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Abstract

A learning based method for obtaining feedback laws for nonlinear optimal control problems
is proposed. The learning problem is posed such that the open loop value function is its
optimal solution. This infinite dimensional, function space, problem, is approximated by a
polynomial ansatz and its convergence is analyzed. An `1 penalty term is employed, which
combined with the proximal point method, allows to find sparse solutions for the learning
problem. The approach requires multiple evaluations of the elements of the polynomial
basis and of their derivatives. In order to do this efficiently a graph-theoretic algorithm is
devised. Several examples underline that the proposed methodology provides a promising
approach for mitigating the curse of dimensionality which would be involved in case the
optimal feedback law was obtained by solving the Hamilton Jacobi Bellman equation.

Keywords: Optimal feedback control, nonlinear systems, learning theory, Hamilton
Jacobi Bellman equation, polynomial based approximation.

1. Introduction

Designing optimal feedback laws for non-linear control problems is a challenging problem
from both the theoretical and applied points of view. The main approach for obtaining an
optimal feedback law is based on dynamic programming. Its solution involves the control
theoretic Hamilton-Jacobi-Bellman (HJB) equation. For high dimensional problems the
computational cost of directly solving the HJB equation makes this approach non-viable. In

c©2023 Karl Kunish, Donato Vásquez-Varas and Daniel Walter.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-1010.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-1010.html


Kunisch, Vásquez-Varas and Walter

the last years many efforts have been put forward to overcome this difficulty and to partially
alleviate the curse of dimensionality. Here we can only mention a very small sample of the
large number of contributions: representation formulas (Chow et al., 2017, 2019a,b; Darbon
and Osher, 2016), approximating the HJB equation by neural networks (Han et al., 2018;
Darbon et al., 2020; Nüsken and Richter, 2020; Onken et al., 2021; Ito et al., 2021; Kunisch
and Walter, 2021; Ruthotto et al., 2020), data driven approaches (Nakamura-Zimmerer
et al., 2021a,b; Azmi et al., 2021; Kang et al., 2021; Albi et al., 2022), max-plus methods
(Akian et al., 2008; Gaubert et al., 2011; Dower et al., 2015), polynomial approximation
(Kalise and Kunisch, 2018; Kalise et al., 2020), tensor decomposition methods (Horowitz
et al., 2014; Stefansson and Leong, 2016; Gorodetsky et al., 2018; Dolgov et al., 2021;
Oster et al., 2019, 2022), POD methods (Alla et al., 2017; Kunisch et al., 2004), tree
structure algorithms (Alla et al., 2019), and sparse grids techniques(Bokanowski et al., 2013;
Garcke and Kröner, 2017; Kang and Wilcox, 2017), see also the proceedings volume (Kalise
et al., 2018). Among the classical methods for solving the HJB equation we mention finite
difference schemes (Bonnans et al., 2003), semi-Lagrangian schemes (Falcone and Ferretti,
2013), and policy iteration (Alla et al., 2015; Beard et al., 1997; Puterman and Brumelle,
1979; Santos and Rust, 2004). Learning techniques have also been investigated in the
context of model predictive control, see for instance (Drgoňa et al., 2022).

In the present work we propose, analyze, and numerically test a learning approach to
obtain optimal feedback laws. The problem is formulated in a way that all its solutions
are optimal feedback laws. The learning problem is based on finding a feedback-law which
minimizes the average of the objective functions with respect to a set of the initial conditions.
The feedback-law is obtained in terms of the gradient of a scalar valued function. Due to the
infinite dimensional nature of the problem, a finite dimensional approximation is required.
We propose polynomials as ansatz functions and add a `1 penalty term, in order to promote
sparsity in the solutions. This work is an extension of the developments commenced in
(Kunisch and Walter, 2021), where the feedback was parametrized by a neural network.
Appropriate hypotheses on the value function are provided which ensure the existence of
a solution to this problem. Furthermore, convergence is established as the dimension of
the ansatz space tends to infinity. In order to efficiently evaluate elements of the chosen
polynomial basis and their first and second order derivatives, a tree-based procedure is
devised. The choice of monomials as ansatz functions turned out to be computationally
very promising. Certainly it would also be of interest to investigate other non-grid based,
approximation schemes in the future.

The structure of this work is as follows. In Section 2 we introduce the learning prob-
lem and in Section 3 we present the finite dimensional approximation by polynomials. In
Section 4 the existence of solutions and convergence of the finite dimensional problems are
established. The optimality conditions for the finite dimensional problem are studied in
Section 5, together with a basis reduction procedure. The learning algorithm is developed
in Section 6. An efficient polynomial basis evaluation method is developed in Section 7.
In Section 8 we present a result concerning the generalization capability of our approach.
Finally, in Section 9 we present four numerical experiments which show that our algorithm
is able to solve non-linear and high (here the dimension is 40) dimensional control problems
in a standard laptop environment.
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We end the section by introducing some notation which is needed in the following. For
k,m, d all integers greater than or equal 1, and a domain A ⊂ Rm, the spaces Hk(A;Rd) and
Hk
loc(A;Rd) denote the Sobolev spaces and local Sobolev spaces of order k from A to Rd.

Analogously, for p > 1 the spaces Lp(A;Rd) and Lploc(A;Rd) are the spaces of p integrable
and locally p integrable functions from A to Rd. In addition, for a compact set K ⊂ Rm
and α ∈ (0, 1], we define Ck,α(K;Rd) to be the class of k times differentiable functions with
α−Hölder continuous derivatives up to order k from K to Rd. For a Lipschitz continuous
function v : K → Rm we define

|v|Lip(K) = max
x 6=y∈K

|v(x)− v(y)|
|x− y|

,

where | · | is the usual euclidean norm. For y ∈ Rm we denote the p−norm with p ∈
(1,∞) \ {2} by |y|p, and the maximum norm by |y|∞.

2. Statement of the Problem

In this work we study the infinite horizon optimal control problem:

min
u∈L2((0,∞);Rm)

J(u, y0) :=

∫ ∞
0

`(y(t))dt+
β

2

∫ ∞
0
|u(t)|2dt (1)

where y ∈ H1
loc((0,∞);Rd) is the unique solution of

y′(t) = f(y(t)) +Bu(t), t ∈ (0,∞), y(0) = y0. (2)

Here f : Rd → Rd is Lipschitz on bounded sets, ` : Rd → R is of class C1, bounded from
below by 0, β > 0 is the penalization for the control, and B ∈ Rd×m is the control matrix,
with d > m ∈ N. We also assume that `(0) = 0 and f(0) = 0. This implies that 0 is an
equilibrium for system (2). In (1) the cost J is considered as extended real-valued function.

A solution of Problem (1) in feedback form can be obtained by means of dynamic
programming. Namely, defining the value function of (1) by

V (y0) = min
u∈L2((0,∞);Rm)

J(u, y0), (3)

and assuming that V is differentiable in an open neighborhood U ⊂ Rd of y0, then V solves
the Hamilton Jacobi Bellman equation

min
u∈Rm

{
∇V (y)> (f(y) +Bu) +

β

2
|u|2 + `(y)

}
= 0 (4)

in U . By the verification’s Theorem (see Theorem 5.1 in (Fleming and Soner, 2006)), the
optimal control in (1) is given by the feedback law:

u∗(t) = − 1

β
B>∇V (y∗(t)), (5)

provided y∗(t) ∈ U . Here y∗ is the solution of (2) corresponding to u∗. Replacing u by u∗

in (2) we get the closed loop system

y′(t) = f(y(t))− 1

β
BB>∇V (y(t)), t ∈ (0,∞), y(0) = y0. (6)
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This approach involves solving the Hamilton Jacobi Bellman equation, which is computa-
tionally expensive or even unfeasible for problems of high dimension. Therefore, in this
work we propose to find a feedback law by solving a learning problem. For this purpose
we define a computational domain Ω = (−l, l)d with l > 0, and a set of initial conditions
{y1

0, . . . , y
I
0} ⊂ Rd, which will be called the training set. We assume throughout that the

value function V is of class C1,1(Ω) and that the image of the solutions of the closed loop
problems (6) are strictly contained in Ω, that is, there exists δ ∈ (0, l) such that

|yi(t)|∞ 6 l − δ for all t ∈ (0,∞), (7)

where yi for i ∈ {1, . . . , I} are the solutions to the closed loop problem (6) for y0 = yi0. For
T ∈ (0,∞) we define JT : C1(Ω)→ [0,∞] by

v 7→ JT (v) =
1

I

I∑
i=1

∫ T

0

(
`(yi(t)) +

1

2β
|B>∇v(yi(t))|2

)
dt, (8)

where yi ∈ C1([0, T ];Rd) are the solutions of the closed loop problems
y′i(t) = f(yi(t))−

1

β
BB>∇v(yi(t)), yi(0) = yi0,

yi(t) ∈ Ω, t ∈ (0, T ).

(9)

If there exists an index i ∈ {1, . . . , I} such that problem (9) has no solution for a given
v ∈ C1,1(Ω), then we set JT (v) = ∞. Further, we define J∞ : C1(Ω) → [0,∞] as the
pointwise limit of JT when T goes to infinity, i.e.

v 7→ J∞(v) := lim
T→∞

JT (v). (10)

Under these definitions, we formulate the learning problem

min
v∈C1,1(Ω), ∇v(0)=0, v(0)=0

J∞(v). (11)

We notice that assuming V ∈ C1,1(Ω) and (7), the value function is a solution of (11).
Moreover, if there exits an optimal solution v∗ of (11), then the controls defined by u∗i (t) =
− 1
β∇v

∗(y∗i (t)) with y∗i the solutions of (9) are optimal solutions of (1).

In order to solve this problem numerically we replace the infinite dimensional function
space C1,1(Ω) by a finite dimensional space. In this case we add a penalty term in order to
ensure the existence of at least one solution. Moreover for numerical purposes we introduce
a finite horizon formulation. This problem will be formulated in Section 3, where we also
state results regarding the existence of solutions and their convergence to a solution of (1).

