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Abstract

We prove that the dynamics of the MBO scheme for data clustering converge to a viscosity
solution to mean curvature flow. The main ingredients are (i) a new abstract convergence
result based on quantitative estimates for heat operators and (ii) the derivation of these
estimates in the setting of random geometric graphs.

To implement the scheme in practice, two important parameters are the number of
eigenvalues for computing the heat operator and the step size of the scheme. The results
of the current paper give a theoretical justification for the choice of these parameters in
relation to sample size and interaction width.

Keywords: Graph MBO, clustering, semi-supervised learning, continuum limits, viscosity
solutions.

1. Introduction

The MBO scheme was originally introduced by Merriman et al. (1992, 1994) as a numerical
method to approximate evolution by mean curvature flow. More recently, van Gennip et al.
(2014); Merkurjev et al. (2013, 2014) adapted the scheme to problems in data science such
as data clustering. The algorithm is a graph based learning method that produces successive
partitions of a data set by alternating between two operations: (i) diffusion through the
graph heat operator; and (ii) pointwise thresholding. Due to its conceptual simplicity,
the MBO scheme is an efficient and robust algorithm. In its original form, the MBO
scheme is used for data clustering, and Merkurjev et al. (2013, 2014); Garcia-Cardona et al.
(2014) proved that it has comparable or better accuracy than several algorithms commonly
adopted in practice. In recent years, graph based learning methods have gained attention
for semi-supervised learning tasks (i.e. classification problems with low labeling rate), and
several authors have considered modifications of the MBO scheme that retain its conceptual
simplicity while improving its accuracy in classification tasks. For instance, VolumeMBO,
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introduced by Jacobs et al. (2018a) and PoissonMBO, introduced by Calder et al. (2020),
have both showed better accuracy compared to several more well-known methods. The
present paper builds a solid mathematical foundation to the MBO scheme and therefore
gives yet another motivation to use this algorithm in applications.

Let us recall how the scheme works in the simple case of two classes, i.e. when the goal
is to split a dataset V = {x1, ..., xn} into two subsets. Let G = (V,W ) be a weighted graph
with vertex set V and weight matrix W . Let ∆ be a suitable graph Laplacian. Assume
that χ0 : V → {0, 1} encodes an initial guess for the clustering. After choosing a step-size
h > 0 and the number of iterations N ∈ N that we want to run, for 0 ≤ l ≤ N − 1 define
inductively a new clustering χl+1 : V → {0, 1} by performing the following two steps:

1. Diffusion. For t > 0 define
ul(t) := e−t∆χl.

2. Thresholding. Update the clustering by setting{
χl+1 = 1

}
=

{
ul(h) ≥ 1

2

}
.

By a result of Esedoḡlu and Otto (2015), χl+1 solves

χl+1 ∈ argmin
u:V→[0,1]

{
Eh

G(u)− Eh
G(u− χl)

}
,

where Eh
G is the thresholding energy on G and is defined for v : V → [0, 1] as

Eh
G(v) :=

1√
h
⟨(1− v), e−h∆v⟩V ,

with ⟨·, ·⟩V denoting an inner product on V defined so that ∆ becomes self-adjoint. In Laux
and Lelmi (2021) we presented the first rigorous study of the large-data limit of the MBO
scheme in data clustering. More precisely, given a sequence of random geometric graphs
Gn = (Vn,Wn) – i.e. such that Vn = {X1, ..., Xn} for a family {Xi}+∞

i=1 of i.i.d. random
points Xi ∈ M , for a k-dimensional closed Riemannian submanifold M ⊂ Rd – we studied
the Γ-convergence of the family {Eh

Gn
}n∈N,h>0. When the number of iterations of the MBO

scheme is very large, its outcome can be thought of as a local minimizer of the thresholding
energy, and thus our Γ-convergence result says that this will be qualitatively close to a
local minimizer of a suitable variational problem in the continuum. As the selection of the
local minimizer strongly depends on the dynamics of the gradient descent followed by the
algorithm, the next question is to study the convergence properties of said dynamics. This
is the content of the present paper: we study the convergence of the dynamics of the MBO
scheme in the two-class setting. In general – i.e. when the number of classes to cluster into is
greater than two – this is a much harder problem. In the two-class setting the task is easier
because one can use the comparison principle for mean curvature flow, and thus the viscosity
solutions setting. After the first works on viscosity solutions of Crandall et al. (1992), the
machinery has proven to be a solid way to develop a theory of weak solutions for many
problems satisfying a maximum principle – and its use is the base for many fundamental
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contributions in geometric PDEs (Chen et al. (1991); Evans and Spruck (1991)) numerical
analysis (Barles and Georgelin (1995); Ishii et al. (1999)) and, more recently, for new results
in theoretical data science (Calder (2019a,b); Bungert et al. (2021)).

We will always work with a sequence of weighted geometric graphs Gn = (Vn,Wn),
where the vertex sets Vn are defined by Vn := {xi}ni=1, where {xi}

+∞
i=1 is a sequence of points

on M ⊂ Rd – a k-dimensional closed Riemannian submanifold of Rd – and the weight
matrix Wn is obtained in the by-now-standard way of weighting the edge between two
distinct points with a suitable non-increasing function of the Euclidean distance between
them, properly rescaled by a localization parameter ϵn > 0, see Section 3 for the precise
construction. In this setting, we study the convergence of the sequence of dynamics of the
MBO scheme on these graphs as the data size n goes to infinity.

This paper can be conceptually thought of as divided into two main results: in the first
one, Theorem 4, we work in an abstract setting. First, in the MBO scheme, we replace the
heat operators on the graphs with abstract operators Sn : (0,+∞) × Vn → Vn which are
linear in the second variable (here Vn is the space of real-valued functions defined on the
vertex set Vn) and we show that if the sequence {Sn}n∈N approximates well-enough the
heat kernel corresponding to a weighted Laplace–Beltrami operator on the manifold, then
we have convergence of the dynamics of the MBO scheme on the graphs to the viscosity
solution of mean curvature flow on the manifold. The conditions that the operators {Sn}
have to satisfy are three: (i) they should satisfy an approximate maximum principle, (ii)
they should approximate the action of the heat kernel on smooth functions in a uniform
sense, and (iii) their action on the constant function 1 should be close enough to the constant
1. All these properties are made quantitatively precise in Theorem 4.

The second main result is Theorem 6 and Corollary 8, where we check that (i), (ii)
and (iii) are satisfied with high probability on random geometric graphs – i.e. when the
points {xi}+∞

i=1 are sampled independently from a probability measure ν = ρVolM ∈ P(M),
absolutely continuous with respect to the volume form – and when Sn are chosen to be the
heat operators on the graphs or the operators obtained by cutting off frequencies higher
than a threshold Kn defined precisely in Item (iv) in Theorem 6. Let us stress that the
latter result is crucial for applications. Indeed, when one implements the MBO scheme on
a large dataset, computing the full heat kernel is intractable, and thus one usually works
with an approximate version of it obtained by cutting off high frequencies in precisely the
way described above. Our result gives a solid mathematical justification for this procedure,
proving that the scheme converges in the large data limit to the viscosity solution to mean
curvature flow provided the frequency cut-off is chosen according to Kn ≥ (log(n))q where
q is a suitable positive real number and n is the number of data points. We also notice that
Theorem 6 gives sufficient conditions on how to choose the length scale ϵn and the time-step
size hn in order to ensure convergence of the scheme. In particular, the choice of hn is not
anymore based solely on rules-of-thumb but has theoretical foundations. Previously, only a
negative result ensuring pinning of the scheme was known (van Gennip et al., 2014, Theorem
4.2). However, we point out that the conditions on ϵn and hn are only sufficient, but not
sharp. Indeed, we expect that the convergence of the scheme should hold true whenever

ϵn = o(hn), while our conditions imply that ϵn = o(h
3/2
n ). The sharp rate ϵn = o(hn) was

verified in the simple setting of the deterministic two-dimensional regular grid Z2 by Misiats
and Yip (2016), and is based on the explicit expression for the heat kernel on regular grids.
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But an extension to the general setting in which we are working requires a different strategy,
see also the discussion in Remark 5 to better understand how our result compares to the
one in the simple setting of Misiats and Yip (2016).

Let us spend a few words on the strategy of the proofs of Theorem 4 and Theorem 6. For
Theorem 4 we follow the general scheme of proof of Barles and Georgelin (1995), also used
in Misiats and Yip (2016). The authors prove convergence of the classical MBO scheme to
a viscosity solution to mean curvature flow in the Euclidean space. Given a smooth open
set Ω ⊂ M , the idea is to prove that the upper semicontinuous envelope u∗ and the lower
semicontinuous envelope u∗ of the piecewise constant in time interpolations of outcomes of
the MBO scheme (with initial values Ω ∩Gn) as defined in (2) and (3) are, respectively, a
viscosity subsolution and a viscosity supersolution to mean curvature flow on the manifold.
After doing that, one has to use the comparison principle in Theorem 16 to compare u∗

and u∗ with the unique viscosity solution u to mean curvature flow with initial value Ω
to show that sign∗(u) ≤ u∗ and sign∗(u) ≥ u∗. In order to check that u∗ and u∗ are,
respectively, a viscosity subsolution and a viscosity supersolution to mean curvaturue flow
we have to adapt the strategy in Barles and Georgelin (1995) to our setting: we need to
carefully identify admissible error terms for the argument of Barles and Georgelin (1995).
The estimate in Item (ii) in Theorem 4 plays a central role in this, as well as the extension of
the consistency step to weighted manifolds (Theorem 22). Finally, to apply the comparison
principle in Theorem 16, it is crucial to show an ordering of the initial values in the sense
that sign∗(u(0, ·)) ≤ u∗(0, ·) and sign∗(u(0, ·)) ≥ u∗(0, ·). We verify this in the general
case of a weighted manifold by carefully checking that one iteration of the MBO scheme
with step size h produces a set whose normal distance from the previous one is of order h
(Theorem 20). This issue seems to have been overlooked in the literature and we believe
that our proof fills an important gap in the previous works, even in the Euclidean setting.

For Theorem 6 we draw inspiration from Dunson et al. (2021). There, the authors work
on a fixed graph with points sampled independently from a weighted manifold and consider
the error in a uniform sense between the restriction of the manifold heat kernel to the graph
and the operator obtained by considering the first K frequencies of the graph heat kernel.
Their estimate, however, cannot be applied in our setting because, since we want to take
the number of data points to infinity, we have to be able to take the frequency cut-off K
to infinity together with them. For this reason, a careful interplay between the chosen
rates of convergence for K, the step size h and the localization parameter ϵ is needed. In
Lemma 9 we obtain a new estimate giving precise conditions on the relation between the
frequency cut-off and the number of data points. To get this, we make use of recent results
on convergence of spectra of graph Laplacians (Garćıa Trillos et al. (2020); Calder and
Garćıa Trillos (2022); Calder et al. (2022)).

After its introduction in this setting, several authors have developed variants of the
MBO scheme. For instance, volume-preserving MBO scheme (Jacobs et al. (2018b); Ja-
cobs (2017))– a version of the algorithm developed by Jacobs, Merkurjev, and Esedoḡlu,
where the number of points belonging to each class is invariant through iterations – and
poissonMBO – a variant of the scheme for semi-supervised learning at low labeling rates
introduced by Calder et al. (2020). When there are just two classes to split the dataset into,
we believe that the techniques developed in the present work may be suitably modified to
extend the results to these variants of the scheme. One may need to combine our ideas with
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the techniques developed by Kim and Kwon (2020), where the authors develop a viscosity
solution approach for volume preserving mean curvature flow in Euclidean space.

The rest of the paper is organized as follows: in Section 2 we introduce some notation
and the two versions of the MBO scheme that we study – the classical one by Merkurjev
et al. (2013, 2014); van Gennip et al. (2014), and a more practical one in which the heat
operator in the diffusion step is modified by cutting off high frequencies. In Section 3 we
state the main results of the current paper: Theorem 4 gives sufficient conditions for the
abstract MBO scheme in Algorithm 3 to converge to a viscosity solution to mean curvature
flow on a weighted manifold. In Theorem 6 and its corollary, Corollary 8, we show that these
conditions are satisfied for the two versions of the algorithm that we study. In Section 4 we
introduce the notion of viscosity solution to mean curvature flow on a weighted manifold
by simply extending well-known ideas and results in the literature for mean curvature flow
on compact manifolds (Ilmanen (1992)) and Euclidean spaces (Chen et al. (1991); Evans
and Spruck (1991); Ambrosio and Dancer (2000)). In Appendix A we introduce the MBO
scheme on a weighted manifold and we state Theorem 20, which says that one iteration
of MBO produces a set whose normal distance from the previous one is of order h, the
chosen step-size. In this appendix, we also give an extension to weighted manifolds of the
consistency step in the work of Barles and Georgelin (1995). In Appendix B we present
the proofs of the results of the paper. In Appendix C, we collect some results about the
behavior of the heat kernel on weighted manifolds and on the asymptotics of the spectra
for graph Laplacians which are needed in the proofs.

Notation. In the present work, we make extensive use of the Landau symbols o, O.
To explain these, we let {aω}ω∈Ω, {bω}ω∈Ω be two families of real numbers, with bω > 0,
indexed by ω ∈ Ω ⊂ R. Let ω0 ∈ R ∪ {−∞,+∞} be a limit point for the set Ω, which will
be clear from the context. We say that aω = O(bω) if

lim sup
ω→ω0

aω
bω

< +∞.

We say that aω = o(bω) if

lim
ω→ω0

aω
bω

= 0.

We also alternatively write aω ≲ bω for aω = O(bω) and aω ≪ bω for aω = o(bω). In
the following, usually (Ω, ω0) will be (N,+∞) or (R+, 0), and this will be clear from the
context.

2. The MBO scheme on graphs

In this section, we describe the MBO algorithm on graphs originally given by Merkurjev
et al. (2013); van Gennip et al. (2014); Merkurjev et al. (2014). We refer to Laux and
Lelmi (2021) for more information about its use in data clustering. We consider a weighted
connected graph G = (V,W ) with n vertices, with wii = 0 for every i = 1, ..., n. For each
vertex xi ∈ V, i ∈ {1, ..., n}, we can define

d(xi) =
1

n

n∑
j=1

wij .
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We define D := diag(d(x1), ..., d(xn)). We let V := {u|u : V → R}, the set of functions
defined on V , which we endow with the inner product

⟨u, v⟩V :=
1

n

n∑
i=1

d(xi)u(xi)v(xi). (1)

We define the random walk Laplacian ∆ : V → V as the operator induced by the matrix

∆ :=

(
I − 1

n
D−1W

)
.

