
Journal of Machine Learning Research 24 (2023) 1-29 Submitted 10/22; Revised 5/23; Published 8/23

Improved Powered Stochastic Optimization Algorithms for
Large-Scale Machine Learning

Zhuang Yang ZHUANGYANG@SUDA.EDU.CN

School of Computer Science and Technology
Soochow University
Suzhou, 215006, China

Editor: Prateek Jain

Abstract
Stochastic optimization, especially stochastic gradient descent (SGD), is now the workhorse for the
vast majority of problems in machine learning. Various strategies, e.g., control variates, adaptive
learning rate, momentum technique, etc., have been developed to improve canonical SGD that is
of a low convergence rate and the poor generalization in practice. Most of these strategies improve
SGD that can be attributed to control the updating direction (e.g., gradient descent or gradient as-
cent direction), or manipulate the learning rate. Along these two lines, this work first develops
and analyzes a novel type of improved powered stochastic gradient descent algorithms from the
perspectives of variance reduction, where the updating direction was determined by the Powerball
function. Additionally, to bridge the gap between powered stochastic optimization (PSO) and the
learning rate, which is now still an open problem for PSO, we propose an adaptive mechanism of
updating the learning rate that resorts the Barzilai-Borwein (BB) like scheme, not only for the pro-
posed algorithm, but also for classical PSO algorithms. The theoretical properties of the resulting
algorithms for non-convex optimization problems are technically analyzed. Empirical tests using
various benchmark data sets indicate the efficiency and robustness of our proposed algorithms.
Keywords: Powerball function, stochastic optimization, variance reduction, adaptive learning
rate, non-convex optimization

1. Introduction

Large numbers of applications in machine learning (Le Thi et al., 2022), computer vision (Xu et al.,
2021) and numerical optimization (Fehrman et al., 2020) are often implemented to be a finite-sum
structure of the form

min
w∈Rd

f (w) =
1
n

n

∑
i=1

fi(w), (1)

where n denotes the total number of the instances, w defines the parameter to learn and fi(·) :
Rd → R represents a loss function corresponding to the i-th instance with d dimensions. In this
work, we are mainly interested in each fi(w) and f (w) that are L-smooth but may be non-convex.
More concretely and vividly, the cases Problem (1) referred into logistic regression, eigenvector
computation, multi-kernel learning, neural networks, to name a few.

Hitherto, modern optimization approaches for solving Problem (1) tend to seek the help from
stochastic optimization, where deterministic optimization algorithms meet the challenge, or are even
unavailable when the instances n are super huge and the computational cost is significantly higher.
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Commonly, vanilla stochastic gradient descent (SGD) requires for only one instance (or mini-batch
samples), thus leading to a low computational burden per-iteration as opposed to deterministic gra-
dient algorithms, which call for accessing full data sets at each update step. Nevertheless, the
advantage in SGD-like scheme does not come for free. As confirmed by many references (Bottou,
2012; Pillaud-Vivien et al., 2018; Yang et al., 2018a), the high variance in SGD, arising from the
sampling strategy, leads to a slow convergence rate and a poor generalization in practice. Even tack-
ling the case that the empirical loss function is strongly convex and smooth, standard SGD merely
converges sub-linearly (Rakhlin et al., 2012). Another side effect of the variance is that stochastic
optimization algorithms are usually sensitive to several crucial hyperparameters.

Recently, the theoretical and empirical behaviors of SGD have witnessed great modification by
variance-reduced stochastic optimization algorithms. Representative instances include the stochas-
tic variance reduced gradient (SVRG) method (Johnson and Zhang, 2013), Finito (Defazio et al.,
2014), the stochastic recursive gradient algorithm (SARAH) (Nguyen et al., 2017), the stochas-
tic average gradient (SAG) method (Roux et al., 2012), the stochastic path-integrated differential
estimator (SPIDER) (Fang et al., 2018), the accelerated mini-batch Prox-SVRG (Acc-Prox-SVRG)
method (Nitanda, 2014), the stochastically controlled stochastic gradient (SCSG) method (Lei et al.,
2017), to mention a few. The main difference among these variance-reduced algorithms, or between
variance-reduced algorithms and conventional stochastic optimization methods, relies on the man-
ner of how to utilize the historical gradient information.

But beyond above cases, there are some other popular techniques of improving stochastic op-
timization, covering but not limited to the introduction of curvature information (Mokhtari and
Ribeiro, 2020; Bordes et al., 2009), the rule of adaptive learning rates (Tieleman and Hinton, 2017;
Kingma and Ba, 2015), the strategy of importance sampling (Zhao and Zhang, 2015; Al-Qaq et al.,
1995), and the momentum technique (Loizou and Richtárik, 2020; Wang et al., 2019). More re-
cently, several works start to consider using the Powerball function to modify stochastic optimiza-
tion through the perspective of alternating the updating directions (Zhou et al., 2020; Yuan et al.,
2019). Different from the existing accelerating techniques for stochastic optimization, the idea
behind the powered stochastic optimization (PSO) method is inspired by viewing the optimization
algorithm as discretizations of ordinary differential equations. As a special case of PSO, SIGNSGD,
developed in (Bernstein et al., 2018), not only lowered the per iteration burden of communicating
gradients, but also yielded a more rapid empirical convergence rate than standard SGD. There seems
to be a direct between gradient descent-based optimization algorithms and PSO algorithms. More
concretely, PSO algorithms can be viewed as a kind of a steepest descent approach with respect to
the p-norm, where p = 1+(1/γ) (γ ∈ [0,1)).

1.1 Our Contributions

The theoretical and experimental properties of the Powerball function in quasi-Newton, vanilla SGD
and SGD with momentum, etc., have been reported in (Yuan et al., 2019; Zhou et al., 2020; Shi et al.,
2021; Cui et al., 2022). These studies showed the significant promise of the resulting algorithm in
machine learning and engineering problems. Nevertheless, several issues are still needed to be ad-
dressed for PSO. First of all, the application of the Powerball function in stochastic optimization
algorithms still makes the resulting approach suffer from the high variance, inheriting from the
stochastic optimization method, because of adopting a similar algorithm framework to the existing
stochastic optimization algorithms. Second, it is still an open problem that how to determine the
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learning rate for PSO algorithms. Yuan et al. (2019) provided a hint that the Powerball method can
employ a standard backtrack line search to compute the learning rate under deterministic optimiza-
tion background.

As a consequence, this paper develops and analyzes a novel type of stochastic optimization
algorithms from the perspective of utilizing the Powerball function by tackling the problems in ex-
isting PSO methods. More specifically, to make our ideas easy to follow, we make a summarization
about our key contributions below.

• To mitigate the negative effect of the sampling procedure into powered stochastic optimiza-
tion, we introduce the stochastic variance reduction gradient estimator into the classical Power-
ball SGD (pbSGD) method, leading to the new algorithm: namely PB-SVRGE. The conver-
gence behavior for PB-SVRGE is carefully studied in both theory and practice under non-
convex optimization background. We confirm a faster convergence rate of the resulting algo-
rithm via comparing with several baseline algorithms.

• To bridge the gap between PSO and the learning rate, we adopt the idea of Barzilai-Borwein
(BB) like schemes to obtain an adaptive learning rate sequence for PSO algorithms. In partic-
ular, we first study the performance of PB-SVRGE with this kind of adaptive learning rates.
To further verify the efficacy of such the adaptive learning rate, we applied it into more gen-
eral PSO algorithms. Moreover, the convergence properties of adaptive PSO algorithms for
non-convex cases were analyzed as well.

