Sample Complexity for Distributionally Robust Learning under χ^2-divergence

Zhengyu Zhou
School of Computer Science
National Engineering Research Center for Multimedia Software
Institute of Artificial Intelligence
Hubei Key Laboratory of Multimedia and Network Communication Engineering
Wuhan University
Wuhan, China

Weiwei Liu*
School of Computer Science
National Engineering Research Center for Multimedia Software
Institute of Artificial Intelligence
Hubei Key Laboratory of Multimedia and Network Communication Engineering
Wuhan University
Wuhan, China

Editor: Mehryar Mohri

Abstract

This paper investigates the sample complexity of learning a distributionally robust predictor under a particular distributional shift based on χ^2-divergence, which is well known for its computational feasibility and statistical properties. We demonstrate that any hypothesis class \mathcal{H} with finite VC dimension is distributionally robustly learnable. Moreover, we show that when the perturbation size is smaller than a constant, finite VC dimension is also necessary for distributionally robust learning by deriving a lower bound of sample complexity in terms of VC dimension.

Keywords: distributionally robustness, PAC learning, sample complexity, χ^2-divergence

1. Introduction

Due to the prevalence of heterogeneous but often latent subpopulations in modern datasets (Meinshausen and Bühlmann, 2015; Rothenhäusler et al., 2016), many applications in statistics and machine learning are prone to distributional shifts, leading to significant performance disparities across different demographic groupings, such as race, gender, or age. Examples of such applications include speech recognition systems for people with minority accents, facial recognition, automatic video captioning, language identification, and academic recommender systems (Grother et al., 2011; Hovy and Søgaard, 2015; Blodgett et al., 2016; Sapiezynski et al., 2017; Tatman, 2017).

* Corresponding Author.

©2023 Zhengyu Zhou and Weiwei Liu.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/ Attribution requirements are provided at http://jmlr.org/papers/v24/22-0881.html
Learning models that can perform well against the distributional shift, such as latent heterogeneous subpopulations, unknown covariate shift (Ben-David et al., 2006; Shimodaira, 2000), or unobserved confounding variables (Hand, 2006), remains a challenging task in contemporary machine learning. Based on the samples drawn independently and identically distributed (i.i.d.) from the data-generating distribution P, this paper considers the problem of learning a predictor that is robust to distributional shift at test time.

Concretely, let X be the instance space, while $Y = \{+1, -1\}$ denotes the label space. We formalize the distributional shift that we would like to protect against as an uncertainty set $U(P)$ containing distributions with certain constraints, such as moment condition (Delage and Ye, 2010), Wasserstein distance (Gao, 2020) and f-divergence (Duchi and Namkoong, 2021). For a distribution P over $X \times Y = \{(x, y) : x \in X, y \in Y\}$, we observe m i.i.d. samples $S \sim P^m$, and distributionally robust learning attempts to learn a predictor $h : X \rightarrow Y$ having small distributionally robust risk,

$$R_U(h; P) := \sup_{Q \in U(P)} \mathbb{E}_{(x, y) \sim Q}[\mathbb{1}[h(x) \neq y]].$$ \hspace{1cm} (1)

The common approach to distributionally robust learning involves selecting a hypothesis class $H \subseteq Y_X$ and learning a predictor $\hat{h} : X \rightarrow Y$ from H through Distributionally Robust Empirical Risk Minimization:

$$\hat{h} \in \text{DRERM}_H(S) := \arg\min_{h \in H} \hat{R}_U(h; S),$$

where $\hat{R}_U(h; S) := \sup_{Q \in U(P_m)} \mathbb{E}_{(x, y) \sim Q}[\mathbb{1}[h(x) \neq y]]$ and P_m denotes the empirical distribution over samples S.

One line of research has focused on bounding the excess risk $R_U(\hat{h}; P) - \inf_{h \in H} R_U(h; P)$. For example, Duchi and Namkoong (2021) study the excess risk based on χ^2-divergence through the lens of the covering number argument. Lee and Raginsky (2018) derive a bound of the excess risk by means of the Rademacher complexity under the Wasserstein distance regime. However, these approaches do not consider VC dimension, which is a fundamental tool in learning theory. Moreover, the lower bound of the sample complexity for distributionally robust learning remains unknown. This paper attempts to address these issues.

It has been shown that finite VC dimension (Vapnik, 1998) is a necessary and sufficient condition for the learnability of classical statistical learning (Shalev-Shwartz and Ben-David, 2014, Theorem 6.7, Theorem 6.8), which prompts us to ask the following question:

Is finite VC dimension a necessary and sufficient condition for the distributionally robust learnability?

This paper answers the above question in the affirmative. More specifically, for a given hypothesis $H \subseteq Y_X$ and distributional shift U, we study how many i.i.d. samples are necessary and sufficient for learning a predictor h with distributionally robust risk which is as good as any predictor in H (see Definition 1 in §2). We focus on the χ^2-divergence, which is a special case in the Cressie-Read family of f-divergence (Cressie and Read, 1984). Namely, we consider the distributional shift as follows:

$$U(P) = \{Q \ll P : D_2(Q\|P) \leq \rho\},$$
where $D_2(Q\|P) := \frac{1}{2} \int \left(\frac{dQ}{dP} - 1 \right)^2 dP$ and $Q \ll P$ indicates that distribution Q is absolutely continuous with respect to P. The χ^2-divergence is a commonly explored concept in the distributionally robust optimization (DRO) literature (Duchi and Namkoong, 2019). Moreover, it is also a crucial concept in a variety of fields such as information theory, statistics, learning, signal processing, and various branches of mathematics (Park et al., 2011; Saraswat, 2014 Nishiyama and Sason, 2020). The χ^2-divergence plays a fundamental role in problems related to source and channel coding, combinatorics, large deviation theory, goodness-of-fit, and independence tests in statistics, as demonstrated by Csiszár et al. (2004). Additionally, it is widely recognized for its computational feasibility and statistical properties, as noted in Tsybakov (2009).

Our main contributions are as below:

- We show that under χ^2-divergence regime, a hypothesis class \mathcal{H} with finite VC dimension can be distributionally robustly PAC-learnable with DRERM.

- Under χ^2-divergence, we prove that, when the perturbation size ρ is smaller than a constant, finite VC dimension is necessary for distributionally robust learning. We further show that without a sufficient amount of samples (depending on the VC dimension of \mathcal{H}), any hypothesis class \mathcal{H} is not distributionally robustly PAC-learnable.

The remainder of the paper is organized as follows. In §2, we begin by providing definitions of distributionally robust learnability. In §3 and §4, we present our main results of agnostic and realizable case, respectively. We provide proof overviews of upper bound in realizable case and lower bound in agnostic case in §5. We proof the lower bound in agnostic case in §6, with certain more technical aspects deferred to the appendices. Finally, we compare our results to previous work and conclude our theoretical results in §7.

2. Problem Setup

Given a hypothesis class $\mathcal{H} \subseteq \mathcal{Y}^X$, our goal is to design a learning rule $\mathcal{A} : (\mathcal{X} \times \mathcal{Y})^* \mapsto \mathcal{Y}^X$ such that for any distribution P over $\mathcal{X} \times \mathcal{Y}$, the rule \mathcal{A} will find a predictor that can compete with the best predictor $h^* \in \mathcal{H}$ in terms of the distributionally robust risk using a number of samples that is independent of the distribution P. In this paper, we use $(\mathcal{X} \times \mathcal{Y})^*$ to denote the set of all sequences in the space $\mathcal{X} \times \mathcal{Y}$. The following definitions formalize the notion of distributionally robust PAC learning under the realizable case and agnostic settings.

Definition 1 (Agnostic Distributionally Robust PAC Learnability) For any $\varepsilon, \delta \in (0, 1)$, the sample complexity of agnostically distributionally robust (ε, δ)-PAC learning of \mathcal{H} with respect to the distributional shift \mathcal{U}, denoted by $M_{\text{AG}}(\varepsilon, \delta; \mathcal{H}, \mathcal{U})$, is defined as the smallest $m \in \mathbb{N} \cup \{0\}$ for which there exists a learning rule $\mathcal{A} : (\mathcal{X} \times \mathcal{Y})^* \mapsto \mathcal{Y}^X$ such that, for every data distribution P over $\mathcal{X} \times \mathcal{Y}$, with probability of at least $1 - \delta$ over $S \sim P^m$,

$$R_{\mathcal{U}}(\mathcal{A}(S); P) \leq \inf_{h \in \mathcal{H}} R_{\mathcal{U}}(h; P) + \varepsilon.$$

If no such m exists, define $M_{\text{AG}}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) = \infty$. We say that \mathcal{H} is distributionally robust PAC-learnable in the agnostic setting with respect to the distributional shift \mathcal{U} if $\forall \varepsilon, \delta \in (0, 1)$, $M_{\text{AG}}(\varepsilon, \delta; \mathcal{H}, \mathcal{U})$ scales polynomially with $1/\varepsilon$ and $1/\delta$.

Definition 2 (Realizable Distributionally Robust PAC Learnability) For any $\varepsilon, \delta \in (0, 1)$, the sample complexity of realizable distributionally robust (ε, δ)-PAC learning of \mathcal{H} with respect to the distributional shift \mathcal{U}, denoted by $\mathcal{M}_{\mathcal{RE}}(\varepsilon, \delta; \mathcal{H}, \mathcal{U})$, is defined as the smallest $m \in \mathbb{N} \cup \{0\}$ for which there exists a learning rule $\mathcal{A} : (\mathcal{X} \times \mathcal{Y})^* \rightarrow \mathcal{Y}^\mathcal{X}$ such that, for every data distribution P over $\mathcal{X} \times \mathcal{Y}$ where there exists a predictor $h^* \in \mathcal{H}$ with zero distributionally robust risk, $R_\mathcal{U}(h^*; P) = 0$, with probability of at least $1 - \delta$ over $S \sim P^m$,

$$R_\mathcal{U}(\mathcal{A}(S); P) \leq \varepsilon.$$

If no such m exists, define $\mathcal{M}_{\mathcal{RE}}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) = \infty$. We say that \mathcal{H} is distributionally robustly PAC-learnable in the realizable setting with respect to the distributional shift \mathcal{U} if $\forall \varepsilon, \delta \in (0, 1)$, $\mathcal{M}_{\mathcal{RE}}(\varepsilon, \delta; \mathcal{H}, \mathcal{U})$ scales polynomially with $1/\varepsilon$ and $1/\delta$.

We also denote $\text{er}(h; P) = P(h(x) \neq y)$, the (non-robust) error rate under 0–1 loss, and $\bar{\text{er}}(h; S) = \frac{1}{|S|} \sum_{(x,y) \in S} 1[h(x) \neq y]$, the empirical error rate; here, $|S|$ denotes the cardinality of set S, while $1[\cdot]$ is the indicator function that takes 1 when the statement in the square brackets is true and 0 otherwise. The definition of Vapnik-Chervonenkis dimension (VC dimension) is provided below.