One can check that ∆ is non-negative and self-adjoint with respect to ⟨·, ·⟩V , in particular,
it has n eigenvalues (counted with multiplicity) which we order in the following way

0 = λ1 ≤ ... ≤ λn.

We denote by {vl}1≤l≤n a basis of corresponding eigenvectors, orthonormal with respect to
⟨·, ·⟩V . For 0 < K ≤ n we define a kernel HK : (0,+∞)× V × V → R via

HK(t, x, y) :=

K∑
l=1

e−tλl
vl(x)vl(y)

d(y)

n
.

The choice K = n corresponds to the heat kernel associated to ∆, which is the unique
function H : (0,+∞)× V × V → R with the property that for every u0 ∈ V, the function

u(t, x) := e−t∆u0(x) :=
∑
y∈V

H(t, x, y)u0(y), x ∈ V, t > 0

satisfies {
∂tu = −∆u on (0,+∞)× V,

limt↓0 u(t, x) = u0(x) on V.

We are now ready to introduce the MBO scheme on graphs.

Algorithm 1 (MBO scheme) Fix a time-step size h > 0 and initial conditions χ0 : V →
{0, 1}. For each l ∈ N define inductively χl+1 : V → {0, 1} as follows:

1. Diffusion. Define

ul := e−h∆χl.

2. Thresholding. Define χl+1 by{
χl+1 = 1

}
=

{
ul ≥ 1

2

}
.

We then define the piecewise constant in time, right-continuous interpolation

χh,V (t, x) = χl(x) for t ∈ [lh, (l + 1)h) and x ∈ V.

6



Large data limit of the MBO scheme for data clustering

We are interested in understanding whether this approximation is consistent at the level of
the evolution by mean curvature flow on the manifold.

In practice, computing the exact diffusion in the first step of the algorithm may be
computationally intractable. For this reason, one usually implements the MBO scheme by
considering only a smaller number of eigenvectors of the Laplacian, say K. In other words,
one uses the following more efficient variant of MBO.

Algorithm 2 (Approximate MBO scheme) Fix a time-step size h > 0 and initial con-
ditions χ0 : V → {0, 1}. For each l ∈ N define inductively χl+1 : V → {0, 1} as follows:

1. Diffusion. Define

ul(x) :=
∑
y∈V

HK(h, x, y)χl(y).

2. Thresholding. Define χl+1 by{
χl+1 = 1

}
=

{
ul ≥ 1

2

}
.

Again, we then define the piecewise constant in time, right-continuous interpolation

χh,V,K(t, x) = χl(x) for t ∈ [lh, (l + 1)h) and x ∈ V.

At present, the choice of h and the exact value of K to pick in order to get a good approxi-
mation of the MBO scheme is obtained by trial and error. In this work, under the standard
manifold assumption, we rigorously justify that an admissible regime to get a consistent
result in the large-data limit is K ≥ (log(n))q, h ≫ (log(n))−α for some q, α > 0 (see Theo-
rem 6 for the precise choices of q, α). The lower bound on K is consistent with the common
choice used by practitioners, and it is reminiscent of the scaling in Johnson–Lindenstrauss’
Lemma. The requirement on h is not sharp. However, to avoid pinning (and also to speed
up convergence of the scheme towards local minimizers), practitioners tend to use relatively
large step sizes.

3. Main results

Our convergence analysis is divided into two distinct steps. Our first main result is an
abstract convergence theorem providing general criteria for the convergence of an MBO
scheme over a discrete structure to mean curvature flow. The second main result verifies
the conditions of the abstract statement in the setting of random geometric graphs.

3.1 Abstract convergence result

Hereafter M ⊂ Rd is a k-dimensional closed Riemannian submanifold. We denote by
g its metric and by dM the induced distance. Let {xi}+∞

i=1 be a sequence of points on
M . Let Vn := {x1, . . . , xn} be the set of the first n points, and let Vn be the set of
real-valued functions defined on Vn. Assume that we are given a sequence of operators
Sn : (0,+∞) × Vn → Vn which are linear in the second variable, we then consider the
following abstract version of the MBO scheme on Vn.
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Algorithm 3 (Abstract MBO scheme) Fix a time-step size hn > 0 and initial condi-
tions χ0,Vn : Vn → {0, 1}. For each l ∈ N define inductively χl+1,Vn : Vn → {0, 1} as
follows:

1. Diffusion. Define
uln := Sn(hn, χ

l,Vn).

2. Thresholding. Define χl+1,Vn by{
χl+1,Vn = 1

}
=

{
uln ≥ 1

2

}
.

We then define χhn,Vn : [0,+∞)× Vn → {0, 1} by

χhn,Vn(t, x) := χl,Vn(x), x ∈ Vn, t ∈ [lhn, (l + 1)hn).

For convenience, we will mostly work with the {−1, 1}-valued functions

uhn,Vn(t, x) := 2χhn,Vn(t, x)− 1.

We also define the upper and lower limits of the family {uhn,Vn}n∈N as

u∗(t, x) := sup

{
lim sup
n→+∞

uhn,Vn(tn, xn)

∣∣∣∣ tn > 0, lim
n→+∞

tn = t,

xn ∈ Vn, lim
n→+∞

xn = x

}
,

(2)

u∗(t, x) := inf

{
lim inf
n→+∞

uhn,Vn(tn, xn)

∣∣∣∣ tn > 0, lim
n→+∞

tn = t,

xn ∈ Vn, lim
n→+∞

xn = x

}
.

(3)

Let ξ > 0 be a smooth function on the manifold M , observe that since we assume the
manifold M to be compact, ξ is actually bounded away from zero. Let Ω0 ⊂ M be an open
set with smooth boundary Γ0. We let u : [0,+∞)×M → R be the unique viscosity solution
of the level set formulation of the mean curvature flow with density ξ (see Section 4 for the
details) with initial value sd(·,Γ0) = dM (x,Ωc

0) − dM (x,Ω0), the signed distance function
from Γ0. For any t > 0 we also define

Ωt := {x ∈ M | u(t, x) > 0} , Γt = {x ∈ M | u(t, x) = 0} . (4)

Note that by definition, the viscosity solution u is continuous and thus the sets we just
introduced are well-defined. Let us denote by ∆ξ the weighted Laplacian on M with weight
µ := ξVolM , i.e.,

∆ξf = −1

ξ
div (ξ∇f) for f ∈ C∞(M).

We denote by e−t∆ξ the corresponding heat semigroup and by H : (0,+∞)×M ×M → R
the corresponding heat kernel.

Our first main result is the following conditional convergence of the abstract formulation
of the MBO scheme when the initial data on Vn is chosen to be the set of points contained
in Ω0.
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Theorem 4 Let χ0,Gn := 1Vn∩Ω0 for each n ∈ N. Assume that:

(i) The operators Sn satisfy the maximum principle up to errors h
3/2
n , i.e., for n large

enough and for each u, v ∈ Vn it holds

u ≤ v ⇒ Sn(hn, u) ≤ Sn(hn, v) +

(
max
Vn

|u|+max
Vn

|v|
)
O(h3/2n ).

(ii) The operators Sn approximate the heat operator on the manifold, i.e., there exists a
constant κ > 0 such that for every function f ∈ C∞(M) we have

max
x∈Vn

∣∣∣Sn(hn, f)(x)− e−hnκ∆ξf(x)
∣∣∣ = (sup |f |) o(

√
hn) + Lip(f)O(h3/2n ). (5)

where the functions o(
√
hn), O(h

3/2
n ) are independent of f .

(iii) The operators Sn almost preserve the total mass in the sense that

max
x∈Vn

|Sn(hn,1Vn)(x)− 1| = O(h3/2n ).

Then u∗ and u∗ defined in (2) and, respectively, (3) satisfy

u∗(x, t) = 1 if x ∈ Ωt, (6)

u∗(x, t) = −1 if x ∈ (Ωt ∪ Γt)
c. (7)

Here Ωt and Γt are defined as in (4).

Remark 5 (i) We will be interested in applying Theorem 4 when the set Vn is endowed
with a weighted graph structure, and the operator Sn is chosen to be, for instance, the
heat semigroup associated to the random walk Laplacian ∆n. In this context, Item (i)
in Theorem 4 holds true without the error term. Indeed, the comparison principle for
the heat operator precisely says that for any pair of functions u, v ∈ Vn it holds that

u ≤ v ⇒ e−t∆nu ≤ e−t∆nv ∀t ≥ 0. (8)

To clarify, we point out that by u ≤ v we mean that the inequality u(x) ≤ v(x) holds
pointwise for all x ∈ Vn. For readers who are not familiar with these PDE methods,
we present a short argument for (8). It is easy to see that, by linearity, it suffices to
prove the claim for u = 0. For this, we show the stronger statement:{

d
dtv ≥ −∆nv,

v(0, ·) ≥ 0.
⇒ v(t, x) ≥ 0, ∀x ∈ Vn, t ≥ 0. (9)

Claim (9) is proved as follows: First, observe that by adding tδ and letting δ ↓ 0 we
can reduce to the case where d

dtv > −∆nv. In this case, assume the claim does not
hold. Then there exist t0 > 0 and j0 ∈ {1, . . . , n} such that

v(t0, xj0) = min
x∈Vn

v(t0, x) < 0,
d

dt
v(t0, xj0) ≤ 0.
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In particular we have, due to the minimality of xj0,

∆nv(t0, xj0) =
∑
i ̸=j0

wj0,i

ndn(xi)
(v(t0, xj0)− v(t0, xi)) ≤ 0.

These two inequalities imply that ( d
dtv+∆nv)(t0, xj0) ≤ 0, which is a contradiction to

d
dtv > −∆nv.

(ii) Let us compare Theorem 4 with Misiats and Yip (2016), where the authors prove
convergence of the dynamics of the graph MBO scheme to a viscosity solution to mean
curvature flow in the case of regular, two-dimensional grids. More precisely, they work
in the following setting: the manifold M is the standard Euclidean plane R2,and the
sets Vn are given by Vn := ϵnZ

2 for a sequence of localization parameters ϵn ↓ 0. To
put ourselves in a setting that is precisely the one we are working in we could actually
work with M = T2, the 2-dimensional torus, and the sequence Vn ∩ T2, but to keep
the presentation simple we prefer to continue this discussion in the precise setting of
Misiats and Yip (2016). Let v : ϵnZ

2 → R be a function which is zero outside a
compact subset of R2. We denote by Sn(t, v) : [0,+∞) × ϵnZ

2 → R the solution to
the discrete heat equation with initial value v, i.e., u := Sn(t, v) solves

d

dt
u(t, (i, j)) =

1

ϵ2n

[
u(t, (i+ 1, j)) + u(t, (i− 1, j))

+ u(t, (i, j + 1)) + u(t, (i, j − 1))

− 4u(t, (i, j))

] for (i, j) ∈ ϵnZ
2,

u(0, (i, j)) = v((i, j)) for (i, j) ∈ ϵnZ
2.

By using Fourier analysis methods, it can be shown that for every h > 0 and every
(x1, x2) ∈ ϵnZ

2

Sn(h, v)((x1, x2)) =
∑

(i,j)∈ϵnZ2

Qi−x1

(
2h

ϵ2n

)
Qj−x2

(
2h

ϵ2n

)
v((i, j)),

where

Ql(α) :=
1

2π

∫ π

−π
cos(lξ)eα(cos(ξ)−1)dξ. (10)

Using the asymptotic expansions (Misiats and Yip, 2016, Proposition 3) for (10) it is
not hard to prove that for any smooth, compactly supported function f ∈ C∞

c (R2)

sup
(i,j)∈ϵnZ2

∣∣∣Sn(h, f)((i, j))−GR2

h ∗ f((i, j))
∣∣∣ =Lip(f)o(ϵn) + sup |f |O

(
ϵ2n
h

)
(11)

+ sup |f |O
(

ϵn√
h
log

(
ϵn√
h

))
,

where GR2

h denotes the heat kernel in the Euclidean plane at time h. In particular,
when ϵn = hαn for α ≥ 3

2 , we see that (11) implies (5). This allows us to use Theorem 4

10
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to recover the results of Misiats and Yip (2016) when α ≥ 3
2 . Actually, an inspection of

the proof of Theorem 4 shows that to check that u∗ and u∗ are, respectively, a viscosity
subsolution and a viscosity supersolution to mean curvature flow, estimate (5) can be
replaced by

max
x∈Vn

∣∣∣S(hn, f)(x)− e−hκ∆ξf(x)
∣∣∣ = (sup |f |) o(

√
hn) + Lip(f)O(hγn),

for some γ > 1. In particular, we see that in the setting of the two-dimensional regular
grid this is satisfied whenever ϵn = hγn. This allows to recover the full parameter range
γ > 1 of Misiats and Yip (2016). We need the slightly stronger assumption γ = 3

2 for
checking the initial conditions for u∗ and u∗, i.e. to verify that{

u∗(0, x) ≤ sign∗(u(0, x)) x ∈ M,

u∗(0, x) ≥ sign∗(u(0, x)) x ∈ M.
(12)

Inequalities (12) are needed to be able to apply the comparison principle for viscosity
solutions to mean curvature flow, which is a crucial ingredient in our proof, as well
as in Barles and Georgelin (1995); Misiats and Yip (2016). Again, we point out that
this step seems to have been overlooked in the latter works.

3.2 Results on the MBO scheme and on the approximate MBO scheme

Here, we focus on the MBO scheme on weighted graphs, where the operator in the abstract
scheme is replaced by the heat operator or a suitable spectral approximation of it. In
this case, when the points {xi}+∞

i=1 are sampled independently from a suitable probability
distrubution on a k-dimensional closed Riemannian submanifold M ⊂ Rd, we will verify
that Items (i), (ii), (iii) in Theorem 4 hold true with high probability, and we will thus
conclude the almost sure convergence of the MBO scheme to mean curvature flow. We
will work in the following setting. For each n ∈ N we define weighted graphs Gn =
(Vn,Wn) where the vertex set Vn is given by {x1, ..., xn} and the adjacency matrix Wn =

(w
(n,ϵn)
ij )1≤i,j≤n is given by

w
(n,ϵn)
ii = 0 for 1 ≤ i ≤ n,

w
(n,ϵn)
ij =

1

ϵkn
η

(
∥xi − xj∥d

ϵn

)
for 1 ≤ i, j ≤ n, i ̸= j.