• We conduct a set of experiments on benchmark data sets to show the performance of the
proposed algorithms and investigate their parameter sensitivity. We also show the superior
performance of the proposed algorithms by comparing them with modern stochastic opti-
mization algorithms.

1.2 Notation

Throughout this work, we take Rd to define the set of d-dimensional real number vectors. For
vectors, the mark w · v is used to denote their inner product. Additionally, we use [n] to define the
set {1,2, . . . , n}. The symbol ‖ ·‖ and ‖ ·‖p are chosen to represent the Euclidean norm and p-norm
on Rd respectively. Moreover, Denote by ∇ f (w) the gradient of the loss function f (w). We adopt
E[·] to represent the expectation with respect to the underlying probability space. We use (w)i to
represent the i-th element of vector w ∈ Rd .

1.3 Organize of the Work

The following structures of this work are deployed as follows: Section 2 discusses some related
works. Section 3 presents the idea of PSO algorithms with the variance reduction technique and
establishes the theoretical results of the proposed algorithm under the non-convex assumption. Sec-
tion 4 equips the proposed algorithm and more general PSO algorithms with ability to automatically
compute the learning rate and rigorously analyzes the convergence behavior of adaptive PSO algo-
rithms. Section 5 investigates the parameter sensitivity of the proposed algorithms and conducts
empirical comparisons over some modern optimization methods. Section 6 provides a conclusion
for this work.
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2. Related Work

More recently, to speed up the convergence of distributed optimization approaches in the non-
convex case with only zeroth-order information available, Zhang and Bailey (2022) developed a
zeroth-order distributed primal-dual stochastic coordinate method, which was equipped with the
Powerball function. Shi et al. (2021) put forward Powerball AdaBelief to enhance the performance
of Takagi-Sugeno-Kang (TSK) fuzzy systems, where the Powerball method amplified the small gra-
dients, and AdaBelief dynamically tuned the learning rate. In addition, Zhang et al. (2019) came
up with an interior point Powerball approach to accelerate the optimal power flow (OPF) solution
process.

As emphasized above, the theoretical and empirical performances of PSO algorithms inherited
the drawbacks from stochastic optimization algorithms. It seemed that the accelerating techniques,
used in vanilla SGD, could be applied into PSO algorithms to improve their performance. The
learning rate, a crucial hyperparameter, has a heated debate on the best method of handling it for
stochastic optimization algorithms. Some studies tried to introduce the line search technique into
stochastic optimization, see, e.g., (Byrd et al., 2012; Vaswani et al., 2019). In addition, some ref-
erences showed that the learning rate warmup heuristic achieved significant success in stabilizing
training, improving generalization and speeding up convergence for first-order adaptive stochastic
optimization approaches like ADAM (Kingma and Ba, 2015), RMSProp (Tieleman and Hinton,
2012), AdaGrad (Duchi et al., 2011), etc. Recently, Liu et al. (2019) identified a problem of adap-
tive learning rates that its variance was problematically large in the early procedure, and presumed
warmup works as a variance-reduced technique. Similar to BB-type methods, the stochastic Polyak
step-size, another adaptive learning rate strategy, was also widely adopted for reducing the difficulty
in selecting the hyperparameters and accelerating the convergence rate of stochastic optimization
algorithms (Loizou et al., 2021; Prazeres and Oberman, 2021).

3. Powered Stochastic Optimization with Variance Reduction

Since this work will delve into the theoretical and numerical characteristics of SVRGE in PSO al-
gorithms, we offer some discussions about the updating scheme of the original SVRG algorithm,
originally developed in (Johnson and Zhang, 2013). Comparing with the conventional SGD algo-
rithm that worked with the update scheme:

wk+1 = wk−ηk∇ fi(wk), (2)

for solving Problem (1), the update scheme of SVRG usually took the form:

wk+1 = wk−ηk(∇ fi(wk)−∇ fi(w̃)+∇ f (w̃)), (3)

where w̃ was a snapshot point and ηk > 0 was the learning rate. In general, there were two loops in
the SVRG-like approach, where the iterative rule (3) located in the inner loop. The outer loop was
used to store the historical information, then transferred it into the inner loop.

The iterative scheme (3), utilizing historical information (i.e., ∇ fi(w̃) and ∇ f (w̃)), made the
stochastic optimization algorithms enjoy a lower variance than classical SGD, and resulted in a
faster convergence rate and a better generalization in practice.

In contrast, when dealing with Problem (1), the classical iterative scheme of the PSO algorithm
was:

wk+1 = wk−ηkσγ(∇ fi(wk)), (4)
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where the power coefficient γ ∈ [0,1), σγ(∇ fi(wk))= sign(∇ fi(wk))|∇ fi(wk)|γ . Here sign(x) backed
to the sign of x, or 0 if x= 0. Also, it was noted that the operations sign(w) and σγ(w) was applied to
each element if the parameter y∈Rd was a vector. For example, σγ(y)= (σγ((y)1),σγ((y)2), . . . ,σγ((y)d)).

Comparing the iterative schemes (2) and (4), we observe that the classical PSO algorithm was
similar to vanilla SGD, but the Powerball function. Actually, the Powerball approach can be seen as
the steepest gradient descent method with respect to the p-norm. Similarly, Newton-like algorithms
can also be regarded as the steepest descent algorithm with respect to the ellipsoid norm, but attained
a faster convergence rate (Yuan and Sun, 1997).

Naturally, it was asked whether SVRGE created a positive effect on PSO algorithms? In order
to respond to this question, we first proposed the PB-SVRGE algorithm (Algorithm 1) and analyzed
its theoretical and empirical properties in the upcoming sections.

Algorithm 1 PB-SVRGE
Input: w̃0 = w0

K = w0, epoch length K, outer loop size S= T/K, mini-batch size b, learning rate
{η j}K−1

j=0 , power coefficient γ .
for s = 0, . . . ,S−1 do

ws+1
0 = ws

K
gs+1 = ∇ f (w̃s)
for k = 0, . . . ,K−1 do

Randomly choose S⊆ [n] with |S|= b, compute a new stochastic estimate ∇ f (ws
k);

vs+1
k = ∇ fS(ws+1

k )−∇ fS(w̃s)+gs+1

ws+1
k+1 = ws+1

k −ηkσ(vs+1
k )

end for
Set w̃s+1 = ws+1

K
end for

Remark 1: For PB-SVRGE, the following remarks were necessary to be demonstrated:

(i) PR-SVRGE utilized the similar algorithm framework as SVRG-like algorithms. The main
difference between these two approaches is that the introduction of the Powerball function
in PB-SVRGE. Specifically, we can view the SVRG-like algorithm as an extension of PB-
SVRGE when taking γ = 1. Moreover, we considered PSO algorithms in the mini-batching
setting, where vs+1

k = 1
b ∑i∈S ∇ fi(ws+1

k )− 1
b ∑i∈S ∇ fS(w̃s)+∇ f (w̃s) (S⊆ [n] with b batch sam-

ples). Here, ∇ fS(ws+1
k ) = 1

b ∑i∈S ∇ fi(ws+1
k ) and ∇ fS(w̃s) = 1

b ∑i∈S ∇ fi(w̃s).