3. Polynomial Learning Problem

In this section we formulate the finite dimensional learning problem. For this purpose we
first introduce some notation. Let n ∈ N and d ∈ N, where N = {0, 1, 2, . . .}. We denote the

4



Learning Optimal Feedback Operators and their Sparse Polynomial Approximations

space of polynomials with total degree less than or equal to n in Rd by Pn and its dimension
by mn. For a multi-index α = (α1, . . . , αd) ∈ Nd we define a monomial φα by

φα(y) =
d∏
j=1

y
αj

j , y ∈ Rd. (12)

We denote by Λn the set of multi-indexes such the sum of all its elements is lower or equal
than n, that is

Λn =

α ∈ Nd :
d∑
j=1

αj 6 n

 . (13)

We assume that the set of all the multi-index Nd is ordered such that

Nd =
{
αi
}∞
i=1

and Λn+1 = Λn
⋃{

αi
}m(n+1)

i=mn+1
, (14)

for example, for d = 2, we have Λ1 = {(0, 0); (0, 1); (1, 0)}. We denote the set of all the
monomials with total degree lower or equal to n by Bn. Therefore, by (13) and (14) we
have

Bn = {φα : α ∈ Λn} and Bn+1 = Bn
⋃{

φαi

}m(n+1)

i=mn+1
, (15)

We denote the hyperbolic cross multi-index set by Γn, i.e.

Γn =
{
α = (α1, . . . , αd) ∈ Nd :

d∏
j=1

(αj + 1) 6 n+ 1
}
. (16)

We also introduce the subset Sn of Bn composed by the elements of Bn associated to
the multi-indexes in Γn, i.e.

Sn = {φα : α ∈ Γn} (17)

and the subspace An of Pn generated by Sn.

It is important to observe that the cardinality of Λn is
∑n

j=1

(
d+j+1
j

)
, on the other hand

the cardinality of Γn is bounded by min{2n34d, e2n2+log2(n)} (Adcock et al., 2017). For an
intuitive description of the hyperbolic cross basis see the figures in e.g. (Azmi et al., 2021).
Hence, for high d the cardinality of the hyperbolic cross is smaller than cardinality of Λn.
For this reason, Γn is more suitable for high dimensional problems.

To introduce a family of approximating computationally tractable problems, we consider
a finite set of monomials X = {φi}Mi=1, which can be Bn \ B1 or Sn \ B1. Here we subtract
B1 to ensure v(0) = 0 and ∇v(0) = 0. Then, for θ ∈ RM , setting

v =

M∑
i=1

θiφi,

we define

J̃T (θ) = JT (v) . (18)

5



Kunisch, Vásquez-Varas and Walter

Further we define a penalty function Pγ,r, with γ > 0 and r ∈ [0, 1] by

θ 7→ Pγ,r(θ) = γ

(
(1− r)

2
|θ|22 + r|θ|1

)
. (19)

Now we are in a position to introduce the finite dimensional version of the learning
problem. That is, we replace C1,1(Ω) with the space of polynomial spanned by X, add the
penalty Pγ,r to the objective function and consider a finite time horizon T ∈ (0,∞), namely

min
θ∈RM

J̃T (θ) + Pγ,r(θ). (20)

The penalty term Pγ,r ensures the coercivity of the objective function. Moreover the non-
smooth term in (19) promotes the sparsity of the solution of (20). However, unless we
assume some further hypotheses on the structure of `, f , B and/or the value function V ,
we do not yet know if there exist a solution of (20).

4. Existence and Convergence

In this section we are concerned with the existence of solutions for (20). For n > 2,
T ∈ (0,∞], X = Bn \ B1 or X = Sn \ B1, and M the cardinality of X, we say that θ ∈ RM
is a feasible solution for problem (20) if J̃T (θ) < ∞. If there exits a feasible solution for
problem (20), we say that the problem is feasible.

Theorem 1 Consider γ > 0, r ∈ [0, 1], T ∈ (0,∞] and X = {φi}Mi=1 ⊂ C1,1(Ω). If problem
(20) is feasible, then it has at least one optimal solution.

The proof of this theorem as well as of the remaining results of this section are given in
Appendix A.

In general, we do not know if there exists any feasible solution for the learning problem.
Nevertheless, given that V is in C1,1(Ω) and the density of the polynomials in C1,1(Ω), we
prove that for every finite time horizon T > 0 there exists a degree high enough, such that
(20) has at least one feasible solution. Moreover, assuming the exponential stability of the
closed loop problem (6) and that V ∈ C2(Ω), we obtain that there exists a feasible solution
for T =∞.

Proposition 1 For every T ∈ (0,∞), there exits a positive integer n and Vn,T ∈ Pn such
that JT (Vn,T ) <∞. Moreover, assuming that the value function V is C2(Ω), that

lim
t→∞

yi(t) = 0, for all i ∈ {1, . . . , I}, (21)

where {yi}Ii=1 are the solutions of the closed loop problems (6), and that the linearized system

z′ =

(
Df(0)− 1

β
BB>∇Ṽ (0)

)
z, z(0) = z0 (22)

is exponentially stable, we have that there exists a positive integer ñ and Vñ ∈ Pñ such that
J∞(Vñ) <∞.
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Above we call system (22) exponentially stable if there exist C > 0 and µ > 0 such
that |z| 6 Ce−µt|z0| for all t ∈ (0,∞) and z0 ∈ Rd. Exponential stability is guaranteed
if the real parts of all the eigenvalue of the system matrix in (22) are strictly negative.
Proposition 1 is a direct consequence of Theorem 9 in (Hájek and Johanis, 2014, Section
7.2), Proposition 3 and Lemma 3, which can be found in Appendix A. We now address the
convergence of problem (20) to (11).

Theorem 2 There exist sequences Tk ∈ (0,∞), γk ∈ (0,∞), rk ∈ [0, 1], Xk = Bnk
\ B1

respectively Xk = Snk
\B1 with nk ∈ N and Mk the cardinality of Xk, and θk ∈ RMk solution

of (20), such that nk → ∞, Tk → ∞, γk → 0 and J̃Tk(θk) converges to the value of (11)

when k →∞. Moreover, setting vk =
∑Mk

j=1 θ
k
j φj, where Xk = {φi}Mk

i=1, and defining

uki = − 1

β
BT∇vk(yki ), (23)

where yki is the solution of the closed loop problem (9) for v = vk, T = Tk and y0 = yi0, we
have that

yki ⇀ y∗i in H1
loc((0;∞);Rd) and uki ⇀ u∗i in L2

loc((0;∞);Rm), when k →∞ (24)

where u∗i is a solution of the open loop problem (1) and y∗i the solution of (2).

The proof of this theorem can be found in Appendix A.

Remark 1 Assuming that (11) admits a solution v∗ ∈ C1,1(Ω) and that there exist vn ∈ Pn
such that

lim
n→∞

vn = v∗ in C1,1, J∞(v∗n) <∞ and lim
n→∞

J∞(vn) = J∞(v∗), (25)

it is possible to take Tk = ∞ for all k ∈ N. In this case one can formulate (20) as infinite
horizon problem.

5. Optimality Conditions

Throughout this section we consider a basis X = {φi}Mi=1 for M ∈ N, where for each
i ∈ {1, . . . ,M} the function φi is a monomial given by (12) for a multi-index αi ∈ Nd.
We recall that we have defined the function J̃T such that θ 7→ J̃T (θ) = JT (v), where
v =

∑M
k=1 θkφk.

Consider θ ∈ RM and T > 0 finite. Assume that for each i ∈ {1, . . . , I}, there exists a
unique solution of (9) with v =

∑M
k=1 θkφk, denoted by yi ∈ C1([0, T ],Ω). Further, assume

that yi(t) ∈ Ω for all t ∈ [0, T ]. Then, J̃T is differentiable in θ and its partial derivatives
are given by

∂

∂θk
J̃T (θ) =

1

Iβ

∫ T

0

I∑
i=1

∇φ>k (yi)BB
> (∇v(yi) + pi) dt for k ∈ {1, . . . ,M}, (26)

where pi is the solution of

−p′i −Df(yi)
>p+

1

β
∇2v(yi)BB

>(∇v(yi) + pi) = −∇`(yi), pi(T ) = 0 (27)

7
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for i ∈ {1, . . . , I}, where Df is the Jacobian matrix of f .
For the non differentiable term in Pγ,r we recall that the subgradient of | · |1 is given by

∂| · |1(θ)k =


{1} if θk > 0,
{−1} if θk < 0,
[−1, 1] if θk = 0,

for k ∈ {1, . . . ,M}.

Hence, if θ∗ ∈ RM is a solution of (20) it satisfies the following optimality condition

∇J̃T (θ∗) + γ(1− r)θ∗ ∈ −γr · ∂| · |1(θ∗). (28)

For each k ∈ {1, . . . ,M}, we deduce from (28) that∣∣∣∣ ∂∂θk J̃ (θ∗) + γ(1− r)θ∗k
∣∣∣∣ < γr =⇒ θ∗k = 0

and

if θ∗k 6= 0, then
∂

∂θk
J̃ (θ∗) + γ(1− r)θ∗k =

{
γr if θ∗k < 0,
−γr if θ∗k > 0.

In the remainder of this section we shall verify the following property which is enjoyed by
any optimal solution θ∗:

for each k ∈ {1, . . . ,M}, θ∗k = 0 if and only if B>∇φk(y) = 0 for all y ∈ Rd. (29)

We define the subset O(X) of X by

O(X) := {φ ∈ X : B>∇φ(y) = 0 ∀ y ∈ Rd} (30)

It is possible to further characterize the elements of O(X).

