ Rm×n. We

define the norm-constrained neural network F(G,L,M) as the set of functions ψθ ∈ F(G,L)
satisfying the following constraint

ξ(θ) = ∥AL∥
L−1∏
ℓ=0

max {∥(Aℓ, bℓ)∥ , 1} ≤M, (4)

whereM is a positive constant. Note that we can truncate the output of ψ ∈ Fd,k(G,L,M)
by applying χB(x) = (x ∨ −B) ∧B element-wisely. Note that

χB(x) = σ(x)− σ(−x)− (B + 1)σ( x
B+1 − B

B+1) + (B + 1)σ(− x
B+1 − B

B+1).

By Lemma 25, we can conclude that χB(ψ) ∈ Fd,k(max{G, 4k}, L+1, (2B+4)max{M, 1}).
This truncation procedure will not change the rate of approximation bounds in Theorem
4, in which we give the approximation error of F(G,L,M) within Hölder class as given in
Definition 3. Hence, without loss of generality we can assume that B = 1 and F(G,L,M)
is bounded by 1 since we can always rescale the truncated version.

3 Error analysis

In order to bound the excess risk of the ERM f̂n in (2), we first decompose it into two terms
referring to statistical and approximation errors as shown in the following Lemma 2. To
this end, we introduce the following assumption on the loss ℓ, which holds for the mostly
used losses in regression.

Assumption 1 ℓ(·, ·) : R2 → R+ ∪ {0} is continuous, and ℓ(a, y) = 0 if a = y for (a, y) ∈
R2. Moreover, ℓ(·, ·) is λ-Lipschitz continuous in its first argument, where λ is a positive
constant. In other words, for any a1, a2 ∈ R2, we have

|ℓ(a1, ·)− ℓ(a2, ·)| ≤ λ|a1 − a2|.

Lemma 2 Given random samples {Zi}ni=1 = {(Xi, Yi)}ni=1. Under Assumption 1, the ex-

cess risk of ERM f̂n satisfies

R(f̂n)−R (f∗) ≤ 2 sup
f∈F(G,L,M)

|R(f)−Rn(f)|+ λ inf
f∈F(G,L,M)

∥f − f∗∥L1(ν) , (5)

where ν denotes the marginal probability measure of X.
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Proof From the definition of ERM f̂n in (2), for any f ∈ F(G,L,M), it follows that
Rn(f̂n) ≤ Rn(f). Then, by Assumption 1 we have

R(f̂n)−R(f∗) =R(f̂n)−Rn(f̂n) +Rn(f̂n)−Rn(f)

+Rn(f)−R(f) +R(f)−R(f∗)

≤R(f̂n)−Rn(f̂n) +Rn(f)−R(f) +R(f)−R(f∗)

=
{
R(f̂n)−Rn(f̂n)

}
+ {Rn(f)−R(f)}+ {R(f)−R(f∗)}

≤2 sup
f∈F(G,L,M)

|R(f)−Rn(f)|+ λ ∥f − f∗∥L1(ν) ,

where ν denotes the marginal probability measure of X. Since the above inequality holds
for any f ∈ F(G,L,M), then the desirable result can be obtained by taking infimum over
f ∈ F(G,L,M).

By Lemma 2, we can impose the bounds on the approximation error

inf
f∈F(G,L,M)

∥f − f∗∥L1(ν)

and the statistical error
sup

f∈F(G,L,M)
|R(f)−Rn(f)| ,

respectively. Next, we establish an upper bound on the approximation error for the ReLU
network F(G,L,M) introduced in Section 3.1. Furthermore, based on this approximation
result we give the size-independent statistical error in Section 3.2.

3.1 Approximation error

The term inff∈F(G,L,M) ∥f − f∗∥L1(ν) can be bounded by the approximation error of the
function class F(G,L,M) to Hölder continuous class, see Definition 3. To that end, we
assume that the distribution of the predictor X is supported on the bounded set [0, 1]d

without loss of generality. Therefore, we consider the target function f∗ defined on X =
[0, 1]d.

Definition 3 (Hölder classes) For ζ > 0 with ζ = r + ω, where r ∈ N0 and ω ∈ (0, 1]
and d ∈ N, we denote the Hölder class Hζ

(
Rd
)
as

Hζ
(
Rd
)
:=

{
f : Rd → R, max

∥s∥1≤r
∥∂sf∥∞ ≤ 1, max

∥s∥1=r
sup
x ̸=y

|∂sf(x)− ∂sf(x)|
∥x− y∥ω∞

≤ 1

}
.

Given the hypercube [0, 1]d ⊆ Rd, we denote Hζ :=
{
f : [0, 1]d → R, f ∈ Hζ

(
Rd
)}

.

We use
E
(
Hζ ,F(G,L,M)

)
= sup

f∈Hζ

inf
ψ∈F(G,L,M)

∥f − ψ∥∞

as the measure for the approximation error. Now we are ready for imposing a bound on
E
(
Hζ ,F(G,L,M)

)
in the following theorem. This proof technique follows from Jiao et al.

(2023).
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Theorem 4 Let d ∈ N and ζ = r + ω > 0, where r ∈ N0 and ω ∈ (0, 1]. For any width
G ≳Md/(d+1) logM and depth L ≳ logM , we have

E(Hζ ,F(G,L,M)) ≲M−ζ/(d+1).

In Theorem 4, the weight constraint as given in (4) is used to bound the approxima-
tion error, which is important to establish the statistical error and oracle inequalities for
over-parameterized ReLU neural networks in the following sections. Note that this is the
technical novelty of this work. In Yarotsky (2017), the approximation capacity of neural net-
works has been constructed. However, the result given in Theorem 4 is established by using
norm-constrained neural networks explicitly constructed to approximate the local Taylor
polynomials by adopting the idea of Yarotsky (2017), where the first step is to approximate
the quadratic monominal x2.

Lemma 5 For any k ∈ N, there exists a function ψk ∈ F
(
2k + 1, 2k, 43(

7
4)
k+1 − 4

3

)
such

that ψk(0) = 0 and ∣∣x2 − ψk(x)
∣∣ ≤ 2−2(k+1), x ∈ [0, 1].

Proof Following Lemma 2.4 of Telgarsky (2015) and Proposition 2 of Yarotsky (2017), the
teeth function Ti = T1 ◦ Ti−1 = T1 ◦ · · · ◦ T1 is used to construct the approximator

ψk(x) = x−
k∑
i=1

4−iTi(x),

where T1(x) = 2x for x ∈ [0, 1/2] and T1(x) = 2(1 − x) for x ∈ [1/2, 1]. As shown in
Proposition 2 of Yarotsky (2017) that ψk achieves the approximation error |x2 − ψk(x)| ≤
2−2(k+1). Obviously, T1 ∈ F(2, 2, 7), by (b) in Lemma 25, Ti ∈ F(2, 2i, 7i) and consequently
ψk ∈ F

(
2k + 1, 2k, 43(

7
4)
k+1 − 4

3

)
.

Based on Lemma 5, we can approximate other monomials and local Taylor expansion with
norm constraint ReLU network, see Section A.1 for more details.

3.2 Statistical error

The term supf∈F(G,L,M) |R(f)−Rn(f)| is the statistical error of the ReLU neural networks
F(G,L,M) with dependent data {Zi}ni=1. We first introduce the definition of β-mixing for
describing the dependence of a general stochastic process {Wt}t≥1.

Definition 6 (β-mixing) Let {Wt}t≥1 be a stochastic process and denote the collection
(W1, . . . ,Wn) as W 1:n, where n = ∞ is allowed. Moreover, denote the σ-algebra generated
by W i:j(i ≤ j) as σ

(
W i:j

)
. The s-th β-mixing coefficient of {Wt}t≥1, denoted as βs, is

given by

βs = sup
t≥1

E

[
sup

B∈σ(W t+s:∞)

∣∣P (B |W 1:t
)
− P (B)

∣∣] . (6)

{Wt}t≥1 is said to be β-mixing if βs → 0 as s → ∞. In particular, we say that a β-mixing

process mixes at an exponential rate with parameters β̄, b, η > 0 if βs ≤ β̄ exp (−bsη) holds
for all s ≥ 0.
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By adopting the independent block (IB) technique of Yu (1994) for the strictly β-mixing
n-sequence {Zi}ni=1, we divide {Zi}ni=1 into 2µn blocks of length an (n = 2anµn) and use
the independent copy to substitute half of the blocks. Then, we can transform the original
problem to the analysis of the IB sequence to which the standard tools for the independent
case can be used to obtain the Rademacher complexity of a function class F(G,L,M), see
Section A.2 in Appendix for more details. Thus we obtain the upper bound of the statistical
error supf∈F(G,L,M) |R(f)−Rn(f)| when the samples are β-mixng, shown in the following
theorem.

Theorem 7 If {Zi}ni=1 is strictly stationary β-mixing and Assumption 1 holds, then

E sup
f∈F(G,L,M)

|R(f)−Rn(f)| ≲
λM

√
L+ 2 + log(d+ 1)

√
µn

+ λµnβan ,

where βan is defined in (6).

Remark 8 β-mixing condition has been introduced to characterize the temporal dependency
in time series and Markov decision process sequences in RL, see Lazaric et al. (2012); Antos
et al. (2007, 2008); Wong et al. (2020); Chen and Fan (2006) for more details. Furthermore,
the exponential β-mixing condition holds if a sequence is geometrically ergodic (Davydov,
1974; Douc et al., 2018).

Remark 9 In Theorem 7, the weight constraint given in (4) plays a pivotal role in bounding
the statistical error by using Theorem 1 in Golowich et al. (2018). See Section A.2 for
more details. The underlying principle of norm-based capacity control can be traced back to
Bartlett (1996). Furthermore, it is noteworthy that this weight constraint exhibits a close
connection with that of Bartlett et al. (2017). Additionally, Golowich et al. (2018) presented
an in-depth discussion of the relationship between these constraints.

Theorem 7 implies that the statistical error bound is determined by µn, βan, depth L,
the norm constraint parameter M , and log transform of the dimension d. For the fixed
parameters M,L, d, if we set µn = n

(logn)τ for some constant τ > 0 (Liang et al., 2009;

Hang and Steinwart, 2017) and assume that {Zi}ni=1 is β-mixing with an exponential rate,

the error bound becomes (logn)
τ
2√

n
+ β̄n

(logn)τ e
−b(logn)ητ/2η with β̄, b, η defined in Definition 6.