(ii) SIGNSGD, developed in (Bernstein et al., 2018), which used the iterative rule wk+1 = wk−
ηksign(∇ fi(wk)) for addressing Problem (1), seemed to have some certain relationships with
PB-SVRGE. Surprisingly, there only existed a little work to discuss the performance of
SIGNSGD with the variance-reduced technique, see (Jin and Sidford, 2019). When setting
γ = 0, PB-SVRGE can be regarded as a case of SIGNSGD, using the variance-reduced tech-
nique. We will consider the numerical behavior of this case in our experiments.

3.1 Convergence Analysis of PB-SVRGE

This work considers the theoretical properties of PB-SVRGE on non-convex optimization problems.
To proceed the analysis, we make the following standard smoothness assumptions.
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Assumption 1. Each cost function fi(w) in Problem (1) is differential and has a L-Lipschitz gradi-
ent, that is,

∀w,v ∈ Rd , ‖∇ fi(w)−∇ fi(v)‖ ≤ L ‖ w− v ‖ . (5)

The conclusion in Assumption 1 indicates that the average function f (w), presented in Problem
(1), has a L-Lipschitz gradient as well.

Clearly, from the smooth property of the cost function, we have the following result:

f (w)≤ f (v)+∇ f (v)T (w− v) +
L
2
‖ w− v ‖2 . (6)

Assumption 2. The stochastic gradient oracle is an independent and unbiased estimator of the
gradient and satisfies

Eξi [∇ f (w,ξi)] = ∇ f (w), ∀w ∈ Rd ,

Eξi [‖∇ f (w,ξi)−∇ f (w)‖2]≤ σ̂
2, ∀w ∈ Rd ,

(7)

where ∇ fi(w) = ∇ f (w,ξi) and ξi denotes a random variable.

Two assumptions mentioned above were very common in the most existing studies for finding
a first-order stationary point of non-convex or convex loss functions (Ghadimi and Lan, 2013; Wei
et al., 2021; Zhou et al., 2018). Observe that, by (5), the gradient of the loss function does not
change arbitrary rapid, and by (7), the variance of the random variable E[‖∇ fi(w)−∇ f (w)‖2] has
an upper bound. Notice that, when taking b samples in vanilla SGD at each iterative step, we have
E[‖∇ fS(w)−∇ f (w)‖2]≤ σ̂2

b .
The following result elucidates some convergence properties of the PB-SVRGE method (Algo-

rithm 1).

Theorem 1. Set w∗ = argminw f (w), and choose S ⊆ [n] with |S|= b. Let T denote the number of
total iterations, then, under Assumption 1 and Assumption 2, for any T ≥ 1, PB-SVRGE (Algorithm
1) can lead to

E

[
1
T

S−1

∑
s=0

K−1

∑
k=0
‖∇ fS(ws+1

k )‖2
1+γ

]
≤

4L‖1‖p

T (1−θ)
E[ f (w̃0)− f (w∗)]+

8‖1‖pσ̂2

bθ(1−θ)
. (8)

Proof According to the results in the inequality (6) and ws+1
k+1 = ws+1

k − ηkσγ(vs+1
k ), we easily

inferred

f (ws+1
k+1)≤ f (ws+1

k )+∇ f (ws+1
k ) · (ws+1

k+1−ws+1
k )+

L
2
‖ws+1

k+1−ws+1
k ‖

2

= f (ws+1
k )−ηk∇ f (ws+1

k ) ·σγ(vs+1
k )+

Lη2
k

2
‖σγ(vs+1

k )‖2

= f (ws+1
k )−ηkvs+1

k ·σγ(vs+1
k )+

Lη2
k

2
‖σγ(vs+1

k )‖2 +ηk(vs+1
k

−∇ f (ws+1
k )) ·σγ(vs+1

k ). (9)
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Setting ηk =
vs+1

k ·σγ (vs+1
k )

L‖σγ (vs+1
k )‖2 , we further obtained

f (ws+1
k+1)≤ f (ws+1

k )−
(vs+1

k ·σγ(vs+1
k ))2

2L‖σγ(vs+1
k )‖2

+ηk(vs+1
k −∇ f (ws+1

k )) ·σγ(vs+1
k ). (10)

For the last term in the right hand side of (10), we have

ηk(vs+1
k −∇ f (ws+1

k )) ·σγ(vs+1
k ) =

vs+1
k ·σγ(vs+1

k )

L‖σγ(vs+1
k )‖2

(vs+1
k −∇ f (ws+1

k )) ·σγ(vs+1
k )

≤
|vs+1

k ·σγ(vs+1
k )|

L‖σγ(vs+1
k )‖2

‖vs+1
k −∇ f (ws+1

k )‖‖σγ(vs+1
k )‖

=
|vs+1

k ·σγ(vs+1
k )|

L‖σγ(vs+1
k )‖

‖vs+1
k −∇ f (ws+1

k )‖, (11)

where the first inequality can be satisfied due to the Cauchy-Schwartz inequality.
Further, via utilizing the fact 2ab ≤ θa2 + 1

θ
b2, where θ denotes any positive real number, and

a and b are also two real numbers, we have the following result:

ηk(vs+1
k −∇ f (ws+1

k )) ·σγ(vs+1
k )≤ 1

2L

(
θ
(vs+1

k ·σγ(vs+1
k ))2

‖σγ(vs+1
k )‖2

+
1
θ
‖vs+1

k −∇ f (ws+1
k )‖2

)
. (12)

Combining the inequalities (10) and (12), we obtain

f (ws+1
k+1)≤ f (ws+1

k )− 1−θ

2L
(vs+1

k ·σγ(vs+1
k ))2

‖σγ(vs+1
k )‖2

+
1

2Lθ
‖vs+1

k −∇ f (ws+1
k )‖2. (13)

Based on the Hölder’s inequality for γ ∈ (0,1) with p = 1+γ

1−γ
and q = 1+γ

2γ
, we have the fact

‖σγ(vs+1
k )‖2 =

d

∑
i=1
|(vs+1

k )i|2γ

≤

(
d

∑
i=1

1p

) 1
p
(

d

∑
i=1

(
|(vs+1

k )i|2γ
)q

) 1
q

= ‖1‖p

(
d

∑
i=1
|(vs+1

k )i|1+γ

) 2γ

1+γ

. (14)

Therefore, we have

(vs+1
k ·σγ(vs+1

k ))2

‖σγ(vs+1
k )‖2

≥
(
∑

d
i=1 |(vs+1

k )i|1+γ
)2

‖1‖p
(
∑

d
i=1 |vs+1

k |1+γ
) 2γ

1+γ

=
‖vs+1

k ‖2
1+γ

‖1‖p
. (15)
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The following results can be derived by utilizing the inequalities (13) and (15) simultaneously:

f (ws+1
k+1)≤ f (ws+1

k )− 1−θ

2L

‖vs+1
k ‖2

1+γ

‖1‖p
+

1
2Lθ
‖vs+1

k −∇ f (ws+1
k )‖2. (16)

Now, we consider the second term and the third term of the right hand side of (16), respectively.
First, considering ‖vs+1

k ‖2
1+γ

, defining in PB-SVRGE (Algorithm 1), we have

‖vs+1
k ‖

2
1+γ = ‖∇ fS(ws+1

k )−∇ fS(w̃s)+∇ f (w̃s)‖2
1+r

≥ 1
2
‖∇ fS(ws+1

k )‖2
1+γ −‖∇ fS(w̃s)−∇ f (w̃s)‖2

1+r, (17)

where the first inequality holds due to the fact ‖a‖2
1+γ
≥ 1

2‖b‖
2
1+γ
−‖b−a‖2

1+γ
.

