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Abstract

Open ad hoc teamwork is the problem of training a single agent to efficiently collaborate
with an unknown group of teammates whose composition may change over time. A variable
team composition creates challenges for the agent, such as the requirement to adapt to
new team dynamics and dealing with changing state vector sizes. These challenges are
aggravated in real-world applications in which the controlled agent only has a partial view
of the environment. In this work, we develop a class of solutions for open ad hoc teamwork
under full and partial observability. We start by developing a solution for the fully observable
case that leverages graph neural network architectures to obtain an optimal policy based on
reinforcement learning. We then extend this solution to partially observable scenarios by
proposing different methodologies that maintain belief estimates over the latent environment
states and team composition. These belief estimates are combined with our solution for the
fully observable case to compute an agent’s optimal policy under partial observability in
open ad hoc teamwork. Empirical results demonstrate that our solution can learn efficient
policies in open ad hoc teamwork in fully and partially observable cases. Further analysis
demonstrates that our methods’ success is a result of effectively learning the effects of
teammates’ actions while also inferring the inherent state of the environment under partial
observability.1

Keywords: ad hoc teamwork, reinforcement learning, partial observability, graph neural
networks, particle filter
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1. Introduction

Current research in multi-agent systems has demonstrated how teams of agents can be
co-trained to learn policies to solve a number of problems, such as smart grid management
(Roesch et al., 2020), navigating human-shared environments (Boldrer et al., 2022), multi-
robot warehouse management (Krnjaic et al., 2023), and real-time strategy games (Zhou
et al., 2021). In many real-world applications, a controlled agent may be required to
collaborate in diverse teams without the possibility of previous joint training. This problem
is commonly referred to as ad hoc teamwork (Stone et al., 2010). The objective of ad hoc
teamwork is to train a single agent, which we refer to as the learner, that can successfully
collaborate “on the fly” with a group of teammates with unknown policies. Previous research
on ad hoc teamwork has focused on the application of agent modelling (Barrett et al., 2012;
Albrecht and Stone, 2018) or communication techniques (Mirsky et al., 2020, 2022). However,
most prior ad hoc teamwork approaches are based on assumptions which may not hold in
real-world applications.

One of these assumptions is that the number of other agents in the team is fixed. Real-
world scenarios, such as autonomous driving and robotics rescue tasks, may require the
learner to interact with a changing number of agents between timesteps. In open ad hoc
teamwork, teammates may enter or leave the environment without prior notification. We
refer to the variable team size nature as open teams or environmental openness (Eck et al.,
2020). The open nature of the team presents a set of additional challenges to the learner,
which increases the difficulty of the ad hoc teamwork task. We call the problem of designing
an ad hoc teamwork learner in open teams the open ad hoc teamwork problem.

There are two main challenges in solving open ad hoc teamwork. The first challenge
that needs to be addressed is the change in the size of the observation vector resulting from
teammates entering or leaving the environment, which prevents many function approximation
models that assume fixed input sizes from being directly applicable to estimating the learner’s
optimal policy. Second, the unknown team composition resulting from teammates joining
or leaving the environment requires the learner to rapidly adapt its policy to effectively
collaborate with its teammates. For instance, the learner may need to adopt different
roles when dealing with teams that consist of distinct collections of teammate behavioural
policies (Mirsky et al., 2022).

Another commonly violated assumption in real-world ad hoc teamwork problems is
related to state information availability. In many problems, agents only have access to
observations containing partial information of the state. The learner then has to infer the
latent environment state based only on a sequence of partial observations. The combination
of partial observability and open ad hoc teamwork provides new challenges to the learner,
which now has to model the effects of environment openness while also inferring the latent
state of the environment. Since the actions taken by other agents can affect the learner’s
returns, the learner also needs to maintain a model of all existing teammates’ actions, even
for unobserved teammates. Previous works have addressed the ad hoc teamwork problem
under partial observability (Gu et al., 2021; Ribeiro et al., 2022), but have not considered
team openness.

In this work, we investigate approaches for solving the challenges introduced by open ad
hoc teamwork under full and partial observability. First, we present different algorithms
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that solve the fully observable open ad hoc teamwork problem. Our algorithms are based
on three main components that a learner requires for effective ad hoc collaboration with
teams of variable sizes. These three components are respectively used for teammate type
inference, action prediction, and joint action value modelling. The output of these three
components can be combined together to estimate a learner’s optimal policy for open ad hoc
teamwork. To deal with environment openness, we implement these components as graph
neural network (GNN) architectures, which have been demonstrated as effective function
approximation models for input data with variable sizes (Jiang et al., 2019; Huang et al.,
2020). We call our proposed learning framework Graph-based Policy Learning (GPL) and
we demonstrate GPL’s ability to train a learner’s optimal policy in fully observable open ad
hoc teamwork problems.

Our results show that a GPL-based learner achieves significantly higher returns in open
ad hoc teamwork than learners that use value-based reinforcement learning and multi-agent
reinforcement learning algorithms for training. Furthermore, a GPL-based learner also
achieves significantly higher performance compared to baseline methods when evaluated
under an open process it has not experienced during training. Our experiments demonstrate
that GPL’s significantly higher performance results from its usage of GNNs and joint action
value modelling, which enables GPL to learn the effects of other teammates’ actions towards
the learner. Through additional experiments we empirically demonstrate that learning the
effects of teammates’ actions via the joint action value model enables a learner to acquire
useful behaviour from teammates.

We then address the open ad hoc teamwork problem under partial observability by
extending GPL with belief inference methods that estimate the latent environment state. We
evaluate different belief inference methods which allow the learner to maintain representations
of important latent variables for decision making, such as the environment state, teammates’
existence, as well as teammates’ joint actions. The belief inference methods proposed
in this work are inspired by latent variable inference methods such as Sequential Monte
Carlo (SMC) methods (Doucet et al., 2001), autoencoders (Rumelhart et al., 1985), and
variational autoencoders (Kingma and Welling, 2013). We enable the proposed belief
inference methods to handle data resulting from variable team sizes by using GNN-based
models and graph generation techniques. Additionally, our extension to partial observability
utilises the representations from the belief inference model as inputs to the different modules
in GPL to estimate the learner’s optimal policy.

We evaluate the performance of the different proposed belief inference models when
combined with GPL to solve partially observable open ad hoc teamwork problems. Addition-
ally, we compare the combination of GPL with the proposed belief inference models against
different single-agent RL baselines Schulman et al. (2017); Igl et al. (2018). Our results show
that autoencoder-based belief inference models achieve significantly higher returns than
the other proposed methods and baselines in the different evaluated environments. Further
investigation into the information encoded by the belief inference models demonstrates that
using autoencoder-based architectures yields representations that more accurately encode
the latent environment state and teammates’ joint actions. This improved representational
quality enables the learner to achieve higher returns when using the resulting representations
for decision-making under partial observability. We also investigate the proposed belief
inference models’ ability to encode the existence of teammates not perceived in the partial
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observation. Our results demonstrate that SMC-based methods are significantly more
effective at encoding unobserved teammates’ existence. However, these methods do not
translate to higher returns during decision-making, since SMC-based representations are
unable to accurately represent the latent environment state and teammates’ joint actions.
On the other hand, our generalisation results show that autoencoder-based architectures are
able to generalise better to different numbers of teammates, as well as to previously unseen
teammates during training.

The remainder of this paper introduces our proposed methods and details our experiments
in open ad hoc teamwork. In Section 2 we discuss related works, followed by Section 3 which
formalises the learning problem in open ad hoc teamwork. Section 4 introduces GPL as a
method for solving the open ad hoc teamwork problem under full observability. We then
describe our fully observable open ad hoc teamwork experiments and analyse the results
from GPL in Section 5. Section 6 then presents different methodologies to solve the open ad
hoc teamwork problem under partial observability, which is followed by the description of
our experiments under this setting alongside the analysis of its associated results in Section 7.
Finally, we summarise our findings in this work and provide pointers to potential future
work in Section 8.2

2. Related Work

Ad Hoc Teamwork. Ad hoc teamwork is the problem of training a single agent to perform
optimally in a team of unknown teammates (Stone et al., 2010). Three main assumptions
characterise ad hoc teamwork (Mirsky et al., 2022). First is the lack of prior coordination
between agents. This means that the learner should be able to cooperate with the team
on-the-fly, without the opportunity to rely on previously agreed collaboration strategies.
The second assumption is the fact that the learner has no control over its teammates.
Lastly, teammates are assumed to be collaborative. That is, all agents in the team have a
common goal and are able to take actions that will benefit the team. However, teammates
might have additional objectives, that may vary per teammate, and even have different
rewards. Early works in ad hoc teamwork operated under the assumption that the teammate’s
behaviour was known to the learner (Stone and Kraus, 2010; Agmon and Stone, 2012). Other
approaches have relaxed this restrictive assumption from these early works and assumed
teammate behaviour to be unknown during the interaction. These approaches (Albrecht
and Stone, 2017; Barrett et al., 2017) proposed methods that infer teammates’ policy based
on their displayed behaviour and utilise it for decision making. Such methods typically
utilise the concept of types, which encapsulates the important information determining
an agent’s behaviour. In type-based methods, each teammate’s behaviour is assigned a
particular hypothesised type (Albrecht et al., 2016). Then during the interaction, new unseen
teammates are assigned one of the previously hypothesised types (Ravula et al., 2019; Mirsky
et al., 2020). One issue with these methods is that during training they require diverse
teammates, to allow the ad hoc agent to learn policies that are useful for collaborating with
novel partners. Current research has thus focused on how to generate diverse teammates for

2. Parts of this work have previously been published by Rahman et al. (2021). This new version includes a
new formal model for open ad hoc teamwork under partial observability alongside new algorithms and
experimental results that are specifically designed to deal with partial observability.
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ad hoc teamwork training (Rahman et al., 2023b,a). Another avenue of research within ad
hoc teamwork focuses on how communication can be leveraged inside the team to improve
the overall performance (Barrett et al., 2014; Macke et al., 2021). However, all these prior
works assume that the teams are closed, meaning that the number of teammates and their
types are fixed during episodes. A very limited number of works consider the case of open
ad hoc teamwork, which poses an even more difficult problem (Chandrasekaran et al., 2016).

Recent works have addressed the ad hoc teamwork problem under partial observability.
Gu et al. (2021) presented ODITS, a reinforcement learning-based approach, which utilises an
information-based regulariser to estimate proxy representations based solely on the learner’s
observations. Recently, Ribeiro et al. (2022) presented a Bayesian prediction algorithm for
addressing partial observability in ad hoc teamwork. However, these works only considered
closed teams. Unlike previous works, our proposal is the first to address the open ad hoc
teamwork problem under partial observability.

Zero-Shot Coordination. A related problem to ad hoc teamwork is that of zero-shot
coordination (ZSC) (Hu et al., 2020). In ZSC agents are paired together and need to
coordinate on-the-fly. However, in ZSC reward functions are assumed to be the same across
the different agents, while our definition of ad hoc teamwork assumes that the learner
has no specific knowledge about the rewards of other agents (Mirsky et al., 2022). Initial
works in ZSC proposed an updated version of self-play, called other-play, that aims to break
symmetries in MDPs to improve coordination. Other works have focused on how to generate
teammates that have diverse policies (Lupu et al., 2021; Rahman et al., 2023b).

Belief States. Many approaches to find optimal policies for a partially observable Markov
decision processes (POMDPs) are based on computing a probability distribution, or a
belief state, regarding the actual state of the learner (Izadi and Precup, 2005; Albrecht
and Ramamoorthy, 2016, 2017). Other works have also suggested the use of recurrent
neural networks (RNNs) to deal with the uncertainty in the observations (Wierstra et al.,
2007; Hausknecht and Stone, 2015). However, these models are incapable of modelling the
learner’s uncertainty of the latent state due to only modelling the latent state as a single
representation. A different approach was taken by Coquelin et al. (2009), which proposed the
use of a particle filter (or sequential Monte-Carlo) (Arulampalam et al., 2002) for estimating
the belief state in POMDPs. More recently, Le et al. (2018) solved issues of belief update
using variational autoencoders trained by optimising evidence lower bound (ELBO). These
improvements were later leveraged for estimating belief states in single agent POMDPs (Igl
et al., 2018; Singh et al., 2021).

Interactive POMDPs (I-POMDPs). Interactive POMDPs are an extension of POMDPs
to the multi-agent domain (Doshi and Gmytrasiewicz, 2011). It achieves this by including
agent models in the state space. As such, I-POMDPs are related to stochastic Bayesian
games (SBGs) (Albrecht et al., 2016), however, I-POMDPs have mostly focused on the nested
belief which makes their solutions complex. Chandrasekaran et al. (2016) leveraged instead
I-POMPD-Lite (Hoang and Low, 2013), a simplified version of I-POMDPs that assumes the
behaviour of other agents follows a nested MDP, for solving the planning problem in open
multi-agent systems. Our problem formulation is instead based on SBGs, which utilises the
joint action to model the effects of teammates in the observations of the agent (Albrecht
et al., 2016).
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Graph Neural Networks (GNNs). GNNs are a newly proposed type of neural network
that can work with graph-structured data (Wu et al., 2019). GNNs have been used for
solving a diverse domain of problems, such as chemical reaction prediction (Do et al., 2019),
generative models (Grover et al., 2019) or traffic prediction (Zheng et al., 2020). In multi-
agent settings, GNNs have been used for modelling other agents’ behaviour (Tacchetti et al.,
2018), although only in closed environments. In multi-agent reinforcement learning (MARL),
GNNs (Boehmer et al., 2020; Naderializadeh et al., 2020) have been used to factorise value
functions (Guestrin et al., 2002a) as coordination graphs (CGs). Deep CGs have also been
used in ad hoc teamwork (Rahman et al., 2021), although under full observability.

Multi-agent Reinforcement Learning (MARL). MARL explores the application of rein-
forcement learning to jointly train a collection of agents, whose goal is to maximise their
individual returns in each other’s presence (Albrecht et al., 2023). Previous MARL ap-
proaches have focused on ideas such as counterfactual credit assignment (Foerster et al.,
2018), joint action value factorisation (Sunehag et al., 2017; Rashid et al., 2018; Boehmer
et al., 2020), and learning communication protocols between agents (Foerster et al., 2016;
Jiang et al., 2019). MARL differs from ad hoc teamwork in two aspects. First, MARL
approaches assume control over a set of agents during training and execution, whereas ad
hoc teamwork only assumes control over the learner. Second, MARL assumes that an agent
will only interact with other agents encountered during joint training, while ad hoc teamwork
methods neither assumes knowledge nor control over the teammates that are encountered
during evaluation. As a result of these differences, MARL has previously been demonstrated
to yield poor performances when dealing with teammate policies not encountered during
training (Vezhnevets et al., 2020; Hu et al., 2020), which we also show in our experiments.

3. Problem Formulation

A formal model for ad hoc teamwork must achieve two requirements. First, the model must
formalise the interaction between agents and the effects these interactions have towards the
information perceived by the learner. Second, these models must represent the absence of
knowledge regarding teammates’ decision-making process.

The stochastic Bayesian game (SBG) model (Albrecht et al., 2016) fulfils the aforemen-
tioned requirements by combining the Stochastic Game (Shapley, 1953) and Bayesian Game
model (Harsanyi, 1967). Using the formalism defined in Stochastic Games, SBG formally
models the effects of the agents’ joint actions on the learner’s observed states and rewards.
At the same time, SBG adopts the concept of types from Bayesian Games to encapsulate
the set of unknown information regarding teammates’ decision making process.

While SBGs adequately formalise ad hoc teamwork where team sizes are fixed, they
are insufficient for open ad hoc teamwork due to their inability to formalise the changing
number of teammates. To address the limitations of the SBG model as a formal definition
of open ad hoc teamwork, we introduce the open stochastic Bayesian game (OSBG) model.
OSBG extends the SBG model to open environments by adding components that formalise
the changing number of teammates. Additionally, we present an extension of OSBGs, that
formalises the ad hoc teamwork problem under partial observability, the partially observable
open stochastic Bayesian game (PO-OSBG) model. We introduce the OSBG model in
Section 3.1, and in Section 3.2 we specify the learner’s learning objective when solving
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an open ad hoc teamwork problem under the proposed OSBG. We then introduce the
PO-OSBG extension in Section 3.3, and present the learning objectives when solving open
ad hoc teamwork problems under partial observability in Section 3.4.

3.1 Open Stochastic Bayesian Games (OSBG)

In this section, we define the open stochastic Bayesian game (OSBG) model, which is an
extension of SBG that formalises the open ad hoc teamwork problem.3 We define OSBG as
follows:

Definition 1 An OSBG, is a 7-tuple containing the following components:

• S : The finite state space.

• A : The finite set of possible actions for each agent4.

• Θ : The finite set of types that can be assumed by teammates.

• N : The finite set of possible agents, N = {1, 2, ..., n}.

• γ : The discount rate.

Before defining the remaining components of an OSBG, we first introduce notations regarding
the agent type assignment and action selection under a variable number of agents. Note
that a valid action selection and type assignment only allows an agent to be associated with
a single type and action. Assuming P(S), ai, and θi denote the power set of set S, action
selected by agent i, and type assigned to agent i, respectively, we define notations for valid
agent type and action assignments as follows:

• AN = {a|a ∈ P(N × A),∀(i, ai), (j, aj) ∈ a : i = j ⇒ ai = aj} denotes the joint
agent-action space, which is the set of all possible joint action selections under a
variable number of agents. The predicates that define the membership of a to AN
ensure that each agent can only select a single action in a valid joint action selection.
Its elements, a ∈ AN , are referred as joint agent-actions.

• ΘN = {θ|θ ∈ P(N ×Θ),∀(i, θi), (j, θj) ∈ θ : i = j ⇒ θi = θj} is the joint agent-type
space, which denotes the set of all possible assignments of types under a variable
number of agents. Similar to AN , the predicates in the membership conditions of ΘN

ensures that each agent can only be assigned a single type. Its elements, θ ∈ ΘN ,
are then referred to as the joint agent-type. Each type θi in the joint agent-type θ
represents a set of information or action selection mechanisms underlying a different
existing agent’s behaviour. Note that during action selection, teammates’ types are
unknown to the learner, since we do not assume knowledge over teammates’ types in
ad hoc teamwork.

3. This model definition appeared originally in Rahman et al. (2021).
4. A is assumed to be shared between agents for simplicity. This can be extended to cases where agents’

action spaces are different by assuming that A is the union of all agents’ individual action spaces.
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With the defined notation of AN and ΘN and with ∆(X) denoting the set of all probability
distributions over a random variable X, the remaining components of an OSBG are defined
as follows:

• R : S ×AN 7→ R, which is the reward function that determines the rewards received
by the learner, given the actions of all agents in the environment.

• P : S ×ΘN ×AN 7→ ∆(S ×ΘN ), which is the transition function which determines
the next state and joint agent-types encountered by the learner, given the current
state, joint agent-types and joint agent-actions.

