
Journal of Machine Learning Research 24 (2023) 1-36 Submitted 10/22; Revised 7/23; Published 8/23

Sparse Graph Learning from Spatiotemporal Time Series

Andrea Cini andrea.cini@usi.ch
The Swiss AI Lab IDSIA
Università della Svizzera italiana
Lugano, CH

Daniele Zambon daniele.zambon@usi.ch
The Swiss AI Lab IDSIA
Università della Svizzera italiana
Lugano, CH

Cesare Alippi cesare.alippi@usi.ch
The Swiss AI Lab IDSIA
Università della Svizzera italiana
Lugano, CH
Politecnico di Milano
Milan, IT

Editor: Silvia Chiappa

Abstract
Outstanding achievements of graph neural networks for spatiotemporal time series analysis
show that relational constraints introduce an effective inductive bias into neural forecasting
architectures. Often, however, the relational information characterizing the underlying data-
generating process is unavailable and the practitioner is left with the problem of inferring
from data which relational graph to use in the subsequent processing stages. We propose
novel, principled—yet practical—probabilistic score-based methods that learn the relational
dependencies as distributions over graphs while maximizing end-to-end the performance at
task. The proposed graph learning framework is based on consolidated variance reduction
techniques for Monte Carlo score-based gradient estimation, is theoretically grounded, and,
as we show, effective in practice. In this paper, we focus on the time series forecasting
problem and show that, by tailoring the gradient estimators to the graph learning problem,
we are able to achieve state-of-the-art performance while controlling the sparsity of the
learned graph and the computational scalability. We empirically assess the effectiveness of
the proposed method on synthetic and real-world benchmarks, showing that the proposed
solution can be used as a stand-alone graph identification procedure as well as a graph
learning component of an end-to-end forecasting architecture.

Keywords: graph learning, spatiotemporal data, graph-based forecasting, time series
forecasting, score-based learning, graph neural networks

1. Introduction

Traditional statistical and signal processing methods to time series analysis leverage on
temporal dependencies to model data generating processes (Harvey et al., 1990). Graph
signal processing methods extend these approaches to dependencies observed both in time

c©2023 Andrea Cini, Daniele Zambon, Cesare Alippi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-1154.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-1154.html

Cini, Zambon and Alippi

and space, i.e., to the setting where temporal signals are observed over the nodes of a
graph (Ortega et al., 2018; Stanković et al., 2020; Di Lorenzo et al., 2018; Isufi et al., 2019).
The key ingredient here is the use of graph shift operators, constructed from the graph
adjacency matrix, that localizes learned filters on the graph structure. The same holds true
for graph deep learning methods that have revolutionized the landscape of machine learning
for graphs (Bruna et al., 2014; Bronstein et al., 2017; Bacciu et al., 2020; Bronstein et al.,
2021). However, it is often the case that no prior topological information about the reference
graph is available, or that dependencies in the dynamics observed at different locations are
not well modeled by the available spatial information (e.g., the physical proximity of the
sensors). Examples can be found in social networks, smart grids, and brain networks, just to
name a few relevant application domains.

The interest in the graph learning problem, in the context of spatiotemporal time series
processing, indeed arises from many practical and theoretical concerns. In the first place,
learning existing relationships among time series that better explain an observed phenomenon
is worth the investigation on its own; as a matter of fact, graph identification is a well-known
problem in graph signal processing (Mei and Moura, 2016; Variddhisai and Mandic, 2020). In
the deep learning setting, several methods train, end-to-end, a graph learning module with a
neural forecasting architecture to maximize performance on the downstream task (Shang and
Chen, 2021; Wu et al., 2020). A typical deep learning approach consists in exploiting spatial
attention mechanisms to discover the reciprocal salience of different spatial locations at each
layer (Satorras et al., 2022; Rampášek et al., 2022). Graph learning, in this context, can then
be seen as a regularization of Transformer-like models (Vaswani et al., 2017); regularization
that comes in the form of the relational inductive biases typical of graph processing methods:
namely, the sparsity of the pairwise relationships between nodes and the locality of the
learned representations. In fact, despite their effectiveness, pure attention-based approaches
impair two major benefits of graph-based learning: they (1) do not allow for the sparse
computation enabled by the discrete nature of graphs and (2) do not take advantage of the
structure, introduced by the graph topology, as an inductive bias for the learning system.
Indeed, sparse computation allows graph neural networks (GNNs; Scarselli et al. 2008, Bacciu
et al. 2020) with message-passing architectures (Gilmer et al., 2017) to scale in terms of
network depth and the dimension of the graphs that are possible to process. At the same time,
sparse graphs constrain learned representations to be localized in node space and mitigate
over-fitting spurious correlations in the training data. Graph learning approaches that do
attempt to learn relational structures from time series exist, but often rely on continuous
relaxations of the binary adjacency matrix and, as a consequence, on dense computations to
enable automatic reverse-mode differentiation through any subsequent processing (Shang and
Chen, 2021; Kipf et al., 2018). Conversely, other solutions make the computation sparse (Wu
et al., 2020; Deng and Hooi, 2021) at the expense of the quality of the gradient estimates
as shown by Zügner et al. (2021). The challenge is, then, to provide accurate gradients
while, at the same time, allowing for sparse computations in the downstream message-passing
operations, typical of modern GNNs.

In this paper, we address the graph learning problem and model it from a probabilistic
perspective which, besides naturally accounting for uncertainty and the embedding of priors,
enables the learning of sparse graphs as realizations of a discrete probability distribution.
In particular, given a set of time series, we seek to learn a parametric distribution pθ such

2

Sparse Graph Learning from Spatiotemporal Time Series

that graphs sampled from pθ maximize the performance on the given downstream task,
e.g., multistep-ahead forecasting. As an example, consider a cost function δt(·) (e.g., the
forecasting accuracy) associated with each time step t and dependant on the inferred graph.
The core challenge in learning pθ to minimize the expected cost is associated with estimating
the gradient

∇θEA∼pθ [δt(A)] (1)

of the expected value of the cost function δt(A) w.r.t the distributional parameters θ, the sam-
pling of a random graph (adjacency matrix A) from pθ and given batch of input-output data
pairs corresponding to observations at time step t. Previous works proposing probabilistic
methods (Shang and Chen, 2021; Kipf et al., 2018) learn pθ with path-wise gradient estima-
tors (Glasserman and Ho, 1991; Kingma and Welling, 2013), i.e., by reparametrizing A ∼ pθ
as A = g(ε, θ), with deterministic function g decoupling parameters θ from the (parameter-
free) random component ε ∼ p0. However, these approaches imply approximating discrete
distributions with a softmax continuous relaxation (Paulus et al., 2020) which makes all the
downstream computations dense and quadratic in the number of nodes. Differently, here, we
adopt the framework of score-function (SF) gradient estimators (Rubinstein, 1969; Williams,
1992; Mohamed et al., 2020) by relying on the rewriting of Equation (1) as

∇θEA∼pθ [δt(A)] = EA∼pθ [δt(A)∇θ log pθ(A)] (2)

which, as we detail in Section 5.1, allows us for preserving the sparsity of the sampled graphs
and the scalability of the subsequent processing steps (e.g., the forward and backward passes
of a message-passing network). In particular, our contributions are as follows.

• We provide an end-to-end methodological framework for probabilistic graph learning in
spatiotemporal data, based on SF gradient estimators [Section 5] and design associated
Monte Carlo (MC) estimators for stochastic message-passing architectures [Section 5.1].

• We introduce two parametrizations of pθ as 1) a set of Bernoulli distributions and as
2) the sampling without replacement of edges under a sparsity constraint [Section 5.2].
We show how to sample graphs from both distributions and derive the associated
differentiable log-likelihood functions. Both distributions allow us to deal with an
adaptive number of neighboring nodes.

• We propose a novel and effective, yet simple to implement, variance reduction method
for the estimators [Section 6] based on the Fréchet mean graph w.r.t. the proposed
distributions, for which we provide closed-form solutions [Propositions 1 and 3]. Our
method does not require the estimation of additional parameters and, differently from
more general-purpose approaches (e.g., see Mnih and Gregor (2014)), is as expensive
as taking a sample from the considered distributions and evaluating the corresponding
cost function.

• Finally, we present an approximate surrogate loss function [Section 7] derived from a
convenient rewriting of the gradient for the considered settings [Proposition 5] which
provides a considerable improvement in convergence rate.

3

Cini, Zambon and Alippi

Empirical results demonstrate that the techniques introduced here enable the use of score-
based estimators to learn graphs from spatiotemporal time series; furthermore, experiments
on time series forecasting benchmarks show that our approach compares favorably w.r.t.
the state of the art. We strongly believe that our approach constitutes an effective method
in the toolbox of the practitioner for designing new, even more effective, classes of novel
graph-based time series processing architectures.

The paper is organized as follows. Section 2 discusses related works. Section 3 introduces
relevant background material; Section 4 provides the formulation of the problem. We present
the proposed parametrizations of pθ and related gradient estimators in Section 5 and the
associated variance reduction techniques in Section 6. The proposed rewriting of the gradient
and approximated objective are derived and discussed in Section 7. Finally, the empirical
evaluation of the proposed method is given in Section 8 and conclusions are presented in
Section 9.

2. Related Works

Graph neural networks have become increasingly popular in spatiotemporal time series
processing (Seo et al., 2018; Li et al., 2018; Yu et al., 2018; Wu et al., 2019; Deng and Hooi,
2021; Cini et al., 2022; Marisca et al., 2022; Wu et al., 2022) and the graph learning problem
is well-known within this context. Wu et al. (2019) propose Graph WaveNet, an architecture
for time series forecasting that learns a weighted adjacency matrix A = σ

(
E1E

>
2

)
learned

from the factorization with node embedding matrices E1,E2. Several other methods follow
this direction (Bai et al., 2020; Oreshkin et al., 2021). Satorras et al. (2022) showed that
hierarchical attention-based architectures are effective to account for dependencies among
spatiotemporal time series to obtain accurate predictions in the downstream task. However,
all the aforementioned approaches generally lead to dense graphs and cannot, therefore,
exploit the sparsity and locality priors—and computational scalability—typical of graph-
based machine learning. To address this issue, MTGNN (Wu et al., 2020) and GDN (Deng
and Hooi, 2021) sparsify the learned factorized adjacency by selecting, for each node, the K
edges associated with the largest weights. Using hard top-k operators, however, results in
sparse gradients and has differentiability issues that can undermine the effectiveness of the
learning procedure. More recently, Zhang et al. (2022) proposed a different approach based
on the idea of sparsifying the learned graph by thresholding the average of learned attention
scores across time steps.