Definition 3 (VC dimension) We say that a sequence $\{x_1, \ldots, x_k\} \subseteq \mathcal{X}$ is shattered by \mathcal{H} if $\forall y_1, \ldots, y_k \in \mathcal{Y}, \exists h \in \mathcal{H}$ such that $\forall i \in [k], h(x_i) = y_i$. The VC dimension of \mathcal{H} (denoted as $\text{vc}(\mathcal{H})$) is then defined as the largest integer k for which there exists $\{x_1, \ldots, x_k\} \subseteq \mathcal{X}$ that is shattered by \mathcal{H}. If no such k exists, then $\text{vc}(\mathcal{H})$ is said to be infinite.

In the standard PAC learning framework, we know that a hypothesis class \mathcal{H} is PAC-learnable if and only if the VC dimension of \mathcal{H} is finite (Vapnik and Chervonenkis, 2015). The question then naturally arises as to whether the finite VC dimension of \mathcal{H} is a necessary and sufficient condition for distributionally robust PAC learnability. In the following sections, we arrive at an affirmative answer to this question.

Denote the loss class of \mathcal{H} by $\mathcal{L}_\mathcal{H}$, where

$$\mathcal{L}_\mathcal{H} = \{(x, y) \mapsto 1[h(x) \neq y] : h \in \mathcal{H}\}.$$

3. Agnostic Case

We use $R_2(h; P)$ to denote the distributionally robust risk under distributional shift

$$\mathcal{U}(P) = \{Q \ll P : D_2(Q\|P) \leq \rho\}.$$

We recall the following duality formulation (Shapiro 2017 Section 3.2) for distributionally robust risk, which is essential in our derivation.

Proposition 4 (Duality Formulation) For any probability P on $\mathcal{X} \times \mathcal{Y}$, any $\rho > 0$, and $c_2(\rho) := \sqrt{1 + 2\rho}$, for all $h \in \mathcal{H}$, we have

$$R_2(h; P) = \inf_{\eta \in \mathbb{R}} \left\{ c_2(\rho) \mathbb{E}_P \left[(1[h(x) \neq y] - \eta)^2 \right]^{1/2} + \eta \right\},$$

where $a_+ := \max(a, 0).$
To bring the above proposition into effect, we need the following lemma. In the interests of simplicity, for any fixed $h \in \mathcal{H}$, let
\[g_2(\eta, P) := c_2(\rho) \mathbb{E}_P \left[(1[h(x) \neq y] - \eta)^2 \right]^{1/2} + \eta. \]

Lemma 5 For any distribution P,
\[\inf_{\eta \in \mathbb{R}} g_2(\eta, P) = \inf_{\eta} \left\{ g_2(\eta, P) : \eta \in \left[-\frac{1}{c_2(\rho) - 1}, 1 \right] \right\}. \]

Remark 6 The above lemma restricts the domain of η to a compact set, which is crucial to our uniform convergence result.

Theorem 7 For any \mathcal{H} with $\text{vc}(\mathcal{H}) = d$ and $\mathcal{U}(P) = \{Q \ll P : D_2(Q\|P) \leq \rho\}$, $\forall \varepsilon, \delta \in (0, 1)$,
\[
\mathcal{M}_{\text{AG}}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) = O \left(\frac{d}{\varepsilon^4} \log \left(\frac{d}{\varepsilon^4} \right) + \frac{1}{\varepsilon^4} \left(\frac{1}{c_2(\rho) - 1} \vee 1 \right) + \frac{d}{\varepsilon^4} \log \left(\frac{e}{d} \right) + \frac{\log(2/\delta)}{\varepsilon^4} \right). \tag{3}
\]

The proof of Lemma 5 and Theorem 7 can be found in §A.1.

Remark 8 The dependence on $\frac{1}{c_2(\rho) - 1}$ is due to the lower bound for η in Lemma 5. While more advanced techniques could potentially yield a better dependence on ρ, it is worth noting that the upper bound shows that the finite VC dimension is sufficient for distributionally robust PAC learnability for finite non-zero values of ρ.

Theorem 9 For any \mathcal{H} with $\text{vc}(\mathcal{H}) = d$ and $\mathcal{U}(P) = \{Q \ll P : D_2(Q\|P) \leq \rho\}$ with $\rho \in \left(0, \frac{1 - 2\sqrt{2}}{4}\right)$, $\forall \varepsilon, \delta \in (0, 1)$,
\[
\mathcal{M}_{\text{AG}}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) = \Omega \left(\left(\frac{1}{2} - \frac{\sqrt{2}}{16} \rho^{1/2} \right)^2 \frac{d + \log(1/\delta)}{\varepsilon^2} \right). \tag{4}
\]

The proof of Theorem 9 can be found in §6.

Remark 10 We derive the result under the assumption that the perturbation size $\rho \in \left(0, \frac{1 - 2\sqrt{2}}{4}\right)$. Intuitively, if the perturbation size is prohibitively large, the learning problem can become “easier”, since the benchmark $\inf_{h \in \mathcal{H}} R_2(h; P)$ may increase too much. When ρ approaches 0, the lower bound recovers that of the classical statistical learning (Mohri et al., 2012; Shalev-Shwartz and Ben-David, 2014).

4. **Realizable Case**

To study the upper bound of the sample complexity under the realizable case, it is necessary to introduce the definition of *Distributionally Robust ε-net*, which is similar to the definition in (Shalev-Shwartz and Ben-David, 2014, Definition 28.2). In the realizable case, we have a target hypothesis h^* that generates the label. We will frequently refer \mathcal{C}_h to the set $\{x \in \mathcal{X} : h(x) \neq h^*(x)\}$, where h is a predictor in hypothesis class \mathcal{H}. The distributionally robust risk has the following form:
\[
R_2(h; P) = \sup_{Q \ll P} \{\mathbb{E}_{x \sim Q}[1[h(x) \neq h^*(x)]] : D_2(Q\|P) \leq \rho\}.
\]
Definition 11 (Distributionally Robust \(\varepsilon \)-net) Let \(\mathcal{X} \) be a domain. \(S \subseteq \mathcal{X} \) is a Distributionally Robust \(\varepsilon \)-net for \(\mathcal{H} \subseteq \mathcal{Y}^\mathcal{X} \) with respect to a distribution \(P \) over \(\mathcal{X} \) if:

\[
\forall h \in \mathcal{H} : R_2(h; P) \geq \varepsilon \implies C_h \cap S \neq \emptyset.
\]

(5)

Theorem 12 Let \(\mathcal{H} \subseteq \mathcal{Y}^\mathcal{X} \) with \(\text{vc}(\mathcal{H}) = d \) and \(\mathcal{U}(P) = \{Q \ll P : D_2(Q\|P) \leq \rho\} \). \(\forall \varepsilon \in (0, 1), \forall \delta \in (0, 1/4) \), we have

\[
\mathcal{M}_{RE}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) = O\left(\frac{16(1 + 2\rho)d}{\varepsilon^2} \log \left(\frac{8(1 + 2\rho)d}{\varepsilon^2}\right) \right. + \left. \frac{8(1 + 2\rho)}{\varepsilon^2} \left(d \log \left(\frac{2e}{d}\right) + \log \left(\frac{2}{d}\right)\right)\right).
\]

(6)

The proof of Theorem 12 can be found in \S A.2.

Remark 13 In contrast to the upper bound derived in the agnostic case, the upper bound in the realizable case is proportional to \(1 + 2\rho \). The relationship between distributionally robust risk and standard risk, which is highlighted in Lemma 28, accounts for this dependence on \(1 + 2\rho \). As \(\rho \) approaches 0, the upper bound remains valid. However, it is important to note that the upper bound scales quadratically with \(1/\varepsilon \), which is distinct from the scaling observed in classical statistical learning.

Theorem 14 Let \(\mathcal{H} \subseteq \mathcal{Y}^\mathcal{X} \) with \(\text{vc}(\mathcal{H}) = d \) and \(\mathcal{U}(P) = \{Q \ll P : D_2(Q\|P) \leq \rho\} \), \(\forall \varepsilon \in (0, 1/8), \forall \delta \in (0, 1/100) \), we have

\[
\mathcal{M}_{RE}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) = \Omega\left(\frac{d - 1}{\varepsilon}\right).
\]

(7)

Furthermore, if \(\mathcal{H} \) contains at least three functions, \(\forall \varepsilon \in (0, 3/4), \forall \delta \in (0, 1) \), we have

\[
\mathcal{M}_{RE}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) \geq \frac{\log(1/\delta)}{2\varepsilon}.
\]

(8)

The proof of Theorem 14 can be found in \S B.1.

Remark 15 In the proof of the lower bound in the realizable case, we leverage the fact that distributionally robust risk exceeds the standard risk. The absence of the parameter \(\rho \) in the lower bound is due to the specific inequality we use in the proof. This inequality allows us to derive the lower bound in terms of the VC dimension.

5. **Proof overviews**

We highlight the proof overviews of upper bound in realizable case and lower bound in agnostic case, which, we believe, may bring us some new insights.

Upper bound in realizable case. We first show that, for a hypothesis class \(\mathcal{H} \) with finite VC dimension, given sufficient samples, the samples form a distributionally robust \(\varepsilon \)-net for \(\mathcal{H} \) with high probability over the random draw of samples, namely Proposition 18; subsequently, we prove that such samples are sufficient for distributionally robust learning.

We decompose the first step into two subroutines. Firstly, we denote the set of sample sequence which is not \(\varepsilon \)-net by \(B \). We draw another \(m \) sample points. We bound the probability \(\mathbb{P}[S \in B] \) by \(2\mathbb{P}[(S, T) \in B'] \), where \((S, T) \in B'\) denotes the event where there exists a hypothesis \(h \) which has 0 empirical error on sample \(S \), but has true error larger than \(\varepsilon \) and errs on at least \(\frac{m\varepsilon^2}{2(1+2\rho)} \)-fraction of the points in \(T \). The constant \(\frac{m\varepsilon^2}{2(1+2\rho)} \) is carefully chosen, where we use our Lemma 28 in our main context. The key idea here is that conditioning on the event \(S \in B \), given an hypothesis \(h_S \) which has 0 empirical error on sample \(S \), but has true error larger than \(\varepsilon \), a sufficient condition for event \(B' \) is that \(h_S \) errs on at least \(\frac{2m\varepsilon^2}{2(1+2\rho)} \)-fraction of the points in \(T \); its probability can provide a lower bound of the probability of \(B' \) conditioned on \(S \in B \). The event \(\left\{ |T \cap C_{h_S}| > \frac{m\varepsilon^2}{2(1+2\rho)} \right\} \) can be viewed as \(m \) repeated Bernoulli test with a success rate larger than the given constant. Next, we bound the probability \(\mathbb{P}[(S, T) \in B'] \) with a symmetrization argument. The key idea here is that the probability can be bounded by the probability of the randomness over the draw of \(2m \) samples which satisfy: there exists a hypothesis \(h \in \mathcal{H} \) such that it only errs on the last \(m \) sample points with an error rate \(\frac{m\varepsilon^2}{2(1+2\rho)} \). The existence of the hypothesis can be turned into a maximization over the hypothesis class. However, the hypothesis class is often infinite, so we need to focus on the effective number of hypotheses on \(A \). Now, we can bound it with Sauer’s lemma in terms of VC dimension.

In the second step, we show that, any DRERM hypothesis has a true error of at most \(\varepsilon \), with high probability over a choice of \(m \) i.i.d. instances. The key idea of the proof is that for any distributionally robust \(\varepsilon \)-net, by its definition, for any hypothesis \(h \) with \(R_{2,\rho}(h; P) \geq \varepsilon \), the hypothesis \(h \) will err on the sample \(S \); thus, \(h \) cannot be a DRERM hypothesis.