The interaction between a learner and its teammates in an OSBG starts from an initial
state, s0 ∈ S. To model changing numbers of agents in the open environment, different
subsets of agents are sampled from N to model the set of existing agents in the environment
at each timestep. At the beginning of the episode, the initial set of teammates, N0 ⊆ N is
sampled and assigned the joint agent-type θ0 ∈ ΘN . The initial state (s0), set of teammates
(N0), and joint agent-type (θ0), are sampled from the initial distribution P0 ∈ ∆(S ×ΘN ).
As an example, if the task would be to play a game of football then each type θi will
correspond to a different policy that controls a teammate to play a specific position (e.g
winger, defender, or striker) with different skill levels.

At each timestep, the interaction between the learner and its teammates undergoes two
distinct processes. First, teammates select their respective actions according to the observed
state of the environment st at time t. Each teammate selects its action based on its current
policy, π : S × N × Θ 7→ ∆(A), conditioned on the state, the existing set of agents, and
its assigned type. In the football example, each teammate will select their action based on
their own sequence of observations. Meanwhile, the learner chooses its actions based on
its sequence of previously observed states and executed actions, Ht = {s≤t, a<t}, without
knowing teammates’ types or actions, which formalises the lack of knowledge regarding
teammates’ decision-making process assumed by ad hoc teamwork problems. Unlike its
teammates, the learner chooses its actions based on Ht because it has no knowledge of
its teammates’ types and must infer it through their observed behaviour throughout the
interaction.

The second step occurs as a result of the execution of joint actions chosen by agents at
the first step. Following the execution of the agents’ joint action, the learner receives a scalar
reward, rt, which is determined by the reward function R : S ×AN 7→ R. The environment
state, the set of existing teammates, and the joint agent-type all change following the
transition function defined by P : S×ΘN ×AN 7→ ∆(S×ΘN ). Aside from determining the
next state observed by the learner, the transition function P also models the way teammates
may enter or leave the environment. This is done by determining the set of teammates
encountered by the learner at the next timestep and alongside their respective types.

3.2 Learning Objective Under Full Observability

Solving an OSBG requires the learner, denoted by i, to find an optimal policy, πi,∗, which
selects the optimal action based on the learner’s previously experienced environment states,
observed teammates, and executed actions, Ht = {s≤t, a<t}. We define the optimal policy
as follows:
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Definition 2 Let the joint actions and the joint policy of teammates at time t be denoted
by a−it and π−it , respectively. Given 0 ≤ γ < 1, and the learner’s previous experience,
H = {s≤t, a<t}, we define the action-value of a policy πi, as:

Q̄πi(H, a
i) = E θ−it ∼p(.|Ht), aiT∼π

i,

a−iT ∼π
−i
T (·|sT ,θ−iT ),

(sT+1,θ
−i
T+1)∼P (.,.|sT ,θ−iT ,aT )

[ ∞∑
T=t

γT−tR(sT , aT )

∣∣∣∣Ht = H, ait = ai

]
. (1)

A learner’s policy, πi,∗, is then optimal if:

Q̄πi,∗(H, a
i) ≥ Q̄πi(H, ai), (2)

for all possible πi, H, and ai. Given Q̄πi,∗(H, a
i
t), a learner’s optimal policy is to greedily

choose actions with the highest state-action value. Note that to remove any ambiguity in
the text we use the bar notation Q̄πi to denote the action-value of the learner.

3.3 Partially Observable Open Stochastic Bayesian Games (PO-OSBG)

In this section, we define the PO-OSBG model, which is an extension of OSBG to problems
with partial observability. PO-OSBG extends OSBG by introducing components which
model the observations received by the learner during interaction with its teammates. We
define the PO-OSBG model as follows:

Definition 3 A PO-OSBG is an 9-tuple, consisting of the following components (N,S,A,
Θ, R, P,Ω, O, γ). In a PO-OSBG, N,S,A, Θ, R, P , and γ are defined exactly as their
respective counterparts in an OSBG. The remaining components of a PO-OSBG which
model the information received by the learner under partial observability are defined as
follows:

• Ω: The learner’s set of possible finite observations.

• O : S ×N 7→ ∆(Ω), which is the observation function that determines the distribution
of observations received by the learner given the current state of the environment and
the learner’s set of teammates.

In a PO-OSBG, the interaction between a learner and its teammates is similar to
their interactions in OSBGs. The main difference is that the learner will not perceive the
subsequent state information after all agents execute their respective actions. Instead, at
each timestep the learner receives an observation sampled from the distribution outputted
by the observation function O : S × N 7→ ∆(Ω), which is determined by the state and
set of teammates that exist in the environment at t. This absence of state information
forces the learner i to choose actions based only on the sequence of observations and its
actions until the present time, Ht = {o≤t, ai<t}. On the other hand, teammates receive
their own observations of the environment according to their own observation function. We
assume that teammates’ observation functions are part of their type, and as a consequence
unknown to the learner. This means that the PO-OSBG formulation defines the observation
function only for the learner. The main reason behind this design is because many scenarios
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have learners that have different perception capabilities than its teammates. For instance,
robots created from different factories may be equipped with different sets of sensors. Since
teammates’ observation functions are unknown and important for their decision making
process, the unknown observation function of teammates are instead encapsulated as part of
their types under the PO-OSBG model.

3.4 Learning Objective Under Partial Observability

Solving a PO-OSBG amounts to finding an optimal policy for action selection based on the
sequence of the learner’s previous observations and executed actions, πi,∗(·| o≤t, ai<t). We
define the optimal policy as follows:

Definition 4 Let the unknown joint actions and the joint policy of teammates at time
t be denoted by a−it and π−it , respectively. Given 0 ≤ γ < 1, and Ht = {o≤t, ai<t}, the
action-value of a policy πi, is defined as:

Q̄πi(Ht, a
i
t) = E (st,θ

−i
t )∼p(.,.|Ht), aiT∼π

i,

a−iT ∼π
−i
T (·|sT ,θ−iT ),

(sT+1,θ
−i
T+1)∼P (.,.|sT ,θ−iT ,aT ),

oT+1∼O(.|sT+1)

[ ∞∑
T=t

γT−tR(sT , aT )

∣∣∣∣Ht, a
i
t

]
. (3)

A learner’s policy, πi,∗, is then optimal if:

Q̄πi,∗(Ht, a
i
t) ≥ Q̄πi(Ht, a

i
t), (4)

for all possible πi, Ht, and ai. The learner’s optimal policy is to then greedily choose actions
with the highest state-action value for any given Ht experienced by the learner.

4. Open Ad Hoc Teamwork in Fully Observable Environments

We present here a general learning framework designed to achieve optimal decision-making
in open ad hoc teamwork. We first provide a general overview regarding the role of the three
main components that constitute our proposed method Graph-based Policy Learning (GPL).
We then describe details of the models designed for each component, starting with the
type inference component in Section 4.2, the joint action value modelling component in
Section 4.3, and the agent modelling component in Section 4.4. Finally, Section 4.5 details
the learner’s action selection process. and Section 4.6 outlines the learning objective for
training GPL’s neural network-based components.

4.1 Overview

Our Graph-based Policy Learning (GPL) framework is based around three main components:
a type inference model, a joint action value model, and an agent model, whose role in decision
making is explained in the following sections. These components are trained to estimate
the learner’s optimal policy using the experience collected by the learner while interacting
with its teammates. The main components and interactions between them are illustrated in
Figure 1.
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Joint Action Value NetworkLatent variable
inference
network

Type Inference Model

Agent Model

Action Selection
Module

(Equation 14)

Figure 1: Overview of GPL. GPL receives a collection of input vectors, Bt, containing state
features of currently existing agents in the current state. The type inference
model, parameterised by α, then produces a type vector θt based on Bt. The
type vectors from the type inference model are then inputted to the joint-action
value network and the agent model parameterised by (β, δ) and (ζ, η) respectively.
The joint action value network outputs individual Qβ(ajt ), and pairwise value

function estimates Qδ(a
j
t , a

k
t ). Meanwhile, the agent model network outputs the

likelihood of taking action a for each agent qζ,η(a
j , st). The outputs from the

joint action value network and the agent model are then combined in the action
selection module, to compute the learner’s action-value function (Q̄πi), following
Equation (14). The obtained Q̄πi is then used to select the learner’s optimal
action.

The type inference model is needed to infer teammates’ unknown types in open ad
hoc teamwork. Knowing teammates’ types is crucial for decision-making since it gives
information regarding teammates’ selected actions, which can have a strong impact on the
returns achieved by the learner. In the absence of knowledge regarding teammates’ inherent
types, the type inference model infers each teammate’s type based solely on the sequence of
past state features observed by the learner.

A joint action value model predicts the learner’s returns following existing agents’ joint
actions. Modelling the joint action value is crucial to solving open ad hoc teamwork for
two reasons. First, the agents’ joint actions influence the learner’s current and future
rewards, following the reward and transition function definition in OSBGs. Second, the joint
action value estimation provides better credit assignment than value-based RL methods that
directly model the learner’s action-value function, such as Q-Learning (Watkins and Dayan,
1992). Joint action value estimation prevents the agent from assigning too much credit to its
action when it has minimal impact on the observed rewards, which has been demonstrated
to be crucial for credit assignment in previous works related to MARL (Lowe et al., 2017;
Foerster et al., 2018). In this work, we extend its applicability to ad hoc teamwork by
incorporating a joint action value model as part of GPL. Section 5.3 shows that the joint
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action model contributes towards improved credit assignment, which enables the learner to
identify and learn useful behaviour from well-performing teammates.

Given the joint agent-action a, the joint-action value of a learner’s policy, πi, is defined
as follows:

Qπi(H, a) = E θ−it ∼p(.|H),aiT∼π
i,

a−iT ∼π
−i
T (·|sT ,θ−iT ),

(sT+1,θ
−i
T+1)∼P (.,.|sT ,θ−iT ,aT )

[ ∞∑
T=t

γT−tR(sT , aT )

∣∣∣∣Ht = H, at = a

]
. (5)

In contrast to Equation (1), this joint-action value denotes the learner’s expected returns
after joint agent-action a is executed after a history of previously observed states and actions
H, assuming other agents follow π−i, while the learner follows πi. This value is directly
influenced by the set of existing teammates and their respective types, which determines the
joint action selected by the joint teammate policy π−i. GPL accounts for the influence of
existing teammate types to Qπi(H, a) by incorporating the inferred teammate types when
estimating this value.

It is not possible to use Equation (5) directly to decide the learner’s optimal action.
Using the joint action value model to decide the learner’s optimal action requires knowledge
about actions that will be selected by teammates, a fact that is unknown to the learner
when deciding its own actions. Nonetheless, we can still use the joint action value estimate
for decision-making by exploiting the following equation:

Q̄πi(Ht, a
i
t) = Ea−it ∼π−i(·|st,θ−it )

[
Qπi(Ht, at)

∣∣∣∣ai = ait

]
, (6)

which expresses the learner’s action value function in terms of Qπi(Ht, a). Equation (6)
dictates that the learner’s action value is the expected value of Qπi(Ht, a) under the
distribution of teammates’ actions. In problems with discrete possible actions, Q̄πi(Ht, a

i
t)

may therefore be computed by evaluating Qπi(Ht, a) for all possible joint actions and
computing their weighted average according to teammates’ joint action probability.

Equation (6), highlights the importance of the agent model, which is the third com-
ponent of GPL. The agent model’s role is to estimate teammates’ joint action likelihood
π−i(a−it |st, θ−it ). Estimating the likelihood gives the learner predictions regarding which
actions will be selected by the teammates, which enables the learner to use its joint action
value model to compute Q̄πi(Ht, a

i
t). Note that the learner’s prediction regarding teammates’

actions is based on the environment state and the teammates’ inferred types. The use of
state and inferred teammate types for action prediction follows from OSBG’s formulation of
teammate’s decision-making process as outlined in Section 1. Definition 4.4 further details a
model which predicts teammates’ actions based on the state and inferred teammates’ types.

In the following subsections, we will describe the models implemented for each of the
aforementioned components. We start by describing the type inference model in Section 4.2,
followed by a description of the joint action value model in Section 4.3, and of the agent
model in Section 4.4. We then explain how the output of these models are combined for
action selection in Section 4.5. Section 4.6 concludes our method description by outlining
the learning objective for training the defined models based on the learner’s experience
interacting with teammates. Additionally, we present in Algorithm 1 a simplified pseudocode
of GPL. A more detailed pseudocode can be found in Appendix A.
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Algorithm 1 Simplified GPL

1: Input: Number of training steps T
2: Initialise network parameters
3: Get initial observation st from environment
4: for t = 1 to T do
5: Bt = Preprocess (st)
6: θt = Type inference network (Bt, ct−1, θt−1)
7: π−i(·|Ht) = Agent model (θt)
8: Qj(ajt |Ht), Q

j,k(ajt , a
k
t |Ht) = Joint action value model (θt)

9: Q̄(Ht, a
i
t) = Action selection (π−i(·|Ht), Q

j(ajt |Ht), Q
j,k(ajt , a

k
t |Ht))

10: Sample action according to the learning algorithm being used,

ait ∼
{
ε-greedy(ε, Q̄(Ht, ·)), if Q-Learning

pSPI(τ, Q̄(Ht, ·)) if SPI

11: Execute action ait, get rt, s
′ and a−it

12: Accumulate parameter gradients for update
13: if t mod tupdate then
14: Update networks following Eq.(16)-(19)
15: end if
16: end for

4.2 Type Inference

There are three challenges in designing type inference models for open ad hoc teamwork.
First, the model must accurately predict the teammates’ types, even when interacting with
previously unseen teammates. Second, the model must learn without ground truth knowledge
regarding the current types of other members of the team. Third, the model should be able
to handle inputs of different sizes, since the number of agents can vary between timesteps.
In many real-world applications of ad hoc teamwork, the first two challenges result from the
absence of any type-related information pertaining to teammates. For instance, obtaining
ground truth types and knowledge of the wide-ranging type space of human agents can be
difficult in applications of ad hoc teamwork to human-robot interaction. The third challenge
is directly related to the problem of openness in ad hoc teamwork.

We address the aforementioned challenges by representing teammate types as continuous
vectors. To compute such vectors we utilise RNNs, which are trained to produce similar
type vectors for teammates that have similar behaviour to each other. The RNN infers the
current teammates’ type based on the input vector and the RNN hidden states. In this
way, the current inferred type not only depends on the current observed state but on the
sequence of observed behaviour for each teammate. As a result, the type inference model
can be trained without ground truth teammate types while also generalising well against
unseen teammates if the learner has previously interacted with teammates displaying similar
behaviour.

The type inference model is implemented as a long short term memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997) with parameters are denoted by α. Assuming
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that θt and ct are the hidden and cell states of the LSTM at timestep t, the LSTM updates
the type vectors following this expression:

ct, θt = LSTMα(Bt, ct−1, θt−1), (7)

where Bt is an input batch that contains information about the current state of the system.
This LSTM-based type update is illustrated on the left side of Figure 1.

After the update process, additional steps are required to ensure only type vectors of
existing agents are used in GPL’s optimal action value estimation. Between subsequent
timesteps, the type inference model removes the type vectors of teammates that are no
longer in the environment due to environment openness. At the same time, type vectors of
newly-arrived teammates are added. More details on how state information is preprocessed
and post-processed are given in Appendix C.1.

The parameters α of the type inference network are optimised by back-propagating the
losses from the agent model and the joint action value network. In practice, we utilise two
separate networks, one that feeds the Joint Action Value model and one that feeds the Agent
Model. This is done to avoid the losses from each model interfering during training. More
details on how these losses are computed are given in Section 4.6 and in Appendix C.1.

4.3 Joint Action Value Model

A joint action value model for open ad hoc teamwork must address three challenges. First,
the model must be capable of handling inputs of variable sizes resulting from environment
openness. Second, it must facilitate efficient computation of the learner’s action value function
based on Equation (6). Third, the model must also estimate the effects of teammates’ actions
towards the learner’s returns.

One way to fulfil the aforementioned requirements is to represent the joint action value
model as a fully connected coordination graph (CG) (Guestrin et al., 2002b). CGs facilitate
the factorisation of joint action value functions into singular and pairwise utility terms, which
we demonstrate in Section 4.5 to have enabled a more efficient action value computation
process. Implementation of CG models can also be based on GNNs (Boehmer et al., 2020),
which are designed to handle inputs of variable sizes. Finally, CG’s joint action value
factorisation also enables modelling the effects of teammates’ individual and pairwise actions
on the learner’s returns, as demonstrated in Section 5.

Given a history of past states and actions from the learner, Ht, and a set of existing
agents Nt, a fully connected CG factorises the learner’s joint action value into the sum
of singular utility terms, Qj

πi
(ajt |Ht), and pairwise utility terms, Qj,k

πi
(ajt , a

k
t |Ht). The joint

action value factorisation for a fully connected CG follows this Equation:

Qπi(Ht, at) =
∑
j∈Nt

Qj
πi

(ajt |Ht) +
∑
j,k∈Nt
j 6=k

Qj,k
πi

(ajt , a
k
t |Ht). (8)

In terms of the contributions towards the learner’s returns, Qj
πi

(ajt |Ht) can be viewed as the

contribution of agent j’s action aj , while Qj,kπ (aj , ak|Ht) is the contribution of agents j and
k jointly choosing aj and ak respectively.
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To enable generalisation across different input Ht, Q
j
πi(a

j
t |Ht) and Qj,kπi (ajt , a

k
t |Ht) are

implemented as multilayer perceptrons (MLPs) parameterised by β and δ respectively. For
two reasons, both models that compute the singular and pairwise utilities receive input solely
consisting of agents’ type representations outputted by the type inference network instead
of Ht. First, the output of the type inference network contains information regarding the
unknown teammate types, Second, it also contains important information on st since st is
used as input for the type inference model. This way of calculating the joint action depends
heavily on the type inference network. So if the type inference is unable to adequately
classify the teammates’ types, we expect the joint value to produce poor estimates. This
could be the case in teams that have very rapid changes in composition. However, our
results have shown that the type network is able to produce good estimates, at least for the
evaluated environments.

We define the types as θit and θjt , where θit is the type vector associated to the learner
and θjt is the type vector of agent j. These type vectors are provided as input to MLPβ and
MLPδ, which allows the estimation of agents’ individual and pairwise action contributions
towards the learner’s returns. Given the types vectors as input, MLPβ outputs a vector

with a length of |A| that estimates Qjβ,α(aj |st) for each possible actions of j following:

Qjβ,α(aj |Ht) = MLPβ(θjt , θ
i
t)(a

j). (9)

Instead of outputting the pairwise utility for the |A| × |A| possible pairwise actions of
agent j and k, MLPδ outputs an K × |A| matrix (K � |A|) given its type vector inputs.
MLPδ computes its output matrix solely based on the type vectors, following the same
reasoning as MLPβ. Assuming a low-rank factorisation of the pairwise utility terms, the

output of MLPδ is used to compute Qj,kδ,α(ajt , a
k
t |Ht) with the following equation:

Qj,kδ,α(ajt , a
k
t |Ht) = (MLPδ(θ

j
t , θ

i
t)
TMLPδ(θ

k
t , θ

i
t))(a

j
t , a

k
t ). (10)

We expect that this way of computing the joint-action value will work well on small teams,
and this is confirmed by our results in Section 5. In fact, previous work from Zhou et al.
(2019) demonstrated that low-rank factorisation enables scalable pairwise utility computation
even under thousands of possible pairwise actions. However, evaluating on teams of such
dimensions is out of the scope of this work.