Here ϵn > 0 are given length scales and η : [0,+∞) → [0,+∞) is a non-increasing func-
tion with support on the interval [0, 1], whose restriction to the interval [0, 1] is Lipschitz
continuous. We define

C1 :=

∫
Rk

η(∥y∥k)dy, C2 :=

∫
Rk

η(∥y∥k)y21dy, κ(η) :=
C2

2C1
.

We also define, for every x ∈ M and every n ∈ N,

dn(x) :=
1

n

n∑
j=1

1

ϵkn
η

(
∥x− xj∥d

ϵn

)
1{x̸=xj}.

11
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Note that, when x = xi for some 1 ≤ i ≤ n, then dn(x) is the degree of the i-th node. We
denote by Dn := diag(dn(x1), ..., dn(xn)) the diagonal matrix of the degrees. The random
walk Laplacian ∆n is the linear operator induced by the (n× n)-matrix given by

∆n :=
1

ϵ2n

(
I − 1

n
D−1

n Wn

)
.

We denote by {vln}1≤l≤n an orthonormal basis (with respect to the inner product ⟨·, ·⟩Vn , see
(1)) made of eigenvectors for the Laplacian ∆n corresponding to the eigenvalues {λl

n}1≤l≤n,
which are ordered in the following way

0 = λ1
n ≤ λ2

n ≤ ... ≤ λn
n.

Like in Section 2, for every 0 < K ≤ n we define

HK
n (t, x, y) =

K∑
l=1

e−tλl
nvln(x)v

l
n(y)

dn(y)

n
,

and we set Hn = Hn
n when K = n. The MBO scheme as stated in Algorithm 1 corresponds

to the choices Sn(t, ·) = e−t∆n(·), the heat semigroup on the n-th graph, which acts on
functions u ∈ Vn by

e−t∆n(u)(x) =
∑
y∈Vn

Hn(t, x, y)u(y).

Let 0 < Kn ≤ n be a sequence of numbers converging to +∞, then the approximate MBO
scheme as stated in Algorithm 2 corresponds to the choices Sn = Pn, where the operators
Pn act on functions u ∈ Vn by

Pn(t, u)(x) :=
∑
y∈Vn

HKn
n (t, x, y)u(y). (13)

Our second main result states that on random geometric graphs the operators e−t∆n(·) and
Pn satisfy the assumptions of Theorem 4 with high probability.

Theorem 6 Let us assume that ν := ρVolM is a probability measure with a smooth and
positive density ρ, and denote by {λi}i∈N the spectrum of the ρ2-weighted Laplacian on M
in non-decreasing order. Assume that the points {xi}+∞

i=1 in the above construction are i.i.d.
random points sampled from M , distributed according to ν. Assume that q > 0, 2k > s > 0
are such that:

(i) q > 1
2
k
−s

,

(ii) It holds that infi∈N(λi+1 − λi) > 0.

(iii) Kn ≥ (log(n))q,

(iv) hn ≫ (log(n))−α, with α = −1 + 2q
k − sq ≥ 0,

(v) ϵn ≪ (log(n))−β, with β = −1
2 + 4q + 13q

k − sq
2 ≥ 0,

12
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(vi) It holds that

ϵn ≳


(
log(n)

n

) 1
k

if k ≥ 3,(
log(n)

n

) 1
8

if k = 2.

Then the operators e−t∆n(·) and Pn satisfy conditions (i), (ii) and (iii) in Theorem 4 (with
ξ = ρ2 and κ = κ(η)) on Gn with probability greater than

1− Cϵ−6k
n exp(−nϵk+4

n

C
)− Cn exp(− n

CK2
n

).

Remark 7 Let us comment on this second result.

(i) For each k ≥ 2, the space of admissible parameters (s, q) in Theorem 6 is quite large.
To see this, we plot the space of admissible parameters. The shaded region represents
the space of admissible pairs (s, q).

f(s) = 1
2
k

−s

s = 2
k s

q

Figure 1: Parameter space.

(ii) Condition (ii) in Theorem 6 contains two implicit assumptions: the first one is that the
eigenvalues of the manifold Laplacian are simple, and the second one is that the gap
between the eigenvalues counted without multiplicity is bounded away from zero. The
first assumption is of technical nature, and we included it for simplicity of exposition,
although we believe that the result can be proved even if the eigenvalues are not simple
by working with eigenprojections instead of eigenfunctions. The second assumption
concerns the geometry of the manifold M and it is crucial for the proof. It is for
example satisfied by the k-torus and by the k-sphere with standard unit density, see
(Chavel, 1984, Chapter II, Section 2) and (Chavel, 1984, Chapter II, Section 4).

(iii) Let us observe that conditions (v) and (vi) in Theorem 6 are compatible, indeed the
right-hand side of (v) in Theorem 6 is a rational function of log(n), while the lower
bound in condition (vi) in Theorem 6 converges to zero as a power of n, up to a
logarithmic factor. We also remark that items (iv) and (v) of Theorem 6 imply in
particular

ϵn ≲ h3/2n ,

13
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an estimate that will also be crucial later in the proof. In analogy to the regular grid
setting of Misiats and Yip (2016), we expect that the convergence of the scheme should
be true up to the critical scaling

ϵn ≪ hn.

Observe furthermore that condition (iv) in Theorem 6 gives a lower bound for hn of
the form

hn ≫ (log(δn))
α,

where δn = ( 1n)
1/k is the characteristic distance between the nodes of the graph. This is

perhaps not too surprising because the diffusion needs some time to smear out the fine
details in the graph that appear at its characteristic length scale. A similar condition
already appeared in Dunson et al. (2021).

Corollary 8 In the setting of Theorem 6, if we additionally assume that

ϵn ≫
(
log(n)

n

) 1
k+4

, (14)

then the conclusion of Theorem 4 holds almost surely both for the MBO scheme, Algorithm
1, and the approximate MBO scheme, Algorithm 2.

An important ingredient for the proof of Theorem 6 is the following lemma, which gives
an estimate of the distance between the approximate heat kernel on the graph and the heat
kernel on the manifold in a uniform sense. Such heat kernel estimates are of independent
interest, for example, one should compare with (Dunson et al., 2021, Theorem 3), where
the authors obtain a similar estimate when the frequency cut-off Kn and the time-scale hn
are fixed. In Lemma 9 we improve their result by showing how to choose Kn in terms of n
as n → +∞.

Lemma 9 In the setting of Theorem 6, there exist constants a1, a2, a3, a4 > 0 such that if n
is large enough, then, with probability greater than 1 − a1ϵ

−6k
n exp(−a2nϵ

k+4
n )

− a3n exp(−a4n (λKn + 1)−k), we have

max
x,y∈Vn

∣∣∣∣HKn
ϵn (hn, x, y)−

ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣ = o

(√
hn
n

)
. (15)

4. The level set equation for MCF on a weighted manifold

In this section, we provide the basic framework for viscosity solutions to mean curvature
flow in weighted Riemannian manifolds.

Hereafter (M, g) is a k-dimensional closed Riemannian manifold, and ξ > 0 is a smooth
function on M . Recall that the evolution of a smooth open set Ω0 by mean curvature follows
the trajectory of steepest descent of the area functional (see, for instance, Proposition 1.2.1
in Mantegazza (2011)), which is defined as

Ω 7→
∫
∂Ω

dS,

14
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where Ω ranges over all open sets in M with a smooth boundary. When we consider a
weight ξ on the manifold, the correct functional to consider is the weighted-area functional,
defined as

Ω 7→
∫
∂Ω

ξdS,

where Ω ranges over all open sets in M with smooth boundary. We define the evolution
of mean curvature flow with density ξ - hereafter denoted as MCFξ - as the trajectory of
steepest descent of this functional. To derive an equation for MCFξ we consider a family
{Ω(t)}0≤t<T of smooth open sets evolving smoothly in time with normal velocity vector V .
Denote by ν(t) a smooth extension of the outer unit normal such that g(ν(t), ν(t)) = 1 in
a neighborhood of ∂Ω(t). We then have by Gauss’ Theorem

d

dt

∫
∂Ω(t)

ξdS =
d

dt

∫
Ω(t)

1

ξ
div(ξν(t))ξdVolM

=

∫
∂Ω(t)

1

ξ
div(ξν(t))g(V (t), ν(t))ξdS +

∫
Ω(t)

div(ξ∂tν(t))dVolM

=

∫
∂Ω(t)

1

ξ
div(ξν(t))g(V (t), ν(t))ξdS +

∫
∂Ω(t)

ξg(∂tν(t), ν(t))dS

=

∫
∂Ω(t)

1

ξ
div(ξν(t))g(V (t), ν(t))ξdS,

where in the last line we used that g(∂tν(t), ν(t)) =
1
2

d
dtg(ν(t), ν(t)) = 0 because g(ν(t), ν(t)) =

1 in a neighborhood of ∂Ω(t). We thus see that the trajectory of steepest descent is given
by

g(V, ν) = −1

ξ
div(ξν).

We are thus led to the following definition.

Definition 10 Let (M, g) be a smooth k-dimensional closed Riemannian manifold. Let
ξ > 0 be a smooth function on M . A family {Ωt}t≥0 of smooth open subsets of M is said
to evolve by MCFξ if

g(V, ν) = −1

ξ
div(ξν). (16)

where V is the velocity vector field of the evolution and ν is the outer unit normal field.

Remark 11 Let N ⊂ M be a (k − 1)-dimensional Riemannian submanifold of M . Recall
that the scalar mean curvature of N is the map H : N → R defined for x ∈ N as H(x) =
tr(sx), where tr(sx) denotes the trace of the second fundamental form of N in M at x.
Let {Ωt}t≥0 be as in Definition 10, it can be shown that the mean curvature H(t) of ∂Ω(t)
satisfies div(ν(t)) = H(t), equation (16) can thus be rewritten as

g(V, ν) = −H − g

(
∇ξ

ξ
, ν

)
, (17)

which yields the following interpretation for (16): the evolution by MCFξ as defined in
Definition 10 is driven by the minimization of two quantities, area and density. The first

15
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term on the right-hand side of (17) forces the evolution to follow a trajectory which decreases
as much as possible the area of ∂Ω(t), whereas the second term on the right-hand side forces
the evolution to move towards regions where the density ξ is low.

We now derive the corresponding level set formulation for the above evolution in the spirit
of Evans and Spruck (1991); Chen et al. (1991). Let u : [0,+∞) × M → R be a smooth
function, assume for this heuristic discussion that Du ̸= 0 everywhere. For any s ∈ R
define Ωs

t := {x ∈ M : u(t, x) > s} and assume that {Ωs
t}t≥0 evolves by MCFξ defined in

Definition 10. Let s ∈ R and let x : (0, T ) → M a smooth curve such that x(t) ∈ ∂Ωs
t for

every time 0 < t < T . Then

0 =
d

dt
u(t, x(t))

= (∂tu)(t, x(t)) + g(∇u(t, x(t)), ẋ(t)).

Using the fact that the outer normal to the super level set Ωs
t is given by ν(t, x) = − ∇u(t,x)

|∇u(t,x)|
and plugging in (16) we obtain

(∂tu)(t, x(t)) = |∇u(t, x(t))|g(ν(t, x(t)), V (t, x(t)))

= −|∇u(t, x(t))| 1

ξ(x(t))
div(ξν)(t, x(t)).

Using the product rule for the divergence and recalling that ν = − ∇u
|∇u| we observe that u

solves

∂tu =

〈
g − Du⊗Du

|Du|2
, D2u

〉
+ g

(
∇ξ

ξ
,∇u

)
, (18)

where we denoted by ⟨·, ·⟩ the extension of g to the linear bundle of T ∗M ⊗ T ∗M , i.e. for
A,B sections of T ∗M ⊗ T ∗M we have in local coordinates

⟨A,B⟩ :=
k∑

i,j,k,l=1

Aijg
jkgklBli.

From (18) we are led to the following definition.

Definition 12 Let u : (0, T ) × M → R be a smooth function with Du ̸= 0 everywhere.
Then u is said to solve the level set formulation of MCFξ if (18) holds on (0, T )×M .

Remark 13 Another way of deriving directly equation (18) without relying on (16) is by
computing the steepest descent of the total variation functional

∫
M |∇u|ξdVolM with respect

to the metric

(v, w) =

∫
M

(
v

|∇u|

)(
w

|∇u|

)
|∇u|ξdVolM ,

which is precisely the metric obtained by integrating the standard L2(ξdS) metric on normal
velocities over all level sets of u. This can be made rigorous by using the co-area formula.
Indeed, consider a smooth function u : (0, T )×M → R with Du ̸= 0, we then compute

d

dt

∫
M

|∇u(t, x)|ξ(x)dVolM =

∫
M

g

(
∇u(x, t)

|∇u(t, x)|
,∇∂tu(t, x)

)
ξ(x)dVolM
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= −
∫
M

div

(
ξ
∇u

|∇u|

)
(t, x)∂tu(t, x)dVolM .

Thus the steepest descent of the total variation functional with respect to the metric defined
above is given by requiring

∂tu = |∇u|1
ξ
div

(
ξ
∇u

|∇u|

)
,

which is equivalent to (18).