3.3 Oracle inequalities with over-parameterization

Combing the approximation and statistical error bounds as given in Theorems 4 and 7,
respectively, we can establish the non-asymptotic error bound for the excess risk R(f̂n) −
R (f∗) by properly choosing the constraint parameterM and depth L for the function class,
and arbitrary large width G as shown in the following Theorem 10.

Theorem 10 (Oracle inequality) Suppose that f∗ ∈ Hζ with ζ = r + ω, r ∈ N0 and ω ∈
(0, 1], {Zi}ni=1 is strictly stationary β-mixing and Assumption 1 holds. If we set the width
and depth as G ≳ Md/(d+1) logM and L ≍ logM , respectively, where the norm constraint

parameter is given by M ≍ µ
(d+1)/(2ζ+2d+2)
n , then the excess risk satisfies

E
[
R(f̂n)

]
−R (f∗) ≲ λµ−ζ/(2ζ+2d+2)

n

√
log(dµn) + λµnβan .

8



Over-parameterized Deep Nonparametric Regression for Dependent Data

Moreover, if we set µn = n
(logn)τ for some constant τ > 0 and assume that {Zi}ni=1 is

exponentially β-mixing with parameters β̄, b, η defined in Definition 6, then we obtain that

E
[
R(f̂n)

]
−R (f∗) ≲λ

(
n

(log n)τ

)−ζ/(2ζ+2d+2)√
log(dn) +

λβ̄n

(log n)τ
e−b(logn)

ητ/2η .

Theorem 10 primarily relies on the Lipschitz continuity of the loss function ℓ, with-
out imposing any boundedness assumption for the response variable Y . This result can
also be extended to the squared loss by employing the truncation technique introduced by
Bauer and Kohler (2019) and Kohler and Langer (2021) to avoid the necessity of assuming
boundedness of the response Y . In Theorem 10, the smoothness parameter ζ is an absolute
constant. To ensure the convergence, we require that the mixing parameters β̄, b, η satisfy

log n− b(log n)ητ/2η ≤ 0 such that limn→∞
β̄n

(logn)τ e
−b(logn)ητ/2η = 0. Moreover, the non-

asymptotic error bound is O
(
n

−ζ
2ζ+2d+2

)
by ignoring those logarithmic terms if the mixing

parameters β̄, b, η also satisfy ne−b(logn)
ητ/2η ≤ n−ζ/(2ζ+2d+2). We observe that this con-

vergence rate O
(
n

−ζ
2ζ+2d+2

)
can not achieve the optimal rate in nonparametric regression

for i.i.d. data with the squared loss. To shed light on this discrepancy, it is essential to
undertake a comprehensive analysis that encompasses both approximation and statistical
errors. In the approximation error analysis in Theorem 4, we impose a norm constraint on
the weights of neural networks, and we obtain an approximation error determined by the
weight norm M , specifically M−ζ/(d+1), as given in Theorem 4. This is suboptimal when
compared to Yarotsky (2017). In the statistical error analysis in Theorem 7, the rate is also
suboptimal since the tools of local Rademacher complexity (Bartlett et al., 2005) can not
be directly used, resulting in a suboptimal result. Combining the analysis of approximation
and statistical errors indeed generates a suboptimal rate. However, the oracle inequalities
given in Theorem 10 hold if the width G is taken faster than the order O(nd/(2ζ+2d+2)) by
omitting the logarithm factor, indicating that the convergence results hold even when the
number of parameters in the neural network is much larger than the sample size n. Our
results in Theorem 10 significantly improve recent results for understanding deep learn-
ing (Bauer and Kohler, 2019; Kohler and Langer, 2021; Imaizumi and Fukumizu, 2019;
Schmidt-Hieber, 2020; Nakada and Imaizumi, 2020; Farrell et al., 2021; Jiao et al., 2021;
Suzuki, 2018; Suzuki and Nitanda, 2021; Shen et al., 2021; Fan et al., 2022), where the
number of parameters is strictly smaller than n. This over-parameterized result constitutes
a significant and notable contribution to the field of deep learning. Over-parametrization
emerges as a pivotal technique in the training of models within the deep learning paradigm,
as attested by several prominent studies (Jacot et al., 2018; Allen-Zhu et al., 2019; Du et al.,
2019; Zou and Gu, 2019; Liu et al., 2022; Chizat et al., 2019). In this work, we expound upon
an over-parameterized framework employed in deep estimation problems. This framework
allows for a holistic exploration of the interplay between generalization, approximation, and
optimization errors, providing valuable insights into these critical facets of deep learning. To
better understand the optimization, we provide a brief description of the optimization pro-
cedure here. For further investigation, we have included this as a topic for future research,
which is discussed in Section 5. As shown in (2), it is a constrained optimization problem.
However, as an alternative, we can consider its regularized version. Subsequently, we can
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proceed to obtain the theoretical guarantees for the regularized optimization procedure by
leveraging the neural tangent kernel analysis from Zou et al. (2020).

However, the convergence rates in Theorem 10 suffer from the curse of dimensionality
when d is large. To address this issue, we leverage the low-dimensional data structure in
the following section.

3.4 Circumvent the curse of dimensionality

To circumvent the curse of dimensionality, we further assume that the distribution of the
predicator X is supported on an low-dimensional Riemannian manifold. High-dimensional
data such as images and natural languages are empirically verified to be supported on
approximately lower-dimensional manifolds in computer vision and natural language pro-
cessing. We first briefly review manifolds, partition of unity, and function spaces defined on
smooth manifolds; see Federer (1959), Lee (2006), Tu (2011), Chen et al. (2022), Aamari
et al. (2019) for more details.

Definition 11 (Chart) Let M be a d∗-dimensional Riemannian manifold isometrically em-
bedded in Rd. A chart for M is a pair (U, ϕ) such that U ⊂ M is open and ϕ : U 7→ Rd∗,
where ϕ is a homeomorphism, i.e., bijective, ϕ and ϕ−1 are both continuous.

We say two charts (U, ϕ) and (V, ψ) on M are Ck compatible if and only if the transition
functions,

ϕ ◦ ψ−1 : ψ(U ∩ V ) 7→ ϕ(U ∩ V ) and ψ ◦ ϕ−1 : ϕ(U ∩ V ) 7→ ψ(U ∩ V )

are both Ck.

Definition 12 (Ck Atlas) A Ck atlas for M is a collection of pairwise Ck compatible charts
{(Ui, ϕi)}i∈A such that

⋃
i∈A Ui = M.

Definition 13 (Smooth manifold) A smooth manifold is a manifold together with a C∞

atlas.

Definition 14 (Hölder functions on M) Let M be a d∗-dimensional Riemannian manifold
isometrically embedded in Rd. Let {(Ui, Pi)}i∈A be an atlas of M where the Pi’s are orthog-
onal projections onto tangent space. For a positive number ζ > 0, a function f : M 7→ R
belonging to Hölder class Hζ(M) is ζ-Hölder smooth if for each chart (Ui, Pi) in the atlas,
we have f ◦ P−1

i ∈ Cr with max∥s∥1≤r |∂sf(x)| ≤ 1; And for any ∥s∥1 = r and x, y ∈ Ui,

supx ̸=y
|∂sf(x)−∂sf(y)|

∥x−y∥s∞
≤ 1, where r is the largest integer strictly smaller than ζ and s = ζ−r.

Definition 15 (Partition of Unity, Definition 13.4 in Tu (2011)) A C∞ partition of unity
on a manifold M is a collection of nonnegative C∞ functions ρi : M 7→ R+ for i ∈ A such
that the collection of the supports, {supp(ρi)}i∈A is locally finite, i.e., every point on M
has a neighborhood that meets only finitely many of supp(ρi)’s; And

∑
i∈A ρi = 1.

It follows from Theorem 13.7 in Tu (2011) that there exists a C∞ partition of unity for
a smooth manifold, which leads to a decomposition f =

∑
i∈A fi with fi = fρi where the

same regularity holds for fi and f due to the equality fi ◦ ϕ−1
i =

(
f ◦ ϕ−1

i

)
×
(
ρi ◦ ϕ−1

i

)
for

a chart (Ui, ϕi). Thus, the function f can be written as the sum of the functions fi, i ∈ A
and fi is only supported in a single chart.

10
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Assumption 16 The distribution of the predicator X is supported on M ⊂ [0, 1]d, where
M is a compact d∗-dimensional Riemannian manifold isometrically embedded in Rd with
condition number (1/τ̃) and area of surface SM (Lee, 2006).

For a compact Riemannian manifold M, the condition number (1/τ̃) controls both local
(such as curvature) and global properties (such as self-avoidance) of a compact Riemannian
manifold M (Baraniuk and Wakin, 2009). Moreover, τ̃ also represents the geometric con-
cept “reach” (Federer, 1959; Aamari et al., 2019), which is the largest number having the
following property: the open normal bundle about M of radius r is embedded in Rd for
all r < τ̃ (Niyogi et al., 2008; Baraniuk and Wakin, 2009). Condition number (1/τ̃) or the
reach τ̃ influences the complexity of function approximation on M using neural networks.

The surface area SM of a manifold M is defined as the integral of 1 over the manifold
with respect to the Riemannian volume element (Chapter 10, Lee (2003); Chapter 8, Lee
(2006); and Chapter 5, Hubbard and Hubbard (2015)). For example, for the surface area of
a d-dimensional unit ball, this definition gives the well-known result 2πd/2/Γ(d/2), where Γ
is Gamma function. For function approximation on M by neural networks, we approximate
the target function on a finite number of charts which cover M. Larger surface area SM
only leads to a larger number of charts, which further leads to a wider (linearly in SM)
neural network width and larger prefactor of the approximation error.

We are ready for introducing the second main result about the oracle inequality that
circumvents the curse of dimensionality as shown in Theorem 17.

Theorem 17 (Oracle inequality circumvents the curse of dimensionality) Suppose that
Assumptions 1 and 16 holds, {Zi}ni=1 is strictly stationary β-mixing, f∗ ∈ Hζ with ζ =
r + ω, r ∈ N0 and ω ∈ (0, 1]. For any width G ≳ SM(2/τ̃)d

∗
d∗ log (d∗)Md∗/(d∗+1) logM

and depth L ≍ logM , if we set M ≍ µ
(d∗+1)/(2ζ+2d∗+2)
n , then we have

E
[
R(f̂n)

]
−R (f∗) ≲ λµ−ζ/(2ζ+2d∗+2)

n

√
log(d∗µn) + λµnβan .