Finally, note that we use the same parameters for MLPβ and MLPδ to model each
teammate or pair of teammates, to encourage knowledge reuse for utility term computation.
We show the importance of knowledge reuse via parameter sharing to GPL’s performance in
Section 5.3.

4.4 Agent Modelling

Due to the openness related to ad hoc teamwork, the agent model has to efficiently predict
the joint action probability distribution, π−i(.|st, θ−it ), of a variable number of teammates.
In order to deal with this issue, we implement the agent model as a GNN, and utilise as input
the inferred types from the type inference model. This GNN-based agent model facilitates
an efficient computation of the learner’s optimal action value estimate, as we will see in
Section 4.5.
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While the agent model assumes that the teammates choose their actions independently,
it models the potential effect that teammates have on each other by using the Relational
Forward Model (RFM) architecture (Tacchetti et al., 2019). As in other GNN models,
RFM contains message passing operations, which enables improved reasoning regarding
the relations between nodes in a graph. Furthermore, RFM has been demonstrated to be
accurate in predicting the likelihood of agents’ next actions (Tacchetti et al., 2019).

The RFM-based agent model only receives agents’ types as input. The type of all existing
agents, θt, is then treated as node input to compute a fixed-length embedding, n̄, for each
agent j, as:

n̄j = (GNNζ(θt))j . (11)

This embedding is used together with the actions taken by agent j to obtain a likelihood
estimate:

qζ,η,α(aj |s) = Softmax(MLPη(n̄j))(a
j). (12)

Each individual estimate is then combined for each agent to obtain the likelihood of
taking action a−i at state s:

π−i(.|st, θ−it ) ≈ qζ,η,α(.|st, θ−it ) =
∏
j∈−i

qζ,η,α(aj |s), (13)

As we will see in the following section, the obtained likelihood and the joint action value
modelling can be utilised for computing the optimal policy for the learner. It is important to
note that, while teammates can leave and enter the environment at any time, the observed
teammates have fixed policies. Types can indeed change as agents leave and enter the
environment, but when an agent enters the environment its type remains the same. Having
teammates that change their behaviour over time (i.e. during an episode), might require
more complex agent modelling techniques (Albrecht and Stone, 2018; Xie et al., 2021).
However, we do not make any further assumptions regarding how other agents choose their
actions.

4.5 Action Selection

Computing the exact value of Equation (6) for action selection can be challenging in many
practical applications. For instance, a team of k agents which may choose from n possible
actions requires the evaluation of nk joint-action terms. This exponential increase in the
number of terms makes the evaluation of Equation (6) unfeasible for large teams.

A way to reduce the computational complexity of evaluating Equation (6) is to factorise
Qπi(st, at) and π−i(a−it |st, θ−it ) into simpler terms. For example, we can use Equation (8)
and Equation (13) to define an action-value function that is factorised into smaller terms.
Substituting the joint-action value and agent models from Equation (8) and Equation (13)
into Equation (6) results in an action value function with the following expression:

Q̄(Ht, a
i
t) = Qiβ,α(ait|Ht)

+
∑

aj∈Aj ,j 6=i

(
Qjβ,α(aj |Ht) +Qi,jδ,α(ait, a

j |Ht)
)
qζ,η,α(aj |st)

+
∑

aj∈Aj ,ak∈Ak,j 6=i,k 6=i

Qj,kδ,α(aj , ak|Ht)qζ,η,α(aj |st)qζ,η,α(ak|st).
(14)
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Unlike Equation (6), Equation (14) is defined in terms of singular and pairwise action
terms. This limits the number of computed terms to only increase quadratically as the
team size increases. Furthermore, the computation of the singular and pairwise terms in
Equation (14) can be efficiently done in parallel with existing GNN libraries (Wang et al.,
2019).

4.6 Learning Objective

Optimising GPL’s models requires interaction experiences that are collected by the learner.
We assume that the learner collects these experiences according to an ε-greedy action
selection policy with its action value computation method as described in Section 4.5. Given

a batch of interaction experiences D = {(Hn
t , a

n
t , r

n
t , H

n
t+1)}|D|n=1, the agent modelling network

is trained to estimate π(a−it |st, θ−it ) through supervised learning by minimising the negative
log likelihood loss defined below:

Lζ,η,α(D) =
∑

(Ht,at,rt,Ht+1)∈D

−∑
j∈−i

log(qζ,η,α(ajt |st))

 . (15)

Also, the collected data set is used to update GPL’s joint-action value network using value-
based reinforcement learning. Unlike standard value-based deep reinforcement learning
approaches (Mnih et al., 2015), we use the joint action value as the predicted value. The
loss function for the joint action value network is defined as:

Lβ,δ,α(D) =
∑

(Ht,at,rt,Ht+1)∈D

(
1

2
(Qβ,δ,α (Ht, at)− y (rt, Ht+1))2

)
, (16)

with y(rt, Ht+1) being a target value which depends on the algorithm being used. We train
GPL with Q-Learning (GPL-Q) (Watkins and Dayan, 1992) and Soft-Policy Iteration (GPL-
SPI) (Haarnoja et al., 2018), which produces a greedy and stochastic policy, respectively.
The target value computations of GPL-Q and GPL-SPI are defined as the following:

yQL (rt, Ht+1) = rt + γmaxaiQ̄
(
Ht+1, a

i
)
, (17)

ySPI (rt, Ht+1) = rt + γ
∑
ai

pSPI(a
i|Ht+1)Q̄

(
Ht+1, a

i
)
. (18)

GPL-SPI’s target values in Equation (18) assume that the learner’s policy selects actions
using the following expression:

pSPI(a
i
t|Ht) ∝ exp

(
Q̄(Ht, a

i)

τ

)
, (19)

with τ being the temperature parameter.
Finally, the optimisation of the type inference model is carried out with the losses

defined in Eq. (15) and (16). These losses are back-propagated through the type inference
network. This allows us to train the type inference network without knowledge of other
agents’ types. More details about the inputs and outputs of the type inference are given in
the Appendix C.1.

17



Rahman, Carlucho, Höpner and Albrecht

One important aspect of the training is how the data is collected to obtain the buffer
D. In practice the learner could collect all the data in an experience replay buffer, and
then sample transitions to optimise the model (Mnih et al., 2015). However, we utilise a
synchronous data collection mechanism, based on the asynchronous Q-learning (Mnih et al.,
2016). Instead of using an experience replay buffer, these types of methods collect data from
several environments in parallel. The data collected this way is decorrelated, and avoids
having to use a large experience replay buffer.

5. Fully Observable Open Ad Hoc Teamwork Experiments

This section describes our experiments, which demonstrates how the methods introduced in
Section 4 can solve the open ad hoc teamwork problem under full observability. We start
this section by describing the open environments utilised in our experiments (Section 5.1.1),
as well as the different baseline algorithms (Section 5.1.4). We then present a performance
comparison between different versions of GPL and the proposed baselines when solving
open ad hoc teamwork problems. Finally, we provide a comprehensive analysis of the joint
action-value function of GPL, and discuss why this is the main reason why GPL outperforms
the proposed baselines.

5.1 Experimental Setup

This section outlines the setup of our open ad hoc teamwork experiments. Section 5.1.1
provides an overview of the environments utilised in our experiments. We then describe how
we induce openness in Section 5.1.2. Section 5.1.3 provides a description of the different
teammates’ types utilised for our simulations. Finally, we give an overview of the different
evaluated algorithms in Section 5.1.4.

5.1.1 Environments

Assuming that the environment’s state is always fully observed, we describe three environ-
ments for our open ad hoc teamwork experiments:

Level-Based Foraging (LBF). LBF is an environment where the learner must retrieve
objects that are positioned across an 8× 8 grid world. The learner, its teammates, and all
objects are each assigned a number as their respective level. All agents are then equipped
with actions that enable movement along the four cardinal directions and the retrieval
of objects positioned in neighbouring grids. An object is retrieved only if the levels of
neighbouring agents which chose the retrieve action has a sum that is not less than the
object’s own level. After the learner collects an object, the object’s level is given to the
learner as a reward.

Wolfpack. In Wolfpack, a learner must collaborate with its teammates to hunt a moving
prey inside a 10× 10 grid world. All agents, including the prey, have actions that enable
movement across the four cardinal directions. A prey is captured if at least two hunters
position themselves adjacent to the prey’s current position on the grid. Given a set of
hunters H positioned next to a captured prey, the learner is given a reward of 2|H| if it is
a member of H. Conversely, the learner is given a penalty of −0.5 if it is next to a prey
without any teammates positioned adjacently to the said prey.
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(a) Level-based Foraging

 

(b) Wolfpack (c) FortAttack

Figure 2: Environment state visualisations. A visualisation of the state information received
by the learner under (a) Level-based Foraging, (b) Wolfpack, and (c) FortAttack,
which are the three environments used in our experiments.

FortAttack. FortAttack is an environment where the learner is part of a defending team
that must defend a fort from advancing attackers. The state space in this environment is
continuous and consists of an arena of size 1.8× 2 in which agents can move around. Apart
from having actions that enable movement across the four cardinal directions, every agent is
equipped with discrete actions that allow them to rotate and shoot opposing team members
that venture inside their shooting cones. The episode ends if an attacker reaches the fort,
the learner is shot by an attacker, or the attacker fails to reach the fort after a number of 100
timesteps which for each case the learner is given a reward of −1, −0.3, and +1 respectively.
Additionally, the learner is given +0.3 for successfully shooting an attacker.

5.1.2 Environment Openness

In the environments defined in Section 5.1.1, we define an upper limit to the number of
agents in the environment. This upper limit differs during the training and evaluation stages,
which allows us to measure the out-of-distribution generalisation capabilities of the proposed
method when dealing with open processes that have never been experienced before. In LBF
and Wolfpack, the number of agents is limited to three agents during training and five agents
during evaluation. On the other hand, there are at most six agents during training and 10
agents during evaluation for FortAttack.

Environment openness is induced differently for the three environments used in our
experiments. In LBF and Wolfpack, a teammate only exists in the environment for a certain
number of timesteps. If a teammate has existed for longer than its allocated lifetime, it is
immediately removed from the environment. A removed teammate is allocated a waiting
period, which is the duration before it is pushed into a reentry queue. Given a non-empty
reentry queue, agents in the queue re-enter the environment if the number of agents does
not exceed the aforementioned upper limit. It is important to note that the reentry queue is
randomised, thus inducing an aleatory team composition during learning. For Wolfpack,
teammates’ lifetime is sampled uniformly between 25 and 35 timesteps while the waiting
period is sampled uniformly between 15 and 25 timesteps. By contrast, in LBF teammates’
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Table 1: Open ad hoc teamwork: Comparison between algorithms based on value network
architecture alongside the usage of agent & joint action value modelling.

Models GNN Agent Model Joint Action-Value
QL

QL-AM X
GNN X

GNN-AM X X
GPL-Q X X X

GPL-SPI X X X

lifetime is sampled uniformly between 15 to 25 timesteps while the waiting period is sampled
uniformly between 10 and 20 timesteps.

Unlike LBF and Wolfpack, the changing number of agents in FortAttack is a direct
consequence of existing agents’ actions. An agent is only removed from the environment
if it is shot by a member of the opposing team. After being shot, a shot agent’s distance
with the shooter determines the waiting time before it can re-enter the environment. An
agent is out for 80 timesteps when its distance to the shooter is the closest possible distance
between agents. For other distance values, we use a linear interpolation such that shot
agents will have less waiting time the larger their distances are with the shooter. Finally,
at the beginning of the interaction, the number of agents are initialised according to the
previously mentioned maximum number of agents, which are divided equally between the
attacking and defending team.

5.1.3 Teammate Types

We create different teammate types to interact with the learner during our open ad hoc
teamwork experiments. For all environments, the policies followed by each teammate type
are designed by implementing different behavioural heuristics or using MARL-based methods.
Policies from different teammate types are designed to require different policies for effective
collaboration5. Finally, during interaction, we randomly choose a type from the set of
implemented types and assign it to teammates whenever they re-enter the environment.

5.1.4 Evaluated Algorithms

The algorithms that we evaluate in the open ad hoc teamwork experiments can be divided
into three categories. Algorithms in the first category implement variations of our proposed
GPL method. The second category is a set of single-agent value-based RL algorithms that
act as ablations of GPL. The third category is a set of MARL-based learners. Note that
some single-agent and MARL baselines are unable to deal with the changing input size,
since they use neural network architectures that receive a fixed-length input. Therefore, we
impose a limit on the maximum number of agents allowed in the environment, which allows
us to produce fixed-length input vectors for these methods by using placeholder values for
features associated to non-existent agents. An overview of the presented algorithms and
baselines can be seen in Table 1.

5. Further details about teammate types utilised for training are available in Rahman et al. (2021).
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Graph-based Policy Learning.6 We define and evaluate two algorithms based on the GPL
method defined in Section 4. The first algorithm called GPL-Q has its joint action value
model trained with Q-learning (Watkins and Dayan, 1992). The second algorithm called
GPL-SPI trains the joint action value model with Soft-Policy Iteration (Haarnoja et al.,
2018) instead. Aside from this subtle difference in the joint action value model training
method, both algorithms use the methods described in Section 4.5 and 4.6 for action selection
and learning.

Single-agent RL baselines. In alignment with GPL-Q, the single-agent RL baselines are
trained using Q-Learning (Watkins and Dayan, 1992). These baseline algorithms differ from
GPL-Q in terms of the method and model architectures used for action value estimation. At
the same time, the single-agent RL baselines also vary in terms of their usage of agent and
joint action-value models. While the main characteristics of these baselines are summarised
in Table 1, details of these baselines alongside the insights obtained by comparing them
against GPL-Q and GPL-SPI are provided below:

• QL. QL estimates the learner’s action value by directly passing the representations
produced by the type inference model into a multilayer perceptron. Comparisons
against QL uncover the effects of not using any GNNs in the learner’s model architecture.
This comparison also provides insights into direct action value estimation as opposed
to using the action value estimation method introduced in Section 4.

• GNN. The GNN baseline is similar to QL except in its usage of a GNN that uses
multi-head attention (Jiang et al., 2019) for computing the learner’s action value.
Comparing QL’s performance against GNN enables us to identify the gains resulting
from using GNNs for action value estimation. At the same time, a comparison between
GNN and GPL-Q’s performance enables us to discover the gains from computing the
action value following the method described in Section 4.

• QL-AM. Unlike QL, QL-AM has an additional agent model that predicts teammates’
actions given the type vectors from the type inference model. For each teammate,
their predicted action probabilities derived from the agent model are appended to
their type vectors. The collection of concatenated vectors for every teammate are
given as input to the multilayer perceptron to compute the action value of the learner.
Comparing QL-AM and QL’s performance helps us understand the gains achieved by
using an agent model. At the same time, comparing QL-AM and GPL-Q’s performance
provides insights on the advantages of using predicted action probabilities through
Equation (14) as opposed to using it as input for direct action value estimation.

• GNN-AM. GNN-AM is QL-AM with GNN’s multi-head attention-based action value
estimation model. The performance comparison between GPL-Q and GNN-AM helps
discover the gains resulting from using Equation (14) as opposed to directly utilising
predicted action probabilities as input for action value estimation.

MARL baselines. We compare the performance of the aforementioned algorithms and
MARL-based baselines to demonstrate the deficiencies of MARL methods when solving

6. These methods appeared originally in Rahman et al. (2021).
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open ad hoc teamwork. While MARL methods’ utilisation of joint training and their
assumption of knowing teammates’ actions prevents it from being a solution for ad hoc
teamwork, we can still evaluate the performance of an agent produced by MARL training in
open ad hoc teamwork. Our two MARL-based baselines train a group of agents using the
MADDPG (Lowe et al., 2017) and DGN (Jiang et al., 2019) respectively. We evaluate these
methods in open ad hoc teamwork by sampling an agent resulting from the MARL-based
training process and letting it interact with previously unseen teammate types. We choose
MADDPG and DGN as our baseline MARL methods since they are both designed for MARL
in closed and open environments respectively.

5.1.5 Training & Evaluation Setup

Following the previously mentioned details of the environment openness and teammate types,
we train every algorithm in Section 5.1.4 for open ad hoc teamwork. For LBF and Wolfpack,
the algorithms are trained for 6.4 million timesteps. On the other hand, these algorithms
are trained for 16 million timesteps for FortAttack.

At checkpoints which occur every 160000 timesteps the learner’s policy is frozen and
evaluated in the training and evaluation task, which only differs in terms of their underlying
open process as described in Section 5.1.2. This process is repeated across the 8 trained
models for each evaluated algorithm, each trained model is initialised with a different random
seed. In Section 5.2, we report the average performance in the training task alongside its
95% confidence bounds across 8 runs. The performance reported for any algorithm in the
evaluation task is based on the optimal checkpoint, which is the checkpoint with the highest
average returns across 8 runs.

5.2 Fully Observable Open Ad Hoc Teamwork Results

For every environment described in Section 5.1.1, Figure 3 shows the training performance
of the evaluated algorithms under the open process encountered during training. The result
demonstrates that MARL-based methods, such as MADDPG and DGN, consistently achieve
worse performance in all environments when compared to other evaluated algorithms. This
is because policies obtained from MARL training are only optimal when interacting with
other jointly trained agents. When dealing with previously unseen teammates as in ad hoc
teamwork, MARL policies fail to generalise which leads to poor performance.

Figure 3 also shows the performance gains resulting from two integral designs underlying
GPL. By comparing the returns from QL, QL-AM, and the other evaluated algorithms,
we first discover that GNN-based architectures deliver improved performance by being
more suitable for action value estimation under environment openness. Second, we find the
importance of combining joint action value and agent models for estimating the learner’s
action value based on Equation (14). GPL-Q and GPL-SPI, which are the only evaluated
algorithms utilising Equation (14) for action value estimation, have significantly higher
returns compared to the other algorithms. By comparing the performances between GPL-
based algorithms alongside single-agent RL baselines without agent models (e.g. QL and
GNN) and with agent models (e.g. QL-AM and GNN-AM), we can also conclude that
agent models will not improve returns unless they are combined with joint action value
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Figure 3: Open ad hoc teamwork results (training). Obtained returns for all evaluated
environments during training. We show the average and 95% confidence bounds
utilising 8 seeds.

estimates for action value estimation. Further analysis on the importance of GPL’s action
value estimation method for training will be discussed in Section 5.3.

The algorithms’ performance in the evaluation task depicted in Table 2 highlights the
importance of GNN-based action value estimation to improve generalisation across open
processes. Even in LBF, where all but MARL-based baselines deliver similar returns
during training, GPL-based methods and GNN-based single-agent RL baselines achieve
significantly better generalisation performance compared to QL and QL-AM. However, GPL-
based methods still significantly outperform GNN and GNN-AM in terms of generalisation
performance.

