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Abstract

We bound the excess risk of interpolating deep linear networks trained using gradient flow.
In a setting previously used to establish risk bounds for the minimum ¢5-norm interpolant,
we show that randomly initialized deep linear networks can closely approximate or even
match known bounds for the minimum #5-norm interpolant. Our analysis also reveals that
interpolating deep linear models have exactly the same conditional variance as the minimum
fo-norm solution. Since the noise affects the excess risk only through the conditional
variance, this implies that depth does not improve the algorithm’s ability to “hide the
noise”. Our simulations verify that aspects of our bounds reflect typical behavior for
simple data distributions. We also find that similar phenomena are seen in simulations
with ReLLU networks, although the situation there is more nuanced.

Keywords: generalization, benign overfitting, implicit bias, interpolation, neural net-
works, regression

1. Introduction

Recent empirical studies (Zhang et al., 2017; Belkin et al., 2019a) have brought to light the
surprising phenomenon that overparameterized neural network models trained with variants
of gradient descent generalize well despite perfectly fitting noisy data. This seemingly
violates the once widely accepted principle that learning algorithms should trade off between
some measure of the regularity of a model, and its fit to the data. To understand this, a
rich line of research has emerged to establish conditions under which extreme overfitting—
fitting the data perfectly—is benign in simple models (see Belkin et al., 2018; Hastie et al.,
2022; Bartlett et al., 2020). Another closely connected thread of research to understand
generalization leverages the recognition that training by gradient descent engenders an
implicit bias (see Neyshabur et al., 2015; Soudry et al., 2018; Ji and Telgarsky, 2019). These
results can be paraphrased as follows: training until the loss is driven to zero will produce
a model that, among models that interpolate the data, minimizes some data-independent
regularity criterion.

Our paper continues this study of benign overfitting but with a more complex model
class, deep linear networks. Deep linear networks are often studied theoretically (see, e.g.,
Saxe et al., 2014; Arora et al., 2018), because some of the relevant characteristics of deep
learning in the presence of nonlinearities are also present in linear networks but in a setting
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that is more amenable to analysis. The analyses of linear networks have included a number
of results on implicit bias (see, e.g., Azulay et al., 2021; Min et al., 2021). Recently, one
of these analyses (Azulay et al., 2021), of two-layer networks trained by gradient flow with
a “balanced” initialization, was leveraged in an analysis of benign overfitting (Chatterji
et al., 2022). (For a mapping  — zWwv parameterized by a hidden layer W € R4*™ and an
output layer v € R™*1 initial values of v and W are balanced if vo | = WTW.) Min et al.
(2021) analyzed implicit bias in two-layer linear networks under more general conditions
including the unbalanced case.

In this paper, we analyze benign overfitting in deep linear networks of arbitrary depth
trained by gradient flow. Our first main result is a bound on the excess risk. The bound is
in terms of some characteristics of the joint distribution of the training data previously used
to analyze linear regression with the standard parameterization, including notions of the
effective rank of the covariance matrix, and it holds under similar conditions on the data
distribution. Another key quantity used in the bound concerns the linear map © computed
by the network after training—it is the norm of the projection of this map onto the subspace
orthogonal to the span of the training examples. This norm can further be bounded in terms
of its value at initialization, and a quantity that reflects how rapidly training converged. In
contrast with previous analyses on two-layer networks (Chatterji et al., 2022), this analysis
holds whether this initialization is balanced or not.

Our second main result is a high-probably risk bound that holds for networks in which
the first and last layers are initialized randomly, and the middle layers are all initialized
to the identity. Our bound holds whenever the scale of the initialization of the first layer
is small enough, and the scale of the initialization of the last layer is large enough. This
includes the extreme case where the first layer is initialized to zero. As the scale of the
initialization of the first layer goes to zero, our bound approaches the known bound for
the minimum #s-norm interpolator with the standard parameterization. Owur final main
theoretical result illustrates our bounds using a simple covariance matrix used in previous
work (Bartlett et al., 2020; Chatterji and Long, 2022) which might be viewed as a canonical
case where overfitting is benign for linear regression with the standard parameterization.

These bounds were obtained in the absence of a precise characterization of the implicit
bias of gradient flow for deep linear networks, or a closed-form formula for the model
produced.

A key point of our analysis is that the projection of the linear map © computed by the
interpolating network onto the span of the rows of the design matrix X is exactly equal to
minimum #p-norm interpolant ©,,. The risk of © naturally decomposes into contributions
from this projection and ©y1 = © — Oy,. We can use previous analyses of Oy, to bound
the former.

Figure 1 contains plots from simulation experiments where the excess risk of a deep
linear model increases with the scale of the initialization of the first layer, as in the upper
bounds of our analysis. A similar effect is also seen when the first layer is initialized at a unit
scale, and the scale of the initialization of the last layer varies. In both cases, we also see
that as the function computed by the network at initialization approaches the zero function,
the trained model approaches the minimum fo-norm interpolant. Figure 2 includes plots of
analogous experiments with networks with ReLLU nonlinearities. As in the linear case the
excess risk increases with the scale of the initialization of the first layer, but we do not see a
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Deep Linear Networks
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Figure 1: Three-layer linear networks trained by gradient descent on data generated by an
underlying linear model. The model is trained on n = 100 points drawn from
the generative model y = 20* 4+ w, where x ~ N(0,%) and w ~ N(0,1). The
excess risk is defined as E; [||z© — 20*||?]. We empirically find that when the
initialization variance of either the first layer (a?) or the last layer (32) is close to
zero, the final solution is close to the minimum #s-norm interpolator and suffers
small excess risk. While when the initialization variance is large, that is, when
the network is initialized away from the origin, the excess risk is larger due to the
component of the final solution outside the span of the data. Additional details
in Section 7.

significant increase in excess risk with the scale of the initialization of the last layer. More
details of the experiments are described in Section 7.

