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Abstract

In the course of playing or solving a game, it is common to face a series of changing other-
agent strategies. These strategies often share elements: the set of possible policies to play
has overlap, and the policies are sampled at the beginning of play by possibly differing
distributions. As it faces the series of strategies, therefore, an agent has the opportunity to
transfer its learned play against the previously encountered other-agent policies. We tackle
two problems: (1) how can learned responses transfer across changing opponent strategies,
and (2) how can this transfer be used to reduced the cumulative cost of learning in game
solving. The first problem we characterize as the strategic knowledge transfer problem.
For value-based response policies, we demonstrate that Q-Mixing approximately solves
this problem by appropriately averaging the component Q-values. Solutions to the first
problem can be applied to reduce the computational cost of learning-based game solving
algorithms. We offer two algorithms that operate within the Policy-Space Response Oracles
(PSRO) framework. Mixed-Oracles reduces the per-policy construction cost by transferring
responses from previously encountered opponents. Mixed-Opponents performs strategic
knowledge transfer by combining the previously encountered opponents into a single novel
policy. Experimental evaluation of these methods on general-sum grid-world games provide
evidence about their advantages and limitations in comparison to standard PSRO.

Keywords: Multiagent Learning, Transfer Learning, Reinforcement Learning, Empirical
Game Theoretic Analysis

1. Introduction

Discovering a new policy in a multiagent system, or game , frequently poses a bottleneck
to applying learning-based game-solving algorithms. This limitation stems from the policy-
learning process, which demands extensive simulation and learning from a multitude of
experiences. The issue becomes particularly critical as even the simplest games can possess
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large sets of potential policies. Furthermore, discovering each policy is constrained by
experiences generated from the previously discovered, and then subsequently employed,
policies played by the other agents (hereafter, opponents1) in the system. This implies that
solving a game may necessitate many iterations of policy learning to uncover all the policies
in the game’s solution.

In this work, we investigate one avenue to reduce costs in iterative policy learning:
through strategic knowledge transfer . Transfer learning exploits commonality between
current and previously encountered problems. In our context, strategic knowledge transfer
exploits the fact that the set of opponent policies persists and expands across iterations. In
learning to play against a known population of opponents, we wish to avoid relearning to
play against opponents already considered, and minimize experiential variance induced by
sampling opponent behavior.

To explain what we mean by strategic knowledge , we first require some terminology for
agent behavior. We describe an agent’s behavior by its policy , technically a mapping from
states to distributions over actions, defined for all states. A strategy is a distribution over
policies that an agent can play. When a strategy’s distribution supports multiple policies
it is said to be a mixed strategy ; if it supports only a single policy it is a pure strategy .
Agents draw their policy from this distribution at the beginning of a game instance, and
play the sampled policy throughout the duration of the game.

In multiagent settings, the result of playing a policy depends on the environment, com-
bined with strategies of the other agents in the system. Taking the environment as fixed,
the ideal behavior for an agent is a function of its strategic setting, that is, the opponent
behavior. Let us define a best response (BR) as a policy maximizing the agent’s objective
with respect to a particular setting of opponent strategies. More flexibly, we refer to an ap-
proximate BR (ABR) policy, or in shorthand a response policy , as one that is designed
for (but may not fully achieve) optimal response. Computation of a response policy is by
definition relative to opponent strategies, and thus incorporates what we are referring to as
strategic knowledge. At issue in the transfer problem is how to leverage strategic knowledge
accrued from learning a response policy in one context, in deriving a response policy for a
different but related strategic context.

Strategic knowledge transfer is relevant in many multiagent reasoning frameworks. For
concreteness, we motivate our techniques within the context of solving games through Em-
pirical Game Theoretic Analysis (EGTA) (Tuyls et al., 2020; Wellman, 2016). The defining
feature of this class of algorithms is simulation-based construction of empirical game
models over restricted strategy sets, intended to approximate a true game of interest. One
realization of EGTA is the algorithm Policy-Space Response Oracles (PSRO) (Lanctot et al.,
2017). PSRO interleaves empirical game modeling and reinforcement learning (RL) (Sutton
and Barto, 2018). In each iteration, PSRO calculates a solution to the current empirical
game and employs RL to derive a new response policy corresponding to this solution. The
response policy is then added to the empirical game, expanding the player’s restricted strat-
egy set. The repeated response calculation in PSRO provides an opportunity to transfer
learned play against previously encountered opponents.

1. The methods presented here apply to general-sum games so the other agents are not necessarily adver-
sarial. We nevertheless call them opponents as a convenient shorthand.
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We first consider the direct transfer of policies (Section 3) that model probabilities over
actions. Observing practical limitations in this approach, we turn our investigation to value-
based policies (Section 4). Value-based policies directly model the expected discounted
return that an agent should expect for taking an action. We introduce a method, Q-Mixing
(Smith et al., 2020), that approximately constructs a best-response to a mixed strategy
by appropriately averaging the values of each opponent response policy. Critical to the
success of Q-Mixing is the ability of the resulting agent to maintain an accurate belief in
the current opponent policy. In Section 5, we explore belief maintenance methods and the
factors contributing to their success.

We next introduce two methods (Smith et al., 2021) for strategic knowledge transfer to
reduce the computational cost of PSRO (Section 6). Mixed-Oracles learns separate response
policies to each policy in the opponent’s mixed strategy; and then, combines the response
policies to approximate a response to the full mixed strategy. Mixed-Opponents constructs a
novel opponent policy that represents an amalgamation of the full mixed strategy, facilitat-
ing the transfer of non-optimal behaviors. A response is then calculated against this novel
policy, benefiting from the variance reduction resulting from the elimination of sampling
over opponent policies. Both of these algorithms employ, but are not limited to, Q-Mixing
as a subroutine capable of aggregating strategies into a single policy. When compared to
standard PSRO, both methods exhibit a decrease in the cumulative cost necessary to solve
a game.

2. Background

2.1 Reinforcement Learning

The reinforcement learning problem can be framed within the context of a Markov decision
process (MDP). In an MDP, an agent at time t observes the state of the environment st ∈ S
and takes action at ∈ A based on this information. The agent’s policy π : S → ∆(A)
describes their behavior in every state. Conditional on the chosen action, the environment
stochastically transitions into the next state st+1 and generates reward rt+1 for the agent.
The environment’s dynamics are given by the probabilistic transition function p(st+1, rt+1 |
st, at). The transition function p can equivalently be expressed as a mapping from (state,
action, next state, reward) to a likelihood p : S ×A×S ×R→ [0, 1]. The sequence of agent
and environment interactions ending in a terminal state is called an episode .

The agent’s goal is to maximize their cumulative discounted reward called their return .
The return an agent following policy π expects to receive in a state is described by their
(state-)value function V or action-value function Q:

V (s | π) =
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γV (s′ | π)

]
, (1)

Q(s, a | π) =
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γV (s′ | π)

]
. (2)

Q-learning is one such algorithm for learning action values that trains a value predictor
to match a temporal-difference (TD) target (Watkins and Dayan, 1992). In the case of
finite discrete states and actions, the Q-learning algorithm learns action values through the
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following update function:

Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
, (3)

where α is the learning rate, and γ is a discount factor that ensures theoretical convergence
and weights near-term rewards higher. Q-learning can be used jointly with function approx-
imation to relax the requirement of finite discrete states. In this version, the action-value
function Q(s, a | θ) is represented by a function approximator parameterized by θ. The
parameters θ are often left implicit for compactness of notation. Q-learning with a function
approximator is optimized using gradient descent with the following objective function:

L = Es,a,r,s′
[

1

2
‖(r + γmax

a′
Q(s′, a′ | θ))−Q(s, a | θ)‖2

]
. (4)

The term (r + γmaxa′ Q(s′, a′ | θ)) is referred to as the TD target , or just simply the
target. This version of Q-learning is often called Deep Q-network (DQN) (Mnih et al.,
2015) after the deep neural network architecture that demonstrated its first major success.
DQN also marks one of the first major achievements of the field of deep reinforcement
learning (DRL or DeepRL), where function approximators from deep learning are studied
within the reinforcement learning problem framework. A well-known problem with DQN
is that it tends to over-estimate Q-values. Double DQN (van Hasselt et al., 2016) extends
DQN to mitigate this by providing a more stable value prediction target. This is realized
by having the Q-values in the target be predicted according to a set of slowly changing
parameters.

In a partially observable environment, agents do not have access to the complete state,
but rather their observation ot ∈ O reflects evidence about the state. Due to the uncertainty
inherent in multiagent systems, as a result of the opponent, we will consider observations
instead of states throughout this work.

2.2 Multiagent Reinforcement Learning

For multiagent settings, we employ subscripts to index and distinguish the agent-specific
components of some element. Agent i’s policy is thus πi : Oi → ∆(Ai), and the vector
of opponent policies is denoted with the negated index π−i. Boldface is used to designate
elements that combine across all agents (e.g., joint-action a).

Joint-action value (JAV) (Claus and Boutilier, 1998) functions extend action-value func-
tions to consider an agent’s expected return given the actions of all agents:

Qi(oi,a | π) =
∑
o′i∈Oi

∑
ri∈R

p(s′i, ri | oi,a)
[
ri + γVi(o

′
i | π)

]
. (5)

JAV learning reduces variance encountered in value learning, because it directly controls for
the confounding effects of the other agents in the system. However, this method requires
the assumption that opponent actions are visible, which is not always the case. This has
led to the study of the centralized learning and decentralized execution framework. In this
framework, a practitioner trains agents that can exploit additional information during train-
ing, so long as, the agent does not rely on the extra information during evaluation (Tan,
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1993; Kraemer and Banerjee, 2016). Researchers have investigated several forms of addi-
tional training information, such as opponent actions (Claus and Boutilier, 1998), opponent
states (Rashid et al., 2018), and coordination signals (Greenwald and Hall, 2003).

A key question then becomes: how to create a policy that can be evaluated without
relying on the additional information. This question has been primarily studied when
assuming access to opponents’ actions as extra training information. A popular approach
is to decompose the joint-action value into independent Q-values for each agent (Guestrin
et al., 2001; He et al., 2016; Sunehag et al., 2018; Rashid et al., 2018; Mahajan et al.,
2019). An alternative is to learn a centralized critic, which can train independent agent
policies (Gupta et al., 2017; Lowe et al., 2017; Foerster et al., 2018b). Some have proposed
constructing metadata about the agent’s current policies as a way to reduce the learning
instability present in environments where the opponents’ policies are changing (Foerster
et al., 2017; Omidshafiei et al., 2017).

Most of the aforementioned techniques train the agents concurrently. In contrast, our
context assumes that in each application of learning the opponent plays a distribution over
a stationary, or non-learning, set of policies. This removes the need to account for moving
targets within a learning operation (Foerster et al., 2018a; Tesauro, 2003), and rather relies
on a broader iterative process to address the joint dynamics of multiagent learning.

2.3 Opponent Modeling

Some multiagent RL methods build a predictive model of their opponent and use this to
inform their decision making processes. He et al. (2016) introduce DRON, which uses a
learned latent action prediction of the opponent as conditioning information to the policy
(in a similar nature to the opponent-actions in the joint-action value area). They also
present a variant of DRON that uses a Mixture-of-Experts (Jacobs et al., 1991) operation
to marginalize over the possible opponent behaviors. More formally, they compute the
expected Q-value by marginalizing the opponent’s action space:∑

a−i

π−i(a−i | si)Qi(si, ai, a−i). (6)

Q-Mixing employs a similar style of operation; however, it marginalizes over the policy-space
of the opponent instead of the action-space. Moreover, Q-Mixing depends on independent
BR Q-values against each opponent policy, whereas DRON learns a single Q-network. Bard
et al. (2013) propose implicitly modeling opponents through the payoffs received from play-
ing against a portfolio of the agent’s policies.

Q-Mixing also bears resemblance to Bayesian Policy Reuse (BPR) (Rosman et al., 2016).
Both methods leverage a library of precomputed policies; however, BPR performs single-
agent task identification to select which policy to play during each episode, whereas, Q-
Mixing maintains an online belief and uses this to compute Q-values. The family of PEP-
PER algorithms have investigated applying BPR to games (Crandall, 2012). This line of
work primarily focuses on identification of opponent-policy switching during a single play
(episode) (Hernandez-Leal and Kaisers, 2017a,b); whilst, this study assumes that the op-
ponent policy is constant for the full duration of each episode.

The multi-task community has also separately explored approaches that have a similar
style of machinery. Progressively growing neural networks is a similar line of work (Rusu
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et al., 2016), focused on a stream of new tasks. In our multiagent scenario, the stream of
new tasks is learning responses to each opponent policy independently. They then ensemble
these networks together for inference; however, this operation shares no commonalities with
Q-Mixing. Schwarz et al. (2018) found that this ensembled network growth could be handled
with policy distillation.

2.4 Empirical Game Theory

A normal-form game (NFG) Γ = (Π, U, n) represents an interaction among n players,
where each player i has a strategy set Πi = {πji }

ki
j=0 with ki policies. A player’s strategy

defines their choice of policy to play at the start of a game. An agent is said to be playing a
pure strategy if they deterministically select a policy πi ∈ Πi. Otherwise, they randomize
policy selection with a mixed strategy σi ∈ ∆(Πi). The coefficients defining the sampling
process of a mixed strategy is referred to as the strategy’s mixture . At the end of the
game, each player receives a payoff Ui : Π→ R.

A BR to an opponent’s strategy σ−i is a policy with maximum return against σ−i, and
is not necessarily unique. In framing a BR task, we may attribute to agent i a prior belief
σ0
−i about the opponent strategy. In the course of play the agent may update this belief

based on observations of opponent actions. We denote by σt−i the agent’s belief at time t
about the opponent strategy.

An empirical game is a game model estimated from simulation data. We consider
empirical NFGs (ENFGs), which represent a joint payoff function over finite strategy sets.
These strategy sets, one for each player, are restricted versions of the full set of policies as
defined by the MDP underlying the RL formulation of the system. Entries in the ENFG are
point estimates of the corresponding payoffs from the full game, acquired through black-
box simulation of the return for each strategy profile. ENFGs are notationally distinguished
from the corresponding full game by a tilde-hat mark Γ̃ = (Π̃, Ũ , n).

The study of empirical games is formalized under the algorithmic framework Empirical
Game Theoretic Analysis (EGTA) (Wellman, 2006). Walsh et al. (2002) were the first to
explicitly estimate an ENFG from agent-based simulation. They analyzed pricing games and
auctions with up to twenty players over a small number of hand-crafted heuristic strategies.

An important problem in EGTA is how to select strategies to add to the empirical game.
Phelps et al. (2006) were the first to incorporate automated strategy generation in EGTA.
To generate a new strategy, they used genetic search given a designer-specified fitness func-
tion. Schvartzman and Wellman (2009a) framed the strategy exploration problem , and
investigated a variety of heuristic methods. These included variants of computing ABR
to Nash equilibrium (NE), along the lines of the double oracle (DO) algorithm (McMahan
et al., 2003). Schvartzman and Wellman (2009b) demonstrated the efficacy of reinforcement
learning as an ABR oracle for EGTA.