Among probabilistic models, Franceschi et al. (2019) tackle the graph learning problem for
non-temporal data by using a bi-level optimization routine and a straight-through gradient
trick (Bengio et al., 2013) which, nonetheless, requires dense computations. The NRI
approach, introduced by Kipf et al. (2018), learns a latent variable model predicting the
interactions of physical objects by learning edge attributes of a fully connected (dense)
graph. GTS (Shang and Chen, 2021) simplifies the NRI module by considering binary
relationships only and integrates graph inference in a spatiotemporal recurrent graph neural
network (Li et al., 2018). Both NRI and GTS exploit path-wise gradient estimators based
on the categorical Gumbel trick (Maddison et al., 2017; Jang et al., 2017) and, as such,
rely on continuous relaxations of discrete distributions and suffer from the computational
setbacks anticipated in the introduction. Finally, the graph learning module proposed by

4

Sparse Graph Learning from Spatiotemporal Time Series

Kazi et al. (2022) uses the Gumbel-Top-K trick (Kool et al., 2019) to sample a K-nearest
neighbors (K-NN) graph, where node scores are learned by using a heuristic for increasing
the likelihood of sampling edges that contribute to correct classifications.

Besides applications in graph-based processing, the problem of learning discrete structures
has been widely studied in deep learning and general machine learning (Niculae et al., 2023).
As alternatives to methods relying on continuous relaxations and path-wise estimators (Jang
et al., 2017; Maddison et al., 2017; Paulus et al., 2020), several approaches tackled the problem
by exploiting score-based estimators and variance reduction techniques, e.g., based on control
variates derived from continuous relaxations (Tucker et al., 2017; Grathwohl et al., 2018) and
data-driven baselines (Mnih and Gregor, 2014). In particular, related to our method, Rennie
et al. (2017) use a greedy baseline based on the mode of the distribution being learned,
while Kool et al. (2020) constructs a variance-reduced estimator based on sampling without
replacement from the discrete distribution. Beyond score-based and path-wise methods,
Correia et al. (2020) take a different approach by considering sparse distributions where
analytically computing the gradient becomes tractable. Niepert et al. (2021) introduce a
class of (biased) estimators, based on maximum-likelihood estimation, that generalize the
straight-through estimator (Bengio et al., 2013) to more complex distributions; Minervini
et al. (2023) make such estimators adaptive to balance the bias of the estimator and the
sparsity of the gradients. We refer to Mohamed et al. (2020) and Niculae et al. (2023) for an
in-depth discussion of the topic. None of these method target specifically graph distributions,
nor consider sparsity of the downstream computations as a requirement.

To the best of our knowledge, we are the first to propose a spatiotemporal graph learning
module that relies on variance-reduced score-based gradient estimators specifically tailored for
graph-based processing, and allowing for sparse computation in both training and inference
phases of message-passing neural networks.

3. Preliminaries

The section introduces some preliminary concepts and provides the reference models and the
notions regarding distributions over graphs needed to support the theoretical and technical
derivations presented in the next sections.

3.1 Spatiotemporal Time Series with Graph Side Information

As reference case study, we consider spatiotemporal time series acquired from a sensor
network. More specifically, consider a set S = {1, 2, . . . , N} of N sensors and indicate with
xit ∈ Rdo the do-dimensional observation acquired by the i-th sensor at discrete time step t.
We denote by Xt ∈ RN×do the matrix collecting all sensor observations {xit : i ∈ S} at time
step t. Similarly, whenever available, Ut ∈ RN×du indicates the du-dimensional exogenous
variables and with V ∈ RN×dv static node attributes, e.g., sensor specific features. Assume
that nodes (sensors) are available at all time steps and are identified, i.e., a node identifier
can be paired to each sensor measurement over time. We also assume node features to
be homogeneous across nodes, i.e., to correspond to the same types of sensor readings; an
assumption that, however, can easily be relaxed in practice (e.g., see Schlichtkrull et al.
2018).

5

Cini, Zambon and Alippi

To account for dependencies among measurements at different nodes, observations can
be paired with side relational information encoded by an edge set E ⊆ S ×S or, equivalently,
by a (binary) adjacency matrix A ∈ {0, 1}N×N . Edges of the resulting graph can represent
functional dependencies among the different time series that are instrumental for modeling
the monitored system and solving the downstream task. To consider relations that change
over time, e.g., as those between users of a social network, we can consider a dynamic
adjacency matrix At (or edge set Et) representing the variable topology, differently from
the static case. Finally, yt ∈ Rdy denotes the target vector at every time step, i.e., the
task-dependant value to be predicted; targets can also be associated with each node in which
case we write Yt ∈ RN×dy . Often, we are interested in making predictions for a time horizon
up to H steps ahead: notation Yt:t+H denotes the multi-step targets in the interval [t, t+H).
Targets define the nature of downstream task, which can be either regression or classification,
either at the graph or node level. In the following, we consider multi-step node-level tasks as
the default setting.

The above framework is flexible enough to account for several application settings involving
sensor measurements; the example below is provided to ease intuition for the reader.

Example 1 Consider a sensor network monitoring the speed of vehicles at crossroads. In
this case, X1:T refers to traffic speed measurements sampled at a certain frequency. Exogenous
variables Ut account for time-of-the-day and day-of-the-week identifiers and, eventually, the
current state of traffic lights. The node-attribute matrix V reports static features regarding
the type of road a sensor is placed in. An adjacency matrix A can be obtained by considering
each pair of sensors connected if and only if they are connected by a road segment. Targets Yt
provide labels for the task of predicting whether a traffic jam will happen in a fixed number of
future time steps or simply one could consider the task of forecasting the next H measurements
at each sensor, i.e., Yt:t+H = Xt:t+H .

3.2 Spatiotemporal Graph Neural Networks

The subsection provides an overview of the architectures considered in the sequel. We
look at a general class of message-passing operators as well as spatiotemporal graph neural
network (STGNN) architectures.

3.2.1 Message-Passing Neural Networks

We consider the family of message-passing (MP; Gilmer et al. 2017) operators where repre-
sentations are updated at each layer l such as

z
i,(l)
t = ρ(l)

(
z
i,(l−1)
t ,Aggr

{
γ(l)
(
z
j,(l−1)
t , z

i,(l−1)
t , ei,j

)
; j ∈ N (i)

})
(3)

where zi,(l)t indicates the representation of the i-th node at layer l; N (i) is the set of its
neighboring nodes, and ei,j are the features associated with the edge connecting the j-th to
the i-th node. Update and message functions, ρ and γ, respectively, can be implemented
by any differentiable function—e.g., a multilayer perceptron—while Aggr{·} indicates a
generic permutation invariant aggregation function. By considering a graph-wise operator,
the l-th message-passing neural network layer (MPNN) of the—possibly deep—architecture

6

Sparse Graph Learning from Spatiotemporal Time Series

can be represented in a compact way as

Z
(l)
t = MPNN(l)

(
Z

(l−1)
t ,A

)
. (4)

3.2.2 Spatiotemporal Architectures

STGNNs process input spatiotemporal data by considering operators that use the underlying
graph to impose inductive biases in the representation learning process. By adopting
a terminology similar to the one introduced in (Gao and Ribeiro, 2022), we distinguish
between time-then-space (TTS) and time-and-space (T&S) STGNNs, depending on whether
message-passing is carried out after or in-between a temporal encoding step.

Time-then-space models. TTS models are based on an encoder-decoder architecture
where the encoder embeds each input time series xit−W :t associated with a graph node to
a vector representation, while the decoder, implemented as a multilayer GNN, propagates
information across the spatial dimension. In particular, we consider the family of models s.t.

Z
(0)
t = TemporalEncoder (Xt−W :t,Ut−W :t,V) , (5)

Z
(l)
t = MPNN(l)

(
Z

(l−1)
t ,A

)
, ∀ l = 1, . . . , L (6)

Ŷt:t+H = Readout
(
ZL
t

)
, (7)

where the notation is consistent with that of Equation (3). Examples of spatiotemporal
graph processing models that fall into the time-then-space category are NRI (Kipf et al.,
2018) and the encoder-decoder architecture introduced by Satorras et al. (2022).

Time-and-space models. Time-and-space models are a general class of STGNNs where
space and time are processed by operators that process representation along the time and
space dimensions. A large subset of this family of models can be seen as performing the
following operations

Z
(0)
t−W :t = [Xt−W :t||Ut−W :t||V] , (8)

then, for every layer l = 1, . . . , L,

H
(l)
t−W :t = TemporalLayer(l)

(
Z

(l−1)
t−W :t

)
, (9)

Z
(l)
k = MPNN(l)

(
H

(l)
k ,A

)
, ∀ k = t−W, . . . , t− 1 (10)

finally followed by

Ŷt:t+H = Readout
(
Aggr

{
Z

(L)
t−W , . . . ,Z

(L)
t−1

})
, (11)

where TemporalLayer (·) indicates a generic (parametric) operator processing represen-
tations across the different time steps, e.g., a 1-D convolutional layer. Note that predictions,
here, are obtained in Equation (11) by pooling representations along the temporal dimension
and then using, e.g., a linear readout. Other architectures are possible, e.g., by exploiting
recurrent neural networks (Seo et al., 2018; Li et al., 2018).