Lower bound in agnostic case. The main argument that lies in the heart of the proof is a probability method argument. With every labeling \(b \in \{-1, 1\}^m \), we associate a distribution \(\mathcal{D}_b \) over \(\mathcal{X} \times \{-1, +1\} \). We then show with some positive probability if we sample \(b \in \{-1, +1\}^m \), \(\mathcal{D}_b \) satisfies the requirement that without sufficient samples, no hypothesis in the class can have excess risk smaller than \(\varepsilon \). Constructing a Family of Distributions.

We start by first describing the construction of \(\mathcal{D}_b \) for \(b \in \{-1, +1\}^m \). Our construction follows previous studied distribution construction patterns in a subtle manner. Anthony and Bartlett (2002, Chapter 5) observed that for a distribution \(\mathcal{D} \) that assigns each point in \(\mathcal{X} \) a random label, if \(S \) does not sample a point \(x \) enough times, any classifier \(f \), that is constructed using only information supplied by \(S \), cannot determine with good probability the Bayes label of \(x \), that is the label of \(x \) that minimizes the error probability. To follow the above construction, we need to show that which classifier in \(\mathcal{H} \) has the best distributionally robust error. It seems not obvious whether the same labeling rule as above will have the lowest distributionally robust error. We show that the Bayes labeling also has the lowest distributionally robust risk making us think more about the relation between ERM and DRERM. Next, to carefully study the difference between the risk of the output hypothesis and the lower risk, we derive a explicit form of the distributionally robust risk under the \(\chi^2 \)-divergence setting (see Lemma 23 in the appendix). Then, we turn the existence argument to an maximization argument, and use the fact that average is smaller than the maximum to lower bound the expected (with respect to the random choice of samples and random labeling \(b \)) excess risk of a given algorithm \(A \). Subsequently, we minimizes the lower bound by chosing the Maximum-Likelihood learning rule. Finally, using some probabilistic method,
we can give an explicit form of the minimized lower bound, thus showing that the expected excess risk is larger than ε with a positive probability.

6. Lower Bound in Agnostic Case

Proof [Proof of Theorem 9] We will prove the lower bound in two parts. First, we will show that $\mathcal{M}_{AG}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) \geq \log(\frac{1}{\delta^2})/(2\varepsilon^2)$; second, we will show that for every $\delta \leq 1/8$, we have that $\mathcal{M}_{AG}(\varepsilon, 1/8; \mathcal{H}, \mathcal{U}) \geq \left(\frac{1}{\delta} + \frac{\varepsilon^2}{128\delta^2}\right)^\frac{1}{4}. These two bounds will conclude the proof.

We first demonstrate that $\mathcal{M}_{AG}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) \geq \log(\frac{1}{\delta^2})/(2\varepsilon^2)$.

To do so, we show that for a sample with size $m \leq \log(\frac{1}{\delta^2})/(2\varepsilon^2)$, \mathcal{H} is not learnable for any $\varepsilon \in (0, \frac{1}{\sqrt{2}})$ and $\delta \in (0, 1)$.

Let us choose one example that is shattered by \mathcal{H}. That is, let c be an example such that there are $h_+, h_- \in \mathcal{H}$ for which $h_+(c) = 1$ and $h_-(c) = -1$. Define two distributions, P_+ and P_-, such that for $b \in \{+1, -1\}$, we have

$$P_b(x, y) = \begin{cases} \frac{1 + yb\varepsilon}{2}, & \text{if } x = c, \\ 0, & \text{otherwise.} \end{cases}$$

Any training set sampled from P_b has the form $S = ((c, y_1), \ldots, (c, y_m))$. Let A be an arbitrary algorithm. Therefore, the hypothesis that A outputs receiving sample S is fully characterized by the vector $y = (y_1, \ldots, y_m) \in \{+1, -1\}^m$. Upon receiving a training set S, the algorithm A returns a hypothesis $h_S : \mathcal{X} \to \{+1, -1\}$. Since the error of h_S w.r.t. P_b depends only on $h(c)$, we can think of A as a mapping from $\{+1, -1\}^m$ into $\{+1, -1\}$.

Therefore, we denote by $A(y)$ the value in $\{+1, -1\}$ corresponding to the prediction $h_S(c)$: here, h_S is the hypothesis that A outputs upon receiving the training set $S = ((c, y_1), \ldots, (c, y_m))$. Claim 1. The hypothesis $h_b(c) = b$ has optimal distributionally robust risk on P_b.

Note that for any hypothesis h, we have

$$R_2(h; P_b) = \sup \left\{ \mathbb{E}_P[\mathbb{1}[h(x) \neq y]] : P \ll P_b, D_2(P || P_b) \leq \rho \right\}$$

$$= \inf_{\eta \in \mathbb{R}} \left\{ c_2(\rho) \mathbb{E}_{P_b} \left[(1 - \mathbb{1}[h(x) \neq y])^2 \right]^{1/2} + \eta \right\}$$

$$= \inf_{\eta \in \mathbb{R}} \left\{ c_2(\rho) \left(\frac{1 + \varepsilon}{2} (1 - \mathbb{1}[h(c) \neq b]) - \eta \right)^2 + \frac{1 - \varepsilon}{2} (1 - \mathbb{1}[h(c) \neq -b]) - \eta \right)^2 + \eta \right\}. $$

Substituting h_b into the above formulation, we obtain:

$$R_2(h_b; P_b) = \inf_{h \in \mathcal{H}} \left\{ c_2(\rho) \left(\frac{1 + \varepsilon}{2} (1 - \mathbb{1}[h(c) \neq b]) - \eta \right)^2 + \frac{1 - \varepsilon}{2} (1 - \mathbb{1}[h(c) \neq -b]) - \eta \right)^2 + \eta \right\}. $$

Noting that $(-\eta)^2 \leq (1 - \eta)^2$, we get $R_2(h_b; P_b) \leq R_2(h; P_b)$ for any $h \in \mathcal{H}$.

Invoking Lemma 23, we have

$$R_2(A(y); P_b) - \inf_{h \in \mathcal{H}} R_2(h; P_b) = \begin{cases} \varepsilon, & \text{if } A(y)(c) \neq b, \\ 0, & \text{otherwise.} \end{cases}$$

Fix A. For $b \in \{+1, -1\}$, let $Y^b = \{y \in \{+1, -1\}^m : A(y) \neq b\}$. The distribution P_b induces a probability D_b over $\{+1, -1\}^m$. Hence,

$$\mathbb{P} [R_2(A(y); P_b) - R_2(h_b; P_b) = \varepsilon] = P_b(Y^b) = \sum_y D_b[y] \mathbb{1}[A(y) \neq b].$$

8
Denote $N^+ = \{ y : |\{ i : y_i = +1 \}| \geq m/2 \}$ and $N^- = \{+1,-1\}^m \setminus N^+$. Note that for any $y \in N^+$, we have $D_+ [y] \geq D_- [y]$, while for any $y \in N^-$, we have $D_- [y] \geq D_+ [y]$. Therefore,

$$\max_{b \in \{+1,-1\}} \mathbb{P}[R_2 (\mathcal{A}(y); P_b) - R_2 (h_b; P_b) = \varepsilon] = \max_{b \in \{+1,-1\}} \sum_y D_b [y] \mathbb{I} [\mathcal{A}(y) \neq b] \\
\geq \frac{1}{2} \sum_{y \in N^+} D_+ [y] \mathbb{I} [\mathcal{A}(y) \neq +1] + \frac{1}{2} \sum_{y \in N^-} D_- [y] \mathbb{I} [\mathcal{A}(y) \neq -1] \\
= \frac{1}{2} \sum_{y \in N^+} (D_+ [y] \mathbb{I} [\mathcal{A}(y) \neq +1] + D_- [y] \mathbb{I} [\mathcal{A}(y) \neq -1]) \\
\geq \frac{1}{2} \sum_{y \in N^+} (D_- [y] \mathbb{I} [\mathcal{A}(y) \neq +1] + D_- [y] \mathbb{I} [\mathcal{A}(y) \neq -1]) \\
+ \frac{1}{2} \sum_{y \in N^-} (D_+ [y] \mathbb{I} [\mathcal{A}(y) \neq +1] + D_+ [y] \mathbb{I} [\mathcal{A}(y) \neq -1]) \\
= \frac{1}{2} \sum_{y \in N^+} D_- [y] + \frac{1}{2} \sum_{y \in N^-} D_+ [y].$$

Next, note that $\sum_{y \in N^+} D_- [y] = \sum_{y \in N^-} D_+ [y]$, and both values are the probability that a Binomial $(m, (1-\varepsilon)/2)$ random variable will have a value greater than $m/2$. Using Lemma 24, this probability is lower bounded by

$$\frac{1}{2} \left(1 - \sqrt{1 - \exp(-m\varepsilon^2/(1 - \varepsilon^2))} \right) \geq \frac{1}{2} \left(1 - \sqrt{1 - \exp(-2m\varepsilon^2)} \right),$$

where we derive under the assumption that $\varepsilon^2 \leq 1/2$. It follows that if $m \leq 0.5 \log(1/(4\delta))/\varepsilon^2$, then there exists b such that

$$\mathbb{P}[R_2 (\mathcal{A}(y); P_b) - R_2 (h_b; P_b) = \varepsilon] \geq \frac{1}{2} \left(1 - \sqrt{1 - \sqrt{4\delta}} \right) \geq \delta,$$

where the last inequality can be obtained through standard algebraic manipulations. This concludes our proof.

Next, we demonstrate that $\mathcal{M}_{AG}(\varepsilon, 1/8; \mathcal{H}, \mathcal{U}) \geq \left(\frac{1 - \sqrt{\frac{\varepsilon^2}{128\varepsilon^2}}}{128\varepsilon^2} \right)^d$. We shall now prove that for every $\varepsilon < \frac{1}{8\sqrt{2}}$, we have that $\mathcal{M}_{AG}(\varepsilon, \delta; \mathcal{H}, \mathcal{U}) \geq \left(\frac{1 - \sqrt{\frac{\varepsilon^2}{128\varepsilon^2}}}{128\varepsilon^2} \right)^d$.

Let $r = 8\varepsilon$, and note that $r \in (0, 1/\sqrt{2})$. We will construct a family of distributions as follows. First, let $C = \{c_1, \ldots, c_d\}$ be a set of d instances that are shattered by \mathcal{H}. Second, for each vector $b = (b_1, \ldots, b_d) \in \{+1,-1\}^d$, define a distribution P_b such that

$$P_b(x, y) = \begin{cases}
\frac{1}{d} \cdot \frac{1 + yb_i r}{2}, & \text{if } \exists i : x = c_i \\
0, & \text{otherwise.}
\end{cases}$$

9
That is, to sample an example according to P_b, we first sample an element $c_i \in C$ uniformly at random, then set the label to be b_i with probability $(1 + r)/2$ or $-b_i$ with probability $(1 - r)/2$.

Claim 2. The hypothesis h_b satisfying $h(c_i) = b_i, \forall i \in [d]$, has the optimal distributionally robust risk on P_b.