Second, considering ‖vs+1
k −∇ f (ws+1

k )‖2, we further obtain

‖vs+1
k −∇ f (ws+1

k )‖2 = ‖∇ fS(ws+1
k )−∇ fS(w̃s)+∇ f (w̃s)−∇ f (ws+1

k )‖2

≤ 2‖∇ fS(ws+1
k )−∇ f (ws+1

k )‖2 +2‖∇ fS(w̃s)−∇ f (w̃s)‖2, (18)

where the first inequality can be satisfied since the fact ‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2 holds.
Combining (16), (17) and (18), we conclude that

f (ws+1
k+1)≤ f (ws+1

k )− 1−θ

4L‖1‖p
‖∇ fS(ws+1

k )‖2
1+γ +

1−θ

2L‖1‖p
‖∇ fS(w̃s)−∇ f (w̃s)‖2

1+r

+
1

Lθ

[
‖∇ fS(ws+1

k )−∇ f (ws+1
k )‖2 +‖∇ fS(w̃s)−∇ f (w̃s)‖2] . (19)

To hold the inequality (19), it is appropriate to hold the following condition, that is

f (ws+1
k+1)≤ f (ws+1

k )− 1−θ

4L‖1‖p
‖∇ fS(ws+1

k )‖2
1+γ +

1
Lθ

[‖∇ fS(ws+1
k )−∇ f (ws+1

k )‖2

+‖∇ fS(w̃s)−∇ f (w̃s)‖2]. (20)

Taking expectation on both sides of the inequality (20), we have

E[ f (ws+1
k+1)− f (ws+1

k )]≤ E
[
− 1−θ

4L‖1‖p
‖∇ fS(ws+1

k )‖2
1+γ

]
+

2σ̂2

Lbθ
, (21)

where in this inequality, we took the fact in Assumption 2.
By telescoping sum (21) over k = 0, . . . ,K−1, we have

E[ f (ws+1
K )− f (ws+1

0 )]≤ E

[
− 1−θ

4L‖1‖p

K−1

∑
k=0
‖∇ fS(ws+1

k )‖2
1+γ

]
+

2Kσ̂2

Lbθ
. (22)

In addition, according to w̃s+1 = ws+1
K and ws+1

0 = ws
K , defined in Algorithm 1, we further obtain

E[ f (w̃s+1)− f (w̃s)]≤ E

[
− 1−θ

4L‖1‖p

K−1

∑
k=0
‖∇ fS(ws+1

k )‖2
1+γ

]
+

2Kσ̂2

Lbθ
. (23)
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By telescoping (23) over s = 0, . . . ,S−1, we have

E

[
S−1

∑
s=0

K−1

∑
k=0
‖∇ fS(ws+1

k )‖2
1+γ

]
≤

4L‖1‖p

1−θ
E[ f (w̃0)− f (w∗)]+

8KS‖1‖pσ̂2

bθ(1−θ)

=
4L‖1‖p

1−θ
E[ f (w̃0)− f (w∗)]+

8T‖1‖pσ̂2

bθ(1−θ)
, (24)

where the first inequality holds because of w∗ = argminw f (w) and the first equality holds due to
S= T/K, defined in Algorithm 1.

By dividing T on both sides of (24), the desired results in Theorem 1 was derived.

As seen from Theorem 1, to satisfy E
[

1
T ∑

S−1
s=0 ∑

K−1
k=0 ‖∇ fS(ws+1

k )‖2
1+γ

]
≤ ε , we only call for that

the condition 4L‖1‖p
T (1−θ)E[ f (w̃

0)− f (w̃∗)]+ 8‖1‖pσ2

bθ(1−θ) ≤ ε holds. More specifically, when adopting b =

O(T ), to obtain an ε-accurate solution, PB-SVRGE (Algorithm 1) requires T =O
(

4Lθ‖1‖pC+8‖1‖pσ2

θ(1−θ)ε

)
iterations, where we set C = E[ f (w̃0)− f (w∗)]. As pointed out by the work (Zhou et al., 2020), the
classical powered stochastic gradient descent algorithms, pbSGD and pbSGDM, converged with

rate O
(

1√
T

)
. In contrast, PB-SVRGE (Algorithm 1) converged with rate O

(
1√

(1+2b)T

)
, which is

faster than the conventional powered stochastic gradient descent algorithms.
In particular, each epoch of PB-SVRGE (Algorithm 1) requires n+ 2bK component gradient

computations. Further, since the iteration numbers T has been some multiple of K and consider

K = o(n), we have that the overall complexity of PB-SVRGE (Algorithm 1) is O
(

n+
L2‖1‖2

p
ε2

)
. To

help understanding such a theoretical result well, we provided the computational complexity of
several advanced stochastic optimization algorithms for solving non-convex cases. Lei et al. (2017)
showed that the complexity of SCSG to achieve a stationary point was O

(
n+ n2/3

ε2

)
in the non-

convex assumption. Fang et al. (2018) proved that SPIDER attained a complexity of O
(

n+ n1/2

ε2

)
for obtaining an ε-accurate first-order stationary point under the non-convex setting. Based on
SARAH, Pham et al. (2020) proposed the proximal SARAH (ProxSARAH) approach and showed
that its complexity of attaining an ε-accurate solution was also O

(
n+ n1/2

ε2

)
for non-convex cases.

On the other hand, Reddi et al. (2016) analyzed that the complexity of SVRG and its mini-batch
version for non-convex optimization was O

(
n+ n2/3

ε

)
and O

(
min

{
1
ε2 ,

n2/3

ε

})
, respectively. As

seen from above-mentioned theoretical results, we can safely conclude that PB-SVRGE (Algorithm
1) matched advanced stochastic optimization algorithms.

4. Powered Stochastic Optimization with Adaptive Learning Rates

As pointed out by many references (Liu et al., 2018; Zhang et al., 2019; Yuan et al., 2019), PSO
algorithms improved the original optimization algorithm through alternating the updating direc-
tions with a nonlinear mapping. Another preferred strategy of perfecting optimization algorithms
was manipulating the learning rate per iterative step, covering a line search technique, an adaptive
learning rate and a heuristic learning rate (Grippo et al., 1986; Yang, 2021a; Liu et al., 2019; Ip
and Kahn, 2008). Notice that the accelerating mechanism of PSO was orthogonal to most of the

9
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existing accelerating techniques for stochastic optimization algorithms. This section considers im-
proving stochastic optimization by two perspectives of the learning rate and the updating directions
simultaneously. So far, how to determine the learning rate for PSO was still an open problem.

So as to bridge the gap between PSO and the learning rate, this work explored how the ran-
dom stabilized Barzilai-Borwein (RSBB) like technique, originally proposed by Yang (2021b), in-
fluenced PSO algorithms empirically. We first applied the RSBB-type approach into PB-SVRGE
(Algorithm 1). Then, we discussed the behavior of more general PSO algorithms, PbSGD (shown
in Zhou et al., 2020), with adaptive learning rates.

We here briefly discussed the RSBB method. In RSBB, it also employed the similar updating
rule to SGD in (2), i.e., wk+1 = wk−ηk∇ fi(wk), but the learning rate

ηk =
ζ

bH
· ‖sk‖2

sk · yk + τ‖sk‖2 , (25)

where sk = wk−wk−1 and yk = ∇ fSH (wk)−∇ fSH (wk−1) for k≥ 1. Note that, here, SH ⊆ [n] with bH

samples (i.e., |SH |= bH) and ∇ fSH (wk) =
1

bH
∑i∈SH ∇ fi(wk). In addition, ζ and τ were two positive

parameters. Specifically, ζ was employed to control the convergence speed. The term τ‖sk‖2 was
used to avoid the denominator of the original BB step size being zero. For the BB-type technique, it
enjoyed a high-order information, resorting employing a simple but a low computational cost way
to approximate the Hessian matrix unlike Newton or quasi-Newton type methods.