Intuitively, the harm from overfitting arises from fitting the noise, and the effect of fitting
the noise is analyzed in the conditional variance of the estimator. In the setting studied
here, as in linear regression with the standard parameterization, the conditional variance
is entirely determined by the projection of © onto the span of the rows of the data matrix
X which is equal to ©y,. Thus, when learning deep linear networks with quadratic loss,
aspects of training that affect the inductive bias, such as the initialization, architecture,
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Deep ReLLU Networks
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Figure 2: Three-layer ReLU networks trained by gradient descent on data generated by an
underlying two-layer ReLU teacher network. The model is trained on n = 500
points drawn from the generative model y = f*(z) + w, where f* is a two-layer
ReLU network with width 50,  ~ N(0, I19x10) and w ~ N(0,1). The excess risk
is defined as E; [||f(z) — f*(2)||*]. In ReLU models we find that the risk scales
differently as we scale the initialization variance of the first layer (a?) and that of
the last layer (3%). When we scale a2, similar to deep linear models we find that
risk is smaller for smaller values of 2. However, this is not the case when we scale
(2. This highlights a surprising asymmetry in the role played by the initialization
scales of the different layers in ReLU networks. For additional details about the
experiment see Section 7.

etc., do not affect this variance term—mno matter how they are chosen, the distribution of
the variance term is determined by ©y,. To see an effect of implicit bias in deep linear
networks on the consequence of fitting the noise, we must analyze a loss function other than
the quadratic loss.

Our upper bounds reveal no benefit in representing linear transformations by deep net-
works, and, in our simulations, we see no benefit with random initialization. This is because
non-zero random initialization usually contributes additional error to the bias as the ran-
dom initialization is typically a poor guess for the regression function. (In rare cases it
could reduce the bias, though, if by chance it approximates the regression function.)

Our analysis also leverages the effect of imbalanced initialization on implicit bias—our
treatment partially extends the results by Min et al. (2021) from the two-layer case to the
deep case, and then combines them with our general risk bound.

Organization. In Section 2 we describe our problem setting and our assumptions. Then
in Section 3 we present our main results and in Sections 4, 5 and 6 we prove these results.
We provide additional simulations and simulation details in Section 7. We conclude with a
discussion in Section 8. In Appendix A we highlight other related work on benign overfitting,
implicit bias, and on linear networks. Finally, in Appendix B we present omitted technical
details.
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2. Preliminaries

This section includes notational conventions and a description of the setting.

2.1 Notation

Given a vector v, let ||[v|| denote its Euclidean norm. Given a matrix M, let ||M]| denote
its Frobenius norm and let ||M||,, denote its operator norm. For any j € N, we denote the
set {1,...,7} by [j]. We will use ¢, ¢, ¢1, ¢y, . .. to denote positive absolute constants, which
may take different values in different contexts.

2.2 Setting

We analyze linear regression with d inputs and ¢ outputs from n examples. Throughout the
paper we assume that d > n. Although we assume throughout that the input dimension d
is finite, it is straightforward to extend our results to infinite d.

Let X € R™ 9 be the data matrix, and Y € R"*9 be the response matrix, and let
x1,..., o, € R4 be the rows of X and y1,...,yn € R'*? be the rows of Y.

For random (z,y) € R4 x R1X4 let

©* € argminE, ) [[ly — 20|1?]
O€cRIxq

be an arbitrary optimal linear regressor. We let Q =Y — X©* € R"*? be the noise matrix.
Define the excess risk of an estimate © € R4*? to be

Risk(©) := Exy [lly — 20|* — [ly — 20*|1*] ,

where x,y are test samples that are independent of ©.

Denote the second moment matrix of the covariates by ¥ = E[z 2] € R¥9 with
eigenvalues A1 > ... > Ay > 0. We will use the following definitions of the “effective rank”
that Bartlett et al. (2020) previously used in the analysis of the excess risk of the minimum
{o-norm interpolant.

Definition 1. Given any j € [d], define s; 1=}, ;A and
2
5 %)
rj = and R; = .
7T Nh DYDY,

We define the index k below. The value of k shall help determine what we consider the
“tail” of the covariance matrix.

Definition 2. For a large enough constant b (that will be fized henceforth), define
k:=min{j > 0:r; > bn},
where the minimum of the empty set is defined as co.

We are now ready to introduce the assumptions of our paper.
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Assumptions. Let ¢, and ¢, denote absolute constants.

(A.1) The samples (z1,91), ..., (Zn,yn) are drawn i.i.d.
(A.2) The covariates x and responses y are mean-zero.

(A.3) The covariates x satisfy x = $1/2y, where u is isotropic and has components that
are independent c,-sub-Gaussian random variables, that is, for all ¢ € R?

E {exp (QZ)TU)} < exp (cx\|¢||2/2) :

(A.4) The difference y — 20* is ¢,-sub-Gaussian, conditionally on z; that is, for all
¢ e R?

By [exp (67 (y - 207)) | ] < exp (e 16]1%/2)
(note that this implies that E[y | z] = 20* and E [||y — 20*|]?] < cq).
(A.5) Almost surely, the projection of the data X on the space orthogonal to any eigen-
vector of X spans a space of dimension n.

All the constants going forward may depend on the values of ¢, and ¢,. The assump-
tions made here are standard in the benign overfitting literature (see Bartlett et al., 2020;
Chatterji et al., 2022). They are satisfied for example in the case where x is a mean-zero
Gaussian whose covariance Y has full rank, d > n, and the noise y — ©* is independent
and Gaussian.