Recalling the dual formulation (2), $R_2(h; P_b)$ can be rewritten as follows:

$$R_2(h; P_b) = \inf_{\eta \in \mathbb{R}} \left\{ c_2 \left[\frac{1}{d} \sum_{i=1}^{d} \left(\frac{1+r}{2} (1[h(c_i) \neq b_i] - \eta)^2 + \frac{1-r}{2} (1[h(c_i) \neq -b_i] - \eta)^2 \right) \right]^{1/2} + \eta \right\}. $$

For each $i \in [d]$, $h_b(c_i) = b_i$, the summand above can be written as $\frac{1+r}{2} (-\eta)^2 + \frac{1-r}{2} (1-\eta)^2$; for $h(c_i) \neq b_i$, the summand is $\frac{1+r}{2} (1-\eta)^2 + \frac{1-r}{2} (-\eta)^2$. Combining $r > 0$ and $(\eta - \eta^2) \leq (1-\eta)^2$, we have $\frac{1+r}{2} (-\eta)^2 + \frac{1-r}{2} (1-\eta)^2 \leq \frac{1+r}{2} (1-\eta)^2 + \frac{1-r}{2} (-\eta)^2$, which concludes our claim.

We denote $d_+ = |\{i \in [d] : \mathcal{A}(S)(c_i) = b_i\}|$ and $d_- = |\{i \in [d] : \mathcal{A}(S)(c_i) \neq b_i\}|$, therefore $d_+ + d_- = d$. Next, we will simplify the distributionally robust risk as follows:

$$R_2(\mathcal{A}(S); P_b) = \inf_{\eta \in \mathbb{R}} \left\{ c_2 \left[\frac{d_+}{d} \left(\frac{1+r}{2} (-\eta)^2 + \frac{1-r}{2} (1-\eta)^2 \right) + \frac{d_-}{d} \left(\frac{1+r}{2} (1-\eta)^2 + \frac{1-r}{2} (-\eta)^2 \right) \right]^{1/2} + \eta \right\}. $$

Therefore, $R_2(\mathcal{A}(S); P_b)$ can be viewed as the distributionally robust risk of the classifier $h'(x) \equiv 1$ on distribution Q, with

$$Q(x, y) = \begin{cases}
\frac{1 + yr(d_+ - d_-)/d}{2} & \text{if } x = c \\
0 & \text{otherwise}
\end{cases}$$

Invoking Lemma 23, we obtain

$$R_2(\mathcal{A}(S); P_b) = \frac{1}{2} \left(1 - r \cdot \frac{d_+ - d_-}{d} \right) + \sqrt{2r \left(1 - r^2 \cdot \frac{(d_+ - d_-)^2}{d^2} \right)}.$$

Following the same logic, we have $R_2(h_b; P_b) = \frac{1}{2} \left(1 - r + \sqrt{2r (1 - r^2)} \right)$.

Then, after some algebraic manipulations, we have:

$$R_2(\mathcal{A}(S); P_b) - \inf_{h \in \mathcal{H}} R_2(h; P_b) = R_2(\mathcal{A}(S); P_b) - R_2(h_b; P_b)$$

$$= r \cdot \frac{d_-}{d} + \frac{1}{2} \left(\sqrt{2r (1 - r^2 (d_+ - d_-)^2/d^2)} - \sqrt{2r (1 - r^2)} \right)$$

$$\geq r \cdot \frac{d_-}{d},$$

where the last line follows from $(d_+ - d_-)^2/d^2 \leq 1$.

(9)
Next, fix some learning algorithm A, we have that:

$$
\max_{P_b : b \in \{-1, 1\}^d} \mathbb{E}_{S \sim P_b^m} \left[R_2(A(S); P_b) - \inf_{h \in H} R_2(h; P_b) \right]
$$

(10)

$$
\geq P_b : b \sim U((+1,-1)^d) \mathbb{E}_{S \sim P_b^m} \left[R_2(A(S); P_b) - \inf_{h \in H} R_2(h; P_b) \right]
$$

(11)

$$
\geq P_b : b \sim U((+1,-1)^d) \mathbb{E}_{S \sim P_b^m} \left[r \cdot \frac{1}{d} \left| \{i \in [d] : A(S)(c_i) \neq b_i\} \right| \right]
$$

(12)

$$
= \frac{r}{d} \sum_{i=1}^{d} P_{b} : b \sim U((+1,-1)^d) \mathbb{E}_{j \sim S^m} \mathbb{E}_{b \sim \{+1,-1\}} \mathbb{1}[A(S)(c_i) \neq b_i],
$$

(13)

where the second inequality follows from (9). In addition, using the definition of P_b, in order to sample $S \sim P_b$, we can first sample $(j_1, \ldots, j_m) \sim U([d]^m)$, set $x_i = c_{j_i}$, and finally sample y_i such that $P[y_i = b_{j_i}] = (1 + r)/2$. Let us simplify the notation and use $y \sim b$ to denote sampling according to $P[y = b] = (1 + r)/2$. Therefore, the right-hand side of (13) equals

$$
= \frac{r}{d} \sum_{i=1}^{d} \mathbb{E}_{j \sim U([d]^m)} \mathbb{E}_{b \sim \{+1,-1\}} \mathbb{1}[A(S)(c_i) \neq b_i].
$$

(14)

We now proceed in two steps. First, in Lemma 25, we show that among all learning algorithms, A, the one that minimizes (14) is the Maximum-Likelihood learning rule, denoted as A_{ML}. Formally, for each i, $A_{ML}(S)(c_i)$ is the majority vote among the set $\{y_k : k \in [m], x_k = c_i\}$. Second, we lower bound (14) for A_{ML}.

Fix i. For every $j \in [d]^m$, let $n_i(j) = |\{k : j_k = i\}|$ be the number of instances in which the instance is c_i. For the Maximum-Likelihood rule, we have that the quantity

$$
\mathbb{E}_{b \sim U((+1,-1)^d)} \mathbb{E}_{y \sim b_{j_k}} \mathbb{1}[A(S)(c_i) \neq b_i]
$$

is exactly equal to the probability that a binomial $(n_i(j), (1 - r)/2)$ random variable will be larger than $n_i(j)/2$. Using Lemma 24, and the assumption $r^2 \leq 1/2$, we have that

$$
\mathbb{P}[B \geq n_i(j)/2] \geq \frac{1}{2} \left(1 - \sqrt{1 - \exp(-2n_i(j)r^2)}\right).
$$

We have thus demonstrated that

$$
\frac{r}{d} \sum_{i=1}^{d} \mathbb{E}_{j \sim U([d]^m)} \mathbb{E}_{b \sim \{+1,-1\}} \mathbb{E}_{y \sim b_{j_k}} \mathbb{1}[A(S)(c_i) \neq b_i]
$$

$$
\geq \frac{r}{2d} \sum_{i=1}^{d} \mathbb{E}_{j \sim U([d]^m)} \left(1 - \sqrt{1 - \exp(-2n_i(j)r^2)}\right)
$$

$$
\geq \frac{r}{2d} \sum_{i=1}^{d} \mathbb{E}_{j \sim U([d]^m)} \left(1 - \sqrt{2n_i(j)r^2}\right),
$$

where the last inequality follows from the fact that $1 - e^{-a} \leq a$.

11
Since the square root function is concave, we can apply Jensen’s inequality to obtain that the above is lower bounded by

\[
\frac{r}{2d} \sum_{i=1}^{d} \left(1 - \sqrt{2r^2 \frac{\mathbb{E}_{j \sim \mathcal{U}([d]^m)} n_i(j)}} \right)
\]

\[
= \frac{r}{2d} \sum_{i=1}^{d} \left(1 - \sqrt{2r^2 m/d} \right)
\]

\[
= \frac{r}{2} \left(1 - \sqrt{2r^2 m/d} \right).
\]

As long as \(m < \left(\frac{1}{2} - \frac{\sqrt{2} \rho^{1/2}}{2r^2} \right)^2 d \), this term will be larger than \(\frac{\epsilon}{4} + \frac{\sqrt{2} \rho^{1/2}}{32} \).

In summary, we have shown that if \(m < \left(\frac{1}{2} - \frac{\sqrt{2} \rho^{1/2}}{2r^2} \right)^2 d \) then for any algorithm, there exists a distribution \(P_b \) such that

\[
\mathbb{E}_{S \sim P^m} \left[R_2(A(S); P_b) - \inf_{h \in \mathcal{H}} R_2(h; P_b) \right] \geq \frac{r}{4} + \frac{\sqrt{2} \rho^{1/2}}{32}.
\]

Finally, let \(\Delta = \frac{1}{r} \left(R_2(A(S); P_b) - \inf_{h \in \mathcal{H}} R_2(h; P_b) \right) \); we proof that \(\Delta \in [0, 1 + \sqrt{2} \rho^{1/2}/4] \) in Lemma 26. Therefore, using Lemma 27, we obtain that

\[
\mathbb{P} \left[R_2(A(S); P_b) - \inf_{h \in \mathcal{H}} R_2(h; P_b) \geq \epsilon \right] = \mathbb{P} \left[\Delta > \frac{\epsilon}{r} \right] \geq \left(1 + \sqrt{2} \rho^{1/2}/4 \right)^{-1} \left(\mathbb{E}[\Delta] - \frac{\epsilon}{r} \right)
\]

\[
\geq \left(1 + \sqrt{2} \rho^{1/2}/4 \right)^{-1} \left(\frac{1}{4} + \frac{\sqrt{2} \rho^{1/2}}{32} - \frac{\epsilon}{r} \right).
\]

Choosing \(r = 8 \epsilon \), we conclude that if \(m < \left(\frac{1}{2} - \frac{\sqrt{2} \rho^{1/2}}{2r^2} \right)^2 d \), then with probability of at least 1/8, we will have that \(R_2(A(S); P_b) - \inf_{h \in \mathcal{H}} R_2(h; P_b) \geq \epsilon \).

\[\blacksquare\]

7. Discussion

In this paper, 1) we provide lower bounds on the sample complexity of distributionally robust learning based on VC dimension both in agnostic and realizable case, which has not been studied before to our knowledge; 2) we also provide upper bounds both in agnostic and realizable cases; moreover, we provide a new analysis of the excess risk, which is different from the covering argument with respect to \(L^\infty \)-norm used in Duchi and Namkoong (2021).

Comparison with Duchi and Namkoong (2021) We study the \(0 - 1 \) loss of the VC classes. There is a situation, where the VC dimension is finite, while the covering number of the \(0 - 1 \) loss class with respect to \(L^\infty \)-norm is infinite. Specifically, for any hypothesis class with finite VC dimension and infinite elements, given two different hypotheses \(h_1 \) and \(h_2 \), there exists \(x \) such that \(h_1(x) \neq h_2(x) \), thus \(\sup_{x,y} |\mathbb{1}[h_1(x) \neq y] - \mathbb{1}[h_2(x) \neq y]| = 1 \).