We are now ready to introduce a weak solution concept for (18) based on the notion of a
viscosity solution. This is a way of making sense of equation (18) when u is just continuous.
The equation satisfies a comparison principle like the one we saw in the simple case of
the heat equation (see Item (i) in Remark 5), and it thus allows to give an interpretation
for (18) in a weak sense. To this aim, let us first observe that a classical solution to (18)
is characterized by being both a subsolution and a supersolution (i.e. a smooth function
satisfying equation (18) with ≤ and, respectively, ≥). Thus we need to interpret the notion
of subsolution (respectively, supersolution) in a weak sense. We focus on the former. To do
this, we want to be able to make sense of the pointwise inequality

∂tu ≤
〈
g − Du⊗Du

|Du|2
, D2u

〉
+ g

(
∇ξ

ξ
,∇u

)
for an upper semi-continuous function u : (0, T )×M → R, for which the required differential
operators are not well defined. For this, we consider any point (t0, x0) ∈ (0, T ) × M and
observe that if φ ∈ C∞((0, T ) × M) is such that φ touches the graph of u from above at
(t0, x0), then u − φ has there a local maximum (see Figure 2). Thus, if u was smooth,
at (t0, x0) its gradient and its time derivative would coincide with the ones of φ and we
would have an ordering for the Hessians. In other words, at (t0, x0), using also that u is a
subsolution

∂tφ = ∂tu ≤
〈
g − Du⊗Du

|Du|2
, D2u

〉
+ g

(
∇ξ

ξ
,∇u

)
≤
〈
g − Dφ⊗Dφ

|Dφ|2
, D2φ

〉
+ g

(
∇ξ

ξ
,∇φ

)
.

Observe that to write down the inequality for φ we do not need smoothness of u, and thus
this will become the basis for the definition of viscosity subsolution.

In the context of mean curvature flow with constant density ξ = 1 viscosity solutions
were introduced in Evans and Spruck (1991) and Chen et al. (1991) in the Euclidean case,
and in Ilmanen (1992) on curved manifolds. We now provide the rigorous definition we will
be using. If U ⊂ (0, T ) ×M is an open set, (t0, x0) ∈ U and if u : (0, T ) ×M → R is an
upper (lower) semi-continuous function, a smooth function φ : U → R is said to be tangent
to u at (t0, x0) from above (below), if u− φ has a local maximum (minimum) at (t0, x0).

Definition 14 An upper (lower) semi-continuous function u : (0, T )×M → R is said to be
a viscosity subsolution (supersolution) for (18) if for every (t0, x0) ∈ (0, T )×M and every
smooth function φ tanget to u from above (below):
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(t, x)

φ

u

(t0, x0)

Figure 2: Illustration of the concept of viscosity subsolution. The graph of φ is touching
the graph of u from above at (t0, x0).

(i) If Dφ(t0, x0) ̸= 0 then

∂tφ ≤
〈
g − Dφ⊗Dφ

|Dφ|2
, D2φ

〉
+ g

(
∇ξ

ξ
,∇φ

)
(≥) at (t0, x0)

(ii) Otherwise there exists ν ∈ T ∗
x0
M with |ν| ≤ 1 such that

∂tφ ≤ ⟨g − ν ⊗ ν,D2φ⟩ (≥) at (t0, x0)

We say that u is a viscosity solution if it is both a subsolution and a supersolution.

In Ilmanen (1992) the author introduces the notion of viscosity subsolution/supersolution
to mean curvature flow on a manifold (which corresponds to choosing the constant density
ξ = 1) requiring continuity of the function u. We need to work with this slightly more
general definition because the functions u∗ and u∗ in Theorem 4 are not continuous. We
recall the following useful characterization of Definition 14, which says that we need to
check condition (ii) only when also D2φ(t0, x0) = 0.

Proposition 15 Let u : (0, T ) × M → R be an upper (lower) semicontinuous function.
Then u is a viscosity subsolution (supersolution) of the level set formulation of MCFξ if
and only if whenever φ is tangent to u at (t0, x0) from above (below), (i) is satisfied and if
Dφ(t0, x0) = 0 and D2φ(t0, x0) = 0, then

∂tφ(t0, x0) ≤ 0 (≥).

Proposition 15 is proved in the Euclidean case in (Barles and Georgelin, 1995, Propo-
sition 2.2). On a manifold, the proof is analogous and is therefore omitted. We recall the
following comparison principle.

18



Large data limit of the MBO scheme for data clustering

Theorem 16 Let M be a closed k-dimensional Riemannian manifold. Let ξ > 0 be a
smooth function on M . Let u be a viscosity subsolution of (18) on (0, T ]×M and let v be
a viscosity supersolution of (18) on (0, T ]×M . Define

u(x) := lim sup
y→x, t→0

u(t, y), v(x) := lim inf
y→x, t→0

v(t, y).

Assume that u ≤ v and that either u or v is continuous. Then for every t ∈ (0, T ]

u(t, ·) ≤ v(t, ·).

Theorem 16 is proved when ξ = 1 is the constant density and the functions u, v are assumed
to be continuous in Ilmanen (1992). A careful look at the proof of Ilmanen (1992) reveals
that the same argument goes trough with the above assumptions. When M = Rk is the flat
Euclidean space, an even more general version of Theorem 16 can be found in (Ambrosio
and Dancer, 2000, Theorem 18). We also recall the following result concerning the existence
of viscosity solutions, which can be again found in Ilmanen (1992) for the case of a constant
density ξ = 1, and for which we thus omit the proof.

Theorem 17 Let M be a k-dimensional closed Riemannian manifold, and let ξ > 0 be a
smooth function on M . Let u0 : M → R be continuous. Then there exists a unique viscosity
solution u : [0, T )×M → R to (18) such that u(0) = u0.

Finally, we recall the following relabeling property.

Lemma 18 Let M be a k-dimensional closed Riemannian manifold, and let ξ > 0 be a
smooth function on M . Let u : [0, T ) × M → R be a viscosity solution to (18). Then for
every continuous map Ψ : R → R, the function v := Ψ ◦ u is a viscosity solution to (18).

Lemma 18 is proved in Ilmanen (1992) in the case of a constant density ξ = 1, and we thus
skip the proof.
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Appendix A. MBO scheme on manifolds

As in the previous section, M will denote a k-dimensional closed Riemannian manifold
and ξ > 0 will denote a smooth function on M . The following algorithm can be used to
approximate the evolution of an open set Ω0 ⊂ M with smooth boundary by MCFξ. The
results contained in the present section, i.e. Theorem 20, Corollary 21, and Theorem 22 are
proved in Section B.3.

Algorithm 19 (MBO scheme on manifolds) Fix a time-step size h > 0, a diffusion
coefficient κ > 0 and a (bounded) drift f : M → R. Let Ω0 ⊂ M be an open set with a
smooth boundary. For each n ∈ N define inductively Ωl+1 as follows.

1. Diffusion. Define
ul := e−hκ∆ξ1Ωl

.

2. Thresholding. Define Ωn+1 by

Ωl+1 =

{
ul ≥

1

2
+ f

√
h

}
.

Before stating the next result, let us introduce some notation. Given a set E ⊂ M , we
denote by diam(E) its diameter, i.e. the supremum of dM (x, y) taken over pair of points
x, y ∈ E. We denote by inj(M) the injectivity radius of the manifold M , which is defined
as the quantity such that for any r < inj(M) and any x ∈ M , the exponential map is a
diffeomorphism onto the open ball Br(x). We then have the following result for one step of
MBO.

Theorem 20 Let M , ξ be as above. Let Ω0 be a smooth open set such that diam(Ω0) <
inj(M)

2 . Let Ω1 be obtained by applying one step of MBO with a bounded drift f : M → R
to Ω0 with a given step size h > 0 and a given diffusion coefficient κ > 0. Let x ∈ ∂Ω0. Let
ν(x) ∈ TxM be the outer unit normal to ∂Ω0 at x and define

z(x) :=

{
sup {s ∈ R−| expx(sν(x)) ∈ Ω1} if x ̸∈ Ω1,

inf {s ∈ R+| expx(sν(x)) ̸∈ Ω1} if x ∈ Ω1.

Then we have
|z(x)| ≤ V h,

where the constant V depends only on κ, the L∞-norm of f , the ambient manifold M , and
the C0-norm of the second fundamental form of ∂Ω0.

We will apply Theorem 20 in the special case where Ω0 = Br(x0) is a geodesic ball in the
Riemannian manifold M . In this case, Theorem 20 specialized to the following corollary.

Corollary 21 Let x0 ∈ M and R < inj(M)
4 be fixed. Then there is a constant CR < +∞

such that if R
2 < r ≤ R and, in the above theorem, Ω0 = Br(x0), then

|z(x)| ≤ CRh

for every x ∈ ∂Br(x0).
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Finally, we have the following consistency result, which will be crucial in proving Theorem 4.
Hereafter, C1,2((0,+∞) × M) is defined as the space of functions on (0,+∞) × M which
are C1 in the first variable, and C2 in the second one. The space C1,2((0,+∞) × M) is
endowed with a norm, and thus a notion of convergence, given by

∥f∥C1,2((0,+∞)×M) =∥f∥C0((0,+∞)×M) + ∥∂tf∥C0((0,+∞)×M)

+ ∥Df∥C0((0,+∞)×M) + ∥D2f∥C0((0,+∞)×M).

Theorem 22 Let hn be a sequence of positive real numbers converging to zero. Assume that
φhn : (0,+∞)×M → R are C1,2((0,+∞)×M) functions converging in C1,2((0,+∞)×M)
to a function φ : (0,+∞)×M → R. Assume that (shn , zhn) ∈ (0,+∞)×M are converging
to a point (s, z) ∈ [0,+∞)×M . Assume also that δn := φhn(shn , zhn) are such that

lim
n→+∞

δn√
hn

= 0. (19)

Then we have that:

(i) If Dφ(s, z) ̸= 0 then

lim inf
n→+∞

1√
κhn

(
1

2
−
∫
{φhn (shn−hn,·)≥0}

H(κhn, zhn , y)ξ(y)dVolM

)
≥ 1

2
√
π|Dφ(s, z)|

(
∂tφ−

〈
g − Dφ⊗Dφ

|Dφ|2
, D2φ

〉
− g

(
∇ξ

ξ
,∇φ

))
(s, z). (20)

(ii) Otherwise if Dφ(s, z) = 0, D2φ(s, z) = 0 and

1

2
−
∫
{φhn (shn−hn,·)≥0}

H(κhn, zhn , y)ξ(y)dVolM ≤ o(
√
hn),

then
∂tφ(s, z) ≤ 0.

Appendix B. Proofs

B.1 Conditional convergence: Proof of Theorem 4

The purpose of this section is the proof of Theorem 4, which is inspired by the works Barles
and Georgelin (1995) and Misiats and Yip (2016).
Proof of Theorem 4. Let u be the unique viscosity solution to MCFξ from Theorem 17
with ξ = ρ2, starting from u(0, ·) = sd(·,Γ0) := dM (x,Ωc

0)− dM (x,Ω0). We will show later
that u∗ and u∗ are, respectively, a viscosity subsolution and a viscosity supersolution of the
level set formulation of MCFξ according to Definition 14. We furthermore claim that for
every x ∈ M ,

u∗(0, x) ≤ sign∗(u(0, x)), (21)
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u∗(0, x) ≥ sign∗(u(0, x)), (22)

where sign∗ and sign∗ are, respectively, the upper semi-continuous envelope and the lower
semi-continuous envelope of the sign function.

Once these facts are proved, it follows from Theorem 16 that for every x ∈ M and every
t ≥ 0,

u∗(t, x) ≤ sign∗(u(t, x)), (23)

u∗(t, x) ≥ sign∗(u(t, x)). (24)

To see this, we observe that if Ψ : R → R is a continuous function such that Ψ ≥ sign∗,
then the relabeling property in Lemma 18 implies that Ψ◦u is a continuous solution to (18)
with u∗(0, x) ≤ sign∗(u(0, x)) ≤ Ψ(u(0, x)) for every x ∈ M , thus Theorem 16 implies that
for every 0 ≤ t ≤ T and every x ∈ M

u∗(t, x) ≤ inf
Ψ continuous,Ψ≥sign∗

Ψ(u(t, x)) = sign∗(u(t, x)).

A similar argument gives (24). Let us now conclude the proof of the theorem assuming that
(23) and (24) hold. If x ∈ Ωt, then u(t, x) > 0, thus (24) yields u∗(t, x) = 1. In a similar
way (23) implies that u∗(t, x) = −1 on (Ωt ∪ Γt)

c. We are thus left with proving that u∗ is
a subsolution, that u∗ is a supersolution and with verifying the initial conditions (21) and
(22).

We now show that indeed u∗ is a viscosity subsolution. Pick a test functions φ tangent
to u∗ at (t0, x0) ∈ (0,+∞)×M from above. We may assume without loss of generality that

lim
t→+∞

max
M

φ(t, ·) = +∞, (25)

and that u∗−φ has a strict global maximum at (t0, x0). Thanks to Proposition 15, we only
need to check that

1. Either Dφ(t0, x0) ̸= 0 and

∂tφ ≤
〈
g − Dφ⊗Dφ

|Dφ|2
, D2φ

〉
+ g

(
∇ξ

ξ
,∇φ

)
at (t0, x0).

2. Or Dφ(t0, x0) = 0, D2φ(t0, x0) = 0 and

∂tφ(t0, x0) ≤ 0.

If (t0, x0) ∈ {u∗ = −1} or (t0, x0) ∈ Int{u∗ = 1} the claim is trivial, because in that case
u∗ is constant in a neighborhood of (t0, x0). We thus assume that (t0, x0) ∈ ∂{u∗ = 1}. By
definition, there exists a sequence (tnj , znj ) such that znj ∈ Gnj for every j ∈ N and, as
j → +∞,

nj → +∞,

znj → x0,
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tnj → t0,

unj ,Gnj (tnj , znj ) → u∗(t0, x0).

For every j ∈ N, pick

(sj , xj) ∈ argmaxx∈Gnj ,s∈(0,+∞)

{
unj ,Gnj (s, x)− φ(s, x)

}
. (26)

We observe that, up to extracting a subsequence, (sj , xj) → (t0, x0) as j → +∞. Indeed by
the compactness of M and the assumption (25), we may assume that the sequence (sj , xj)
converges to some limit point (s, x). Then by definition of u∗, by the choice (26) and by
the properties of the points (tnj , znj ) we must have

(u∗ − φ)(s, x) ≥ lim sup
j→+∞

(unj ,Gnj − φ)(sj , xj)

≥ lim sup
j→+∞

(unj ,Gnj − φ)(tnj , znj )

= (u∗ − φ)(t0, x0).

This forces (t0, x0) = (s, x), because (t0, x0) is a strict global maximum for u∗−φ. It is also
easy to check that unj ,Gnj (sj , xj) = 1 for j large enough. We now pick a sequence δj ↓ 0 to
be determined later, and we define θj : R → [−1, 1] to be a smooth function such that

θj(t) = sign(t) for |t| ≥ δj ,

∥θ′j∥∞ ≤ 2

δj
.