The PSRO framework was designed to provide a flexible template for reasoning about
complex games exploiting Deep RL as a powerful BR technique. A key idea of PSRO
is to abstract the response target beyond NE, through the concept of a Meta-Strategy
Solver (MSS). MSSs offer a lens that unifies many existing algorithms in multiagent learn-
ing and game theory. With an NE solver as its MSS, PSRO corresponds to DO. Different
algorithms for computing NE (e.g., based on linear-programming, replicator dynamics (Tay-
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lor and Jonker, 1978), regret-minimization (Blum and Mansour, 2007), or regret-matching
(Hart and Mas-Colell, 2000) can be considered distinct MSSs, to the extent they may pro-
duce results differing in accuracy or equilibrium selection. An MSS that selects a uniform
distribution over policies in the current strategy set produces the classic technique of ficti-
tious play (Brown, 1951). Self-play (Silver et al., 2017) results from the MSS that returns
a pure strategy containing only the newest policy.

Recent work has investigated and evaluated a variety of new MSSs for strategy evalua-
tion. For example, Wang et al. (2019) propose a weighted combination of NE and uniform
profiles. Wright et al. (2019) use NE as primary MSS, but then adjust the BR to improve
response to a decay-weighted linear combination of previous solutions. Omidshafiei et al.
(2019) employ Markov-Conley Chains to define a solution concept that relates to their policy
evaluation measure α-rank, and Muller et al. (2020) investigated its use as an MSS. Marris
et al. (2021) proposed MSSs based on various forms of correlated equilibrium. Indeed, any
established or new solution concepts is a ready candidate to serve as an MSS for strategy
exploration.

2.5 Transfer Learning

Transfer learning is the study of reusing knowledge gained in one context to facilitate
learning in a related but different context. Opportunities for transfer may arise in learning
tasks, domains, policies, or any other learning target. Within the field of transfer learning,
this study addresses two main questions: what type of knowledge is transferred, and how
the knowledge is transferred. Both questions are framed within the context of a game, where
the knowledge consists of response policies, and the transfer target is a different strategic
scenario.

Previous work on how to transfer knowledge has tended to follow one of two main
directions (Pan and Yang, 2010; Lampinen and Ganguli, 2019). The representation transfer
direction considers how to abstract away general characteristics about the task that are
likely to apply to later problems. Ammar et al. (2015) present an algorithm where an agent
collects a shared general set of knowledge that can be used for each particular task. The
second direction directly transfers parameters across tasks; appropriately called parameter
transfer. Taylor et al. (2005) show how policies can be reused by creating a projection
across different tasks’ state and action spaces.

In the literature, transferring knowledge about the opponent’s strategy is considered
intra-agent transfer (Silva and Costa, 2019). The focus of this area is on adapting to other
agents. One line of work in this area focuses on ad hoc teamwork, where an agent must
learn to quickly interact with new teammates (Barrett and Stone, 2015; Bard et al., 2020).
The main approach relies on already having a set of policies available, and learning to select
which policy will work best with the new team (Barrett and Stone, 2015). Banerjee and
Stone (2007) propose learning features that are independent of the game, which can either
be qualities general to all games or strategies.

In contrast to prior work, our focus is not on adapting to entirely new opponents, but
rather on transferring knowledge about response policies to new configurations or distri-
butions of already encountered opponent policies. In other words, responses to opponent
policies are the source of information to transfer.
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2.6 Multi-Task Learning

Multiagent learning is analogous to multi-task learning. In this analogy, responding to each
strategic context is analogous to solving a different task. The opponents’ strategies relate
to distributions over shared sets of tasks. Similar analogies from strategies to tasks can be
made with objectives, goals, contexts, etc. (Kaelbling, 1993; Ruder, 2017).

The multi-task learning community has broadly categorized learnable knowledge into
two groups (Snel and Whiteson, 2014). Task-relevant knowledge pertains to a specific task
(Jong and Stone, 2005; Walsh et al., 2006), while domain-relevant knowledge is common
across all tasks (Caruana, 1997; Foster and Dayan, 2002; Konidaris and Barto, 2006). Some
work has bridged the gap between these settings; for example, knowledge about a task could
be a curriculum to apply across tasks (Czarnecki et al., 2018). In task-relevant learning,
a leading method is to identify state information that is irrelevant to decision making and
abstract it away (Jong and Stone, 2005; Walsh et al., 2006). Our work falls into the same
task-relevant category, where we are interested in learning responses to specific opponent
policies.

3. Opponent Mixture Transfer Problem

With the background above, we are ready to give a precise definition of a particular problem
in strategic knowledge transfer. Namely, suppose we have a set of response policies, each an
ABR to a specified opponent policy. Now, we are faced with a randomized opponent, whose
behavior is a distribution, or mixture, over these same opponent policies. Intuitively, the
response policies should contain information useful for generating an ABR to this mixture.

3.1 Problem Definition

This setup frames what we call the opponent mixture transfer problem . At a high
level, this question asks how response policies to all of the opponent’s pure strategies, or
policies, can be transferred to generate a response to a given opponent mixed strategy.

Problem 1 (Opponent Mixture Transfer Problem). Given:

• the mixed strategy played by the opponent, σ−i ∈ ∆(Π−i), and

• the set of responses to each opponent policy, {BR(π−i)}π−i∈support(σ−i),

construct a response, BR(σ−i), to the opponent mixture σ−i.

The efficacy of a transfer method is judged relative to the cost of deriving a response
policy without strategic transfer—that is, by explicit training against σ−i.

The opponent mixture transfer problem may arise in various contexts. Our particular
motivating context is within population-based game-solving algorithms, which compute re-
sponse policies to play against mixtures drawn from an evolving population of policies. The
transfer opportunity arises from the persistence of components of the opponent population
across response computations. Thus, BRs calculated for opponent policies present in the
population are likely to remain relevant for a significant period as the population evolves.
In Section 6, we specifically focus on such a population-based context, namely the PSRO
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algorithm, and demonstrate how solutions to the opponent mixture transfer problem can
improve the efficiency of game-solving using PSRO.

3.2 Direct Policy Transfer

Ideally, we want a method that solves the opponent mixture transfer problem by a direct
operation on the component response policies. Such direct transfer would require no further
assumptions about the response policies’ implementations or underlying derivations, and
would therefore be applicable in the largest possible set of contexts. Effective play would be
transferred from the knowledge contained in the response policies, weighted by probabilities
that their targets are played by the opponent.

A general solution of this kind is not possible, however, as we demonstrate below through
a counterexample. Directly transferring policies requires at minimum that all actions nec-
essary for the mixed-strategy response be among the actions possibly taken in the pure-
strategy responses. To understand this limitation, we introduce an example we call the
direct policy transfer game, depicted in Table 1.

Player 2

π0
2 π1

2

π0
1 10, -10 -10, 10

Player 1 π1
1 -10, 10 10, -10

π2
1 1, -1 1, -1

Table 1: Direct policy transfer game.

Let us take the perspective of Player 1 in this game, and suppose we are tasked with
responding to the uniform mixed strategy of Player 2. Following the opponent mixture
transfer problem, our inputs are the opponent’s mixture σU

2 ← (0.5, 0.5), and the BRs to
each of their supported policies:

BR(π0
2)→ π0

1 BR(π1
2)→ π1

1.

From these inputs alone, however we cannot construct the correct BR(σU
2 ), which is π2

1.
In this case, the BR to the mixture does not involve the response policies to mixture
components. We would need additional information to identify π2

1 as the optimal response
policy.

Despite this counterexample, there may still be games where direct policy transfer can
be effective. In some cases relaxations may also be safely made to guarantee correctness.
Therefore, for completeness, we provide a possible avenue for directly transferring policies
in Appendix A, which works in limited settings.

4. Value Function Transfer

We now turn towards adopting assumptions about the underlying implementation of the
response policies. Specifically, we consider value-based policies, which are policies derived
from an action-value function. As value-based policy derivation is a ubiquitous technique
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in reinforcement learning, it lends support to the pursuit of exploiting value representations
in strategic transfer.

With respect to the opponent mixture transfer problem, assuming value-based policies
means that each response policy BR(π−i) has an associated value function Qi(· | π−i).
The value function captures the expected return of all state-action pairs, which in principle
provides the ability to evaluate any policy, not just the response policies already constructed.

The distinction is clear when we recall the example above (Section 3.2). We could not
construct BR(σU

−i), because the solution π2
1 was not contained in the component response

policies. Instead, now with the value-based assumption, we have access to the value function
for both response policies. This provides information about the quality of π2

1 as it pertains
to each of the opponent’s policies, and can be used to exactly derive that π2

1 is the best-
response to σU

−i.

4.1 Normal-Form Game

To build up to a general solution, we first consider the simplified setting of a normal-
form game, which notably has just a single state. The episode plays out by all players
participating in one round of simultaneous action selection. All players then receive a single
reward as their payoff and the episode concludes. The single-state setting is essentially a
problem of bandit learning, where our opponent’s strategy will set the reward of each arm
for an episode.

Following from the bandit learning problem, intuitively, our expected reward against
a mixture of opponents is proportional to the payoff against each opponent weighted by
their respective likelihood. This insight motivates our method Q-Mixing, where we first
train value-based best-responses to each opponent policy. Then we appropriately average
the Q-values following the likelihood of playing against each policy within the mixture. To
formalize this relationship, we introduce state- and action-values that are conditioned on
fixed opponent strategies, called the Strategic Response Value (SRV) (Definition 1) and
Strategic Response Q-Value respectively (SRQV) (Definition 2).

Definition 1 (Strategic Response Value). An agent’s πi strategic response value is its
expected return given an observation, when playing πi against a specified opponent strategy:

Vπi(o
t
i | σt−i) = Eσt

−i

∑
a

π(ai | oti)
∑
o′i,ri

p(o′i, ri | oti,a)
[
ri + γ · Vπi(o′i | σt+1

−i )
] .

Let the optimal SRV be

V ∗i (oti | σt−i) = max
πi

Vπi(o
t
i | σt−i).

Definition 2 (Strategic Response Q-Value). An agent’s πi strategic response Q-value is
its expected return for an action given an observation, when playing πi against a specified
opponent strategy:

Qπi(o
t
i, a

t
i | σt−i) = Eσt

−i

[
rti
]

+ γEot+1
i

[
Vπi(o

t+1
i | σt+1

−i )
]
,
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where rti ≡ ri(oti, ati, at−i). Let the optimal SRQV be

Q∗i (o
t
i, a

t
i | σt−i) = max

πi
Qπi(o

t
i, a

t
i | σt−i).

For generality in the definitions above we notate the opponent’s strategy as mixed: σ−i.
When the opponent plays a pure strategy we can substitute the notation π−i. For example,
the SRQV against an opponent’s first policy is Q(· | π0

−i).
Q-Mixing captures the relationship between the SRQVs against a mixed-strategy op-

ponent and the component SRQVs against each policy in the opponent’s mixed strategy.
In the single-state setting, weighting the SRQV against each opponent policy by the oppo-
nent’s distribution supports a BR to that mixture. We define this relationship formally in
Theorem 3, and refer to the single-state formulation as Q-Mixing: Prior.

Theorem 3 (Single-State Q-Mixing). Let Q∗i (· | π−i), π−i ∈ Π−i, denote the optimal
strategic response Q-value against opponent policy π−i. Then for any opponent mixture
σ−i ∈ ∆(Π−i), the optimal strategic response Q-value is given by

Q∗i (ai | σ−i) =
∑

π−i∈Π−i

σ−i(π−i) ·Q∗i (ai | π−i).

Proof The definition of Q-value is as follows (Sutton and Barto, 2018):

Q∗i (ai) =
∑
ri

p(ri | ai) · ri.

In a multiagent system, the dynamics model p suppresses the complexity introduced by
the other agents. We can unpack the dynamics model to account for the other agents as
follows:

p(ri | ai) =
∑
π−i

∑
a−i

π−i(a−i) · p(ri | a).

We can then unpack the strategic response value as follows:

Q∗i (ai | π−i) =
∑
a−i

π−i(a−i)
∑
ri

p(ri | a) · ri.

Now we can rearrange the expanded Q-value to explicitly account for the opponent’s
strategy. The independence assumption enables the following re-writing by letting us treat
the opponent’s mixed strategy as a constant condition:

Q∗i (ai | σ−i) =
∑
ri

∑
π−i

σ−i(π−i)
∑
a−i

π−i(a−i) · p(ri | a) · ri

=
∑
π−i

σ−i(π−i)
∑
a−i

π−i(a−i)
∑
ri

p(ri | a) · ri

=
∑
π−i

σ−i(π−i) ·Q∗i (ai | π−i).
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Player 2

πR
2 πP

2 πS
2

πR
1 0, 0 −1, 1 1, − 1

Player 1 πP
1 1, − 1 0, 0 −1, 1

πS
1 −1, 1 1, − 1 0, 0

Table 2: Rock-Paper-Scissors.

4.1.1 Didactic Example

Consider the Rock-Paper-Scissors (RPS) game illustrated in Table 2. Each episode consists
of only a single state, then the agents simultaneously submit actions, and receive their
rewards. From the perspective of Player 1, our opponent, Player 2, has the choice of three
policies: rock πR

2 , paper πP
2 , and scissors πS

2 . Notice, that in this game policies are analogous
to primitive actions, and that is not generally the case. For each of the opponent’s policies
we can determine the optimal SRQV by inspection:

Q∗1(· | πR
2 ) =

 0
1
−1

 , Q∗1(· | πP
2 ) =

−1
0
1

 , Q∗1(· | πS
2 ) =

 1
−1
0

 .
The SRQVs are found by first fixing the opponent’s policy. In effect, the game is

reduced to a 3× 1 matrix game with known payoffs for each policy. This reduction removes
any stochasticity introduced into payoff estimation that would result in sampling from a
distribution of opponent policies. From the smaller matrix game, we need only consider our
agent’s payoffs (for Player 1 these are the first value in each cell of the game matrix).

Playing deterministically in RPS makes you an easily exploitable player. A stronger
opponent may randomly choose between rock and paper yielding the mixed strategy σ−i =
(0.5, 0.5, 0.0). Using single-state Q-Mixing we can compute the SRQV to said mixed strat-
egy, assuming we know the mixture:

Q∗1(· | σ−i) =
∑
π−i

σ−i(π−i)Q
∗
1(· | π−i)

= 0.5

 0
1
−1

+ 0.5

−1
0
1

+ 0.0

 1
−1
0


=

−0.5
0.5
0

 .
Therefore, we know that our optimal policy is πP

1 . When we play paper, we have the
opportunity to win (unlike playing rock), and have no opportunity to lose (like scissors).
The worst we can do is tie, making it our best-response.

12
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4.2 Leveraging Information from the Past

Next, we consider enriching the previous setting to incorporate repeated interaction between
the agents across an evolving observation distribution. The joint effect of the agents’ actions
influences this distribution and affords the opportunity to gather information about their
opponent during an episode. Methods in this setting need to (1) leverage information from
the past to update its’ belief about their opponent, and (2) grapple with the uncertainty
about the future. Accordingly, extending Q-Mixing into this setting requires quantification
of the agent’s current belief about their opponent and their future uncertainty.