Then, for any \(\delta < 1/2 \), the \(\delta \)-packing number of the \(0 - 1 \) loss class is infinite. Using the
relation between the covering number and packing number (Wainwright, 2019, Lemma 5.5), we deduce that the $\delta/2$-covering number of the $0-1$ loss class is infinite, for any $\delta < 1/2$. It is well known that the covering number with L^r-norm can be controlled by the VC dimension (Wellner et al., 2013, Theorem 2.6.4). Since this is valid only for finite r, our work significantly extends the results of Duchi and Namkoong (2021) in the χ^2-divergence setting. Duchi and Namkoong (2021) provide a minimax lower bound showing that the rate they obtain is optimal. However, what role does VC dimension play in distributionally robust learning is still unknown. Our paper takes a step forward and studies distributionally robust learnability through the lens of VC dimension. We show that the finite VC dimension is necessary and sufficient for distributionally robust learnability under certain assumptions.

Appendix A. Proofs of Upper Bound

A.1 Upper Bound in Agnostic Case

To prove (3), it suffices to show that applying the DRERM with a sample size m of the same order as in (3) yields an ε,δ-learner for \mathcal{H}.

We use $\varphi_{\eta,h}(x,y)$ to denote $1[h(x) \neq y] - \eta$ and c_2 as the shorthand of $c_2(\rho)$ when there is no ambiguity. First, we present the proof of Lemma 5.

Moreover, we introduce the definition of Rademacher Complexity and Growth Function in order to bound the excess risk in terms of VC dimension.

Definition 16 (Rademacher Complexity) We define the empirical Rademacher Complexity of a hypothesis class \mathcal{F} for a given sample $z_i = (x_i, y_i), i = 1, \ldots, m$ as follows:

$$\hat{R}_m(\mathcal{F}) := \mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i f(z_i) \right],$$

where $\sigma = (\sigma_1, \ldots, \sigma_m)$ is a vector of i.i.d. Rademacher variables. The Rademacher Complexity is defined as the expectation of this quantity:

$$R_m(\mathcal{F}) := \mathbb{E}_{(z_1, \ldots, z_m) \sim \mathcal{P}^m} \left[\hat{R}_m(\mathcal{F}) \right].$$

Definition 17 (Growth Function) Let \mathcal{H} be a hypothesis class. The growth function of \mathcal{H}, denoted as $\tau_\mathcal{H} : \mathbb{N} \to \mathbb{N}$, is defined as follows:

$$\tau_\mathcal{H}(m) := \max_{C \subseteq \mathcal{X} : |C| = m} |\mathcal{H}_C|,$$

where $\mathcal{H}_C := \{(h(x_1), \cdots, h(x_{|C|})) : h \in \mathcal{H}\}$ for $C = \{x_i : 1 \leq i \leq |C|\}$.

Proof [Proof of Lemma 5] By definition, $g_2(\eta, P) = \eta$ for $\eta \geq 1$, and

$$g_2 \left(-\frac{1}{c_2 - 1}, P \right) \geq \frac{c_2}{c_2 - 1} - \frac{1}{c_2 - 1} = 1 = g_2(1, P).$$

Since $\eta \mapsto g_2(\eta, P)$ is convex, this implies the result. \qed
Proof [Proof of Theorem 7] The proof is a modification of the techniques utilized by Koltchinskii and Panchenko (2002). Let \((x_1, y_1), \ldots, (x_m, y_m)\) be a classification training set, \(P_m\) denote the corresponding empirical distribution and \(h^* \in \text{argmin}_{h \in \mathcal{H}} R_2(h; P)\). We begin by decomposing the excess risk:
\[
R_2(\hat{h}; P) - R_2(h^*; P) \leq R_2(\hat{h}; P) - R_2(\hat{h}; P_m) + R_2(h^*; P_m) - R_2(h^*; P),
\]
where the last step follows from the definition of \(\hat{h}\). Define
\[
\hat{\eta} := \text{argmin}_{\eta \in \mathbb{R}} \left\{ c_2 \mathbb{E}_{P_m} \left[(\varphi_{\eta, \hat{h}}(x, y))^2_+ \right]^{1/2} + \eta \right\},
\]
\[
\eta^* := \text{argmin}_{\eta \in \mathbb{R}} \left\{ c_2 \mathbb{E}_P \left[(\varphi_{\eta, h^*}(x, y))^2_+ \right]^{1/2} + \eta \right\}.
\]
We can then write
\[
R_2(\hat{h}; P) - R_2(\hat{h}; P_m) = \min_{\eta \in \mathbb{R}} \left\{ c_2 \mathbb{E}_P \left[(\varphi_{\eta, \hat{h}}(x, y))^2_+ \right]^{1/2} + \eta \right\} - \left(c_2 \mathbb{E}_P \left[(\varphi_{\eta, \hat{h}}(x, y))^2_+ \right]^{1/2} + \hat{\eta} \right)
\leq c_2 \left(\mathbb{E}_P \left[(\varphi_{\eta, \hat{h}}(x, y))^2_+ \right]^{1/2} - \mathbb{E}_{P_m} \left[(\varphi_{\eta, \hat{h}}(x, y))^2_+ \right]^{1/2} \right)
\leq c_2 \left| \int (\varphi_{\eta, \hat{h}}(x, y))^2_+ (P_m - P) (dxdy) \right|^{1/2}.
\]
Following the same logic,
\[
R_2(h^*; P_m) - R_2(h^*; P) \leq c_2 \left| \int (\varphi_{\eta^*, h^*}(x, y))^2_+ (P_m - P) (dxdy) \right|^{1/2}. \tag{15}
\]
By Lemma 5, \(\hat{\eta} \in \left[-\frac{1}{c_2 - 1}, 1 \right]\). We now define \(\Phi = \left\{ \varphi_{\eta, h} : h \in \mathcal{H}, \eta \in \left[-\frac{1}{c_2 - 1}, 1 \right] \right\}\), \(\psi(t) = t^2\), and \(\psi \circ \Phi = \{ \psi \circ \varphi : \varphi \in \Phi \}\), where \(\circ\) denotes the composition of functions. Thus, we can write
\[
R_2(\hat{h}; P) - R_2(\hat{h}; P_m) \leq c_2 \left(\sup_{\varphi \in \psi \circ \Phi} \left| \int \varphi(x, y) (P - P_m) (dxdy) \right| \right)^{1/2}.
\]
Since \(\1[h(x) \neq y] \in [0, 1]\) for any \(h \in \mathcal{H}\) and \(\eta \in \left[-\frac{1}{c_2 - 1}, 1 \right]\), then for any \(\varphi \in \psi \circ \Phi\), we have \(\|\varphi\|_{\infty} \leq \left(\frac{c_2^2}{c_2 - 1} \right)^2\).

By a standard symmetrization argument, with probability of at least \(1 - \delta/2\),
\[
R_2(\hat{h}; P) - R_2(\hat{h}; P_m) \leq c_2 \left(2 \mathcal{R}_m(\psi \circ \Phi) + \left(\frac{c_2}{c_2 - 1} \right)^2 \sqrt{\frac{2 \log(2/\delta)}{m}} \right)^{1/2}.
\]
Moreover, from (15) and Hoeffding’s inequality, it follows that
\[
R_2(h^*; P_m) - R_2(h^*; P) \leq \frac{c_2}{c_2 - 1} \left(\frac{\log(2/\delta)}{2m} \right)^{1/4}, \tag{16}
\]
with probability of at least $1 - \delta/2$.

Combining these results, with probability of at least $1 - \delta$,

$$R_2(\hat{h}; P) - R_2(h^*; P) \leq c_2 \left[2R_m(\psi \circ \Phi) + \left(\frac{c_2}{c_2 - 1} \right)^2 \sqrt{\frac{2\log(2/\delta)}{m}} + \frac{c_2}{c_2 - 1} \left(\frac{\log(2/\delta)}{2m} \right)^{\frac{1}{4}} \right]$$

$$\leq c_2 \left[2 \left(R_m(\psi \circ \Phi) \right)^{\frac{1}{2}} + \frac{3c_2}{c_2 - 1} \left(\frac{\log(2/\delta)}{2m} \right)^{\frac{1}{4}} \right].$$

(17)

Therefore, it suffices to bound $R_m(\psi \circ \Phi)$. It can be readily observed that $t \mapsto t^2 + c_2/c_2 - 1$-Lipschitz on $[-1, c_2/c_2 - 1]$; thus, by invoking Lemma 21, we get:

$$R_m(\psi \circ \Phi) \leq \frac{2c_2}{c_2 - 1} R_m(\Phi).$$

(18)

More specifically,

$$R_m(\Phi) = \mathbb{E} \left[\frac{1}{m} \sup_{h \in \mathcal{H}, \eta \in [-\frac{1}{c_2 - 1}, 1]} \sum_{i=1}^{m} \sigma_i [h(x) \neq y] - \eta \right]$$

$$\leq \mathbb{E} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i [h(x) \neq y] \right] + \mathbb{E} \left[\sup_{\eta \in [-\frac{1}{c_2 - 1}, 1]} \frac{1}{m} \sum_{i=1}^{m} \eta \sigma_i \right]$$

$$\leq R_m(\mathcal{L}_\mathcal{H}) + \frac{1}{m} \left(\frac{1}{c_2 - 1} \lor 1 \right) \mathbb{E} \left[\sum_{i=1}^{m} \sigma_i \right]$$

$$\leq R_m(\mathcal{L}_\mathcal{H}) + \frac{1}{m} \left(\frac{1}{c_2 - 1} \lor 1 \right) \mathbb{E} \left[\left(\sum_{i=1}^{m} \sigma_i \right)^2 \right]^{1/2}$$

$$\leq R_m(\mathcal{L}_\mathcal{H}) + \frac{1}{\sqrt{m}} \left(\frac{1}{c_2 - 1} \lor 1 \right).$$

(19)

To bound $R_m(\mathcal{L}_\mathcal{H})$, we define $R(A) = \mathbb{E}_\sigma \left[\sup_{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_i [h(x_i) \neq y_i] \right]$.

Recall that the Sauer-Shelah lemma (Shalev-Shwartz and Ben-David, 2014, Lemma 6.10) tells us that if $vc(\mathcal{H}) = d$, then

$$|\{(h(x_1), \ldots, h(x_m)) : h \in \mathcal{H}\}| \leq \left(\frac{em}{d} \right)^d.$$

By the Massart Lemma (Shalev-Shwartz and Ben-David, 2014, Lemma 26.8), we have:

$$R_m(\mathcal{L}_\mathcal{H}) \leq \sqrt{\frac{2d \log(em/d)}{m}}.$$

(20)
Combining (17), (18), (19) and (20), the following holds:

\[R_2(h; P) - R_2(h^*; P) \leq C \left(\frac{2d\log(em/d) + \left(\frac{1}{c_2 - 1} \vee 1 \right)^2 + \log(2/\delta)}{m} \right)^{1/4} \] \tag{21}

for some constant \(C \). To ensure that the right-hand side of (21) is smaller than \(\varepsilon \), we need:

\[m \geq \frac{C}{\varepsilon^4} \left(d\log(m) + d\log(e/d) + \left(\frac{1}{c_2 - 1} \vee 1 \right)^2 + \log(2/\delta) \right). \]

Using Lemma 22, a sufficient condition for the inequality to hold is that

\[m \geq \frac{4Cd}{\varepsilon^4} \log\left(\frac{2Cd}{\varepsilon^4} \right) + \frac{2C}{\varepsilon^4} \left(\left(\frac{1}{c_2 - 1} \vee 1 \right)^2 + d\log(e/d) + \log(2/\delta) \right), \]

which concludes our proof.

\[\blacksquare \]

A.2 Proof of Theorem 12

Our proof is organized as follows: we first show that, for a hypothesis class \(\mathcal{H} \) with finite VC dimension, given sufficient samples (the magnitude is provided in Theorem 12), the samples form a Distributionally Robust \(\varepsilon \)-net for \(\mathcal{H} \); subsequently, we prove that such samples is sufficient for distributionally robust learning.