Moreover, if we set µn = n
(logn)τ for some constant τ > 0, and assume that {Zi}ni=1 is

exponentially β-mixing with parameters β̄, b, η satisfying ne−b(logn)
ητ/2η ≲ n−ζ/(2ζ+2d∗+2),

we have

E
[
R(f̂n)

]
−R (f∗) ≲ λ

(
n

(log n)τ

)−ζ/(2ζ+2d∗+2)√
log(d∗n).

The low dimensional data structures are considered by Nakada and Imaizumi (2020),
Schmidt-Hieber (2019), Chen et al. (2022) and Jiao et al. (2021) to reduce the influence of
the curse of dimensionality. By Theorem 17, the non-asymptotic error bound is at the rate

O
(
n

−ζ
2ζ+2d∗+2

)
by ignoring those logarithmic factors. Thus, this error bound is adaptive

to the low-dimensional data structure if we properly choose the depths and the weight
constraint for those considered networks. Hence it circumvents the curse of dimensionality
if the intrinsic dimension is small compared with the ambient dimension.

11
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4 Applications in Reinforcement Learning

In this section, we make an extension to explore the offline RL by specifically formulating
ODFQI in RL and constructing the oracle inequality for ODFQI. Although algorithmic
and statistical properties of traditional fitted Q-iteration (FQI) are well studied by existing
works (Murphy, 2005; Munos and Szepesvári, 2008; Antos et al., 2007; Farahmand et al.,
2009, 2016; Tosatto et al., 2017; Geist et al., 2019), very few of them can be directly applied
to deep FQI when deep neural networks are used to estimate the value function. Fan et al.
(2019) provided some theoretical results for deep FQI in the scenario where the number
of parameters is smaller than the sample size, and further assume that the batch data are
i.i.d., which ignores the temporal dependence existing in MDPs.

In comparison with the result given in Theorem 10 of over-parameterized deep regression,
ODFQI needs further error propagation. Specifically, the main idea of obtaining the finite
sample bound for FQI is that we first bound the non-parametric fitting error at each iteration
and then control the error prorogation across iterations (Antos et al., 2008; Farahmand
et al., 2010; Scherrer et al., 2015; Lazaric et al., 2016; Farahmand et al., 2016). The main
assumptions used in the theoretical development are the mild distribution shift condition
and the realizability-type condition. The necessity of these two conditions are discussed
recently (Xie and Jiang, 2020, 2021; Chen and Jiang, 2019). To bound the fitting error at
each iteration, we turn to obtain the approximation error of over-parameterized deep ReLU
neural networks on Hölder class in Theorem 4 and derive the related generalization error
on the dependent data in Theorem 7.

4.1 Markov Decision Process

A discounted MDP is defined by a quintuple (X ,A, P,R, γ), where X is the state space, A
is the action space, P : X ×A ⊆ Rd → P(X ) is the transition probability kernel, R(· | x, a)
refers to the distribution of immediate reward R(x, a), and γ ∈ [0, 1) is the discount factor.
P(X ) here denotes the sets of probability measure on (X ,B(X )), such that P (·|x, a) is a
probability measure on (X ,B(X )) for each pair (x, a) ∈ X ×A, which defines the next-state
distribution upon taking action a in state x, and P (D|·, ·) is some measurable function on
X × A for every D ∈ B(X ). Moreover, let π(·|x) denote the stochastic policy which is an
associated distribution of the action at state x. Given an initial distribution ν ∈ P(X ), i.e.,
X1 ∼ ν, the batch data {Zi}ni=1 = {Xi, Ai, Ri, X

′
i}ni=1 with X ′

i = Xi+1 are generated by

X1 ∼ ν, Ai ∼ π(· | Xi), Ri ∼ R(· | Xi, Ai), X
′
i ∼ P (· | Xi, Ai), i = 1, . . . , n.

Furthermore, the joint distribution of {Xi, Ai}ni=1 is given by

ν(x1)
n∏
i=2

π(ai−1|xi−1)P (xi|xi−1, ai−1).

We assume that the samples {Zi}ni=1 are strictly stationary β-mixing. Let µ be the distri-
bution of (Xi, Ai) for each i ∈ {1, . . . , n}, then µ = ν ◦ π is the the stationary distribution
of this Markov chain {Xi, Ai}ni=1, where µ = ν ◦π is defined by µ(E) =

∫
E π(da|x)dν(x) for

any E ∈ B(X )× B(A).

12
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Denote the action-value function as

Qπ(x, a) := E

[ ∞∑
i=1

γi−1Ri | X1 = x,A1 = a, π

]
.

For a given policy π, Qπ is the unique fixed point of the Bellman operator

T πQ(x, a) := ER(x, a) + γP πQ(x, a),

with

P πQ(x, a) :=

∫
P (dx′|x, a)π(da′|x′)Q(x′, a′).

Without loss of generality, suppose that R(x, a) ∈ [0, Rmax] for each pair (x, a) ∈ X × A,

thus Qπ takes values in
[
0, Rmax

1−γ

]
. There exists a policy π∗ (Agarwal et al., 2019) that

maximizes Qπ, such that Q∗ := Qπ
∗
, which implies that Q∗ satisfies the optimal Bellman

equation Q∗ = T ∗Q∗, where the optimal Bellman operator T ∗ is given by

T ∗Q(x, a) = E[R(x, a)] + γEX′∼P (·|x,a)max
a′∈A

[Q
(
X ′, a′

)
].

It is straightforward to check that T ∗ is a γ-contraction in the sup-norm. We define the
greedy policy of an action-value function Q as

π(x;Q) ∈ argmax
a∈A

Q(x, a), x ∈ X .

4.2 Deep Fitted Q-iteration

Since T ∗ is a γ-contraction, at the population level, we can apply fixed point iteration to
approximate the optimal action-value function Q∗. To be precise, suppose that R(·|x, a)
and P (·|x, a) are known, the following iteration

Q0 → Q1 = T ∗Q0 → Q2 = T ∗Q1 → . . .→ QJ−1 = T ∗QJ−2 → QJ = T ∗QJ−1, (7)

approximate Q∗ well when J is large enough. In practice, we only have the batch data
{Zi}ni=1 = {Xi, Ai, Ri, X

′
i}ni=1, and then ODFQI (Ernst et al., 2005; Riedmiller, 2005) mimics

the iteration (7) via replacing Qj , j = 1, . . . , J with Q̂j , an estimator in F(G,L,M) given
by the following regression problem

Q̂j ∈ argmin
Q∈F(G,L,M)

L̂(Q) =
1

n

n∑
i=1

(Q(Xi, Ai)− Yi)
2 , (8)

where Yi := Ri + γmaxa′∈A Q̂j−1(Xi+1, a
′), and Q̂0 ∈ F(G,L,M) is an initial guess. Let

L(Q) be the expectation of L̂(Q) given Q̂j−1. It is easy to check that for any measurable
Q defined on X ×A, we have

L(Q) = ∥Q− T ∗Q̂j−1∥2L2(µ) + E[(T ∗Q̂j−1(X,A)− Y )2],

where µ denotes the distribution of the state-action (X,A) and Y := R+γmaxa′∈A Q̂j−1(X
′, a′).

The detailed architecture of ODFQI is summarized in Algorithm 1.
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Algorithm 1 Over-parameterized Deep Fitted Q-Iteration Algorithm (ODFQI)

1: Input: Initial value Q̂0 ∈ F(G,L,M).
2: for j = 1, . . . , J do
3: Input (Xi, Ai, Ri, X

′
i) , i = 1, . . . , n.

4: Compute Yi = Ri + γmaxa′∈A Q̂j−1 (X
′
i, a

′).

5: Obtain the j-step action-value function Q̂j via solving (8), that is,

Q̂j ∈ argmin
Q∈F(G,L,M)

L̂(Q).

6: end for
7: Output: The estimate Q̂J of Q∗ and the greed policy πJ = π(·; Q̂J).

In Algorithm 1, each iteration necessitates a data sample of size n, as stipulated in the
third step of Algorithm 1. Consequently, we have J datasets, and the cumulative data
sample size utilized is nJ . Additionally, we maintain the critical assumption that the J
datasets employed in Algorithm 1 are mutually independent. This assumption plays a
pivotal role in our subsequent theoretical analysis.

Next, we present the error analysis for ODFQI by bounding ∥Q∗ −QπJ∥L1(ν)
for any

admissible distribution ν. We first introduce the definition of concentration coefficients
that controls the distribution shift because certain concentratability is necessary for the
theoretical development of the batch mode RL (Munos, 2003; Chen and Jiang, 2019; Fan
et al., 2019; Xie and Jiang, 2020, 2021).

Definition 18 (Concentration Coefficients, Assumption 4.3 of Fan et al. (2019))
Let ν1, ν2 ∈ M(X × A) be two probability measures that are absolutely continuous with re-
spect to the Lebesgue measure on X × A. Let {πt}t≥1 be a sequence of policies. Suppose
the initial state-action pair (X0, A0) of the MDP has distribution ν1, and we take action At
according to the policy πt. For any integer m, we denote the distribution of (Xm, Am) by
ν1P

π1 · · ·P πm. The m-th concentration coefficient is defined as

cν1,ν2(m) = sup
π1,...,πm

[
Eν2

∣∣∣∣d (ν1P π1 . . . P πm)dν2

∣∣∣∣2
]1/2

,

where the supremum is taken over all possible policies. Furthermore, let µ be the distribution
of (Xi, Ai) in Algorithm 1 and let ν be a fixed distribution on X ×A. Denote

Cν,µ := (1− γ)2 ·
∑
m≥1

mγm−1cν,µ(m), (9)

and assume Cν,µ < ∞, where (1 − γ)2 in (9) is a normalization term due to the equation∑
m≥1 γ

m−1 ·m = (1− γ)−2.

The following proposition on the error propagation (Antos et al., 2008; Farahmand et al.,
2010; Scherrer et al., 2015; Lazaric et al., 2016; Farahmand et al., 2016; Fan et al., 2019)
connects the error bound of ∥Q∗ −QπJ∥L1(ν)

with that of ∥Q̂j −T ∗Q̂j−1∥L2(µ) which is the
estimation error of the deep regression (8) in each iteration.
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Proposition 19 (Error propagation) Let πJ be the greedy policy of Q̂J in Algorithm 1
and QπJ be the action-value function corresponding to πJ , then

E ∥Q∗ −QπJ∥L1(ν)
≤ 2γ

(1− γ)2

(
Cν,µ max

1≤j≤J
E ∥εj∥L2(µ)

+ 2γJRmax

)
,

where εj = Q̂j − T ∗Q̂j−1, j = 1, . . . , J .