Next, we first equipped PR-SVRGE (Algorithm 1) with such adaptive learning rates, leading to
a novel PSO algorithm: PB-SVRGE-RSBB (Algorithm 2). Following, we explored the performance
of pbSGD with such an adaptive learning rate, leading to another new PSO algorithm: PB-SGD-
RSBB (Algorithm 3).

Algorithm 2 PB-SVRGE-RSBB
Input: w̃0 = w0

K = w0, epoch length K, outer loop size S = T/K, mini-batch size b, initial
learning rate η0, power coefficient γ , positive parameters ζ and τ .
for s = 0, . . . ,S−1 do

ws+1
0 = ws

K
gs+1 = ∇ f (w̃s)
for k = 0, . . . ,K−1 do

Randomly choose S⊆ [n] with |S|= b, compute a new stochastic estimate ∇ f (ws+1
k );

vs+1
k = ∇ fS(ws+1

k )−∇ fS(w̃s)+gs+1

ws+1
k+1 = ws+1

k −ηkσγ(vs+1
k )

Randomly choose SH ⊆ [n] with |SH |= bH and compute the learning rate

ηk+1 =
ζ

bH
· ‖ws+1

k+1−ws+1
k ‖2

(ws+1
k+1−ws+1

k )·(σγ (∇ fSH (ws+1
k+1))−σγ (∇ fSH (ws+1

k )))+τ‖ws+1
k+1−ws+1

k ‖2

end for
Set w̃s+1 = ws+1

K
end for

Remark 2: For PB-SVRGE-RBB (Algorithm 2) and PB-SGD-RBB (Algorithm 3), we offered
the following remarks:

(1) The original BB method and its variants have been widely adopted not only in classical
stochastic optimization algorithms (Sopyła and Drozda, 2015; De et al., 2017), but also in

10
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Algorithm 3 PB-SGD-RSBB
Input: update frequency T ; initial point w̃0; starting learning rate η0; a constant power coefficient
γ , positive parameters ζ and τ .
for t = 0, . . . ,T −1 do

Randomly choose S⊆ [n] with |S|= b and update:
wt+1 = wt −ηtσγ(∇ fS(wt))
Randomly choose SH ⊆ [n] with |SH |= bH and compute the learning rate
ηt =

ζ

bH
· ‖wt−wt−1‖2

(wt−wt−1)T (σγ (∇ fSH (wt))−σγ (∇ fSH (wt−1)))+τ‖ws+1
t −ws+1

t−1‖2

end for
Return: wT

modern stochastic optimization algorithms (Yang et al., 2018a,b) during recent years. How-
ever, to the best of our knowledge, the research of selecting the learning rate for PSO al-
gorithms was quite limited. Additionally, when computing the learning rate in our proposed
algorithms, we also adopted the Powerball function that was totally different from the existing
literature, which used the BB-like technique to obtain the learning rate.

(2) The idea of the BB-like method was coming from the quasi-Newton method through using
a scalar matrix to approximate the curvature information. In this work, both the theoretical
and numerical results showed the great promising, using the scalar matrix with the Powerball
function to approximate the true Hessian matrix.

(3) Recent studies paid attention to the behavior of the Powerball function on conventional SGD,
SGD with momentum, or the quasi-Newton method (Zhou et al., 2020; Yuan et al., 2019).
In practice, we can easily incorporate such an adaptive learning rate into these different PSO
algorithms. For conciseness, we do not show this case in this paper.

4.1 Convergence Analysis of PB-SVRGE-RSBB

The boundary of the learning rate ηk was first established in the following lemma.

Lemma 1. From the definition of ηk in PB-SVRGE-RSBB (Algorithm 2), we have the following
conclusion

ηk ≤
ζ

bHτ
. (26)

Proof From the definition of ηk in PB-SVRGE-RSBB (Algorithm 2), we have

ηk+1 =
ζ

bH
·

‖ws+1
k+1−ws+1

k ‖2

(ws+1
k+1−ws+1

k ) · (σγ(∇ fSH (w
s+1
k+1))−σγ(∇ fSH (w

s+1
k )))+ τ‖ws+1

k+1−ws+1
k ‖2

≤ ζ

bH
·
‖ws+1

k+1−ws+1
k ‖2

τ‖ws+1
k+1−ws+1

k ‖2
=

ζ

τbH
.

11
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Note that the original BB technique (Barzilai and Borwein, 1988) that used the iterative scheme
ηk =

‖sk‖2

sT
k yk

to update the learning rate usually kept such the learning rate positive under deterministic
optimization background, which meant that the inner product of the vectors sk and yk was positive.
Due to the introduction of the mini-batching and variance reduced techniques under stochastic op-
timization setting, it, here, still almost kept the inner product of the vectors sk and yk positive. This
is indeed the case and can be easily confirmed through numerical experiments.

The following theorem established the convergence results of PB-SVRGE-RSBB under non-
convex assumptions.

Theorem 2. Set w∗ = argminw f (w), and choose S ⊆ [n] and SH ⊆ [n] with |S| = b and |SH | = bH

respectively. Let T denote the number of total iterations, then, under Assumption 1, Assumption 2
and Lemma 1, for any T ≥ 1, PB-SVRGE-RSBB (Algorithm 2) leads to

E

[
1
T

S−1

∑
s=0

K−1

∑
k=0
‖∇ fS(ws+1

k )‖2
1+γ

]
≤

4b2
HL‖1‖p

(2bH −θbH −1)T
E[ f (w̃0)− f (w∗)]+

8σ̂2bH‖1‖p

(2bH −θbH −1)bθ
.

(27)

Proof According to the results in the inequality (6) and ws+1
k+1 = ws+1

k − ηkσγ(vs+1
k ), we easily

inferred

f (ws+1
k+1)≤ f (ws+1

k )+∇ f (ws+1
k ) · (ws+1

k+1−ws+1
k )+

L
2
‖ws+1

k+1−ws+1
k ‖

2

= f (ws+1
k )−ηk∇ f (ws+1

k ) ·σγ(vs+1
k )+

Lη2
k

2
‖σγ(vs+1

k )‖2

≤ f (ws+1
k )− ζ

bHτ
∇ f (ws+1

k ) ·σγ(vs+1
k )+

Lζ 2

2b2
Hτ2 ‖σγ(vs+1

k )‖2

= f (ws+1
k )− ζ

bHτ
vs+1

k σγ(vs+1
k )+

Lζ 2

2b2
Hτ2 ‖σγ(vs+1

k )‖2 +
ζ

bHτ
(vs+1

k

−∇ f (ws+1
k ))σγ(vs+1

k ), (28)

where the second inequality utilized the fact in Lemma 1.

When setting ζ =
τvs+1

k ·σγ (vs+1
k )

L‖σγ (vs+1
k )‖2 , we have

f (ws+1
k+1)≤ f (ws+1

k )−
(2bH −1)(vs+1

k ·σγ(vs+1
k ))2

2Lb2
H‖σγ(vs+1

k )‖2
+

vs+1
k ·σγ(vs+1

k )

bHL‖σγ(vs+1
k )‖2

· (vs+1
k

−∇ f (ws+1
k )) ·σγ(vs+1

k )

≤ f (ws+1
k )−

(2bH −1)(vs+1
k ·σγ(vs+1

k ))2

2Lb2
H‖σγ(vs+1

k )‖2
+
|vs+1

k ·σγ(vs+1
k )|

bHL‖σγ(vs+1
k )‖

· ‖vs+1
k

−∇ f (ws+1
k )‖, (29)

where the last inequality took the Cauchy-Schwartz inequality.