Proposition 18 Let \(\mathcal{H} \subseteq \mathcal{Y}^X \) with \(\text{vc}(\mathcal{H}) = d \). Fix \(\varepsilon \in (0, 1), \delta \in (0, 1/4) \) and let

\[m \geq \frac{16(1 + 2\rho)d}{\varepsilon^2} \log\left(\frac{8(1 + 2\rho)d}{\varepsilon^2} \right) + \frac{8(1 + 2\rho)}{\varepsilon^2} \left(d\log\left(\frac{2e}{d} \right) + \log\left(\frac{2\varepsilon^2}{\delta} \right) \right). \] \tag{22}

Then, with probability of at least \(1 - \delta \) over a choice of \(S \sim P^m \), we can conclude that \(S \) is a Distributionally Robust \(\varepsilon \)-net for \(\mathcal{H} \).

Proof Let \(B := \{ S \subseteq X : |S| = m, \exists h \in \mathcal{H}, R_2(h; P) \geq \varepsilon, C_h \cap S = \emptyset \} \) be the set of sets that are not a Distributionally Robust \(\varepsilon \)-net. We need to bound \(\mathbb{P}[S \in B] \).

Define

\[B' := \left\{ (S, T) \subseteq X : |S| = |T| = m, \exists h \in \mathcal{H}, R_2(h; P) \geq \varepsilon, C_h \cap S = \emptyset, |T \cap C_h| > \frac{m\varepsilon^2}{2(1 + 2\rho)} \right\}. \]

Claim 1. \(\mathbb{P}[S \in B] \leq 2 \cdot \mathbb{P}[(S, T) \in B'] \).

Since \(S \) and \(T \) are chosen independently, we can write

\[
\mathbb{P}[(S, T) \in B'] = \mathbb{E}_{(S, T) \sim P^{2m}} \mathbb{1}[(S, T) \in B'] = \mathbb{E}_{S \sim P^m} \mathbb{E}_{T \sim P^m} \mathbb{1}[(S, T) \in B'].
\]
Note that \((S, T) \in B'\) implies \(S \in B\), and therefore \(\mathbb{1}[(S, T) \in B'] = \mathbb{1}[(S, T) \in B'] \cdot \mathbb{1}[S \in B]\), which yields
\[
\mathbb{P}[(S, T) \in B'] = \mathbb{E}_{(S, T) \sim \rho \cdot \mathbb{P}^{2m}} \mathbb{1}[(S, T) \in B'] \cdot \mathbb{1}[S \in B] = \mathbb{E}_{S \sim \rho \cdot \mathbb{P}^{2m}} \mathbb{1}[S \in B] \cdot \mathbb{E}_{T \sim \rho \cdot \mathbb{P}^{2m}} \mathbb{1}[(S, T) \in B'].
\]
(23)

Fix some \(S\). Then, either \(\mathbb{1}[S \in B] = 0\), or \(S \in B\) and then \(\exists h_S\) such that \(R_2(h_S; P) \geq \varepsilon\) and \(|C_{h_S} \cap S| = 0\). It follows that a sufficient condition for \((S, T) \in B'\) is that \(|T \cap C_{h_S}| > \frac{m\varepsilon^2}{2(1 + 2\rho)}\). Therefore, whenever \(S \in B\), we have
\[
\mathbb{E}_{T \sim \rho \cdot \mathbb{P}^{2m}} \mathbb{1}[(S, T) \in B'] \geq \mathbb{P}_{T \sim \rho \cdot \mathbb{P}^{2m}} \left[|T \cap C_{h_S}| > \frac{m\varepsilon^2}{2(1 + 2\rho)}\right].
\]
(24)

However, since we now assume \(S \in B\), we know that \(R_2(h_S; P) \geq \varepsilon\); accordingly, by Lemma 28, we have \(\text{er}(h_S; P) = p \geq \varepsilon^2 / (1 + 2\rho)\).

Therefore, \(|T \cap C_{h_S}|\) is a binomial random variable with parameters \(p\) (probability of success for a single try) and \(m\) (number of tries). Chernoff’s inequality implies
\[
\mathbb{P}\left[|T \cap C_{h_S}| \leq \frac{pm}{2}\right] = \mathbb{P}\left[|T \cap C_{h_S}| - pm \leq -pm/2\right] \\
\leq \exp(-mp/2) \leq \exp\left(-\frac{m\varepsilon^2}{2(1 + 2\rho)}\right) \\
\leq \exp(-d \log(1/\delta)/2) = \delta^{d/2} \leq 1/2,
\]
where the first inequality is obtained via Chernoff’s inequality and the penultimate inequality follows from our choice of \(m\).

Thus,
\[
\mathbb{P}\left[|T \cap C_{h_S}| > \frac{m\varepsilon^2}{2(1 + 2\rho)}\right] = 1 - \mathbb{P}\left[|T \cap C_{h_S}| \leq \frac{m\varepsilon^2}{2(1 + 2\rho)}\right] \\
\geq 1 - \mathbb{P}\left[|T \cap C_{h_S}| \leq \frac{mp}{2}\right] \geq 1/2.
\]
(25)

Combining (23), (24) and (25), we conclude our proof of Claim 1.

Claim 2. (Symmetrization) \(\mathbb{P}[(S, T) \in B'] \leq \exp\left(-\frac{m\varepsilon^2}{4(1 + 2\rho)}\right) \cdot \tau_H(2m)\).

For ease of notation, let \(\alpha = \frac{m\varepsilon^2}{2(1 + 2\rho)}\), and for a sequence \(A = (x_1, \ldots, x_{2m})\), let \(A_0 = (x_1, \ldots, x_m)\). Using the definition of \(B'\), we get
\[
\mathbb{P} \left[A \in B' \right] = \mathbb{E}_{A \sim \rho \cdot \mathbb{P}^{2m}} \max_{h \in \mathcal{H}} \{1 | R_2(h; P) \geq \varepsilon\} \cdot \mathbb{1} \left[|C_h \cap A_0| = 0 \right] \cdot \mathbb{1} \left[|C_h \cap A| \geq \alpha \right] \\
\leq \mathbb{E}_{A \sim \rho \cdot \mathbb{P}^{2m}} \max_{h \in \mathcal{H}} \{1 |C_h \cap A_0| = 0\} \cdot \mathbb{1} \left[|C_h \cap A| \geq \alpha \right].
\]

Now let us denote by \(\mathcal{H}_A\) the effective number of different hypotheses on \(A\), namely, \(\mathcal{H}_A := \{C_h \cap A : h \in \mathcal{H}\}\). It follows that
\[
\mathbb{P}[A \in B'] \leq \mathbb{E}_{A \sim \rho \cdot \mathbb{P}^{2m}} \max_{C_h \in \mathcal{H}_A} \{1 |C_h \cap A_0| = 0\} \cdot \mathbb{1} \left[|C_h \cap A| \geq \alpha \right].
\]
Let $J = \{ j \subseteq [2m] : |j| = m \}$. For any $j \in J$ and $A = (x_1, \ldots, x_{2m})$, define $A_j = (x_j, \ldots, x_{2m})$. Since the elements of A are chosen i.i.d., for any $j \in J$ and any function $f(A, A_0)$, it holds that $\mathbb{E}_{A \sim P_{2m}} [f(A, A_0)] = \mathbb{E}_{A_j \sim P_{2m}} [f(A_j)]$. Since this holds for any j, it also holds for the expectation of j chosen at random from J. In particular, it holds for the function $f(A, A_0) = \sum_{C_h \in H_A} 1[|C_h \cap A_0| = 0] \cdot 1[|C_h \cap A| \geq \alpha]$. We therefore obtain that

\[
\mathbb{P}[A \in B] \leq \sum_{C_h \in H_A} \mathbb{E}_{A \sim P_{2m}} \mathbb{E}_{j \sim U(J)} 1[|C_h \cap A_j| = 0] \cdot 1[|C_h \cap A| \geq \alpha].
\]

Now fix some A, such that $|C_h \cap A| \geq \alpha$. Thus, $\mathbb{E}_{j \sim U(J)} 1[|C_h \cap A_j| = 0]$ represents the probability that when choosing m balls from a bag containing at least α red balls, we will never choose a red ball. This probability is at most

\[
\left(1 - \frac{\alpha}{2m}\right)^m = \left(1 - \frac{\epsilon^2}{4(1 + 2\rho)}\right)^m \leq \exp \left(-\frac{m\epsilon^2}{4(1 + 2\rho)}\right).
\]

We therefore have

\[
\mathbb{P}[A \in B'] \leq \sum_{C_h \in H_A} \mathbb{E}_{A \sim P_{2m}} \exp \left(-\frac{m\epsilon^2}{4(1 + 2\rho)}\right) \leq \exp \left(-\frac{m\epsilon^2}{4(1 + 2\rho)}\right) \cdot \mathbb{E}_{A \sim P_{2m}} |H_A| \leq \exp \left(-\frac{m\epsilon^2}{4(1 + 2\rho)}\right) \cdot \tau_H(2m).
\]

By Sauer’s lemma, we know that $\tau_H \leq (2em/d)^d$; combining this with the above two claims, we obtain that

\[
\mathbb{P}[S \in B] \leq 2(2em/d)^d \exp \left(-\frac{m\epsilon^2}{4(1 + 2\rho)}\right).
\]

We would like the right-hand side of the inequality to be at most δ; that is,

\[
2(2em/d)^d \exp \left(-\frac{m\epsilon^2}{4(1 + 2\rho)}\right) \leq \delta.
\]

Through rearrangement, we arrive at

\[
m \geq \frac{4(1 + 2\rho)d}{\epsilon^2} \log(m) + \frac{4(1 + 2\rho)d}{\epsilon^2} \log \left(\frac{2e}{d}\right) + \frac{4(1 + 2\rho)}{\epsilon^2} \log \left(\frac{2}{\delta}\right).
\]

Using Lemma 22, a sufficient condition for the preceding to hold is

\[
m \geq \frac{16(1 + 2\rho)d}{\epsilon^2} \log \left(\frac{8(1 + 2\rho)d}{\epsilon^2}\right) + \frac{8(1 + 2\rho)}{\epsilon^2} \left(d \log \left(\frac{2e}{d}\right) + \log \left(\frac{2}{\delta}\right)\right).
\]
Next, we derive distributionally robust PAC learnability from the definition of distributionally robust \(\varepsilon \)-net.

Proposition 19 Let \(\mathcal{H} \) be a hypothesis class over \(\mathcal{X} \) with \(\text{vc}(\mathcal{H}) \). Let \(P \) be a distribution over \(\mathcal{X} \) and let \(h^* \) be a target hypothesis. Fix \(\varepsilon, \delta \in (0,1) \) and let \(m \) be as defined in Proposition 18; then, with probability of at least \(1 - \delta \) over a choice of \(m \) i.i.d. instances from \(\mathcal{X} \) with labels according to \(h^* \), we have that any DRERM hypothesis has a true error of at most \(\varepsilon \).