Proof Proposition 19 is a known result given in Theorem 6.1 of Fan et al. (2019).

By Proposition 19, it suffices to bound ∥Q̂j − T ∗Q̂j−1∥L2(µ). To this end, we first

decompose the excess risk L(Q̂j)−L(T ∗Q̂j−1) into the approximation and statistical errors
as given in Lemma 20, and then impose the bound on each error by Theorems 4 and 7,
respectively.

Lemma 20 Provided with a random sample {Zi}ni=1, the excess risk satisfies

L(Q̂j)− L(T ∗Q̂j−1) ≤ 2 sup
Q∈F(G,L,M)

∣∣∣L(Q)− L̂(Q)
∣∣∣+ inf

Q∈F(G,L,M)
∥Q− T ∗Q̂j−1∥2L2(µ).

Proof From the definition of Q̂j in (8), for any Q ∈ F(G,L,M), it follows that L̂(Q̂j) ≤
L̂(Q). Then, we have

L(Q̂j)− L(T ∗Q̂j−1) =L(Q̂j)− L̂(Q̂j) + L̂(Q̂j)− L̂(Q) + L̂(Q)− L(Q) + L(Q)− L(T ∗Q̂j−1)

≤L(Q̂j)− L̂(Q̂j) + L̂(Q)− L(Q) + L(Q)− L(T ∗Q̂j−1)

≤2 sup
Q∈F(G,L,M)

∣∣∣L(Q)− L̂(Q)
∣∣∣+ {L(Q)− L(T ∗Q̂j−1)

}
≤2 sup

Q∈F(G,L,M)

∣∣∣L(Q)− L̂(Q)
∣∣∣+ ∥Q− T ∗Q̂j−1∥2L2(µ)

.

Since the above inequality holds for any Q ∈ F(G,L,M), then the desired result can be
obtained by taking infimum over Q ∈ F(G,L,M).

The term infQ∈F(G,L,M) ∥Q−T ∗Q̂j−1∥2L2(µ) can be bounded by the approximation error

of the function class F(G,L,M) to Hölder class in Theorem 4 under the assumption that the
target function T ∗Q̂j−1 lies in Hölder class. To that end, we assume that the distribution of
the state-action pair (X,A) is supported on the bounded set [0, 1]d without loss of generality.

The term supQ∈F(G,L,M)

∣∣∣L(Q)− L̂(Q)
∣∣∣ is the statistical error of the ReLU neural networks

F(G,L,M) with dependent data {Zi}ni=1. Similar to Theorem 7, we can obtain the up-

per bound of the statistical error supQ∈F(G,L,M)

∣∣∣L(Q)− L̂(Q)
∣∣∣ assuming that {Zi}ni=1 are

strictly stationary β-mixng. Especially, the target function Q∗ is bounded by Rmax
1−γ instead

of 1 in Section 3, without loss of generality we can assume that both F(G,L,M) and Hζ are
bounded by Rmax

1−γ in the following theorem. Then, T ∗Q, Q ∈ F(G,L,M), is also bounded
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by Rmax
1−γ . This leads to a multiple factor 1

1−γ in the error analysis, see Theorems 21 and 23
for details. It is worthy of pointing out that our method is technically different from those of
Antos et al. (2008), Farahmand (2011), and Fan et al. (2019) to bound the statistical error.
Actually, in addition to using IB techniques for analysing β-mixing sequences, we turn to
controlling the Rademacher complexity of ReLU neural networks with weight constraints
to obtain the statistical error.

Therefore, we can establish the non-asymptotic error bound for the excess risk L(Q̂j)−
L(T ∗Q̂j−1)

(
∥Q̂j − T ∗Q̂j−1∥2L2(µ)

)
by properly choosing the constraint parameter M and

depth L for the function class and arbitrary large widthG as shown in the following Theorem
21.

Theorem 21 Suppose that {T ∗Q̂j−1}Jj=1 ∈ Hζ with ζ = r + ω, r ∈ N0 and ω ∈ (0, 1],
{Zi}ni=1 is strictly stationary β-mixing. If we set the norm constraint parameter, the width

and depth as M ≍ µ
(d+1)/(4ζ+2d+2)
n , G ≳Md/(d+1) logM , and L ≍ logM , respectively, then

the excess risk satisfies

E[∥Q̂j − T ∗Q̂j−1∥2L2(µ)
] ≲

R2
max

(1− γ)2

(
µ−ζ/(2ζ+d+1)
n

√
log(dµn) + µnβan

)
.

Moreover, if we set µn = n
(logn)τ for some constant τ > 0 and assume that {Zi}ni=1 is

exponentially β-mixing with parameters β̄, b, η defined in Definition 6, then we obtain that

E[∥Q̂j − T ∗Q̂j−1∥2L2(µ)
] ≲

R2
max

(1− γ)2

[(
n

(log n)τ

)−ζ/(2ζ+d+1)√
log(dn) +

β̄n

(log n)τ
e−b(logn)

ητ/2η

]
.

Remark 22 The completeness assumption {T ∗Q̂j−1}Jj=1 ∈ Hζ is widely used, see Chen
and Jiang (2019) and Fan et al. (2019) and references therein. Recall that

T ∗Q(x, a) = E[R(x, a)] + γEX′∼P (·|x,a)max
a′∈A

[Q
(
X ′, a′

)
], Q ∈ F(G,L,M).

Let r(x, a) := ER(x, a) be the expected reward function and assume P (dx′|x, a) = f(x′|x, a)dx′
for each pair (x, a) ∈ X × A, where f(x′|x, a) denotes the density function of P (dx′|x, a)
with respect to Lebesgue measure. Then, we have

T ∗Q(x, a) = r(x, a) + γ

∫
f(x′|x, a)max

a′∈A
[Q
(
x′, a′

)
]dx′, Q ∈ F(G,L,M).

As pointed out by Fan et al. (2019), T ∗Q(x, a) is Hölder continuous if both r(x, a) and
f(x′|x, a) are Hölder continuous. Therefore, the completeness assumption holds if both
r(x, a) and f(x′|x, a) are sufficiently smooth.

This completeness assumption holds particular significance in our theoretical develop-
ment, especially in the context of bounding the approximation error infQ∈F(G,L,M) ∥Q −
T ∗Q̂j−1∥2L2(µ). In a similar vein, Munos and Szepesvári (2008) utilized the inherent Bell-
man error to represent the approximation error. Recall that the inherent Bellman error of
a function class F as defined by Munos and Szepesvári (2008) is expressed as

d(T F ,F) = sup
g∈F

inf
f∈F

∥f − T ∗g∥L2(µ).
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It is evident that the approximation error can be controlled by the inherent Bellman error
of function class F(G,L,M), which can be represented as

d(T F(G,L,M),F(G,L,M)) = sup
g∈F(G,L,M)

inf
f∈F(G,L,M)

∥f − T ∗g∥L2(µ).

Hence, it is plausible to follow the approach of Munos and Szepesvári (2008) to bound
the inherent Bellman error of F(G,L,M) and subsequently bound the approximation er-
ror. To establish the upper bound for the inherent Bellman error, Munos and Szepesvári
(2008) introduced specific smoothness assumptions on the transition probability kernel and
reward function. These assumptions align with the smoothness conditions discussed ear-
lier, ensuring the validity of our completeness assumption. In contrast to Munos and
Szepesvári (2008), we introduce a direct smoothness assumption on T ∗, specifically that
{T ∗Q̂j−1}Jj=1 ∈ Hζ . In this context, we proceed to bound

E
(
Hζ ,F(G,L,M)

)
= sup

f∈Hζ

inf
ψ∈F(G,L,M)

∥f − ψ∥∞.

This approach allows for the control of the approximation error, as demonstrated in Theorem
4.

Now, we give one of the main results in this paper, an oracle inequality of ODFQI.

Theorem 23 (Oracle inequality) Assume that the conditions of Theorem 21 hold. Then,

E
[
∥Q∗ −QπJ∥L1(ν)

]
≲
Cν,µγRmax

(1− γ)3

(
µ−ζ/(4ζ+2d+2)
n (log(dµn))

1/4 +
√
µnβan

)
+
γJ+1Rmax

(1− γ)2
.

Moreover, if we set µn = n
(logn)τ for some constant τ > 0, and assume that {Zi}ni=1 is

exponentially β-mixing with parameters β̄, b, η satisfying ne−b(logn)
ητ/2η ≲ n

−ζ
2ζ+d+1 , we have

E
[
∥Q∗ −QπJ∥L1(ν)

]
≲
Cν,µγRmax

(1− γ)3

(
n

(log n)τ

)−ζ/(4ζ+2d+2)

(log(dn))1/4 +
γJ+1Rmax

(1− γ)2
.

By Theorem 23, when J is large enough, the non-asymptotic error bound isO
(
n

−ζ
4ζ+2d+2

)
by ignoring logarithmic terms. Thus, we get the consistency result of ODFQI when n and
J go to infinity. The oracle inequalities given in Theorem 23 are still over-parameterized
results since the width G can be larger than O(nd/(4ζ+2d+2)). These oracle inequalities
are not direct results of Fan et al. (2019) where an under-parameterized framework is
considered. Meanwhile, the convergence rates in Theorem 23 still suffer from the curse of
dimensionality as in Theorem 10. Similar to Theorem 17, the convergence rates lessening
the curse of dimensionality can also be established when the state-action pair (X,A) always
remains on a low-dimensional manifold for some certain dynamical systems.
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5 Conclusion

We establish the error bound of over-parameterized deep nonparametric regression with de-
pendent data and make an extension to over-parameterized deep fitted Q-iteration. In over-
parameterized deep nonparametric regression, with the error decomposition, we transform
the desired error bound into controlling the statistical and approximation errors through
Hölder functions using ReLU neural networks with norm-constrained weights. The bound
explicitly depends on the sample size, the ambient dimension, and the width and depth of
the neural network, which provides an insight into how to choose these hyper-parameters in
model training to achieve a desired convergence rate. Furthermore, we show that the curse of
dimensionality can be circumvented under the assumption that the distribution of observa-
tions is supported on a low-dimensional Riemannian manifold. Moreover, a non-asymptotic
error bound of ODFQI is similarly obtained through error propagation. Extending the cur-
rent results to other scenarios such as time series analysis and exploring the optimization
challenges within deep estimation problems will be considered as our future work.
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Appendix A. Appendix

In this appendix, we give the detailed proofs of Theorems 4, 7, 10, 17, 21, and 23.