The reason GPL outperforms other baselines in terms of generalisation performance lies
within its action value estimation method. Single-agent RL baselines provide significantly
worse generalisation performance because their type and action value network do not learn
good representations for estimating the learner’s action value in novel open processes. By
contrast, GPL estimates the learner’s action value following Equation (14). GPL only suffers
in environments where the underlying joint action value and teammates’ action distribution
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Table 2: Open ad hoc teamwork results (testing): We show the average and 95% confidence
bounds during testing utilising 8 seeds. The data was gathered by averaging the
returns at the checkpoint which achieved the highest average performance during
training. We highlight in bold the algorithm with the highest performance.

Algorithm LBF Wolf. Fort.
GPL-Q 2.32±0.22 36.36±1.71 14.20±2.42
GPL-SPI 2.40±0.16 37.61±1.69 16.82±1.92
QL 1.41±0.14 20.57±1.95 -3.51±0.60
QL-AM 1.22±0.29 14.24±2.65 -3.51±1.51
GNN 2.07±0.13 8.88±1.57 7.01±1.63
GNN-AM 1.80±0.11 30.87±0.95 8.12±0.74
DGN 0.64 ± 0.9 2.18 ± 0.66 -5.98 ± 0.82
MADDPG 0.91 ± 0.10 19.20 ± 2.22 -4.83 ± 1.24
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Figure 4: Shooting-related metrics for FortAttack: (a) We measure the ratio between the
number of times a learner successfully shoots an opponent in relation to the
number of times it chooses the shoot action, as defined by Equation (20). This
metric is reported for GPL-Q and the single-agent RL baselines, for each training
checkpoint in FortAttack.

does not factorise according to Equation (8) and Equation (13) as the number of teammates
changes.

5.3 Joint Action Value Analysis in GPL

In this section, we provide a detailed analysis of the joint action value, which gives insights
regarding the higher returns obtained by GPL-Q and GPL-SPI with respect to the other
baselines in the training tasks. For the analysis presented in this section, we focus solely on
the more complex FortAttack environment.
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Figure 5: Pairwise utility analysis. (a) We measure Q̄j,k, which we define in Equation (22)
as GPL-Q’s estimate of the contribution towards the learner’s returns resulting
from agent j shooting an opponent agent, k, under four different scenarios defined
for this analysis. Lines 1 and 2 represent Q̄j,k for Scenario 1 and Scenario 2,
detailed in Equation (23) and (24). Lines 3 and 4 represent the value of Q̄j,k in
Situation 3 and 4, detailed in Equation (25) and (26). Surrounding the main plot,
we illustrate the four FortAttack interaction scenarios defined for our analysis and
visualize an example interaction under each scenario (represented by the white
line in black boxes). Each black box is numbered after the scenario that illustrates.
Inside the example visualisation of each scenario, the fort is represented by the
blue half circle, attackers by red circles, defenders by green circles, the learner is
marked with a white dot, and shooting ranges are indicated with dashed view
cones. The square matrices near each black box represent the pairwise utility
matrix between attackers and defenders connected by the white line, where the
yellow marked fields in each square matrix refer to the matrix entries that are
averaged over to compute Q̄j,k for the scenarios depicted above and below it.

We start by analysing the shooting accuracy of the learner which we compute as:

SA(Algorithm) =

∑
(s,ai,s′)∈DAlgorithm

1{True}(OpponentIsHitByLearner(s′))∑
(s,ai,s′)∈DAlgorithm

1{shoot}(ai)
, (20)

In the above expression, 1A(x) denotes the indicator function defined as follows:

1A(x) =

{
1, x ∈ A
0, otherwise

(21)

while DAlgorithm is defined as a collection of the learner’s state, executed actions, and next
states resulting from executing the policy produced by the evaluated algorithm. This

25



Rahman, Carlucho, Höpner and Albrecht

reported metric is then computed for each checkpoint of the policies in the training process,
with the DAlgorithm containing 480000 sample experiences for each algorithm.

Figure 4 presents the obtained shooting accuracy results. Based on Figure 4, we see that
a learner produced via GPL learns to increase its shooting accuracy at a faster rate compared
to the baselines. Since shooting is an integral skill for defending the fort, GPL-based learners
eventually outperform other learners following its better shooting accuracy. We now analyse
various shooting-related metrics and their correlation with the GPL-based learner’s returns
to highlight why it outperforms other baselines.

Among the many shooting-related metrics that we evaluated, Q̄j,k(s) is the metric with
the highest correlation with a GPL learner’s returns. Given a set of agents j and k alongside
the trained pairwise utility estimator, Qj,kδ (ajt , a

k
t |st), Q̄j,k is defined as:

Q̄j,k(s) =

∑
ak∈Ak Q

j,k
δ (aj = shoot, ak|s)
|Ak| . (22)

Q̄j,k(s) is intuitively the estimated pairwise contribution from j towards the learner if j
chooses to shoot, which is then averaged across the possible actions of k. In FortAttack,
note that the learner is always part of the defending team.

We analyse Q̄j,k(s) by first collecting a data set D containing 480000 states, which are
obtained by running the learner’s frozen policy at every training checkpoint. D is then used
to analyse the average of Q̄j,k under four different scenarios. Assuming Natt(s) and Ndef(s)
denotes the set of existing agents from the attacking and defending team at state s, the
reported metrics under the different scenarios are defined below:

• Scenario 1. We measure the average Q̄j,k(s) when k is an attacking agent who is
inside a defender j’s shooting range. Formally, this is defined as:

Q̄S1
j,k =

∑
s∈D

∑
j∈Ndef(s)

∑
k∈Natt(s) Q̄j,k(s)∑

s∈D
∑

j∈Ndef(s)

∑
k∈Natt(s) 1{True}(InShootingRange(j, k))

(23)

• Scenario 2. This scenario is the opposite of Scenario 1 where Q̄j,k(s) is averaged for
instances when an attacker agent k is not in a defender j’s shooting range. This is
formally defined as:

Q̄S2
j,k =

∑
s∈D

∑
j∈Ndef(s)

∑
k∈Natt(s) Q̄j,k(s)∑

s∈D
∑

j∈Ndef(s)

∑
k∈Natt(s) 1{False}(InShootingRange(j, k))

(24)

• Scenario 3. The average of Q̄j,k(s) is computed assuming that k is a defender within
an attacker j’s shooting range. The evaluated metric in this scenario is defined as:

Q̄S3
j,k =

∑
s∈D

∑
j∈Natt(s)

∑
k∈Ndef(s) Q̄j,k(s)∑

s∈D
∑

j∈Natt(s)

∑
k∈Ndef(s) 1{True}(InShootingRange(j, k))

(25)

• Scenario 4. This scenario is similar to Scenario 3 except Q̄j,k(s) is averaged for
instances when defender k is not in attacker j’s shooting range. The evaluated metric
for this scenario is defined below:

Q̄S4
j,k =

∑
s∈D

∑
j∈Natt(s)

∑
k∈Ndef(s) Q̄j,k(s)∑

s∈D
∑

j∈Natt(s)

∑
k∈Ndef(s) 1{False}(InShootingRange(j, k))

(26)
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We now outline important observations regarding the relationship between Q̄S1
j,k alongside

the learner’s returns and shooting accuracy. By comparing Q̄S1
j,k and the returns of the

learner across 100 training checkpoints, we discover that Q̄S1
j,k and the learner’s returns have a

strong positive Pearson correlation coefficient of 0.85. This strong correlation can be seen by
comparing the lines associated to Q̄S1

j,k and to the learner’s returns in Figure 5. Comparing
Figure 4a and Figure 5 also shows that a GPL learner starts to become significantly better
than baselines in terms of shooting accuracy after Q̄S1

j,k experiences an uptick in its values,

which happens around the 20th checkpoint. These observations highlight the importance of
GPL’s pairwise utility estimator (MLPδ) and more generally its joint action value estimator
to achieve high returns in open ad hoc teamwork.

Rather than simply being correlated with the learner’s returns, we highlight GPL’s joint
action value model as the main cause behind GPL’s significantly higher returns. The initial
increase in value for Q̄S1

j,k indicates that MLPδ starts to see any defender shooting down an
attacking team member as advantageous for the learner. Since MLPδ is shared between
the different agents as mentioned in Section 4.3 and the learner itself is a defender, MLPδ
also increases the value of the learner shooting down attacking team members. This is an
important point as it shows that the learner is able to derive knowledge directly from its
teammates. As learning progresses, we see MLPδ further increasing the estimated value of
Q̄S1
j,k. This further contrasts the difference between the estimates of Q̄S1

j,k and Q̄S2
j,k, which

drives the learner’s policy to more frequently get attackers inside the learner’s shooting
range. These results show that GPL’s joint action value model and its parameter sharing
configuration improves the shooting accuracy and the returns of the learner, and it does so
by observing teammate behaviour.

Aside from learning to more accurately shoot attackers, GPL’s joint action value model
is also responsible for enabling the learner to avoid being shot by attackers. Despite learning
this rather late compared to shooting down attackers, Figure 5 shows the line associated
to Q̄S3

j,k decreasing as learning progresses. As the value of Q̄S3
j,k keeps decreasing relative to

the value of Q̄S4
j,k, the learner’s policy learns to avoid getting inside any attacker’s shooting

range.

We show in the next section that learners resulting from baseline algorithms cannot
learn to shoot or evade attackers by observing teammate defenders. In the absence of a joint
action value estimation model, a learner can only learn to shoot by experiencing firsthand
shooting down attackers. For an initially untrained learner, successfully shooting trained
attackers is difficult since getting close to attackers and discovering the right orientation
alone is difficult to randomly achieve during exploration. Even if a learner manages to get
closer to an attacker, their inexperience will more likely result in the learner being shot
down by the attackers instead.

5.4 Action Value Analysis in Single-Agent RL Baselines

Following the absence of a joint action value model, this section demonstrates that the
single-agent RL baseline algorithms are incapable of learning the effects of teammates’
actions to subsequently improve the learner’s performance. Our analysis follows Section 5.3
by being limited to FortAttack. As in the analysis with GPL, we collect a data set of 480000
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Figure 6: State values for all single-agent RL baselines. This visualisation compares the
state values in Scenario 1 and 2 for (a) QL, (b) QL-AM, (c) GNN, and (d) GNN-
AM. The blue line in each plot shows the average and 95% confidence bounds of
V (s) under Scenario 1. By contrast, the green line shows the average and 95%
confidence bounds of V (s) under Scenario 2. This figure demonstrates that neither
single-agent RL baselines manage to learn the effects of other agents’ actions on
the learner.

states at every training checkpoint by running the frozen learner’s policy. We subsequently
report measures related to the action value estimates produced by each baseline algorithm.

While it is not possible to directly compute Q̄j,k for baseline algorithms due to the
absence of CG-based joint action value models, we can use a Monte Carlo estimate to
compute state values under specific scenarios. Assuming a set of states that fulfil a specific
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criterion S, the state value under that specific criteria is estimated as:

V (S) =
1

|S|
∑
s∈S

V (s), (27)

with V (s) = maxaQ(s, a) being the action value of the optimal action at s according to the
model produced by the evaluated baseline. We now outline the two evaluation scenarios of
interest, defined as the following:

• Scenario 1. The first scenario evaluates V (S1) for a collection of states where an
attacker is within the shooting range of any defender.

• Scenario 2. The second scenario computes V (S2) for states where no attacker is
within the shooting range of any defender.

These two scenarios correspond to Scenario 1 and 2 in Section 5.3 respectively. We limit
our analysis in this section to these two scenarios, since Section 5.3 specifically attributed
GPL’s learning performance towards the joint action value model’s ability to evaluate the
pairwise utility in these two scenarios. Intuitively, V (S1) and V (S2) can be viewed as an
approximation of Q̄S1

j,k and Q̄S2
j,k, defined in Section 5.3. By evaluating the difference between

V (S1) and V (S2), we can determine whether the single-agent RL baselines learn to recognize
the value of any defender being in a position to shoot down opposing attackers.

The value of V (S1) and V (S2) across the different baselines are reported in Figure 6.
The results in Figure 6 demonstrate that the single-agent RL baselines fail to recognize
the advantages of having attackers in the shooting range of any defender. QL and QL-AM
instead assign lower average values to states where any defender can shoot down attackers.
This negative view of states in Scenario 1 may explain why QL and QL-AM learners have
very low shooting accuracy and perform poorly during training. On the other hand, GNN
and GNN-AM’s average estimate of V (S1) and V (S2) also do not highlight the inherent
positive difference between the values in Situation 1 and 2, which indicates the failure of
both baselines to learn the effects of teammates’ actions to the learner. This inability to
understand the effects of others’ actions prevents the baselines from learning important
knowledge required to perform well in FortAttack.

6. Open Ad Hoc Teamwork in Partially Observable Environments

In the previous sections, we discussed the necessary main components to solve the open
ad hoc teamwork problem in the fully observable setting. We now relax the previous
assumptions about full state observability, and discuss ways to solve the open ad hoc
teamwork problem under partial observability. We start by providing an overview of the
problem in Section 6.1. Then we discuss three different models for inferring the unobserved
state variables alongside their usage in computing the learner’s optimal action in Section 6.4,
Section 6.2, and Section 6.3. We then discuss the learning objectives to train these belief
inference models for open ad hoc teamwork in Section 6.5.

6.1 General Overview

Under partial observability, a learner cannot observe certain information about unobserved
teammates, such as their existence et and state features st. Additionally, as in the fully
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observable case, the agent has no information regarding teammates’ types θt and their
previous actions a−it−1. The unobserved information is important for decision-making and
must be inferred to solve partially observable open ad hoc teamwork problems. In this
section, we define components to infer the value of these latent variables solely based on
the learner’s perceived observations and executed actions Ht = {o≤t, ai<t}. We then use the
inferred values of these latent variables to estimate the learner’s optimal policy, defined in
Definition 3.

Given Ht, there are potentially multiple values of inferred latent variables that are
plausible given Ht. It is therefore useful to maintain a probabilistic belief over the plausible
latent variable values given Ht. As in the case with POMDPs, we call our probabilistic
belief over the latent variables given Ht the belief state. In PO-OSBGs, at each timestep, the
previous belief state estimate can be updated following the learner’s most recent observation,
ot, and executed action, ait−1. Using the Bayes rule, the updated belief state can be found
with the following expression:

p(a−it−1, et, st, θt|Ht) ∝ p(ot|et, st) (Observation likelihood)

p(et, st, θt|a−it−1, a
i
t−1, et−1, st−1, θt−1) (State likelihood)

p(a−it−1|et−1, st−1, θt−1) (Joint action likelihood) (28)

p(at−2, et−1, st−1, θt−1|Ht−1). (Previous belief state)

Equation (28) intuitively corresponds to the interaction process between a learner and
its teammates, which we elaborated on in Section 3.1 and 3.3. An exact evaluation of
p(a−it , et, st, θt|Ht) requires integrating the right-hand side expression in Equation (28) over
the latent variables, which may not have a closed form expression. In such cases, approximate
belief updates can be used to estimate Equation (28).

In the following sections, we identify three major ways of approximating beliefs: (i)
maintaining a fixed length vector which contains information about each teammate, (ii)
maintaining a particle-based approach which estimates the belief state as a set of particles,
and (iii) maintaining a distribution over representation vectors that contain information
about all latent variables. Figure 7 presents an overview of the three methods presented in
this section. These methods allow the learner to infer the latent information required for
solving the ad hoc teamwork problem under partial observability. The remaining step left is
for the learner to integrate the inferred latent information during action selection.

Given a representation that encodes a value of the inferred latent variables (et, st, θt,
a−it−1), we can estimate the optimal action-value function under the latent variables’ value,
Q̄πi,∗(et, st, θt, a

i). This can be done by combining such a representation with a joint action
value module, an agent model module, and an action selection module, obtaining a structure
similar to that of GPL (Section 4).

For methods that produce a single representation ρ to infer the latent variables, such
as in the autoencoder method shown in Figure 7b, the resulting representation can be
directly used in combination with the other modules. In this case, the representation vector
ρ could be seen as the input vector Bt in GPL (Figure 1). Or in the case of an RNN-based
autoencoder, we can view the encoder as a type inference module, and thus the vector ρ can
be treated as a type vector. The optimal action can then be computed as in GPL.
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In contrast, methods that maintain a probabilistic belief over the latent variables must
compute the optimal action-value function as the expected value of Q̄πi,∗(et, st, θt, a

i) under
the belief state following this expression:

Q̄πi,∗(Ht, a
i) =

∫
a−it−1,et,st,θt

Q̄πi,∗(et, st, θt, a
i)p(a−it−1, et, st, θt|Ht) da

−i
t−1 det dst dθt. (29)

Equation (29) intuitively expresses Q̄πi,∗(Ht, a
i) as the expected value of the state-action

value estimate given the belief over the teammate’s existence et, the state st and teammates’
types θt, all resulting from the perceived observations and actions Ht.

In this work, we develop two methods that use a probabilistic belief over the latent
variable for decision-making. The first is the particle-based representation shown in Figure 7a.
This method produces a set of particles Ut, based on the observations and past actions, that
provides a belief state estimate. The particle representation can be used by the joint action
value network to estimate a particle-based joint-action value Qπi,∗(Ut, a

i). The last method
presented in this section utilises a variational autoencoder to maintain a distribution over
representation vectors zt to estimate the latent variables. An overview of the method is given
in Figure 7a. The structure is quite similar to the autoencoder method shown in Figure 7b,
with the difference that instead of a representation vector ρ, the variational autoencoder
outputs a distribution over representation vectors, zt.

In the following sections, the definition of each belief approximation model is accompanied
by a method that approximates Equation (28) to update the belief over latent variables. For
clarity, we present each of these methods in different subsections. Section 6.2 presents the fixed
length vector representation produced by using autoencoders. Section 6.3 presents particle-
based methods. Finally, Section 6.4 presents methods based on variational autoencoders.
Note that for the description of each belief inference method, we also detail the way to
incorporate their inferred latent variable information for decision-making under a PO-OSBG.

6.2 Representation-based State Inference

One initial approach to represent information on teammates’ latent variables is to use a fixed-
length vector, or embedding, ρt for each teammate. This fixed length representation provides
a straightforward solution when compared to the other methods used in this section. However,
similar approaches have been utilised successfully in the literature before (Papoudakis et al.,
2021). In order to learn this representation, we utilise an autoencoder architecture. The
encoder takes as input the previous actions of the agent ait−1 and current observations ot,
and provides as output an embedding ρt, as can be seen in Figure 7b. This encoding is
then passed to a decoder, which, given the embedding, provides an estimation of all agents’
existence et and state st, alongside with the teammates’ actions a−it . Both the decoder
and encoder are parameterised by recurrent neural networks. Further details regarding the
architecture of models for the autoencoder-based belief inference method are provided in
Appendix D.3.