Lemma 1 Let α = (α1, . . . , αd) ∈ Nd be a multi-index and consider φα the monomial given
by (12). Then,

B>∇φα(y) = 0 for all y ∈ Rd if and only if B> · ei = 0 for all i ∈ I(α), (31)

where ei is the i−th canonical vector of Rd and

I(α) = {i ∈ {1, . . . , d} : αi > 0}

Proof Let assume first that

B>∇φα(y) = 0 for all y ∈ Rd. (32)

We prove now
B>ei = 0 for all i ∈ I(α). (33)

If I(α) = {i} for some i ∈ N, then we have ∇φα(y) = αiy
αi−1
i ei if αi > 1 and therefore

(33) is evident. On the other hand, if I(α) contains more than one element, we take any
i ∈ I(α). Then, for ε > 0, we define yε ∈ Rd by

yεk =

{
ε−a if k = i,

ε if k 6= i,
for all k ∈ {1, . . . ,M},

8
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where in the case αi 6= 1

a =

N∑
j 6=i,j=1

αj/(αi − 1) > 0.

Evaluating ∇φα in yε we obtain

∂φα
∂yk

(yε) =

{
αi if k = i,

αkε
−a−1 if k 6= i

.

Taking ε→∞ we obtain
∇φα(yε)→ αiei

and therefore
B>ei = lim

ε→∞
B>∇φα(yε) = 0.

If αi = 1, then we have

∂φα
∂yk

(y) =


∏
j 6=i

yαj if i = k,

αky
αk−1

∏
j 6=k

yαj if i 6= k,
for all y ∈ Rd.

We choose ȳ ∈ Rd such that ȳi = 0 and ȳj = 1 for all j ∈ {1, . . . , d} \ {i}. Evaluating ∇φα
in ȳ we again obtain

B>ei = B>∇φα(ȳ) = 0.

Since the i ∈ I(α) is arbitrary, we have proved (33).
Now we assume that (33) holds and we prove (32). For every j ∈ {1, . . . , d} \ I(α), it is

clear that
∂φα
∂yj

(y) = 0 for all y ∈ Rd.

From this, we have that

B>∇φα(y) =
∑
i∈I(α)

∂φα
∂yi

(y)B>ei = 0,

which concludes the proof.

Lemma 2 Consider θ ∈ RM and T ∈ (0,∞). Assume that yi(t) ∈ Ω for all i ∈ {1, . . . , I}
and t ∈ [0, T ], where yi is the solution of the closed loop problem (9) with v =

∑M
k=1 θkφk

and y0 = yi0. Then,

∂

∂θk
J̃T (θ) = 0 for every k ∈ {1, . . . ,M}, such that φk ∈ O(X). (34)

Moreover, if θ∗ ∈ RM is an optimal solution of (20), then

θ∗k = 0 for every k ∈ {1, . . . ,M}, such that φk ∈ O(X). (35)

9
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Proof For every θ ∈ RM , (34) is a direct consequence of (26). To prove (35) we proceed
by contradiction. Let θ∗ ∈ RM be an optimal solution for (20) and assume that there exists
k̄ ∈ {1, . . . ,M} such that

B>∇φk̄ = 0 in Ω, but θ∗k̄ 6= 0. (36)

Then, we define θ̃ ∈ RM by

θ̃j =

{
θ∗j if j 6= k̄

0 if j = k̄
for all j ∈ {1, . . . ,M}.

By (36) we have

M∑
k=1

B>∇φk(y)θ̃k =

M∑
k=1

B>∇φk(y)θ∗k for all y in Ω.

Consequently, for each initial condition yi0, the solution of (9) for ṽ =
∑M

k=1 φkθ̃k is the

same as for v∗ =
∑M

k=1 φkθ
∗
k. Therefore we get

J̃T (θ̃) = J̃T (θ∗).

Further, it is clear that Pγ,r(θ
∗) > Pγ,r(θ̃), because θ∗

k̄
6= 0. Thus

J̃T (θ̃) + Pγ,r(θ̃) < J̃T (θ∗) + Pγ,r(θ
∗),

which is a contradiction.

Remark 2 From Lemma 2 we conclude that basis functions φk ∈ O(X) do not contribute
to the optimal solution of (20). Therefore they should be dismissed before computing the
minimizers (20). This can be done utilizing Lemma 1. In this way we replace X by X\O(X).

6. Optimization Algorithm

In this section we consider T ∈ (0,∞) and X = {φi}Mi=1 with M ∈ N, where for each
i ∈ {1, . . . ,M} the function φi is a monomial of the form (12) for a multi-index αi ∈ Nd.
To solve (20) we use a linear proximal point method with an adaption Barzilai-Borwein
method for choosing the step length, which proved to be efficient for high dimensional
problems (see (Azmi and Kunisch, 2020), (Barzilai and Borwein, 1988), and (Raydan, 1997)
for a convergence analysis in the smooth case). In contrast to the smooth setting, we are
not aware of a thorough convergence analysis of this particular step size choice in the
nonsmooth case. However, from a practical point of view, the method performs reliably for
our purposes.

We now describe the algorithm that we use to solve (20). We denote the k−th element
of the sequence produced by the algorithm by θk, the step size by sk, and we define at each
iteration

dk := ∇J̃T (θk) + γ(1− r)θk. (37)

10
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We use the proximal point update rule as is described in section 10.2 in (Beck, 2017), namely
we take θk+1 such that

θk+1 = argmin
ϑ∈RM

{
dk ·

(
ϑ− θk

)
+

1

2sk
|θk − ϑ|22 + γr|ϑ|1

}
. (38)

Defining

shrink(a, b) =


a− b if a− b > 0
a+ b if a+ b < 0

0 if |a| 6 |b|.
the update rule (38) can be expressed as

θk+1
j = shrink

(
θkj − skdkj , skγr

)
. (39)

for each j = 1, . . . ,M.
If the cardinality of X is large and θk has many non-zero entries, the evaluation of JT

and ∇JT can be very expensive. Consequently it is useful to initialize sparsely and to
monitor the sparsity level during the iterations of the algorithm. The `1 term will enhance
sparsity in the limit. During the iterations we only update one coordinate jk chosen by a
greedy rule proposed in (Wu and Lange, 2008) (see also (Shi et al., 2017)), in order to keep
θk as sparse as possible. Namely, instead of updating all the coordinates of θk+1 by (39),
we determine the coordinates to be updated by (39) by means of

jk+1 ∈ argmax
j∈{1,...,M}

min
z∈∂|·|(θj)

∣∣∣dkj + γrz
∣∣∣ . (40)

Concerning initialization of θ it is not always possible to do this by 0 since the solution of
(9) with v = 0 could have a large norm causing numerical difficulties due to the evaluation
of the polynomials or it may not exist for all t ∈ [0, T ]. For this reason an initial guess for
θ has to be chosen that at least ensures the boundedness of the solutions of the closed loop
problems (9). This depends on the nature of f and the choice of T in (20). We shall return
to this point in the course of discussing the numerical examples.

To choose the step size sk we use the backtracking line search described in section 10.3.3
in (Beck, 2017), starting from an initial guess sj0. That is, for κ ∈ (0, 1) and β ∈ (0, 1), we
take sk = sk0β

i such that i is the smallest natural number which satisfies

J̃T (θ+) 6 J̃T (θk)− κ

sk0β
i
|θk − θ+|2, (41)

where θ+ is obtained by (39) for either all the coordinates or only the coordinate determined
by (40). We use the Barzilai-Borwein step size as initial guess, namely we take sk0 as

sk0 =

{ [
(θk − θk−1) · (dk − dk−1)

]
/|dk − dk−1|2 if k is odd,

|θk − θk−1|2/
[
(θk − θk−1) · (dk − dk−1)

]
if k is even.

(42)

We iterate until the following stopping criterion is fulfilled

max
j∈{1,...,M}

min
z∈∂|·|(θkj )

∣∣∣dkj + γrz
∣∣∣ 6 gtol or |Jk − Jk−1| 6 tol. (43)

11
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We summarize the algorithm as follows:

Algorithm 1 Sparse polynomial learning algorithm.

Require: An initial guess θ0 ∈ RM ,γ > 0, κ > 0, β ∈ (0, 1), T > 0, r ∈ [0, 1], s0 ∈ (0,∞).
Ensure: An approximated stationary point θ∗ of (20).
1: k = 1
2: For θ0, set d0 (37) and J0 = J̃T (θ0) + Pγ,r(θ

0).
3: Use (41) to obtain s1.
4: Obtain θ1 by (39) in all the coordinates or only with j = j1 from (40).
5: Obtain d1 by (37) and set J1 = J̃T (θ1) + Pγ,r(θ

1).
6: while condition (43) is not satisfied do
7: Obtain sk0 by using (42) and choose sk using (41).
8: Obtain θk+1 by (39) in all the coordinates or only with j = jk+1 from (40).
9: Obtain dk+1 by (37) and set Jk+1 = J̃T (θk+1) + Pγ,r(θ

k+1).
10: Set k = k + 1.

return θ∗ := θk.

7. Polynomial Basis Evaluation

Concerning the implementation, we address the problem of an efficient evaluation of J̃ (θ)
and ∇J̃ (θ). Indeed, to evaluate J̃ and ∇J̃ , we need to solve (9) and (27). We solve these
systems numerically, which involves multiple evaluations of the elements of the basis Bn or
Sn and their derivatives. Therefore it is essential to do this efficiently. For simplicity, we
only describe how to evaluate the elements of Bn, but the case of Sn is analogous. Our
approach for polynomial evaluation is related to (Carnicer and Gasca, 1990) and (Lodha
and Goldman, 1997).

Before describing how we evaluate the elements of Bn, we need to recall some concepts
from graph theory. We only give some basic definitions following (Rosen, 2019), and refer
to (Korte and Vygen, 2010) for further description.

A directed graph G = (V,E) is a pair, where V is the set of nodes or vertices of the
graph and E ⊂ V × V is the set of edges of G.