7

Cini, Zambon and Alippi

3.3 Mean Adjacency Matrices

In this section, we recall some definitions related to probability distributions over graph
data. The discrete nature of graphs makes a large part of the well-established results from
probability and statistics unsuitable for objects that do not adhere to Euclidean geometry. An
example is the notion of “expected” graph that is of interest to the present paper [Section 6]
and whose definition needs to be extended. Here, we do so by following Fréchet (1948).

For a random vector x ∈ Rd characterized by probability density function p, expectation
Ex∼p[x] =

∫
xp(x) dx is a weighted average over x; we interchangeably adopt forms Ep[x]

and E[x]. Notably, Ex∼p[x] can be equivalently written as

Ex∼p[x] = arg min
x′∈Rd

F2(x
′), (12)

where F2(·) denotes the Fréchet function

F2(x
′) , Ex∼p

[
‖x′ − x‖22

]
(13)

associated with distribution p and the squared Euclidean distance ‖·‖22. Following Equa-
tions 12 and 13, we can derive a generalized definition of mean applicable to non-Euclidean
data, like graphs and sparse adjacency matrices. We comment that, following this line,
we can extend these results also to the sample mean 1/M

∑M
m=1 xm of a finite sample

D = {x1, . . . ,xM}, and define accordingly the Fréchet sample mean of a sample of non-
Euclidean data.

Consider, then, the space A ⊆ {0, 1}N×N of adjacency matrices A over the node (sensor)
set S, each of which representing a graph topology over S; for instance, for undirected graphs,
A is the subset of {0, 1}N×N of symmetric matrices, whereas for directed k-NN graphs

A =

A ∈ {0, 1}N×N :

N∑
j=1

Ai,j = k, ∀ i

 . (14)

By equipping A with a metric distance, we define a Fréchet function analogous to that of
Equation (13), applicable to random adjacency matrices. In this paper, we consider the
Hamming distance

H(A,A′) ,
N∑

i,j=1

I(Ai,j 6= A′i,j), (15)

where A,A′ ∈ A and I is the indicator function such that I(a) = 1, if a is true, 0 otherwise.
The Hamming distance counts the number of mismatches between the entries of A and A′,
and is then a natural choice to measure the dissimilarity between two graphs.

We define the Fréchet function over space (A, H), and the random adjacency matrix
A ∼ p, for all A′ ∈ A as

FH(A′) , EA∼p
[
H(A′,A)

]
. (16)

According to Equation 12, we then define Fréchet mean adjacency matrix any matrix

Aµ ∈ arg min
A′∈A

FH(A′). (17)

8

Sparse Graph Learning from Spatiotemporal Time Series

A matrix Aµ always exists in A, as A is a finite set, but, in general, is not unique. Conditions
for the uniqueness of the Fréchet mean in the context of graph-structured data have been
studied in the literature, e.g., by Jain (2016). Throughout the paper, we use the term
“Fréchet mean” referring to any Fréchet mean of a given distribution.

4. Problem Formulation

This section provides a probabilistic formulation of the graph learning problem in spatiotem-
poral time series and defines the operational framework in which we operate.

4.1 Graph Learning from Spatiotemporal Time Series

Given a window of W past observations Xt−W :t = 〈Xt−W :t,Ut−W :t,V 〉 open on the time
series, we consider the problem of predicting H future targets Yt:t+H associated with the
graph nodes. The notation t : T denotes the time steps in interval [t, T); when not differently
specified, we consider the multistep-ahead forecasting task Yt:t+H = Xt:t+H .

Consider the family of predictive models Fψ and parametric probability distribution pθ
over graphs

Ŷt:t+H = Fψ (Xt−W :t , At) , At ∼ pθ (A|Xt−W :t) , (18)

where ψ, θ are the model parameters. The joint graph and model learning problem consists
in jointly learning parameters ψ, θ by solving the optimization problem

ψ̂, θ̂ = arg min
ψ,θ

1

T

T∑
t=1

Lt (ψ, θ) , Lt (ψ, θ) , EA∼pθ [δt(At;ψ)] , (19)

where Lt (ψ, θ) is the optimization objective at time step t expressed as the expectation, over
the graph distribution pθ, of a cost—loss—function δt(At;ψ), typically a p-norm

δt(At;ψ) = ‖Yt:t+H − Fψ (Xt−W :t,At)‖pp (20)

with, e.g., p = 1 or 2. Note that in Equation (18) the distribution of At at time step t is
conditioned on the most recent observations Xt−W :t, hence modeling a scenario associated
with a dynamic graph distribution [Section 3.1]. A static graph scenario follows by simply
removing the conditioning on Xt−W :t. We consider a generic family of predictive models Fψ
implemented by STGNNs based on the message-passing framework and following either the
TTS or the T&S paradigm to process information along space and time. Other architectures
can be considered. Notably, Fψ can be suitably designed in order to exchange messages w.r.t.
a different graph A(l) at each MP layer. Section 7 provides a thorough discussion of this
setup.

In this setting, the model family and the downstream task impact on the type of
relationships being learned. For example, linear and nonlinear models will yield different
results that depend also on the number of layers and the choice of MP operators, e.g.,
standard graph convolutions against anisotropic message-passing layers such as those used in
graph attention networks (Veličković et al., 2018). Ultimately, the learned graph distribution
is the one that best explains the observed data given the architecture of the predictive
model and the family of graph distributions. Different parametrizations of pθ allow the

9

Cini, Zambon and Alippi

practitioner for embedding different inductive biases (such as sparsity) as structural priors
into the processing.

4.2 Core Challenge

Minimizing the sum of expectations Lt (ψ, θ), t = 1, . . . , T , is challenging, as it involves
estimating the gradients ∇θLt (ψ, θ) w.r.t. the parameters of the discrete distribution pθ
over (binary) adjacency matrices. Sampling matrices (graphs) A ∼ pθ throughout the
learning process results in a stochastic computational graph (CG) and, while automatic
differentiation of CGs is a core component of modern deep learning libraries (Paszke et al.,
2019; Abadi et al., 2015), dealing with stochastic nodes introduces additional challenges as
the gradients have to be estimated w.r.t. expectations over the sampling of the associated
random variables (Schulman et al., 2015; Weber et al., 2019; Mohamed et al., 2020). Tools
for automatic differentiation of stochastic CGs are being developed (Foerster et al., 2018;
Bingham et al., 2019; van Krieken et al., 2021; Dillon et al., 2017); however, general approaches
can be ineffective and prone to failure, especially in the case of discrete distributions (see
also Mohamed et al. 2020).

In our setup, having a stochastic message-passing graph (MPG) emerges as problematic:
the MP paradigm constrains the flow of spatial information, making the CG dependent on
the MPG. Moreover, a stochastic input MPG introduces N2 stochastic nodes in the resulting
CG (i.e., one for each potential edge in MPG), leading to a large number of paths data
can flow through. For instance, by considering an L-layered architecture, the number of
stochastic nodes can increase up to O(LN2), making the design of reliable, low-variance—i.e.,
effective—MC gradient estimators inherently challenging. Furthermore, as already mentioned,
computing gradients associated with each stochastic edge introduce additional challenges
w.r.t. time and space complexity; further discussion and actionable directions are given in
the next section.

5. Score-based Sparse Graph Learning from Spatiotemporal Time Series

In this section, we present our approach to probabilistic graph learning. After introducing
score-based gradient estimators [Section 5.1], we propose two graph distribution models [Sec-
tion 5.2] and comment on their practical implementations [Section 5.3]. The problem of
controlling the variance of the estimators is discussed together with novel and principled
variance reduction techniques tailored to graph-based architectures [Section 6]. Finally, we
provide a convenient rewriting of the gradient for L-layered MP architectures leading to a
novel surrogate loss [Section 7]. Figure 1 provides a schematic overview of the framework.
In particular, the block on the left shows the graph learning module, where A is sampled
from pθ; as the figure suggests, depending on the parametrization of pθ, some components of
A can be sampled independently. The bottom of the figure, instead, shows the predictive
model Fψ that, given the sampled graph and the input window, outputs the predictions used
to estimate Lt (ψ, θ), whose gradient provides the learning signals.

10

Sparse Graph Learning from Spatiotemporal Time Series

Scores & Costs
Graph learning

Figure 1: Overview of the learning architecture. The graph learning module samples a graph
used to propagate information along the spatial dimension in Fψ; predictions and
samples are used to compute costs and log-likelihoods. Gradient estimates are
propagated back to the respective modules.

5.1 Estimating Gradients for Stochastic Message-Passing Networks

SF estimators are based on the identity

∇θEpθ [f(x)] = ∇θ
∫
f(x)pθ(x) dx =

∫
f(x)∇θpθ(x) dx (21)

=

∫
f(x)pθ(x)∇θ log pθ(x) dx = Epθ [f(x)∇θ log pθ(x)], (22)

which holds—under mild assumptions1—for generic cost functions f and distributions pθ.
The rewriting of ∇θEpθ [f(x)] in terms of the gradient of the score function log pθ(·) allows
for estimating the gradients easily by MC sampling and backpropagating them through the
computation of the score function. SF estimators are black-box optimization methods, i.e.,
they only require to evaluate pointwise the cost f(x) which does not necessary need to be
differentiable w.r.t. parameters θ. In our setup, by assuming disjoint ψ and θ, Equation (22)
becomes

∇θLt (ψ, θ) = ∇θEpθ [δt(A;ψ)] = Epθ [δt(A;ψ)∇θ log pθ(A)] , (23)

allowing for computing gradients w.r.t. the graph generative process without requiring a full
evaluation of all the stochastic nodes in the CG.

Sparse computation. Path-wise gradient estimators tackle the problem of estimating
the gradient ∇θEpθ [δt(A;ψ)] by exploiting continuous relaxations of the discrete pθ, thus
estimating the gradient by differentiating through all nodes of the stochastic CG. Defined

1. The identity is valid as long as pθ and f allow for the interchange of differentiation and integration in
Equation (21); see L’Ecuyer (1995); Mohamed et al. (2020).