12
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Further, via the condition 2ab≤ θa2 + 1
θ

b2, we have

f (ws+1
k+1)≤ f (ws+1

k )−
(2bH −1)(vs+1

k ·σγ(vs+1
k ))2

2Lb2
H‖σγ(vs+1

k )‖2
+

θ(vs+1
k ·σγ(vs+1

k ))2

2bHL‖σγ(vs+1
k )‖2

+
‖vs+1

k −∇ f (ws+1
k )‖2

2bHLθ

= f (ws+1
k )−

(2bH −θbH −1)(vs+1
k ·σγ(vs+1

k ))2

2Lb2
H‖σγ(vs+1

k )‖2
+
‖vs+1

k −∇ f (ws+1
k )‖2

2bHLθ
. (30)

According to the conclusion in the inequality (15), we derived:

f (ws+1
k+1)≤ f (ws+1

k )− (2bH −θbH −1)
2Lb2

H
·
‖vs+1

k ‖2
1+γ

‖1‖p
+
‖vs+1

k −∇ f (ws+1
k )‖2

2bHLθ
. (31)

Combining (31), (17) and (18), the following conclusion was obtained

f (ws+1
k+1)≤ f (ws+1

k )− (2bH −θbH −1)
4Lb2

H‖1‖p
· ‖∇ f (ws+1

k )‖2
1+γ +

(2bH −θbH −1)
2Lb2

H‖1‖p

· ‖∇ fS(w̃s)−∇ f (w̃s)‖2
1+γ +

1
bHLθ

[‖∇ fS(ws+1
k )−∇ f (ws+1

k )‖2

+‖∇ fS(w̃s)−∇ f (w̃s)‖2]. (32)

To make the inequality (19) be satisfied, we only keep the following condition

f (ws+1
k+1)≤ f (ws+1

k )− (2bH −θbH −1)
4Lb2

H‖1‖p
· ‖∇ f (ws+1

k )‖2
1+γ +

1
bHLθ

[‖∇ fS(ws+1
k )−∇ f (ws+1

k )‖2

+‖∇ fS(w̃s)−∇ f (w̃s)‖2]. (33)

Taking expectation on both sides of the inequality (33), we have

E[ f (ws+1
k+1)− f (ws+1

k )]≤ E
[
−(2bH −θbH −1)

4Lb2
H‖1‖p

‖∇ fS(ws+1
k )‖2

1+γ

]
+

2σ̂2

LbHbθ
, (34)

where in this inequality, we took the fact in Assumption 2 simultaneously.
When summing (34) over k = 0, . . . ,K−1 recursively, we have

E[ f (ws+1
K )− f (ws+1

0 )]≤ E

[
−(2bH −θbH −1)

4Lb2
H‖1‖p

K−1

∑
k=0
‖∇ fS(ws+1

k )‖2
1+γ

]
+

2Kσ̂2

LbHbθ
. (35)

In addition, according to w̃s+1 = ws+1
K and ws+1

0 = ws
K , defined in Algorithm 2, we further obtain

E[ f (w̃s+1)− f (w̃s)]≤ E

[
−(2bH −θbH −1)

4Lb2
H‖1‖p

K−1

∑
k=0
‖∇ fS(ws+1

k )‖2
1+γ

]
+

2Kσ̂2

LbHbθ
. (36)
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In addition, via telescoping (36) over s = 0, . . . ,S−1, we derive

E

[
S−1

∑
s=0

K−1

∑
k=0
‖∇ fS(ws+1

k )‖2
1+γ

]
≤

4b2
HL‖1‖p

2bH −θbH −1
E[ f (w̃0)− f (w∗)]+

8bHKS‖1‖pσ̂2

(2bH −θbH −1)bθ

=
4b2

HL‖1‖p

2bH −θbH −1
E[ f (w̃0)− f (w∗)]+

8σ̂2bHT‖1‖p

(2bH −θbH −1)bθ
, (37)

where the first inequality holds because of w∗ = argminw f (w) and the first equality uses S= T/K,
defined in Algorithm 2.

Finally, by dividing T on both sides of (37), the desired results in Theorem 2 was obtained.

Now, we discussed the computational complexity of PB-SVRGE-RSBB (Algorithm 2) for non-

convex loss functions. PB-SVRGE-RSBB (Algorithm 2) requires T = O
(

4b2
H LθC‖1‖p+8σ̂2bH‖1‖p
(2bH−θbH−1)θε

)
iterations to obtain an ε-accurate solution, where we set b = O(T ) and C = E[ f (w̃0)− f (w∗)].
Additionally, observed by Algorithm 2, each stage of PB-SVRGE-RSBB requires n+ 2(b+ bH)K
component gradient evaluations. Further, consider K = o(n), we obtain that the complexity of PB-

SVRGE-RSBB (Algorithm 2) is O
(

n+
b2

H L2‖1‖2
p+εb2

H L‖1‖p

ε2

)
. Moreover, we have that PB-SVRGE-

RSBB (Algorithm 2) converged with rate O
(

1√
1+2(b+bH)T

)
, which is faster than the conventional

PSO algorithms as well.

4.2 Convergence Analysis for PB-SGD-RSBB

This part will provide the theoretical analysis of PB-SGD-RSBB (Algorithm 3) under non-convex
assumptions.

Theorem 3. Set w∗ = argminw f (w), and choose S ⊆ [n] and SH ⊆ [n] with |S| = b and |SH | = bH

respectively. Let T denote the number of total iterations, then, under Assumption 1, Assumption 2
and Lemma 1, for any T ≥ 1, PB-SGD-RSBB (Algorithm 3) results in

E

[
1
T

T−1

∑
t=0
‖∇ fS(ws+1

k )‖2
1+γ

]
≤

2b2
HL‖1‖p

(2bH −θbH −1)T
E[ f (w̃0)− f (w∗)]+

σ̂2bH‖1‖p

(2bH −θbH −1)bθ
. (38)

Notice that, the proof of Theorem 3 can follow from the analysis in proving Theorem 2. In the
following, we only sketched the key points in proving Theorem 3.
Proof According to the inequality (6) and Lemma 1, we have the following conclusion

f (wt+1)≤ f (wt)−
ζ

bHτ
∇ fS(wt) ·σγ(∇ fS(wt))+

Lζ 2

2b2
Hτ2 ‖σγ(∇ fS(wt))‖2 +

ζ

bHτ
(∇ fS(wt)

−∇ f (wt)) ·σγ(∇ fS(wt)). (39)

Adopting ζ =
τ∇ fS(wt)·σγ (∇ fS(wt))

L‖σγ (∇ fS(wt))‖2 , we obtain

f (wt+1)≤ f (wt)−
2bH −θbH −1

2b2
HL‖1‖p

‖∇ fS(wt)‖2
1+γ +

σ̂2

2bHLbθ
. (40)
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Summing the inequality (40) over t = 0,1, . . .T −1 recursively, we derive

E
[T−1

∑
t=0
‖∇ fS(wt)‖2

1+γ

]
≤

2b2
HL‖1‖p

2bH −θbH −1
E[ f (w0)− f (w∗)]+

bHT σ̂2L‖1‖p

(2bH −θbH −1)θb
. (41)

Finally, by diving T on both sides of the inequality (41), we can obtain the desired results.