2.3 Deep Linear Models

We analyze linear models represented by deep linear networks with m hidden units at each
layer. We denote the weight matrices by Wi, ..., Wy, where W; € R™*¢ W,, ... . Wy_; €
R™*™ and Wy, € R?*™, The standard representation of the network’s linear transforma-
tion, denoted by © € R¥¥4, is

O=Wg---Wp)" e R¥¥9.
Define Px to be the projection onto the row span of X, that is, Px := X (XX )71 X. Let
Ox := Px® and ©x.:= (I — Px)0O.
For n datapoints (z1,¥1), ..., (Zn,Yn), where z; € R™? and y; € R1¥9, the training loss
is given by
n
L(©):=) |y —=:0|* =Y — X0
i=1

We will analyze the generalization properties of deep linear models trained with gradient
flow, that is, for all j € [L],

aw
J
dt

We study the following random initialization scheme in our paper.

= _ij(t)L(@(t)).
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Definition 3. (Random initialization) Given «, 8 > 0, the entries of the first layer Wl(o)
and the last layer WIEO) are initialized using i.i.d. draws from N(0,a?) and N(0, 3?) respec-
(0) (0)

tively. The remaining layers Wy, ..., W;”, are initialized to the identity Ip,.

A similar initialization scheme has been studied previously (Zou et al., 2020). Our
analysis will show that starting from random initialization the scale of the network grows
in a controlled manner which is captured by the following definition.

Definition 4. We say that training is perpetually A bounded if, for all t > 0 and all

S C[L],
1w,
JjeS

<A.

op

In our subsequent analysis, this notion of perpetually A bounded shall allow us to control
the behavior of the network in the null space of the data matrix X.

2.4 The Minimum {s-norm Interpolant

It will be helpful to compare the generalization of the deep linear model with the result of
applying the minimum fo-norm interpolant resulting from the standard parameterization.

Definition 5. For any X € R™? and Y € R™ 9, define Oy, = X (XX )71V

Under Assumption (A.5), the matrix X X " is full rank and therefore Oy, is well defined.
As previously noted, the excess risk of this canonical interpolator has been studied in prior
work (see Bartlett et al., 2020; Tsigler and Bartlett, 2020).

3. Main Results

In this section, we present our excess risk bounds. Our first result applies to any deep linear
model trained until interpolation. Second, we shall specialize this result to the case where
the model is randomly initialized. Lastly, we present an excess risk bound for a randomly
initialized network in a setting with a spiked covariance matrix.

3.1 Excess Risk bound for Deep Linear Models

The following theorem is an excess risk bound for any deep linear model trained until it
interpolates in terms of the rate of convergence of its training, along with the effective ranks
of the covariance matrix.

Theorem 6. Under Assumptions (A.1)-(A.5), there is an absolute constant ¢ > 0 such that,
for all 6 < 1/2 and all depths L > 1, the following holds. With probability at least 1 — cd, if
O = limy_,o, O for a perpetually A-bounded training process for which lim;_, E(@(t)) =0,
and n > cmax{ro, k,log(1/9)}, then

Risk(©) = Bias(Oy,) + Variance(Oy,) + =,
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where

. cs «
Bias(O,) < —[|©"?,

Variance(@gQ) < cqlog(q/d) (711: + f?) ,
k

and

e’} 2
== %’“H@XW < %’“ [||@§?l|! +LA2\/)\1n/t ) VL£(O0) dt} :

This bound shows that the conditional bias of the estimator © is upper bounded by
the conditional bias of the minimum /¢s-norm interpolant Bias(©,) plus =, which is the
additional bias incurred by the component of © outside the row span of X. This additional
term = depends not only on the eigenvalues of the covariance matrix but also on the specifics
of the optimization procedure such as the initial linear model (@(O)), the size of the weights
throughout training (A) and the rate of decay of the loss.

Interestingly, the conditional variance of the interpolator ©, is in fact identical to the
conditional variance of the minimum #s-norm interpolant. This follows because, as we will
show in the proof, the component of the interpolator © in the row span of X is in fact equal
to Oy,, and the conditional variance depends only on this component within the row span
of X. The variance captures the effect of perfectly fitting the noise in the data, and our
analysis shows that the harm incurred by fitting the noise is unaffected by parameterizing
a linear model as a deep linear model.

Essentially matching lower bounds (up to constants) on the variance term are known

(Bartlett et al., 2020).

3.2 Excess Risk Bound under Random Initialization

Our next main result establishes a high-probability bound on the excess risk, and in par-
ticular on =, when the network is trained after a random initialization (see Definition 3).

Theorem 7. Under Assumptions (A.1)-(A.5), there is an absolute constant ¢ > 0 such
that, for all § < 1/2, if

e the initialization scales B and o satisfy f > cmax

Ai/4m( ||9*||)\1/4+q1/4)
1, and
Ve

a<l1;

o the width m > cmax {d +q + log(1/4), L2a2)\15%22310g(n/5) };
k
e the network is trained using random initialization as described in Definition 2.5;

e the number of samples satisfies n > cmax{ro, k,log(1/9)},

then, with probability at least 1 — 0,

Risk(©) < Bias(©y,) + Variance(©y,) + =,
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where
. CS
Bias(Oy,) < —[[©"?,
Variance(©y,) < cqlog(q/d) §+£
) > €qloglg " i ,
_ _ co’s L*(a+1/L)*\n? . a2 soqlog(n/s
=< o gy TOELAT () for 2 4 g 4 S RO
k

Note that the bound on = of Theorem 7 can be made arbitrarily small by decreasing «
while keeping the other parameters fixed. When a = 0, our bound shows that the model
has the same risk as the minimum #o-norm interpolant.

Recall from the simulation in Figure 1 that as the initialization of the last layer
approaches 0, the model produced by gradient descent gets closer to the minimum #¢s-norm
interpolant. Our bound on = does not approach 0 as 8 — 0, and we do not know how to
prove that this happens in general with high probability.

Regarding the role of overparameterization, we find that one component of our bound
on = gets smaller as the width m is increased. However, our bound gets larger as we increase
depth L.