11

Cini, Zambon and Alippi

E to be the number of edges in a realization of pθ, the cost of learning a graph with a
path-wise estimator is that of making any subsequent MP operation scale with O(LN2),
instead of the O(LE) complexity that would have been possible with a sparse computational
graph. The outcome is even more dramatic if we consider T&S models where MP is used
for propagating information at each time step, thus making the computational and memory
complexity O(LTN2), which would be unsustainable for any practical application at scale.
Conversely, the proposed score-based methods allow for the implementation of MP operators
with efficient scatter-gather operations that exploit the sparsity of A, thus resulting in an
O(LE) complexity.

5.2 Graph Distributions, Graphs Sampling, and Graphs Likelihood

The distribution pθ should be chosen to (i) efficiently sample graphs and evaluate their likeli-
hood and (ii) backpropagate the errors through the computation of the score [Equation (23)]
to parameters θ. In the following, we consider graph distributions s.t. each stochastic edge
j → i is associated with a weight Φi,j . The considered distributional parameters Φ ∈ RN×N
can then be learned as a function of the learnable parameters θ. In the case of static graphs,
we can directly consider Φ = θ; however, to account for the dynamic case, more complex
parametrizations are possible, e.g., by exploiting amortized inference to condition distribution
pθ on the observed values. Further discussion is deferred to the end of the section.

5.2.1 Binary Edge Sampler

A straightforward approach considers a Bernoulli random variable of parameter σ(Φi,j)
associated with each potential edge j → i. We refer to this graph learning module as binary
edge sampler (BES).

Sampling. For all pairs of sensors i, j ∈ S, the corresponding entries Ai,j of A can be
sampled independently from the associated distribution since Ai,j ∼ Bernoulli(σ(Φi,j)). Here,
the sampling from pθ can be done efficiently and is highly parallelizable.

Log-likelihood evaluation. Computing the log-likelihood of a sample is cheap and differen-
tiable as it corresponds to evaluating the binary cross-entropy between the sampled entries
of A and the corresponding parameters σ(Φ) of the Bernoulli distributions, i.e,

log pθ(A) =
N∑
i,j

Ai,j log(σ(Φi,j)) + (1−Ai,j) log(1− σ(Φi,j)). (24)

Sparsity priors can then be imposed by regularizing Φ, e.g., by adding a Kullback-Leibler
regularization term to the loss (Shang and Chen, 2021; Kipf et al., 2018). Graph generators
like BES are a common choice in the literature (Franceschi et al., 2019; Shang and Chen,
2021) as the independence assumption makes the mathematics amenable and avoids the often
combinatorial complexity of dealing with more structured distributions. In the experimental
sections, we demonstrate that even simple parametrizations like BES can be effective with
the proposed score-based learning.

12

Sparse Graph Learning from Spatiotemporal Time Series

5.2.2 Subset Neighborhood Sampler

Encoding structural priors about the sparseness of the graphs directly into pθ is often desirable
and might allow—depending on the problem—to remarkably reduce sample complexity. In
this section, we use the score matrix Φ ∈ RN×N to parametrize a stochastic top-k sampler
that we dub subset neighborhood sampler (SNS). For each n-th node, we sample a subset
SK ⊂ S = {1, . . . , N} of K neighboring nodes by sampling without replacement from a
categorical distribution parametrized by normalized log-probabilities Φn,:. The probability of
sampling neighborhood SK for each node n is given by

pθ(SK |n) =
∑

~SK∈P(SK)

pθ(~SK |n) =
∑

~SK∈P(SK)

∏
j∈~SK

exp(Φn,j)

1−
∑

k<j exp(Φn,k)
, (25)

where ~SK denotes an ordered sample without replacement and P(SK) is the set of all the
permutations of SK .

Sampling. Sampling can be done efficiently by exploiting the Gumbel-top-k trick (Kool
et al., 2019). Accordingly, we consider the parameter vector φ = Φn,: and denote with
[Gφ1 , . . . , GφN] the associated random vector of independent Gumbel random variables
Gφj ∼ Gumbel(φj); given a realization thereof [g1, . . . , gN], it is possible to show that
SK = arg top-K{gi : i ∈ S} follows the desired distribution (Kool et al., 2019).

Log-likelihood evaluation. Evaluating the score function is more challenging; in fact,
Equation (25) shows that directly computing pθ(SK |n) requires marginalizing over all the
possible K! orderings of SK . While exploiting the Gumbel-max trick can bring down
computation to O(2K) (Huijben et al., 2022; Kool et al., 2020), exact computation remains
untractable for any practical application. Luckily, pθ(SK |n) can be approximated efficiently
using numerical integration. Following the notation of Kool et al. (2019, 2020), for a subset
B ∈ S we define

LogSumExp
i∈B

(φi) , log

(∑
i∈B

expφi

)
, (26)

we use the notation φB = LogSumExpi∈B φ, and indicate with fu and Fu the p.d.f. and
c.d.f., respectively, of a Gumbel random variable Gumbel(u) with location parameter u.
Recall that Fu(z) = exp(− exp(−z + u)) and the following property of Gumbel random
variables:

GφB , max
i∈B

Gφi ∼ Gumbel(φB). (27)

With a derivation analogous to that of Kool et al. (2020), Equation (25) can be conveniently
rewritten by exploiting the property shown in Equation (27) as:

pθ(SK |n) = P
(

min
i∈SK

Gφi > max
i∈S\Sk

Gφi

)
(28)

= P
(
Gφi > GφS\Sk

, ∀i ∈ SK
)

(29)

=

∫ ∞
−∞

∏
i∈SK

(1−Fφi (g)) fφS\Sk
(g) dg (30)

13

Cini, Zambon and Alippi

With an appropriate change (details in Appendix B), the integral can be rewritten as

pθ(SK |n) = exp
(
φS\SK + c

) ∫ 1

0
uexp(φS\SK+c)−1

∏
i∈Sk

(
1− uexp(φi+c)

)
du, (31)

where c is a conditioning constant. We then approximate the integral in Equation (31) by
using the trapezoidal rule as

log pθ(SK |n) ≈ log(∆u) + φS\SK + c

+ LogSumExp
m=1,...,M−1

(exp
(
φS\SK + c

)
− 1
)

log(um) +
∑
i∈SK

log
(

1− uexp(φi+c)m

) , (32)

with M trapezoids and equally spaced intervals of length ∆u; the integrands are computed
in log-space—with a computational complexity of O(MK)—for numeric stability. The
expression in Equation (32) provides, then, a differentiable numeric approximation of the
SNS log-likelihood which can be used for backpropagation.

As previously discussed, the proposed SNS method allows for embedding structural priors
on the sparsity of the latent graph directly into the generative model. Fixing the number K
of neighbors might, however, introduce an irreducible approximation error when learning
graphs with nodes characterized by a variable number of neighbors. We solve this problem
by adding dummy nodes.

Adaptive number of neighbors. Given K, we add up to K − 1 dummy nodes to set
S (i.e. the set of candidate neighbors) and expand matrix Φ accordingly. At this point, a
neighborhood of exactly K nodes can be sampled and the log-likelihood evaluated according
to the procedure described above; however, dummy nodes are discarded to obtain the N ×N
adjacency matrix A. By doing so, hyperparameter K can also be used to cap the maximum
number of edges and set a minimum sparsity threshold. The resulting computational
complexity in the subsequent MP layers is at most O(NK).

5.3 Learning the Parameters of the Graph Distribution pθ

As previously mentioned, for both BES and SNS, we can parametrize pθ by associating a
score Φi,j to each edge j → i; i.e., by setting Φ = θ. Similarly, one could reduce the number
of parameters to estimate from N2 to 2dN , with d� N , by using amortized inference and
learning some factorization of Φ, e.g., Φ = θsθ

>
t where θs, θt ∈ RN×d (e.g., see Kipf and

Welling 2016; Kipf et al. 2018). Modeling dynamic graphs instead requires accounting for
observations Xt−W :t at each considered time step t. For example, one can consider models
s.t.

hit = Encoder
(
xit−W :t,u

i
t−W :t,v

i
)
, φi,j = a>σ

(
W [hit||h

j
t] + b

)
, (33)

where Encoder(·) indicates a generic encoding function for in the input window (e.g., an
MLP or an RNN), σ a nonlinear activation function, W ∈ Rd×2dh is a learnable weight
matrix, b ∈ d a learnable bias and a ∈ Rd the learnable parameters of the output linear
transformation.

14

Sparse Graph Learning from Spatiotemporal Time Series

6. Reducing the Variance of the Estimator

MC estimation is the most commonly used technique to approximate the gradient in Equa-
tion (23). Although MC estimators are unbiased, the quality of the estimate can be
dramatically impacted by its variance: as such, variance reduction is a critical step in the
use of score-based estimators. As for any MC estimator, a direct method to reduce the
variance consists in increasing the number M of independent samples used to compute the
estimator, which results in reducing the variance by a factor 1/M w.r.t. the one-sample
estimator. In our setting, sampling M adjacency matrices results in M evaluations of the
cost and the associated score and, in turn, to an often non-negligible computational overhead.
In this section, we provide more sample-efficient alternatives, based on the control variates
method. Our approach grants a significant variance reduction while requiring only one extra
evaluation of the cost function. That being said, our approach to variance reduction is
orthogonal to increasing the sample size, which remains viable to further improve the quality
of the gradient estimator.