We will begin by focusing on the first condition: the method must leverage information
from the past to update its’ belief about their opponent. When compared to the single-state
setting, each agent now has access to a history of their observations O0:t

i . Additionally, we
will not presently take into consideration that the agent may gain future evidence about the
identity of their opponent’s policy (see Section 4.3). In essence, the current setting reflects
that of the penultimate state of a game. Where each agent has all of the previous play to
consider; however, they know that they are deciding their final action for this episode.

During an episode the actual observations experienced generally depend on the identity
of the opponent’s policy, which is drawn from their mixed strategy. Let

ψi : O0:t
i → ∆(Π−i) (7)

represent the agent’s current belief about the opponent’s policy using the observations
during play as evidence. From this prediction, we propose an approximate version of Q-
Mixing that accounts for past information. The approximation works by first predicting the
relative likelihood of each opponent policy given the current observation. Then it weights
the Q-value-based BRs against each opponent by their relative likelihood.

Figure 1 provides a conceptual illustration of the benefits and limitations of this new
prediction-based Q-Mixing. At any given timestep t during the episode, the information
available to an agent about the opponents may be insufficient to perfectly identify their
policy. Nevertheless, the agent maintains a belief σt−i of the identity of their opponent’s
policy. The yellow area above a timestep represents the uncertainty reduction from an
updated prediction of the opponent σt−i compared to the baseline prediction of the prior σ0

−i.
Crucially, this definition of Q-Mixing does not consider updating the opponent distribution
from new information in the future (blue area in Figure 1).

Let the previously defined ψ be the opponent policy classifier (OPC), which predicts
the identity of the opponent policy. We then augment Q-Mixing to weight the importance
of each BR as follows:2

Qπi(oi, ai | σ−i) =
∑
π−i

ψi(π−i | oi, σ−i)Qπi(oi, ai | π−i). (8)

We refer to this quantity as Q-Mixing , or Q-Mixing: X , where X describes ψ. The
version of Q-Mixing introduced in the single-state setting will be therefore referred to as Q-
Mixing: Prior, where the prior belief σ0

−i is the known mixed strategy of the opponent. By

2. The notation on the observation that explicitly demarcates the inclusion of the full history is suppressed.
This is for both ease of reading and because the requisite amount of history required will vary per game.
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Figure 1: Conceptual opponent uncertainty over time. The yellow area represents a
uncertainty reduction, for some measure, as a result of updating belief about the distribution
of the opponent. The blue area represents approximation error incurred by Q-Mixing.

continually updating the opponent distribution during play, the adjusted Q-Mixing result
better responds to the actual opponent.

An ancillary benefit of the opponent classifier is that poorly estimated Q-values tend to
have their impact minimized. For example, if an observation occurs only against the second
opponent policy, then the Q-value against the first opponent policy would not necessarily be
trained well, and thus could distort the policy from Q-Mixing. These poorly trained cases
correspond to unlikely opponents and get reduced weighting in the version of Q-Mixing
augmented by the classifier.

4.2.1 Running-With-Scissors

We first evaluate Q-Mixing on the Running With Scissors (RWS) grid-world game (Vezh-
nevets et al., 2020; Leibo et al., 2021). This game is a temporal extension of the classic
rock-paper-scissors (RPS) game. With this environment we pose the following questions:

1. Can Q-Mixing transfer Q-values from pure-strategy responses to generate a mixed-
strategy response?

2. Is Q-Mixing capable of transferring Q-values across all mixed strategies?

3. Does incorporating an OPC that updates the opponent distribution in Q-Mixing en-
hance its performance?

In RWS, the agents begin by collecting rock, paper, and scissor items scattered through-
out the gird-world. These are added to the player’s inventory vi, which is initialized to have
one of each item. The game ends when a player challenges the other to play RPS. Each

14
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Figure 2: Running With Scissors example initial state visualization. The players
(red, blue) randomly spawn in one of two positions with a random orientation (dark gray).
The environment contains rock (orange), paper (white), and scissor (green) items scattered
throughout the room. The item spawn positions remain fixed; however, certain spawn
positions stochastically chose the item, while the rest have deterministically chosen items.

player plays a distribution over the actions following the distribution of items in their in-
ventory. The reward can then be calculated as:

ri =
vi
‖vi‖

M

(
v−i
‖v−i‖

)T

= −r−i, M =

 0 −1 1
1 0 −1
−1 1 0

 .
The game is a two-player zero-sum game with a small state and action space, enabling
inexpensive simulation. Moreover, the game is partially observable, because the agents are
only able to view a small 5 × 5 sub-grid around their position instead of the full 13 × 21
grid. A rendering of the RWS game can be seen in Figure 2, and additional information
about the game is provided in Section F.

In our experiments, we assume the perspective of Player 1 and learn LSTM-based
(Hochrieter and Schmidhuber, 1997) response policies using Double DQN (van Hasselt et al.,
2016). The state space is a one-hot encoding of the 10 possible occupants of each cell. Re-
sulting in a ravelled vector with length 253, including observation of the player’s inventory.
The agent has the option of selecting one of 9 actions: move in the four cardinal directions,
rotate left or right, challenge (fire/beam) their opponent, or to take no action. The LSTM
has a memory size of 128, and the output is projected through a series of fully-connected
layers with sizes [128, 64, 64, 9].

We learn three different policies for Player 2 that are then fixed for evaluation. Each
of these policies is specialized to prefer collecting one of the three items. To train such a
policy, an auxiliary reward of 1 is added each time the agent collects their preferred item.

4.2.2 Transfer onto A Mixed Strategy

With our game and opponents established, we can address our first research question: can
Q-Mixing effectively transfer Q-values from pure-strategy responses to generate a mixed-
strategy response? To assess this, we examine the method’s effectiveness in generating a
response policy to a uniform mixed strategy composed of three opponent policies. As a
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Figure 3: BR(Uniform)’s learning curve. BR(Uniform)’s performance is reported in
terms of a sliding window of return over the last 100 episodes. Q-Mixing transfers BRs
the the opponent’s policies that were trained using equal fractions of the training budget
available to BR(Uniform). Q-Mixing is then evaluated by simulating its return against
each opponent policy for 100 episodes. Performance for both methods is shown with a 95%
bootstrap confidence interval.

baseline, we use a best-response policy trained directly against the mixed strategy, denoted
as BR(Uniform). Constructing a Q-Mixing policy first requires training best-responses
directly against the individual opponent policies. Simultaneously, best-responses are cre-
ated directly against the individual opponent policies. These pure strategy best-responses
employ the same neural network architecture but divide the simulation budget allotted
to BR(Uniform) evenly. By allocating the simulation budget in this manner, we account
for outcomes potentially influenced by access to larger amounts of simulation data. The
responses thus obtained are then utilized to construct the Q-Mixing: Prior policy.

We plot BR(Uniform)’s training curve in Figure 3. On this plot, we also include the
simulated performance of Q-Mixing: Prior. It is important to note here that Q-Mixing:
Prior requires having previously trained best-responses to each of the opponents individual
policies. Since we are only investigating here the quality of this transfer operation, we do
not account for this prior simulation time. This disclaimer in mind, we find that Q-Mixing:
Prior is able to successfully transfer Q-values to generate a successful best-response policy.
In fact, the Q-Mixing: Prior policy outperforms BR(Uniform) without requiring any addi-
tion training against the objective. This performance gap can be potentially explained by
(a) benefits from specialization, and (b) limitations of RL as an approximate best-response
oracle. Q-Mixing allows best-responses to be trained directly against each opponent pol-
icy, disentangling the belief in the opponent’s policy from the value of each action. As
a result, the Q-values need not be risk-averse and choose sub-optimal responses, which is
crucial for BR(Uniform) as it must concern itself with the other opponent policies. As for
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the limitations of RL as an approximate best-response, we accept this limitation because
any approximate method will have its drawbacks. Moreover, both methods were treated
with equal hyperparameter tuning and training budget (measured in training timesteps).
A practitioner should prefer Q-Mixing, because this result suggests it is much easier to
produce quick and strong results (at least for this game). In summary, Q-Mixing shows
efficacy in transferring strategic knowledge from opponent policies onto an opponent mixed
strategy, confirming our first research question.

4.2.3 Opponent Strategy Space Coverage

The previous result suggests that Q-Mixing may be particularly advantageous when we
need to repeatedly generate responses to differing opponent strategies. We investigate this
possibility in our second research question. Can Q-Mixing transfer Q-values across all of
the opponent’s mixed strategies?

In order to investigate this question we evaluate the same two methods against a rep-
resentative coverage of the entire strategy space of the opponent. The strategy sets we
consider are all mixtures truncated to the tenths place (e.g., [0.3, 0.4, 0.3]). Q-Mixing
methods depend on the changing opponent mixed strategy, unlike BR(Uniform), which is
unchanged across opponent strategies. Therefore, when evaluating BR(Uniform) we simu-
late its performance against each respective opponent policy for 300 episodes3. Then the
expected performance against each mixed strategy can be calculated by appropriately aver-
aging the mean returns against the respective policies. As for Q-Mixing, we must simulate
the performance against each opponent mixture independently. Q-Mixing must be updated
to condition on each opponent mixture, and then be simulated against each opponent policy
for 300 episodes.

We evaluate both methods based on their return and their normalized return. The
normalized return, normalizes an estimated return against an opponent policy by the return
received by its respective BR. The normalized returns are then averaged according to the
opponents mixture. Looking at both performance metrics allows us to more fairly compare
the distribution of returns across different opponent policies. For example, consider an
opponent with two policies, the later being vulnerable to dramatic exploitation. If we
estimated our returns against these policies as 1 and 1000 respectively, then any evaluations
against a mixture of these two policies would not fairly account for the performance to the
first opponent policy.

Figure 4 shows Q-Mixing’s performance across the opponent mixed-strategy space. As
we can see in both plots, Q-Mixing strictly dominates the performance of BR(Uniform).
A Q-Mixing method that perfectly transfers the component BR knowledge would have a
curve that is a horizontal line at 1. This upper bound is unrealistic in practice, because it
effectively requires perfectly identifying the opponent policy prior to play. Nevertheless, the
difference between Q-Mixing: Prior and 1 represents the potential room for improvement.
An astute reader then may wonder how is it possible for Q-Mixing: Prior to achieve a
performance greater than 1? This results is from the serendipitous circumstance where the
Q-values from the other responses offer advantageous information when weighted together.

3. The number of episodes was chosen because the mean return empirically converged by 300 episodes.
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Opponent Strategy Sorted by Response Performance

Figure 4: Coverage of Q-Mixing: Prior on RWS. The opponent strategies are sorted
per-BR-method by the BR’s return. Shaded region represents a 95% bootstrap confidence
interval over five random seeds. The two methods are trained using the same simulation
budget. The left plot, evaluates each method by their return. On the right plot, we instead
normalize the return by the performance of the BR to each opponent policy.

4.2.4 Q-value Regularization

A possible explanation for the performance improvements observed in Q-Mixing is that it
benefits from value ensembling. Value ensembling has been shown to reduce noise in BR
learning, leading to a more stable training target (Anschel et al., 2017). In the context of
Q-Mixing, this would suggest that the advantage is derived from the aggregation of value
predictors, rather than the specialization of per-opponent policy responses or their weight-
ing. To determine if regularization is the cause of our previous findings, we examine the
benefits of regularization in this domain using a set of independently trained Q-functions. If
averaging these Q-functions corresponds to performance improvements, then regularization
could be a plausible explanation for the performance improvements seen in Q-Mixing.

In Figure 5, we show the performance of uniformly averaging the Q-values from an in-
creasing number of the independently trained DQNs. There appears to be no consistent
trend in performance improvement or degradation as additional DQNs are introduced. Go-
ing from one to two DQNs results in an improvement, but adding a third DQN eliminates
the previous gains and further reduces performance. In the same figure, we show the perfor-
mance of each DQN in isolation. The individual performance allows us to better understand
the regularization results: changes in regularization performance coincided with the relative
performance of each newly added Q-function.

Next, we explore whether any trend emerges when regularizing the outputs of two DQNs
together. This experiment is inspired by the hypothesis that the order in which DQNs
are added during evaluation may have confounded our previous results when regularizing
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Figure 5: Effects of averaging Q-values from DQN. (Left) performance of averag-
ing the Q-values from an increasing number of DQNs against the uniform mixed-strategy
opponent. (Right) the respective performance of the individual DQNs.

a group of DQNs. In Figure 6, we plot the improvement in return when an additional
DQN is averaged with a baseline DQN. 12 of the 25 combinations saw an improvement
in performance from the addition of another Q-value estimate. In conjunction with the
previous results, we find no compelling evidence to suggest that Q-value regularization is
the primary factor contributing to the benefits of Q-Mixing.

4.2.5 Opponent Classification

Our third research question is: can the use of an OPC that updates the opponent distri-
bution in Q-Mixing improve its performance? During play against an opponent sampled
from the mixed strategy, the player is able to gather evidence about which opponent they
are playing. We hypothesize that leveraging this evidence to weight the importance of the
respective BR’s Q-values higher will improve Q-Mixing’s performance.

To verify this hypothesis, we train an OPC using the replay buffers associated with
each BR policy. These are the same buffers that were used to train the BRs, and cost no
additional compute to collect. This data is used to train an OPC that outputs a distribution
over opponent pure strategies for each observation. The OPC is implemented with a deep
neural network with the same architecture as the policies, save the last layer that has size
that equals the number of opponent policies (in this case, 3). The classifier is trained to
predict from an observation, sampled across the replay buffers, the respective pure strategy
index it occurred against with a cross-entropy loss.

We evaluate Q-Mixing: OPC by testing the performance on a representative coverage
of the mixed-strategy opponents illustrated in Figure 7. We found that the Q-Mixing:
OPC policy performed stronger against the full opponent strategy coverage than Q-Mixing:
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Figure 6: Performance improvement of averaging an additional DQN. The x-axis
denotes the IDs of the baseline DQN (first index), and the additional DQN (second index)
added to regularize its’ Q-values.

Prior. This result supports our hypothesis that an OPC can identify the opponent’s pure
strategy and enable Q-Mixing to chose the correct BR policy. However, Q-Mixing: OPC
method has a larger variance in return. This variance is not found in the normalized return,
suggesting that the larger variance is a result of the range of exploitability of the respective
opponent policies. Previously this trend in variance was thought to be a result of opponent
missclassification.

4.3 Accounting for Future Uncertainty

Q-Mixing as we have seen it so far can handle the timeless setting (single-state), and consider
information from the past and present. So far, the belief in the opponent’s policy is assumed
constant into the future. However, the future offers additional opportunities to gather
evidence that may influence the belief in the opponent’s policy. And in these future states,
the belief at that point should be updated to reflect the cumulative evidence gathered about
the opponent’s policy.

4.3.1 Opponent-Policy Identification Game

To illustrate this important detail we introduce the opponent-policy identification game.
This game, illustrated in Figure 8, is a form of coordination game where an agent has the
option to pay a cost to observe the opponent’s policy prior to coordination. Success in this
game requires that the agent can appropriately trade-off the cost of information gathering
with the benefit of a more informed future belief in the opponent’s policy.