As mentioned earlier, the bound on the conditional variance, which captures the effect
of fitting the noise, is sharp up to constants, however we do not know whether the upper
bound on the conditional bias, and specifically = in Theorem 7, can be improved. It is also
unclear whether conditions on 8 and m can be relaxed.

Next, to facilitate the interpretation of our bounds, we apply Theorem 7 in a canonical
setting where benign overfitting occurs for the minimum ¢o-norm interpolant.

Definition 8 ((k,¢)-spike model). For 0 < ¢ < 1 and k € N, a (k,¢)-spike model is a
setting where the eigenvalues of ¥ are Ay = ... =X Ay =1 and Agyr1 = ... = Mg = €.

The (k, €)-spike model is a setting where there are k high variance directions, and many
(d — k) low variance directions that can be used to “hide” the energy of the noise. Note
that, in this model, if d > cn and n > ck for a large enough constant ¢, then k satisfies the
requirement of Definition 2, since ry, = ¢(d—k)/e = d—k > bn. Since this covariance matrix
has full rank, it may be used in one of the concrete settings where all of our assumptions
are satisfied described at the end of Section 2.2.

Corollary 9. Under Assumptions (A.1)-(A.5), there is an absolute constant ¢ > 0, such
that, for any 0 < e < 1 and k € N, if X is an instance of the (k,e)-spike model, for any
input dimension d, output dimension q, depth L > 1, and number of samples n, there are
initialization scales o > 0 and B > 0 such that the following holds. For all § < 1/2, if

e the width m > c¢(d + q + log(1/9));
e the network is trained as described in Section 2.5;
e the input dimension d > cn;

e the number of samples n > cmax {k + ed,log(1/9)},
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then, with probability at least 1 — 0,

(1)

Risk(©) < c(edH@*H? + aklog(a/) | ng 10g<q/5>>
< . e(0/9))

Corollary 9 gives the simple bound obtained by a choice of parameters that includes a
sufficiently small value of a. For larger values of o the bound of Theorem 7 may behave
differently in the case of the (k,e)-spike model. We find that if we regard ||©*||? as a
constant then, the excess risk approaches zero if

ed gk log(q/9)

— 0,
n n

ngq

— 0 and — 0,

which recovers the known sufficient conditions for the minimum /o-norm interpolant to
benignly overfit in this setting. One example is where

¢q=5k=5,0=1/100,d =n? e = 1/n?

and n — oco.

4. Proof of Theorem 6

The proof of Theorem 6 needs some lemmas, which we prove first. Throughout this section
the assumptions of Theorem 6 are in force.

A key point is that the projection of any interpolator onto the row span of X, including
the model output by training a deep linear network, is the minimum f-norm interpolant.

Lemma 10. For any interpolator ©, O x = Px© = Oy, .

Proof. Since O interpolates the data
Y:X@:X(@X—i-@XL):X@X. (2)

Recall that Ox = X (XX T)"1X0© = PxO, where Px projects onto the row span of X.
Continuing, we get that

O, =X"(XX")ly
=Xx"(xx")1xex
= PX@X = PXpX@ = Px@ = @X.

Using the formula for the minimum #s-norm interpolant, we can now write down an
expression for the excess risk.

Lemma 11. The excess risk of any interpolator © of the data satisfies

Risk(©) < ¢Tr ((@* —04.) BO" - @XL)) + eqlog(q/8)Tr(C)

10
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with probability at least 1 — § over the noise matriz Q2 =Y — XO, where
B = (I - XT(XXT)*X) > (I - XT(XXT)*X) and
C:=XXxNHxexT(xx")!

Proof. We have y — z0* is conditionally mean-zero given x, thus

Risk(©) = Euy [ly — 20|°] — Exy [Hy—xG*HQ}
= Eay [Hy—w@“rx‘( O)I*] — Eayy [lly — 20*|°]
E. [[z(6* - ©)|]. 3)

Since © interpolates the data, by Lemma 10 we know that
O=0,+0 =X (XX 'Y 4+0,..

Now because Y = XO* + ) we find that

Risk(©)

_E, [Hx (]_XT(XXT)—1X> (0" —Oy.) — xXT(XXT)ﬂQHz]

< 9E, {Hm (I _ XT(XXT)*lX) (0 —O041)

H +9E, [HxXT(XXT)lﬂHZ]

< 9E, [g; (I - XT(XXT)*X) (@~ 0,1 )(0 —0,.)" (I - XT(XXT)*IX) xT}
+2E, [a:XT(XXT)_lfmT(XXT)_lXxT}

Yoy (0 —0x)™ (1-XT(XXT)X) B, 27| (1- XT(XXT)7'X) (0" —6x1))
+2Tr (QT(XXT)_lXIEm [xTx]XT(XXT)—lsz)

22T (0 - 0x2)TBO" — 0x1)) +2Tr (27C0)

where (i) follows by using the cyclic property of the trace, and (ii) follows by the definition
of the matrices B and C.
Let wy,...,wy denote the columns of the error matrix €2. Then

QT CN) = Z w; Cw;.

Invoking (Bartlett et al., 2020, Lemma S.2) bounds each term in the sum by cqlog(q/0)Tr(C)
with probability at least 1 — d/g. A union bound completes the proof. |
To work on the first term in the upper bound of the excess risk, we would like an upper

bound on HG)S?l ||. Toward this end, we first establish a high-probability bound on ||X||4p.

11
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Lemma 12. There is a constant ¢ > 0 such that for any ¢ € (0,1), if n>cmax{ro, log (%)},
with probability at least 1 — 6, || X||op < cv/Ain.