A.1 Proof of Theorem 4

Let us first introduce some basic operations on neural networks. These operations will be
useful for the construction of neural networks when we study the approximation capacity.

Lemma 24 Let ψ ∈ F(G,L,M), then it can be written in the form (3) such that ∥AL∥ ≤M
and ∥(Aℓ, bℓ)∥ ≤ 1 for 0 ≤ ℓ ≤ L− 1.

Proof First, we formulate ψ in the form (3) and let kℓ := max {∥(Aℓ, bℓ)∥ , 1} for all

0 ≤ ℓ ≤ L−1. Let Ãℓ = Aℓ/kℓ, b̃ℓ = bℓ/
(∏ℓ

i=0 ki

)
, ÃL = AL

∏L−1
i=0 ki and consider the new

parameterization of ψ :

ψ̃ℓ+1(x) = σ
(
Ãℓψ̃ℓ(x) + b̃ℓ

)
, ψ̃0(x) = x.
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Then we have
∥∥∥ÃL∥∥∥ ≤M and

∥∥∥(Ãℓ, b̃ℓ)∥∥∥ =
1

kℓ

∥∥∥∥∥
(
Aℓ,

bℓ∏ℓ−1
i=0 ki

)∥∥∥∥∥ ≤ 1

kℓ
∥(Aℓ, bℓ)∥ ≤ 1,

where the second inequality holds by ki ≥ 1.

Second, we conclude that ψℓ(x) =
(∏ℓ−1

i=0 ki

)
ψ̃ℓ(x) by induction. For ℓ = 1, since the

ReLU function is absolutely homogeneous, then it yields that

ψ1(x) = σ (A0x+ b0) = k0σ
(
Ã0x+ b̃0

)
= k0ψ̃1(x).

By induction, we have

ψℓ+1(x) = σ (Aℓψℓ(x) + bℓ) =

(
ℓ∏
i=0

ki

)
σ

(
Ãℓ

ψℓ(x)∏ℓ−1
i=0 ki

+ b̃ℓ

)

=

(
ℓ∏
i=0

ki

)
σ
(
Ãℓψ̃ℓ(x) + b̃ℓ

)
=

(
ℓ∏
i=0

ki

)
ψ̃ℓ+1(x).

Thus it follows that

ψ(x) = ALψL(x) = AL

(
L−1∏
i=0

ki

)
ψ̃L(x) = ÃLψ̃L(x),

which yields that ψ can be parameterized by
((
Ã0, b̃0

)
, . . . ,

(
ÃL−1, b̃L−1

)
, ÃL

)
. This

completes the proof.

Lemma 25 Let ψ1 ∈ Fd1,k1(G1, L1,M1) and ψ2 ∈ Fd2,k2(G2, L2,M2), then the following
properties hold.

(a) If d1 = d2, k1 = k2, G1 ≤ G2, L1 ≤ L2 and M1 ≤ M2, then Fd1,k1(G1, L1,M1) ⊆
Fd2,k2(G2, L2,M2).

(b) If k1 = d2, then ψ2 ◦ ψ1 ∈ Fd1,k2(max{G1, G2}, L1 + L2,M2max{M1, 1}). Let A ∈
Rd2×d1 and b ∈ Rd2. Define the function ψ(x) := ψ2(Ax + b) for x ∈ Rd1, then
ψ ∈ Fd1,k2(G2, L2,M2max{∥(A, b)∥, 1}).

(c) If d1 = d2, define ψ(x) := (ψ1(x), ψ2(x)), then ψ ∈ Fd1,k1+k2(G1+G2,max{L1, L2},max{M1,M2}).

(d) If d1 = d2 and k1 = k2, then, for any c1, c2 ∈ R, c1ψ1 + c2ψ2 ∈ Fd1,k1(G1 +
G2,max{L1, L2}, |c1|M1 + |c2|M2).
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Proof By Lemma 24, ψi, i = 1, 2 can be parameterized in the form (3) with parameters((
A

(i)
0 , b

(i)
0

)
, . . . ,

(
A

(i)
Li−1, b

(i)
Li−1

)
, A

(i)
Li

)
such that

∥∥∥A(i)
Li

∥∥∥ ≤ Mi and
∥∥∥(A(i)

ℓ , b
(i)
ℓ

)∥∥∥ ≤ 1 for

ℓ ̸= Li.

(a) We assume that A
(1)
ℓ ∈ RG2×G2 and b

(1)
ℓ ∈ RG2 , 0 ≤ ℓ ≤ L1 − 1, by adding suitable

zero rows and columns to A
(1)
ℓ and b

(1)
ℓ if necessary (this operation does not change the

norm). Then, ψ1 can be parameterized by the parameters(
(A

(1)
0 , b

(1)
0 ), . . . , (A

(1)
L1−1, b

(1)
L1−1), ( Id ,0), . . . , ( Id ,0)︸ ︷︷ ︸

L2−L1 times

, A
(1)
L1

)
,

where Id is the identity matrix. Thus we have ψ1 ∈ Fd2,k2 (G2, L2,M2).

(b) We assume G1 = G2 without loss of generality. Then, ψ2 ◦ψ1 can be parameterized
by((
A

(1)
0 , b

(1)
0

)
, . . . ,

(
A

(1)
L1−1, b

(1)
L1−1

)
,
(
A

(2)
0 A

(1)
L1
, b

(2)
0

)
,
(
A

(2)
1 , b

(2)
1

)
, . . . ,

(
A

(2)
L2−1, b

(2)
L2−1

)
, A

(2)
L2

)
.

Then it follows that∥∥∥(A(2)
0 A

(1)
L1
, b

(2)
0

)∥∥∥ =

∥∥∥∥∥(A(2)
0 , b

(2)
0

)(
A

(1)
L1

0

0 1

)∥∥∥∥∥
≤
∥∥∥(A(2)

0 , b
(2)
0

)∥∥∥∥∥∥∥∥
(
A

(1)
L1

0

0 1

)∥∥∥∥∥
≤ max {M1, 1} .

Therefore, it can be concluded that ψ2 ◦ ψ1 ∈ Fd1,k2 (G1, L1 + L2,M2max {M1, 1}). As for
the function ψ(x) := ψ2(Ax+ b), it can also be parameterized by((

A
(2)
0 A,A

(2)
0 b+ b

(2)
0

)
,
(
A

(2)
1 , b

(2)
1

)
, . . . ,

(
A

(2)
L2−1, b

(2)
L2−1

)
, A

(2)
L2

)
.

Due to
∥∥∥(A(2)

0 A,A
(2)
0 b+ b

(2)
0

)∥∥∥ =

∥∥∥∥(A(2)
0 , b

(2)
0

)( A b
0 1

)∥∥∥∥ ≤ max{∥(A, b)∥, 1}, it yields

that ψ ∈ F (G2, L2,M2max{∥(A, b)∥, 1}).
(c) We can assume that L1 = L2. Then, ψ can be parameterized by the parameters

((A0, b0) , . . . , (AL1−1, bL1−1) , AL1), where

Aℓ :=

(
A

(1)
ℓ 0

0 A
(2)
ℓ

)
, bℓ :=

(
b
(1)
ℓ

b
(2)
ℓ

)
.

Notice that

∥(Aℓ, bℓ)∥ =

∥∥∥∥∥
(
A

(1)
ℓ 0 b

(1)
ℓ

0 A
(2)
ℓ b

(2)
ℓ

)∥∥∥∥∥ ≤ 1

and ∥AL1∥ = max
{∥∥∥A(1)

L1

∥∥∥ , ∥∥∥A(2)
L1

∥∥∥} ≤ max {M1,M2}.
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(d) Replacing the matrix AL1 in (c) by
(
c1A

(1)
L1
, c2A

(2)
L1

)
yields the conclusion following

from ∥∥∥(c1A(1)
L1
, c2A

(2)
L1

)∥∥∥ ≤ |c1|
∥∥∥A(1)

L1

∥∥∥+ |c2|
∥∥∥A(2)

L1

∥∥∥ ≤ |c1|M1 + |c2|M2.

Lemma 26 For any k ∈ N, there exists ψk ∈ F
(
6k + 3, 2k + 2, 96(74)

k+1 − 96
)
such that

ψk : [−1, 1]2 → [−1, 1] and ψk(x, y) = 0 if xy = 0 and

|xy − ψk(x, y)| ≤ 3 · 2−2k−1, x, y ∈ [−1, 1].

Proof By Lemma 5, there exists ϕk ∈ F(2k + 1, 2k, 43(
7
4)
k+1 − 4

3)

such that ϕk(0) = 0 and |x2−ϕk(x)| ≤ 2−2(k+1) for x ∈ [0, 1]. By xy = 2
(
( |x+y|2 )2 − ( |x|2 )2 − ( |y|2 )2

)
,

we can consider the function

ψ̃k(x, y) = 2ϕk
(
1
2 |x+ y|

)
− 2ϕk

(
1
2 |x|

)
− 2ϕk

(
1
2 |y|
)

= 2ϕk
(
1
2σ(x+ y) + 1

2σ(−x− y)
)
− 2ϕk

(
1
2σ(x) +

1
2σ(−x)

)
− 2ϕk

(
1
2σ(y) +

1
2σ(−y)

)
.

Then, we have ψ̃k(x, y) = 0 if xy = 0. For any x, y ∈ [−1, 1], we also obtain that∣∣∣xy − ψ̃k(x, y)
∣∣∣ ≤ 2

∣∣∣∣( |x+y|
2

)2
− ϕk

(
|x+y|

2

)∣∣∣∣+ 2

∣∣∣∣( |x|
2

)2
− ϕk

(
|x|
2

)∣∣∣∣+ 2

∣∣∣∣( |y|
2

)2
− ϕk

(
|y|
2

)∣∣∣∣
≤ 3 · 2−2k−1.

Thence we have ψ̃k ∈ F
(
6k + 3, 2k + 1, 323 (

7
4)
k+1 − 32

3

)
by (b) and (d) in Lemma 25. Finally,

let χ(x) = σ(x)− σ(−x)− 2σ(12x− 1
2) + 2σ(−1

2x− 1
2) = (x ∨ −1) ∧ 1, then χ ∈ F(4, 1, 6).

Denote the target function as

ψk(x, y) = χ(ψ̃k(x, y)) = (ψ̃k(x, y) ∨ −1) ∧ 1.

For any x, y ∈ [−1, 1], we then have

|xy − ψk(x, y)| ≤ |xy − ψ̃k(x, y)| ≤ 3 · 2−2k−1.

Therefore, it can be deduced that ψk ∈ F
(
6k + 3, 2k + 2, 96(74)

k+1 − 96
)
by (b) in Lemma

25.