According to Theorem 3, we easily derived that the total complexity of PB-SGD-RSBB (Algo-

rithm 3) was O
(

b2
H L2‖1‖2

p+εb2
H L‖1‖p

ε2

)
for non-convex optimization problems, when employing b =

O(T ). Additionally, we obtain that PB-SGD-RSBB (Algorithm 3) converged with rate O
(

1√
b+bH T

)
,

which recovers optimal O
(

1√
bT

)
convergence speed of mini-batch stochastic optimization algo-

rithms (Li et al., 2014).

5. Experiments

In order to evaluate the proposed algorithms, we conducted the experiments on six standard data
sets, where the details of these data sets were listed in Table 1. 1 Specifically, the data sets (a8a,
covtype, ijcnn1 and news20) can be downloaded from LIBSVM (Chang and Lin, 2011). In addi-
tion, we took the non-convex logistic regression as the loss function. Given a set of example pairs
{ai,bi}n

i=1, the goal was to find a solution of the following loss function:

min
w∈Rd

f (w) :=
1
n

n

∑
i=1

log(1+ exp(−yixT
i w))+λ r(w), (42)

where r(w) = ∑
d
i=1

w2
i

1+w2
i

is a non-convex regularizer. In practice, the non-convex regularizer was
widely adopted in machine learning and statistical learning such as gaining robustness and approxi-
mating sparsity. The model (42) has already been used in (Wang et al., 2020; Yang, 2021a; Nguyen
et al., 2021). We studied the numerical behaviors of the proposed algorithms with the regularizer co-
efficient λ = 10−1. Note that all experiments were conducted on an Intel(R) Core(TM) i7-10750H
CPU @2.60GHz 2.59GHz with MATLAB 2019a.

Table 1: Summary of data sets
Data set ] examples ] features
a8a 22,696 123
covtype 581,012 54
CIFAR-10 60,000 1,024
ijcnn1 49,990 22
MNIST 60,000 784
news20.binary 19,996 1,355,191

1. For the CIFAR-10 data set, it can be downloaded from http://www.cs.toronto.edu/~kriz/cifar.html.
For the MNIST data set, it can be accessed from http://yann.lecun.com/exdb/mnist/.
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5.1 Properties of PB-SVRGE

We first demonstrate the numerical behavior of PB-SVRGE (Algorithm 1) on various standard data
sets, provided in Table 1. In our experiments, we selected n stochastic gradient computations (a.k.a.
a full gradient evaluation counts) as one number of effective passes. Without otherwise specified,
in all figures, the horizontal axis denoted the number of effective passes and the vertical axis repre-
sented the objective gap: f (w̃s)− f (w∗). Such criterion was widely adopted to verify the efficacy
of the algorithms, see, e.g., Johnson and Zhang (2013); Roux et al. (2012); Nitanda (2014); Yang
(2022).

As seen from Algorithm 1, the performance of PB-SVRGE highly relies on the power coeffi-
cient γ , the mini-batch size b, the learning rate ηk. As a result, we will discuss the effect of these
parameters on PB-SVRGE respectively.

Figure 1 plots the performance of PB-SVRGE when using different power coefficients, where
the power coefficient γ was chosen from [0,1]. On all data sets, we set b = 10. In addition, on a8a
and i jcnn1, we set η = 0.01. While on covtype and news20.binary, we set η = 0.1. As presented
in Figure 1, PB-SVRGE achieved better performance on a slighter large power coefficient. It was
noted that when taking γ = 1, PB-SVRGE was reduced to the original SVRG method. Therefore,
Figure 1 demonstrated that PB-SVRGE matched or even outperformed the original SVRG method,
which confirmed the effectiveness of the Powerball function in improving stochastic optimization.
Additionally, when taking γ = 0, PB-SVRGE was viewed as a kind of a sign SVRG method. Obvi-
ously, Figure 1 showed that the sign-based variance-reduced algorithm performed worse on different
data sets.

Figure 2 shows the numerical behavior of PB-SVRGE when we took four different mini-batch
sizes. When conducting experiments on a8a and i jcnn1, we set η = 0.01 and γ = 0.9; In addition,
for covtype and news20.binary, we set η = 0.1 and γ = 0.9. The cases of the mini-batch sizes can
be found in the legend of Figure 2. It can be observed from Figure 2, PB-SVRGE achieved better
performance with a small mini-batch size.

Figure 3 presented the properties of PB-SVRGE when we employed four different learning
rates. For different data sets, we took b = 10 and γ = 0.9. Figure 3 pointed out that PB-SVRGE
converged slowly with a small learning rate, while diverging with a large learning rate. In practice,
it’s a tedious work to choose an optimal learning rate from multiple learning rates. To address this
issue, this work developed an adaptive strategy of updating the learning rate in Section 4.

5.2 Properties of PB-SVRGE-RSBB

It can be seen from Algorithm 2, the performance of PB-SVRGE-RSBB was highly influenced
by the parameters ζ , τ , γ , b and bH . Therefore, we will take the similar strategy of the case in
discussing the numerical properties of PB-SVRGE to explore the properties of PB-SVRGE-RSBB
step by step.

First of all, Figure 4 elucidated the performance of PB-SVRGE-RSBB with the parameter τ .
In this case, we set b = 10, bH = 20, ζ = 1 and γ = 0.9 on different data sets when executing
PB-SVRGE-RSBB (Algorithm 2). The parameter ζ was chosen from {0.01, 0.1, 1, 10}. Figure 4
demonstrated that the numerical behavior of PB-SVRGE-RSBB executed well on a small ζ .

Following, Figure 5 discussed the numerical performance of PB-SVRGE-RSBB (Algorithm 2)
with the parameter ζ . For PB-SVRGE-RSBB, we set b = 10, bH = 20 and γ = 0.9 on a8a and
i jcnn1; b = 10, bH = 100 and γ = 0.9 on covtype and news20. Figure 5 pointed out that a sightly
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Figure 1: PB-SVRGE on a8a (top left), covtype (top right), i jcnn1 (bottom left), and news20.binary (bot-
tom right): varying the power coefficient γ .
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Figure 2: PB-SVRGE on a8a (left) and i jcnn1 (right): varying the mini-batch size b.
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Figure 3: PB-SVRGE on a8a (left) and i jcnn1 (right): varying the learning rate η .
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Figure 4: PB-SVRGE-RSBB on i jcnn1 (left) and covtype (right): varying the parameter τ .
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large ζ made PB-SVRGE-RSBB achieve better performance. It’s noted that a larger ζ will lead to
the divergence of the proposed algorithms.
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Figure 5: PB-SVRGE-RSBB on a8a (top left), covtype (top right), i jcnn1 (bottom left), and news20.binary
(bottom right): varying the parameter ζ .

Figure 6 explored the properties of PB-SVRGE-RSBB with different power coefficients. For
different data sets, we took b = 10 and bH = 20. The details of the power coefficient were plotted in
the legend of Figure 6. Figure 6 indicated that a bigger power coefficient made PB-SVRGE-RSBB
converge speedily.

Further, Figure 7 and Figure 8 discussed the numerical behavior of PB-SVRGE-RSBB with
the parameters b and bH respectively. As seen from Figure 7, PB-SVRGE-RSBB was robust to
the selection of the parameter b. In contrast, Figure 8 indicated PB-SVRGE-RSBB had better
performance with a small parameter bH .