Proof. By (Koltchinskii and Lounici, 2017, Lemma 9), with probability at least 1 — §

1 Xlop = /I X T Xlop
0 )

1
n <||Z||op—|— HXTX—E
n
/4
T0 log(1/8) ro log(1/9)
n<||z||op+||zuopmax{ ro  floal/d) ro logl/o) 1)
n n n n

Recalling that n > cmax{rg,log(1/0)}, this implies that, with probability at least 1 — 4,

[ Xlop < ev/nl[%llop- u

IN

IN

Next, we will calculate a formula for the time derivative of O, Its definition will make
use of products of matrices before and after a given layer.

Definition 13. For j € [L] define A; = [[i; W\ and B; = [T}_;_, W,".
Now we are ready for our lemma giving the time derivative of ©(),
Lemma 14. At any time t > 0,

de®
dt

L
=-> B/B X" (X0 —y)4;A].
j=1

Proof. Let us suppress the superscript (¢) to ease notation. The gradient flow dynamics is
defined as

dwj _
o = ~Vw,L(6),
where
§
Vi, £(0) = Wy -+ Wi) (X6 = )T (W mixT) (4)

12
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So by the chain rule of differentiation,

de _d(Wy ---Wy)

dt dt
L
:Z;( J—l) dlc/iz <WJ+1 WLT)
=3 (W) (T ) ()
=1
i( W) (Wit WX T) (XO = Y)Wy Wyan) (W - W]

L
ZBTB XT(XO-Y)A;A].

Toward the goal of proving a high-probability bound on H@ Yo |l; we next bound its rate
of growth.

Lemma 15. There is a constant ¢ > 0 such that, if n > cmax{ro,log(1/9)}, with probability
at least 1 — 0, if training is perpetually A bounded, then, for all t > 0,

1dH6XJ_||2 L ®T p BTB xT X@() VA AT

Proof. Given matrices A and B, we let A- B = Tr(A" B) denote the matrix inner product.
By the chain rule,

t t
;dH®§<lH2 _ oW ng()L
2 dt Xt dt

de®
dt

- (_)A()?L 'PXL

L
Qe . py. ( ~3 B/ BxT (X0 - Y)AjAJT)

Jj=1

L
=-Y 0l P (BJ-TB]-XT(X@“) - Y)AjAJT> , (5)

where (i) follows by the formula derived in Lemma 14.

13
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Let us consider a particular term in the sum above,

O, - Py (B B;XT(x61 —v)A;4] )

—Tr (@?IPXLBJ-TB]-XT(X@“) - Y)AjAJT)
=Tr <®(t)TP;LPXlBjTBjXT(X9(t) — Y)AjAJT>

=Tr (@(t)TPXLBJTBjXT(X@(t) - Y)AjAJT> : (6)

In the case where j = 1, the RHS is equal to

2 2 T
Tr ((a(t)TPXLXT(X@(t) ~Y) (H W,ﬁ“) (H ngt)) ) —0,
k=L k=L

since Py X T = 0.
In the case j > 1, we have

ol . Py, (B]T B;XT(x0® — Y)AjAjT>
_ (@<t>TPXLBJTBjXT(X@<t> - Y)AjAJT)
completing the proof. [ |

Lemma 16. There is a constant ¢ > 0 such that, if n > cmax{ro,log(1/9)}, with probability
at least 1 — 9, if training is perpetually A bounded, then, for allt > 0,

1081 < 1011 + (L m/ £(00) ds

Proof. Let us consider one of the terms in the RHS of Lemma 15. We have

Tr (G(t)TPXLBjTBjXT(XG)(t) - Y)AjAJT)
=Tt (G)(t)TB-TB-XT(XG(t) - Y)AjAJT)

< H@

B B;XT(x0® - )AjA;FH

<10 |58, 447, 1l [xe® - v

7—1 L
A (Hnw,i“nzp) ( I1 W,E“zp) 1X1l,,
k=j+1

k=1

‘X@ YH

o]
k#3j

2
— 1%, | (HW;E%) I1X1l,,
@ A® 2 )
< 10D, 11X, A%/ L(0®),

14
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where (i) follows since for any matrices ||AB|| < ||Allop||B||, and (ii) follows since training
is perpetually A bounded.
Summing over layers j = 2,..., L, we get that,

1d|ef |

(t) 2
< — (S X ®).
S < (L= DI 11X, A%\ £(60)

XL
Now note that,

1dje@? e dlef.|
2 dt dt

t
< (L= DIOLLI X A%/ £(O0),
which in turn implies that, when H@g?l || >0, we have

dlef.l

L—1)||X]| A2 ®)y.
T <( ) 11X oy L(©eW)

If, for all s € [0,¢], we have H@g?L | # 0, then by integrating this differential inequality we

conclude that
t
0.1 - 1091 < (=1 1X1,, 8% [ /200 as (")

Otherwise, if T' = sup{s : ||@g§)l | = 0},

t
O.11< (=1 [X],, A% [ /2@ s,

which implies (7).
Applying Lemma 12 which is a high probability upper bound on || X||,, completes the
proof. |

Armed with these lemmas, we are now ready to prove the first of our main results.

Proof of Theorem 6. Combining Lemma 11 with Lemmas 6 and 11 by Bartlett et al.
(2020) to bound Tr(C) we get, with probability at least 1 — ¢d,

Risk(©) < Tr ((@* —Oy.) BO* — @XJ_)) + cqlog(q/9) (fL + ;) )

=:Variance(Oy,)
We begin by bounding the first term in the RHS above. Let 67,. .., 67 be the columns of

©*and 0.1 q,...,0x1 , be the columns of © .. By invoking (Chatterji et al., 2022, Eq. 54)
for each of the g outputs, and applying a union bound, we find that with probability at

15
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least 1 —cq(d/q) =1 — cd,

q

Tr (07 = 0x1) TBO" = Ox1)) = (0 — 0x1,) BO; — 0x1)

i=1
Sk o
< YN0 — Ol
i=1
CSk 2
=—|©0*-0
o -0y |
2csy,
< 2 (o1 . ).
Define Bias(©y,) := %H@*H2 and let = = 2i;gk“@XLH2. The bound on = follows by
invoking Lemma 16. u

5. Proof of Theorem 7

The assumptions of Theorem 7 are in force throughout this section. Before starting its
proof, we establish some lemmas.