6.2.1 Action selection

Given the fixed-representation ρt that encodes the inferred values, we can then utilise a
similar architecture as that of GPL in order to estimate the optimal action value. We utilise
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Joint Action Value
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Module

Marginalization

(a) Particle-based representation

Encoder

D
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Joint Action Value
Network

Action Selection
Module

Marginalization

(b) Autoencoder representation

Encoder

D
ecoder

Joint Action Value
Network

Action Selection
Module

Marginalization

(c) Variational Autoencoder representation

Figure 7: Overview of partially observable methods. (a) Particle-based methods take obser-
vation ot and past actions ait−1 and produces a set of particles Ut which provides
a belief over the latent variables. The particles are then taken as input by a joint
action value network, which estimates Qπi,∗(Ut, a

i). The action selection module
then combines the output of the joint action value network and the estimated
action coming from the action inference module to obtain Q̄πi,∗(Ut, a

i). (b) For
Autoencoder architectures, the observation and actions are encoded into a fixed
length vector ρt (Section 6.2). This representation is then sent to a joint action
value network to obtain Qπi,∗(ρt, a

i). This value together with the teammates’
actions, as estimated by the decoder network (q(at|ρt)), are used in the action
selection module to estimate Q̄πi,∗(ρt, a

i) via marginalisation. (c) In Variational
Autoencoders-based belief, we encode the observation and past action to gen-
erate a representation zt, which consists of a distribution over representation
(Section 6.4). This representation is then sent to a joint action value network to
obtain Q̄πi,∗(Ht, a

i) by marginalisation.
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a joint action value model, followed by an action decision module, to compute the action
value estimation. This process can be observed in Figure 7b. It is important to note that
the decoder network can be used as a substitute for GPL’s agent model, since the decoder
also predicts teammates’ actions given its input representation. Therefore, combining the
decoder with the joint action value model results in a similar structure to that of GPL. Once
the value of Q̄πi,∗(ρt, a

i) is obtained, the learner chooses the actions that greedily maximise
Q̄πi,∗(ρt, a

i) at each timestep.

6.3 Particle-based Belief

We provide here a different method to estimate the belief state, in this case by means of a
collection of sampled particles from p(a−it−1, et, st, θt|Ht). We first provide an overview of how
the belief can be represented utilising a graph-based approach in Section 6.3.1. Section 6.3.2
outlines a method to update the belief representation using neural network models which
receive the learner’s most recent observation and action as input. Then, in Section 6.3.3 we
outline a method to select optimal actions based on the particle representation. Further
details on how the state is preprocessed and the architectures of the models are provided in
Appendix D.1.

6.3.1 Belief Representation

The particle-based belief representation (Igl et al., 2018) estimates belief over latent variables
at time T as a collection of particles denoted by Ut. There are two motivations for representing
belief as a collection of particles. First, it provides the flexibility to estimate belief states
that do not belong to any particular family of distributions. Second, it enables a tractable
optimal policy computation.

Previous works have utilised particle representations for solving single agent reinforcement
learning problems under partial observability (Igl et al., 2018; Singh et al., 2021). However,
these works have not been extended to open ad hoc teamwork problems where it is necessary
to maintain a belief not only on the state of the system but on the existence of other agents,
their types, and their actions. Furthermore, the belief representation needs to be able to
account for environmental openness.

We extend the particle-based approach for solving partial observability in open ad hoc
teamwork by defining a particle uk ∈ Ut as a 5-tuple < aukt−1, e

uk
t , s

uk
t , θ

uk
t , wukt >. We assume

knowledge over the set of all agents (N) that can exist in a PO-OSBG and encode a possible
value of their latent information in each particle. For a particle uk, each of its components
are defined as follows:

• aukt−1 ∈ AN is the joint action of agents in N at the previous timestep.

• sukt ∈ R|N |×m is a collection of vectors of length m, which represents the inferred state
feature of each agent in N .

• eukt ∈ {0, 1}|N | are indicator variables indicating the existence of each agent in N .

• θukt ∈ R|N |×n are vectors that denote the inferred types of each agent in N .

• wukt ∈ R is the log likelihood of < aukt−1, e
uk
t , s

uk
t , θ

uk
t > given Ht.
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Note that our particle representation represents agents’ states and types as vectors of length
m and n since we assume no knowledge regarding the underlying state and type space of
the PO-OSBG. Furthermore, the state, type, and joint actions associated to agents that
are deemed non-existent are set to default values. Given Ut, the belief state at t is then
estimated as:

p(a−it−1, et, st, θt|Ht) =
∑
uk∈Ut

1{<aukt−1,e
uk
t ,s

uk
t ,θ

uk
t >}(< a−it−1, et, st, θt >)exp(wukt )∑

uj∈Ut exp(w
uj
t )

 , (30)

with 1A(x) denoting the indicator function defined in Equation (21).

6.3.2 Belief Update

The particle-based belief representation is updated by applying the AESMC technique (Le
et al., 2018), which is an approximate inference technique to update particle-based latent
variable estimates in stochastic processes, such as PO-OSBGs. This update utilises a
collection of distributions, which perform stochastic updates to the latent variable estimates
from each particle based on ot and ait−1. The log likelihood of each particle is recomputed
based on the updated latent variable estimates’ likelihood according to an estimate of the
right-hand side of Equation (28). An illustration of the AESMC-based update is provided
in Figure 8.

The models used for updating the particle-based belief estimate are grouped together
in the latent variable inference network, which approximates the update in Equation (28)
following three steps: i) particle sampling, ii) prediction step, and iii) particle log likelihood
update.

Particle Sampling. Given wt−1 = {wukt−1|uk ∈ Ut−1}, the first step is to sample particles
from Ut−1 with replacement based on their log likelihood:

uk ∼ Categorical(Softmax(wt−1)). (31)

We denote the collection of K sampled particles as Ūt−1. For each uk ∈ Ūt−1, the contents
of uk are updated in the subsequent steps.

Prediction Step. The prediction step updates the estimated values of the state, action,
existence and type of each agent in every particle uk in Ūt−1 at time t. This process is
sequential and starts with the action, as seen in Figure 8. The action update is followed
by a process that updates the state representations and existence of agents. Finally, the
type representation of each agent is updated. For each component of the particle, we utilise
proposal distributions that enable us to incorporate important information on the updated
value of each particle component. Specifically, we incorporate the learner’s observation ot
and most recent action ait−1 when updating the particle representation.

To update the joint action component of each particle, given ot and ait−1, we introduce a
proposal action distribution, pαp(a

uk
t−1|eukt−1, s

uk
t−1, θ

uk
t−1, a

i
t−1, ot). For each particle uk ∈ Ūt−1,

we draw a sample from the proposal distribution such that,

aukt−1 ∼ pαp(aukt−1|eukt−1, s
uk
t−1, θ

uk
t−1, a

i
t−1, ot), (32)

and use aukt−1 as the updated joint action of each particle uk. In aukt−1, note that actions of
teammates deemed to not have existed in the previous timestep by uk are set to a default
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Figure 8: Overview of Particle-based Belief Update. Given the learner’s most recent ob-
servation (ot) and executed action (ait−1), at timestep t our proposed approach
approximates the distribution over all agents’ existence (et), feature representa-
tions (st), types (θt), and past joint actions (at−1) as a collection of graph-based
particles produced by the latent variable inference network. The learner’s belief
is updated at each timestep by recomputing the contents of each particle from
t− 1 through a sequential execution of the following steps: (i) sampling previous
particles based on their log weights (wt−1) (ii) a prediction step, which consists of
action inference, state inference and type update (iii) a particle weight update step.
The sampling operations and deterministic updates produce updated contents
(at−1, (et, xt), θt, wt) for the sampled particles.

value of no action. Furthermore, the learner’s known previous action is set to its observed
value ait−1.

After updating the joint actions, eukt−1 and sukt−1 are updated according to ot, a
i
t−1, and the

newly updated value of at−1 for all uk ∈ Ūt−1. This update is based on sampling from the
updated teammate existence and state representation from the proposal state distribution
such that:

eukt , ŝ
uk
t ∼ pβ(eukt , s

uk
t |eukt−1, s

uk
t−1, a

uk
t−1, a

i
t−1, ot). (33)
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Like the proposal action distribution for joint action inference, we sample from the proposal
distribution to account for ot and ait−1 in updating eukt−1 and sukt−1. It is also important to
note that the state is updated based on the predicted existence following sukt = eukt · ŝukt .

The next step is to update the inferred teammate types θukt for each particle in Ūt−1.
Teammate types are updated based on the sampled aukt−1, eukt−1 and sukt−1. While teammates

deemed non-existent (euk,jt−1 = 0) are assigned a type vector of 0, existing agents’ types
undergo a deterministic update using the type update network parameterised by δ following
this expression:

θukt = fδ(s
uk
t , θ

uk
t−1, a

uk
t−1). (34)

Particle Weight Update. The final step in the particle-based belief update is to update
the log likelihood of particles in Ūt−1. Note that particles’ log likelihood cannot be updated
based on the aforementioned proposal distributions alone. Specifically, the approximated
belief update in Equation (28) is defined over target distributions that are not conditioned
on the learner’s most recent observation. To compensate for the way particle values are
not updated through the estimated target distributions, we apply importance sampling
correction when updating the weights of each particle.

After sampling aukt−1, the likelihood of this sampled joint action is incorporated when
updating the log likelihood of the new set of particles in Ūt−1. The likelihood of aukt−1 is
evaluated based on the target action distribution, pαt(a

uk
t−1|eukt−1, s

uk
t−1, θ

uk
t−1), which is used

to update the belief in Equation (28). Since we sample from a different distribution to
incorporate ot and ait−1 to update at−2, additional corrections are done to the likelihood
computation, which results in the following joint action likelihood expression:

wukt−1,α = log

(
pαt(a

uk
t−1|eukt−1, s

uk
t−1, θ

uk
t−1)

pαp(a
uk
t−1|eukt−1, s

uk
t−1, θ

uk
t−1, a

i
t−1, ot)

)
. (35)

The sampled eukt and sukt is also utilised for updating the log likelihood of each particle
in Ūt−1. We specifically compute the likelihood of eukt and sukt according to the target state
distribution, qβ(sukt , e

uk
t |eukt−1, s

uk
t−1, a

uk
t−1), which is used for the Bayesian belief update in

Equation (28). To account for sampling eukt and sukt from the proposal distribution, the
likelihood of sukt under both distribution is then evaluated following this expression:

wukt−1,β = log

(
qβ(eukt , s

uk
t |eukt−1, s

uk
t−1, a

uk
t−1)

pβ(eukt , s
uk
t |eukt−1, s

uk
t−1, a

uk
t−1, a

i
t−1, ot)

)
. (36)

An additional term is taken into consideration for updating the particle weight, which is
based on the observations ot, and is defined as:

wukt−1,ζ = log(qζ(ot|sukt , aukt−1)), (37)

with qζ(ot|sukt , aukt−1) being the observation likelihood distribution, which evaluates the likeli-
hood of a learner’s observation given sukt and aukt−1 resulting from the state and joint action
inference step during the update.

Finally, and following Equation (28), a sampled particle’s log likelihood is updated
following:

wukt = wukt−1,ζ + wukt−1,β + wukt−1,α. (38)
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Figure 9: Overview of Particle-based Action Selection. Given the updated set of particles
(Ut) at time t, the Joint Action Value Network utilises this representation to provide
a particle based approximation of Qπi,∗(e

uk
t , s

uk
t , θ

uk
t , ai). The Action Selection

Module carries a two-step process. First, it marginalises over Qπi,∗(e
uk
t , s

uk
t , θ

uk
t , ai),

with the teammate action probability qα(at−1|Ut) coming from the action inference
module in the Latent Variable Inference Network. Second, the resulting particle-
based state value Q̄πi,∗(e

uk
t , s

uk
t , θ

uk
t , ai) is then collapsed to a single representation

based on the particle weight wt to obtain Q̄πi,∗(Ht, a
i), following Equation (39).

The updated content of each particle uk ∈ Ūt−1 is then used as an estimate of the current belief
state, Ut = {(aukt−1, s

uk
t , θ

uk
t , wukt )|uk ∈ Ūt}. Note that Equation (38) estimates Equation (28)

while accounting for the usage of samples generated from target distributions that incorporate
ot and ait−1 to update the particles. Finally, wt−1 is not considered in Equation (38) since
the particle sampling step implicitly accounts for the particles’ weights from the previous
timestep.

6.3.3 Action selection

We circumvent a challenge in evaluating the learner’s optimal action-value function by
representing our belief estimates as a collection of particles. As mentioned in Section 6.1,
p(at−1, et, st, θt|Ht) can be combined with the different modules of GPL to compute the
learner’s optimal action-value function under partial observability. A problem arises for
the exact evaluation of Equation (30) when Q̄πi,∗(et, st, θt, a

i) is implemented as a neural
network since the integral generally does not have a closed form expression.
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By using a particle-based belief representation, we avoid integrating over all possible
values of the latent variables. This process is detailed in Figure 9. Substituting Equation (30)
into p(at−1, et, st, θt|Ht) in Equation (29) results in the following expression:

Q̄πi,∗(Ht, a
i) =

∑
uk∈Ut

(
exp(wukt )∑

uj∈Ut exp(w
uj
t )

)
Q̄πi,∗(e

uk
t , s

uk
t , θ

uk
t , ai), (39)

which is only a summation over functions defined over the contents of the particles. In the
above expression, we estimate Q̄πi,∗(e

uk
t , s

uk
t , θ

uk
t , ai) by marginalising over Qπi,∗(e

uk
t , s

uk
t ,

θukt , ai) as output by the joint action value model as seen in Figure 9. The learner then
greedily chooses actions that maximise Q̄πi,∗(Ht, a

i) at any timestep.

6.4 Variational Autoencoder-based Belief

A problem occurs under particle-based approaches as more particles are required to estimate
a distribution when the dimension of inferred latent variables increases or if distributions
required for updating the particle contents have high variance (Murphy and Russell, 2001).
Ensuring an accurate representation of the belief posterior with a large number of particles is
computationally expensive to maintain and update. In this section, we provide an alternative
method which does not maintain a collection of particles to represent belief.

6.4.1 Belief Representation & Update

The alternative approach is to instead represent belief as a distribution over representation
vectors, zt ∈ R|N |×m. The belief over zt, p(zt|Ht), is then evaluated given the learner’s
interaction experience Ht. We prevent having to maintain a large collection of particles by
ensuring this distribution is a parametric distribution with low variance, which parameters
are estimated by a trained model that receives Ht as input. The model is trained to ensure
that higher likelihood is associated to sampling representations zt that are more informative
of the interaction experience Ht. Sampled values of zt then provide relevant information for
action value computation.

We achieve our goal of training a model for estimating p(zt|Ht) using variational autoen-
coders (VAEs) (Kingma and Welling, 2013). To ensure zt is informative of Ht, VAEs assume
the existence of an underlying generative model, p(Ht|zt), that determines the way Ht is
generated from zt. Given a prior distribution on zt, the true posterior over zt, p(zt|Ht), may
then be evaluated via the Bayes theorem:

p(zt|Ht) =
p(Ht|zt)p(zt)∫

zt
p(Ht|zt)p(zt)dzt

. (40)

The exact evaluation of Equation (40) is generally intractable, since the integral operation
does not have a closed form expression. Instead, VAEs estimate the posterior with a
variational parametric distribution, q(zt|Ht) = N (zt;µ,Σ). The variational parametric
distribution is optimised to minimise the Kullback-Liebler divergence between the two
distributions, DKL(q(zt|Ht)||p(zt|Ht)).

Both p(Ht|zt) and q(zt|Ht) are represented by VAEs as parametric distributions which
parameters are estimated by neural network models called the decoder and encoder respec-
tively. At each timestep, updates to the learner’s belief over the latent variables are done by
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computing the distribution parameters of q(zt|Ht) based on Ht−1 and the learner’s most
recent observation and action. Details of the network architectures that we use to represent
the encoder and decoder are provided in Appendix D.2. The objective functions for training
the VAE’s encoder and decoder are then provided in Section 6.5.2.

6.4.2 Action Selection

Given the variational parametric distribution, the action value under partial observability is
computed as:

Q̄πi,∗(Ht, a
i) =

∫
zt

Q̄πi,∗(zt, a
i)q(zt|Ht)dzt. (41)

Q̄πi,∗(zt, a
i) denotes the action value estimate based on Equation (14) given zt as input.

However, exact evaluation of Equation (41) is not possible since the integral generally does
not have a closed form expression when Q̄πi,∗(zt, a

i) is represented as a neural network.
To approximate Equation (41), we instead adopt a Monte Carlo approach. We sample n

samples from q(zt|Ht),

z1
t , z

2
t , ..., z

n
t

iid∼ q(zt|Ht), (42)

and estimate Q̄πi,∗(Ht, a
i) based on the following Equation:

Q̄πi,∗(Ht, a
i) =

∑n
k=1 Q̄πi,∗(z

k
t , a

i)q(zkt |Ht)∑n
l=1 q(z

l
t|Ht)

. (43)

6.5 Learning Objective

The aforementioned latent variable inference models are trained alongside GPL to infer
important latent information for decision-making and use it for action selection. During
execution, the learner has only access to its own observations and past actions. However,
during training, we assume that the learner also has access to the environment state and the
observed teammates’ joint actions to train its modules. Having knowledge of the full state of
the system during training is a common assumption in partially observable environments (Gu
et al., 2021; Papoudakis et al., 2021). Therefore, given a set of interaction experiences,

D = {{(snt , ont , aV,nt , rnt , o
n
t+1)}Tnt=1}

|D|
n=1, we train the models on the following loss function:

LPinf ,Pst,Pag ,Pval(D) = LINFPinf
(D) + LSRPinf∪Pst(D) + LNLLPag (D) + LRLPval(D). (44)

In the above equation, Pinf , Pst, Pag and Pval denote the collection of model parameters for
latent variable inference, state reconstruction, GPL’s agent model and joint action value
models respectively.

While its computation may differ across the latent variable inference model being used,
each of the terms on the right-hand side of Equation (44) fulfil an important role in the
optimisation process. LINFPinf

(D) serves as the loss function that is optimised by the latent

variable inference models to produce representations for decision-making. LSRPinf∪Pst(D) is
the state reconstruction loss, which aligns with previous works that use privileged state
information to train the belief inference model to produce representations that are more
informative of the state (Papoudakis et al., 2021). On the other hand, LNLLPag

(D) and LRLPval(D)
are the negative log likelihood and value-based RL losses which we introduce in Section 4.6 to
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Table 3: Loss functions: A description of the loss functions used for training each method.

Models
Belief Inference

(Pinf )
State Reconstruction

(Pst)
Agent Model

(Pag)
Joint Action Value Model

(Pval)

PF-GPL Eq. (45) Eq. (47) Eq. (15) Eq. (16)
VAE-GPL Eq. (48) Eq. (49) Eq. (15) Eq. (16)
AE-GPL Eq. (50) Eq. (51) Eq. (15) Eq. (16)
GPL-Q – – Eq. (15) Eq. (16)

train GPL for solving open ad hoc teamwork. We provide details regarding the computation
of LINFPinf

(D) and LSRPinf∪Pst(D) across the previously defined belief inference models in the
following sections. In Table 3 we provide a summary of the loss functions utilised for each
method. While details of the remaining loss terms that are based on Equation (15) and
Equation (16) are provided in Appendix E.