At the root, the opponent draws a policy from their mixed strategy σ−i ∈ ∆({πL
−i, π

R
−i}).

Player i begins in initial state s0
i , where they have no information about the opponent’s
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Figure 7: Coverage of Q-Mixing: OPC on RWS. The opponent strategies are sorted
per-BR-method by the BR’s return. Shaded region represents a 95% bootstrap confidence
interval over five random seeds. The two methods are trained using the same simulation
budget. The left plot, evaluates each method by their return. On the right plot, we instead
normalize the return by the performance of the BR to each opponent policy.
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Figure 8: Opponent-policy identification game. Leaf node values reflect the full return
for player i.

policy. From this state, player i has the option to observe the opponent’s identity—that
is, whether it chose the L or R policy—for a cost of ε. If they exercise this ability, they
transition to a state of knowing the opponent’s identity {sL

i , s
R
i } (where the superscript

corresponds to the opponent’s policy). If they pass on this opportunity, then they remain
in a state of ignorance s?

i .
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After player i has observed or passed, the player chooses L or R. If i’s choice matches the
opponent’s policy label, the reward to both players is 1; otherwise they receive no reward.
The total return, or payoff, for player i in this game is then the cost of observation, if
exercised, plus the reward conditional on successful coordination.

The BR to an opponent in this game depends on both the opponent’s strategy σ−i and
the cost of observation ε. For instance, consider the uniform mixed strategy opponent with
a small observation cost:

σU
−i ← Uniform({πL

−i, π
R
−i}) ε← 0.03.

The best-response in this setting, BR(σU
−i), is to observe the opponent’s policy and play the

appropriate response. Consequently, BR(σU
−i) receives a return of 0.97. Had this response

policy chosen to not observe the opponent’s identity, then they can do no better than chance
during coordination and would receive a return of 0.5.

Now, let us consider our transfer learning problem within the aforementioned setting of
the opponent-policy identification game. The problem asks us to construct BR(σU

−i) from
{BR(πL

−i),BR(πR
−i)} given σ−i. The pure strategy best-responses in effect already know the

identity of the opponent. This means that they never decide to observe the identity, as doing
so incurs an unnecessary cost without providing any additional information. Hence, we can
summarize the pure strategy responses as follows (the BRs are rewritten as conditioned
policies for ease of notation):

πi(s
0
i | πL

−i) = Pass πi(s
0
i | πR

−i) = Pass

πi(s
?
i | πL

−i) = L πi(s
?
i | πR

−i) = R.

From these component policies we cannot construct BR(σU
−i), because it contains a new

strategic behavior not present in the provided responses: the need to gather additional
information about the opponent. As we saw in the problem setup, BR(σU

−i) receives a higher
return if it chooses to take the observe action and appropriately respond. The information-
gathering behavior fundamental to the correctness of a mixed-strategy response is, in this
example, not present in responses to the opponent pure strategies.

In the general opponent-policy identification game, we can successfully transfer responses
when acquiring additional information on the identity of the opponent is not worthwhile.
Information-gathering is not worthwhile when

1− ε < max
π−i

σ−i(π−i),

where σ−i(π−i) is the probability of the opponent playing π−i. If this inequality holds, then
the cost for observation outweighs its benefit. Conversely, if the inequality is reversed, then
BR(σU

−i) stands to benefit from taking actions to acquire knowledge about the opponent’s
identity. This information-gathering behavior will not be evident in the component response
policies, because it is not optimal for them to incur the information-gathering cost. As a
result, BR(σU

−i) cannot be constructed without injecting additional strategic knowledge
related to opponent policy identification.
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4.3.2 Q-Mixing with Value Iteration

To account for future uncertainty, Q-Mixing must be able to update its successor observation
values given future evidence of the opponent’s policy. This can be done by expanding the
Q-value into its components: expected reward under the current belief in the opponent’s
policy, and our expected next observation value. By updating the second term to recursively
reference a new opponent belief we can account for changing beliefs in the future. The
extended formulation, Q-Mixing: Value Iteration (QMVI), is given by:

Q∗i (o
t
i, a

t
i | σ−i) =

∑
π−i∈Π−i

ψi(π−i | oti, σ−i) ·
[
ri(o

t
i, a

t
i | π−i) + γEot+1

i

[
V ∗(ot+1

i | σ−i)
]]
. (9)

If we assume that we have access to both a dynamics model and the observation dis-
tribution dependent on the opponent, then we can directly solve for this quantity through
Value Iteration (Algorithm 1). These requirements are quite strong, essentially requiring
perfect knowledge of the system with regards to all opponent policies. The additional step
of Value Iteration also carries a computational burden, as it requires iterating over the full
state and action spaces. Though these costs may render QMVI infeasible in practice, we
provide Algorithm 1 below as a way to ensure correctness in Q-values.

Algorithm 1: Value Iteration: Q-Mixing

Input: S,A, T ,R, ε, γ
V0(s | σ−i)←

∑
π−i

σ−i(π−i)Q(s, a | π−i)
do

Qt(s, a | σ−i)←
∑

π−i
ψ(π−i | s, σ−i)

∑
s′, r T (s′, r | s, a, π−i)[r + γVt−1(s′ | σ−i)]

Vt(s | σ−i)← maxaQt(s, a | σ−i)
πt(s | σ−i)← arg maxaQt(s, a | σ−i)

while ∃s∈S |Vt(s)− Vt−1(s)| > ε
Output: Vt, Qt, πt

QMVI is reducible into the traditional value iteration algorithm. Consider we construct
a new aggregate MDP by combining both the original MDP and the opponent’s dynamics
(represented by the combination of their strategy and policies). The aggregated MDP is
both stationary and may be stochastic, because the opponent is not learning and may
randomize their play. Convergence properties of value iteration are inherited by QMVI by
considering the application of value iteration on said aggregate MDP.

5. Opponent-Policy Belief

As we have seen from both policy- and value-based strategic knowledge transfer, a crucial
component to their success is the ability to identify their opponent’s policy. It comes at no
surprise that response knowledge against a particular opponent policy may prove fruitless
if you cannot reasonably expect that you are interacting with that opponent policy. With
this in mind, we turn our attention towards the problem of modeling the agent’s belief of
their opponent’s current policy.
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Correctly identifying your opponent’s policy facilitates playing the appropriate best-
response. The identification problem is typically not straightforward due to the limited
information that can be observed about your opponent’s strategy. Reasonably, it will not
be the case that the opponent will tell their competitor their policy. Instead, one must
collect information about their opponent and use this to inform a belief of the opponent’s
policy.

Information about the opponent’s strategy may be collected prior to gameplay and
during interaction with a particular policy. The former information informs one’s prior
on the opponent’s policy. Whereas, the later pertains to evidence gained to inform the
likelihood of the current opponent policy. The likelihood may be calculated with only the
evidence at the current timestep, or may use the full history of evidence gained from the
start of the episode until the present. A prior and history-based likelihood model together
constitute a fully informed belief model. This raises a key question: what components to
the belief model are critical to its success?

Before we answer this question, we must first understand what makes a good likelihood
and prior. In the preceding section we demonstrated the efficacy of two methods for main-
taining a belief of the opponent’s current policy: (1) the prior defined by the opponent’s
mixed strategy, and (2) a neural network likelihood model (trained through the auxiliary
task of classification). Both of these methods failed to fully take advantage of all of the in-
formation available; in fact, each method lacks what the other provides. The prior method
fails to account for evidence during play with a particular opponent policy, and the classifier
fails to be amenable to changes in the prior belief of the opponent policy. Moreover, both
previous options do not consider any historical evidence in their belief calculation.

5.1 Opponent Likelihood Model

We begin by investigating the design of an opponent likelihood model. In the previous
section, we trained a neural network classifier to predict which opponent we are playing
against based on the game history. Assuming a well calibrated model, this will accurately
predict the posterior probability of each opponent, but only if the distribution over opponent
policies in the data used to train the model was the same as the opponent’s strategy used
in Q-Mixing. If the distribution of the data was to differ from the data experienced by the
Q-Mixing policy, we would need to correct for this change.

Let σ̄ be the opponent mixture used to train the OPC and h ∈ H be any realizable
history, then we can define and unpack OPC ψ by Bayes Theorem as follows (up to model
approximation errors):

ψ(π | h) =
p(h | π) · σ̄(π)

p(h | σ̄)

∝ p(h | π) · σ̄(π). (10)

This results in two terms directly corresponding to the likelihood and prior of our opponent’s
identity. Previously, when investigating the opponent identification, a neural network was
trained to implicitly model this distribution through classification. A prior on the oppo-
nent’s policy is implicitly trained into the OPC through the class balance σ̄ in the dataset.
In other words, if the data used to trained the OPC contained mostly experience against
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opponent two, then this may bias the OPC to favor predicting that opponent. In the pre-
vious experiments the data was balanced across classes; following this, the OPC adopted a
uniform prior.

When using Q-Mixing in a training procedure (such as in Section 6) to respond to
a mixed-strategy opponent, our agent has access to the opponent’s mixture. The OPC
fails to take advantage of this new prior knowledge; the distribution used to train the
likelihood model now fails to match the true opponent distribution. However, because the
class distribution in training σ̄ is known, rather than using the OPC directly, we can treat
it as an Opponent Likelihood Model (OLM), up to a multiplicative constant.

Instead of assuming the same prior σ̄ across the entire opponent strategy-space we
would like to update ψ, our likelihood model, when given new information about the prior
distribution of the opponent policies. Consider a different mixed strategy σ, we would like
to update ψ so that it instead approximates the distribution:

p(π | h, σ) =
p(h | π) · σ(π)

p(h | σ)

∝ p(h | π) · σ(π). (11)

By rearranging Equation 10 we get the likelihood in terms of our trained model:

p(h | π) ∝ ψ(π | h)

σ̄(π)
. (12)

Then we may substitute Equation 12 into Equation 11, facilitating a correction for the prior:

p(π | h, σ) ∝ ψ(π | h)

σ̄(π)
σ(π)

= ψ(π | h)
σ(π)

σ̄(π)
(13)

This new formulation addresses the concerns we raised earlier. First, we account for
prior knowledge of the opponent by directly using our prior σ. Second, we can learn a
likelihood model of the evidence h through our previous method for constructing an OPC.
Finally, we correct for the prior used during the training of the evidence likelihood.

By substituting the method used to compute likelihoods in Q-Mixing, we conduct an
ablation study to examine the impact of both the new prior knowledge and the evidence
obtained during gameplay. The respective impacts are assessed by establishing four version
of Q-Mixing, as listed in Table 3, each varying in the information sources that inform their
likelihood calculations. The version of Q-Mixing developed in this section, incorporating
both sources of information, is hereafter referred to as Q-Mixing: OLM :

Qπi(hi, ai | σ−i) ∝
∑
π−i

ψi(π−i | hi)
σ−i(π−i)

σ̄−i(π−i)
Qπi(hi, ai | π−i). (14)

This version of Q-Mixing is constructed derived from substituting the classifier-based like-
lihood in Equation 8 with the corrected likelihood in Equation 13. The likelihood model ψi
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Formula Prior Likelihood

Qπi(hi, ai | σ−i) ∝
∑

π−i
σ̄−i(π−i)Qπi(hi, ai | π−i)

Qπi(hi, ai | σ−i) ∝
∑

π−i
σ−i(π−i)Qπi(hi, ai | π−i) X

Qπi(hi, ai | σ−i) ∝
∑

π−i
ψi(π−i | hi)Qπi(hi, ai | π−i) X

Qπi(hi, ai | σ−i) ∝
∑

π−i
ψi(π−i | hi)σ−i(π−i)

σ̄−i(π−i)
Qπi(hi, ai | π−i) X X

Table 3: Comparison of Q-Mixing with differing opponent likelihood models. The
prior column denotes that the likelihood model can correct for updated prior knowledge.
The likelihood column denotes whether the model updates the posterior given evidence
during play.

here is defined assuming perfect recall, or access to the full history hi. It can be calculated
as the product of the probability of each observation occurring against said opponent:

ψi(πi | hi) =
∏
oi∈hi

ψi(πi | oi). (15)

This can be efficiently calculated with a stateful policy that maintains the previous timesteps’
belief and updates its posterior with the current observation’s likelihood. We also consider a
simpler likelihood that only depends on the current observation. Comparing these versions
illuminates the predictive power of a single observation.

5.2 Baseline Opponent Classifiers

Before we can begin to understand the details of what constitutes a good method for
maintaining an opponent identifier, we must first understand where we start to contextualize
progress. Do we even need to perform opponent identification? If the tools we already have
perform well then pursing this investigation may be a nonstarter.

In the simplest case, let’s suppose that we do not need to explicitly consider the identity
of the opponent. This amounts to selecting a best-response policy irrespective of information
provided about the opponent’s strategy. In Figure 9, we compare Q-Mixing: Prior directly
against the best-response policies. We look at each method by evaluating their coverage
across the opponent’s strategy space in the RWS game. This is the same experimental
methodology that we introduced in Section 4.

The best-responses to the opponent’s policies are denoted BR(X), where X is the index
of the opponent’s policy in their strategy set. These baselines let us investigate the option of
choosing the simplest opponent classifier: a classifier that outputs a constant value. These
also allow us to see if any one particular best-response policy dominates the others. Such a
dominant policy could serve as a sufficiently good policy against the mixed strategy.

We also consider the best-response to the opponent’s uniform mixed strategy, labelled
BR(Uniform). BR(Uniform) implicitly should perform both opponent belief maintenance
and best-response to perform well. Investigation of this baseline should offer some insights
into how easily identifiable the opponent’s policy is from the observation. If this is an easy
task, then the implicit two-step response strategy of identification and then response is easy
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Opponent Strategy Sorted by Response Performance

Figure 9: Coverage of best-response policies. The opponent strategies are sorted
per-BR-method by the BR’s return. Shaded region represents a 95% bootstrap confidence
interval over five random seeds. The two methods are trained using the same simulation
budget. The left plot, evaluates each method by their return. On the right plot, we instead
normalize the return by the performance of the BR to each opponent policy.

to perform at all game states. Therefore, a good BR(Uniform) should highly correlate its
Q-values with the observation features corresponding to the opponent’s identity.

In Figure 9, we can see that the best-responses to the opponent pure strategies generalize
poorly. This can be seen in the right plot, where the the curves start out at 1.0, which
denotes that the response policy was playing against the corresponding opponent pure
strategy. Then when the opponent plays any mixed strategy, the performance quickly falls
off. Recall, that the normalized return reports the proportion of the return received when
compared to the return received by playing the true response policies. A decline in this
chart suggests that the pure strategy response policies are unable to exploit the different
opponent policies. This indicates that the opponent’s strategy space is sufficiently diverse
that we cannot rely on just a response to an opponent pure strategy.