We claim that

unj ,Gnj (s, z) ≤ θj(φ(s, z)− φ(sj , xj) + δj) (27)

for every j large enough, z ∈ Gnj and s ∈ (0,+∞). Indeed, inequality (27) holds trivially

if unj ,Gnj (s, z) = −1. If instead unj ,Gnj (s, z) = 1, probing (26) with (s, z), we have

1 = unj ,Gnj (s, z) ≤ unj ,Gnj (sj , xj)− φ(sj , xj) + φ(s, z)

= 1− φ(sj , xj) + φ(s, z),

where we used that unj ,Gnj (sj , xj) = 1 for j large enough. In particular

0 ≤ −φ(sj , xj) + φ(s, z),

which, by definition of θj , yields (27).

We now choose s = sj − hnj in (27), we apply Snj (hnj , ·) to both sides of the inequality
and we evaluate at xj . Recalling assumption (i) of Theorem 4 we get

Snj (hnj , u
nj ,Gnj (sj − hnj , ·))(xj)

≤ Snj (hnj , θj(φ(sj − hnj , ·)− φ(sj , xj) + δj))(xj) +O
(
h3/2nj

)
.
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We now apply sign∗ to both sides of the inequality to get

1 = unj ,Gnj (sj , xj) ≤ sign∗
(
Snj (hnj , θj(φ(sj − hnj , ·)− φ(sj , xj) + δj))(xj) +O

(
h3/2nj

))
,

which, by definition of the function sign∗, implies

0 ≤ Snj (hnj , θj(φ(sj − hnj , ·)− φ(sj , xj) + δj))(xj) +O
(
h3/2nj

)
.

We now divide both sides of the previous inequality by 2 and we add 1/2 to both sides of
the inequality. Using assumption (iii) of Theorem 4 and the linearity of Sn in the second
variable yields

1

2
≤ Snj

(
hnj ,

(
1 + θj

2

)(
φ(sj − hnj , ·)− φ(sj , xj) + δj

))
(xj) +O

(
h3/2nj

)
.

Define

fj(z) :=

(
1 + θj

2

)(
φ(sj − hnj , z)− φ(sj , xj) + δj

)
.

Then by applying the estimate (5) in assumption (ii) in Theorem 4 we obtain

1

2
≤ (e−hnjκ∆ξfj)(xj) + o(h1/2nj

) +
2

δj
O(h3/2nj

).

In other words, we have

o
(
h1/2nj

)
+

2

δj
O
(
h3/2nj

)
≥ 1

2
−
∫
M

H(hnjκ, xj , y)fj(y)ξ(y)dVolM (y)

≥ 1

2
−
∫
{φ(sj−hnj ,·)−φ(sj ,xj)+δj≥0}

H(hnjκ, xj , y)ξ(y)dVolM (y).

We divide the previous inequality by
√
hnjκ, and we choose δj = h

2/3
nj so that on the one

hand
hnj

δj
→ 0 and on the other hand we can apply Theorem 22. If Dφ(t0, x0) ̸= 0, then by

(i) in Theorem 22,

0 ≥ 1

2
√
π|Dφ(s, z)|

(
∂tφ−

〈
g − Dφ⊗Dφ

|Dφ|2
, D2φ

〉
− g

(
Dξ

ξ
,Dφ

))
(t0, x0),

which gives (i) in Definition 14. If Dφ(t0, x0) = 0 and D2φ(t0, x0) = 0 then we can apply (ii)
in Theorem 22 to get the second item in the equivalent description of viscosity subsolution
in Proposition 15. Thus u∗ is a viscosity subsolution. In a similar way one can prove that
u∗ is a supersolution.

We are left with checking the initial conditions for u∗ and u∗. Again, we focus on the
inequality (21) for u∗, since the argument for u∗ is similar. Observe that

sign∗(u(0, x)) =

{
1 if x ∈ Ω0

−1 if x ∈ M \ Ω0
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and since u∗ ∈ {−1, 1}, we just have to show that u∗(0, x) = −1 for x ∈ M \Ω0. To this aim,
pick a sequence (tn, zn) ∈ (0,+∞)×Gn such that tn → 0 and zn → x as n → +∞. We have
to show that un,Gn(tn, zn) = −1 for n large enough. For q ∈ R, denote by T q,Gn(hn)(Ω0) the
outcome of the abstract thresholding scheme with thresholding value given by q and step
size hn on the graph Gn with initial value Ω0∩Vn. Form ∈ N we also write (T q,Gn(hn))

m for
T q,Gn(hn) ◦ ... ◦T q,Gn(hn). Since x ∈ M \Ω0 there exists R > 0 such that BR(x) ⊂ M \Ω0.
We denote by wn : Vn → [0,+∞) a sequence of non-negative functions which, for n large
enough and for every u, v ∈ Vn, |u| ≤ 1, |v| ≤ 1, satisfy

u ≤ v ⇒ S(hn, u) ≤ S(hn, v) + wn, (28)

an := ∥wn∥L∞(Gn) = O(h3/2n ),

max
x∈Vn

|S(hn,1Gn)(x)− 1| < an. (29)

Such functions exist by assumptions (i) and (iii) in Theorem 4. We now check that

Vn \
(
T 1/2,Gn(hn)

)m
(Ω0) ⊃

(
T 1/2+2man,Gn(hn)

)m
(BR(x)). (30)

To see this, we proceed by induction over m. We treat just the base case m = 1, the
inductive step being analogous. To prove (30) for m = 1, we show

Vn \ T 1/2,Gn(hn)(Ω0) ⊃ T 1/2+an,Gn(hn)(M \ Ω0) ⊃ T 1/2+2an,Gn(hn)(BR(x)). (31)

To see this, let y ∈ T 1/2+an,Gn(hn)(M \ Ω0), observe that by (29) we have

S(hn,1Ω0)(y) +
1

2
+ an ≤ S(hn,1Ω0)(y) + Sn(hn,1M\Ω0

)(y) < 1 + an,

in particular, we have that y ∈ Vn \ T 1/2,Gn(hn)(Ω0). Thus Vn \ T 1/2,Gn(hn)(Ω0) ⊃
T 1/2+an,Gn(M \ Ω0). We now observe that since 1BR(x) ≤ 1M\Ω0

, (28) yields that for

y ∈ T 1/2+2an,Gn(hn)(BR(x))

1

2
+ 2an ≤ S(hn,1BR(x))(y) ≤ S(hn,1M\Ω0

)(y) + an,

which yields (31).
We will show that there is a constant C < +∞ such that(

T
1/2+2

[
tn
hn

]
an,Gn(hn)

)[
tn
hn

]
(BR(x)) ⊃ BR−Ctn(x) ∩ Vn. (32)

Once this is proved, we have that using also (30), since tn ↓ 0,

M \
(
T 1/2,Gn(hn)

)[ tn
hn

]
(Ω0) ⊃ BR

2
(x)

when n is large enough. In particular, since zn is converging to x, we must have that
un,Gn(tn, zn) = −1 for n large enough. Finally, to show (32) we argue as follows. Let CR
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be the constant in Corollary 21. Let f ∈ C∞
c (BR(x)) such that 1BR−CRhn (x)

≤ f ≤ 1BR(x)

with Lip(f) ≤ c/hn, using assumptions (i) and (ii) in Theorem 4 we have for y ∈ M ∩ Vn

Sn(hn,1BR(x))(y) ≥ Sn(hn, f)(y) +O(h3/2n )

≥ e−hnκ∆ξf(y) +O(h1/2n )

≥ e−hnκ∆ξ1BR−CRhn (x)
(y) +O(h1/2n ).

Observe that 1
2 + 2

[
tn
hn

]
an = 1

2 + O(h
1/2
n ), in particular, we can apply Corollary 21 to

obtain, for n large enough, whenever y ∈ BR−2CRhn(x) ∩ Vn

e−hnκ∆ξ1BR−CRhn (x)
(y) +O(h1/2n ) ≥ 1

2
+ 2

[
tn
hn

]
an.

By an induction argument we get (32).

B.2 Heat kernel estimate in random geometric graphs

The main purpose of this subsection is the proof of Theorem 6. We first introduce some
notation. We denote by {λl}+∞

l=1 the eigenvalues of the weighted Laplacian ∆ρ2 on the
manifold (M, g), which are ordered in the following way (recall that we are assuming that
the eigenvalues are simple)

0 = λ1 < λ2 < λ3 < ...

We denote by {fl}+∞
l=1 an orthonormal basis (with respect to the L2(ρ2VolM )-inner product

on M) made of the corresponding eigenvectors. Then, for x, y ∈ M , the heat kernel on M
can be written as

H(t, x, y) =
+∞∑
l=1

e−tλlfl(x)fl(y). (33)

In the proof of Theorem 6 we will assume, for simplicity, that Kn = log(n)q ∈ N. In this
setting we will use condition (v) of Theorem 6 in the form

ϵn ≪
√
log(n)

K
1+ 1

k
− s

2
n

(
λ

k
2
+1

Kn
+ 1

)2(
λ
4+ k

2
Kn

+ 1

) . (34)

Observe that condition (v) of Theorem 6 implies (34) because by Weyl’s law we have

λKn ∼ K
2/k
n .

Proof of Theorem 6. As we pointed out in Remark 7, in the present proof we
will for simplicity assume that Kn = log(n)q ∈ N. We will indicate by γ the quantity
γ := infi∈N(λi+1 − λi), which is positive by Item (ii) in Theorem 6.

Observe that items (i) and (iii) in Theorem 4 hold exactly (i.e. without error) for the
choice Sn(t, ·) = e−t∆n(·). To show that these hold true with high probability also for the
choice Sn = Pn defined in (13) we take w ∈ Vn and we consider, for x ∈ Vn, the difference∣∣∣∣e−hn∆nw(x)− Pn(hn, w)(x)

∣∣∣∣ =
∣∣∣∣∣∣
∑
y∈Vn

n∑
l=Kn+1

e−hnλl
nvln(x)v

l
n(y)

dn(y)

n
w(y)

∣∣∣∣∣∣
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≤ nmax
z∈Vn

|w(z)|max
z∈Vn

|dn(z)|
1

n
max
z∈Vn

n∑
l=Kn+1

e−hnλl
n(vln(z))

2,

where in the last line we used the Cauchy–Schwarz inequality. To get items (i) and (iii) in
Theorem 6 for Pn, it thus suffices to show that

Rn := max
z∈Vn

dn(z)max
z∈Vn

1

n

n∑
l=Kn+1

e−hnλl
n(vln(z))

2 = O

(
h
3/2
n

n

)
.

To show this, we start by observing that for every n ∈ N, every z ∈ Vn and 1 ≤ l ≤ n

1 = ⟨vln, vln⟩Vn ≥ dn(z)

n
(vln(z))

2. (35)

By applying Theorem 28 we can also choose n so large that, with probability greater than
1−Q6ϵ

−k
n exp(−Q7nϵ

k+2
n ), we have

max
z∈Vn

|dn(z)− C1ρ(z)| ≤ Q8ϵn,

and we can clearly assume that n is so large that

C1
min ρ

2
≤ dn ≤ 2C1max ρ.

Using (35) and the ordering λl
n ≥ λKn

n for n ≥ l ≥ Kn we get

Rn ≤ C

n

(
n2e−λKn

n hn

)
=

C

n

(
n2e−κ(η)λKnhne−(λ

Kn
n −κ(η)λKn)hn

)
.

We now use Theorem 27 and Theorem 24 to infer that with probability greater than 1 −
Q1ϵ

−6k
n exp(−Q2nϵ

k+4
n )−Q3n exp(−Q4n (λKn + 1)−k) we have

Rn ≤ C

n

(
n2e−κ(η)λKnhne

Cϵn
γ

(
λ
4+ k

2
Kn

+1

)
hn

)
.

By Weyl’s law we have that λKn ∼ K
2/k
n , thus

Rn ≤ C

n

(
n2e−cK

2/k
n hne

C̃ϵn
γ

K
8
k
+1

n

)
.

Recalling the conditions (iv), (v) and (ii) in Theorem 6, as well as the scalingKn = (log(n))q

we get

Rn ≤ C

n

(
n2e−c(log(n))

2q
k

−α
)
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=
Ch

3/2
n

n

n2−c(log(n))
2q
k

−1−α

h
3/2
n


≤ Ch

3/2
n

n

(
n2−c(log(n))

2q
k

−1−α

(log(n))
3α
2

)
.

So Rn = O
(
h
3/2
n
n

)
because by the definition of α in (iv) in Theorem 6 we have 2q

k −1−α > 0.

We are left with proving item (ii) in Theorem 4 for both e−t∆n(·) and Pn. We prove it for
e−t∆n(·), the proof for Pn being analogous. The proof is divided into three steps.

Step 1. We claim that with probability greater than 1 − a1ϵ
−6k
n exp(−a2nϵ

k+4
n ) −

a3n exp(−a4n (λKn + 1)−k)

max
x,y∈Vn

∣∣∣∣Hn
ϵn(hn, x, y)−

ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣ = o

(√
hn
n

)
. (36)

To show (36) we pick two points x, y ∈ Vn and we compute∣∣∣∣Hn
ϵn(hn, x, y)−

ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣ ≤∣∣∣∣HKn
ϵn (hn, x, y)−

ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣
+

∣∣∣∣ n∑
l=Kn+1

e−hnλl
nvln(x)v

l
n(y)

dn(y)

n

∣∣∣∣.
From Lemma 9 we get that the first term on the right-hand side is o

(√
hn
n

)
with probability

greater than 1−a1ϵ
−6k
n exp(−a2nϵ

k+4
n )−a3n exp(−a4n (λKn + 1)−k), while the second term

is estimated in the same way as the term Rn in the previous part of the proof.
Step 2. We choose an optimal transport map

Tn ∈ argmin
T#ν=νn

sup
x∈M

dM (x, T (x)), θn := sup
x∈M

dM (x, Tn(x)).

We claim that, with probability greater than 1 − a1ϵ
−6k
n exp(−a2nϵ

k+4
n )

− a3n exp(−a4n (λKn + 1)−k), we have for every f ∈ C∞(M),

max
x∈Vn

∣∣∣e−hn∆nf(x)− e−κ(η)hn∆ρ2f(x)
∣∣∣ ≤L1 sup

M
|f | θn√

hn
e

2θn diam(M)
hn .