For a graph G = (V,E) a directed path that connects a ∈ V and b ∈ V is a sequence of
vertices {vi}ki=1 ⊂ V such that (vi, vi+1) ∈ E for all i ∈ {1, . . . , k − 1}, a = v1 and b = vk,
furthermore we say that a directed path is a directed circuit or cycle if a = b. Similarly,
an undirected path that connects a and b is a sequence of vertices {vi}ki=1 ⊂ V such that
(vi, vi+1) ∈ E or (vi+1, vi) ∈ E for all i ∈ {1, . . . , k − 1}, a = v1 and b = vk, furthermore we
say that an undirected path is a circuit or cycle if a = b.

A directed rooted tree is a graph G = (V,E) such that there is no undirected circuit in
G and it has a node vr ∈ V which is connected to every v ∈ V \ {vr}.

For two graphs G = (V,E) and G′ = (V ′, E′), we say that G is a subgraph of G if
V ′ ⊂ V and E′ ⊂ E.

For a graph G = (V,E), a minimum spanning rooted tree is a subgraph T = (V,E′) of
G such that T is a rooted tree.

12
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We also need to recall a fundamental algorithm to traverse a graph, which is called the
breadth-first search (BFS), (Korte and Vygen, 2010). For G a directed graph and r a node
in G connected to every other node in G, the BFS algorithm returns a minimum spanning
rooted tree with r as its root.

Algorithm 2 Breadth-first search (BFS)

Require: A graph G = (V,E) and vr ∈ V .
Ensure: A subgraph G′ = (V,E′)
1: Set E′ = ∅
2: For every v ∈ V set color(v) = 0.
3: Choose vr ∈ V , set I = 1, and q = {(1, vr)}.
4: while q 6= ∅. do
5: Set v to be such (1, v) ∈ q.
6: for ṽ ∈ V such that (v, ṽ) ∈ E do
7: if color(ṽ) = 0 then
8: Set color(ṽ) := 1.
9: Set I := I + 1, q := q ∪ {(I, ṽ)}.

10: Set E′ := E′ ∪ {(v, ṽ)}
11: Set q := q \ {(1, v)}, I := I − 1 and q := {(i− 1, u) : ∀(i, u) ∈ q}.

return V ′

We are now prepared to describe the evaluation of all the elements of X in a given point
y ∈ Rd. We recall that for simplicity we only consider the case X = Bn, later we explain
how to do it in other cases.

Let us consider the directed graphG = (Λn, En) where Λn is given (13) and En ⊂ Λn×Λn
is defined by

∀ α̃, α ∈ Λn : (α̃, α) ∈ En if and only if α = α̃+ ej for an unique j ∈ {1, . . . , d}, (44)

where ej is the j-th canonical vector of Rd. Let T be a minimum spanning rooted tree of
G, where α0 = (0, . . . , 0) ∈ Nd is the root of T . Then, for every α ∈ Λn \ {α0} there exists
a unique α̃ ∈ Λn such that (α̃, α) is a vertex of T , which in turn implies that there exists
j ∈ {1, . . . , d} such α = α̃+ ej . Therefore we have

φα(y) = y
αj

j

d∏
i=1,i 6=j

yαi
i = yj · y

αj−1
j

d∏
i=1,i 6=j

yαi
i = yjφα̃(y), ∀ y ∈ Rd. (45)

For a given y ∈ Rd we evaluate all the elements of Bn by performing a BFS in T starting
from the root and using (45). More precisely, we denote by c(α) the value of φα(y). It is
clear that c(α0) = 1. Now, let α̃i be the node visited in the i−th iteration of BFS. Then
for each element in α ∈ Λn such that (α̃i, α) ∈ T we obtain c(α) using (45), i.e.

c(α) = yjc(α̃
i), (46)

where j is the unique index such that α = α̃i + ej .
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Similarly to (45), the partial derivatives of φα satisfy

∂φα
∂yi

(y) =

{
αiφα−ei(y) if αi > 0,

0 if αi = 0
for all i ∈ {1, . . . , d} (47)

and

∂2φα
∂yi∂yj

(y) =



αiαjφα−ei−ej (y) if i 6= j, i > 1 and j > 1,

αi(αi − 1)φα−2ei(y) if i = j and > αi = 2,

0 if i = j and αi = 1,

0 if i 6= j and αi = 0 or αj = 0,

(48)

for all i, j ∈ {1, . . . ,m}, where ei ∈ Rd is the i − th canonical vector in Rd. Therefore, by
the definition of c, we have

∂φα
∂yi

(y) =

{
αic(α− ei) if αi > 0,

0 if αi = 0
∀i ∈ {1, . . . , d} (49)

and

∂2φα
∂yi∂yj

(y) =



αiαjc(α− ei − ej) if i 6= j, i > 1 and j > 1,

αi(αi − 1)c(α− 2ei) if i = j and > αi = 2,

0 if i = j and αi = 1,

0 if i 6= j and αi = 0 or αj = 0,

(50)

for all i, j ∈ {1, . . . , d}.
Now we address the evaluation of the elements of Sn and their derivatives. We consider

a graph Ḡ = (Γn, Ēn), where Γn is given by (16) and Ēn ⊂ Γn × Γn is defined by

∀ α̃, α ∈ Γn : (α̃, α) ∈ Ēn if and only if α = α̃+ ej for an unique j ∈ {1, . . . , d}. (51)

By the definition of Γn, it is clear that for all α ∈ Λn \ α0, there exists at least one ˜α ∈ Λ
which satisfies α = α̃ + ej for some j ∈ {1, . . . ,m}, therefore α0 is connected to every
α ∈ Λn. Then, the evaluation of the elements of Sn is analogous to the evaluation of Bn.

Finally, in virtue of Remark 2, we know that not all the elements of either X = Sn or
X = Bn are contributing to the optimal solution. In this case we should consider a reduced
basis given by O(X) in (30). Nevertheless, we can not use our approach directly, because
it is not possible to ensure that we can construct an spanning tree with only the multi-
indexes that correspond to X \ O(X). More generally, for a given θ ∈ RM we only need to
evaluate the intersection between X \ O(X) and {φi ∈ X : θi 6= 0}, i.e. the intersection
of the support of θ and X \ O(X). To address this problem, consider a subset X̃ of X
and a spanning tree T rooted at α0 for either Λn or Γn, as appropriate. Then we extract a
sub-tree T̃ from T by traversing T starting from each element of X̃ by the BFS algorithm.

8. Generalization

When learning approximation schemes on a finite training set, it is of special interest whether
the design objective can also be accomplished for configurations which are not contained in
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the training set. In our case this amounts to achieving stable trajectories for initial data
outside of the training set.

To demonstrate a scenario of what can be expected, we focus on the case when we train
with only one initial condition ỹ0 ∈ Ω. We consider v∗ ∈ C2(Ω), which may represent an
optimal solution of the learning problem (11). For y0 ∈ Rd, we denote the solution of (9)
on (0,∞) with v = v∗ by y(·, y0).

We assume that there exist neighbourhoods around ỹ0 and 0 where system (9) is
asymptotically stable, in the sense that there exists a monotonically decreasing function
µ : [0,∞)→ [0,∞) with limt→∞ µ(t) = 0 and such that

|y(t, y0)| 6 µ(t) for all y0 ∈ B(ỹ0, ρ) ∪B(0, ρ) and t ∈ [0,∞). (52)

We next show that this provides a sufficient condition for the existence of an open neigh-
bourhood around the trajectory T = {y(·, ỹ0)(t) : t > 0} ⊂ Rd such that for all initial
conditions in this neighbourhood the solution is asymptotically stable.

Below we shall utilize the linearised system

x′ = A(t)x, x(0) = δx, (53)

where A(t) = Df(y(t, ỹ0))− 1
βBB

>∇2v∗(y(t, ỹ0)), and define the associated solution map-
ping S(t)δx = x(t, δx), where t > 0 and δx ∈ Rn.

Proposition 2 Assume that (52) holds for ỹ0. Then, there exits ρ̃ > 0 such that

|y(t, y0)| 6 µ(t), for all y0 ∈ N(T ) and t ∈ [0,∞), (54)

where N(T ) = {y0 ∈ Rd : dist(y0, T ) < ρ̃}.

Proof For arbitrary τ > 0 define the set

B(τ) = {y(τ, y0) : y0 ∈ B(ỹ0, ρ)}.

Note that y(τ, ỹ0) ∈ B(τ) and that by the Bellman’s principle and monotonicity of µ

|y(t, y0)| 6 µ(t), t > 0, for all y0 ∈ B(τ).

We need to argue that infτ>0 diam(B(τ)) > 0. For this purpose we apply the implicit
function theorem to the mapping

G : B(ỹ0, ρ)× Rd ⊂ Rd × Rd → Rd

G(y0, z) = y(τ, y0)− z,

to argue that y(τ, ỹ0) ∈ int(B(τ)). Indeed, G(ỹ0, y(τ, ỹ0)) = 0 and DGy0 is characterized by

DGy0δx = S(τ)δx.

By Liouville’s theorem S(τ) is an isomorphism. Hence for each τ > 0 there exits ρτ > 0
such that B(y(τ, ỹ0), ρτ ) ⊂ Bτ . By construction,

|y(t, y0)| 6 µ(t), ∀ t > 0, ∀ y0 ∈ B(y(τ, ỹ0), ρτ ).
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We consider the covering⋃
τ>0

B(y(τ, ỹ0), ρτ ) ∪B(ỹ0, ρ)) ∪B(0, ρ) ⊃ T̄ .

Since limτ→∞ y(τ, ỹ0) = 0, the set T̄ is compact. Therefore there exits a finite subcover,
and consequently some ρ̃ > 0 such that (54) holds.

Remark 3 In the case that {ỹi0}Ii=1 initial conditions are used for the learning step, the
construction of Theorem 2 can be repeated for each one of them leading to I tubes containing
the trajectories {y(·, ỹi0)}Ii=1. For initial conditions in these tubes we have guaranteed
exponential stabilization. Moreover, since these tubes all intersect at the origin it can
be expected that, as I increases, the neighorhood of the origin for which stabilization is
guaranteed increases as well.