In the same figure, we can also see that BR(Uniform) at its best performs at just over
half its potential. A reasonable retort is to remark that this result indicates a failure in
the approximate best-response oracle. It is true that using Deep RL as an approximate
oracle method can result in variable performance to the whim of policy implementation
and training hyperparameters. It is possible that under the perfect settings, Deep RL may
produce a response policy to the mixed strategy that also exhibits generalization capabilities.
Despite this true criticism, in practice, finding that setting may consume more resources
than simply directly tackling the problem from a less idealized setting. In this work, we
spent roughly equivalent resources attempting to optimize the learning settings for the
responses to the pure and mixed strategies. Therefore, we argue that the results herewithin
represent a roughly fair practical comparison of methods.
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Q-Mixing: Prior outperforms both the pure- and mixed-strategy best-response policies.
This should come at no surprise, because Q-Mixing: Prior can use the additional information
of the opponent’s strategy at evaluation time. The other methods offer no flexibility given
the known change in opponent strategy. Therefore, there is a clear benefit to explicitly
including a mechanism for opponent identification within a policy. Note, that in Figure 9
when interpreting outperformance, it is not the case that Q-Mixing: Prior is better than
the specialized BRs against their respective opponents. The performance of each curve is
sorted for each method separately, the strategies represented by each point on the x-axis
often differ between methods.

5.3 Frequency-Based Classification

The result from the previous section indicate that strictly using best-responses may be
insufficient. However, each of these respective best-responses performs well against their
respective opponent. Q-Mixing’s ability to fully utilize the component best-responses de-
pends on its efficacy at identifying the opponent’s policy. In this section we increase the
complexity of our Q-Mixing policy by a single step. Instead of considering only a prior
(fixed or adjusted to the correct opponent strategy), we investigate inclusion of evidence
during play to inform the identity of the opponent. As the trained classifier we saw in
Section 4 used a neural network, attempting to understand its success and failure modes
presents itself as an entirely disparate research direction.

As a stopgap, we will now consider an observation frequency based opponent-policy
likelihood. This likelihood model is based of a simple statistic, and will allow us to dive
into what contributes to the success of Q-Mixing. It will weight the SRQVs by the relative
frequency of the observation occurring against each opponent. We use the replay buffers Bi
used to train the respective responses i as datasets to calculate the observation frequencies.
More formally, we compute the weight of assigned to each response j for player i as:

wj(oi) =

∑
ōi∈B(BRi(π

j
−i))

[ōi = oi]1∑
ōi∈

⋃
k B(BRi(πk

−i))
[ōi = oi]1

, (16)

and Q-Mixing: Observation Frequency (Freq) follows from this formulation:

QFreq
i (oi, ai | σ−i) =


∑

πj
−i
wj(oi) ·Qi(oi, ai | πj−i) o ∈

⋃
k B(BRi(π

k
−i))∑

πj
−i

1
|Π−i| ·Qi(oi, ai | π

j
−i) Otherwise

. (17)

We compare Q-Mixing: Freq with its prior-only versions of Q-Mixing and the learned
classifier in Figure 10. Q-Mixing: Uniform Prior is another baseline introduced here, repre-
senting the performance of Q-Mixing when it is not given the opponent’s strategy, but rather
maintains a constant strategy (in this case, the uniform strategy) across all opponent strate-
gies. Interestingly, Q-Mixing: Uniform Prior outperforms its opponent across all strategies.
This outcome can be attributed to the tendency of value functions to overestimate values.
As a result, the value functions associated with less likely opponents are typically sup-
pressed. This phenomenon acts as an implicit form of opponent modeling, which arises due
to the specific experimental setup chosen in this case. However, this observation may not
hold true in general.
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0 1 2

0 18,854 341 237
1 20,464 424
2 21,040

Table 4: Unique observations common across the responses’ replay buffers. The
rows and columns represent the replay buffers of the approximate best-response policies’
replay buffers. Each cell represents the count of the number of unique observations that
occur in both replay buffers.

The result in Figure 10 indicates that the performance of Q-Mixing: Freq falls between
Q-Mixing: Prior and Q-Mixing: Uniform Prior. This finding is initially concerning, as
it suggests that the evidence does not aid in opponent identification. In fact, Q-Mixing:
Freq performs only marginally better than Q-Mixing: Uniform Prior, which receives no
information about the opponent’s strategy.

Why doesn’t the observational evidence lead to improvements in Q-Mixing? To answer
this question, we need to examine the replay buffers underlying Q-Mixing: Freq’s imple-
mentation. Each replay buffer contains 100,000 experiences and corresponding observations.
From these experiences, the replay buffers have 18,854, 20,464, and 21,040 unique states,
respectively. This implies that agents do revisit observations quite frequently.

However, the more critical question is how many of these unique observations co-occur
between pairs of replay buffers? Co-occurrence indicates that the agent should be uncertain
about their opponent’s identity, and the relative frequency could provide valuable informa-
tion. In Table 4, we present the co-occurrence frequencies. This table reveals that very
few observations (less than 500) ever co-occur between any two replay buffers. This means
that if an observation appears in a replay buffer, it is highly informative of the opponent’s
identity.

So far we have established that our frequency baseline fails to effectively use evidence
during play to improve Q-Mixing. Next, we saw that if an observation is in one of the
response policies’ replay buffers then it is highly informative of the opponent’s identity.
This suggests an intuitive contradiction with the former result. The resolution to this
conflict lies in the second case present in the observation-frequency formula (Equation 17).
What happens when an observation is not present in any replay buffer?

We begin by simulating Q-Mixing: Freq against each respective opponent for 300
episodes. From this simulation results we looked at the proportion of observations encoun-
tered that did not occur in any replay buffers. We refer to this situation as a cache-miss.
The percentage of cache-misses against each opponent is 87 ± 1%, 69 ± 3%, and 85 ± 2%.
Here in lies the problem with this baseline. Despite the replay buffers being largely infor-
mative, the information is never able to bear fruit, because the agent is mostly experiencing
novel states. Thus, it behaves only slightly better than Q-Mixing: Uniform Prior, because
upon a cache-miss it implements the Q-Mixing: Uniform Prior policy (the second case in
Equation 17).

The previous result demonstrates that the observations used to construct our policy often
differ from those experienced during evaluation. The key takeaway from this experiment
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Figure 10: Coverage of baseline variants of Q-Mixing. The opponent strategies are
sorted per-BR-method by the BR’s return. Shaded region represents a 95% bootstrap
confidence interval over five random seeds. The two methods are trained using the same
simulation budget. The left plot, evaluates each method by their return. On the right plot,
we instead normalize the return by the performance of the BR to each opponent policy.
This is the only figure that contains results for Q-Mixing: Freq that does not maintain a
belief.
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is that this version of Q-Mixing: Freq does not take the past into account. Currently,
the classifier receives the present observation and predicts the opponent’s identity. This
prediction is based on the probability of each opponent for the current observation, which
can be used to create and maintain a belief about the opponent’s identity throughout an
episode.

Upon revisiting our observation-frequency baseline, we can readily identify the signifi-
cant benefits of belief maintenance. In the initial version of Q-Mixing: Freq, the predicted
opponent likelihood becomes the uniform distribution in the event of a cache miss. However,
by maintaining a belief over time, the likelihood from the previous prediction is preserved
in the case of a cache miss. This approach facilitates the accumulation of evidence across
time, even when faced with new observations. From this point forward, we will focus on a
version of Q-Mixing: Freq that incorporates belief maintenance over time.

Figure 11 displays the coverage curves for various Q-Mixing: Freq variants. These plots
show that maintaining a belief significantly enhances the performance of Q-Mixing: Freq.
These improvements can be attributed to the agent’s ability to accumulate all evidence
about their opponent. Additionally, when the agent encounters a new observation, they no
longer have complete uncertainty about their opponent. Instead, their previous belief about
their opponent remains. As most observations experienced were novel, this means that the
agent can now historic evidence of their opponent.

Continuing from the Q-Mixing: Freq results, we can see that the prior plays a much
smaller role in the performance of opponent identification. An informative prior provides
a small increase in performance across the opponent’s strategy space. The prior serves a
minor role, because throughout an episode enough evidence about the opponent is collected
to overwhelm the contribution from the prior. Still, a prior offers benefits early in an episode,
by allowing an agent to deviate to a more exploitative response policy earlier. In practice, we
will have access to the true opponent strategy; therefore, this result unsurprisingly suggests
that it should be used as the prior.

5.4 Learned Classifier

Finally, we return to our learned opponent classifier. We provide both coverage curves for
Q-Mixing: OPC in Figure 12 and opponent classification accuracy of all methods (at the
end of the episode) in Table 5. The learned classifier further improves upon the frequency
baseline, as shown in Figure 13. The previous investigation into the performance of the
frequency baseline offers insights into the benefits gained from the learned version. With
regards to extracting evidence of the opponent’s identity: the OPC learns to extract features
salient for opponent classification from its observations; whereas, the frequency baseline can
only gather evidence from known observations contained in a replay buffer.

In summary, we compile all of the coverage curves analyzed in this section in Figure 13.
The key take-away is that both the prior and evidence gained matter for successful belief
calculation. The prior, is often of less importance, because it is typical to gain sufficient
evidence during play to overwhelm the impact of the prior. Nevertheless, in games where
the first few moves are crucial, the prior may prove fundamental to the method’s success.
A trained opponent-policy classifier may also learn to extract features that are predictive
of the opponent’s policy even in novel settings.
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Figure 11: Coverage of variants of Q-Mixing with a frequency-based likelihood.
The opponent strategies are sorted per-BR-method by the BR’s return. Shaded region
represents a 95% bootstrap confidence interval over five random seeds. The two methods
are trained using the same simulation budget. The left plot, evaluates each method by their
return. On the right plot, we instead normalize the return by the performance of the BR
to each opponent policy.
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Figure 12: Coverage of variants of Q-Mixing with a learned likelihood. The op-
ponent strategies are sorted per-BR-method by the BR’s return. Shaded region represents
a 95% bootstrap confidence interval over five random seeds. The two methods are trained
using the same simulation budget. The left plot, evaluates each method by their return.
On the right plot, we instead normalize the return by the performance of the BR to each
opponent policy.
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Figure 13: Coverage of all methods on RWS. The opponent strategies are sorted
per-BR-method by the BR’s return. Shaded region represents a 95% bootstrap confidence
interval over five random seeds. The two methods are trained using the same simulation
budget. The left plot, evaluates each method by their return. On the right plot, we
instead normalize the return by the performance of the BR to each opponent policy. A
detailed description of generating coverage curves is supplied in Appendix D. Appendix D
also includes the specific opponent strategies in terms of ranking. Appendix E includes
depictions of the agent’s belief in the opponent’s policy throughout the course of an episode
for the relevant methods.
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Likelihood Prior Opponent 0 Opponent 1 Opponent 2

Freq Unif 0.67± 0.16 0.61± 0.10 0.63± 0.06
Freq σ−i 0.73± 0.09 0.69± 0.12 0.78± 0.05
OPC Unif 0.89± 0.03 0.89± 0.02 0.90± 0.03
OPC σ−i 0.92± 0.04 0.93± 0.03 0.91± 0.03

Table 5: Opponent classification accuracy at end of episode. Accuracy is calculated
over 100 episodes and intervals are calculated from an empirical bootstrap across 5 seeds.
Accuracy is only calculated for the final timestep in an episode. Tie-breaking favors the
smaller opponent index, resulting in high accuracy for Q-Mixing: Freq.

5.5 Future Research Directions

In this study we consider only a simple learned classifer for the OPC. Instead, more so-
phisticated methods for reasoning about the opponent’s policy offers ample room for future
improvements for Q-Mixing. A set of assumptions that can be made includes that all players
have fixed strategy sets. Under these assumptions, agents could maintain more sophisticated
beliefs about their opponents (Zheng et al., 2018), and extend this to recursive-reasoning
procedures (Yang et al., 2019). This line of work primarily focuses on other-player policy
identification and presents a promising future direction for enhancing the quality of the
OPC.

Another potential extension of the OPC is to explore alternative objectives. Rather than
solely focusing on predicting the opponent, in safety-critical situations, an agent may want
to consider an objective that accounts for inaccurate opponent predictions. The Restricted
Nash Response (Johanson et al., 2007) embodies this measure by striking a balance between
maximizing performance if the prediction is correct and maintaining reasonable performance
if the prediction is inaccurate.

While both of these research directions revolve around opponent-policy prediction, they
address different problem statements. Most notably, these works do not consider varying
the distribution of opponent policies as we have investigated in this work. As a result,
adapting these methods to this distinct problem domain presents a fruitful opportunity for
future research.

6. Strategic Transfer in PSRO

Up to this point, we have focused on the issue of transferring responses across opponent
strategies. Now, we turn our attention to investigating how these advances may reduce
the cumulative cost of learning in game-solving algorithms. PSRO is one such algorithm
for learning a solution to a in multiagent systems by interleaving empirical game analysis
with Deep RL. At each iteration, Deep RL is invoked to train a best-response to a mixture
of opponent policies. The learning problems faced across each iteration share a common
structure. This common structure provides us with the opportunity to transfer knowledge
acquired in previous iterations to assist in training subsequent policies. When consecutive
best-response problems are compared only two changes may occur: inclusion of an additional
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policy in each opponent’s strategy set, and a change in the distribution with which each
opponent samples their policies. In this section, we introduce two variants of PSRO that
exploit this common strategic structure to reduce the amount of simulation required during
Deep RL training.

A particular challenge for the RL step in PSRO is that the learner must derive a response
under uncertainty about opponent policies. The profile derived from the empirical game is
generally a mixed-strategy profile, as in strategically complex environments randomization
is often a necessary ingredient for equilibrium. The opponent draws from this mixture are
unobserved, adding uncertainty to the multiagent environment. We address this challenge
through variants of PSRO in which all RL is applied to environments where opponents
play pure strategies. The proposed methods employ, but are not limited to, the machinery
of Q-Mixing to facilitate operations on pure strategies instead of mixed strategies. We
propose and evaluate two such methods, which work in qualitatively different ways: Mixed-
Oracles learns separate BRs to each pure strategy in a mixture and combines the results
from learning to approximate a BR to the mixture. Mixed-Opponents constructs a single
pure opponent policy that represents an aggregate of the mixed strategy and learns a BR
to this policy.

Our methods promise advantages beyond those of learning in a less stochastic environ-
ment. Mixed Oracles transfers learning across epochs, exploiting the Q-functions learned
against a particular opponent policy in constructing policies for any other epoch where that
opponent policy is encountered. Mixed Opponents applies directly over the joint opponent
space, and so has the potential to scale beyond two-player games.

6.1 Policy-Space Response Oracles

PSRO solves a game by constructing an approximate model of the game defined over a
restricted strategy set. The game model is solved analytically and its solution is used as an
approximate solution to the full game. To build the game model, each player begins with
a strategy-set Π0

i that contains either a set of existing policies, or contains only a uniform

random policy. An ENFG ŨΠ0
can be constructed through simulating each strategic profile

and entering total payoffs in the respective cell.

PSRO now iteratively improves the quality of the game model, through the expansion
of the players’ strategy sets, until it captures an approximate solution to the full game.
At each epoch e of the PSRO algorithm a new policy is constructed for each player by
best-responding to an opponent profile σ∗,e−1

−i from the currently constructed ENFG: πei ∈
BR(σ∗,e−1

−i ). These policies are then added to each player’s strategy set, Πe
i ← Πe−1

i ∪{πei },
and the new profiles are simulated to expand the ENFG. Algorithm 2 presents the full
PSRO algorithm as defined by Lanctot et al. (2017).