6.5.1 Particle-based Belief Models

Belief Inference Loss Function. In the model introduced in Section 6.3, the negative ELBO
loss is defined as a function of the belief model parameters, Pinf = (α, β, δ, ζ). Following
AESMC (Le et al., 2018), Pinf is trained to minimise the negative ELBO defined as:

LELBOPinf
(D) = −

∑
Hn∈D

log

 ∑
uk∈Un

exp(wukTn)

 , (45)

assuming that Un is the collection of particles resulting from applying the belief inference
procedure in Section 6.3.2 to Hn,

Un = BeliefUpdatePinf (Hn). (46)

State Reconstruction Loss Function. The state reconstruction loss is computed based on
the set of particles, Un, computed in Equation (46). Given Un and a state reconstruction
distribution parameterised by Pst = {θ}, the state reconstruction loss function is defined as:

LSRPinf∪Pst(D) = −
∑
Hn∈D

 ∑
uk∈Un

log(qθ(s
n
Tn |s

uk
Tn
, aukTn−1))

 . (47)

In the above equation, we maximise the likelihood of the state information given the state
representation and the teammate predicted action information contained in each particle.

6.5.2 Variational Autoencoder-based Belief Models

Belief Inference Loss Function. The ELBO loss function that we define to train the variational
autoencoder-based belief model is defined below:

LELBOPinf
(D) =−

∑
Hn∼D

EzTn∼qPinf (zTn |Hn)

[
log(pPinf (Bobs(o

n
Tn)|zTn))

+ log((pPinf (aVTn |zTn)))
]

−DKL(qPinf (zTn |Hn)||p(zt)).

(48)
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The distributions involved in the computation of this loss function are defined following the
network architectures described in Section D.2, which are parameterised by Pinf = {α, β, γ}.
To enable backpropagation through the sampling operation on q(zTn |Hn), we use reparame-
terisation tricks that are commonly used in optimising variational autoencoders (Kingma
and Welling, 2013).

State Reconstruction Loss Function. Like in the particle-based inference method, we
define another model parameterised by Pst = {ζ} to parameterise the state reconstruction
distribution, pPst(Bobs(s

n
Tn

)|zTn). Given representations sampled from the encoder, zTn , the
state reconstruction loss function is defined as:

LSRPinf∪Pst(D) = −
∑
Hn∼D

EzTn∼qPinf (zTn |Hn)

[
log(pPst(Bobs(s

n
Tn)|zTn))]. (49)

6.5.3 Representation-based Models

Belief Inference Loss Function. The encoder and decoder are trained to minimise the
following reconstruction loss function:

LRECONSPinf
(D) = −

∑
Hn∈D

(
||BPinf

pred (ρTn)−Bobs(onTn)||2 + log(pPinf (aVTn |ρTn))
)
, (50)

assuming that Pinf = {α, β} are the parameters of the encoder and decoder model introduced
in Section D.3. The first term in Equation (50) ensures the encoder produces representations,
ρTn , containing observed teammate information. The second term enforces ρt to be predictive
of teammates’ actions. As in the ELBO loss for variational autoencoders, the above loss
function enables the encoder to produce representations that are informative of teammates’
behaviour during interaction.

State Reconstruction Loss Function. Similar to the optimisation of our VAE-based
model, we define a state reconstruction model parameterised by Pst = {ζ}. This model is
used to reconstruct the state from the representation produced by the encoder. Both the
autoencoder and the state reconstruction model are then trained to minimise the following
loss function:

LSRPinf∪Pst(D) = −
∑
Hn∈D

||BPinf∪Pst
pred (ρTn)−Bobs(snTn)||2. (51)

7. Partially Observable Open Ad Hoc Teamwork Experiments

In this section, we describe different experiments performed with the methods introduced in
the previous Section. We evaluate the methods in several open ad hoc teamwork tasks under
partial observability. We first start by describing the environments and algorithms used
in our evaluation (Section 7.1). We then present a performance of our algorithms followed
by a reconstruction analysis that seeks to evaluate the performance of the different belief
methods.
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7.1 Experimental Setup

Following, we describe the environments (Section 7.1.1) and the algorithms (Section 7.1.2)
used for our evaluation. Our experimental setup in this section with respect to environment
openness and teammates types follows that of Section 5.1.

7.1.1 Environments

We utilised two of the previously described environments, for which we induce partial
observability by means of different observation functions. Finally, we also incorporate
a new environment for the partial observable case only, namely Penalized Cooperative
Navigation (PCN).

Level-Based Foraging. In LBF we induce partial observability by only allowing the learner
to see objects and teammates within a certain region surrounding the learner’s current grid.
For this particular test setup, we utilised a grid world of size 12 × 12 and only allow the
learner to observe entities within a 5× 5 grid centred in the learner.

Wolfpack. In Wolfpack, partial observability is induced by restricting the learner to
only observe agents and prey whose Manhattan distance is less than a certain value relative
to itself. We set the grid world as a 10× 10 square and limit the learner’s observation to
entities within a Manhattan distance of 3 from itself.

Penalized Cooperative Navigation (PCN). Similar to the cooperative navigation environ-
ment (Tacchetti et al., 2018), multiple players must navigate through a 12× 12 grid world
to simultaneously cover two destination grids to get a reward of 1. However, the learner
is given a −0.2 penalty if it arrives at a destination without other teammates covering the
other. We make reasoning through partial observability a necessity by frequently positioning
the destination grids far away from each other. To avoid penalties, the player must then
reason whether teammates are about to arrive at a destination outside its observation. After
a pair of agents arrive at the destinations, we randomly choose a new pair of destination
grids. Similar to LBF, the learner can only see the destination grids or teammates if they
are inside a 5× 5 region surrounding the learner.

7.1.2 Algorithms

We present here the different algorithms developed based on the belief representation methods
described in Section 6. Each of these algorithms uses GNNs to produce representations that
characterise the latent environment state, which is inputted to the joint action value and
agent model for optimal action-value function estimation. Table 4 provides a summary of
the different algorithms by describing their main components.

Representation-based State Inference (AE-GPL) We utilise an autoencoder architecture,
as presented in Section 6.2, to create the AE-GPL algorithm. AE-GPL learns an embedding
zt that contains information about the teammates’ policies and the environment dynamics.
This embedding zt can then be used for decision-making by the learner. We named this
algorithm Autoencoder GPL (AE-GPL).

Particle-based Belief (PF-GPL) We introduce the particle filter graph-based belief and
policy learning (PF-GPL) algorithm, which utilises the particle-based representation as
presented in Section 6.3. PF-GPL allocates separate representations to model the different
latent variables required for decision-making. We formulate different ablations to identify
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Table 4: Evaluated Belief Inference Algorithms: Belief inference algorithms evaluated in
this work are based on the usage of separate representations for different latent
variables, the addition of state reconstruction loss for training, and the approximate
belief inference method being used.

Models Separate variable State State Inference method
representation reconstruction RNN AE-based Particle-based VAE

GPL-Q X
AE-GPL X X
PF-GPL X X X

VAE-GPL X X

the differences that result from utilising different numbers of particles in the belief inference
of SMC-based methods. We, therefore, run PF-GPL ablations with ten (PF-GPL-10), five
(PF-GPL-5) and one particle (PF-GPL-1) to see the effects of using less and even a single
sampled vector to represent the agent’s belief.

Variational Autoencoder-based Belief (VAE-GPL) Variational Autoencoder GPL (VAE-
GPL) is an algorithm based on the method presented in Section 6.4. VAE-GPL utilises a
variational autoencoder to maintain a distribution of latent variables zt that encodes the
belief about the current state of the system. Note that we also train VAE-GPL to reconstruct
the state information, which we assume to be known during training.

Graph-based Policy Learning (GPL-Q) While it assumes full observability of the state,
GPL-Q can still be used under partial observability. We apply GPL-Q in our experiments
by treating the learner’s observations as input states from the environment. Following the
effectiveness of RNNs for learning policies for POMDPs (Hausknecht and Stone, 2015),
GPL-Q’s RNN-based type inference network should still facilitate the learning of reasonable
policies from o≤t and ai<t. Unlike other evaluated algorithms, GPL-Q is not trained to
reconstruct the state information during training.

Single-agent RL baselines. In addition to the previously described methods, we also
evaluated two single-agent RL baselines. Unlike our proposed methods, these single-agent
RL baselines do not perform any agent modelling or joint action computation. Comparing
these methods can then shed light on the improvements our methods bring.

• Proximal Policy Optimization (PPO): We utilise PPO as a single agent baseline
(Schulman et al., 2017). The original PPO method is intended for fully observable
environments so it does include any method to deal with partially observable environ-
ments. Comparing against such a baseline can provide information regarding the value
of models that infer the unobserved state variables.

• Deep Variational Reinforcement Learning (DVRL): The DVLR baseline is also a single-
agent RL method (Igl et al., 2018), but unlike PPO, it has a method to estimate the
unknown state variables based on the agent’s observations. DVRL utilises sequential
Monte Carlo, with 10 particles. More details of the hyperparameters are given in the
Appendix F.
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Figure 10: Partially observable open ad hoc teamwork results (training). Obtained returns
for all evaluated environments during training. We show the average and 95%
confidence bounds utilising 8 seeds.

7.2 Partially Observable Open Ad Hoc Teamwork Results

The returns obtained by the proposed methods in the partially observable open ad hoc
teamwork experiments are provided in Figure 10. These are the training results, without
generalising to unseen agents. In all three environments, we see that the autoencoder
and variational autoencoder-based methods learn to achieve significantly higher returns
than other methods, closely followed by DVRL. This is particularly true in the cooperative
navigation environment, in which PF-GPL-based methods achieve a return close to zero.
Nonetheless, PF-GPL-based methods improve their returns in LBF and Wolfpack as the
number of particles used during inference increases. This aligns with previous results from
other particle-based methods (Albrecht and Ramamoorthy, 2016), which demonstrates the
need for using a larger number of particles to increase belief representation accuracy. PPO,
while having no mechanism to estimate belief states, has a performance that is comparable to
the other methods, even surpassing the PF-GPL baselines. However, further analysis shows
that PPO lacks generalisation capabilities as its performance degrades when collaborating
with unseen teammates (in Section 7.3).
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Table 5: Partially observable open ad hoc teamwork results (testing): We show the average
and 95% confidence bounds during testing utilising 8 seeds. The data was gathered
by averaging the returns at the checkpoint which achieved the highest average
performance during training. We highlight in bold the algorithm with the highest
average returns.

Algorithm LBF Wolf. Coop.
VAE-GPL 0.99±0.18 27.36±2.9 0.64±0.17
AE-GPL 0.88±0.23 25.62±1.06 0.96±0.11
GPL-Q 1.03±0.15 23.18±1.3 0.10±0.10
PF-GPL-10 0.75±0.09 19.67±2.0 0.02±0.02
PF-GPL-5 0.73±0.12 19.06±1.5 0.03±0.04
PF-GPL-1 0.57±0.11 14.73±1.2 0.05±0.04
DVRL 1.12±0.61 20.26±1.1 0.59±0.12
PPO 0.95±0.36 20.06±1.2 0.42±0.20

The suboptimal performance of PF-GPL in Figure 10 suggests that the proposed graph-
based particle belief representation is not able to generate useful representations for decision-
making. This contrasts with DVRL, which also utilises a particle belief representation,
but is able to achieve higher returns in all environments. We believe that this is due to
the major number of network models used to estimate teammates’ information in PF-
GPL. These additional terms increase the complexity of the network of PF-GPL, which
potentially requires more environment interactions and a higher number of particles to
achieve comparable performance.

We can see that VAE-GPL is the best-performing method in LBF. While GPL-Q,
AE-GPL and DVRL achieved comparable returns. PPO performance, while lower than
VAE-GPL, still surpasses PF-GPL methods. This tendency is maintained in Wolfpack
as can be seen in Figure 10. It is important to note that in both environments, GPL-Q
and PPO achieve comparable performance despite not having models that are specifically
designed for belief inference. In the case of GPL-Q, the RNN-based type inference model still
enables the discovery of important information for decision-making based on the sequence of
observations experienced by the learner. We can view the changing number of teammates
resulting from the learner’s partial observability as another open process, which the learner
can still solve as long as the sequence of observations contains useful information for action
selection. While in the case of PPO, these findings are in line with other works that show
that PPO is able to achieve similar returns when compared to methods specifically tailored
to partially observable problems (Morad et al., 2023).

In contrast to their results in LBF and Wolfpack, GPL-Q and PPO perform poorly in
cooperative navigation. This is because the observations perceived by the learner contains
the least useful information compared to other environments. It is important to note that
the most important information in cooperative navigation is whether another teammate is
positioned nearby another destination grid, which is usually unobserved. As such, methods
with an additional state reconstruction loss will certainly produce better representations for
decision-making compared to GPL-Q and PPO.
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0.6 1.2 1.8 2.4
VAE-GPL
AE-GPL
GPL-Q

PF-GPL-10
PF-GPL-5
PF-GPL-1

DVRL
PPO

IQM

1.0 1.5 2.0

Mean

Normalised Returns

(a) Level-based Foraging

15 20 25
VAE-GPL
AE-GPL
GPL-Q

PF-GPL-10
PF-GPL-5
PF-GPL-1

DVRL
PPO

IQM

15 20 25

Mean

Normalised Returns

(b) Wolfpack

0.0 0.3 0.6 0.9
VAE-GPL
AE-GPL
GPL-Q

PF-GPL-10
PF-GPL-5
PF-GPL-1

DVRL
PPO

IQM

0.0 0.3 0.6 0.9

Mean

Normalised Returns

(c) Cooperative Navigation

Figure 11: Aggregated performance when collaborating with a different number of teammates.
We aggregated the performance of the different algorithms when collaborating
with three and five teammates using the last training checkpoint.

AE-GPL, VAE-GPL and DVRL are the only methods that consistently achieve high
returns in all three environments. In the Cooperative Navigation environment where
reasoning capabilities on unobserved teammates are most important, AE-GPL, VAE-GPL
and DVRL still achieve high returns. AE-GPL and VAE-GPL’s significantly higher returns
than the other methods suggest the importance of using recurrent neural networks for
latent variable inference and observation reconstruction to create useful representations for
decision-making. Other methods that are not equipped with observation reconstruction,
such as GPL-Q, cannot consistently achieve high returns. In the next Section, we perform a
generalisation analysis where we show that GPL-based methods are able to outperform the
other baselines due to the use of agent modelling techniques.

7.3 Generalisation results

Similarly to our generalisation experiments under the fully observable setting, we present
the generalisation capabilities of the agents to different numbers of teammates in Table 5.
Unsurprisingly, methods that achieve low returns during training, such as PF-GPL, will also
achieve subpar performance when generalising to different open processes. However, although
VAE-GPL, and AE-GPL are still the top performers, it seems that none of the methods
outperforms the other. To achieve a more clear picture, we evaluated the performance of
the algorithms for different numbers of teammates and aggregated the results utilising the
IQM metric (Agarwal et al., 2021). We show the results in Figure 11. These results indicate
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Table 6: Unseen teammates evaluation (testing): We show the average and 95% confidence
bounds during testing for the partially observable open ad hoc teamwork utilising
8 seeds. The data was gathered by averaging the returns at the checkpoint which
achieved the highest average performance during training. We highlight in bold
the algorithm with the highest average returns.

Algorithm LBF Wolf. Coop.
VAE-GPL 0.80±0.08 23.32±3.48 0.17±0.15
AE-GPL 0.76±0.05 23.78±1.69 0.24±0.10
GPL-Q 0.77±0.10 21.28±1.58 0.07±0.13
PF-GPL-10 0.61±0.10 18.12±2.38 0.02±0.03
PF-GPL-5 0.63±0.06 15.85±0.68 0.004±0.02
PF-GPL-1 0.61±0.10 12.88±1.36 0.002±0.03
DVRL 0.07±0.05 19.29±0.96 -0.11±0.09
PPO 0.03±0.03 18.43±0.89 -0.24±0.12

that VAE-GPL and AE-GPL are able to achieve higher returns when collaborating with a
different number of teammates.

Finally, we evaluated the generalisation capabilities of the methods to unseen teammates.
To achieve this, we included new teammates that were not seen during training and evaluated
the performance of each of the methods. More information about the generated teammates
can be found in Appendix F.2. Table 6 summarises the obtained results. This evaluation is a
critical point, as collaborating with unseen teammates is one of the main requirements of ad
hoc teamwork. It can be seen that methods that have a way of estimating other agent types
and their actions obtain higher returns. While DVRL and PPO achieved comparable returns
in the previous evaluation, they fail to generalise to teammates that are outside of their
training distribution. Similarly, PF-GPL methods are not able to achieve high returns in any
of the evaluated environments. On the other hand, VAE-GPL and AE-GPL are still able to
achieve high returns in all environments. This highlights the advantage of using recurrent
neural networks for latent variable inference and observation. But more importantly the
need for type inference and agent modelling for optimal action selection in ad hoc teamwork.

7.4 Reconstruction Results

In this section, we evaluate the reconstruction capabilities of the methods proposed in
Section 7.1.2. We do this evaluation for two reasons. First, we want to examine whether the
methods are capable of representing useful information for decision-making. Second, we also
aim to elucidate which learned information is most useful in improving the returns of the
learner. This evaluation is done on the environments defined in Section 7.1.1.

The reconstruction evaluation was done over a single episode. We collect an episode of
interaction data H = {ot, at}Tt=1, by executing the policy resulting from the algorithm with
the highest training returns in each respective environment. At every training checkpoint,
we utilise the single-episode interaction data to evaluate each method’s reconstruction
capabilities for different measures such as the environment state, teammates’ joint actions,
and teammates’ existence.
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Figure 12: Action reconstruction accuracy. We evaluate the log probability between the
predicted actions and the true actions taken by the teammates. We ran the
inference modules for each of the algorithms over a fixed episode in which actions
were predetermined. We evaluated the log probability n times over the fixed
episode for each checkpoint and report the mean and 95% confidence bounds.

The resulting reconstruction performance for teammates’ joint actions, state reconstruc-
tion, and teammates’ existence reconstruction are provided in Figure 12, Figure 13, and
Figure 14 respectively. To evaluate action reconstruction, at each checkpoint we report
the average log likelihood of all teammates’ joint actions, which includes teammates that
are not observed by the learner. We then evaluate the state reconstruction capabilities of
the methods by reporting the log probability they assign to the unobserved state of the
environment. Assuming existing teammates are denoted by a binary value of one while
non-existent teammates are assigned a value of zero, we report the sum of the squared error
between the predicted and real teammate existence for all agents.

Among the evaluated measures, the capability of the methods in terms of teammate
action prediction is the best indicator of their achieved returns during training. This is
mainly because a method incapable of accurately predicting the teammates’ joint actions
will lead the learner to produce worse action value estimates. Following its significantly
worse action prediction performance compared to other methods, it is unsurprising to see
PF-based methods’ failure in achieving high returns during training. Meanwhile, GPL-Q,
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Figure 13: State reconstruction accuracy. We evaluate the log probability between the
predicted state and the true state of the system. We ran the inference modules
for each of the algorithms over a fixed episode in which actions were predetermined.
We evaluated the log probability n times over the fixed episode for each checkpoint
and report the mean and 95% confidence bounds.

AE-GPL, and VAE-GPL, produce higher returns resulting from having better teammate
joint action prediction.

An improved state reconstruction capability of a method also leads towards improved
returns during training. While the state reconstruction performance of the methods under
this measure are similar to each other in LBF and FortAttack, AE-GPL is significantly
better than other methods in cooperative navigation. Improving state prediction capabilities
in cooperative navigation is crucial for producing high returns, since estimating whether
teammates are close to an unobserved destination grid is the only way for the learner to
avoid being penalised. As a result, AE-GPL outperforms other methods in cooperative
navigation even if it has similar performances with GPL-Q and VAE-GPL in terms of action
reconstruction.