5.3 Properties of PB-SGD-RSBB

PB-SGD-RSBB (Algorithm 3) has a analogical performance with PB-SVRGE-RSBB (Algorithm
2). As a consequence, to avoid redundancy, we only discussed the numerical behavior of PB-SGD-
RSBB with the power coefficient γ alone.
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Figure 6: PB-SVRGE-RSBB on a8a (top left), covtype (top right), i jcnn1 (bottom left), and news20.binary
(bottom right): varying the power coefficient γ .
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Figure 7: PB-SVRGE-RSBB on a8a (left) and covtype (right): varying the mini-batch size b.
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Figure 8: PB-SVRGE-RSBB on a8a (left) and covtype (right): varying the mini-batch size bH .

Figure 9 showed that PB-SGD-RBB performed well under the case of a large power coefficient,
which is parallel to the two previous algorithms.
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Figure 9: PB-SGD-RSBB on a8a (left) and i jcnn1 (right): varying the power coefficient γ .

5.4 Comparison with Related Algorithms

So as to further demonstrate the efficacy of the proposed algorithms, the following algorithms were
implemented to compare with PB-SGD-RSBB, PB-SVRGE and PB-SVRGE-RSBB:

• pbSGD: plain stochastic gradient descent with the Powerball function in Zhou et al. (2020).
The pbSGD method worked with a constant learning rate. As suggested by Zhou et al. (2020),
we chose the best learning rate from multiple learning rates. Moreover, we set the power
coefficient γ = 0.9 for all data sets.

• pbSGDM: pbSGD with a momentum term (Polyak, 1964) in Zhou et al. (2020). The learning
rate for pbSGDM was also chosen from multiple learning rates with best performance. We
set the power coefficient γ = 0.9 and the momentum value β = 0.9 for various data sets.
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• SGD-HD: vanilla stochastic gradient descent with the hyper-gradient descent approach in
Baydin et al. (2018). We tested SGD-HD with parameters η0 = 10−3, β = 10−4 on a8a,
i jcnn1 and news20.binary, and η0 = 10−2, β = 10−3 on covtype.

• SPIDER: stochastic path-integrated differential estimator in Fang et al. (2018). It is a kind of
biased variance-reduced optimization algorithms, working with a constant learning rate. In
experiments, SPIDER worked with η = 0.1 on a8a and η = 0.2 on other three data sets.

• CGVR: stochastic conjugate gradient with variance reduction in Jin et al. (2019). For CGVR,
the line search technique was adopted to determine the learning rate.

• MSVRG-RSBB: stochastic variance reduction gradient algorithm with the random stabilized
Barzilai-Borwein method in the mini-batching setting, shown in Yang (2021b). We tested
MSVRG-RSBB with b= 8, bH = 8, γ = 1.4, σ = 0.25 on a8a; b= 8, bH = 8, γ = 1, σ = 0.25
on covtype and i jcnn1; b = 8, bH = 20, γ = 1, σ = 0.25 on news20.binary.

• MB-SARAH-RSBB: stochastic recursive gradient algorithm with the random stabilized Barzilai-
Borwein method in the mini-batching setting, appearing in Yang (2021b). We executed MB-
SARAH-RSBB with b = 4, bH = 8, γ = 0.01, σ = 0.1 on a8a, covtype and i jcnn1; b = 4,
bH = 20, γ = 0.1, σ = 0.1 on news20.binary.

Figure 10 showed the comparison of the three proposed algorithms (PB-SGD-RSBB, PB-SVRGE
and PB-SVRGE-RSBB) with different approaches mentioned above on various data sets. We can
clearly observe that PB-SVRGE and PB-SVRGE-RSBB were the two algorithms that had the best
performance on all data sets, comparing with other advanced stochastic optimization algorithms.
Especially, unlike MSVRG-RSBB and MB-SARAH-RSBB that were specifically designed for non-
convex optimization problems and required commanding many hyperparameters at the same time
in determining step size, our proposed algorithms were much easier to be implemented in practice.

5.5 Performance on Neural Networks

To further test the superior of the resulting algorithms, we train neural networks (NN). For clarity,
this subsection also offers the comparison results between the resulting algorithms, PB-SGD-RSBB,
PB-SVRGE and PB-SVRGE-RSBB, and other related algorithms. Specifically, similar to the work
in (Johnson and Zhang, 2013), in our experiments, we train NNs with one fully-connected hidden
layer of 100 nodes and 10 softmax output nodes.

The numerical results are offered in Figure 11. In Figure 11, the x-axis denotes the number of
effective passes as well. In contrast, the y-axis corresponds to the accuracy of the algorithms on the
test data sets.

Figure 11 demonstrates that PB-SVRGE (Algorithm 1) outperforms other modern stochastic
optimization algorithms. In particular, the comparison results among PB-SVRGE (Algorithm 1),
Acc-Prox-SVRG, and the original SVRG method imply the effectiveness of the Powerball function
in improving stochastic optimization algorithms. Additionally, the comparison results among PB-
SVRGE-RSBB (Algorithm 2), PB-SGD-RSBB (Algorithm 3), MSVRG-RSBB and pbSGD vali-
dates the efficacy of the update rule of RSBB in improving the powered stochastic optimization
algorithms.

The numerical results on both non-convex logistic regression and neural networks show much
promise of the resulting algorithms.
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Figure 10: Comparison of different approaches on a8a (top left), covtype (top right), i jcnn1 (Middle left),
news20.binary (Middle right), CIFAR-10 (bottom left), and MNIST (bottom right).
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Figure 11: The numerical behavior of different approaches on MNIST data set for training NNs.

6. Conclusion

This paper explored the theoretical and empirical properties of PSO algorithms from the perspec-
tives of variance reduction and adaptive learning rates. Concretely, we first proposed a variance-
reduced PSO algorithm, PB-SVRGE (Algorithm 1), by incorporating SVRGE into the classical
PSO algorithm. Moreover, we strictly analyzed the convergence behavior of PB-SVRGE under the
non-convex assumption. Meanwhile, we showed that the computational complexity of PB-SVRGE
(Algorithm 1) was superior than that of advanced stochastic optimization algorithms. Further, to
bridge the gap between PSO and the learning rate, we utilized the idea of the BB-like technique
to obtain an adaptive rule of updating learning rates for PSO algorithms. We first studied the per-
formance of our PB-SVRGE algorithm with the BB-like technique, obtaining PB-SVRGE-RSBB
(Algorithm 2). Then, we generalized such an adaptive learning rate to the classical PSO algorithm,
obtaining PB-SGD-RSBB (Algorithm 3). Moreover, the theoretical behavior for PB-SGD-RSBB
(Algorithm 3) and PB-SVRGE-RSBB (Algorithm 2) were also provided. We performed a serious of
numerical experiments on various data sets to show the performance of the proposed algorithms and
investigated their parameter sensitivity. We also displayed the superior behaviors of our proposed
algorithms by comparing them with state-of-the-art stochastic optimization methods.
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Nicolas Loizou and Peter Richtárik. Momentum and stochastic momentum for stochastic gradi-
ent, newton, proximal point and subspace descent methods. Computational Optimization and
Applications, 77(3):653–710, 2020.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pages 1306–1314. PMLR, 2021.

Aryan Mokhtari and Alejandro Ribeiro. Stochastic quasi-newton methods. Proceedings of the
IEEE, 108(11):1906–1922, 2020.

26



IMPROVED POWERED STOCHASTIC OPTIMIZATION ALGORITHMS

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for
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