9. Numerical Experiments

We implement Algorithm 1 to solve problem (20) for 4 different problems. These problems
are the stabilization of an LC-circuit, stabilization of a modified Van der Pol oscillator, sta-
bilization of the Allen-Cahn equation, and optimal consensus for the Cucker-Smale model.
For every experiment we shall specify the computational time horizon, and the sets of initial
conditions for training and testing. For all experiments, we utilized a Monte Carlo based
uniform sampling for the training sets. The ordinary differential equations are solved by
the Crank-Nicolson algorithm with step size of 10−2. The arguments of the monomials are
normalized by l, i.e. we redefine φα(y) by φα(y) =

∏d
i=1

(y
l

)αi .

We measure the performance of our approach by comparing the control u∗ obtained
by solving the open loop problem for every initial condition in the test set with û =
− 1
βB
>∇v̂(y), where v̂ is the solution of (20) and y is the corresponding solution of (9).

We then compute the mean normalized squared error in L2((0, T );Rm) for the controls by

MNSEu({ûi}Ni=1, {u∗i }Ni=1) =

N∑
i=1

∫ T

0
|ûi − u∗i |2dt

/ N∑
i=1

∫ T

0
|u∗i |2dt,

and analogously MNSEy({ŷi}Ni=1, {y∗i }Ni=1) for the states. We also compare the optimal
value of the open loop problem with the objective function of (1) evaluated in û by com-
puting the mean normalized squared error

MNSEJ({ûi}Ni=1, {u∗i }Ni=1) =

N∑
i=1

|J(u∗i , y
i
0)− J(ûi, y

i
0)|2
/ N∑

i=1

J(u∗i , y
i
0)2.

In order to compute an optimal control for the non-linear problems, we solve the open
loop problem by a gradient descent algorithm with a backtracking line-search. For the
linear-quadratic problem (55) we use the algebraic Riccati equation to obtain the optimal
feedback controls.

16



Learning Optimal Feedback Operators and their Sparse Polynomial Approximations

The hyper-parameters selection was carried out by the following heuristic guidelines.
Since r expresses the weight of the desired sparsity it was chosen close to 0 in small size
problems and large for the remaining ones. The time horizon T was chosen after experiments
such that the running cost was close to 0 for that choice of T . The parameter l was chosen
according to experiments observing the controlled trajectories. The usage of the total degree
and of the hyperbolic cross bases was based on the dimension of the state space. All learning
problems were solved by Algorithm 1 with the choice (40) in steps 4 and 8, κ = 0.5, and
β = 0.9, except for the Optimal Consensus for Cucker Smale problem where (38) was used.
In all cases the stopping criterion (43) was satisfied with gtol = 10−3 and tol = 10−5.

9.1 LC-circuit

We consider the linear-quadratic problem

min
u∈L2((0,T ),R)

1

2

∫ T

0
|y|2dt+

β

2

∫ T

0
|u|2dt

s.t. y′ = Ay +Bu, y(0) = y0,

(55)

with

A =

 0 1 −1
−1 0 0
1 0 0

 and B =

 0
1
0

 . (56)

We set T = 10, l = 10, γ = 10−10, and r = 0.1, and randomly choose 5 sets Yjtrain with
j ∈ {1, . . . , 5} each of cardinality 10 from Ω. A test set of cardinality 200 was randomly
and uniformly sampled from Ω. From each Yjtrain we take a sequence of increasing subsets

{Yji }10
i=1, such that for each i ∈ {1, . . . , 10} the cardinality of Yji is i. For each i ∈ {1, . . . , 10}

we solve (20) with X = B2 \ (B1 ∪ O(B2)), where O(·) is given by (30). Subsequently for
every y0 ∈ Ytest the control obtained through the solution of (20) for each Yji is compared

with the optimal one and denote this solutions by v̂ji respectively. The initialisation is
chosen as v0 = 0, and Ntrain ∈ {1, . . . , 10} refers to the number of initial conditions which
is chosen from each Yjtrain.

In Figure 1 we present the mean normalized squared errors for the objective functions,
the controls, and the states, for increasing training sizes. The endpoints of the error-bars
along the y-axis correspond to the maximum and minimum error obtained for each Ntrain.
The curved line in each of the plots connects the average errors with respect to j for each
of the (MNSE∗)

j
i where ∗ stand for J, u, respectively y. We notice that in all the cases the

mean percentage error is smaller than 1 %. Now that we have established that the results
are robust with respect to different choices of training sets, we are curious to look at test
sets.

In Figure 2 we show the errors for the test set again for increasing number of training
initial conditions. As before we can observe robustness with respect to the choice and the
number of initial conditions.

To further illustrate the performance of our approach, in Figure 3, we provide the scatter
plot between the true value of the open loop problem and the objective function evaluated in
the learned control for every point in the test set. On the x-axis, the label learned objective

17



Kunisch, Vásquez-Varas and Walter

Figure 1: SSEu, SSEy, SSEJ training for LC-circuit example.

Figure 2: SSEu, SSEy, SSEJ test for LC-circuit example.

value is given by 1
5

∑5
j=1 J(yk0 , u

j
i,k), where uji,k = − 1

βB
T∇v̂ji (y

j
i,k), and yji,k is the solution

to the closed loop problem (9) with v = v̂ji , for k = 1, . . . , 200 corresponding to the test set.
This is carried out for Ntrain = 1, 2 and 10. Additionally, for each Ntrain, the endpoints of
the error-bars along the x-axis correspond to the maximum and minimum objective value
obtained for the corresponding training subsets. For Ntrain = 2 , and Ntrain = 10 the
regression line of the scatter points in the test set are close to the identity line, which is
already suggested by the results in Figure 2. With only one initial condition in each Yjtrain
the error-bars are distinctly larger than in the other cases.

9.2 Modified Van der Pol Oscillator

We investigate the problem

min
u∈L2((0,T );R)

1

2

∫ T

0
|y|2dt+

β

2

∫ T

0
|u|2dt

s.t. y′′ = ν(1− y2)y′ − y + µy3 + u, (y(0), y′(0)) = (y0, v0).

(57)

In the previous linear-quadratic example we addressed the convergence when the car-
dinality of the training set increases. Given the structure of the problem we only used
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Figure 3: Validation scatter for LC-circuit example.

polynomials of degree 2. In the example we investigate the effect of the degree of the
polynomials.

The parameters are set to be T = 3, β = 10−3, ν = 3
2 , l = 10, µ = 4

5 , r=0.5, γ = 10−5

and Xn = Bn \ (B1 ∪O(Bn)) for n ∈ {4, 5, 6, 7, 8}. The training and test set were created as
in the previous example. It is important to mention that if we choose v = 0 as initial guess,
the norm of the solutions of the closed loop problem (9) may increase exponentially with
time. Therefore, in order to ensure the boundedness of the state of the closed loop problem
we proceed as follows: for X4 we choose v0(y1, y2) = µβy3

1y2 + βν
2 y

2
2 as initial guess and for

n > 4 we use the solution of the previous degree as initial guess. Note that this requires
the polynomial degree to be at least 4.

In Figure 4 the training and test errors are depicted as in the LC-circuit example. It
is observed that the training errors MNSEJ and MNSEu are decreasing. The training
MNSEy stays small throughout. Additionally, the widths of the error-bars decrease with
the cardinality as well.

In the first row of Figure 5 the cardinalities of the supports {i : θi 6= 0} of the coefficients
of the learned feedback laws are presented in the first graph, whereas in the second graph
the same cardinality is presented as a proportion with respect of the cardinality of the basis.
It is observed that the cardinality of the support increases with the degree, but it decreases
as percentage of the cardinality of Xn. ( The colored curves appear in reversed order in
these two graphs.) Moreover, for each degree, the cardinality decreases as the training size
increases. In first graph of the second row of Figure 5 the training times are shown. The
training time increases with the number of training points, but in all the cases it is lower
than 14 minutes. Further, in the second graph of the second row of Figure 5 the maximum
time that take to solve a closed loop problem from the test set is depicted. It is noted that
the solving time for the closed loop problem decreases with the cardinality of the training
set and it increases with the degree of the approximation, which is consistent with the fact
that the size of the support increases with the degree. It is noteworthy that the solving
time is less than 0.42 seconds in all the experiments.

We turn our attention to the phase planes in Figure 6. In the first phase we see that
trajectories originating from a ’dot’ representing an initial condition moving towards a one
dimensional manifold with two branches meeting at the origin. These results are obtained
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Figure 4: Training and test errors MNSEu, MNSEy and MNSEJ for modified Van der
Pol oscillator example.

by our feedback strategy with polynomials of degree four and training cardinality two. If,
on the other hand we train with only one initial condition the the learned feedback law
is not capable of stabilizing the test initial conditions near the right-hand branch of the
manifold, as depicted in the second graph of Figure 6. We conclude that when training
with two or more initial conditions we are able to steer all the initial conditions in the test
set towards the origin.

9.3 Allen-Cahn Equation.

We turn to the control of the Allen-Cahn equation with the Neumann boundary conditions
and consider

min
ui∈L2([0,T ),R)

∫ T

0

∫ 1

−1
|y(x, t)|2dxdt+ β

∫ T

0
|u(t)|2dt

y′(t, x) = ν
∂2y

∂x2
(t, x) + y(t, x)(1− y2(t, x)) +

3∑
i=1

χωi(x)ui(t)

∂y

∂x
(t,−1) =

∂y

∂x
(t, 1) = 0, y(0, x) = y0(x)

(58)
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Figure 5: Support cardinality, training time and solving time of the solutions to the learning
problems for modified Van der Pol oscillator example.

Figure 6: Phase plane for test initial conditions for modified Van der Pol oscillator example.
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for x ∈ (−1, 1) and t > 0, where ν = 0.1, T = 3 and χωi are the indicators functions of
the sets ω1 = (−0.7,−0.4), ω2 = (−0.2, 0.2), and ω3 = (0.4, 0.7). This problem admits
the 3 steady states given by the constant functions with values −1, 0 and 1, with 0 being
unstable.