Definition 17. For a large enough absolute constant c, we say that the network enjoys a
d-good initialization if

aje < Umin(Wl(O)) < amaX(Wl(O)) < ca,

B/ < Omin(W) < 0o W) < ¢,

and

E(@(O)) <c (HY|2 i 04252QHXH210€§(”/5)> .
m

The following proposition is proved in Appendix B. It guarantees that for wide networks,
optimization is successful starting from random initialization.

Proposition 18. There is a constant ¢ such that, given any 6 € (0,1), if the initialization
scales v and B, along with the network width m, satisfy

L2o?|| X3, X|*qlog(n/d)
520 min (X) ’

m > cmax {d—i—q—i—log(l/é),

L|| X ||op||Y
55 emax {1, XTI
(X)

O in
a<l,
then with probability at least 1 — §:

1. the initialization is §-good;

2. training is perpetually c(a+ 1/L)S bounded;

16
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3. for allt > 0, we have that

2 2
/L(@(t)) < E(@(O)) exp <_W'rziél(X) -t)

<c (||Y|2 + 05252(]||X||210g(n/5)> exp <_520-12nin(X) . t) )
m 4e

The reader may notice that the roles of o and S in Proposition 18 are asymmetric. We
focused on that case that « is small because the updates of W7 are in the span of the rows
of X, which is not necessarily the case for the other layers, including Wy,. This means that
the scale of W7 in the null space of X remains the same as it was at initialization, so that
a small scale at initialization pays dividends throughout training.

The next lemma shows that the projection of the model computed by the network onto
the null space of X is the same as the model obtained by projecting the first layer weights,
and combining them with the other layers.

Lemma 19. For allt > 0,
where

Proof. By definition

00 = (Wi w7 = (W) (W) e,

Therefore,
o, = (1 - Py)o = (I - Px)W{) - (WihT = W )T (wi)T

The subsequent lemma shows that the projection of the first layer onto the null space
of X does not change during training.

Lemma 20. For allt > 0, Wl(t))@ = 1(
Proof. We have
()
AWixe a1 — py)
dt dt

0)
7XL ’

=—((Wg---Wa) " (X0 — Y)TX) (I — Px) (by using Eq. (4))

17
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By using the previous two lemmas regarding the first layer weights Wi we can now
prove an alternate bound on ||© ; " |I. In contrast to the previous bound that we derived in

Lemma 16, here the initial scale of W plays a role in controlling the growth in H@ el

Lemma 21. There is constant ¢ > 0 such that, if training is perpetually A bounded, then,

forallt >0,
t
10L: 11 < IO 1+ LI W llopl| X |opA> / L VEOD) ds

Proof. Let us once again consider one of the terms in the RHS of Lemma 15. We have

(@(“ Py.B] B;xT(x0" — )AjA]T)

i
2
=T | 0OTPe ()T | T W | BixT(x0® —v)A;AT
k=j—1
9 T
Tyxr T
=1 [ O w | TT Wi | BixT(xe" —v)4;47
k=j—1

Continuing by using the fact that for any matrices ||AB|| < ||Al|op||B]|, we get that

O, Pyu (B BXT (X0 —v)4;4])

T

2
< 1O MW %l || TT W) Bi|l 447 | 11, || X0 — Y|
k=j—1 P
op

< H@ LW Xillop 11, A/ L£(OW)

H@ LW Xlllop 11, A%/ £(O®)

0
< 1O llop | X [lopA?/ £(O®),
since |W. XJ_ llop < ||VV1 || op> Where (7) follows since training is A perpetually bounded and

i
2
I we) ) [aar] < T0 w0 ) | T w0 | <42

k=j-1 o kA {1,5} k#£{j}
and (ii) follows since by Lemma 20, Wl( ))( L= Wl(o))( L-
Summing over layers j = 2, ..., L, we get that,
1d[6F.|? D 1O
5 < (L= DO W flop |1 X1, A%/ £(OO).

18
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Thus, we have that

rdjef 2 ef. djef.
2 dt dt

| 0
< (L= DO NW llop [1X [, A2/ £(OD)
which in turn implies that, when ||G)g?l || # 0, we have

a6y, | o) N
7 < (@ = DI o [ X ], A%/ £(O0).

Therefore, by integrating this differential inequality as in the proof of Lemma 16, we con-
clude that

t
101 = 10L4 1 < (= I llop 1X]],, A / | VEO) ds.

We also need a lemma that bounds the Frobenius norm of the data matrix X.

Lemma 22. There is a constant ¢ > 0 such that for any 6 € (0,1), if n > clog(1/6), then
with probability at least 1 — 6, || X|| < ¢y/nsp.

Proof. The rows of X are n i.i.d. draws from a distribution, where each sample can be
written as x; = XY2u;, where u; has components that are independent cg-sub-Gaussian

random variables. Define ugacked = (u1,u2,...,up) € R to be concatenation of the
vectors ui,...,u, and define Eit/jcked € R9mxdn ¢4 bhe a block diagonal matrix with /2 e
R4 repeated n times along its diagonal. Then,

n n

2

1/2

112 = llil? = SIS 20l = [ S1 e stacken
i=1 i=1

Now, Ugtacked 18 an isotropic, c;-sub-Gaussian random vector. Therefore, by applying (Ver-
shynin, 2018, Theorem 6.3.2) we know that the sub-Gaussian norm (Vershynin, 2018, Def-

e 1/2 .
inition 2.5.3) of | X|| = stt/ackcduStaCkedH is

1/2
|12 catstcieall = er VITEE] | = 11X = e /sy, < e2v/Ar
Therefore, by Hoeffding’s bound (Vershynin, 2018, Proposition 2.5.2) we get that

P||X] — cin/nso > 1] < 2exp(—63772//\1).