Finally, the results suggest that reconstructing agent existence is the least important for
producing high returns during training. PF-based methods significantly achieve the lowest
squared error for this particular measure. Despite its ability to very accurately predict
the existence of agents, its inability to accurately predict the state and joint actions of
teammates prevents PF-based methods from achieving higher returns.

49



Rahman, Carlucho, Höpner and Albrecht
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Figure 14: Existence reconstruction accuracy. We measure how accurately the belief infer-
ence network can predict the existence of other agents in the environment. We
calculated the squared error between the true number of existent agents in the
environment (

∑
et) and the estimation. We ran the inference modules for each

of the algorithms over a fixed episode in which actions were predetermined. We
evaluated the log probability n times over the fixed episode for each checkpoint
and report the mean and 95% confidence bounds.

8. Conclusions

In this work, we addressed the challenging problem of open ad hoc teamwork, both under
full and partial observability. We first addressed the open ad hoc teamwork problem under
full observability. To this end, we introduced different algorithms based on our proposed
framework Graph-based Policy Learning (GPL). GPL consists of three main components:
a type inference model, an agent model and a joint-action value network. We evaluated
GPL in three different environments, in which the agent has access to the full state of the
environment, and compared it against a set of single-agent RL and MARL baselines. Our
results show that our proposed approach was able to learn an optimal policy, successfully
outperforming all baselines. Further analysis showed that the agent modelling module in
GPL plays a crucial role in the learner’s performance. Our analysis demonstrated that the
joint action value model allows the learner to identify, and emulate, effective behaviour
directly from other well-performing teammates.
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We then addressed the problem of open ad hoc teamwork under partial observability.
We explored how different methodologies could provide a belief estimate of the state.
Specifically, we evaluated three different methodologies, i) autoencoders architectures, ii)
variational autoencoders, and iii) particle belief methods. Similar to the full observability
case, we evaluate our proposed algorithms in three different environments in which agents
have only partial access to the state of the system, and compared it against state-of-the-
art single-agent baselines, PPO and DVRL. The results obtained show that variational
autoencoder methods are able to outperform the other baselines in LBF and Wolfpack, while
autoencoder-based methods were able to surpass the performance of other belief inference
methods for Cooperative Navigation. Our reconstruction analysis shows that methods
capable of improved accuracy in predicting the teammate’s actions are able to achieve higher
returns, while an improved state estimation, such as in autoencoder methods, explains the
difference in performance for the Cooperative Navigation environment. While the single
agent RL baselines were able to achieve comparable results in the training environment, our
generalisation evaluation showed that these methods fail to generalise to agents that are
outside of the training distribution. On the other hand, our proposed methods based on
autoencoder architectures were able to achieve higher returns.

In future work, we propose to extend GPL and its extensions to problems with continuous
actions, as it will allow the learner to tackle a more diverse set of problems (Carlucho et al.,
2022). Another issue that needs to be investigated is the scalability of the methods to
larger groups of agents. This is an open research question in the multi-agent literature,
especially in MARL (Gronauer and Diepold, 2022; Gogineni et al., 2023). Additionally, in
our present work, the learner is only trained and evaluated in settings where teammates
have a fixed policy. However, this assumption might not hold in real-world environments as
the team might have agents that are also learning or updating their policy over time. This
can potentially cause non-stationarity issues, similar to what occurs in MARL (Papoudakis
et al., 2021). This issue will require further adaptability from our agent, as its type inference
method will have to adapt to these changes during learning. An interesting approach in this
regard is to identify from interactions with a teammate whether its policy is adequately
represented by the types known to the learner (Albrecht and Ramamoorthy, 2015).

More work is also needed to efficiently estimate beliefs in the partially observable setting.
In a partially observable open stochastic Bayesian game (PO-OSBG), not all necessary
information may be available in the observation. Therefore, it may be possible to design
learners that take specific actions to improve the accuracy of their belief states, or that
try to communicate with other agents in the team to gather additional information about
the true state of the environment. Furthermore, since our experiments indicate that the
proposed belief inference models are performing well in inferring different types of latent
variables, exploring a combination of our proposed approaches to improve the inference of
all important latent variables for decision-making is also a promising research direction.
Finally, one area that is worth exploring in future works is how other learning algorithms,
such as PPO, could be leveraged to achieve better ad hoc agents. Our initial results show
that PPO is an effective baseline, even when utilising a simple MLP network, which presents
interesting opportunities for future research.
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Appendix A. GPL Pseudocode Under Full Observability

Before we describe the full GPL pseudocode, we first define important functions that we will
use in the pseudocode. First, we denote the observation and hidden vector preprocessing
method described in Section C.1 as the PREPROCESS function. Furthermore, we denote
the action-value and joint-action value computation through Equation (14) and (8) as
the MARGINALIZE and JOINTACTEVAL functions respectively. Based on these
functions, we define the QV function that preprocesses the input and computes the action-
values for given joint-action values and agent networks. The computations in QV is provided
in Algorithm 2.

Algorithm 2 GPL Action Value Computation

1: Input: state s,
joint-action value model parameters (αQ, β, δ),
agent model parameters (αq, η, ζ),
agent model LSTM hidden vectors ht−1,q,
joint-action value model LSTM hidden vectors ht−1,Q

2: function QV(s, αQ, αq, β, δ, η, ζ, ht−1,Q, ht−1,q)
3: B, θQ, cQ ← PREPROCESS(s, ht−1,Q)
4: B, θq, cq ← PREPROCESS(s, ht−1,q)
5: θ′Q, c

′
Q ← LSTMαQ(B, θQ, cQ)

6: θ′q, c
′
q ← LSTMαq(B, θq, cq)

7: ∀j, n̄j ← (RFMζ(θ
′
q, c
′
q))j

8: ∀j, qη,ζ,αq(.|st)← Softmax(MLPη(n̄j))

9: ∀j, aj , Qjβ,αQ(aj |Ht)← MLPβ(θ
′j
Q, θ

′i
Q)(aj)

10: ∀j, aj , ak,
Qj,kδ,αQ(aj , ak|Ht)← MLPδ(θ

′j
Q, θ

′k
Q , θ

′i
Q)(aj , ak)

11: Compute Q̄(Ht, a
i) using Equation (14)

12: Q̄(H, .)←MARGINALIZE(

qη,ζ,αq(.|st), Qβ,αQ(.|Ht), Qδ,αQ(., .|Ht)

)
13: return Q̄(H, .), (θ′Q, c

′
Q), (θ′q, c

′
q)

14: end function

Aside from these functions, we define QJOINT and PTEAM, which output is required
to compute the loss functions, Lβ,δ and Lη,ζ , in Equation (16) and (15). QJOINT is a
function that computes the predicted joint action value for an observed state and joint
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actions. On the other hand, PTEAM computes the joint teammate action probability at a
state. Both QJOINT and PTEAM are further defined in Algorithm 3 and 4.

Algorithm 3 GPL Joint-Action Value Computation

1: Input: state s, observed joint action a,
joint-action value model parameters (αQ, β, δ),
joint-action value model LSTM hidden vectors ht−1,Q

2: function QJOINT(s, a, αQ, β, δ, ht−1,Q)
3: B, θQ, cQ ← PREPROCESS(s, ht−1,Q)
4: θ′Q, c

′
Q ← LSTMαQ(B, θQ, cQ)

5: ∀j, aj , Qjβ,αQ(aj |Ht)← MLPβ(θ
′j
Q, θ

′i
Q)(aj)

6: ∀j, aj , ak,
Qj,kδ,αQ(aj , ak|Ht)← MLPδ(θ

′j
Q, θ

′k
Q , θ

′i
Q)(aj , ak)

7: Compute Q(s, a) using Equation (8)
Q(s, a)← JOINTACTEVAL(

a,Qβ,αQ(.|Ht), Qδ,αQ(., .|Ht)

)
8: return Q(s, a)
9: end function

Algorithm 4 GPL Teammate Action Probability Computation

1: Input: state s, observed joint actions a,
agent model parameters (αq, η, ζ),
agent model LSTM hidden vectors ht−1,q

2: function PTEAM(s, a, αq, η, ζ, ht−1,q)
3: B, θq, cq ← PREPROCESS(s, ht−1,q)
4: θ′q, c

′
q ← LSTMαq(B, θq, cq)

5: ∀j, n̄j ← (RFMζ(θ
′
q, c
′
q))j

6: ∀j, qjη,ζ,αq(.|s)← Softmax(MLPη(n̄j))

7: qη,ζ(a
−i|s, θ−i)←∏

j∈−i q
j
η,ζ(a

j |s)
8: return qη,ζ(a

−i|s, θ−i)
9: end function

Using the functions we previously defined, we finally describe GPL’s training algorithm.
GPL collects experience from parallel environments through the modified Asynchronous
Q-Learning framework Mnih et al. (2016) where asynchronous data collection is replaced
with a synchronous data collection instead. Despite this, it is relatively straightforward to
modify the pseudocode to use an experience replay instead of a synchronous process for data
collection. As in the case of existing deep value-based RL approaches, we also use a separate
target network whose parameters are periodically copied from the joint action value model
to compute the target values required for optimising Equation 16. We finally optimise the
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model parameters in the pseudocode to optimise the loss function provided in Section 4.6
using gradient descent. GPL’s training process is finally described in Algorithm 5.

Appendix B. GPL Pseudocode Under Partial Observability

This section focuses on providing pseudocodes that illustrate the way the learner updates its
belief representations alongside the usage of belief representations to estimate the learner’s
optimal action-value function under partial observability. Note the general training and
decision-making procedure under partial observability highly resembles their respective
counterparts under full observability provided in Algorithm 5. Therefore, we avoid rewriting
the entire training and decision-making pseudocode by highlighting the main differences
between instances of Algorithm 5 under the partial and fully observable scenarios.

Instances of Algorithm 2 in partial and fully observable environments have three main
differences. The first two differences are related to how action values are computed following
Algorithm 2. The final difference is then related to the additional loss functions to train the
belief inference models under partially observable scenarios.

First, the action value computation in fully and partially observable scenarios differ
in how to input representations for the joint action value and agent model are computed.
Note that in the third and fourth lines under the function name in Algorithm 2, under full
observability input representations for these models are computed via an LSTM. By contrast,
input representations for the joint action value and agent model are computed via the belief
inference model that we have introduced in Section 6.1. This process of computing the input
representation given our belief inference models is provided in Algorithm 6. Therefore, we
replace the LSTM-based representation evaluation with the belief inference models that
have been introduced previously for decision-making under partial observability.

The second difference between action value computation under partial and fully observable
scenarios is the way inferred representations are computed for action value computation.
In Algorithm 2, this process is illustrated by the lines following the calls to the LSTM.
However, under partial observability the action value computation depends on the belief
inference model being used. We illustrate the way different belief inference models use their
outputted representations for decision-making in Algorithm 8. Note that regardless of the
belief inference method, the way an action value function is computed for a single sampled
representation is the same, which is indicated by Algorithm 7.

Finally, the last difference between the pseudocode for training and decision making
under full and partially observable scenarios is the loss function. Under full observability,
we do not have loss functions associated to belief inference. However, we now incorporate
this loss function for training the belief inference model according to the losses defined in
Section 6.5. This results in an additional optimised term that we add to algorithm 5 to train
the belief inference model.

Appendix C. GPL Overview

C.1 Input Preprocessing

GPL’s input preprocessing step ensures that a type vector is computed solely based on
relevant information associated with the teammate which it characterises. This preprocessing
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Algorithm 5 GPL Training
1: Input: Number of training steps T , time between updates tupdate, time between target network updates
ttarg update.

2: Initialize the joint-action value model parameters, αQ, β, δ.
3: Initialize the agent model parameters, αq, η, ζ.
4: Create target joint-action value networks.

α′Q, β
′, δ′ ← αQ, β, δ

5: θQ, cQ, θ
targ
Q , ctargQ ← 0,0,0,0

6: θq, cq ← 0,0
7: dαQ, dαq, dβ, dδ, dη, dζ ← 0,0,0,0,0,0
8: Observe s from environment
9: for t = 1 to T do

10: hQ, hq, h
targ
Q ← (θQ, cQ), (θq, cq), (θ

targ
Q , ctargQ )

11: Q̄(H, .), h′Q, h
′
q ← QV(s, αQ, αq, β, δ, η, ζ, hQ, hq)

12: Sample action according to the learning algorithm being used,

ait ∼

{
eps-greedy(ε, Q̄(H, .)), if Q-Learning

pSPI(Q̄(H, .), τ) if SPI

13: Execute ai and observe a, r and s′.
14: Compute predicted joint-action value for at,

Qβ,δ,αQ(H, a)← QJOINT(s, a, αQ, β, δ, hQ)

15: Compute the action-value of the next state using the target network.

Q̄′
(
H, ai

)
, htargQ , ← QV(s′, α′Q, αq, β

′, δ′, η, ζ, htargQ , h′q)

16: Compute target value for updating the joint-action value model with,

y (r,H ′) = r + γmaxaiQ̄
′ (H ′, ai) ,

if Q-Learning is used, or

y (r,H ′) = r + γ
∑
ai pSPI(a

i|H ′)Q̄′
(
H ′, ai

)
,

if using SPI.
17: Compute predicted action probabilities of teammates using the agent models,

qη,ζ,αq (a−i|s, θ−i)← PTEAM(s, a, αq, η, ζ, hq)

18: Using Qβ,δ,αQ(Ht, at), y (rt, Ht+1), and qη,ζ,αq (a−i|s, ai), compute Lζ,η,αq and Lβ,δ,αQ with Equa-
tion (15) and (16).

19: Accumulate parameter gradients for updates

dαQ = dαQ +∇αQLβ,δ, dαq = dαq +∇αqLη,ζ
dβ = dβ +∇βLβ,δ, dδ = dδ +∇δLβ,δ
dη = dη +∇ηLη,ζ , dζ = dζ +∇ζLη,ζ

20: if t mod tupdate = 0 then
21: Update αQ, αq, β, δ, η, ζ using gradient descent based on dαQ, dαq, dβ, dδ, dη, dζ.
22: dαQ, dαq, dβ, dδ, dη, dζ ← 0,0,0,0,0,0
23: end if
24: if t mod ttarg update = 0 then
25: α′Q, β

′, δ′ ← αQ, β, δ
26: end if
27: (θQ, cQ), (θq, cq), s← h′Q, h

′
q, s
′

28: end for
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Algorithm 6 Belief Inference

1: Input: Observation received by learner ot,
The learner’s previous action ait−1,
The belief inference algorithm, alg ∈ {PF, AE, VAE},
Representations resulting from previous step,

ρt−1 =

{
{
(
aukt−2, s

uk
t−1, θ

uk
t−1, w

uk
t−1

)
|uk ∈ Ut−1}, if alg = PF

(ct−1, ht−1), if otherwise

2: function BELIEF INFERENCE(ot, a
i
t−1, alg, ρt−1)

3: if alg = PF then
4: With wt−1 = {wukt−1|uk ∈ ρt−1}, sample K particles from ρt−1,

Ūt−1 = {u1, u2, ..., uK},

with,

u1, u2, ..., uK
i.i.d.∼ Categorical(Softmax(wt−1))

5: for all uk ∈ Ūt−1 do
6: aukt−1 ∼ qα(aukt−1|sukt−1, θ

uk
t−1, a

i
t−1, ot) {Action Inference}

7: sukt ∼ qβ(sukt |sukt−1, a
uk
t−1, a

i
t−1, ot) {State Inference}

8: θukt = fδ(s
uk
t , θ

uk
t−1, a

uk
t−1, a

i
t−1, ot) {Type Update}

9: Compute wukt−1,α and wukt−1,β following Equation 35 and Equation 36.

10: wukt = log(qζ(ot|sukt , aukt−1)) + wukt−1,β + wukt−1,α {Particle Weight Update}
11: end for
12: Ut = {(aukt−1, s

uk
t , θ

uk
t , wukt )|uk ∈ Ūt−1}

13: Return: Ut, Ut
14: else
15: if alg = VAE then
16: µt,Σt, (ct, ht) = Encoderα(ait−1, ot, ρt−1) {Based on Appendix D.2}
17: Sample K representations based on the parameters outputed by the encoder,

Zt = {(z1, p(z1|µt,Σt)), (z2, p(z2|µt,Σt)), ..., (zK , p(zK |µt,Σt))},

such that,

z1, z2, ..., zK
i.i.d.∼ N (µt,Σt).

18: Return: Zt, (ct, ht)
19: else
20: zt, (ct, ht) = Encoderα(ait−1, ot, ρt−1) {Based on Appendix D.3}
21: Return: zt, (ct, ht)
22: end if
23: end if
24: end function
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Algorithm 7 Single Sample Action Value Computation Under Partial Observability

1: Input: Input representation ρ,
joint-action value model parameters (Pval),
agent model parameters (Pag)

2: function QV PART(ρ, Pval, Pag)
3: ∀j, n̄j ← (RFMPag(ρ))j
4: ∀j, qPag(.|ρ)← Softmax(MLPPag(n̄j))

5: ∀j, aj , QjPval(a
j |ρ)← MLPPval(ρ

j , ρi)(aj)

6: ∀j, aj , ak,
Qj,kPval(a

j , ak|ρ)← MLPδ(ρ
j , ρk, ρi)(aj , ak)

7: Compute Q̄(ρ, ai) using Equation (14)
8: Q̄(ρ, .)←MARGINALIZE(

qPAg(.|ρ), QPV al(.|ρ)), QPval(., .|ρ)

)
9: return Q̄(ρ, .)

10: end function

step starts by separating the observed state features associated with different agents into an
agent feature input batch, x. All vectors in the agent feature input batch are subsequently
concatenated with the remaining state features that are not associated with any agent, u, to
create an input batch B. This preprocessing step is illustrated in Figure C.2.

To provide a concrete example of this first preprocessing step, consider a pickup soccer
environment. Example agent features that are included in x are the position and orientation
features which values are different for each agent. In contrast, example features in u is the
location of the ball, which value is shared between the different agents in the environment.
Using B as input to the type inference model ensures that a player’s type only depends on
its own trajectory when moving around the pitch.

C.2 Type Computation and Output Postprocessing

The input batch B resulting from the preprocessing step is presented into the RNN-based
type inference model to update teammate type vectors from previous timesteps. In this
work, we particularly use an LSTM as the type inference model. The LSTM-based type
update is illustrated on the left side of Figure C.2.

After the update process, additional processing steps are required to ensure only type
vectors of existing agents are used in GPL’s optimal action value estimation. Between
subsequent timesteps, GPL removes the type vectors of teammates that are removed from
the environment following environment openness. On the other hand, type vectors of
teammates that are added to the environment are set to the default value of zero vectors.