Since problem (58) is infinite-dimensional, we discretize it by using a Chebyshev spectral
collocation method with 19 degrees of freedom. The first integral in (58) is approximated
by means of the Clenshaw-Curtis quadrature. For further details on the Chebyshev spectral
collocation method and the Clenshaw-Curtis quadrature we refer to (Boyd, 2000, Chapters
6, 19), and (Trefethen, 2020, Chapters 7, 12, 13).

Due to the high dimensionality of this problem, the evaluation of the feedback law is
computationally expensive. In order to mitigate this difficulty the hyperbolic cross technique
is used for the construction of the basis. Further, sparsity of solution, can be influenced by
the penalty coefficient γ. With this in mind, we pay attention to the influence of γ on the
sparsity of the solution and performance of the obtained feedback laws.

For the results presented below, we choose r = 0.9, l = 10, X = S4 \ (B1 ∪ O(B4)),
v0 = 0, and γ ∈ {10−i : i = 1, . . . , 6} and sampling as before. We train progressively
starting with γ = 10−1, for which we use v = 0 as initial guess for the value function. For
the remaining γ values initialization is done with the solution of the previous γ value.

In Figure 7 we present the normalized errors calculated for test sets for each chosen
γ. We observe that the overall error given by MNSEJ achieves the lowest value at about
γ = 10−3. Moreover, all errors MNSEJ , MNSEu, and MNSEy decrease while training
cardinality increases more distinctly than in the other examples.

Concerning the efficiency of the method, in Figure 8 the support sizes of the solutions
of the learning problem (20) and the training times are depicted. We observed that the
support size decreases with γ. Of course, this also depends on the cardinality of the training
set. With respect to the training time, in the rightmost subplot in Figure 8 we observe that
the training time increases linearly with the cardinality as expected and decreases with γ,
which can be explained by the fact that the support cardinality decreases with γ.

In Figure 9 we present the scatter plot between the value of the objective of the closed
loop problem and the value obtained by our approach when γ = 10−1 with training cardi-
nality 5, and γ = 10−3 for training cardinalities 5 and 20. In the first scatter we see that the
slope and the intercept of the regression line are around 0.6 and 0.13, respectively. Moreover
we observe a high dispersion of the point around the regression line. On the other hand, in
the second scatter the regression line is closer to the identity line and the dispersion around
it is clearly lower than in the first scatter. Subsequently, for training cardinality of 20 we
see that the regression is sligthly closer to the identity line with respect to the previous
case, but the dispersion around it is smaller.

9.4 Optimal Consensus for Cucker-Smale Model

We consider a set of N agents with states (xi(t), yi(t)) ∈ R2×R2 for i ∈ {1, . . . , N} governed
by the Cucker-Smale (see (Cucker and Smale, 2007)) dynamics. The system is controlled in
such a way that the velocity of every agent asymptotically approaches the mean velocity. In
order to achieve this in an optimal way, we solve (see (Bailo et al., 2018; Caponigro et al.,
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Figure 7: Test mean normalized errors for Allen-Cahn equation example. The x-axis is in
logarithmic scale in all the subplots.

Figure 8: Support cardinality and training time of the solution obtained for each γ for
Allen-Cahn equation example.

Figure 9: Validation scatter for Allen-Cahn equation example.
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Figure 10: Training and test SSEu, SSEy, SSEJ in percent for optimal consensus example.

2015))

min
ui∈L2((0,∞);R2)

1

N

N∑
i=1

∫ T

0
|yi − ȳ|2dt+ β

N∑
i=1

∫ T

0
|ui|2dt

s.t. x′i = yi, y′i =
1

N

N∑
j=1

a(|xi − xj |)(yj − yi) + ui,

xi(0) = xi0, yi(0) = yi0,

(59)

where a : [0,∞)→ R is a communication kernel given by a(r) = K
(1+r2)

and ȳ(t) is the mean

velocity, that is ȳ(t) = 1
N

∑N
j=1 yj(t).

We set N = 10, T = 3, K = 10−1, and β = 10−2. For the learning problem we take
X = S4 \ (B1∪O(S4)), γ = 10−5, r = 0.9, and l = 5. The training and test sets are sampled
as before and we take v0(x1, . . . , xN , y1, . . . , yN ) = NKβ

∑N
i=1 |yi|2 as initial guess, which

ensures the boundedness of the solutions for the closed loop problem (9).

The test errors for different training sets of cardinalities 5, 10, 15 and 20 are presented
in Figure 10. As expected, the errors decrease with the training cardinality together with
the length of the error-bars. Moreover, in all the cases errors are smaller than 2.1 %.

We also provide the scatter plot between the value of the open loop problem and the
value obtained by our approach in Figure 11 for cardinalities 5,10 and 20. In the scatter
plots the slopes of the regression lines progressively increase towards 1, as the training
cardinality increases. Further, the dispersion around the regression line and the width of
the error-bars decrease with the training.

Finally, in Figure 12 the support size of the solutions of the learning problem and the
training times are shown. We notice that the cardinality of the support tends to decrease
with the number of training initial conditions. We point out that in this case the (38) was
used instead of (40) in Algorithm 1. This choice was made because in previous experiments
for this problem using (40), the errors and the training times were larger than in the case
presented. However, the solutions found by (40) tend to be sparser.
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Figure 11: Learned value vs optimal value on the test set for optimal consensus example.

Figure 12: Support cardinality and training time of the solution obtained for the optimal
consensus example.
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10. Conclusion

A learning based method to obtain feedback-laws for nonlinear optimal control problems
and their approximation by polynomials was presented. The proposed methodology was
implemented in python and tested on 4 problems. These experiments demonstrate the
robustness and efficiency of the approach for obtaining approximative feedback-laws for non-
linear and high dimensional problems. For the linear problem that we tested, our approach
was capable of finding feedback-laws close to those provided by the Riccati synthesis. Of
course, this relates to the fact that for linear-quadratic problems the value function is a
quadratic polynomial, and it is thus contained in our ansatz space. The nonlinear examples
also suggest possible further research directions. In the case of the Van der Pol problem we
saw the proposed method is capable of solving highly nonlinear problems. It also became
evident that the initialization is important. This leads to the question for guidelines for
efficient initializations. In the case of the Allen-Cahn problem it would be of interest to
investigate the convergence of the feedback-laws for the finite dimensional approximations
to the infinite dimensional one. For the Cucker-Smale problem we used the full gradient
method rather than the greedy version. This raises the question of the interplay between
performance, sparsity, and the choice of the gradient method.

Further extensions of our approach to more general problems are possible. A key ingre-
dient for such extensions will be the possibility of a representation formula of the optimal
feedback-law in terms of the value function as in (5).

Appendix A. Appendix

Lemma 3 Let ε ∈ (0, 1), σ ∈ (0, l), and v and vε be functions in C1,1(Ω) satisfying∣∣∣B>(∇v −∇vε)
∣∣∣
C(Ω)

< ε, and J∞(v) <∞. (60)

Further assume that
|yi(t)| 6 l − σ, for i = 1, . . . , I, ∀t > 0, (61)

where yi is the solution of (9), and define

C = 2

∣∣∣∣f − 1

β
BB>∇v

∣∣∣∣
Lip(Ω)

+
|B|2

β2
. (62)

Then, there exists Tε ∈ (0,∞] satisfying

Tε >
1

C
ln

(
1 +

σ2C

4ε2

)
, (63)

such that for each i ∈ {1, . . . , I} problem (9) admits a solution yεi ∈ C1([0, Tε]; Ω), and

|yεi (t)− yi(t)|2 6
ε2

C
(eCt − 1) and |yεi (t)| 6 l − σ

2
for all t ∈ [0, Tε]. (64)

Moreover, defining T̃ε > 0 by

T̃ε :=
1

C
ln

(
1 +

Cσ2

4ε1/2

)
(65)
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we have ∣∣∣JT̃ε(vε)− JT̃ε(v)
∣∣∣ 6 Kε1/4, (66)

where K is a constant independent of ε.

Proof [Proof of Lemma 3] Since f is Lipschitz on bounded sets, there exists a time Tε >
0 such that for each i ∈ {1, . . . , I} the closed loop problem (9) admits a solution yεi ∈
C([0, Tε];Rd) where Tε ∈ (0,∞] is defined as the largest time such that

sup
i ∈ {1, . . . , I},
t ∈ [0, Tε].

|yεi (t)| = l − σ

2
. (67)

We next verify that Tε satisfies (63) where C is given by (62) and σ ∈ (0, l) satisfies (61).
We assume that Tε is finite, otherwise this claim is trivially satisfied. Let yi be the solution
of (9) for v. Then, subtracting the equations (9) for yεi and yi we obtain

(yεi − yi)′ = (f(yεi )− f(yi))−
1

β
BB> (∇vε(yεi )−∇v(yi)) in (0, Tε), (68)

and yεi (0)− yi(0) = 0. We have

∇vε(yεi )−∇v(yi) = (∇vε(yεi )−∇v(yεi )) + (∇v(yεi )−∇v(yi)) (69)

in (0, Tε). Multiplying (68) by yεi − yi and using (60), (62) and (69) we get

d

dt

(
1

2
|yεi − yi|2

)
6
C

2
|yεi − yi|2 +

ε2

2
in (0, Tε). (70)

Multiplying both sides of (70) by e−Ct and integrating between 0 and t we obtain for each
i ∈ {1, . . . , I}

|yεi − yi|2 6
ε2

C

(
eCt − 1

)
in [0, Tε], (71)

and (64) holds. By (71) and (61) we have

|yεi |∞ 6 |yεi − yi|∞ + |yi|∞ 6
ε

C1/2

(
eCt − 1

)1/2
+ (l − σ) in [0, Tε]. (72)

Combining (67) and the previous inequality we obtain

σ

2
6

ε

C1/2

(
eCTε − 1

)1/2
which clearly implies (63) .