Lemma 27 For any d ≥ 2 and k ∈ N , there exists ψ ∈ F
(
(6k + 3)d, (k + 1)d, d7(2d)k+1

)
such that ψ : [−1, 1]d → [−1, 1] and

|x1 · · ·xd − ψ(x)| ≤ 3d2−2k, x = (x1, . . . , xd)
⊤ ∈ [−1, 1]d.

Moreover, ψ(x) = 0 if x1 · · ·xd = 0.
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Proof Firstly, we consider the case d = 2m for some m ∈ N. For m = 1, by Lemma
26, there exists ψ1 ∈ F

(
6k + 3, 2k + 2, 96(74)

k+1
)
such that ψ1 : [−1, 1]2 → [−1, 1] and

|x1x2 − ψ1(x1, x2)| ≤ 3 · 2−2k−1 for any x1, x2 ∈ [−1, 1]. We define ψm : [−1, 1]2
m → [−1, 1]

inductively by

ψm+1(x1, . . . , x2m+1) = ψ1(ψm(x1, . . . , x2m), ψm(x2m+1, . . . , x2m+1)).

Then, we have ψm(x1, . . . , x2m) = 0 if x1 · · ·x2m = 0 since it holds for m = 1.

Secondly, by induction, we can show that ψm ∈ F
(
(6k + 3)2m−1, (2k + 2)m, (96)m(74)

(k+1)m
)

and

|x1 · · ·x2m − ψm(x1, . . . , x2m)| ≤ (2m − 1)ϵ,

where ϵ = 3·2−2k−1. Indeed, the assertion holds form = 1 by construction. Assume that it is
true form ∈ N, we need to prove it also holds form+1. By (b)–(c) in Lemma 25 and the def-
inition of ψm+1, we have ψm+1 ∈ F

(
(6k + 3)2m, (2k + 2)(m+ 1), (96)(m+1)(74)

(k+1)(m+1)
)
.

For any x1, . . . , x2m+1 ∈ [−1, 1], we denote s1 = x1 · · ·x2m , t1 = x2m+1 · · ·x2m+1 , s2 =
ψm(x1, . . . , x2m) and t2 = ψm(x2m+1, . . . , x2m+1), then s1, t1, s2, t2 ∈ [−1, 1]. By induction,
one obtains that

|s1 − s2|, |t1 − t2| ≤ (2m − 1)ϵ.

Then,

|x1 · · ·x2m+1 − ψm+1(x1, . . . , x2m+1)|
=|s1t1 − ψ1(s2, t2)|
≤|s1t1 − s1t2|+ |s1t2 − s2t2|+ |s2t2 − ψ1(s2, t2)|
≤|t1 − t2|+ |s1 − s2|+ ϵ

≤(2m+1 − 1)ϵ,

i.e., the assertion holds for m + 1. For general d ≥ 2, we choose m = ⌈log2 d⌉, then
2m−1 < d ≤ 2m. We define the target function ψ : [−1, 1]d → [−1, 1] by

ψ(x) := ψm

((
Id d

0(2m−d)×d

)
x+

(
0d×1

1(2m−d)×1

))
,

where Id d is d×d identity matrix, 0p×q is p×q zero matrix and 1(2m−d)×1 is all ones vector.
By (a)–(b) in Lemma 25,

ψ ∈ F
(
(6k + 3)2m−1, (2k + 2)m, (96)m(

7

4
)(k+1)m

)
⊆ F

(
(6k + 3)d, (k + 1)d, d7(2d)k+1

)
and the approximation error is

|x1 · · ·xd − ψ(x)| ≤ (2m − 1)ϵ ≤ 2dϵ = 3d2−2k.

Obviously, ψ(x) = 0 if x1 · · ·xd = 0 since ψm has the same property.
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By Lemma 27, we can then approximate any f ∈ Hζ by approximating the local Taylor
expansion

p(x) =
∑

n∈{0,1,...,N}d
ψn(x)

∑
∥s∥1≤r

∂sf( nN )

s!

(
x− n

N

)s
, (A.1)

where we use the usual conventions s! =
∏d
i=1 si! and (x − n

N )s =
∏d
i=1(xi −

ni
N )si . The

functions {ψn}n form a partition of unity of [0, 1]d and each ψn is supported on a sufficiently
small neighborhood of n/N .

Lemma 28 For any N, k ∈ N and f ∈ Hζ with ζ = r + ω, where r ∈ N0 and ω ∈ (0, 1],
there exists ψ ∈ F(G,L,M) where

G = (r + 1)dr(N + 1)d(6k + 3)(d+ r),

L = (k + 1)(d+ r),

M = 6(r + 1)dr(N + 1)dN(d+ r)7(2(d+ r))k+1,

such that

∥f − ψ∥L∞([0,1]d) ≤ 2ddr(N−ζ + 3(r + 1)(d+ r)2−2k).

Proof Let

ψ(t) = σ(1− |t|) = σ(1− σ(t)− σ(−t)) ∈ [0, 1], t ∈ R,

then ψ ∈ F(2, 2, 3) and the support of ψ is [−1, 1]. For any n = (n1, . . . , nd)
⊤ ∈ {0, 1, . . . , N}d,

define

ψn(x) :=

d∏
i=1

ψ(Nxi − ni), x = (x1, . . . , xd)
⊤ ∈ Rd,

then ψn is supported on {x ∈ Rd : ∥x− n
N ∥∞ ≤ 1

N }. The functions {ψn}n form a partition
of unity of the domain [0, 1]d:

∑
n∈{0,1,...,N}d

ψn(x) =
d∏
i=1

N∑
ni=0

ψ(Nxi − ni) ≡ 1, x ∈ [0, 1]d.

Let p(x) be the local Taylor expansion (A.1). For convenience, we denote pn,s(x) :=
ψn(x)(x− n

N )s and cn,s := ∂sf( nN )/s!. Then, pn,s is supported on {x ∈ Rd : ∥x− n
N ∥∞ ≤

1
N } and

p(x) =
∑

n∈{0,1,...,N}d

∑
∥s∥1≤r

cn,spn,s(x).
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By Lemma A.8 of Petersen and Voigtlaender (2018), the approximation error is

|f(x)− p(x)| =

∣∣∣∣∣∣
∑
n

ψn(x)f(x)−
∑
n

ψn(x)
∑

∥s∥1≤r

cn,s

(
x− n

N

)s∣∣∣∣∣∣
≤
∑
n

ψn(x)

∣∣∣∣∣∣f(x)−
∑

∥s∥1≤r

cn,s

(
x− n

N

)s∣∣∣∣∣∣
=

∑
n:∥x− n

N ∥∞<
1
N

∣∣∣∣∣∣f(x)−
∑

∥s∥1≤r

cn,s

(
x− n

N

)s∣∣∣∣∣∣
≤

∑
n:∥x− n

N ∥∞<
1
N

dr
∥∥∥x− n

N

∥∥∥ζ
∞

≤ 2ddrN−ζ .

Let ΦD ∈ F((6k + 3)D, (k + 1)D,D7(2D)k+1) be the D-product function constructed
in Lemma 27. Then, we can approximate pn,s by

ψn,s(x) := Φd+∥s∥1(ψ(Nx1 − n1), . . . , ψ(Nxd − nd), . . . , xi − ni
N , . . . ),

where the term xi − ni/N appears in the input only when si ̸= 0 and it repeats si times.
(When d = 1 and s = 0, we simply let ψn,0(x) = ψ(Nx − n).). Since xi − ni/N =
σ(xi − ni/N) − σ(−xi + ni/N) and ∥s∥1 ≤ r, by (b)–(c) in Lemma 25, we have ψn,s ∈
F((6k+3)(d+r), (k+1)(d+r), 6N(d+r)7(2(d+r))k+1). By Lemma 27, the approximation
error is

|pn,s(x)− ψn,s(x)| ≤ 3(d+ r)2−2k.

Since ΦD(t1, . . . , tD) = 0 when t1t2 · · · tD = 0, ψn,s is supported on {x ∈ Rd : ∥x− n
N ∥∞ ≤

1
N }.

Now, we can approximate p(x) by

ψ(x) =
∑

n∈{0,1,...,N}d

∑
∥s∥1≤r

cn,sψn,s(x).

Observe that |cn,s| = |∂sf( nN )/s!| ≤ 1 and the number of terms in the inner summation is

∑
∥s∥1≤r

1 =
r∑
j=0

∑
∥s∥1=j

1 ≤
r∑
j=0

dj ≤ (r + 1)dr.
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The approximation error is, for any x ∈ [0, 1]d,

|p(x)− ψ(x)| =

∣∣∣∣∣∣
∑
n

∑
∥s∥1≤r

cn,spn,s(x)−
∑
n

∑
∥s∥1≤r

cn,sψn,s(x)

∣∣∣∣∣∣
≤
∑
n

∑
∥s∥1≤r

|cn,s||pn,s(x)− ψn,s(x)|

≤
∑

n:∥x− n
N ∥∞<

1
N

∑
∥s∥1≤r

|pn,s(x)− ψn,s(x)|

≤3 · 2d(r + 1)(d+ r)dr2−2k.

Hence, the total approximation error is

|f(x)− ψ(x)| ≤ |f(x)− p(x)|+ |p(x)− ψ(x)| ≤ 2ddr(N−ζ + 3(r + 1)(d+ r)2−2k).

By (d) in Lemma 25, we obtain the desirable result.

Using the construction in Lemma 28, we can give a proof of the approximation bound
in Theorem 4 as follows.
Proof We choose N = ⌈22k/ζ⌉ in the Lemma 28, then there exist ψ ∈ F(G,L,M) with

G = (r + 1)dr(N + 1)d(6k + 3)(d+ r) ≍ 22dk/ζk,

L = (k + 1)(d+ r),

M = 6(r + 1)dr(N + 1)dN(d+ r)7(2(d+ r))k+1 ≍ 22(d+1)k/ζ ,

such that ∥f − ψ∥C([0,1]d) ≤ 2ddr(N−ζ + 3(r + 1)(d + r)2−2k) ≲ 2−2k. Then, k ≍ logM ,

G ≍ 22dk/ζk ≍Md/(d+1) logM , L = (k+1)(d+ r) ≍ logM and we have the approximation
bound

∥f − ψ∥C([0,1]d) ≲ 2−2k ≲M−ζ/(d+1).

Since increasing G and L can only decrease the approximation error, the bound holds for
any G ≳Md/(d+1) logM and L ≳ logM .