6.1 Control Variates and Baselines

The control variates method provides a variance reduction method for MC estimator of
Epθ [g(x)]. It consists in introducing an auxiliary quantity h(x) for which we know how to
efficiently compute the expectation under the sampling distribution pθ (Mohamed et al., 2020).
Then, a function g̃ = g − β(h− E[h]) is defined, for some constant β, such that g̃ has the
same expected value of g, i.e., E[g̃(x)] = E[g(x)], but lower variance (Var[g̃(x)] < Var[g(x)]).
Quantity h is called control variate, while β is often referred to as baseline. In score-
based methods, a computationally cheap choice is to use the score function itself as control
variate, i.e., referring to our case where g(A) , δt(A;ψ)∇θ log pθ(A) (Equation (23)), we
set h(A) , ∇θ log pθ(A), for which Epθ [h(A)] = 0, and obtain

∇θLt (ψ, θ) = Epθ [(δt(A;ψ)− β)∇θ log pθ(A)] . (34)

This narrows the problem to finding appropriate values for baseline β.
Since for any f1, f2, Var[f1 + f2] = Var[f1] + Var[f2] + 2Cov[f1, f2], the optimal baseline

β∗ in Equation (34) is given by

β∗ ,
Cov[δt(A;ψ)∇θ log pθ(A),∇θ log pθ(A)]

Varpθ [∇θ log pθ(A)]
=

Epθ [δt(A;ψ)(∇θ log pθ(A))2]

Epθ [(∇θ log pθ(A))2]
. (35)

Unfortunately, finding the optimal β∗ can be as hard as estimating the desired gradient in
Equation (23); moreover, note also that β∗ = β∗(Xt), as δt depends on the observations Xt.

Therefore, we opt for the approximation

Epθ [δt(A;ψ)(∇θ log pθ(A))2] ≈ Epθ [δt(A;ψ)]Epθ [(∇θ log pθ(A))2], (36)

and obtain β∗ ≈ Epθ [δt(A;ψ)]. Note that a similar choice of baseline is very popular, for
instance, in reinforcement learning applications (e.g., see advantage actor-critic estima-
tors, Sutton et al. 1999; Mnih et al. 2016). However, since approximating Epθ [δt(A;ψ)] would
require the introduction of an additional estimator, we rely on a different approximation

15

Cini, Zambon and Alippi

by moving the expectation inside the cost function and obtaining β∗ ≈ δt(µ;ψ), where
µ = Epθ [A].

We recall that, in general, µ is dense and its components are real numbers, therefore
computing δt(µ;ψ) would require evaluating the output of the model w.r.t. a dense adjacency
matrix, potentially outside the well-behaved region of the input space, and to compute mes-
sages w.r.t. each node pair, thus negating any computational complexity benefit. Accordingly,
we substitute µ with the Fréchet mean adjacency matrix Aµ, relying on the generalized
notion of mean for binary adjacency matrices introduced in Section 3.3. We then choose as
β̂ such that

β̂ , δt(A
µ;ψ). (37)

The computational cost of evaluating β̂ corresponds then to that of a single evaluation of
the cost function δt w.r.t. the binary and eventually sparse adjacency matrix Aµ.

Finally, we point out that, even though β̂ may differ from β∗, the variance is reduced
as long as 0 < β̂ < 2β∗. We indicate the modified cost, i.e., the cost minus the baseline
as δ̃t(A;ψ) = δt(A;ψ)− δt(Aµ;ψ); the modified cost is computed after each forward pass
and used to update the parameters of pθ. In next Sections 6.2 and 6.3 we derive analytic
solutions for finding Aµ for BES and SNS, respectively.

6.2 Baseline for BES

We start by recalling the notation from previous sections. Denote expectation Epθ [A] with
respect to BES as µ ∈ [0, 1]N×N ⊂ RN×N and with Aµ the binary Fréchet mean adjacency
matrix with respect to the support A = {0, 1}N×N of the distribution pθ associated with
BES. The main result of the section is the following proposition which allows us to provide a
baseline as

β̂BES , δt (bσ(Φ)e;ψ) , (38)

where bΦe indicates the element-wise rounding of the components of the real matrix Φ to
the closest integer (either 0 or 1).

Proposition 1 Consider BES with associated distribution pθ and support A. Then,
• the expected matrix Epθ [A] is µ = σ(Φ), with σ applied element-wise;

• the Fréchet mean adjacency matrix Aµ = bµe = I(Φ > 0).

Proof As each component of A ∼ pθ is independent from the others, µi,j can be considered
element-wise as Epθ [Ai,j] = σ(Φi,j), for all i, j = 1, . . . , N . Similarly, each component of Aµ

can be computed independently as well, by relying on Lemma 2.

Lemma 2 The minimum of the Fréchet function FH can be expressed as

min
A∈A

FH(A) = min
A∈A

N∑
i,j=1

(µi,j −Ai,j)
2 . (39)

To conclude the proof of Preposition 1, we observe that the minimum of Equation (39) is
attained at Aµ = bµe, that is Aµ

i,j = 1 for all µi,j > 1/2 (or Φ > 0), and 0 elsewhere. The
proof of the Lemma 2 is deferred to Appendix A.

16

Sparse Graph Learning from Spatiotemporal Time Series

6.3 Baseline for SNS

Similarly to what has been done for BES in Proposition 1, we provide analogous results for
SNS, with the added technical complexity that, in this case, edges j → i and j′ → i are not
independent. Nevertheless, the result remains intuitive:

β̂SNS , δt (Aµ;ψ) , with Aµ
i,j = I (Φi,j ∈ top-K{Φi,:}) , ∀ i, j ∈ S. (40)

The proof that Aµ is indeed the Fréchet mean for SNS follows Preposition 3. Recall that,
for SNS, the support of pθ is that of directed K-NN graphs in Equation (42), where the
neighborhood of each node is sampled independently. Equation (40) is derived by considering
a neighborhood of fixed size K; however, the analysis remains valid for the adaptive case
discussed in Section 5.2.2.

In the SNS case, each entry µn,i of µ is

µn,i = pθ(i ∈ SK |n) =
∑

S′K : i∈S′K

pθ(S
′
K |n), (41)

where the sum is taken over all subsets S′K of S of K elements containing node i. Even if
marginalizing over all possible sampled subsets of S′K has combinatorial complexity, we show
that Aµ can be derived without directly computing µ as stated in Proposition 3.

Proposition 3 Consider an SNS distribution with support

A =

{
A ∈ {0, 1}N×N :

∑N

j=1
Ai,j = K, ∀ i

}
. (42)

Then, the Frechét mean Aµ is given by

Aµ
i,j = I (Φi,j ∈ top-K{Φi,:}) , ∀ i, j ∈ S. (43)

Proof Computing Aµ corresponds to solving the optimization problem

min
A∈A

FH (A) = min
A∈A

EA′∼pθ
[
H(A,A′)

]
. (44)

Start by rewriting the Fréchet function as

FH(A) = EA′∼pθ
[
H(A,A′)

]
(45)

= EA′∼pθ

 N∑
n,i=1

An,i − 2An,iA
′
n,i +A′n,i

 (46)

=

N∑
n,i=1

An,i (1− 2µ′n,i)︸ ︷︷ ︸
wn,i

+

N∑
n,j=1

µn,i︸ ︷︷ ︸
c

. (47)

where µn,i = pθ (i ∈ SK |n) = pθ (An,i = 1) and c is a constant. The proof follows from
Lemma 4.

17

Cini, Zambon and Alippi

Scores, Baselines
& Costs

MP-Layer MP-Layer

indep.
sampling

Graph learning

Figure 2: Overview of the learning architecture with layer-wise sampling and surrogate
objective. The graph module samples a graph for each MP layer of predictor Fψ.

Lemma 4 Let pθ be an SNS distribution with associated log-probabilities Φ. Then ∀n, i, j ∈ S

pθ (An,i = 1) ≥ pθ (An,j = 1) ⇐⇒ Φn,i ≥ Φn,j . (48)

The proof of Lemma 4 is provided in Appendix A. Following Equation (47), the optimization
problem in Equation (44) becomes the linear program

minimize
N∑
i=1

N∑
j=1

wi,jAi,j

s.t.
N∑
j=1

Ai,j = K;

Ai,j ∈ {0, 1} ∀i = 1, . . . , N,

(49)

where wi,j = 1− 2pθ (Ai,j = 1). Since Lemma 4 grants that, for each i, the K-smallest wi,j
weights correspond row-wise to the top-K scores Φi,j , the solution Aµ to the linear program
is given by Aµ

i,j = I (Φi,j ∈ top-K{Φi,:}) and, hence, the thesis.

7. Layer-wise Sampling and Surrogate Objective

As a final step, we can leverage on the structure of MP neural networks to rewrite the
gradient ∇θLt (ψ, θ). This formulation allows for obtaining a different estimator for the case
where we sample a different A(l) at each of the L MP layers of Fψ (e.g., see Equation (10)).
A schematic overview of the procedure is shown in Figure 2 where A:L = {A(l)}Ll=1.

18

Sparse Graph Learning from Spatiotemporal Time Series

Proposition 5 Consider family of models Fψ(· ;A:L) with exactly L message-passing layers
propagating messages w.r.t. different adjacency matrices A(l), l = 1, . . . , L, sampled from
pθ (either BES or SNS). Assume that the cost function δt can be written as the summation
over node-level costs δit. Then

∇θLt (ψ, θ) = Epθ

[
L−1∑
l=1

δt(A
:L;ψ)∇θ log pθ(A

(l)) +
N∑
i=1

δit(A
:L;ψ)∇θ log pθ(A

(L)
i,:)

]
, (50)

where A(L)
i,: denotes the i-th row of adjacency matrix A(L), i.e., the row corresponding to the

neighborhood of the i-th node.

Proposition 5 holds for all parametrizations of pθ as long as the neighborhood of each
node (i.e., the rows of A) are sampled independently. Furthermore, note that almost all of
the cost functions typically used for node-level tasks satisfy the assumption, e.g.,

Ŷt:t+H = Fψ
(
Xt−W :t;A

:L
)
, δt(A

:L;ψ) =
N∑
i=1

∥∥∥yit:t+H − ŷit:t+H∥∥∥p
p

=
N∑
i=1

δit(A
:L;ψ).

The following provides proof of Proposition 5 and presents a surrogate objective function
inspired by Equation (50).