Now we turn to the proof of (66). Since ε ∈ (0, 1) and recalling the definition of T̃ε we
have

T̃ε =
1

C
ln

(
1 +

Cσ2

4ε1/2

)
<

1

C
ln

(
1 +

Cσ2

4ε2

)
6 Tε.
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Therefore, we have T̃ε < Tε, and using that ln(x+1) 6 x for all x > 0 we also get T̃ε 6 σ2

4ε1/2
.

Since ` is C1, and `(0) = 0 we can estimate∣∣∣∣∣
∫ T̃ε

0
`(yεi )dt−

∫ T̃ε

0
`(yi)dt

∣∣∣∣∣ 6 |`|Lip(Ω)

∫ T̃ε

0
|yεi − yi|dt. (73)

Together with (71) this implies that∣∣∣∣∣
∫ T̃ε

0
`(yεi )dt−

∫ T̃ε

0
`(yi)dt

∣∣∣∣∣ 6 ε

C1/2
T̃ε

(
eCT̃ε − 1

)1/2
|`|Lip(Ω). (74)

By the definition of T̃ε and since T̃ε 6 σ2

4ε1/2
, we obtain∣∣∣∣∣

∫ T̃ε

0
`(yεi )dt−

∫ T̃ε

0
`(yi)dt

∣∣∣∣∣ 6 ε1/4σ
3

8
|`|Lip(Ω). (75)

To estimate the second summand in JT̃ε(vε)−JT̃ε(v) we first observe that due to (60),
(61), and (64) there exists a constant K independent of ε ∈ (0, 1) such that for all i ∈
{1, . . . , I}

max
t∈[0,T̃ε]

∣∣∣B> (∇vε(yεi (t)) +∇v(yi(t)))
∣∣∣ 6 K.

Consequently we find by (60) and (64)

∣∣ ∫ T̃ε

0
|B>∇vε(yεi )|2dt−

∫ T̃ε

0
|B>∇v(yi)|2dt

∣∣
6
∫ T̃ε

0
|B>∇(vε(y

ε
i ) + v(yi))| |B>∇(vε(y

ε
i )− v(yi))| dt

6 K

∫ T̃ε

0
|B>∇(vε(y

ε
i )− v(yεi ))|+ |B>∇(v(yεi )− v(yi))| dt

6 K(εT̃ε + |B>∇v|Lip(Ω̄)

∫ T̃ε

0
|yεi − yi| dt)

6 K(εT̃ε + |B>∇v|Lip(Ω̄)T̃ε
ε√
C

√
eCT̃ε − 1) 6 K[

ε
1
2σ2

4
+ |B>∇v|Lip(Ω̄)

ε
1
4σ3

8
].

(76)

Inequality (66) is obtained from (75) and (76).

Lemma 4 Consider T ∈ (0,∞] and a sequence vk ∈ C1,1(Ω) converging in C1,1(Ω) to v,
such that JT (vk) <∞ and JT (v) <∞ . Then we have

lim
k→∞

JT (vk) = JT (v), (77)

for T ∈ (0,∞) and otherwise

J∞(v) 6 lim inf
k→∞

J∞(vk). (78)
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Proof [Proof of Lemma 4] Consider first T ∈ (0,∞), yki and yi the solutions of the closed
loop problems (9) for vk and v∗ respectively. Recalling the definition of JT in (8) and the
assumption that JT (vk) < ∞, we know that |yki (t)| 6 l for all t ∈ [0, T ], i ∈ {1, . . . , I},
and k ∈ {1, 2, . . .}. By the Lipschitz continuity of f on Ω and (9), we get that the set
{yki : i = 1, . . . , I; k = 1, 2, . . . , } is bounded in H1((0, T );Rd). Therefore, for every
i ∈ {1, . . . , I} there exists a function ȳi ∈ H1((0, T );Rd)∩L∞((0, T );Rd) such that, passing
to a sub-sequence,

yki ⇀ ȳi in H1((0, T );Rd) and yki → ȳi in C([0, T ];Rd). (79)

Further, as vk converges to v in C1,1(Ω) and yki converges to ȳ in C([0, T ]), we get

lim
k→∞

∇vk(yki ) = ∇v(ȳi) in C([0, T ]) for all i ∈ {1, . . . , I} (80)

and

lim
k→∞

{
f(yki )− 1

β
BB>∇vk(yki )

}
= f(ȳi)−

1

β
BB>∇v(ȳi) in C([0, T ]), (81)

for all i ∈ {1, . . . , I}. This implies that the functions {ȳi}Ii=1 are solutions of (9) and by
uniqueness of the solutions of this problem, we have

ȳi = yi, for all i ∈ {1, . . . , I}.

Hence we obtain

lim
k→∞

yki = yi in C1([0, T ];Rd) for all i ∈ {1, . . . , I}. (82)

By the continuity of `, (80) and (82), we get that (77) is verified for T ∈ (0,∞). For
T =∞, we find that (82) holds for all T̄ ∈ (0,∞). Since ` is bounded from below by 0, we
have

JT̄ (vk) 6 J∞(vk), for every T̄ ∈ (0,∞).

Then, taking the limit inf when k →∞ on both sides of the previous inequality we get

JT̄ (v) 6 lim inf
k→∞

J∞(vk), for every T̄ ∈ (0,∞),

where we use that lim inf = lim on the left hand side. Finally, taking T̄ → ∞ we obtain
(78).

Proof [Proof of Theorem 1] Assume that there exists a feasible solution of problem (20).
Since the objective function is bounded from below, there exists an infimizing sequence
θk ∈ RM . We denote the infimum of (20) by J ∗T and set vk =

∑M
i=1 θ

k
i φi, where θki is the

i-th component of θk. Since θk is an infimizing sequence, the sequence {Pγ,r(θk)}k∈N is
bounded, that is

Pγ,r(θ
k) = γ

(
(1− r)

2
|θk|22 + r|θk|1

)
6 C,
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for some C > 0 independent of k. This implies that there exists θ∗ ∈ RM such that, passing
to a sub-sequence

θk → θ∗ and vk → v∗ =
n∑
i=1

θ∗i φi in C1,1(Ω).

Hence, by Lemma 4 we have that J̃T (θ∗) + Pγ,r(θ
∗) 6 J ∗T , and we conclude that θ∗ is a

solution of (20).

Proof [Proof of Theorem 2] We provide the proof in several steps.
Step 1. Let V be the value function of (1). Since V is assumed to be C1,1(Ω), by

Theorem 9 in (Hájek and Johanis, 2014, Section 7.2), for every ε ∈ (0, 1) there exists a
natural number k(ε) and a polynomial Vε ∈ Pk(ε) such that∥∥∥B>(∇Vε −∇V )

∥∥∥
C(Ω)

< ε. (83)

Since ∇V (0) = 0 and V (0) = 0, we assume that Vε(0) = 0 and ∇Vε(0) = 0, otherwise
we can redefine it by subtracting Vε(0) +∇Vε(0) · x from it. We denote the coefficients of
Vε with respect to the basis Xk(ε) = Bk(ε) \ B1 by θε ∈ RMk(ε) . By Lemma 3, for every

i ∈ {1, . . . , I} problem (9) has a solution yεi ∈ C1([0, T̃ε],Ω), with T = T̃ε and v = Vε, where
T̃ε is given by (65). Moreover, by (66) we know that there exists K > 0 independent of ε,
such that

JT̃ε(Vε) 6 JT̃ε(V ) +Kε1/4. (84)

Step 2. We consider problem (20) with X = Bk(ε) \ B1, T = T̃ε, γ > 0 and r ∈ [0, 1],

and denote its solution by θγ,r,k(ε),T̃ε , which we know to exist by Lemma 3 and Theorem 1.
We point out that it is possible to use X = Sk̃(ε) \ B1 instead of Bk(ε), provided that k̃(ε)
is sufficiently large such that Bk(ε) ⊂ Sk̃(ε). We set

vγ,r,k(ε),T̃ε
=

Mk(ε)∑
i=1

θ
γ,r,k(ε),T̃ε
i φi.

Since θγ,r,k(ε),T̃ε is optimal, we have

JT̃ε(vγ,k(ε),T̃ε
) + Pγ,r(θ

γ,r,k(ε),T̃ε) 6 JT̃ε(Vε) + Pγ,r(θ
ε) (85)

and by (84) we obtain

JT̃ε(vγ,k(ε),T̃ε
) + Pγ,r(θ

γ,r,k(ε),T̃ε) 6 J∞(V ) +Kε1/4 + Pγ,r(θ
ε). (86)

We now choose γ = γε such that Pγε,r(θ
ε) = Kε1/4. Then, we obtain

JT̃ε(vγε,r,n(ε),T̃ε
) + Pγε,r(θ

γε,r,k(ε),Tε) 6 J∞(V ) + 2Kε1/4 (87)

and taking ε→ 0, we get for every r ∈ [0, 1]

lim sup
ε→0

JT̃ε(vγε,r,n(ε),T̃ε
) 6 J∞(V ). (88)
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Step 3. For i ∈ {1, . . . , I}, we denote the solutions of (9), for y0 = yi0, T = T̃ε, and

v = vγε,r,k(ε),T̃ε , by y
γε,r,k(ε),T̃ε
i , and we define the controls u

γε,r,k(ε),T̃ε
i ∈ L2((0, T̃ε);Rm) by

u
γε,r,k(ε),T̃ε
i (t) = − 1

β
B>∇vγε,r,k(ε),T̃ε(y

γε,r,k(ε),T̃ε
i (t)) in (0, T̃ε).

Now, by the definition of the controls we have for i ∈ {1, . . . , I} and all T̄ ∈ (0, T̃ε)∫ T̄

0
|uγε,r,k(ε),T̃ε
i |2dt =

∫ T̄

0

∣∣∣B>∇vγε,r,k(ε),T̃ε(y
γε,r,k(ε),T̃ε
i )

∣∣∣2 dt 6 2βI|B|2J̃T̃ε(v
γε,r,k(ε),T̃ε).