Proof Define the class \(\mathcal{H}^{h^*} = \{ C_{h^*} \triangle C_h : h \in \mathcal{H} \} \), where \(C_{h^*} \triangle C_h = (C_h \setminus C_{h^*}) \cup (C_{h^*} \setminus C_h) \). It can be readily verified that if some \(A \subseteq \mathcal{X} \) is shattered by \(\mathcal{H} \) then it is also shattered by \(\mathcal{H}^{h^*} \), and vice versa. Hence, \(\text{vc}(\mathcal{H}) = \text{vc}(\mathcal{H}^{h^*}) \). Therefore, using Proposition 18, we can determine that with probability of at least \(1 - \delta \), the sample \(S \) is a distributionally robust \(\varepsilon \)-net for \(\mathcal{H}^{h^*} \), note that

\[
R_2(h; P) = \sup \left\{ \mathbb{E}_Q[1[h(x) \neq y]] : Q \ll P, D_2(Q\|P) \right\}.
\]

Since \(h^* \) is the target hypothesis, we have that

\[
\mathbb{E}_P[1[h^*(x) \neq y]] = 0.
\]

Thus, \(R_2(h^*; P) = \inf_{\eta \in \mathbb{R}} \left\{ c_2 \mathbb{E}_P[(1[1/h(x) \neq y] - \eta)^2_+]^{1/2} + \eta \right\} \leq c_2 \mathbb{E}_P[(1[1/h^*(x) \neq y]_2^2)^{1/2} = 0, \]

which means that for any \(Q \ll P \) with \(D_2(Q\|P) \leq \rho \), we have \(Q[y = h^*(x)] = 1 \).

Therefore,

\[
R_2(h; P) = \sup \left\{ \mathbb{E}_Q[1[h(x) \neq y]] : Q \ll P, D_2(Q\|P) \leq \rho \right\} = R_2(h \triangle h^*; P),
\]

where \(h \triangle h^* \) is the hypothesis that satisfies \(C_{h \triangle h^*} = C_{h^*} \triangle C_h \). Therefore, for any \(h \in \mathcal{H} \) with \(R_2(h; P) \geq \varepsilon \), we have that \(|C_{h \triangle h^*} \cap S| > 0 \); this which implies that \(h \) cannot be a DRERM hypothesis, which concludes our proof.

Appendix B. Proof of Lower Bound

B.1 Lower Bound in Realizable Case

Proof [Proof of Theorem 14] Suppose that \(S = \{x_0, x_1, \ldots, x_{d-1}\} \) is shattered by \(\mathcal{H} \). Let \(P \) be the probability distribution on the domain \(\mathcal{X} \) of \(\mathcal{H} \) such that \(P(x) = 0 \) if \(x \notin S \), \(P(x_0) = 1 - 8\varepsilon \), and for \(i = 1, \ldots, d - 1 \), \(P(x_i) = 8\varepsilon/(d - 1) \). With probability 1, for any \(m \), a \(P^m \)-random sample lies in \(S^m \); henceforth, to simplify our analysis, we assume without loss of generality that \(\mathcal{X} = S \) and that \(\mathcal{H} \) consists precisely of all \(2^d \) functions from \(S \) to \(\{0,1\} \). For convenience, and to be explicit, if a training sample \(z = (z_1, \ldots, z_m) \in (S \times \{0,1\})^m \) corresponds to a sample \(x \in \mathcal{X}^m \) and a labeling function \(t \in \mathcal{H} \), we shall denote \(A(z) \) by \(A(x,t) \).

Let $S' = \{x_1, \ldots, x_{d-1}\}$ and let \mathcal{H}' be the set of all 2^{d-1} functions $h \in \mathcal{H}$ such that $h(x_0) = 0$. We shall employ the probabilistic method, with target function t drawn at random according to the uniform distribution U on \mathcal{H}'. Let A be any algorithm for \mathcal{H}. We obtain a lower bound on the sample complexity of A under the assumption that A always returns a hypothesis in \mathcal{H}'; that is, we assume that whatever sample z is given, A will classify x_0 correctly. (This assumption causes no loss of generality: if the output hypothesis of A does not always belong to \mathcal{H}', we can consider the “better” learning algorithm derived from A whose output hypotheses are forced to classify x_0 correctly. Clearly, a lower bound on the sample complexity of this latter algorithm is also a lower bound on the sample complexity of A.) Let m be any fixed positive integer and, for $x \in S^m$, denote by $l(x)$ the number of distinct elements of S' occurring in the sample x. It is evident that for any $x \in S'$, exactly half of the functions $h' \in \mathcal{H}'$ satisfy $h'(x) = 1$. It follows that for any fixed $x \in S^m$,

$$
\mathbb{E}_{t \sim U(\mathcal{H}')} \text{er}(A(x, t); P) = \sum_{t' \in \mathcal{H}} \mathbb{P}_{t \sim U(\mathcal{H}')} (t = t') \text{er}(A(x, t); P)
$$

$$
= \sum_{t' \in \mathcal{H}} \mathbb{P}_{t \sim U(\mathcal{H}')} (t = t') \sum_{y \in S'} \mathbb{P}_{y' \sim P} (y' = y) \mathbb{1} [A(x, t) \neq t(y)]
$$

$$
\geq \sum_{t' \in \mathcal{H}} \mathbb{P}_{t \sim U(\mathcal{H}')} (t = t') \sum_{y \in S' \setminus x} \mathbb{P}_{y' \sim P} (y' = y) \mathbb{1} [A(x, t) \neq t(y)]
$$

$$
= \sum_{y \in S' \setminus x} \frac{1}{2} \mathbb{P}_{y' \sim P} (y' = y) = \frac{1}{2} \cdot \frac{8\varepsilon}{d-1} \cdot (d - 1 - l(x)).
$$

The penultimate equality can be obtained from the following: for a fixed y, we can divide \mathcal{H}' into two groups, namely $\mathcal{H}'_i = \{t \in \mathcal{H}' : t(y) = i\}, i \in \{0, 1\}$, and for any $h_1 \in \mathcal{H}'_1$, we can always find a hypothesis $h_2 \in \mathcal{H}'_2$, such that for any $x \neq y$ and $x \in S$, $h_1(x) = h_2(x)$. Since $y \in S' \setminus x$, we have $A(x, h_1) = A(x, h_2)$. Therefore, it can be seen that $\mathbb{1} [A(x, h_1) \neq h_1(x)] + \mathbb{1} [A(x, h_2) \neq h_2(x)] = 1$.

We now focus on a special subset S of S^m, consisting of all x for which $l(x) < \frac{d-1}{2}$. If $x \in S$, then by (26),

$$
\mathbb{E}_{t \sim U(\mathcal{H}')} \text{er}(A(x, t); P) > 2\varepsilon. \tag{27}
$$

Now let Q denote the restriction of P^m to S, so that for any $A \subseteq S^m$, $Q(A) = P^m(A \cap S)/P^m(S)$. Accordingly,

$$
\mathbb{E}_{x \sim Q} \mathbb{E}_{t \sim U(\mathcal{H}')} \text{er}(A(x, t); P) > 2\varepsilon,
$$

since (27) holds for every $x \in S$. By Fubini’s theorem, the two expectation operations may be interchanged. In other words,

$$
\mathbb{E}_{t \sim U(\mathcal{H}')} \mathbb{E}_{x \sim Q} \text{er}(A(x, t); P) = \mathbb{E}_{x \sim Q} \mathbb{E}_{t \sim U(\mathcal{H}')} \text{er}(A(x, t); P) > 2\varepsilon.
$$

This implies that for some $t' \in \mathcal{H}'$,

$$
\mathbb{E}_{x \sim Q} \text{er}(A(x, t); P) > 2\varepsilon.
$$
Let \(p_ε \) be the probability with respect to \(Q \) that \(\text{er}(A(x; t'); P) ≥ ε \).

Given our assumption that \(A \) returns a function in \(H' \), the error of \(A(x, t') \) with respect to \(P \) is never more than \(8ε \) (the probability of \(S' \)). Hence, we must have

\[
2ε < E_{x \sim Q} \text{er}(A(x, t'); P) ≤ 8ε \cdot p_ε + (1 - p_ε)ε
\]

from which we obtain \(p_ε > 1/7 \). It now follows that

\[
\mathbb{P}_{x \sim P^m} (\text{er}(A(x, t'); P) ≥ ε) = \frac{\mathbb{P}_{x \sim P^m} (\text{er}(A(x, t'); P) ≥ ε) \cdot \mathbb{P}_{x \sim P^m}(x \in S)}{\mathbb{P}_{x \sim P^m}(x \in S)}
\]

\[
≥ \frac{\mathbb{P}_{x \sim P^m}(x \in \{\text{er}(A(x, t'); P) ≥ ε\} \cap S)}{\mathbb{P}_{x \sim P^m}(x \in S)} \cdot \mathbb{P}_{x \sim P^m}(x \in S)
\]

\[
= \mathbb{P}_{x \sim Q} (\text{er}(A(x, t'); P) ≥ ε) \cdot \mathbb{P}_{x \sim P^m}(x \in S)
\]

\[
> \frac{1}{7} \cdot \mathbb{P}_{x \sim P^m}(x \in S).
\]

(28)

Since \(R_2(A(x, t'); P) ≥ \text{er}(A(x, t'); P) \), we have

\[
\mathbb{P}_{x \sim P^m} (R_2(A(x, t'); P) ≥ ε) ≥ \mathbb{P}_{x \sim P^m} (\text{er}(A(x, t'); P) ≥ ε) > \frac{1}{7} \cdot \mathbb{P}_{x \sim P^m}(x \in S).
\]

Now, \(P^m(S) \) is the probability that a \(P^m \)-random sample \(z \) has no more than \(\frac{d-1}{2} \) distinct entries from \(S' \), and this is at least \(1 - \text{GE}(8ε, m, \frac{d-1}{2}) \), where

\[
\text{GE}(p, m, (1 + ε)mp) := \sum_{i = (1 + ε)mp}^{m} \binom{m}{i} p^i (1 - p)^{m - i}.
\]

Using Lemma 29, generally, it follows that \(\text{GE}(p, m, k) ≤ \exp\left(-\left(k - pm\right)^2/(3pm)\right) \).

If \(m ≤ \frac{d - 1}{32ε} \), then it is evident that this probability is at least \(7/100 \). Therefore, if \(m ≤ \frac{d - 1}{32ε} \) and \(δ < 1/100 \),

\[
\mathbb{P}_{x \sim P^m} (R_2(A(x, t'); P) ≥ ε) ≥ \mathbb{P}_{x \sim P^m} (\text{er}(A(x, t'); P) ≥ ε)
\]

\[
> \frac{1}{7} \cdot \frac{7}{100} = \frac{1}{100} ≥ δ
\]

and the first part of the result follows.