Proof A proof can be derived by noticing the independence of δit(A:L;ψ) and pθ(A
(L)
j,:) for

i 6= j, and by exploiting the fact that with both BES and SNS rows of each A(l) are sampled
independently. For the sake of readability, we omit the dependency of δt and δit from A:L

and ψ. The proof follows:

∇θLt (ψ, θ) = Epθ

[
δt∇θ log pθ(A

:L)
]

(51)

= Epθ

[
L−1∑
l=1

δt∇θ log pθ(A
(l))

]
+ Epθ

[
δt∇θ log pθ(A

(L))
]

︸ ︷︷ ︸
(∗)

. (52)

By considering the second term:

(∗) = Epθ

[
δt∇θ log pθ(A

(L))
]

(53)

= Epθ

 N∑
i=1

δit

N∑
j=1

∇θ log pθ(A
(L)
j,:)

 (54)

= Epθ

[
N∑
i=1

δit∇θ log pθ(A
(L)
i,:)

]
+ Epθ

 N∑
i=1

δit
∑
j 6=i
∇θ log pθ(A

(L)
j,:)

 .
︸ ︷︷ ︸

(∗∗)

(55)

The two factors in (∗∗) are independent since δit depends only on A:L−1 and AL
i,:, hence

(∗∗) =

N∑
i=1

Epθ

[
δit
]∑
j 6=i

Epθ

[
∇θ log pθ(A

(L)
j,:)
]

︸ ︷︷ ︸
=0

= 0. (56)

19

Cini, Zambon and Alippi

Putting everything together, we get Equation (50) and the proof is completed.

7.1 Surrogate Objective

Intuitively, the second term in Equation (50) can be interpreted as directly rewarding
connections that lead to accurate final predictions w.r.t. the local cost δi. Besides providing
a more general MC estimator, Preposition 5 motivates us in considering a similar surrogate
approximate loss L̂t (ψ, θ) for the case where we use a single A for all layers, i.e., we consider

∇θL̂t (ψ, θ) = Epθ

[
λδt(A;ψ)∇θ log pθ(A) +

∑N

i=1
δit(A;ψ)∇θ log pθ(Ai,:)

]
, (57)

as gradient to learn pθ. Equation (57) is developed from Equation (50) by considering a
single sample A ∼ pθ and introducing the hyperparameter λ. Note that, in this case, L̂t (ψ, θ)
is an approximation of the true objective with a reweighting of the contribution of each
δi(A;ψ). Following this consideration, λ can be interpreted as a trade-off between local and
global cost. In practice, we set λ = 1/N , so that the two terms are roughly on the same
scale. Empirically, we observed that using the modified objective consistently leads to faster
convergence; see Section 8.

8. Experiments

To validate the effectiveness of the proposed framework, we carried out experiments in several
settings on both synthetic and real-world datasets. In particular, a set of experiments focuses
on the task of graph identification where the objective is that of retrieving graphs that
better explain a set of observations given a (fixed) predictive model. The second collection
of experiments shows instead how the proposed approach can be used as a graph-learning
module in an end-to-end forecasting architecture.

8.1 Datasets

Dataset # nodes # edges # steps

GPVAR 30 98 30000
PEMS-BAY 325 2369 52128
METR-LA 207 1515 34272
AQI (Beijing) 36 180 8760
AQI (Tianjin) 27 135 8760

Table 1: Additional information on the considered datasets.

We consider one synthetic dataset and 3, openly available, real-world benchmarks.

• GPVAR – The GPVAR synthetic dataset consists of signals generated by recursively
applying a polynomial Graph VAR filter (Isufi et al., 2019) and adding Gaussian noise
at each time step: this results in complex, yet known and controllable, spatiotemporal

20

Sparse Graph Learning from Spatiotemporal Time Series

dynamics. In particular, analogously to Zambon and Alippi (2022), we consider the
data generating process

Xt = tanh

 L∑
l=0

Q∑
q=1

Θl,qÃ
lXt−q

+ ηt (58)

where Ã = I + A (with I being the identity matrix), Θ ∈ R(L+1)×Q denotes the
model parameter and ηt ∼ N (0, I) is a Gaussian noise vector. Model parameters, with
L = Q = 2, are set as described in (Zambon and Alippi, 2022) and used to generate a
trajectory of T = 30000 steps. We use 70/10/20% data split for training, validation,
and testing, respectively.

• AQI – The Air Quality Index (AQI) dataset consists of hourly readings from air quality
monitoring stations scattered over different Chinese cities. AQI has been previously
used as a benchmark for time series imputation methods (Yi et al., 2016; Cini et al.,
2022; Marisca et al., 2022). We use the same preprocessing and data splits of previous
works (Yi et al., 2016). The ground-truth graph is obtained by considering the pairwise
distance of the sensors, following the procedure used in (Cini et al., 2022).

• METR-LA and PEMS-BAY – The METR-LA and PEMS-BAY datasets from (Ja-
gadish et al., 2014; Li et al., 2018) are two popular benchmarks in the traffic forecasting
literature. The datasets consist of traffic speed measurements taken at crossroads in
Los Angeles and San Francisco, respectively. We use the same preprocessing and data
splits of previous works (Wu et al., 2019). The underlying graphs are extracted from
the geographic position of the sensors following the same steps of Wu et al. (2019).

Additional relevant information about the datasets is provided in Table 1.

8.2 Controlled Environment Experiments

To gather insights on the impact of each aspect of the methods introduced so far, we start
by using the controlled environment provided by the GPVAR dataset.

8.2.1 Graph Identification and Time Series Forecasting

In the first setup, we consider a GPVAR filter as the predictor and assume known the
true model parameters, i.e., the coefficients of the filter, to decouple the assessment of the
graph-learning module from that of the forecasting module. Then, in a second scenario,
we learn the graph while, at the same time, fitting the filter’s parameters. Figure 3 shows
the validation mean absolute error (MAE) after each training epoch by using BES and
SNS samplers, with and without baseline β̂ for variance reduction, and when SNS is run
with dummy nodes for adaptive node degrees. The number of maximum neighbors is set to
K = 5, which is the maximum degree of the ground truth graph. In particular, Figure 3a
and Figure 3b show results in the graph identification task for the vanilla gradient estimator
derived from Equation (22) and for the surrogate objective from Equation (57), respectively.
To match the optimal prediction, models have to perfectly retrieve the underlying graph.
During the evaluation, we used Aµ as input to the predictor instead of sampling pθ. Results
allow us to make the following comments.

21

Cini, Zambon and Alippi

0 20 40 60 80 100
Epoch

(a)

0.3

0.4

0.5

0.6

0.7

0.8
V

al
id

at
io

n
M

A
E

Graph identification - Standard objective

0 20 40 60 80 100
Epoch

(b)

0.3

0.4

0.5

0.6

0.7

0.8

Graph identification - Surrogate objective

0 20 40 60 80 100
Epoch

(c)

0.3

0.4

0.5

0.6

0.7

0.8

Joint graph and model learning

BES
SNS
SNS with dummies
With baseline
Without baseline
Optimal

Figure 3: Experiments on GPVAR. All the curves show the validation MAE after each
training epoch.

Impact of the Baseline The first striking outcome is the effect of baseline β̂ in both the
considered configurations which dramatically accelerates the learning process.

Graph distribution The second notable result is that, although both SNS and BES are
able to retrieve the underlying graph, the sparsity prior in SNS yields faster convergence
w.r.t. the number of samples seen during training, as the validation curves are steeper
for SNS; note that the approximation error induced by having a fixed number of
neighbors is effectively removed with the dummy nodes.

Surrogate objective Figure 3b shows that the surrogate objective contributes to acceler-
ating learning even further for all considered methods.

Joint training Finally, Figure 3c reports the results for the joint training of the predictor
and graph module with the surrogate objective. The curves, in this case, were obtained
by initializing the parameters of the filter randomly and specifying an order of the
filter higher than the real one; nonetheless, the learning procedure was able to quickly
converge to the optimum when using as baseline the cost evaluated w.r.t. Aµ.

22

Sparse Graph Learning from Spatiotemporal Time Series

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

V
al

id
at

io
n

M
A

E

Graph id. - Surrogate objective (no baseline)
λ = 1.0
λ = 0.8
λ = 0.6
λ = 0.4
λ = 0.2
λ = 1/N

= 1/30
Optimal

Figure 4: Sensitivity analysis on λ for the surrogate objective.

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

V
al

id
at

io
n

M
A

E

Graph id. - Surrogate objective (with baseline)

K = 30
K = 20
K = 10
K = 5
Optimal

Figure 5: Sensitivity analysis on K for SNS.

8.2.2 Sensitivity Analysis

To further assess the impact of the surrogate objective and that of the structural priors
embedded into the SNS parametrization, we run a sensitivity analysis on both these aspects.

Regarding the surrogate objective, we run a sensitivity analysis on the hyperparameter λ,
which was kept fixed to λ = 1/N in the experiments in Figure 3. In particular, we repeated
the experiment on graph identification setting by considering the BES parametrization and
values for λ in the range [1/N = 1/30, 1]. We did not use the baseline to accentuate the
sensitivity to λ. Results, shown in Figure 4, demonstrate the effectiveness of the surrogate
loss in accelerating learning by introducing and reweighting the local cost term and how
decreasing the weight of the global cost leads to faster convergence.

Finally, we assess the impact of the value of the hyperparameter K on the learning
speed for the SNS sampler. In this case, we consider the graph identification experiment
with the baseline for variance reduction. We run experiments with K ∈ (5, 10, 20, 30) and

23

Cini, Zambon and Alippi

0 20 40
Epoch

(a)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

V
al

id
at

io
n

M
A

E

GPVAR(3, 4)

0 100 200 300 400
Epoch

(b)

0.30

0.35

0.40

0.45

0.50

0.55

0.60
GPVAR(4, 6)

Score-based
Path-wise
Straight-through

Figure 6: Comparison of different estimators on the joint training settings in GPVAR.

a number of dummy nodes equal to K − 1. Results in Figure 5 show that while the use of
dummy nodes reduces the impact of a wrong assessment of K, overestimating the maximum
number of neighbors can nonetheless lead to slower convergence. In particular, given these
settings and hyperparameters, SNS fails to converge to the optimal solution for K = 30, i.e.,
a number of neighbors equal to the number of nodes. As a general recommendation, we
argue that using SNS can be beneficial as long as K < N/2, while for larger values of K a
BES parametrization is preferable due to the reduced overhead in sampling and likelihood
evaluation.