One of the key design choices in iterative empirical game-solving is choosing which poli-
cies to add to the ENFG. This was first studied by Schvartzman and Wellman (2009a),
who termed it the strategy exploration problem . Figure 14 depicts where strategy explo-
ration fits into the PSRO algorithm. We want to add policies that both bring the solution
to the ENFG closer to the solution of the full game and that can be calculated efficiently.
In PSRO, the strategy exploration problem is decomposed into two steps: empirical-game
solving and BR via RL. In the empirical-game solving step, PSRO derives a profile σ∗,e
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Algorithm 2: Policy-Space Response Oracles (Lanctot et al., 2017)

Input: Initial policy sets for all players Π0

Simulate utilities ŨΠ0
for each joint π0 ∈ Π0

Initialize solution σ∗,0i = Uniform(Π0
i )

while epoch e in {1, 2, . . . } do
for player i ∈ [[n]] do

for many episodes do

π−i ∼ σ∗,e−1
−i

Train πei over τ ∼ (πei , π−i)

Πe
i = Πe−1

i ∪ {πei }
Simulate missing entries in ŨΠe

from Πe

Compute a solution σ∗,e from Γ̃e

Output: Current solution σ∗,ei for player i

Strategy Exploration

Π!"#

Π"#

Π!"#$%

Π"#$%

𝜋"#$%

Strategy Exploration

𝜋"#$&

…

Figure 14: Overview of the Policy-Space Response Oracles (PSRO) algorithm.
PSRO constructs an empirical game that models a complex underlying game by iteratively
performing strategy exploration and profile simulation.

from the current empirical game. The method for choosing this profile is the MSS, formally
a function from empirical games to solution profiles MSS : Γ̃e → σ∗,e. For example, the
MSS might compute a Nash equilibrium of Γ̃e.4 In the BR step, PSRO generates a new
policy via RL (the response oracle), training against the target opponent profile computed
by the MSS. The choice of MSS and response oracle algorithm constitutes a strategy ex-
ploration approach and determines the convergence speed of PSRO. Figure 15 zooms in on
the strategy exploration portion of PSRO, completing the illustration of Figure 14.

We observe and address two opportunities for improvement within the standard version
of PSRO (Algorithm 2). First, note that the only thing that changes from one epoch to the

4. As noted above, a variety of other MSSs have been proposed, and assessing their relative merits is a topic
of active research (Balduzzi et al., 2019; Wang et al., 2022). In experiments reported here, we adopt NE
as the baseline MSS; however, our methods readily apply to any MSS.
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Figure 15: Strategy exploration in PSRO. An MSS computes a solution σ∗,e to the
empirical game, which defines the response target. The approximate best-response oracle
applies deep RL with opponents fixed at σ∗,e−i to generate a new policy πe+1

i for each player.

next is the opponent strategy profile σ−i; the transition dynamics remain the same, and the
mixed profile σ−i itself likely contains policies encountered in previous epochs. This suggests
a significant opportunity to transfer learning across epochs; however, the BR calculation
step works by training anew at each epoch. Furthermore, because it is responding to some
of the same strategies, the new policy learnt may be similar to the strategies added in previ-
ous epochs, and may not be the most useful addition to the ENFG. Secondly, the opponent
profiles are mixtures (i.e., distribution over opponent policies). This makes the environment
dynamics more stochastic from the perspective of the RL agent, making learning more dif-
ficult. In Section 6.2 we propose an algorithm that transfers knowledge between iterations,
and only trains against the single new opponent policy. In Section 6.3 we present a second
algorithm that avoids responding to similar opponent strategies on subsequent iterations,
while also addressing the opponent variance issue and providing scalability to multiple other
agents.

6.2 Mixed-Oracles

The first problem we address is that during BR calculation there is an opportunity for
transferring previously learned information. In each epoch, each player learns a BR to a
mixed profile of opponent policies. This mixture typically involves the newly added policies
(one per player) for this epoch, but may also include many policies from previous epochs.
Training in previous epochs already captured experience against those policies, so including
them in further training may be redundant.

The Mixed-Oracles algorithm is a variant of PSRO for two-player games, with a modified
BR oracle designed to transfer learning across epochs. This method works by learning and
maintaining a collection of BRs to each opponent policy Λei =

{
λ1
i , . . . , λ

e
i

}
, where λei is

the BR to πe−1
−i . During each epoch of Mixed-Oracles, a BR is learned for the single new

opponent policy, rather than for the mixed opponent-profile generated by the MSS. A BR to
the MSS-generated target mixture is then constructed from the collection of BR results for
constituent policies in the mixture. Constructing the new policy is done through a general
TransferOracle function that maps a set of policies and a distribution over the policies into
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a single policy

TransferOracle : Π×∆(Π)→ π. (18)

The resulting policy should approximately aggregate the behavior of the component policies.

By reusing learned behaviors from previous epochs, Mixed-Oracles allows us to focus
training exclusively on new opponent policies. The key design choice is how to combine
knowledge from the BRs to individual policies into a BR to any distribution of said policies.
We provide a general description of Mixed-Oracles, where the TransferOracle method is
abstract, as Algorithm 3.

Section 4 introduces Q-Mixing as an approach for constructing policies against any mix-
ture of opponent strategies. This method utilizes Q-values learned against each individual
opponent strategy, making it well-suited for supporting the desired transfer. As we observed
in Section 3, direct policy transfer is not always feasible. Consequently, Q-Mixing’s use of
values makes it particularly appropriate for aiding Mixed-Oracles. Specifically, Q-Mixing
calculates the average Q-values learned against each opponent policy π−i, weighted by their
likelihood in the opponent mixture σ−i:

Qi(oi, ai | σ−i) =
∑
π−i

ψi(π−i | oi, σ−i)Qi(oi, ai | π−i), (19)

where ψ determines the relative likelihood of playing an opponent ψi : Oi → ∆(Π−i). In
this study, we use Q-Mixing as our TransferOracle, where ψ is the prior over the opponent
distribution as given by an MSS.

Algorithm 3: Mixed-Oracles

Input: Initial policy sets for all players Π0

Simulate utilities ŨΠ0
for each joint π ∈ Π0

Initialize solutions σ∗,0i = Uniform(Π0
i )

Initialize pure-strategy BRs Λ0
i = ∅

while epoch e in {1, 2, . . .} do
# Best respond to each new opponent.
for player i ∈ [[n]] do

for many episodes do

Train λei over τ ∼ (λei , π
e−1
−i )

Λei = Λe−1
i ∪ {λei}

# Generate new policies.
for player i ∈ [[n]] do

πei ← TransferOracle(Λei , σ
∗,e−1
−i )

Πe
i = Πe−1

i ∪ {πei }
Simulate missing entries in ŨΠe

from Πe

Compute a solution σ∗,e from Γ̃e

Output: Current solution σ∗,ei for player i.
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Figure 16: Mixed-Oracles on the RWS game.

6.2.1 Empirical Convergence of Mixed-Oracles

Does Mixed-Oracles yield a solution of similar quality to PSRO while using fewer simulation
timesteps? We evaluate this question by comparing both methods cumulative simulation
timesteps usage during game solving. We compare the methods on two distinct games:
RWS and Gathering (Leibo et al., 2021)5.

RWS, a competitive two-player game, is employed to evaluate the transfer learning tech-
nology. In RWS, a trivial Nash equilibrium can be discovered without learning: all players
collect no items. When all players opt for this strategy, they play the Nash equilibrium with
equal weight assigned to rock, paper, and scissors. To uncover a non-trivial equilibrium,
we initialize the strategy set for all players to include three policies, each specializing in
collecting a particular item. This modification is applied to all algorithms in subsequent
RWS experiments throughout this work.

Gathering, on the other hand, presents several complementary characteristics: it is a
commons game (neither strictly competitive nor cooperative), can accommodate any num-
ber of players, and is also a grid-world game. In Gathering, agents compete to harvest apples
from an orchard without over-harvesting collectively. Over-harvesting inhibits future apple
regrowth, leading to a collectively worse outcome. The Gathering game is implemented as
a grid-world game where agents can only see a small area in front of them. For tractabil-
ity, this work considers categorical observations of occupants of each cell in the gridworld,
instead of RGB observations. Agents can move in cardinal directions, rotate in either direc-
tion, take no action, or “tag” a player in front of them. Tagging another player temporarily
removes them from the game. Agents receive a reward for picking an apple, and apples
regrow at a rate proportional to the number of nearby unharvested apples.

5. For extended details on both games, see Appendix F.
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Figure 17: Mixed-Oracles on the Gathering game.

Figure 16 compares convergence speed, measured by their regret over time, of Mixed-
Oracles and PSRO on the RWS game. Both Mixed-Oracles and PSRO converge to an equi-
librium within the budgeted 3.5× 108 timesteps. However, at 1.5× 108 timesteps Mixed-
Oracles converged to an equilibrium; whereas, PSRO has not. Mixed-Oracles converges in
a similar number of epochs as PSRO seen on the left plot with both algorithms converging
around six. However, Mixed-Oracles achieves this solution while requiring less usage of the
environment simulator (measured in timesteps on the right plot). It is worth recalling here
that both PSRO and Mixed-Oracles in this experiment is initialized with a strategy-set
containing the three specialized policies (rock, paper, and scissors). This means that both
algorithms contain many equilibria before performing any strategy exploration. Therefore,
we turn towards investigating other games where the strategy exploration step of PSRO
has a greater influence on the algorithm’s performance.

Figure 17 similarly compares both algorithms on the Gathering game with two-players
and the small map. At epoch 10, Mixed-Oracles has converged to a solution with roughly
25 regret. At the same time, PSRO approximately triple the regret. By the end of PSRO’s
runtime it improves its performance to roughly 50 regret, double that of Mixed-Oracles.
The reduction can be regret may be contributed to by two factors (a) reduction cost of
each epoch (measured in simulated timesteps) allows more epochs to be run, and/or (b)
noise introduced through Q-Mixing’s approximation helps in exploring the game’s strategy
space. In this game, both algorithms appear to converge roughly around 10 epochs. This
suggests that the later factor, noise-induced exploration, may have played a larger role in
the overall algorithm’s performance improvements.
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6.3 Mixed-Opponents

We next examine PSRO’s strategy exploration method that is defined by BR to the op-
ponent profile generated by an MSS. This design choice was motivated by solving for
Nash Equilibrium, where failure to add a beneficial deviation to the restricted strategy set
indicated convergence. However, in an extensive form game it can take infeasibly many
iterations to achieve convergence, meaning that in practice the theoretical convergence in
the limit may not be helpful.

In other words, BR within a single iteration serves the short-term goal of checking for
convergence presently, but may not serve the long-term goal of building a rich empirical
game. This distinction is akin to the exploration-exploitation dilemma: we may solve a game
faster by choosing not to respond to the current Nash equilibrium, if it leads to strategies
that are useful in improving our empirical game. Exploration-focused objectives promise
to reduce the number of iterations of PSRO, instead of reduce the number of timesteps of
a single RL application.

In this section, we introduce Mixed-Opponents, a variant of PSRO that incorporates an
exploration-focused objective. The key insight behind this objective is that each opponent
policy is greedy, which leads to the suppression of potentially useful information already
learned about non-greedy actions. For instance, many opponent policies may agree on a
second-best action that is never played. We propose Mixed-Opponents, which employs the
transfer learning methods developed in this work to help us explore this direction. Similar
to Mixed-Oracles, Mixed-Opponents maintains the advantage of responding to specific op-
ponent policies, resulting in less stochastic learning signals and cheaper response learning.
To begin, we will present Mixed-Opponents through a constructed example.

6.3.1 Constructed Example

In this example, we consider a hypothetical run of PSRO to solve Rock-Paper-Scissors (RPS)
with Nash equilibrium as its solution concept. We will focus on Player 1’s learning, so will
assume that Player 2 will learn exact Q-values against Player 1’s meta-strategy. However
we will consider Player 1 to only produce approximate best responses. This is to model
approximate reinforcement learning such as observed in experiments on the abstracted RPS
game, running-with-scissors For simplicity, we will consider each player adding a strategy
to the empirical game in turn, rather than simultaneously.

The below table shows a possible outcome of two iterations of PSRO.

R P S R P S

π1
1 = (0.0, 0.3, 0.7) Q1

2 = (0.4,−0.7, 0.3)

π2
1 = (0.4, 0.6, 0.0) Q2

2 = (−0.6, 0.4, 0.2)

The run begins by Player 1 playing an arbitrary initial strategy π1
1, which consists of

mostly playing S. This play induced a high value for Player 2’s R action, denoted in Q1
2. In

turn, Player 1 approximately best-responds to R, by playing mostly P, and never playing S,
in π2

1. Player 1’s meta-strategy now plays pure π2
1, against which both P and S score well,

as shown by the values of Q2
2.

These policies construct an empirical game, which closely resembles the matching pen-
nies game, with the following payoffs:
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Player 2

π1
2 π2

2

Player 1
π1

1 −0.4, 0.4 0.7,−0.7

π2
1 0.6,−0.6 −0.4, 0.4

This game is then solved by the MSS resulting in the following solution:

σ2
1 = (0.47π1

1, 0.52π2
1)

σ2
2 = (0.52π1

2, 0.48π2
2).

Because Player 2’s two policies play only R and P respectively, we can rewrite Player 2’s
meta-strategy σ2

2 in terms of the primitive actions in the full game (0.52 R, 0.48 P, 0.0 S).
If, as in PSRO, Player 1 were then to add their ABR to this meta-strategy, which is P,
then their strategy set does not contain the Nash equilibrium of the game. The problem is
that there are already strategies in the empirical game that can defeat both of Player 2’s
strategies, so the new strategy is not very useful. This can be detected by inspecting
Player 2’s Q-functions: Q1

2 has a very low valuation of P, and Q2
2 has a very low valuation

of R. This phenomena is illustrated in Figure 18a. Player 1 could instead respond to S, which
is moderately highly valued by both opponent Q functions, as it is more relevant. To detect
this we can mix the opponent strategies through their action-value estimates, rather than
their action distributions. This results in the following Q-values: QMix

2 = (0.46, 0.414, 0.626).
The ABR to this is R, which more usefully extends Player 1’s strategy set to include the
Nash equilibrium of this game. The two different approaches are illustrated in Figure 18b.

6.3.2 Mixed-Opponents

This example motivates our second algorithm: Mixed-Opponents. This method also em-
ploys a combination method, but instead of combining results from training against previ-
ously encountered opponents, it combines the strategies of the opponent mixture themselves
to construct a single new opponent policy as a target for training. We refer to the method
for generating a new opponent policy from a mixture of opponents the OpponentOracle, and
it has the same functional form as the TransferOracle. The generalized Mixed-Opponent
algorithm is shown in Algorithm 4. We employ Q-Mixing (Equation 19) as our Opponen-
tOracle. In contrast to Mixed-Oracles, which uses Q-Mixing to transfer Q-values across
epochs, here we apply it to average Q-values to define a variant training objective.