A.2 Proof of Theorem 7

In order to prove Theorem 7, we first introduce some lemmas in Yu (1994). Recall the main
idea of the construction of independent block for the strictly stationary β-mixing n-sequence
{Zi}ni=1. This is the key technique to obtain the Rademacher complexity of a function class
F(G,L,M) with strictly stationary β-mixing data {Zi}ni=1. Without loss of generality, for
any integer pair (an, µn) with n = 2anµn, we divide the strictly stationary n-sequence
{Zi}ni=1 into 2µn blocks of length an. Denote the indices in the blocks alternately by H’s
and T ’s. Note that these indices depend on n, but for simplicity we suppress n. That is,

H1 := {i : 1 ≤ i ≤ an} ,
T1 := {i : an + 1 ≤ i ≤ 2an} .
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In general, for 1 ≤ j ≤ µn, let

Hj := {i : 2(j − 1)an + 1 ≤ i ≤ (2j − 1)an} ,
Tj := {i : (2j − 1)an + 1 ≤ i ≤ (2j)an} ,

and define H =
⋃µn
j=1{Hj}. Denote the random variables that correspond to the Hj and Tj

indices as

Z (Hj) = {Zi, i ∈ Hj} = {Z2(j−1)an+1, · · · , Z(2j−1)an},
Z (Tj) = {Zi, i ∈ Tj} = {Z(2j−1)an+1, · · · , Z(2j)an}.

Furthermore, let the whole sequence ofH-blocks be denoted by Zan := {Z (Hj) : j = 1, 2, . . . , µn},
and the whole sequence of T -blocks is defined as Z1,an := {Z(Tj) : j = 1, 2, . . . , µn}. Take
a sequence of i.i.d blocks {Ξ (Hj) : j = 1, . . . , µn}, where Ξ (Hj) = {Z ′

i : i ∈ Hj}, such that
the sequence is independent of {Zi}ni=1 and each block has the same distribution as a block
from the original sequence, that is, L (Ξ (Hj)) = L (Z (Hj)) , j = 1, . . . , µn. We call this
constructed sequence the independent block an-sequence (IB sequence), and denote the IB
sequence as Ξan . We then transform the original problem to the analysis of the IB sequence
to which the standard tools for the independent case can be used.

Next, we give some definitions. Let σi’s be i.i.d Rademacher random variable, and
assume σi’s is independent of Zi’s and Z

′
i’s. For some measurable function g, denote

Png :=
1

n

n∑
i=1

σig (Zi) .

For the sequence {Zi}ni=1, we write

Ỹj,g (Zan) :=
∑
i∈Hj

σig (Zi) .

For the constructed IB sequence Ξ, define

Wj,g (Ξan) :=
∑
i∈Hj

σig
(
Z ′
i

)
.

Lemma 29 (Lemma 4.1 in Yu (1994)) Let the distributions of Zan and Ξan be Q and Q̃,

respectively. For any measurable function h on Rµnan with bound M̃ ,∣∣∣Qh (Zan)− Q̃h (Ξan)
∣∣∣ ≤ M̃ (µn − 1)βan .

Lemma 30 Suppose that F
M̃

is a function class bounded by M̃ , then

E{Zi,σi}ni=1

(
sup
g∈F

M̃

|Png|

)
≤ E{Z′

i,σi}ni=1

 sup
g∈F

M̃

∣∣∣∣∣∣ 1µn
µn∑
j=1

Wj,g(Ξan)

an

∣∣∣∣∣∣
+ 2M̃µnβan .
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Proof Note that the strictly β-mixing process Zan = {Z(Hj); j = 1, . . . , µn} has the same
distribution as Z1,an = {Z(Tj); j = 1, . . . , µn}, where

Z(Hj) = {Z2(j−1)an+1, . . . , Z(2j−1)an},
Z(Tj) = {Z(2j−1)an+1, . . . , Z(2j)an}.

Then we have

E{Zi,σi}ni=1

(
sup
g∈F

M̃

|Png|

)

= E{Zi,σi}ni=1

 sup
g∈F

M̃

∣∣∣∣∣∣ 1n
µn∑
j=1

Ỹj,g(Zan) +
1

n

µn∑
j=1

Ỹj,g(Z1,an)

∣∣∣∣∣∣


≤ E{Zi,σi}ni=1

 sup
g∈F

M̃

∣∣∣∣∣∣ 1n
µn∑
j=1

Ỹj,g(Zan)

∣∣∣∣∣∣
+ E{Zi,σi}ni=1

 sup
g∈F

M̃

∣∣∣∣∣∣ 1n
µn∑
j=1

Ỹj,g(Z1,an)

∣∣∣∣∣∣


= 2E{Zi,σi}ni=1

 sup
g∈F

M̃

∣∣∣∣∣∣ 1n
µn∑
j=1

Ỹj,g(Zan)

∣∣∣∣∣∣


≤ 2E{Z′
i,σi}ni=1

 sup
g∈F

M̃

∣∣∣∣∣∣ 1n
µn∑
j=1

Wj,g(Ξan)

∣∣∣∣∣∣
+ 2M̃µnβan

= E{Z′
i,σi}ni=1

 sup
g∈F

M̃

∣∣∣∣∣∣ 1µn
µn∑
j=1

Wj,g(Ξan)

an

∣∣∣∣∣∣
+ 2M̃µnβan ,

where the last inequality follows from Lemma 29 and σi’s being independent of Zi’s and
Z ′
i’s.

Based on the above lemmas, we give the proof of Theorem 7 as follows.

Proof Let Z̃i be a independent copy of Zi, and σi’s be the i.i.d. Rademacher random
variables that are independent with Z̃i and Zi, i = 1, . . . , n. Denote the Rademacher
complexity of F(G,L,M) as

G(F(G,L,M)) = E{Xi,σi}ni=1

[
sup

f∈F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

σif(Xi))

∣∣∣∣∣
]
.
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Then we have

E

[
sup

f∈F(G,L,M)
|R(f)−Rn(f)|

]
= E

[
sup

ℓf∈ℓ◦F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

ℓf (Zi)− E[ℓf (Z1)]

∣∣∣∣∣
]

= E

[
sup

ℓf∈ℓ◦F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

ℓf (Zi)−
1

n

n∑
i=1

E[ℓf (Z̃i)]

∣∣∣∣∣
]

≤ E

[
sup

ℓf∈ℓ◦F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

ℓf (Zi)−
1

n

n∑
i=1

ℓf (Z̃i)

∣∣∣∣∣
]

= E

[
sup

ℓf∈ℓ◦F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

σi(ℓf (Zi)− ℓf (Z̃i))

∣∣∣∣∣
]

≤ 2E

[
sup

ℓf∈ℓ◦F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

σiℓf (Zi)

∣∣∣∣∣
]

≤ 4λG(F(G,L,M))

≤ 8λE

 sup
f∈F(G,L,M)

∣∣∣∣∣∣ 1µn
µn∑
j=1

Wj,f (Ξan)

an

∣∣∣∣∣∣
+ 8λµnβan

≲
λM

√
L+ 2 + log(d+ 1)

√
µn

+ λµnβan ,

where the first inequality follows from the Jensen’s inequality, and the second equality holds
since both σiℓf (Zi) and σiℓf (Z̃i) are governed by the same law, the third inequality holds
by Lemma 5 of Meir and Zhang (2003), the fourth inequality holds by Lemma 30 and
F(G,L,M) is bounded by 1, and the last inequality directly follows from Theorem 2 of
Golowich et al. (2018) since (Wj,f (Ξan)/an)’s are i.i.d. and bounded by 1.

A.3 Proof of Theorem 10

Proof By Theorem 4, for any f ∈ Hζ , there exists a function ψ ∈ F(G,L,M) with width
G ≳Md/(d+1) logM and depth L ≍ logM such that

|f(x)− ψ(x)| ≲M−ζ/(d+1),

for all x ∈ [0, 1]d. By Lemma 20 and Theorem 7, it yields that

E
[
R(f̂n)

]
−R (f∗) ≲ λM−ζ/(d+1) +

λM
√
L+ 2 + log(d+ 1)

√
µn

+ λµnβan .

Setting M ≍ µ
(d+1)/(2ζ+2d+2)
n , then it follows that

E
[
R(f̂n)

]
−R (f∗) ≲ λµ−ζ/(2ζ+2d+2)

n

√
log(dµn) + λµnβan .
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Moreover, if we set µn = n
(logn)τ for some constant τ > 0 and assume that {Zi}ni=1 is

exponentially β-mixing with parameters β̄, b, η defined in Definition 6, then we obtain that

E
[
R(f̂n)

]
−R (f∗) ≲ λ

(
n

(log n)τ

)−ζ/(2ζ+2d+2)√
log(dn) +

λβ̄n

(log n)τ
e−b(logn)

ητ/2η .

A.4 Proof of Theorem 17

Proof We prove Theorem 17 with the following three steps. We first construct an finite
atlas that covers the manifold M. Then similar to Chen et al. (2022) we project each
chart linearly to a d∗-dimensional hypercube on which we approximate the low-dimensional
Hölder smooth functions respectively. Lastly, we combine the approximation results on all
charts to get an error bound of the approximation on the whole manifold. This procedure is
similar to those of Schmidt-Hieber (2019); Chen et al. (2019, 2022), but we apply our new
approximation result when approximating the low-dimensional Hölder smooth functions on
each projected chart, which leads to a better prefactor of error compared to most existing
results.

Step 1: Atlas Construction and Projection. Let B(x, r̃) denote the open Euclidean ball
with radius r̃ > 0 and center x ∈ Rd. Given any r̃ > 0, we have an open cover {B(x, r̃)}x∈M
of M. By the compactness of M, there exists a finite cover {B (xi, r̃)}i=1,...,CM

for some
finite integer CM such that M ⊂

⋃
iB (xi, r̃). Let (1/τ̃) denote the condition number of

M, then we can choose proper radius r̃ < τ̃/2 such that Ui = M∩B (xi, r̃) is diffeomorphic
to a ball in Rd∗ (Niyogi et al., 2008). Besides, the number of charts CM satisfies

CM ≤
⌈
SMTd∗/r̃

d∗
⌉
,

where SM is the area of the surface of M and Td∗ is the thickness of Ui’s, which is defined as
the average number of Ui’s that contains a point on M. By (19) in Chapter 2 of Conway and
Sloane (2013), the thickness Td∗ scales approximately linear in d∗ and there exist coverings
such that Td∗ ≤ d∗ log (d∗) + d∗ log log (d∗) + 5d∗ ≤ 7d∗ log (d∗). Let the tangent space
of M at xi be denoted by Txi(M) and let Vi ∈ Rd×d∗ be the matrix concatenating the
orthonormal basis of the tangent space as column vectors. Then for any x ∈ Ui we can
define the projection

ϕi(x) = ai

(
V ⊤
i (x− xi) + bi

)
,

where ai ∈ (0, 1] and bi are proper scalar and vector such that ϕi(x) ∈ [0, 1]d
∗
for any x ∈ Ui.