+ sup
M

|f |o(
√
hn) + L2

(
sup
M

|f |+ Lip(f)

)
θn,(37)

where the constants L1, L2 and the function in o(
√
hn) depend only on M .

To show (37), we work under the assumption that we are in the event in which the
estimate of Step 1 holds true; this happens with probability greater than

1− a1ϵ
−6k
n exp(−a2nϵ

k+4
n )− a3n exp(−a4n (λKn + 1)−k).

We take f ∈ C∞(M) and x ∈ Vn. Then by using the triangle inequality

|e−hn∆nf(x)− e−κ(η)hn∆ρ2f(x)|
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=

∣∣∣∣∣∣
∑
y∈Vn

Hn
ϵn(hn, x, y)f(y)−

∫
M

H(κ(η)hn, x, y)f(y)ρ
2(y)dVolM (y)

∣∣∣∣∣∣
≤
∑
y∈Vn

∣∣∣∣Hn
ϵn(hn, x, y)f(y)−

ρ(y)

n
H(κ(η)hn, x, y)f(y)

∣∣∣∣
+

∣∣∣∣ ∑
y∈Vn

ρ(y)

n
H(κ(η)hn, x, y)f(y)−

∫
M

H(κ(η)hn, x, y)f(y)ρ
2(y)dVolM (y)

∣∣∣∣.
For the first term on the right-hand side, we use the estimate in Step 1 to infer

∑
y∈Vn

∣∣∣∣Hn
ϵn(hn, x, y)f(y)−

ρ(y)

n
H(κ(η)hn, x, y)f(y)

∣∣∣∣ ≤ n sup
M

|f |o
(√

hn
n

)
= sup

M
|f |o(

√
hn).

For the second term, we recall that (Tn)#ν = νn, thus∣∣∣∣ ∑
y∈Vn

ρ(y)

n
H(κ(η)hn, x, y)f(y)−

∫
M

H(κ(η)hn, x, y)f(y)ρ
2(y)dVolM (y)

∣∣∣∣
=

∣∣∣∣ ∫
M

H(κ(η)hn, x, Tn(y))f(Tn(y))ρ(Tn(y))dν(y)−
∫
M

H(κ(η)hn, x, y)f(y)ρ(y)dν(y)

∣∣∣∣.
By the smoothness of ρ and f , we observe that∣∣∣∣ ∫

M
H(κ(η)hn, x, y) (f(Tn(y))ρ(Tn(y))− f(y)ρ(y)) dν(y)

∣∣∣∣ ≤ L2

(
sup
M

|f |+ Lip(f)

)
θn,

so we are left with showing that∣∣∣∣∫
M
(H(hn, x, Tn(y))−H(hn, x, y))f(Tn(y))ρ(Tn(y))dν(y)

∣∣∣∣
≤ L1 sup

M
|f | θn√

hn
e

θn diam(M)
hn . (38)

To prove (38) we fix x, y ∈ M and we consider the length minimizing constant-speed geodesic
σn,y : [0, 1] → M from y to Tn(y), i.e.,

Length(σn,y|[0,s]) = dM (y, σn,y(s)).

By the fundamental theorem of calculus, the Cauchy–Schwarz inequality and the bounded-
ness of ρ we obtain∣∣∣∣∫

M
(H(hn, x, Tn(y))−H(hn, x, y))f(Tn(y))ρ(Tn(y))dν(y)

∣∣∣∣
≤ C sup

M
|f |
∫ 1

0

∫
M

|∇H(hn, x, σn,y(s))||σ̇n,y(s)|dν(y)ds
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≤ Cθn sup
M

|f |
∫ 1

0

∫
M

Q̂1√
hnµ(B√

hn
(x))

exp

(
−
d2M (x, σn,y(s))

Q̂2hn

)
dν(y)ds, (39)

where in the last line we used the fact that the speed of the constant-speed geodesic σn,y is
equal to its length – which can be bounded by Cθn by definition of θn – and we estimated
the gradient of the heat kernel by an application of Theorem 25. We now observe that by
the reverse triangle inequality

|d2M (x, σn,y(s))− d2M (x, y)| = (dM (x, y)− dM (x, σn,y(s)))(dM (x, σn,y(s)) + dM (x, y))

≤ 2θndM (x, y).

Inserting this estimate into (39) and using the Gaussian lower bound for the heat kernel
from Theorem 25 yields∣∣∣∣∫

M
(H(hn, x, Tn(y))−H(hn, x, y))f(Tn(y))ρ(Tn(y))dν

∣∣∣∣
≤ C

θn√
hn

e
2θn diam(M)

hn sup
M

|f |
∫
M

H(Q̃hn, x, y)dν(y)

≤ L1 sup
M

|f | θn√
hn

e
2θn diam(M)

hn .

Step 3. Conclusion. To conclude the proof of the theorem from (37) one clearly just
needs to prove that

lim sup
n→+∞

θn

h
3/2
n

< +∞.

We first treat the case k ≥ 3. Observe that, by Theorem 29

lim sup
n→+∞

n1/kθn

log1/k(n)
< +∞.

In particular, using also assumption (vi)

lim sup
n→+∞

θn

h
3/2
n

= lim sup
n→+∞

(
n1/kθn

log1/k(n)

log1/k(n)

ϵnn1/k

ϵn

h
3/2
n

)
< +∞,

provided

lim sup
n→+∞

ϵn

h
3/2
n

< +∞. (40)

To check that (40) is satisfied, we observe that by the assumptions (iv) and (v) in Theorem 6
we get

lim sup
n→+∞

ϵn

h
3/2
n

≤ lim sup
n→+∞

(log(n))
3
2
α−β,

the right-hand side of which is finite since assumption (i) in Theorem 6 implies 3
2α−β ≤ 0.

For the case k = 2 we proceed analogously. Recall that by Theorem 29

lim sup
n→+∞

n1/2θn

log3/4(n)
< +∞.
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In particular, using also assumption (vi) in Theorem 6 we obtain

lim sup
n→+∞

θn

h
3/2
n

= lim sup
n→+∞

(
θnn

1/2

log3/4(n)

(
log(n)

ϵ8nn

)1/2 ϵ4n log
1/4(n)

h
3/2
n

)
< +∞,

provided

lim sup
n→+∞

ϵ4n log
1/4(n)

h
3/2
n

< +∞.

To show this, we estimate ϵn using assumption (v) in Theorem 6 and esimate hn using
assumption (iv) in Theorem 6

lim sup
n→+∞

ϵ4n log
1/4(n)

h
3/2
n

≤ lim sup
n→+∞

(log(n))
1
4
+ 3

2
α−4β < +∞,

which follows from (i) in Theorem 6.

Proof of Lemma 9. In this proof, we denote by γ the quantity γ := infi∈N(λi+1−λi),
which is positive by Item (ii) in Theorem 6.

To show (15), fix two points x, y ∈ Vn. By using the expansion (33) and the triangle
inequality we have ∣∣∣∣HKn

ϵn (hn, x, y)−
ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣ ≤ In + IIn,

where we define

In =

∣∣∣∣∣
Kn−1∑
l=1

e−hnλl
nvln(x)v

l
n(y)

dn(y)

n
− e−hnκ(η)λl

fl(x)fl(y)
ρ(y)

n

∣∣∣∣∣ ,
IIn =

∣∣∣∣∣∣
+∞∑
l=Kn

e−hnκ(η)λl
fl(x)fl(y)

ρ(y)

n

∣∣∣∣∣∣ .
We now proceed to show that these two terms are both of order o

(√
hn
n

)
.

To control term IIn we follow the ideas in Dunson et al. (2021) and Bérard et al. (1994).
By the Cauchy–Schwarz inequality and by the fact that ρ is bounded we get

IIn ≤ C

n
max
z∈M

+∞∑
l=Kn

e−hnκ(η)λlf2
l (z).

To control the right hand side, fix z ∈ M . We define a measure ωz on R by

ωz :=

+∞∑
l=Kn

f2
l (z)δλl

(dλ).

Then an integration by parts yields

+∞∑
l=Kn

e−hnκ(η)λlf2
l (z) =

∫
R
e−κ(η)hnλdωz(dλ)
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=
[
e−κ(η)hnλωz([0, λ])

]+∞

λ=0
+

∫
R
κ(η)hne

−κ(η)hnλωz([0, λ])dλ

≤ lim sup
λ→+∞

e−hnκ(η)λ
∑

λKn≤λl≤λ

f2
l (z)


+

∫ +∞

λKn

hnκ(η)e
−hnκ(η)λωz([0, λ])dλ.

Now we use Theorem 25 to show that the first term on the right hand side vanishes.
Recalling the notation µ := ξVolM , and using the Gaussian upper bounds in Theorem 25
we get in particular∑

λKn≤λl≤λ

f2
l (z) ≤ e

∑
0≤λl≤λ

e−
λl
λ f2

l (z) ≤ eH

(
1

λ
, z, z

)
(41)

≤ C

µ(Bλ−1/2(x)))
≤ Cλ

k
2 ,

so that indeed

lim sup
λ→+∞

e−hn
κ(η)
2

λ
∑

λKn≤λl≤λ

f2
l (z) ≤ lim sup

λ→+∞
e−hn

κ(η)
2

λCλ
k
2 = 0.

We thus obtain, using (41) once more with λKn replaced by zero,

IIn ≤ C

n

∫ +∞

λKn

hnκ(η)e
−hnκ(η)λλk/2dλ

=
C

n
(hnκ(η))

− k
2

∫ +∞

κ(η)hnλKn

e−λλk/2dλ

≤ C

n
h
− k

2
n

∫ +∞

chnK
2/k
n

e−λλk/2dλ,

where we used Weyl’s law in the last step. If chnK
2
k
n − k

2 ≥ 1, we can estimate the right
hand side by

C

n
h
− k

2
n

(
chnK

2
k
n

) k
2
+1

e−chnK
2
k
n =

C̃

n
Kne

−AA,

where A = chnK
2
k
n . Now we follow the reasoning in the proof of (Dunson et al., 2021,

Theorem 3) to obtainKnAe
−A ≤ 1

Kn
e−

A
2 provided A ≥ 8 log(Kn), which is satisfied because

of our assumption (iv) in Theorem 6. Thus, using again our assumptions on hn

IIn ≤ C̃
√
hn

n

e−c(log(n))
2q
k

−α

(log(n))q
√
hn


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≤ C̃
√
hn

n

(
e−c(log(n))

2q
k

−α

(log(n))
α
2
−q

)
.

Thus we obtain that IIn = o
(√

hn
n

)
because of the definition of α.

Regarding the term In, we use the triangle inequality, to decompose this into four terms

In ≤ Ian + Ibn + Icn + Idn,

where

Ian =

∣∣∣∣∣
Kn−1∑
l=1

(
e−hnλl

n − e−κ(η)hnλl

) ρ(y)

n
fl(x)fl(y)

∣∣∣∣∣ ,
Ibn =

∣∣∣∣∣
Kn−1∑
l=1

e−hnλl
n

(
C1

ρ(y)

n
− dn(y)

n

)
fl(x)

C
1/2
1

fl(y)

C
1/2
1

∣∣∣∣∣ ,
Icn =

∣∣∣∣∣
Kn−1∑
l=1

e−hnλl
n
dn(y)

n

(
fl(x)

C
1/2
1

− vln(x)

)
fl(y)

C
1/2
1

∣∣∣∣∣ ,
Idn =

∣∣∣∣∣
Kn−1∑
l=1

e−hnλl
n
dn(y)

n
vln(x)

(
fl(y)

C
1/2
1

− vln(y)

)∣∣∣∣∣ .
We now proceed at estimating these four terms.
Term Ian. We observe that λ1

n = λ1 = 0, thus in the sum we can neglect the term corre-
sponding to l = 1, i.e.

Ian ≤ C

n

Kn−1∑
l=2

∣∣∣e−hnλl
n − e−hnκ(η)λl

∣∣∣ ∥fl∥2C0(M).

Since s 7→ e−s is 1-Lipschitz continuous on [0,+∞), for every 2 ≤ l ≤ Kn − 1 we have∣∣∣e−hnλl
n − e−κ(η)hnλl

∣∣∣ ≤ |λl
n − κ(η)λl|hn ≤ Q5

∥fl∥C3(M)

γ
ϵnhn,

where the last inequality holds with probability greater than 1 − Q1ϵ
−6k
n exp(−Q2nϵ

k+4
n )

−Q3n exp(−Q4n
(
λl + 1

)−k
) because of Theorem 27. In particular using also Theorem 24

to control the C0 and C3 norm of the eigenfunctions and using the fact that for l ≤ Kn we
have λl ≤ λKn we can bound

Ian ≤ Chn
n


Kn

(
λ
1+ k

2
Kn

+ 1

)2(
λ
4+ k

2
Kn

+ 1

)
ϵn

γ

 .

From this, we obtain that Ian = o
(√

hn
n

)
, because by our assumptions on ϵn in (v) of

Theorem 6 and our assumptions on the spectral gap in (ii) of Theorem 6 we clearly have
Kn

(
λ
1+ k

2
Kn

+ 1

)2(
λ
4+ k

2
Kn

+ 1

)
ϵn

γ

 = o(1).
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Term Ibn. Using Theorem 27, Theorem 28 and Theorem 24 we have that with probability

greater than 1 − Q1ϵ
−6k
n exp(−Q2nϵ

k+4
n ) − Q3n exp(−Q4n

(
λl + 1

)−k
)

−Q6ϵ
−k
n exp(−Q7nϵ

k+2
n ), for each 1 ≤ l ≤ Kn − 1 we can estimate∣∣∣∣∣e−hnλl

n

(
C1

ρ(y)

n
− dn(y)

n

)
fl(x)

C
1/2
1

fl(y)

C
1/2
1

∣∣∣∣∣
≤ C

n
e−hnκ(η)λle−hn(λl

n−κ(η)λl)∥C1ρ− dn∥L∞(Gn)∥fl∥
2
L∞(M)

≤ C

n
e
Chn

(
λ
4+ k

2
Kn

+1

)
ϵn

γ

(
λ
1+ k

2
Kn

+ 1

)2

ϵn.