8.2.3 Comparison with Path-wise and Straight-through Estimators

In this section, we assess the effectiveness of the proposed score-function estimator (with
baseline and surrogate objective) against both the path-wise estimator, based on the Concrete
continuous relaxation of Bernoulli random variables (Maddison et al., 2017), and the straight-
through estimator (Bengio et al., 2013). We consider the controlled joint graph and model
learning scenario from Section 8.2.1. In particular, for all estimators, we consider the BES
parametrization for the graph distribution and the model family of Graph VAR filters of
spatial order 3 and temporal order 4—as in the joint training experiment of Section 8.2.1—and
a more difficult scenario corresponding to filters up to orders 4 and 6, respectively.

The results of the experiment are shown in Figure 6. In the simpler setting (Figure 6a),
both the path-wise and straight-through estimators appear to converge faster than the
score-based approach, yet they reach sub-optimal results—a side-effect that we attribute to
the bias of the path-wise and straight-through estimators. In the harder setting (Figure 6b),
instead, our method achieves better performance both in terms of forecasting accuracy and
sample complexity. This behavior might be associated with the complex dynamics of learning
the relational structure given a larger family of predictive models.

8.3 Real-World Datasets

The following discusses the application of the proposed method w.r.t. data coming from
real-world scenarios.

24

Sparse Graph Learning from Spatiotemporal Time Series

8.3.1 Graph Identification in AQI

For graph identification, we set up the following scenario. From the AQI dataset, we extract
2 subsets of sensors that correspond to monitoring stations in the cities of Beijing and
Tianjin, respectively. We build a graph for both subsets of data by constructing a K-NN
graph of the stations based on their distance; we refer to these as ground-truth graphs.
Then, we train a different predictor for each of the two cities, based on the ground-truth
graph. In particular, we use a TTS STGNN with a simple architecture consisting of a
GRU (Chung et al., 2014) encoder followed by 2 MP layers. As a reference value (sanity
check), we also report the performance achieved by a GRU trained on all sensors, without
using any spatial information. Performance is measured in terms of 1-step-ahead MAE.

Tested on

Trained on Beijing Tianjin

Beijing 9.43 ± 0.03 10.62 ± 0.05

Tianjin 9.55 ± 0.06 10.56 ± 0.03

Baseline 10.21 ± 0.01 11.25 ± 0.04

Table 2: AQI experiment.

Results for the two models, trained with early stopping
on the validation set and tested on the hold-out test
set for the same city (i.e., in a transductive learning
setting) are shown in the main diagonal of Table 2.
In the second stage of the experiment, we consider an
inductive setting: we train the model above on one
of the two cities as a source, freeze its parameters,
discard the ground-truth graph w.r.t. the left-out city,
and train our graph learning module (with the SNS
parametrization) to maximize the forecasting accuracy.
The idea is to show that our module is able to recover a topology that gives performance
close to what would be achievable with the ground-truth graph. Results, reported in the off-
diagonal elements of Table 2, show that our approach is able to almost match the performance
that would have been possible to achieve by fitting the model directly on the target dataset
with the ground-truth adjacency matrix; moreover, the performance is significantly better
than that of the reference GRU.

8.3.2 Joint Training and Forecasting in Traffic Datasets

Finally, we test our approach on 2 widely used traffic forecasting benchmarks. Here we
took the full-graph attention architecture proposed in (Satorras et al., 2022), removed the
attention gating mechanism, and used the graph learned by our module to sparsify the learned
attention coefficients; in particular, we considered the SNS sampler with K = 30, 10 dummy
nodes and surrogate objective (λ = 1/N). We used the same hyperparameters of (Satorras
et al., 2022), except for the learning rate schedule and batch size (see supplemental material).
As a reference, we also tested results using the ground-truth graph, a graph with only self-
loops (i.e., with A set to the identity matrix), as well as a random graph sampled from the
Erdös-Rényi model with p = 0.1. For MTGNN (Wu et al., 2020) and GTS we report results
obtained by running the authors’ code. More details are provided in Appendix C. Note that
GTS is considered the state of the art for methods based on path-wise estimators (Zügner
et al., 2021). Results in Table 3 show the MAE performance for 15, 30 and 60 minutes
time horizons achieved over multiple independent runs. Our approach is always competitive
w.r.t. the state-of-the-art alternatives, and statistically better than all the baselines with
reference adjacency matrices. Note that, using a random adjacency matrix—which essentially
corresponds to randomly sparsifying the attention coefficients—is often competitive with more

25

Cini, Zambon and Alippi

METR-LA PEMS-BAY

Model MAE @ 15 MAE @ 30 MAE @ 60 MAE @ 15 MAE @ 30 MAE @ 60

Full attention 2.727 ± .005 3.049 ± .009 3.411 ± .007 1.335 ± .003 1.655 ± .007 1.929 ± .007

GTS 2.750 ± .005 3.174 ± .013 3.653 ± .048 1.360 ± .011 1.715 ± .032 2.054 ± .061

MTGNN 2.690 ± .012 3.057 ± .016 3.520 ± .019 1.328 ± .005 1.655 ± .010 1.951 ± .012

Our (SNS) 2.725 ± .005 3.051 ± .009 3.412 ± .013 1.317 ± .002 1.620 ± .003 1.873 ± .005

Adjacency
–Truth 2.720 ± .004 3.106 ± .008 3.556 ± .011 1.335 ± .001 1.676 ± .004 1.993 ± .008

–Random 2.801 ± .006 3.160 ± .008 3.517 ± .009 1.327 ± .001 1.636 ± .002 1.897 ± .003

–Identity 2.842 ± .002 3.264 ± .002 3.740 ± .004 1.341 ± .001 1.684 ± .001 2.013 ± .003

Table 3: Results on the traffic datasets.

0 200 400 600
Number of nodes

0

5

10

15

20

25

G
PU

m
em

.(
G

B
)

OOM

Score-based

200 400 600
Number of nodes

1

2

3

4

5

s/
ep

oc
h

(s
)

Straight-through

Figure 7: Computational scalability of the proposed estimator against the straight-through
method.

complex approaches which suggests that, in some datasets, having access to the ground-truth
graph is not decisive for achieving high performance. That being said, our graph learning
methods consistently improve performance w.r.t. the naïve baselines.

8.4 Scalability

To assess the scalability of the proposed method, we consider a T&S model consisting of a
message-passing GRU (MPGRU, Cini et al. 2022), i.e., a GRU with gates implemented by
MPNNs. In particular, we consider a simple MP scheme s.t.

z
i,(l)
t =

∑
j∈N (i)

MLP
(
z
i,(l−1)
t , z

j,(l−1)
t

)
. (59)

The resulting model has a space and time complexity that scales as O(LTE). By considering
the same controlled environment of the experiments in Section 8.2 and varying the number

26

Sparse Graph Learning from Spatiotemporal Time Series

of nodes in the graph underlying the generated data, we empirically assessed the time and
memory cost of learning a graph distribution with our SNS approach against the straight-
through approach. Note that, while the straight-through estimator allows for a sparse
forward pass at inference, the processing is nonetheless dense at training time—thus requiring
O(LTN2) time and space, instead of O(LTE).

The resulting models are trained on mini-batches of 4 samples with a window size of 8
steps for 50 epochs, each consisting of 5 mini-batches. The empirical results in Figure 8.4
show measured GPU usage and latency for the above settings. The computational advantages
of the sparse message-passing operations of our method are evident.

9. Conclusions

In this paper, we propose a methodological framework for learning graph distributions from
spatiotemporal data. Our novel probabilistic framework relies upon score-function gradient
estimators that allow us for keeping the computation sparse throughout both the training and
inference phases. We then develop variance-reduction techniques for our method to obtain
accurate estimates for the training gradient. The proposed graph learning modules are applied
to the time series forecasting task where they can be used for both graph identification and
as components of an end-to-end architecture. Empirical results support our claims, showing
the effectiveness of the framework. Notably, we achieve forecasting performance on par
with state-of-the-art alternatives, while maintaining the benefits of graph-based processing.
Possible directions for future research include the assessment of the proposed method w.r.t.
inference of dynamic adjacency matrices, distribution agnostic variance reduction methods,
and, in particular, the design of advanced forecasting architectures to achieve accurate
predictions at scale. Furthermore, it would interesting to assess the combination of the
proposed estimators with orthogonal variance reduction techniques (e.g., Kool et al. 2020)
and data-driven baselines. Finally, future works might investigate the application of the
recently proposed implicit maximum likelihood estimators (Niepert et al., 2021; Minervini
et al., 2023) to the settings explored in this paper.

Acknowledgements

This work was supported by the Swiss National Science Foundation project FNS 204061:
HigherOrder Relations and Dynamics in Graph Neural Networks. The authors wish to
thank the Institute of Computational Science at USI for granting access to computational
resources.

Appendix

Appendix A. Deferred Proofs

This Appendix provides the proofs for Lemma 2 and Lemma 4.

27

Cini, Zambon and Alippi

A.1 Proof of Lemma 2

Note that for all A,A′ ∈ A , {0, 1}N×N the Fréchet function FH can be expressed as

FH(A′) = FF (A′) , EA∼pθ
[
‖A−A′‖2F

]
(60)

w.r.t. the Frobenius norm, therefore we have also

min
A′∈A

FH(A′) = min
A′∈A

FF (A′). (61)

Note now that

FF (A′) = Epθ

[
‖A−A′‖2F

]
= Epθ

[
‖A± µ−A′‖2F

]
(62)

= Epθ

[
‖A− µ‖2F

]
+ 2Epθ

[
〈A− µ,µ−A′〉F

]
+ Epθ

[
‖µ−A′‖2F

]
(63)

= Epθ

[
‖A− µ‖2F

]
+ 2 〈Epθ [A]− µ,µ−A′〉F︸ ︷︷ ︸

=0

+‖µ−A′‖2F . (64)

Moreover, as the first term does not depend on A′, the minimum of FF (A′) is achieved at
the minimum of

‖µ−A′‖2F =
N∑

i,j=1

(µi,j −A′i,j)2. (65)

A.2 Proof of Lemma 4

The neighborhood of each node n is sampled independently from the others, so we derive
the proof for a reference node n and denote φ = Φn,:.