6.3.3 Empirical Convergence of Mixed-Opponents

The first research question we address is: does Mixed-Opponents lead to a solution of similar
quality compared to PSRO while utilizing fewer simulation timesteps? To answer this
question, we follow the same experimental procedure used for the Mixed-Oracles experiment
in the previous section.

Figure 20 compares the convergence speed of both algorithms on the Gathering-Open
game. After 25 epochs, Mixed-Opponents has discovered a solution with approximately
50% less regret. However when both algorithms are compared via timesteps, at 5× 107
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(a) PSRO with Nash equilibrium as a solution concept. The two opponents’ Q-functions inform
greedy policies that each play rock and paper, respectively. When the meta-strategy for Player 2 is
σ2 = (0.52π1

2 , 0.48π2
2), Player 1 will add paper as a BR.
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(b) Mixed-Opponents first mixes the opponent policies by their Q-values (in this example using the
Q-Mixing algorithm). The BR to the mixed opponent is rock, and its inclusion expands the strategy
space to include the Nash equilibrium of RPS (middle dot).

Figure 18: Empirical game expansion resulting from different strategy explo-
ration methods.
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Algorithm 4: Mixed-Opponents

Input: Initial policies for all players Π0

Simulate ŨΠ0
for each joint π ∈ Π0

Initialize solutions σ∗,0i = Uniform(Π0
i )

while epoch e in {1, 2, . . .} do
for player i ∈ [[n]] do

π−i ← OpponentOracle(Πe−1
−i , σ

∗,e−1
−i )

for many episodes do
Train πei over τ ∼ (πei , π−i)

Πe
i = Πe−1

i ∪ {πei }
Simulate missing entries in ŨΠe

Compute a solution σ∗,e from Γ̃e

Output: Solution σ∗,ei for player i.
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Figure 19: Mixed-Opponents on the RWS game.
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Figure 20: Mixed-Opponents on the Gathering game.

timesteps, Mixed-Opponents has found a nearly no regret solution; whereas, PSRO has
approximately 50 regret.

Mixed-Opponent’s performance on the RWS game is shown in Figure 19. In this result,
we can see that PSRO behaves as expected: decreasing regret through epochs and converg-
ing to a low-regret solution. On the other hand, Mixed-Opponents, behaves erratically and
does not show convergence. What appears as a complete failure of the method, provides the
practitioner some valuable insights into the utility gained through differing strategy explo-
ration methods. Recall from the discussion on Mixed-Oracles applied to RWS that Mixed-
Oracles was initialized to contain several equilibria. The same consideration also applies to
Mixed-Opponents; meaning that Mixed-Opponents need not explore the strategy space of
the game to discover equilibria. This means that we are evaluating Mixed-Opponents in a
setting which contradicts its motivation. Naturally, any gains Mixed-Opponents offers by
discovering new strategies would not be advantageous. This also highlights a downside of
Mixed-Opponents: it may fail to exploit the discovered strategy space. Instead of discover-
ing new strategies, this setting requires exploiting the discovered strategy space to compute
an accurate equilibrium response policy. We discuss this in more detail in Section 6.5.

6.3.4 Many-Player Games

An advantage of Mixed-Opponents over Mixed-Oracles is that it can be applied to games
with more than two players. It is natural to then ask if the trends we observed in the
previous experiment, on two-player games, extend to many-player games? We repeat the
previous Mixed-Opponent analysis on the Gathering game; however, we will now look a
three-player version of the game on the “open” map (maps define spawn points and orchard
configurations). We limit each profile in the empirical game to three simulations, to handle
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Figure 21: Extensions beyond two players and using shared hyperparameters.
(Left) Mixed-Opponents evaluated on the Gathering-Open game with 3 players. (Right)
Comparison of algorithms when set to the same Deep RL hyperparameters.

the combinatorial explosion of profiles. Figure 21 shows our results where Mixed-Opponents
finds a similar quality solution to PSRO in half of the time.

6.4 Hyperparameter Selection Ablation

In the previous experiments PSRO used a separate set of hyperparameters from the proposed
algorithms. These two sets of hyperparameters were specialized for low- and high-variance
outcomes of state induced by facing pure- and mixed-strategy opponents respectively. This
was motivated by the assumption that lower variance would require less training. This raises
the question: does the differing hyperparameters explain the performance gap between the
algorithms?

In this section, we question that assumption and ask: do Mixed-Oracles and Mixed-
Opponents perform at least as well as PSRO when given the same Deep RL hyperparam-
eters? To answer this question we run all three algorithms with the same set of hyperpa-
rameters, forcing all to adopt the same simulation budget.

We report results for the Gathering-Small game in Figure 21. The trends observed
previously reoccur: Mixed-Oracles and Mixed-Opponents find solutions at least as good as
PSRO after 6× 107 timesteps. Moreover, by 2.5× 107 timesteps both Mixed-Oracles and
Mixed-Opponents have converged to a regret of approximately 25, while PSRO has a regret
of roughly 50. These results suggest that our hyperparameter selection methodology does
not explain the results from the preceding experiments.
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6.5 Strategy Exploration-Exploitation Dilemma

DO uses response to Nash as a way to guarantee theoretical convergence in the limit.
Specifically, if a new best-response strategy cannot be constructed to add to the empirical
game for any player then a Nash solution is found. PSRO with Nash as a solution adopts
this guarantee by inheriting the same algorithmic structure as DO. However, unlike DO,
PSRO is applied to games where we cannot reasonably run the algorithm long enough to
realize convergence. Instead of guaranteeing that each new strategy serves the additional
role of a convergence check, we can also choose to select strategies that reduce the time till
convergence. This trade-off is analogous to the exploration-exploitation dilemma in single-
agent RL, where now it may be advantageous to first explore and add diverse strategies,
then exploit and attempt to solve the game.

Rectified Nash PSRO (Balduzzi et al., 2019) is an example of a exploration method that
encourages agents to “amplify their strengths and ignore their weaknesses.” This leads to
the inclusion of generally weak agents that have diverse niches. The rectified Nash objective
focuses on increasing the effective diversity of the population, and does not directly optimize
towards solving the game. While response to the Nash PSRO is a an exploitative objective,
where it assumes that all strategic cycles in the game are included in the empirical game.

We posit that Mixed-Oracles is similarly an exploitative objective, and that Mixed-
Opponents is an exploration objective. Mixed-Oracles includes responses to the MSS’s
solution but introduces additional approximation errors by purifying pure-strategy best-
response policies. Mixed-Opponents, on the other hand, attempts to add a more diverse
policy to the population; following the intuition that non-optimal actions may contain in-
teresting strategic dimensions in aggregate. An open question is characterizing how Mixed-
Opponents impacts the quality of the empirical game. No algorithm so far acts as a panacea
alone; however, mixing the insights gained from all of them together may offer a path to-
wards the remedy.

7. Conclusion

We investigated how transferring knowledge about previously encountered opponents can
generalize response knowledge across opponent strategies and improve the efficiency of
game-solving algorithms. The story began by introducing a class of problems and char-
acterizing them as strategic knowledge transfer problems. These problems address the use
of strategic knowledge accrued while learning response policies in one context toward de-
riving a response policy for a new strategic context.

We investigate one such problem: the opponent mixture transfer problem. In this
problem, we assume responses to each opponent policy and access to the strategic mixture
that the opponent is playing. First, we show how a general solution to this problem cannot
be constructed without making additional assumptions about the policy’s implementation.
Then, we introduce Q-Mixing, an algorithm that solves the problem under the assumption
that all response policies are value-based. Q-Mixing transfers response knowledge across
any distribution of known opponents by appropriately weighting the responses’ Q-values.
We introduced exact methods for Q-Mixing, as well as approximate versions which we
empirically demonstrate offer more practical solutions.
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Key to the success of Q-Mixing, and solutions to the opponent mixture transfer problem
in general, is the maintenance of a belief in the opponent’s policy. Belief in the opponent’s
identity informs the select a suitable response behavior. We performed an in-depth analysis
to tease apart what factors contribute to successful belief maintenance. In the games we
tested, we saw that a opponent-policy classifier, trained using the replay buffers from the
pure strategy response policies, served as an effective opponent-policy likelihood model.
Moreover, the belief may be greatly improved by maintaining a posterior likelihood that is
repeatedly updated at each observation.

Finally, we turned to the use of transfer learning to reduce the computational cost of it-
erative game-solving algorithms. We introduced two algorithms that share a common theme
of modifying the best-response objective from responding to mixed-strategy opponents to
responding to pure-strategy opponents. Responding to a pure strategy rather than a mix-
ture eliminates the opponent sampling process, and thus reduces the variance in experiences
during training.

The first algorithm, Mixed-Oracles, trains response policies to each policy in the popula-
tion. A response-policy to a mixed strategy is then constructed by combining the individual
pure-strategy response policies, using Q-Mixing. The second algorithm, Mixed-Opponents,
transforms the mixed-strategy response target for PSRO into a pure strategy representing
the mixture. It does so by combining the Q-values6 of the opponent policies supported in
the original target mixture, generating a novel policy that captures elements of the previous
opponents. Both algorithms reuse strategic knowledge from previous PSRO iterations: the
Q-values derived in training BRs. This reuse saves cumulative training time in PSRO, as
does the variance reduction associated with responding to pure strategies noted above.

Mixed-Opponents also highlights the potential for novel strategy discovery as part of a
strategy exploration approach in PSRO. As in single-agent RL, introduction of new strategy
candidates for game solving must balance consideration of diverse possibilities (exploration)
with fine-tuning of known effective solutions (exploitation).

These algorithms demonstrate that contributions to strategic knowledge transfer and
strategy discovery can reduce the computational cost present in iterative game-solving algo-
rithms. Continued interest and advancements in these areas will bring us closer to solving
complex games that represent real problems we face in the world today.
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Appendix A. Direct Policy Transfer

In this Appendix we present an avenue for solving the opponent mixture transfer problem
without making any assumptions about the underlying implementation of the response
policies. Unfortunately, going down this path requires making strong assumptions that
renders it prohibitive outside of contrived games. It is provided here for completeness and
to inspire future directions into more fruitful solutions.

A.1 Direct Policy Transfer

The resulting transferred policy should define the same state distribution over the game
as ABR(σ−i). This property is called realization equivalence and was introduced to re-
lated stochastic policies (i.e., behavioral strategies) and mixed strategies in sequence-form
games (von Stengel, 1996; Koller and Megiddo, 1992). Establishing realization equivalence
between our transferred policy and a target ABR(σ−i) enables us to verify successful transfer
algorithms.

Fundamental to constructing ABR(σ−i) is that all possible sequences of actions exhibited
by this policy must be realizable. When this is the case, the set of response policies (to each
opponent policy) can be purified7 into a single policy representing a response to a mixed
strategy opponent. We begin by showing that in this idealized case that response policies
can be transferred to solve the opponent mixture transfer problem (Section 3.1). This
solution is not free; however, requiring a O(SAΠ) calculation that limits its applicability
to large-scale games.

Unfortunately, even in small-scale games, the requirement that all action sequences
are realizable is unrealistic in games of practical interest. We provide a didactic example
(Section A.1) that illustrates how the transfer operation can fail without this assumption.
Beyond the example, in the worst case this assumption may require that all actions have
positive support in all states. If we consider that our policies of interest are response policies
that are trying to maximize return, then these policies will likely assign most (often, all) of
the probability mass to a single best action. Response policies may be modified to meet this
assumption; however, modifying a policy may detract from its performance. In an extreme
case, the policy modification may result in an policy taking dangerous actions that result
in large negative returns.

A.2 Policy Purification

We begin by showing that a set of policies can be purified through their visitation fre-
quency , or its’ discounted joint state-action probabilities, to establish realization equiva-
lence. This result is then related to the task of constructing a response to a know distribution
of opponents, and limitations to the approach are discussed.

In order to formally define visitation frequencies we must first establish some primitives.
Let d0 : S → [0, 1] or d0 ∈ ∆(S) by the initial state distribution. From this we can derive
Prπ as the probability that the random variables, denoted by capital script, take on the
assigned values when π is acting in the environment. This allows us to describe many useful

7. The moniker of purification refers to representing a set of policies as a pure-strategy (policy).
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probabilities:

Prπ(S0 = s) = d0(s)

Prπ(At = a | St = s) = π(a | s)
Prπ(St = st, At = at | S0 = s0) = π(at | st)Prπ(St = st | S0 = s0)

Prπ(St = st | S0 = s) =
∑
st−1

∑
at−1

p(st | st−1, at−1)π(at−1 | st−1)Prπ(St−1 = st−1 | S0 = s0)

It is worth noting explicitly here that this notation takes the ego-centric viewpoint of one
agent; where, they view all other agents as part of the environment. From these tools we
formally define visitation frequencies in Definition 4.

Definition 4 (Visitation Frequency (Puterman, 2005, §6.9.2)). A visitation frequency is
the discounted probability of a policy π occupying either a state ρπ : S → [0, 1] or joint
state-action ρπ : S × A → [0, 1]. For the initial state distribution d0 and the prob-
ability of reaching state and/or action s, a after t timesteps and starting in state s0 as
Prπ

(
St = st, At = at | S0 = s0

)
with discount factor γ the visitation frequency is as follows:

ρπ(s, a)
.
=
∑
s0∈S

d0(s0)
∞∑
t=0

γn · Prπ
(
St = s,At = a | S0 = s0

)
, (20)

ρπ(s)
.
=

∑
a∈A(s)

ρπ(s, a).

This quantity is also referred to as the occupancy frequency or occupancy of a policy.

Through visitation frequencies we can establish a method for purifying a mixed strategy.
This is accomplished by weighting the policies by the likelihood of their respective play,
within the mixed strategy, in a particular state. This relationship is established below in
Theorem 5.

Theorem 5. The purified policy πσ of a mixed strategy σ is a the convex combination of
each policy’s action-distribution and the likelihood of that policy for each state:

∀s ∈ S, ∀a ∈ A(s), πσ(a | s) =
∑

π∈support(σ)

p(π | s, σ) · π(a | s). (21)

Assuming all state-action pairs are reachable by the pure strategies π ∈ support(σ).

Proof We begin by establishing the high-level relationship between the purified-policy and
its visitation frequency xσ(s, a) via simple probability rules:

xσ(s, a) = p(s | σ) · πσ(a | s), (22)

πσ(a | s) =
xσ(s, a)

p(s | σ)
. (23)
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The remainder of this proof focuses on removing p(s | σ) from Equation 23, by unpacking
xσ(s, a) to contribute a corresponding p(s | σ) for reduction. To this end, we first establish
the policy-likelihood for later use:

p(π | s, σ) =
p(s | π) · p(π | σ)

p(s | σ)

=
p(s | π) · σ(π)

p(s | σ)

p(π | s, σ) · p(s | σ) = p(s | π) · σ(π) (24)

Now, we focus on expanding xσ(s, a) to include p(s | σ) using Equation 24:

xσ(s, a) =
∑
π

p(π, s) · π(a | s)

=
∑
π

p(s | π) · p(π) · π(a | s)

=
∑
π

p(s | π) · σ(π) · π(a | s)

=
∑
π

p(π | s, σ) · p(s | σ) · π(a | s)

= p(s | σ) ·
∑
π

p(π | s, σ) · π(a | s) (25)

Finally, we substitute Equation 25 into Equation 23:

πσ(a | s) =
xσ(s, a)

p(s | σ)

=
p(s | σ) ·

∑
π p(π | s, σ) · π(a | s)
p(s | σ)

=
∑
π

p(π | s, σ) · π(a | s)

The construction of a mixed strategy best-response policy is a direct application of this
operation. The response policies to each respective opponent policies are played in the same
distribution that the opponent plays.