In particular, multiplying and dividing by
√
hn and summing over l = 1, ...,Kn, we obtain

Ibn ≤ C
√
hn

n

 Kn√
hn

e
chn

(
λ
4+ k

2
Kn

+1

)
ϵn

γ

(
λ
1+ k

2
Kn

+ 1

)2

ϵn

 .

By Weyl’s law and our by assumptions (v), (iv) and (ii) in Theorem 6, this is again an

o
(√

hn
n

)
term.

The terms Icn, I
d
n are treated similarly. In particular In = o

(√
hn
n

)
provided we are in the

event in which Theorem 27 and Theorem 28 apply. This happens with probability greater
than

1−Q1ϵ
−6k
n exp(−Q2nϵ

k+4
n )−Q3n exp(−Q4n

(
λl + 1

)−k
)−Q6ϵ

−k
n exp(−Q7nϵ

k+2
n )

≥ 1− (Q1 +Q6)ϵ
−6k
n exp(−min(Q2, Q7)nϵ

k+4
n )−Q3n exp(−Q4n

(
λl + 1

)−k
)

= 1− a1ϵ
−6k
n exp(−a2nϵ

k+4
n )− a3n exp(−a4n (λKn + 1)−k),

provided n is large enough, this concludes our argument for (15).

Proof of Corollary 8. We know from Theorem 6 that for n large enough, assumptions
(i), (ii), (iii) of Theorem 4 hold for both the choices of the operators e−t∆n and Pn on the
graph Gn on an event An such that

P(An) ≥ 1− Cϵ−6k
n exp(− 1

C
nϵk+4

n )− Cn exp(− n

CK2
n

).

For n ∈ N large enough we consider the set

Cn :=
⋂
n≥n

An.

Theorem 4 says that, in the event Cn, for both the choices of the operators e−t∆n and Pn

we have that (6) and (7) hold true. Observe that

P(Cn) ≥ 1−
∑
n≥n

Cϵ−6k
n exp(− 1

C
nϵk+4

n )− Cn exp(− 1

C
nK−2

n ),
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In particular, we have that

P ({u∗ and u∗ satisfy (6) and (7)}) ≥ P

( ⋃
n∈N

Cn

)
= lim

n→+∞
P(Cn)

≥ 1− lim
n→+∞

∑
n≥n

(
Cϵ−6k

n exp(− 1

C
nϵk+4

n )

− Cn exp(− 1

C
nK−2

n )

)
.

(42)

We thus just need to show that

lim
n→+∞

∑
n≥n

(
Cϵ−6k

n exp(− 1

C
nϵk+4

n )− Cn exp(− 1

C
nK−2

n )

)
= 0,

in other words, we need to prove that the series is convergent. To this end, observe that

Cϵ−6k
n exp(− 1

C
nϵk+4

n ) = C exp

(
−6k log(ϵn)−

1

C
nϵk+4

n

)
= C exp

(
log(n)

(
−6k

log(ϵn)

log(n)
− 1

C

nϵk+4
n

log(n)

))
= Cn

(
−6k

log(ϵn)
log(n)

− 1
C

nϵk+4
n

log(n)

)
.

In a similar way, we have

Cn exp(− 1

C
n (λKn + 1)−k) = Cn

(
1− 1

C
nK−2

n
log(n)

)
.

To prove the convergence of the series appearing in (42) it is sufficient to show

lim
n→+∞

(
−6k

log(ϵn)

log(n)
− 1

C

nϵk+4
n

log(n)

)
= lim

n→+∞

(
1− 1

C

nK−2
n

log(n)

)
= −∞.

The second limit is easily treated by recalling that Kn = logq(n). To treat the first limit,
observe that by assumption (14) in Corollary 8 we have

lim
n→+∞

nϵk+4
n

log(n)
= +∞.

To conclude the proof, we show that

inf
n∈N

log(ϵn)

log(n)
> −∞. (43)

Indeed, we have

log(ϵn)

log(n)
=

log

(
ϵnn

1
k+4

log
1

k+4 (n)

)
log(n)

− 1

k + 4
+

log log(n)

log(n)
,

The first term is bounded from below because it is asymptotically nonnegative by (14) .
The last term converges to zero as n → +∞. Thus (43) holds and the proof is complete.
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B.3 MBO on manifolds

In this subsection, we prove the results of Appendix A.

Proof of Theorem 20. We let x̂ := expx(z(x)ν(x)). Then we have

1

2
+ ω1

√
h =

∫
Ω0

H(κh, x̂, y)ρ2(y)dVolM

By the Gaussian upper bounds on the heat kernel in Theorem 25, we have that dM (x̂, ∂Ω0) ≤
C̃
√
h, for a fixed constant C̃, independent of Ω0. In particular, we infer from the asymptotic

expansion of the heat kernel in Theorem 26 that

1

2
+ ω1

√
h =

∫
Ω0

e−
d2M (x̂,y)

4κh

(4πκh)k/2
v0(x̂, y)ρ

2(y)dVolM +O(h). (44)

Since d(x̂, ∂Ω0) ≤ C̃h, and diam(Ω0) ≤ inj(M)
2 , we can rewrite the integral in (44) in

exponential coordinates around x̂, i.e.

1

2
+ ω1 ◦ expx̂

√
h =

∫
Ω̃0

e−
|y|2
4κh

(4πκh)k/2
v0(x̂, expx̂(y))ρ

2(expx̂(y))dy +O(h),

where Ω̃0 := exp−1
x̂ (Ω0). Recalling that v0(x̂, x̂) =

1
ρ2(x̂)

, a Taylor expansion of the function

y 7→ v0(x̂, expx̂(y))ρ
2(expx̂(y)) around zero reveals that

1

2
+ ω1 ◦ expx̂

√
h =

∫
Ω̃0

e−
|y|2
4κh

(4πκh)k/2
dy +O(

√
h).

In other words, there exists a bounded function ω2 on Rk such that

1

2
+ ω2

√
h =

∫
Ω̃0

e−
|y|2
4κh

(4πκh)k/2
dy.

In other words, we have that 0 ∈ ∂E, where

E =

v ∈ Rk| 1
2
+ ω2(v)

√
h ≤

∫
Ω̃0

e−
|v−y|2
4κh

(4πκh)k/2
dy

 ,

and thus the normal distance z(x) coincides with the normal distance of ∂Ω̃0 and E at
the point exp−1

x̂ (x) ∈ ∂Ω̃0. The conclusion of the proof is then obtained by applying the
following result.

Proposition 23 Let Ω ⊂ Rk be a smooth open set. Let E be obtained by applying one step
of MBO with diffusion coefficient κ > 0, bounded drift ω : Rk → R and step size h > 0.
Let x ∈ ∂Ω. Let ν(x) be the outer unit normal to ∂Ω at x, define

z(x) :=

{
sup {l ∈ R−| x+ lν(x) ∈ E} if x ̸∈ E

inf {l ∈ R+| x+ lν(x) ̸∈ E} if x ∈ E.
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Then we have
|z(x)| ≤ C̃h,

where the constant C̃ depends only on k, κ and the C0-norm of the second fundamental form
of ∂Ω.

Proposition 23 is a weaker version of (Fuchs and Laux, 2022, Theorem 4.1), which makes
rigorous the original ideas in Mascarenhas (1992). In those works, the authors identify the
exact first order coefficient of the expansion of z(x) in h. Since we do not need this, we
present a proof of our weaker statement.

Proof of Proposition 23. For ease of notation, we assume that κ = 1. We treat the
case when z(x) > 0, the other case is similar. First of all, we observe that z(x) ≤ C̃k

√
h,

for a constant C̃k depending just on the dimension k. We now choose a coordinate system
in which x = 0 and ν(x) = ek. We may find an open set U containing the origin and a
smooth function ζ : Rk−1 → R such that ζ(0) = 0, Dζ(0) = 0 and

U ∩ Ω =
{
v ∈ Rk| vk < ζ(v1, ..., vk−1)

}
.

Using the fact that z(x) = O(
√
h) and the exponential decay of the heat kernel, we have

that there exists a bounded function ω : Rk → R such that

1

2
+ ω((0, z(x)))

√
h =

∫
Rk−1

∫ ζ(y)+z(x)

−∞

e−
|y|2+|s|2

4h

(4πh)k/2
dsdy. (45)

Recalling that the Gaussian integrates to 1/2 over half-spaces, we get that (45) reads

ω((0, z(x)))
√
h =

∫
Rk−1

∫ ζ(y)+z(x)

0

e−
|y|2+|s|2

4h

(4πh)k/2
dsdy.

Since ζ(0) = 0 and Dζ(0) = y, there exists a bounded function ζ1 such that ζ(v) = ζ1(v)|v|2.
We also observe that

e−t ≥ 1− t, t ≥ 0.

In particular

ω((0, z(x)))
√
h ≥ 1

(4πh)k/2

∫
Rk−1

e−
|y|2
4h

∫ ζ(y)+z(x)

0

(
1− s2

4h

)
dsdy

=
1

(4πh)k/2

∫
Rk−1

e−
|y|2
4h

(
ζ1(y)|y|2 + z(x)− 1

12h

(
ζ1(y)|y|2 + z(x)

)3)
dy.

By using the change of variable y →
√
hy we obtain

ω((0, z(x))
√
h ≥ 1

h1/2

(
z(x) +

q1
h
z(x)3 + q2h+ q3h

2 + q4z(x)
2
)
,

where q1, q2, q3, q4 are coefficients depending on the first six moments of the function y 7→
e−|y|2 . By multiplying both sides by

√
h we get

ω((0, z(x))h−
(
q2h+ q3h

2 + q4z(x)
2
)
≥ z(x) +

q1
h
z(x)3.
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By applying (Fuchs and Laux, 2022, Lemma 6.1) (which holds true even if we additionally
consider a bounded drift ω), we have that z(x) = O(h3/2). In particular, for h small enough

1

2
< 1− q1

h
z(x)2,

in other words
2ω((0, z(x))h− 2

(
q2h+ q3h

2 + q4z(x)
2
)
≥ z(x) ≥ 0,

from which we conclude that z(x) = O(h).

Proof of Corollary 21. Denote by C̃r,x0 the constant obtained by applying Theo-
rem 20 to Ω0 = Br(x0). Since C̃r,x0 depends on Ω0 only through the C0 norm of the
second fundamental form Sr,x0 of ∂Br(x0), it is sufficient to show that this can be bounded
independently of R

2 ≤ r ≤ R and x0 ∈ M . We clearly have that

(0,diam(M))×M ∋ (r, x0) 7→ ∥Sr,x0∥C0

is a continuous function. It is thus bounded on the compact set

W :=

{
(r, x) ∈ (0,+∞)×M :

R

2
≤ r ≤ R, x ∈ M

}
.

This completes the proof of Corollary 21.

Proof of Theorem 22. For ease of notation, let us assume that κ = 1. We start by
observing that ∫

M\B
h
1
4
n

(zhn )
H(hn, zhn , y)ξ(y)dVolM (y) = o

(√
hn

)
.

This is proved by using the Gaussian bounds from Theorem 25, as we did in (Laux and
Lelmi, 2021, Theorem 3, Step 2). In particular, both in (i) and in (ii) of Theorem 22 we
can replace the domain of integration with

{φhn(shn − hn, ·) ≥ 0} ∩B
h

1
4
n

(zhn).

In this way, the sequence of integrals can be computed in normal coordinates around zhn ,
i.e., ∫

{φhn (shn−hn,·)≥0}∩B
h
1
4
n

(zhn )
H(hn, zhn , y)ξ(y)dVolM (y)

=

∫
{φ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)
H(hn, zhn , expznn

(y))ξ(expznn
(y))

√
det(g)dy,

where we set
φ̃hn(t, y) := φhn(t, expzhn (y)), y ∈ B inj(M)

2

(0).

Using the asymptotic expansion for the heat kernel in Theorem 26, it is easy to see that∫
{φ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)
H(hn, zhn , expznn

(y))ξ(expznn
(y))

√
det(g)dy
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=

∫
{φ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
v0(zhn , expzhn (y))ξ(expznn

(y))
√

det(g)dy

+ o(
√
hn).

In particular, in both (i) and (ii) in Theorem 22 the integrals may be substituted with

∫
{φ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
v0(zhn , expzhn (y))ξ(expznn

(y))
√

det(g)dy.

These integrals may be furthermore decomposed into the sums In + IIn,

In :=

∫
{φ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
dy,

IIn :=

∫
{φ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
(wn(y)− 1)dy,

where we define
wn(y) := v0(zhn , expzhn (y))ξ(expznn

(y))
√

det(g).

We claim that

lim
n→+∞

IIn =

{
0 if ∇φ(s, z) = 0,

1
2
√
π|∇φ(s,z)|⟨

∇ξ
ξ (z),∇φ(s, z)⟩ otherwise.

(46)

Using (49) we see that

wn(y) =

√√√√ ξ(expznn
(y)) det(g)

ξ(zhn) det(dexp−1
zhn

(y)(expzhn ))
.

In particular, denoting ξ̃n = ξ ◦ expzhn and Dn := det(dexp−1
zhn

(y)(expzhn )) we get

Dwn =
1

2wn(y)

(
(Dy ξ̃n) det(g) + ξ̃nDy det(g))ξ̃n(0)Dn − ξ̃n det(g)ξ̃n(0)DyDn

)
ξ̃n(0)2D2

n

.

We now recall that, in normal coordinates g(zhn) = Id, Dg(zhn) = 0, in particular

Dwn(zhn) =
1

2

Dξ̃n

ξ̃n
(0),

and by a Taylor expansion

Dwn(y) = 1 +
1

2

Dξ̃n

ξ̃n
(0) · y +O(|y|2);
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in particular, we infer that

IIn =
1

2

Dξ̃n

ξ̃n
(0) ·

∫
{φ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
ydy +O(hn).

Now we claim that

lim
n→+∞

1

2
√
hn

Dξ̃n

ξ̃n
(0) ·

∫
{φ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
ydy (47)

=
1

2
√
π|∇φ(s, z)|

Dξ̃

ξ̃
(0) ·Dφ̃(s, 0),

where ξ̃ = ξ ◦ expz. Of course (47) gives (46).