Setting n? = nsg/A; = nrg and noting that n > log(1/6) > log(1/d)/rg completes the
proof. |

Finally, we have a simple lemma that bounds the Frobenius norm of the responses Y.
Lemma 23. There is a constant ¢ > 0 such that for any § € (0,1), if n > clog(1/4), then
with probability at least 1 — 5, ||V < (|| X ||opl|©O*|| + /qn)-
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Proof. Note that Y = X0©* + ), and therefore
Y]] < [[XO*]| + [|9]] < [[XI|opll©¥[| + [I€2]], (8)

where the last inequality follows since for any matrices ||AB| < ||A||opl|B||. Now each entry
in Q € R"1? is a zero-mean and c,-sub-Gaussian. Therefore, by Bernstein’s bound (Ver-
shynin, 2018, Theorem 2.8.1),

P[IQ)2 - E [|2)2] > qn] < 2exp(—cign).

Now E [[|Q[]?] = nE [||ly — 20*||?] < cogn, by Assumption (A.4), and 2exp(—gn) < § since
n > clog(1/9) > clog(1/6)/q. Thus, with probability at least 1 — ¢

191* < esqn.
Combining this with Eq. (8) completes the proof. |
With all of the pieces in place we are now ready to prove the theorem.
Proof of Theorem 7. Define a “good event” £ as the intersection of the following events:
e &1, the excess risk bound stated in Theorem 6 holds.
o &, the bounds stated in Proposition 18 hold.
o &, | Xlop < v/ Ain.
o &, || X|| £ ey/s0m.
o & Omin(X) > Lk,

Y < e (X opll O] + /am).-

Now, Theorem 6 and Proposition 18 each hold with probability at least 1 — ¢§. Lemma 12
implies that the event &3 holds with probability at least 1 — §. By Lemma 22, the event &
holds with probability at least 1 — §. For &, notice that

o &

[=]

Umin(X) = \/Umin(XXT) = \/O'min(X:kX:—]E + XkX];r) > \/Umin<Xk:X]I) = Umin(Xk:)y

where X.; are the first k£ columns of X and Xj. are the last d — k columns of X. Since
n > clog(1/0), by (Bartlett et al., 2020, Lemma 9) we know that with probability at least
1-9

Omin(X) > omin(Xk:) > % (1 — C;:) > —'jk (since i > bn by Definition 2).

Finally, by Lemma 23 event & holds with probability at least 1 — §. Therefore, by a union
bound the good event £ holds with probability at least 1 — /6. Let us assume that this
event occurs going forward in the proof.
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Proposition 18 guarantees that the training process is ca(a+1/L)B-perpetually bounded
and the loss converges to zero. Therefore, by applying Theorem 6, the risk is bounded by

Risk(©) < Bias(©y,) + Variance(©y,) + =,
where

. CS
Bias(Oy,) < —*[€"%,

Variance(©y,) < cqlog(q/9d) (fb + };L) ,
k
[e’s) 2
=< C%’“ [HGQII + Lo(o + 1/L)25\/)\1n/t:0 \/ L(O®) dt] : (9)

In the rest of the proof we shall bound the term =.
For this, we would like to apply Proposition 18, which we can, since a < 1,

)&/4\/5( ||@*||>\1/4+q1/4)

8> c3max< 1,

NG
> ¢4 max {1, W} (by events &3, & and &),
and
m > ¢; max {d + ¢ +log(1/6), L2a2)\130ﬁrig log(n/9) }
k
> g max {d + q +log(1/9), L2a2”Xg§2|4).( ]éig)log(n/é) } (by events £3 and &y).

Thus, by Proposition 18 we know that for all ¢ > 0,

E(@(t)) < e <]Y|]2 i 0252q,\X7lj 10%(”/5)> exp <_ 20r2nin(X) -t>

4de
o Bqson log(n/6)
m

< cg ()\mH@*HQ +qn + ) exp (—coB%si, - ) (by events E3-).

Integrating the RHS above we get that

sogn log(n/d)

o0 MICHE soqnlog(n/9)
/ \/L(0W) dt < e VOulIOP + q)n2+ o0 d . (10)
t=0 B*sk
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Proposition 18 also guarantees that the initialization is J-good. That is, HWl(O) llop < cricx
and W || < c118. So,

180, = [|(1 = Px)O© | < (I = Px)|lop|©]

<o
= [wwi2 -
= wOwO (since W” = ... =W =1

A

min { WL op | WL WA WL o }

< c12v/qGop, (11)

where (i) follows since the initialization was good, and the ranks of Wl(o) and Wio) are
bounded by d and ¢ respectively.
Plugging the bounds obtained in Egs. (10) and (11) into Eq. (9) we have that

3%k 1 JgaB + Lo(o+ 1/L)2B*/ \n

n B2sy;

VOO + q)n + afy/ 2alos/d)

m

Il
IN

o Laa+ /LY (VORTOTEF gn -+ oy /2leld )
< G135k JGaB +

n Sk

) 1/ * o?32s0qnlog(n
9 L2(Oé + / )4/\1n ((AlH@ H2 CI)n + qul g( /6)>
q/6

2
n Sk’

Cl4OéQSk;

IN

2 L?*(a+1/L)* \in? 2325041 )
< C140° 8g, 5%+ (a é )*An </\1H@*H2 g a*3%soqlog(n/ ))] '
n st m
This completes our proof. |

6. Proof of Corollary 9
When ¥ is an instance of the (k, ¢)-spike model we find that

T0:SO/)\1=k+€(d—k), SkZE(d—k‘) and Rk:(d—kj). (12)

First, for a large enough c;, we set

1/4 Sy 174
)\1/ VILn <\/||G) ||)\1/ +q1/4> { \/R( /%] +q1/4> }
=cymax{ 1, .