Note that each projection ϕi is a linear function, which can be computed by a one-hidden
layer ReLU network.

Step 2: Approximate low-dimensional functions. For charts {(Ui, ϕi)}CM
i=1 , we can ap-

proximate the function on each chart by approximating the projected function in the low-
dimensional space. By Theorem 13.7 in Tu (2011), the target function f can be written
as

f =

CM∑
i=1

fρi :=

CM∑
i=1

fi,
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where ρi’s are elements in C∞ partition of unity on M being supported in Ui’s. Note that
the manifoldM is compact and smooth and ρi’s are C

∞, so fi’s have the same smoothness as
f itself for i = 1, . . . , CM. Note that the collection of the supports, {supp (ρi)}i∈A is locally
finite, and let Cρ denote the maximum number of supp (ρi)’s that a point on M can belong
to. Besides, since ϕi is a linear projection operator, it is not hard to show that fi ◦ ϕ−1

i is a
Hölder smooth function with order ζ > 0 on ϕi (Ui) ⊂ [0, 1]d

∗
, i.e., fi ◦ ϕ−1

i ∈ Hζ (ϕi(Ui)) is
bounded by some universal constant C0 > 0 over i = 1, . . . , CM, where a detailed proof can
be found in Lemma 2 of Chen et al. (2022). By the extended version of Whitney’s extension
theorem in Fefferman (2006), we can approximate the smooth extension of fi◦ϕ−1

i on [0, 1]d
∗
.

By Theorem 4, for G ≳Md∗/(d∗+1) logM and L ≳ logM , we have∣∣fi ◦ ϕ−1
i (x)− gi(x)

∣∣ ≲ C0M
−ζ/(d∗+1),

for any x ∈ ϕi (Ui) ⊂ [0, 1]d
∗
.

Step 3: Approximate the target function on the manifold. By the construction of sub-
networks, the projected target function fi ◦ϕ−1

i on each region ϕi (Ui) can be approximated
by over-parameterized deep ReLU neural networks gi. Note that each projection ϕi is a
linear function can be computed by a one-hidden layer ReLU network. Then we stack two
more layer to gi and get g̃i = gi ◦ ϕi such that for any x ∈ Ui,

|fi(x)− g̃i(x)| = |fi(x)− gi ◦ ϕi(x)| ≲ C0M
−ζ/(d∗+1),

where g̃i is a over-parameterized deep ReLU neural network with widthG ≳Md∗/(d∗+1) logM
and depth L ≳ logM . Since there are CM charts, we parallelize these subnetworks g̃i to
get g̃ =

∑CM
i=1 g̃i such that

|f(x)− g̃(x)| =

∣∣∣∣∣
CM∑
i

fi(x)−
CM∑
i=1

g̃i(x)

∣∣∣∣∣
≤ Cρ |fi(x)− g̃i(x)|
≲ CρC0M

−ζ/(d∗+1),

for any x ∈ M. Such a neural network g̃ has width G ≳ CMMd∗/(d∗+1) logM and depth
L ≳ logM . Recall that

CM ≤
⌈
SMTd∗/r

d∗
⌉
≤
⌈
7SMd∗ log (d∗) /rd

∗
⌉
≤ C1SM(2/τ̃)d

∗
d∗ log (d∗)

for some universal constant C1 > 0, so the width can be set as

G ≳ SM(2/τ̃)d
∗
d∗ log (d∗)Md∗/(d∗+1) logM.

Then we have
|f(x)− g̃(x)| ≲M−ζ/(d∗+1).

By Theorem 7 and Lemma 20, if we setM ≍ µ
(d∗+1)/(2ζ+2d∗+2)
n , then the excess risk satisfies

E
[
R(f̂n)

]
−R (f∗) ≲ λµ−ζ/(2ζ+2d∗+2)

n

√
log(d∗µn) + λµnβan .
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Moreover, if we set µn = n
(logn)τ for some constant τ > 0 and assume that {Zi}ni=1 is

exponentially β-mixing with parameters β̄, b, η satisfying ne−b(logn)
ητ/2η ≲ n

−ζ
2ζ+2d∗+2 , then

we obtain that

E
[
R(f̂n)

]
−R (f∗) ≲ λ

(
n

(log n)τ

)−ζ/(2ζ+2d∗+2)√
log(d∗n).

A.5 Proof of Theorem 21

Proof Firstly, we bound the statistical error supQ∈F(G,L,M)

∣∣∣L(Q)− L̂(Q)
∣∣∣ with the similar

argument of the proof of Theorem 7. Let Z̃i be a independent copy of Zi, and σi’s be the
i.i.d. Rademacher random variables that are independent with Z̃i and Zi, i = 1, . . . , n.
Denote the composite function class

ℓ ◦ F(G,L,M) :=
{
ℓQ : ℓQ(x, a, r, x

′) =

(
Q(x, a)− r − γmax

a′∈A
Q̂j−1(x

′, a′)

)2

,

Q ∈ F(G,L,M)
}
.

Thus, it follows that

sup
Q∈F(G,L,M)

∣∣∣L̂(Q)− L(Q)
∣∣∣ = sup

Q∈F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

(Q(Xi, Ai)− Yi)
2 − E (Q(Xi, Ai)− Yi)

2

∣∣∣∣∣
=: sup

Q∈F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

ℓQ(Xi, Ai, Ri, X
′
i)− EℓQ(Xi, Ai, Ri, X

′
i)

∣∣∣∣∣ .
31



Feng, Jiao, Kang, Zhang and Zhou

Therefore we have

E sup
Q∈F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

ℓQ(Xi, Ai, Ri, X
′
i)− EℓQ(Xi, Ai, Ri, X

′
i)

∣∣∣∣∣
= E sup

Q∈F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

ℓQ(Xi, Ai, Ri, X
′
i)−

1

n

n∑
i=1

EℓQ(X̃i, Ãi, R̃i, X̃
′
i)

∣∣∣∣∣
≤ E sup

Q∈F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

ℓQ(Xi, Ai, Ri, X
′
i)−

1

n

n∑
i=1

ℓQ(X̃i, Ãi, R̃i, X̃
′
i)

∣∣∣∣∣
= E sup

Q∈F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

σi(ℓQ(Xi, Ai, Ri, X
′
i)− ℓQ(X̃i, Ãi, R̃i, X̃

′
i))

∣∣∣∣∣
≤ 2E sup

Q∈F(G,L,M)

∣∣∣∣∣ 1n
n∑
i=1

σiℓQ(Xi, Ai, Ri, X
′
i)

∣∣∣∣∣
≤ 2E

 sup
f∈ℓ◦F(G,L,M)

∣∣∣∣∣∣ 1µn
µn∑
j=1

Wj,f (Ξan)

an

∣∣∣∣∣∣
+ 4M̃µnβan

≲
M̃M

√
L+ 2 + log(d+ 1)

√
µn

+ M̃µnβan ,

where the first inequality follows from the Jensen’s inequality, and the second equality holds
since both σiℓf (Zi) and σiℓf (Z̃i) are governed by the same law, the third inequality holds

by Lemma 30 and ℓ ◦ F(G,L,M) being bounded by M̃ ≲ R2
max

(1−γ)2 , and the last inequality

directly follows from Theorem 2 of Golowich et al. (2018) since (Wj,f (Ξan)/an)’s are i.i.d.

and bounded by M̃ .
Secondly, by Theorem 4, for any f ∈ Hζ bounded by Rmax

1−γ , there exists a function

ψ ∈ F(G,L,M) bounded by Rmax
1−γ with width G ≳ Md/(d+1) logM and depth L ≍ logM

such that

|f(x)− ψ(x)| ≲ RmaxM
−ζ/(d+1)

1− γ
,

for all x ∈ [0, 1]d. By Lemma 20, it yields that

E[∥Q̂j − T ∗Q̂j−1∥2L2(µ)
] ≲

R2
maxM

−2ζ/(d+1)

(1− γ)2
+

R2
max

(1− γ)2

(
M
√
L+ 2 + log(d+ 1)

√
µn

+ µnβan

)
.

Setting M ≍ µ
(d+1)/(4ζ+2d+2)
n , then it follows that

E[∥Q̂j − T ∗Q̂j−1∥2L2(µ)
] ≲

R2
max

(1− γ)2

(
µ−ζ/(2ζ+d+1)
n

√
log(dµn) + µnβan

)
.

Moreover, if we set µn = n
(logn)τ for some constant τ > 0 and assume that {Zi}ni=1 is

exponentially β-mixing with parameters β̄, b, η defined in Definition 6, then we obtain that

E[∥Q̂j − T ∗Q̂j−1∥2L2(µ)
] ≲

R2
max

(1− γ)2

[(
n

(log n)τ

)−ζ/(2ζ+d+1)√
log(dn) +

β̄n

(log n)τ
e−b(logn)

ητ/2η

]
.
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A.6 Proof of Theorem 23

Proof By Proposition 19 and Theorem 21, we have

E
[
∥Q∗ −QπJ∥L1(ν)

]
≲
Cν,µγRmax

(1− γ)3

(
µ−ζ/(4ζ+2d+2)
n (log(dµn))

1/4 +
√
µnβan

)
+
γJ+1Rmax

(1− γ)2
.

Moreover, if we set µn = n
(logn)τ for some constant τ > 0, and assume that {Zi}ni=1 is

exponentially β-mixing with parameters β̄, b, η satisfying ne−b(logn)
ητ/2η ≲ n

−ζ
2ζ+d+1 , we have

E[∥Q∗ −QπJ∥L1(ν)
] ≲

Cν,µγRmax

(1− γ)3

[
(n/(log n)τ )−ζ/(4ζ+2d+2) (log(dµn))

1/4

+

√
β̄n

(log n)τ/2
e−b(logn)

ητ/2(η+1)
]
+
γJ+1Rmax

(1− γ)2

≲
Cν,µγRmax

(1− γ)3

(
n

(log n)τ

)−ζ/(4ζ+2d+2)

(log(dn))1/4 +
γJ+1Rmax

(1− γ)2
.
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