There are two limitations with this approach (1) the need for a policy-state likelihood,
and (2) that state-action pairs must be reachable by the component policies. Computing a
policy-state likelihood requires a O(SAΠ) computation. This cost rivals directly computing
a response to the mixed strategy directly, and thus renders the overall approach unavailing.
The other limitation of policy-based transfer approaches is that we have assumed that all
joint state-actions are reachable. Unfortunately, this assumption is difficult to guarantee
outside of simple games. We illustrate this problem with an example in Section A.1. Due
to these outstanding issues, we close the door on policy-based transfer methods and leave
them for future work; instead turning towards value-based transfer methods.
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Appendix B. Reinforcement Learning as a Response Oracle

Throughout this work we use Double-DQN as an approximate best-response oracle and its
success is critically dependent on its hyperparameters. For us to understand the hyperpa-
rameters, we must first clarify some implementation details of Double-DQN. The double
in Double-DQN refers to two instances of the policies parameters; however, we will con-
sider three policies each with different responsbilities. First, the acting policy is generating
experiences through interaction with the environment. These experiences are then sent to
the learning policy that uses them to improve the policy by updating its parameters. As a
part of learning new parameters a target policy is used as a consistent optimization target.
Periodically, the learning policy will be used to update the acting policy or the target policy.

Now from these different policies we can derive our hyperparameters:

• Batch size: the number of experiences to use when calculating a single gradient-step.

• Discount factor (γ): the weighting of current versus future rewards.

• Replay capacity: the number of experiences that an agent will store in their replay
buffer. Once capacity is reached items are removed in a first-in first-out (FIFO) order.

• Minimum replay buffer size: the minimum amount of experiences that must be
in the replay buffer before the agent begins learning. This can be expressed either as
an integer number of experiences, or a fraction of the replay buffer’s total size.

• Learning frequency: how often the acting policy will be updated with the learning
policy’s parameters, measured by the number of new experiences the acting policy
must acquire.

• Gradient steps per learning policy update: number of gradient steps (with their
own sampled mini-batches) the learning policy takes between each synchronization of
its parameters with the acting policy.

• Target update frequency: how often the target network’s parameters are updated
with the learning policy’s parameters, measured by the number of new experiences
that must be acquired.

• Exploration timesteps: the total number of timesteps that the agent is in the
exploration phase.

• Training timesteps: the total number of timesteps that the agent is learning.

• Learning rate: scaling factor weighting the impact of a single gradient step.

• Gradient norm clip: clip gradient updates using their global norm.

• Activation function: the activation functions used after each hidden layer in the
neural network.

• Hidden layer sizes: the number of artificial neurons in each hidden layer of the
neural network.
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Appendix C. PSRO Evaluation Metrics

An instance of PSRO is evaluated by its regret as a function of the cumulative amount of
environment transitions that are simulated. For most environments, simulating a transition
is often the most costly computational process. This can be the result of complex logic
underlying the transition, or the need for real-world interactions. Simulation occurs both
when generating a best-response oracle via RL and when simulating the payoff entries to
the empirical game. The later term is straightforward to measure for games without infinite
horizons; however, the former term is not as easy to measure.

When we are comparing PSRO algorithms via this metric it is crucial to consider how the
RL algorithm determines how much simulated data to generate. This is typically specified
via a termination condition, which defines when the RL algorithm is complete. There are
three main termination conditions:

• Fixed budget: after a fixed number of timesteps the RL algorithm terminates.

• Convergence: the algorithm is complete when a convergence criteria is achieved.
The convergence criteria is typically defined as the agent having not improved their
return for some window of time. It may also be a function of any other measurable
quantity of the agent such as their TD error or gradient magnitude.

• None: the RL algorithm does not have any specified termination condition and will
continue until the experimenter arbitrarily intervenes.

In PSRO, we are interested in repeated applications of RL, so we omit consideration
of having no termination condition. Furthermore, the convergence criteria can be difficult
to define due to the unpredictable nature of the agent’s learning pattern. An example of
this difficulty is that an agent’s performance may temporarily decrease during exploration.
This could be seen as a good termination condition as it looks like the agent is no longer
improving. However, after enough time with decreasing performance, the agent may discover
a strong solution and experience a spike in performance. Or not. Therefore, we focus on
fixed-budget as our termination condition. While this condition is not perfect it is more
robust to the unpredictable behavior of RL agents.
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Appendix D. Coverage Curve Details

This section of the appendix contains a breakdown of the coverage curves portrayed in
Sections 5.1. Coverage curves depicted how well a method generalized across an opponent’s
strategy space. They are generated by estimating the payoff against a representative set of
opponent strategies. In this case, we consider all strategies truncated to the tenths place.
The performances are then sorted in decreasing order. Policies can then be compared
by which has a higher coverage curve. Note, this evaluation method treats all opponent
strategies with equal importance.

Coverage curves measured with respect to payoffs or returns are not a perfect evalua-
tion method. If an opponent policy is particularly vulnerable to exploitation, then strong
response methods to this opponent may appear to perform very well. This is because the
payoff against the exploitable opponent, even if it has low support, can dominate the payoff
received by any other policy in the opponent’s current strategy. To account for this poten-
tial confounder, we additionally plot the coverage curves with normalized return, which is
calculated as follows:

‖u(πi, σ−i)‖ =

∑
π−i∈σ−i

σ−i(π−i) · u(πi, π−i)∑
π−i∈σ−i

σ−i(π−i) · u(BR(πi), π−i)
(26)

Since this work focuses on black-box games, we cannot analytically calculate payoffs, but
instead, must estimate payoffs through simulation. In order to compute coverage curves we
follow two methodologies based off whether the response policy can leverage knowledge of
the opponent’s strategy. For methods where the response policy cannot use the opponent’s
strategy (e.g., BR(0) cannot benefit from being told they are playing opponent policy 1),
the performance against each opponent policy does not change across strategies. Therefore,
we first simulate the performance against each opponent policy, then we can compute the
performance against each opponent strategy by appropriately averaging the respective per-
formance against each opponent policy by the likelihood of playing said opponent. On the
other hand, methods such as Q-Mixing can condition on the opponent’s strategy generat-
ing a unique response policy per for each opponent strategy. To evaluate these methods,
we must simulate the response policy’s performance against each opponent strategy inde-
pendently. Keeping with a similar sampling procedure as the first methodology, we first
simulate the per opponent policy performance and then average these performances by the
opponent’s strategy. However, this must be uniquely computed for each opponent strategy.

The remainder of this section contains figures showing the opponent’s strategy through-
out the coverage curves from Section 5.1. We provide the strategy breakdown across all 5
seeds and with respect to both return and normalized return. The performance against a
single opponent policy is estimated using the mean return from 300 simulated episodes of
RWS.
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Figure 22: BR(0).
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Figure 23: BR(1).
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Figure 24: BR(2).
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Figure 25: BR(Uniform).
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Figure 26: Q-Mixing: Uniform Prior.
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Figure 27: Q-Mixing: Prior.
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Figure 28: Q-Mixing: Freq.
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Figure 29: Q-Mixing: Freq, Belief, Uniform Prior.
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Figure 30: Q-Mixing: Freq, Belief, Prior.
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Figure 31: Q-Mixing: OPC.
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Figure 32: Q-Mixing: OPC, Belief, Uniform Prior.
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Figure 33: Q-Mixing: OPC, Belief, Prior.
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Appendix E. Opponent Belief

In this section, we provide examples of an agent’s belief in their opponent over the course
of an episode. For each relevant response policy, we include three figures. Each figure
corresponds to the response policy playing against a fixed opponent policy. For example,
Figure 43 shows Q-Mixing: OPC playing against Opponent 0. Therefore in this figure we
would expect a successful method to show beliefs weighting Opponent 0 highly.

Within each figure there are fifteen plots. The rows of plots correspond to the response
policies generated from each experimental seed. The columns of plots correspond to different
episodes of RWS, where the initial game state differs. An episode is terminated after 1000
timesteps, or when an agent chooses to play RPS against their opponent. Early termination
is shown by by having zero support prescribed to all opponents after the end of the episode.

The agent’s belief is independent across episodes. In other words, in Episode 2, the
agent does not inform its belief by evidence gained from Episode 0 or Episode 1.
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Figure 34: Q-Mixing: Freq against Opponent 0.
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Figure 35: Q-Mixing: Freq against Opponent 1.
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Figure 36: Q-Mixing: Freq against Opponent 2.
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Figure 37: Q-Mixing: Freq, Belief, Uniform Prior against Opponent 0.
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Figure 38: Q-Mixing: Freq, Belief, Uniform Prior against Opponent 1.
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Figure 39: Q-Mixing: Freq, Belief, Uniform Prior against Opponent 2.
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Figure 40: Q-Mixing: Freq, Belief, Prior against Opponent 0.
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Figure 41: Q-Mixing: Freq, Belief, Prior against Opponent 1.
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Figure 42: Q-Mixing: Freq, Belief, Prior against Opponent 2.
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Figure 43: Q-Mixing: OPC against Opponent 0.
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Figure 44: Q-Mixing: OPC against Opponent 1.
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Figure 45: Q-Mixing: OPC against Opponent 2.
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Figure 46: Q-Mixing: OPC, Belief, Uniform Prior against Opponent 0.
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Figure 47: Q-Mixing: OPC, Belief, Uniform Prior against Opponent 1.
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Figure 48: Q-Mixing: OPC, Belief, Uniform Prior against Opponent 2.
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Figure 49: Q-Mixing: OPC, Belief, Prior against Opponent 0.

91



Smith, Anthony, and Wellman

Episode 0

0.00

0.25

0.50

0.75

1.00
Episode 1 Episode 2

S
eed

:
0

0.00

0.25

0.50

0.75

1.00

S
eed

:
1

0.00

0.25

0.50

0.75

1.00

S
eed

:
2

0.00

0.25

0.50

0.75

1.00

S
eed

:
3

0 250 500 750

0.00

0.25

0.50

0.75

1.00

0 250 500 750 0 250 500 750

S
eed

:
4

Time

B
el

ie
ve

d
O

p
p

o
n

en
t

S
tr

at
eg

y

Opponent 0 Opponent 1 Opponent 2

Figure 50: Q-Mixing: OPC, Belief, Prior against Opponent 1.
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Figure 51: Q-Mixing: OPC, Belief, Prior against Opponent 2.
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Appendix F. Games

F.1 Running With Scissors (RWS)

RWS is a temporarily extended version of RPS. The agents begin by collecting rock, paper,
and scissor items scattered throughout the gird-world. These are added to the player’s
inventory vi, which is initialized to have one of each item. The game ends when a player
challenges the other to play RPS. Each player plays a distribution over the actions following
the distribution of items in their inventory. The reward can then be calculated as:

ri =
vi
‖vi‖

M

(
v−i
‖v−i‖

)T

= −r−i, M =

 0 −1 1
1 0 −1
−1 1 0

 .
The game is a two-player zero-sum game with a small state and action space, enabling

inexpensive simulation. The general map layout it depicted in Figure 52. In it we can see
that the players randomly spawn in a fixed set of places. Moreover, items within the grid
world can spawn both deterministically and stochastically. This means that if an agent does
not know what spawned in a particular spot they cannot accurately infer the opponent’s
inventory. This is critical, because the game is partially observable. Agents are only able
to view a small 5× 5 sub-grid in around their position instead of the full 13× 21 grid.

A particular instance of gameplay is provided in Figure 53. In this game, we can see
that the starting observations of each player can view the spawn of two randomly spawned
items (shown in the two right sub-grids). This gives each player private information of the
state of the game.

Figure 52: RWS map layout. The blue squares represent the possible spawn points of
the players. Items either spawn deterministically as rock (orange), paper (white), scissors
(green); or, one of the three possible items is randomly spawned into each position (purple).
Black cells are empty, and light-gray represents walls.

F.2 Gathering (aka Harvest)

The Gathering environment is a common-pool resource game, where the goal of each agent
is to collect apples. The apples regrow proportional to the number of nearby unharvested
apples. Naturally this presents a dilemma for the players: each want to pick as many apples
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Figure 53: RWS example observations. (Left) The full state of the RWS game. (Right)
The two player’s observations. Blue is used to represent self in both observations, whereas
red is used in the full state to distinguish between the two agents.

as possible; however, if they over-harvest the throughput of apples diminishes — potentially
falling to zero.

The original designers of this game were interested in modelling the governance of social-
ecological systems using human subjects (Janssen et al., 2010). An important feature of the
human experiments is they often contained the option for a participant to pay a fee to fine
another participant. Pérolat et al. (2017) adapted this game to agent-based modelling by
endowing each agent with a “time-out beam” (hereafter, laser), which serves this purpose.
The laser extends 20 tiles in front of the current agent, and has a width of 5 tiles. If an
agent tags another agent with this laser, the taggee is removed from the game for 25
timesteps.

On their quest to collect apples each agent will simultaneously select one of eight possible
actions:

{up, right, down, left, rotate-right, rotate-left, laser, noop}.

The first four actions represent moving in the respective cardinal directions from the per-
spective of the agent. The second set of two actions – rotate-right and rotate-left,
adjust the perspective of the agent by having them turn 90 degrees in the corresponding
direction. This is an important capability of the agent because it allows the agent to aim
its laser, which only fires the direction the agent is facing.

The agent’s observe a rectangular window of 10 squares forward (including their posi-
tion), and 10 to the left and right (including their position). The result is a [10, 20] window,
where each cell contains: food, agent, opponent, wall, or nothing. This gives our agent an
observation shape of [10, 20, 4] which is ravelled into a single vector of length 80. This is
processed by a two-hidden layer fully-connected neural network with 50 units at each layer
and ReLU activations.

Our implementation is based on the the open source implementation: https://github.
com/HumanCompatibleAI/multi-agent. We modified this version of the environment to
remove an erroneous edge-case where both agents could time-out each other in the same
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timestep. This led to degenerate solutions where the agents would effectively stun lock each
other, so neither player could obtain any reward.

We investigate two versions of this game that differ in the configuration of the map
(apple locations, spawn points, etc.): (1) Gathering-Small has all apples in a dense grove
central in the map, and (2) Gathering-Open is a larger map with many spread-out apple
groves. The former environment will be used to force two agents to interact, while the latter
will allow the study of interactions between more than two players.

Figure 54: The Gathering-Small environment. Players randomly spawn in either the
red or blue (one player per spawn).

(a) Player 0’s perspective at the beginning of the
episode.

(b) Player 0’s perspective after turning right.

Figure 55: Example observation from the Gathering-Default environment. Note
that the agents cannot distinguish between their opponents.

Figure 56: The Gathering-Open environment. Players randomly spawn in one of many
locations throughout the map.
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