To see that (47) holds, we start by changing variable in the integral by setting y = y√
hn

,

which gives that the argument in the limit equals

1

2

Dξ̃n

ξ̃n
(0) ·

∫
{y| φ̃hn (shn−hn,

√
hny)≥0}∩B

h
− 1

4
n

(0)

e−
|y|2
4

(4π)k/2
ydy.

We now let Rn be a sequence of orthogonal matrices such that RT
n e1 =

Dξ̃n(0)

|Dξ̃n(0)|
and without

loss of generality we assume that the sequence converges to an orthogonal matrix R. We
change variable by setting y = RT

ny and we get that the argument of the limit becomes

|Dξ̃n(0)|
2

∫
Cn∩B

h
− 1

4
n

(0)

e−
|y|2
4

(4π)k/2
y1dy,

where we define

Cn :=
{
y ∈ Rk| φ̃hn(shn − hn, Rn

√
hny) ≥ 0

}
.

We now observe that, by Taylor expanding φ̃hn(thn − ·, ·) around (0, 0)

φ̃hn(shn − hn, Rn

√
hny) =δhn +

√
hnR

T
nDφ̃hn(shn , 0) · y

− hn∂sφ̃hn(shn , 0) + o(|y|2 + h2n),

thus

Cn =

{
y ∈ Rk| δhn√

hn
+RT

nDφ̃hn(shn , 0) · y

−
√
hn∂sφ̃hn(shn , 0) + o(

√
hn|y|2 + h

3
2
n ) ≥ 0

}
.
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Recalling assumption (19) this re-reads

Cn =

{
y ∈ Rk| RT

nDφ̃hn(shn , 0) · y + o(1) ≥ 0

}
.

Observe also that

RnDξ̃n(0) = |Dξ̃n(0)|e1
=
√
⟨∇ξ(zhn),∇ξ(zhn)⟩e1 →

n→+∞

√
⟨∇ξ(z),∇ξ(z)⟩e1,

but also

RnDξ̃n(0) = Dξ̃ ◦RT
n (0) = Dξ ◦ expzhn ◦RT

n (0)) →
n→+∞

RD(ξ ◦ expz)(0).

In other words we must have Dξ̃(0) = |Dξ̃(0)|RT e1. In particular

lim
n→+∞

|Dξ̃n(0)|
2

∫
Cn∩B

h
− 1

4
n

(0)

e−
|y|2
4

(4π)k/2
y1dy =

|Dξ̃(0)|
2

∫
{y| RTDφ̃(s,0)·y≥0}

e−
|y|2
4

(4π)k/2
y1dy

=
|Dξ̃(0)|

2

∫
{y| Dφ̃(s,0)·y≥0}

e−
|y|2
4

(4π)k/2
Ry · e1dy

=
1

2

Dξ̃

ξ̃
(0) ·

∫
{y| Dφ̃(s,0)·y≥0}

e−
|y|2
4

(4π)k/2
ydy.

If ∇φ(t, z) = 0, then the last integral is zero, being component-wise the integral over the
whole space of on odd-function. Otherwise we change variable according to y = OT y, where
O is an orthogonal matrix such that ODφ̃(s, 0) = |Dφ̃(s, 0)|e1, which gives that the last
integral equals

1

2

ODξ̃

ξ̃
(0) ·

∫
{y| y1≥0}

e−
|y|2
4

(4π)k/2
ydy =

1

2

ODξ̃

ξ̃
(0) · e1

1√
π

=
1

2
√
π|Dφ̃(s, 0)|

Dξ̃

ξ̃
(0) ·Dφ̃(s, 0).

We are now in a position to prove (i) and (ii) in Theorem 22.
Item (i). By the discussion above, the left hand side of (20) may be substituted with

lim inf
n→+∞

1√
hn

(
1

2
− In − IIn

)
≥ lim inf

n→+∞

1√
hn

(
1

2
− In

)
− 1

2
√
π|∇φ(s, z)|

〈
∇ξ

ξ
(z),∇φ(s, z)

〉
,

where we used (46) in the second line. To estimate

lim inf
n→+∞

1√
hn

(
1

2
− In

)
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we can use (Barles and Georgelin, 1995, Proposition 4.1) applied with

(th, xh) = (sh, 0), (t, x) = (s, 0), ϕh(t, ·) = φ̃h(t, ·).

The only difference is that here we do not assume that ϕ(th, xh) = 0, but ϕ(th, xh) = o(
√
h)

- one can check that the result holds true also with this modification by the same proof of
(Barles and Georgelin, 1995, Proposition 4.1). In particular, we get

lim inf
n→+∞

1√
hn

(
1

2
−
∫
{φhn (thn−hn,·)≥0}

H(hn, zhn , y)ξ(y)dVolM

)
≥ 1

2
√
π|Dφ̃(s, 0)|

(
∂tφ̃+∆φ̃− Dφ̃ ·D2φ̃Dφ̃

|Dφ̃|2
− Dξ̃

ξ̃
·Dφ̃

)
,

which is equal to the right hand side of (20) because we are using exponential coordinates
around z (recall our convention ∆ = −

∑k
i=1 ∂

2
ii).

Item (ii). Once again, by the above discussion, we can assume that

1

2
− In ≤ o(

√
hn),

and the result follows by applying (Barles and Georgelin, 1995, Proposition 4.1) with

(th, xh) = (sh, 0), (t, x) = (s, 0), ϕh(t, ·) = φ̃h(t, ·).

In this case, there are two differences from the original version (Barles and Georgelin, 1995,
Proposition 4.1). First of all, we again do not assume that ϕh(th, xh) = 0, but we assume
ϕh(th, xh) = o(

√
h). Then, we assume that 1

2−In ≤ o(
√
hn) and not the stronger 1

2−In ≤ 0.
But a quick inspection of the proof of (Barles and Georgelin, 1995, Proposition 4.1) reveals
that these changes are irrelevant for the argument to work.

Appendix C. Miscellaneous results

C.1 Results on weighted manifolds

Hereafter we collect some results about weighted Laplacians and heat kernels on closed
manifolds. Let (M, g) be a k-dimensional, compact Riemannian manifold endowed with a
measure µ := ξVolM , with ξ ∈ C∞(M), ξ > 0. We denote by ∆ξ the associated Laplacian,
which is defined on f ∈ C∞(M) as

∆ξf := −1

ξ
div (ξ∇f) .

We denote by H the corresponding heat kernel, i.e., H is a real valued function defined on
(0,+∞)×M ×M such that for any u ∈ L2(M) the function

e−t∆ξu(x) := T (t)u(x) =

∫
M

H(t, x, y)u(y)dµ(y),
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defined for (t, x) ∈ (0,+∞)×M , is the unique solution to the Cauchy problem{
∂tv = −∆ξv in (0,+∞)×M,

v(0, x) = u(x) on M,

where the initial value at t = 0 is attained in the sense that

lim
t↓0

e−t∆ξu = u in L2(M).

We will use the following results.

Theorem 24 Let M , ξ be as above. Let f be an L2(ξ)-normalized eigenfunction of ∆ξ

corresponding to the eigenvalue λ, then for each integer m ≥ 0

∥f∥Cm(M) ≤ CM,m

(
λm+1+ k

2 + 1
)
.

Theorem 25 Let M , ξ be as above. There exists constants Q1, Q2, Q3, Q4, Q̂1, Q̂2 > 0 such
that for every t > 0 and all x, y ∈ M ,

Q1

µ(B√
t(x))

e
− d2M (x,y)

Q2t ≤ H(t, x, y) ≤ Q3

µ(B√
t(x))

e
− d2M (x,y)

Q4t .

|∇xH(t, x, y)| ≤ Q̂1√
tµ(B√

t(x))
exp

(
−
d2M (x, y)

Q̂2t

)
.

Theorem 26 Let M , ξ be as above. There exist functions vj ∈ C∞(M ×M), j ∈ N, such
that for every N > l + k

2 there exists a constant C̃N < ∞ such that∣∣∣∣∣∣∇l

H(t, x, y)− e−
d2M (x,y)

4t

(4πt)k/2

N∑
j=0

vj(x, y)t
j

∣∣∣∣∣∣ ≤ C̃N tN+1− k
2 , (48)

provided d(x, y) ≤ inj(M)
2 . Moreover we have

v0(x, y) =
1√

ξ(x)ξ(y) det(dexp−1
x (y) expx)

. (49)

Theorem 24 follows by the Sobolev embedding theorem and the L2-regularity theory for
elliptic equations on manifolds. Theorem 25 follows from the Li–Yau inequality for weighted
manifolds Setti (1992). The asymptotic expansion in Theorem 26 follows by constructing
the heat kernel by means of the parametrix method: this construction is technical and we
refer to Rosenberg (1997), where this is carried out for the case ξ = 1. Here we just sketch
the first part of the construction for a general density ξ, which gives (49). The idea is that

when x, y are close enough, say d(x, y) < inj(M)
2 , a good approximation for the heat kernel

should be given by

HN (t, x, y) := Gt(x, y)
(
v0(x, y) + ...+ tNvN (x, y)

)
, (50)
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for smooth functions vj and t > 0. Here

Gt(x, y) :=
e−

d2M (x,y)

4t

(4πt)k/2
.

Since the Ansatz (50) should be an approximation of the heat kernel, we would like to have

0 = ∂tHN +∆ξHN , (51)

where ∆ξ denotes the weighted Laplacian with respect to the y-variable. We now compute
the right hand side of the above equation by using exponential coordinates around x: we
denote them by (r, θ) ∈ [0, R)× Sk−1. Observe that

∂tHN = ∂tGt(v0 + ...+ tNvN ) +Gt(v1 + ...+NtN−1vN )

=

(
r2

4t2
− k

2t

)
Gt(v0 + ...+ tNvN ) +Gt(v1 + ...+NtN−1vN ).

Furthermore

∆ξHN = Gt

(
∆ξv0 + ...+ tN∆ξvN

)
+∆ξGt(v0 + ...+ tNvN )− 2⟨∇Gt,

(
∇v0 + ...+ tN∇vN

)
⟩.

Using Gauss’ Lemma and the fact that Gt is independent of θ we get

2⟨∇Gt,
(
∇v0 + ...+ tN∇vN

)
⟩ = 2∂rGt(∂rv0 + ...+ tN∂rvN )

= −r

t
Gt(∂rv0 + ...+ tN∂rvN ).

We also observe that by definition of ∆ξ and by using again Gauss’ Lemma and the inde-
pendence of Gt from θ

∆ξGt = ∆Gt − ⟨∇ξ

ξ
,∇Gt⟩ = ∆Gt +

r

2t

∂rξ

ξ
Gt.

We define
D(y) := det(dexp−1

x (y) expx).

Using the expression of the Laplacian in spherical coordinates and the invariance of Gt with
respect to θ we get

∆Gt = −∂2Gt

∂r2
− ∂rGt

(
∂rD

D
+

k − 1

r

)
= −

(
r2

4t2
− k

2t

)
Gt +

r

2t

∂rD

D
Gt.

Putting things together we have

∂tHN +∆ξHN = Gt

(
(v1 + ...+NtN−1vN )− (∆ξv0 + ...tN∆ξvN )

+
r

2t
∂r log(Dξ)(v0 + ...+ tNvN ) +

r

t
(∂rv0 + ...+ ∂rvN ))

)
.
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Although we cannot get (51) exactly, we can choose vj in such a way that

∂tHN +∆ξHN = Gtt
N∆ξvN .

In other words, we choose the coefficients in such a way that

r

2t
∂r log(Dξ)v0 +

r

t
∂rv0 = 0, (52)

jtj−1vj − tj−1∆ξvj−1 + tj−1 r

2
∂r log(Dξ)vj + rtj−1∂rvj = 0, for 1 ≤ j ≤ N. (53)

Once one solves (52), one can show inductively that (53) admits a smooth solution vj . It is
easily seen that (52) can be solved explicitly to give

v0(x, y) =
1√

ξ(x)ξ(y) det(dexp−1
x (y) expx)

.

From here, the construction of the heat kernel and the estimate (48) follow verbatim as in
Rosenberg (1997).

C.2 Results on random geometric graphs

In this subsection we use the setting and the notation of Section 3, with the points {xi}+∞
i=1

being given by i.i.d. random points on M , distributed according to a probability distribution
ν = ρVolM ∈ P(M), with ρ ∈ C∞(M), ρ > 0. The following two results are proved in
Calder and Garćıa Trillos (2022); Calder et al. (2022) for the unnormalized graph Laplacian,
but the proof of the statements extends when we work with the random walk Laplacian.
Hereafter, given l ∈ N, we set

γl := inf
j<l,j∈N

(λj+1 − λj).

Theorem 27 (Theorem 2.6 in Calder et al. (2022) for the unnormalized Laplacian)
In the above-mentioned setting, if additionally, the eigenvalues of ∆ρ2 are simple, then for

every l ∈ N we have that with probability greater than

1−Q1ϵ
−6k
n exp(−Q2nϵ

k+4
n )−Q3n exp(−Q4n

(
λl + 1

)−k
)

we have for every l ≤ l

|λl
n − κ(η)λl|+max

z∈Vn

∣∣∣∣∣vln(z)− fl(z)

C
1/2
1

∣∣∣∣∣ ≤ Q5

∥fl∥C3(M)

γl
ϵn.

Theorem 28 (Corollary 3.7 in Calder et al. (2022)) In the above-mentioned setting,
if n is large enough, with probability greater than 1−Q6ϵ

−k
n exp(−Q7nϵ

k+2
n ), we have that

max
z∈Vn

|dn,ϵn(z)− C1ρ(z)| ≤ Q8ϵn.

We also recall the following result, which may be easily derived from (Garćıa Trillos
et al., 2020, Theorem 2).

48



Large data limit of the MBO scheme for data clustering

Theorem 29 Let (M, g) be a k-dimensional closed Riemannian manifold. Let ρ ∈ C∞(M),
ρ > 0 such that ν := ρVolM ∈ P(M). Let {Xi}i∈N be i.i.d. random points in M distributed
according to ν and let νn := 1

n

∑n
i=1 δXi be the associated empirical measures. Then there is a

constant C > 0 such that almost surely there exist transport maps Tn such that (Tn)#ν = νn
and lim supn→+∞

n1/2 supx∈M dM (x,Tn(x))

log3/4(n)
≤ C if k = 2,

lim supn→+∞
n1/k supx∈M dM (x,Tn(x))

log1/k(n)
≤ C if k ≥ 3.
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