8 = cymax 1,

VSk e(d—k)
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Given this choice of 3, for any ¢,n, k,d, L, if « > 0 is chosen to be small enough then,

L2a?\1son2qlog(n/6) }
P37

m > c1(d+ q+log(1/d)) =1 max{d—i— q + log(1/9),

Also by the assumption on the number of samples,
n > comax {k + ed,log(1/0)} > co max {ro, k,log(1/9)}.

We are now in position to invoke Theorem 7. By this theorem we get that,

. cze(d —k k n -
Risk(©) < =D o2+ cogtogta/s) (£ + 1) 42
ced 9 k n — .
< 7”9 17 + cqlog(q/0) " + Pl += (since d > cqk).

Recall from above that the upper bound on = scales with o?. Thus, for small enough « it
is a lower order term.

7. Additional Simulations and Details

Deep Linear Networks
801

f == a’=0 3 i
3.01 -0 ?=10"
v \ 601 26 W,
75 \ —= ' X
% | 7 /
22.0 \ @ 40 >
Q
2 ® ;
84 B =201
1.0 1 o
. , | ’ 0 fF—a—8———f—H—p——2
500 1000 1500 2000 500 1000 1500 2000
Dimension Dimension

Figure 3: Excess risk and distance from the minimum #2-norm interpolator of three-layer
linear networks trained by gradient descent on data generated by an underlying
linear model as the input dimension varies. The model is trained on n = 100
points drawn from the generative model y = x0* + w, where x ~ N(0,X) and
w ~ N(0,1). The excess risk is defined as E, [[|z© — z6*||?]. In line with our
theory, we find that when the initialization scale is small, final solution is close
to the minimum #s-norm interpolator and the resulting excess risk is small.

Inspired by our theory, we ran simulations to study the excess risk of several linear networks
and ReLU networks as a function of both the initialization scale and dimension.! In line

1. Code at https://github.com/niladri-chatterji/Benign-Deep-Linear
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with our theoretical upper bounds, we find that for deep linear networks as the initialization
scale of either the first layer («) or the last layer (3) is large, the excess risk of the model is
larger (see Figure 1). In deep ReLLU networks (see Figure 2), we find an asymmetry in the
roles of a and 5. The excess risk increases when we increase «, but is largely unaffected by
the scale of the initialization of the final layer .

In all of our figures we report the average over 20 runs. We also report the 95% confidence
interval assuming that the statistic of interest follows a Gaussian distribution.

Setup for deep linear models. For Figures 1 and 3 the generative model for the un-
derlying data was y = x©* + w, where

1. ©* € R?*3 is drawn uniformly over the set of matrices with unit Frobenius norm. The
output dimension ¢ = 3;

2. the covariates © ~ N(0,X), where the eigenvalues of ¥ are as follows: \; = ... =
)\10:1 and )\11 :...:Ad:0.0l;

3. the noise w is drawn independently from N(0, 1).

For these figures the number of samples n = 100 across all experiments. All of the models
are trained on the squared loss with full-batch gradient descent with step-size 1074, until
the training loss is smaller than 10~7.

We train models that have 2 hidden layers (L = 3). The width of the middle layers m
is set to be 10(d + ¢q), where d is the input dimension and ¢ is the output dimension.

For the top half of Figure 1 and Figure 3 when we vary the initialization scale of the
first layer «, we initialize all of the middle layers to the identity, and initialize entries of the
last layer with i.i.d. draws from N(0,1).

For the bottom half of Figure 1 when we vary the initialization scale of the last layer «,
we initialize all of the middle layers to the identity, and initialize entries of the first layer
with i.i.d. draws from N(0, 1).

Setup for deep ReLU models. For Figure 2 the generative model for the underlying
data was y = f*(x) + w, where

1. f*(z) is a two-layer feedforward ReLU network with width 10 and output dimension
3 which was randomly initialized according to LeCun initialization;

2. the covariates = ~ N(0, I19x10);
3. the noise w is drawn independently from N(0, 1).

The networks are trained on n = 500 samples. Again, all of the models are trained on the
squared loss with full-batch gradient descent with step-size 104, until the training loss is
smaller than 1077,

We train models that have L = 3 layers. The width of the middle layers (m) is set to
be 50.

For left half of Figure 2 when we vary the initialization scale of the first layer «, we
initialize all of the middle layers to the identity, and initialize entries of the last layer with
i.i.d. draws from N(0,1).
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For the right half of Figure 2 when we vary the initialization scale of the last layer «,
we initialize all of the middle layers to the identity, and initialize entries of the first layer
with i.i.d. draws from N(0, 1).

8. Discussion

We have provided upper bounds on the excess risk for deep linear networks that interpolate
the data with respect to the quadratic loss, and presented simulation studies that verify
that the some aspects of our bounds reflect typical behavior.

As mentioned in the introduction, our analysis describes a variety of conditions under
which the generalization behavior of interpolating deep linear networks is similar, or the
same, as the behavior of the minimum #s-norm interpolant with the standard parameteri-
zation. Among other things, this motivates study of loss functions other than the quadratic
loss used in this work. The softmax loss would be a natural choice.

Looking at our proofs, it appears that the only way that a deep linear parameterization
can promote benign overfitting is for the function computed by the network at initialization
to approximate the regression function. (Formalizing this with a lower bound, possibly in
the case of random initialization, or with an arbitrary initialization and a randomly chosen
regression function ©*, is a potential topic for further research.) The benefits of a good
approximation to the regression function at initialization has been explored in the case of
two-layer linear networks (Chatterji et al., 2022). Extending this analysis to deep networks
is a potential subject for further study.

We focused on a particular random initialization scheme in this paper, it is possible
to study other initialization schemes as well. For example, we b