To prove the second part of the theorem, note that if \(H \) contains at least three functions, there exist examples \(a, b \) and functions \(h_1, h_2 ∈ H \) such that \(h_1(a) = h_2(a) \) and \(h_1(b) = h_2(b) = 0 \). Without loss of generality, we shall assume that \(h_1(a) = h_2(a) = 1 \). Let \(P \) be the probability distribution for which \(P(a) = 1 - ε \) and \(P(b) = ε \). The probability that a sample \(x ∈ X^m \) has all its entries equal to \(a \) is \((1 - ε)^m \). Now, \((1 - ε)^m ≥ δ \) if and only if

\[
m ≤ \frac{\log(1/δ)}{-\log(1 - ε)}.
\]

Furthermore, \(-\log(1 - ε) ≤ 2ε \) for \(0 < ε ≤ 3/4 \). It follows that if \(m \) is no larger than \(\frac{\log(1/δ)}{2ε} \), then with probability greater than \(δ \), a sample \(x ∈ X^m \) has all its entries equal to \(a \).
Let a^1 denote the training sample $a^1 = ((a, 1), \ldots, (a, 1))$ with length m. Note that a^1 is a training sample corresponding to h_1 and h_2. Suppose that A is a learning algorithm for \mathcal{H}, and let A_a denote the output $A(a^1)$ of A on the sample a^1.

If $A_a(b) = 1$ then A_a has an error of at least ε (the probability of b) with respect to h_2, which implies $R_2(A(a^1, h_2); P) \geq \varepsilon$; while if $A_a(b) = 0$, then it has error of at least with respect to h_1, which implies that $R_2(A(a^1, h_1); P) \geq \varepsilon$.

It follows that if $m \leq \frac{\log(1/\delta)}{2\varepsilon^2}$, then either

$$
P_{z \sim P^m} (R_2(A(z, h_1); P) \geq \varepsilon) \geq P_{z \sim P^m} (z = a^1) > \delta$$

or

$$
P_{z \sim P^m} (R_2(A(z, h_2); P) \geq \varepsilon) \geq P_{z \sim P^m} (z = a^1) > \delta$$

We therefore deduce that the learning algorithm fails for some $t \in \mathcal{H}$ if m is this small. \blacksquare

Appendix C. Auxiliary Lemma

The following Hoeffding’s lemma can be found in (Shalev-Shwartz and Ben-David, 2014, Lemma 4.5).

Lemma 20 (Hoeffding’s Inequality) Let $\theta_1, \ldots, \theta_m$ be a sequence of i.i.d. random variables, and assume that for all i, $E[\theta_i] = \mu$ and $P[a \leq \theta_i \leq b] = 1$. Then, for any $\varepsilon > 0$,

$$
P \left[\left| \frac{1}{m} \sum_{i=1}^{m} \theta_i - \mu \right| > \varepsilon \right] \leq 2 \exp \left(-2m\varepsilon^2 / (b - a)^2 \right).$$

We next recall an important lemma that is useful for bounding the Rademacher complexity and can be found in (Mohri et al., 2012, Lemma 4.2).

Lemma 21 (Talagrand’s Lemma) Let ψ be a ρ-Lipschitz function. For any function class \mathcal{H}, we have:

$$
R_m(\psi \circ \mathcal{H}) \leq \rho R_m(\mathcal{H}).
$$

The following lemma is fundamental and can be found in (Shalev-Shwartz and Ben-David, 2014, Lemma A.1).

Lemma 22 Let $a > 1$ and $b > 0$. Then: $x \geq 4a \log(2a) + 2b \implies x \geq a \log(x) + b$.

Lemma 23 For $P_b(x, y) =\begin{cases}
\frac{1 + yb\varepsilon}{2}, & \text{if } x = c, \text{ and } \rho \in \left(0, \frac{3-2\sqrt{2}}{2}\right), \text{ we have } R_2(h; P_b) = \\
0, & \text{otherwise.}
\end{cases}$

We have $R_2(h; P_b) = \left[1 - h(c)b\varepsilon + \sqrt{2}\rho(1 - \varepsilon^2)\right] / 2$.

Proof Recall the definition of $R_2(h; P_b) = \sup \{E_P[1[h(x) \neq y]] : P \ll P_b, D_2(P||P_b) \leq \rho\}$.
We write \(P \) as
\[
P(x, y) = \begin{cases}
\frac{1 + \xi}{2}, & \text{if } x = c \text{ and } y = b, \\
\frac{1 - \xi}{2}, & \text{if } x = c \text{ and } y = -b, \\
0, & \text{otherwise.}
\end{cases}
\]

Thus, \(R_2(h; P_b) \) can be rewritten as
\[
R_2(h; P_b) = \sup_\xi \left\{ \frac{1 + \xi}{2} 1[h(c) \neq b] + \frac{1 - \xi}{2} 1[h(c) \neq -b] : \xi^2 - 2b\xi + \epsilon^2 - 2\rho(1 - \epsilon^2) \leq 0, -1 \leq \xi \leq 1 \right\}.
\]

Solving the quadratic inequality in the above formulation, we get \(\epsilon - \sqrt{2\rho(1 - \epsilon^2)} \leq \xi \leq \epsilon + \sqrt{2\rho(1 - \epsilon^2)}. \) Since we assume \(\rho \in \left(0, \frac{3 - 2\sqrt{2}}{2}\right) \) and \(\rho \in \left(0, \frac{1}{\sqrt{2}}\right) \), the left-hand and right-hand sides can both be achieved.

When \(h(c) = b \), we have \(\epsilon(h; P) = \frac{1 - \xi}{2} \), and thus \(R_2(h; P_b) = \frac{1 - \epsilon + \sqrt{2\rho(1 - \epsilon^2)}}{2} \); following the same logic, when \(h(c) = -b \), we have \(R_2(h; P_b) = \frac{1 + \epsilon + \sqrt{2\rho(1 - \epsilon^2)}}{2} \).

Thus, we obtain the desired result. \(\square \)

We frequently employ the following estimate on the binomial random variable probability (Slud, 1977):

Lemma 24 (Slud’s Inequality) Let \(X \) be a \((m, p)\) binomial random variable and assume that \(p = (1 - \epsilon)/2 \). Then,
\[
P[X \geq m/2] \geq \frac{1}{2} \left(1 - \sqrt{1 - \exp(-m\epsilon^2/(1 - \epsilon^2))}\right).
\]

Lemma 25 Among all algorithms, (14) is minimized for \(A \) being the Maximum-Likelihood algorithm, \(A_{ML} \), defined as
\[
\forall i, \ A_{ML}(S)(c_i) = \text{sign} \left(\sum_{k:x_k = c_i} y_k \right).
\]

Proof Fix some \(j \in [d]^m \). Note that, given \(j \) and \(y \in \{+1, -1\}^m \), the training set \(S \) is fully determined; we can therefore write \(A(j, y) \) instead of \(A(S) \). Let us also fix \(i \in [d] \). Denote by \(b^{-i} \) the sequence \((b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_m)\). Also, for any \(b \in \{+1, -1\}^m \), let \(y^i \) denote the elements of \(y \) corresponding to indices for which \(j_k = i \), and let \(y^{-i} \) be the rest of the elements of \(y \). We therefore have
\[
\begin{align*}
\mathbb{E}_{b \sim U([+1, -1]^d)} \mathbb{E}_{y \sim \{y_k^i \sim b_i\}^j} & \mathbbm{1}[A(S)(c_i) \neq b_i] \\
& = \frac{1}{2} \sum_{b_i \in \{+1, -1\}} \mathbb{E}_{b^{-i} \sim U([+1, -1]^{d-1})} \sum_y P[y | b^{-i}, b_i] \mathbbm{1}[A(j, y)(c_i) \neq b_i] \\
& = \mathbb{E}_{b^{-i} \sim U([+1, -1]^{d-1})} \sum_{y^{-i}} P[y^{-i} | b^{-i}] \frac{1}{2} \sum_{b_i \in \{+1, -1\}} \sum_{y_i} P[y_i | b_i] \mathbbm{1}[A(j, y)(c_i) \neq b_i].
\end{align*}
\]

The sum within the parentheses is minimized when $A(j, y)(c_i)$ is the maximizer of $P[y|b_i]$ over $b_i \in \{+1, -1\}$, which is exactly the Maximum-Likelihood rule. Repeating the same argument for all i we conclude our proof.

Lemma 26 Let $\Delta = \frac{1}{r} \left(R_2(A(S); P) - \inf_{h \in H} R_2(h; P) \right)$, where r is defined in the proof of Theorem 9. We have $\Delta \in [0, 1 + \sqrt{2}\rho^{1/2}/4]$.

Proof Recalling (9), we have

$$R_2(A(S); P_b) - \inf_{h \in H} R_2(h; P_b) = R_2(A(S); P_b) - R_2(h_b; P_b)$$

$$= r \cdot \frac{d_-}{d} + \frac{1}{2} \left(\sqrt{2\rho (1 - r^2(d_+ - d_-)^2/d^2)} - \sqrt{2\rho (1 - r^2)} \right) .$$

(29)

Next, we upper bound the second term in (29),

$$\frac{1}{2} \left(\sqrt{2\rho (1 - r^2(d_+ - d_-)^2/d^2)} - \sqrt{2\rho (1 - r^2)} \right) \leq \frac{1}{2} \rho \left(2\rho (1 - r^2) \right)^{-1/2} r^2 \left(1 - \frac{(d_+ - d_-)^2}{d^2} \right) \leq \frac{1}{2} \rho^{1/2} r^2,$$

where the first inequality follows from $\sqrt{x} \leq \frac{1}{2} \left(\sqrt{x} + \sqrt{y} \right), \forall x \leq y$, while the second follows from the fact that $r^2 \leq 1/2$. Thus, $\Delta \leq \rho^{1/2} r/2 \leq \sqrt{2}\rho^{1/2}/4$. ■

Lemma 27 Let Z be a random variable that takes values in $[0, c], c > 1$. Assume that $\mathbb{E}[Z] = \mu$. Then, for any $a \in (0, c)$,

$$\mathbb{P}[Z > a] \geq \frac{\mu - a}{c - a}.$$

Proof

$$\mathbb{E}[Z] = \mathbb{E}[Z \cdot 1 | 0 \leq Z \leq a] + \mathbb{E}[Z \cdot 1 | a < Z \leq c]$$

$$\leq a (1 - \mathbb{P}[Z > a]) + c \mathbb{P}[Z > a].$$

Following rearrangement, we obtain the desired result.

Lemma 28 For any probability distribution P and predictor $h \in H$, we have

$$R_2(h; P) \leq c_2(\rho) \mathcal{E}(h; P)^{1/2}.$$

Proof Recalling the dual formulation of $R_2(h; P)$ (Proposition 4), we have

$$R_2(h; P) = \inf_{\eta \in \mathbb{R}} \left\{ c_2(\rho) \mathbb{E}_P \left[(1[h(x) \neq y] - \eta)^2 \right]^{1/2} + \eta \right\}$$

$$\leq c_2(\rho) \mathbb{E}_P \left[(1[h(x) \neq y])^2 \right]^{1/2}$$

$$= c_2(\rho) \mathcal{E}(h; P)^{1/2}.$$
where the first inequality follows by setting \(\eta = 0 \) and the last line follows from the fact that the indicator \(1[h(x) \neq y] \) is a \(0-1 \)-valued function.

\section*{Acknowledgments}

This work is supported by the National Natural Science Foundation of China under Grant 61976161, the Fundamental Research Funds for the Central Universities under Grant 2042022rc0016.

\section*{References}

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to Algorithms. 2014.