Using (87) and ε 6 1 in the previous inequality we get∫ T̄

0
|uγε,r,k(ε),T̃ε
i |2dt 6 2βI|B|2(2K + J∞(V )). (89)

In virtue of (89), (9), and the fact that |yγε,r,k(ε),T̃ε
i (t)| 6 l for all t ∈ [0, T̃ε], we get∫ T̄

0

∣∣∣∣ ddtyγε,r,k(ε),T̃ε
i (t)

∣∣∣∣2 dt 6 T̄ sup
x∈Ω

|f(x)|2 + 2βI|B|2(2K + J∞(V )). (90)

Thus, for every T̄ ∈ (0,∞), i = 1, . . . , I and taking ε→ 0, there exist y∗i ∈ H1
loc((0,∞);Rd)

and u∗i ∈ L2
loc((0,∞);Rm) such that, passing to a sub-sequence

y
γε,r,k(ε),T̃ε
i ⇀ y∗i in H1((0, T̄ );Rd) and u

γε,r,k(ε),T̃ε
i ⇀ u∗i in L2((0, T̄ );Rm). (91)

Further, by the compact inclusion of C([0, T̄ ];Rd) into H1((0, T̄ ),Rd), we have

y
γε,r,k(ε),T̃ε
i → y∗i in C([0, T̄ ];Rd) (92)

when ε→ 0, for every T̄ ∈ (0,∞).

For i ∈ {1, . . . , d}, we use (91), (92) and take ε→ 0 in (9) to obtain

(y∗i )
′(t) = f(y∗i (t)) +Bu∗i (t), ∀ t ∈ (0,∞), y∗i (0) = yi0. (93)

Additionally, using the definitions of y
γε,r,k(ε),Tε
i and u

γε,r,k(ε),Tε
i for i ∈ {1, . . . , I} together

with (91), (92), and the lower semi-continuity of | · |2 we have

1

I

I∑
i=1

∫ T̄

0
`(y∗i )dt+

β

2

∫ T̄

0
|u∗i |2dt 6 lim inf

ε→0
JT̃ε(vγε,r,n(ε),T̃ε

) ∀T̄ ∈ (0,∞). (94)

In particular, since T̄ ∈ (0,∞) in (94) is arbitrary, we get

1

I

I∑
i=1

∫ ∞
0

`(y∗i )dt+
β

2

∫ ∞
0
|u∗i |2dt 6 lim inf

ε→0
JT̃ε(vγε,r,n(ε),T̃ε

). (95)
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By (93), (95) and the definition of the value function we have

J∞(V ) =
1

I

I∑
i=1

∫ ∞
0

`(yi)dt+
β

2

∫ ∞
0
|B>∇V (yi)|2dt

6
1

I

I∑
i=1

∫ ∞
0

`(y∗i )dt+
β

2

∫ ∞
0
|u∗i |2dt 6 lim inf

ε→0
JT̃ε(vγε,r,n(ε),T̃ε

).

(96)

Finally, (88) and (96) imply

lim
ε→0
JT̃ε(vγε,r,n(ε),T̃ε

) = J∞(V ). (97)

which concludes the proof.

Proposition 3 Assume that ν ∈ C2(Ω) with ∇ν(0) = 0 and σ ∈ (0, l) are such that (9)
with v = ν, T =∞ and i ∈ {1, . . . , I} admits a solution yi, satisfying

lim
t→∞

yi(t) = 0, |yi(t)|∞ 6 l − σ, ∀t ∈ [0,∞), for all i ∈ {1, . . . , I}. (98)

Suppose further that the linearized system

z′ =

(
Df(0)− 1

β
BB>∇2ν(0)

)
z, z(0) = z0 (99)

is exponentially stable, i.e. there exist C > 0 and µ > 0 such that

|z| 6 Ce−µt|z0| for all t ∈ (0,∞) and z0 ∈ Rd.

Then, there exist ε0 ∈ (0, 1), ρ > 0, K > 0, and κ > 0, such that for every ν̃ ∈ C2(Ω) which
satisfies

‖ν − ν̃‖C2(Ω) 6 ε0 and ∇ν̃(0) = 0, (100)

we have that the closed loop system (9) with v = ν̃ is exponentially stable for every y0 ∈
B(0, ρ), and for every i ∈ {1, . . . , I}

|ỹi(t)| 6 Ke−κt|yi0| for all t ∈ (0,∞), (101)

and J∞(ν̃) <∞, where {ỹi}Ii=1 are the solution of (9) with v = ν̃.

Proof [Proof of Proposition 3] Consider ε ∈ (0, 1) and a function νε ∈ C2(Ω) such that

‖ν̃ − ν‖C2(Ω) 6 ε and ∇ν̃(0) = 0. (102)

By Lemma 3 there exists a time Tε > 0, such that for each i ∈ {1, . . . , I}, problem (9) with
v = νε and T = Tε admits a solution yεi ∈ C1([0, Tε]; Ω), which satisfies (64). Moreover, we
know that Tε fulfills (63).
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Due to the exponential stability of (99), there exists a symmetric and positive definite
matrix M ∈ Rd×d (see Theorem 4.6 in (Khali, 2002, p. 136)), such that

y>(A>M +MA)y = −|y|2, for all y ∈ Rd,

where A = Df(0)− 1
βBB

>∇2ν(0). This equality and the fact that ν is C2(Ω), implies that
there exists ρ > 0, such that

2(f(y)− 1

β
BB>∇ν(y))>My < −3

4
|y|2 for all y ∈ B(0, ρ) ⊂ Ω. (103)

By (102) and the integral mean value theorem we have

|∇ν̃(y)−∇ν(y)| 6 ε|y| for all y ∈ Ω. (104)

For ε < β
8|B|2|M | and combining (102), (104), and (103) we have

2(f(y)− 1

β
BB>∇ν̃(y))>My < −1

2
|y|2 for all y ∈ B(0, ρ). (105)

Thus, ψ(y) = y>My is a Lyapunov function for (9) with v = νε in B(0, ρ), (Khali, 2002,
Section 4.4, Theorem 4.10).

By (98), we know that there exists T > 0 such that

|yi(t)| <
ρ

4
for all t > T and i ∈ {1, . . . , I}.

Further, by (63), we know that Tε > T if ε < C1/2σ/(eCT − 1)1/2. Hence, by (64) and
choosing ε satisfying ε < C1/2σ/(eCT − 1)1/2 we have

|yεi (T )| 6 |yεi (T )− yi(T )|+ |yi(T )| 6 ε

C1/2
(eCT − 1)1/2 + |yi(T )|. (106)

Choosing

ε 6 ε0 := min

{
ρC1/2

4(eCT − 1)1/2
,

C1/2σ

(eCT − 1)1/2
,

β

8|B|2|M |

}
,

we have that ε
C1/2 (eCT − 1)1/2 6 ρ

4 and by (106) we obtain

|yεi (T )| 6 ρ

2
for all i ∈ {1, . . . , I}.

Given that ψ is a Lyapunov function in B(0, ρ), we have that there exist K > 0 and κ > 0
such that (101) holds for all ν̃ satisfying (100). Further, using that ν̃ is C1,1(Ω), ` is C1,
and (101), we get that J∞(ν̃) <∞. Therefore, Proposition 3 holds with ε0.
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N. Nüsken and L. Richter. Solving high-dimensional Hamilton–Jacobi– Bellman pdes using
neural networks: Perspectives from the theory of controlled diffusions and measures on
path space. 2020. URL https://arxiv.org/abs/2005.05409.

D. Onken, L. Nurbekyan, X. Li, S. W. Fung, S. Osher, and L. Ruthotto. A neural network
approach applied to multi-agent optimal control. In 2021 European Control Conference
(ECC), pages 1036–1041, 2021.

M. Oster, L. Sallandt, and R. Schneider. Approximating the stationary Hamil-
ton–Jacobi–Bellman equation by hierarchical tensor products. arXiv, 2019. URL
https://arxiv.org/abs/1911.00279.

M. Oster, L. Sallandt, and R. Schneider. Approximating optimal feedback controllers of
finite horizon control problems using hierarchical tensor formats. SIAM Journal on Sci-
entific Computing, 44(3):B746–B770, 2022.

M.L. Puterman and S.L. Brumelle. On the convergence of policy iteration in stationary
dynamic programming. Math. Oper. Res., 4(1):60–69, 1979.

M. Raydan. The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem. SIAM J. Optim., 7(1):26–33, 1997.

K. H. Rosen. Discrete Mathematics and its Applications, volume 21 of Series in Algorithms
and Combinatorics. McGraw-Hill Education, New York, 2019.

L. Ruthotto, S. J. Oshera, W. Li, L. Nurbekyan, and S. Wu Fung. A machine learning
framework for solving high-dimensional mean field game and mean field control problems.
Proc. Natl. Acad. Sci., 117(17):9183–9193, 2020.

M.S. Santos and J. Rust. Convergence properties of policy iteration. SIAM J. Control
Optim., 42(6):2094–2115, 2004.

H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin. A primer on coordinate descent algorithms. arXiv,
2017. URL https://arxiv.org/abs/1610.00040.

E. Stefansson and Y. P. Leong. Sequential alternating least squares for solving high dimen-
sional linear Hamilton–Jacobi–Bellman equation. In 2016 IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), pages 3757–3764, 2016.

37

https://arxiv.org/abs/2005.05409
https://arxiv.org/abs/1911.00279
https://arxiv.org/abs/1610.00040


Kunisch, Vásquez-Varas and Walter

L. N. Trefethen. Spectral Methods in MATLAB. SIAM, 2020.

T. Wu and K. Lange. Coordinate descent algorithm for lasso penalized regression. The
Annals of Applied Statistics, 2(1):224–244, 2008.

38


	Introduction
	Statement of the Problem
	Polynomial Learning Problem
	Existence and Convergence
	Optimality Conditions
	Optimization Algorithm
	Polynomial Basis Evaluation
	Generalization
	Numerical Experiments
	LC-circuit
	Modified Van der Pol Oscillator
	Allen-Cahn Equation.
	Optimal Consensus for Cucker-Smale Model

	Conclusion
	Appendix