We formally define this additional LSTM output processing step with Equation 52.
Assuming it and dt correspond to the sets of added and removed agents at time t, frem
removes the states associated to agents leaving the environment while fins inputs a zero

57



Rahman, Carlucho, Höpner and Albrecht

Algorithm 8 Action Value Computation Under Partial Observability

1: Input: The belief inference algorithm, alg ∈ {PF, AE, VAE},
Joint-action value model parameters (Pval),
Agent model parameters (Pag),
Representations resulting from the belief inference model,

ρt =


{
(
aukt−1, s

uk
t , θ

uk
t , wukt

)
|uk ∈ Ut}, if alg = PF

{(z1, p(z1|µt,Σt)), ..., (zK , , p(zK |µt,Σt))}, if alg = VAE

zt, if otherwise

2: function QV P OBS(alg, ρ, Pval, Pag)
3: if alg = AE then
4: return QV PART(ρt, Pval, Pag)
5: else
6: if alg = PF then
7: for all uk ∈ ρt do
8: xuk ← CONCATENATE(eukt , s

uk
t , θ

uk
t )

9: Q̄(eukt , s
uk
t , θ

uk
t , .)← QV PART(xuk , Pval, Pag)

10: end for

11: return
∑

uk∈Ut

(
exp(wukt )∑

uj∈Ut exp(w
uj
t )

)
Q̄πi,∗(e

uk
t , s

uk
t , θ

uk
t , .)

12: else
13: for all (zk, p(zk|ρt,Σt)) ∈ ρt do
14: Q̄(zk, .)← QV PART(zk, Pval, Pag)
15: end for

16: return

∑
(zk,p(zk|ρt,Σt))∈ρt Q̄(zkt , .)p(zk|ρt,Σt)∑

(zk,p(zk|ρt,Σt))∈ρt p(zk|ρt,Σt)

17: end if
18: end if
19: end function

vector for the states associated to agents joining the environment. An example of this
preprocessing step is illustrated by the computational steps occurring between two LSTM
blocks in Figure C.2.

Prep(θt, ct) = fins(frem(θt, ct, dt), it) (52)
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(b) LSTM hidden vector preprocessing.

Figure 15: The figure shows (a) the preprocessing of observation information into input for
the GPL algorithm along with (b) the additional processing steps done to the
agent embedding vectors to handle environment openness. Part (b) shows an
example processing step where agent 3 is removed from the environment and two
new agents join the environment.

Proof [Proof of Equation 14] By substituting Equation 8 and 13 into Equation 6, we can
derive the following expression:

Q̄πi(st, a
i
t) = Ea−it ∼π−i(.|st,θ−it )

[
Qπi(st, a)

∣∣∣∣ai = ait

]
=

∑
a−i∈A−i

Qπi(st, a)π−i(a−i|st, θ−it )

=
∑

a−i∈A−i
(
∑
aj∈Aj

Qjβ(aj |st) +
∑

aj∈Aj ,ak∈Ak

Qj,kδ (aj , ak|st))qζ,η(a−i|st, ai)

= Qiβ(ait|st) +
∑

aj∈Aj ,j 6=i

(
Qjβ(aj |st) +Qi,jδ (ait, a

j |st)
)
qζ,η(a

j |st)

+
∑

aj∈Aj ,ak∈Ak,j,k 6=i

Qj,kδ (aj , ak|st)qζ,η(aj |st)qζ,η(ak|st).

(53)

Appendix D. Input Preprocessing and Model Architecture for Methods
Addressing Partial Observability

This section details the preprocessing steps and latent variable inference model architectures
designed for estimating the learner’s optimal action-value function. We structure this section
in terms of the different latent variable inference models defined in Section 6.1.

59



Rahman, Carlucho, Höpner and Albrecht
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Figure 16: Preprocessing Under Partial Observability. An illustration of the preprocess-
ing step assuming that at most 4 agents exists in the environment. In this
visualization, unobserved teammates are visualised by the dashed circles. Our
preprocessing method assigns a zero vector as personal agent features to team-
mates that are unobserved by the learner.

D.1 Particle-based Belief Inference

Input Preprocessing. To preprocess the learner’s observations in partially observable envi-
ronments, we assume knowledge over the set of agents that exists in the environment, N .
Based on the learner’s observation, for each agent in N we also assume access to their ID,
personal features, and visibility in the observation. Finally, the learner also remembers the
action which it has executed in the previous timestep ait−1.

The aforementioned knowledge is subsequently preprocessed into a set of feature vectors
for belief updates. For each i ∈ N , their ID, personal features, and visibility in the observation
are concatenated as their personal agent features, xi. The remaining global information not
associated to any agent (u) is subsequently concatenated to the personal agent features to
finally form an observation batch for learning, Bobs. This preprocessing step is illustrated in
Figure 16.

Joint Action Inference Models. The proposal and target action distribution for joint
action inference are implemented as networks with similar architecture. The only difference
is that the proposal action distribution includes ot and ait−1 as its input. Formally, the input
for the proposal network and for the target network are defined as follows:

Din =

{
Concatenate(eukt−1, s

uk
t−1, θ

uk
t−1), if target distribution

Concatenate(eukt−1, s
uk
t−1, θ

uk
t−1, Bobs, a

i
t−1), otherwise.

(54)

The network architecture to compute the proposal and target action distribution subsequently
evaluates the joint action probability distribution as:

pα(at|Din) =
∏
j∈N

pα(aj |Din), (55)
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with,

n̄j = (GNNα(Din))j ,

pα(aj |Din) = Softmax(MLPα(n̄j))(a
j).

(56)

Assuming that αp and αt are the parameters of the proposal and target action distribu-
tion respectively, our implementation uses separate neural networks for estimating these
distributions, such that α = (αp, αt).

Existence and State Inference Models. As in the case with joint action inference models,
input for the proposal and target distributions in existence and state inference is derived
from concatenating all the necessary information as defined below:

Din =

{
Concatenate(eukt−1, s

uk
t−1, a

uk
t−1), if target distribution

Concatenate(eukt−1, s
uk
t−1, a

uk
t−1, Bobs, a

i
t−1), otherwise.

(57)

For existence inference, we assume a unique integer index assigned to each agent in N ,
where the index assigned to j ∈ N is denoted as jid. Subsequently, both the target and
proposal distribution are implemented as a neural network which computes agents’ existence
in the following manner:

pβ(eukt |Din) =
∏
j∈N

pβ(euk,jt |e<jidt , D<jid
in ), (58)

with,

n̄(j) =
∑

{k|kid<jid}

MLPα(Concatenate(ekt , D
k
in)),

Ejin = Concatenate(ejt−1, D
j
in, n̄(j)),

pβ(euk,jt = 1|e<jidt , D<jid
in ) = Sigmoid(MLPα(Ejin)).

(59)

This autoregressive existence inference technique resembles GraphRNN (You et al., 2018),
which is a generative model that generates graphs with varying numbers of nodes in an
autoregressive fashion.

For state inference, both the proposal and target distributions are represented as multi-
variate normal distribution with a diagonal covariance matrix, N (µβ,Σβ), which parameters
are evaluated by neural networks following this expression:

µβ(Din) = MLPµβ(Din), (60)

Σβ(Din) = Softplus(MLPΣ
β (Din)) (61)

In our implementation, the target and proposal distribution for teammate existence and
state inference are implemented as separate models which parameters are denoted as βt and
βp respectively.

Type Update Network. We implement the type update network as an LSTM which
accounts for agents’ previous types and recently inferred state representation and actions
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to compute their respective types. The type update process in the type update network is
provided in the following expression:

cukt , h
uk
t = LSTMδ(Din, c

uk
t−1, h

uk
t−1), (62)

θukt = MLPδ(c
uk
t ), (63)

with cukt−1 and hukt−1 being the cell and hidden state that represents the sequence of previously
inferred state and type representations. The input to the LSTM model is subsequently
defined below:

Din = Concatenate(sukt , θ
uk
t−1, a

uk
t−1). (64)

Observation Likelihood Model. We assume that the observation vector that we reconstruct
is the preprocessed data vector, Bobs. Since Bobs is a collection of continuous vectors, we use
a multivariate normal distribution, N (µζ ,Σζ), which parameters are computed as defined
below:

µζ(Din) = MLPµζ (Din), (65)

Σζ(Din) = Softplus(MLPΣ
ζ (Din)), (66)

with the input to this model defined as:

Din = Concatenate(sukt , a
uk
t−1). (67)

D.2 Variational Autoencoder-based Belief Inference

Given the observations from the environment, ot, we first preprocess them to obtain the
vector Bobs. This preprocessing step is similar as the one done in particle-based methods
which we detail in Appendix D.1. Then, at every timestep, Bobs is used as input to the
encoder architecture to compute the distribution over latent variables zt. Furthermore, Bobs
also acts as the information which will be reconstructed by the decoder. The architecture of
the encoder and decoder is provided below.

Encoder Network The encoder network is implemented as an LSTM which receives the
learner’s preprocessed observation, Bobs, as input. It subsequently produces the mean and
covariance matrix for the variational parametric distribution following this expression:

µt = MLPαµ(ct), (68)

Σt = MLPαΣ(ct), (69)

where,

ct, ht = LSTMα(Bobs, ct−1, ht−1), (70)

with ct−1 and ht−1 being the LSTM’s cell and hidden state that represents the sequence of
previous observations.

Decoder Network. Since the role of the decoder is to reconstruct the information observed
by the learner, we train the decoder to reconstruct the learner’s observations alongside
predicting its observed teammates’ actions. The decoder network subsequently outputs both
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the likelihood of Bobs alongside the likelihood of observed teammates’ actions. Since Bobs is
a collection of continuous vectors, we compute the likelihood of Bobs based on a multivariate
normal distribution, N (µβ,Σβ), which parameters are computed as defined below:

µβ(zt) = MLPµβ(zt), (71)

Σβ(zt) = Softplus(MLPΣ
β (zt)), (72)

assuming zt is sampled from the variational parametric distribution outputted by the learner.

On the other hand, the part of the decoder that predicts the likelihood of teammates’
actions has a similar implementation as the joint action inference model for the particle-based
approach in Section D.1. Given zt, the decoder computes the likelihood of observed agents’
actions using a GNN following this equation:

pγ(aVt |zt) =
∏
j∈V

pγ(aj |zt), (73)

assuming V ⊆ N denotes the set of visible teammates and with,

n̄j = (GNNγ(zt))j ,

pγ(aj |zt) = Softmax(MLPγ(n̄j))(a
j).

(74)

D.3 Autoencoder-based Inference

Given input data Bobs which is obtained in a similar way as the VAE-based inference model,
the encoder outputs a representation ρt that is defined as the following:

ρt = MLPα(ct), (75)

where,

ct, ht = LSTMα(Bobs, ct−1, ht−1), (76)

and ct and ht are the cell and hidden states of the LSTM. The interaction data gathered
by the learner is then used to train the encoder’s parameters to produce ρt that contains
important information regarding the learner’s interaction experience.

The training process utilises a decoder network to produce ρt that is representative of
the learner’s interaction experience. The decoder network receives ρt as input and is trained
to reconstruct the learner’s current observation alongside predicting the observed teammates’
previous joint actions. Given ρt, the reconstructed observation outputted by the decoder is
denoted by:

Bpred(ρt) = MLPβ(ρt). (77)

On the other hand, the part of the decoder that predicts teammates’ joint actions is similar
to the action prediction part of the VAE’s decoders defined in Equation 73. Assuming that
the parameters of this model is denoted by γ, the only difference is that this model receives
ρt as input rather than zt.
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Appendix E. Agent and Joint Action Value Modelling Learning Under
Partial Observability

In this section, we describe the loss functions to train GPL’s agent and joint action value
modelling components under partial observability. While the details of the loss functions
depend on the latent variable inference being used, all loss functions are based on GPL’s
optimised loss functions described in Equation 15 and 16. Details of the agent and joint
action value modelling losses for each latent variable inference model are provided in the
following sections.

E.1 Particle-based Belief Inference

Agent Modelling Loss Function. While other methods use separate models for agent
modelling and latent variable inference, the target action distribution estimation model,
pαt(a

uk
t |eukt , sukt , θukt ), is reused for agent modelling when using particle-based belief models.

This reuse is motivated by how GPL’s agent modelling process introduced in Section 4.4
aims to estimate the target action distribution in the first place. Therefore, the negative log
likelihood loss is computed by assuming Pag = {α}. The negative log likelihood loss is then
defined as:

LNLLPag (D) = −
∑
Hn∈D

 ∑
uk∈Un

log
(
qPag(a

V,n
Tn
|eukTn , s

uk
Tn
, θukTn)

) , (78)

where the joint action log likelihood is only evaluated over observed teammates’ joint actions.
Reinforcement Learning Loss Function. We assume that the CG-based model used in

action value computation defined in Section 6.3.3 is parameterised by η such that Pval = {η}.
Assuming A−V denotes the set of possible joint actions of unobserved agents, the CG-based
joint action value model is then trained to estimate the optimal joint action value function
by optimising:

LRLPval(D) =
∑
Hn∈D

 ∑
uk∈Un

(
exp(wukTn)

2
∑

uj∈Un exp(w
uj
Tn

)

)(
yPval(uk, a

V,n
Tn

)− y(u′k)
)2

 , (79)

where,

yPval(uk, a
V,n
Tn

) =
∑

a−V ∈A−V
QPval(e

uk
Tn
, sukTn , θ

uk
Tn
, aVTn , a

−V )pα(a−V |eukTn , s
uk
Tn
, θukTn), (80)

is the estimated joint action value of agents that are visible to the learner at Tn based
on the contents of particle uk. Specifically, QPval(e

uk
Tn
, sukTn , θ

uk
Tn
, aVTn , a

−V ) is computed via

Equation 8 while pα(a−V |eukTn , s
uk
Tn
, θukTn) is evaluated based on Equation 13.

The target value for particle uk is then defined based on u′k, which is the particle resulting

from updating uk based on onTn+1 and ai,nTn according to Section 6.3.2 excluding the particle
sampling step. The target value is then defined as:

y(u′k) = rnTn + γmax
a′

Q̄(s
u′k
Tn
, θ
u′k
Tn
, a′), (81)
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with Q̄(s
u′k
Tn
, θ
u′k
Tn
, a′) evaluated according to Equation 53. Note that unlike in the RL loss

under full observability, we consider the particle weights in the loss computation to allow
less likely particles to have higher temporal difference errors.

E.2 Variational Autoencoder-based Belief Inference

Agent Modelling Loss Function. Agent modelling under the VAE-based model is done via
the action prediction component of the decoder, which in our description at Section D.2 is
parameterised by γ. This model is chosen for agent modelling since its purpose is also to
predict teammates’ joint actions. Assuming Pag = {γ}, the loss function of this model is
defined as:

LNLLPag (D) = −
∑
Hn∈D

EzTn∼q(zTn |Hn)

[
pPag(a

V
Tn |zTn)

]
(82)

Reinforcement Learning Loss Function. As in GPL, we define a CG-based model to
estimate the joint action values of the learner. Assuming that the parameters of this model
is denoted as δ, this model must be trained to estimate the joint action value given the
variational parametric distribution, q(zt|Ht). Since exactly computing q(zt|Ht) is generally
intractable, we use a Monte Carlo approach for training this model. Under this approach,
we sample m vectors from q(zt|Ht) such that:

z1
t , z

2
t , ..., z

m
t

iid∼ q(zt|Ht). (83)

The sampled zt are subsequently used as input to the CG model, which loss function for
joint action value modelling is subsequently computed as:

LRLPval(D) =
∑
Hn∈D

(
m∑
k=1

(
p(zkTn |Hn)

2
∑m

l=1 p(z
l
Tn
|Hn)

)(
yPval(z

k
Tn , a

V,n
Tn

)− y(z
′k
Tn)
)2
)
, (84)

assuming Pval = {δ}. In Equation 84, the predicted joint action value of observed teammates’
joint actions is defined as:

yPval(uk, a
V,n
Tn

) =
∑

a−V ∈A−V
QPval(z

k
Tn , a

V
Tn , a

−V )pα(a−V |zkTn), (85)

which is similar to the predicted value under particle-based approaches. Finally, the target
value is defined as:

y(u′k) = rnTn + γmax
a′

Q̄(ZkTn , a
′), (86)

with Q̄(ZkTn , a
′) computed according to Equation 43.

E.3 Autoencoder-based Inference

Agent Modelling Loss Function. Given ρTn produced by the encoder, GPL’s agent and
joint action model are trained to estimate the learner’s action value function. We use the
decoder’s action prediction component for agent modelling since it is also designed to predict
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teammates’ actions. Assuming Pag = {β}, the agent model is subsequently trained to predict
observed teammates’ actions by minimising the following loss function:

LNLLPag (D) = −
∑
Hn∈D

log(pPag(a
V
Tn |ρTn)). (87)

Reinforcement Learning Loss Function. We train the joint action value model by optimising
the temporal difference error defined below:

LRLPval(D) =
∑
Hn∈D

(
yPval(ρ

k
Tn , a

V,n
Tn

)− y(ρ
′k
Tn)
)2
. (88)

Given the parameters of the joint action value model Pval = {δ}, the predicted and target
joint action value are evaluated following Equation 85 and 86.

Appendix F. Partial observability results

F.1 Baselines

To run the single agent baselines in environments with a changing number of teammates we
assign a value of -1 to features associated with inactive agents. In our experiments we can
have up to five agents in the environment, so we add these placeholder values to the input
to match the size of the input vector when five agents are present. To prevent teammates’
features from always being assigned a placeholder, which could hurt generalisation, we assign
agents entering the environment an index number. We use this index to determine the
location of their features in the input vector. This index remains the same while an agent is
active in the environment.

For DVRL we utilised the code made available by the original authors. We utilised
similar hyperparameters as the authors. We used 10 particles, with an action encoding of
16, the z dimension is 100, and the h dimension is 100. All neural networks utilise a hidden
layer size of 100 unless stated. We used RMSProp with α = 0.99, a gradient clipping of 0.5,
learning rate = 1× 10−3, and gamma 0.99. For encoding the set particles into ĥ we utilised
a fully connected neural network. Actions are encoded by a fully connected neural network
with two layers of 64 units. The policy is one fully connected layer whose size is determined
by the action space. DVRL uses A2C, with 16 parallel environments, and a 5-step learning.

For PPO we utilised the following hyperparameter: a fully connected network with two
hidden layers of 128 neurons each, a learning rate of 3× 10−4, a batch size of 64, a number
of epochs 10, and a number of steps of 2048.

F.2 Unseen teammates

For the experiments with unseen teammates, we created a set of 8 different reinforcement
learning agents all trained with different seeds, which were added to the pool of existing
teammates. The policies of the set of unseen teammates were obtained via reinforcement
learning, particularly the PPO algorithm. The set of unseen agents is able to observe the
full state of the system in order to make decisions. To encode the policies of the unseen
teammates we utilised an MLP network with two hidden layers of 128 neurons each, a
learning rate of 3× 10−4, a batch size of 64, a number of epochs 10, and a number of steps
of 2048.
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2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pages 2122–2131. PMLR, 2018.

Masoumeh T. Izadi and Doina Precup. Using rewards for belief state updates in partially
observable markov decision processes. In Machine Learning: ECML 2005, pages 593–600,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-31692-3.

Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. Graph convolutional reinforce-
ment learning. In International Conference on Learning Representations, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Aleksandar Krnjaic, Raul D. Steleac, Jonathan D. Thomas, Georgios Papoudakis, Lukas
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