Note that, for every pair of node i, j ∈ S and scalar g ∈ R

P(Gφi ≥ g) ≥ P(Gφj ≥ g) (66)

⇐⇒ e−e
−(g−φi) = Fφi(g) ≤ Fφj (g) = e−e

−(g−φj) (67)

⇐⇒
(
e−e

−g
)eφi

≤
(
e−e

−g
)eφi

. (68)

Being e−e−g < 1 and the ex monotone we obtain

P(Gφi ≥ g) ≥ P(Gφj ≥ g) ⇐⇒ eφi ≥ eφj ⇐⇒ φi ≥ φj . (69)

P (An,i = 1) can then be rewritten as

P(An,i = 1) = P(Gφi ∈ top-K{Gφl : l ∈ S}) = P(Gφi ≥ G) (70)

=

∫
P(Gφi ≥ g)fG(g) dg (71)

with G being the random variable associated with theK-th largest realization in {Gφl : l ∈ S}
and fG its p.d.f., we obtain

P(An,i = 1) ≥ P(An,j = 1)
(Eq. 71)⇐⇒ P(Gφi ≥ g) ≥ P(Gφj ≥ g)

(Eq. 69)⇐⇒ φi ≥ φj , (72)

concluding the proof.

28

Sparse Graph Learning from Spatiotemporal Time Series

Appendix B. Details on the Computation of the SNS Likelihood

In this appendix, we provide all the steps to obtain the rewriting of the likelihood on an SNS
sample introduced in Equation (31). The derivations provided here follow from the results
of Kool et al. (2020).

pθ(SK |i) = P
(

min
i∈SK

Gφi > max
i∈S\Sk

Gφi

)
= P

(
min
i∈SK

Gφi > GφS\Sk

)
= P

(
Gφi > GφS\Sk

, ∀i ∈ SK
)

=

∫ ∞
−∞

fφS\Sk
(g)P (Gφi > g,∀i ∈ SK) dg

=

∫ ∞
−∞

∏
i∈SK

(1−Fφi (g)) fφS\Sk
(g) dg

=

∫ 1

0

∏
i∈SK

(
1−Fφi

(
F−1φS\Sk (v)

))
dv

{
v=FφS\Sk

(g)

}
=

∫ 1

0

∏
i∈Sk

(
1− vexp(φi−φS\SK)

)
dv

= exp (b)

∫ 1

0
uexp(b)−1

∏
i∈Sk

(
1− uexp(φi−φS\Sk+b)

)
du

{
u=vexp (−b)

}
= exp

(
φS\SK + c

) ∫ 1

0
uexp(φS\SK+c)−1

∏
i∈Sk

(
1− uexp(φi+c)

)
du

{
c=b−φS\SK

}
,

which corresponds to the desired rewriting.

Appendix C. Experiments Details

All the code for the experiments has been developed in Python using the following open-source
libraries:

• PyTorch (Paszke et al., 2019);

• PyTorch Geometric (Fey and Lenssen, 2019);

• Torch Spatiotemporal (Cini and Marisca, 2022);

• PyTorch Lightning (Falcon and The PyTorch Lightning team, 2019);

• numpy (Harris et al., 2020);

29

Cini, Zambon and Alippi

furthermore, we relied on Neptune2 (neptune.ai, 2021) for logging experiments. For GTS, we
used the code provided by the authors3 to obtain the results shown in the table, however we
fixed a bug in the performance evaluation present in the official implementation4.

Experiments were run on a cluster equipped with Nvidia Titan V and GTX 1080 GPUs.
The code to reproduce the experiments of the paper is available online5.

C.1 Synthetic Experiments

For the graph identification experiments, we simply trained the different graph identification
modules using the Adam optimizer with a learning rate of 0.05 to minimize the absolute error.
For the joint graph identification and forecasting experiment, we train on the generated
dataset a GPVAR filter with L = 3 and Q = 4 with parameters randomly initialized and
fitted with Adam using the same learning rate for the parameters of both graph filter and
graph generator. To avoid numeric instability, scores Φ were soft-clipped to the interval
(−5, 5) by using the tanh function.

C.2 AQI Experiment

For the experiments on AQI we use a simple TTS model with a GRU encoder with 2 hidden
layers, followed by a GNN decoder with 2 graph convolutional layers updating representations
as:

Z(l) = σ
(
D−1AZ(l−1)W + V Z(l−1)

)
(73)

where W ,V ∈ Rdz×dz are learnable weight matrices and σ is a nonlinear activation function
(in particular we use Swish (Ramachandran et al., 2017)). All layers have a hidden size of 64
units. We use an input window size of 24 steps and train for 100 epochs the models with the
Adam optimizer with an initial learning rate of 0.005 and a multi-step learning rate scheduler.
For the GRU baseline, we use a single recurrent layer of size 64 followed by an MLP decoder
with 1 hidden layer with 32 units. For the graph module, we use SNS with K = 5 and 4
dummy nodes and train with Adam with a learning rate of 0.01 for 200 epochs. At test time,
we used models with weights corresponding to the lowest validation error across epochs.

C.3 Traffic Experiment

As reported in the paper, we use the same architecture and hyperparameters of the full graph
model of Satorras et al. (2022), except for the gating mechanism which was removed for the
graph-based baselines. We train the models for a maximum of 200 epochs with Adam and an
initial learning rate of 0.003 and a multi-step scheduler (analogously to Satorras et al. (2022).
Note that we used an initial learning rate lower than the one used in (Satorras et al., 2022)
as we observed it was on average leading to better performance. In each epoch, we used 200
mini-batches of size 64 for all the model variations, except for the full-attention model for
which –on PEMS-BAY– we had to limit the batch size to 16 due to GPU memory limitations.
For the graph learning module, we used SNS with K = 30 and 10 dummy nodes. We also

2. https://neptune.ai/
3. https://github.com/chaoshangcs/GTS
4. https://github.com/chaoshangcs/GTS/issues/19
5. https://github.com/andreacini/sparse-graph-learning

30

https://neptune.ai/
https://github.com/chaoshangcs/GTS
https://github.com/chaoshangcs/GTS/issues/19
https://github.com/andreacini/sparse-graph-learning

Sparse Graph Learning from Spatiotemporal Time Series

used a temperature τ = 0.5 to make the sampler more deterministic. During evaluation, we
used the Aµ to obtain test-time predictions.

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. URL https://www.tensorflow.org/. Software available from tensorflow.org.

D. Bacciu, F. Errica, A. Micheli, and M. Podda. A gentle introduction to deep learning for
graphs. Neural Networks, 129:203–221, 2020.

L. Bai, L. Yao, C. Li, X. Wang, and C. Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. Advances in Neural Information Processing Systems, 33:
17804–17815, 2020.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh,
P. A. Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep universal probabilistic
programming. J. Mach. Learn. Res., 20:28:1–28:6, 2019. URL http://jmlr.org/papers/
v20/18-403.html.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep
learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and deep locally connected
networks on graphs. In 2nd International Conference on Learning Representations, ICLR
2014, 2014.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

A. Cini and I. Marisca. Torch Spatiotemporal, 3 2022. URL https://github.com/
TorchSpatiotemporal/tsl.

A. Cini, I. Marisca, and C. Alippi. Filling the g_ap_s: Multivariate time series imputation
by graph neural networks. In International Conference on Learning Representations, 2022.

31

https://www.tensorflow.org/
http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html
https://github.com/TorchSpatiotemporal/tsl
https://github.com/TorchSpatiotemporal/tsl

Cini, Zambon and Alippi

G. Correia, V. Niculae, W. Aziz, and A. Martins. Efficient marginalization of discrete
and structured latent variables via sparsity. Advances in Neural Information Processing
Systems, 33:11789–11802, 2020.

A. Deng and B. Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
4027–4035, 2021.

P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus. Adaptive graph signal
processing: Algorithms and optimal sampling strategies. IEEE Transactions on Signal
Processing, 66(13):3584–3598, 2018.

J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi,
M. Hoffman, and R. A. Saurous. Tensorflow distributions. arXiv preprint arXiv:1711.10604,
2017.

W. Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https:
//github.com/PyTorchLightning/pytorch-lightning.

M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

J. Foerster, G. Farquhar, M. Al-Shedivat, T. Rocktäschel, E. Xing, and S. Whiteson. Dice:
The infinitely differentiable monte carlo estimator. In International Conference on Machine
Learning, pages 1529–1538. PMLR, 2018.

L. Franceschi, M. Niepert, M. Pontil, and X. He. Learning discrete structures for graph neural
networks. In International conference on machine learning, pages 1972–1982. PMLR, 2019.

M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. In
Annales de l’institut Henri Poincaré, volume 10, pages 215–310, 1948.

J. Gao and B. Ribeiro. On the equivalence between temporal and static equivariant graph
representations. In International Conference on Machine Learning, pages 7052–7076.
PMLR, 2022.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR, 2017.

P. Glasserman and Y.-C. Ho. Gradient estimation via perturbation analysis, volume 116.
Springer Science & Business Media, 1991.

W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud. Backpropagation through
the void: Optimizing control variates for black-box gradient estimation. In International
Conference on Learning Representations, 2018.

C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al. Array programming with numpy. Nature,
585(7825):357–362, 2020.

32

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning

Sparse Graph Learning from Spatiotemporal Time Series

A. C. Harvey et al. Forecasting, structural time series models and the Kalman filter.
Cambridge Books, 1990.

I. A. Huijben, W. Kool, M. B. Paulus, and R. J. Van Sloun. A review of the gumbel-max
trick and its extensions for discrete stochasticity in machine learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

E. Isufi, A. Loukas, N. Perraudin, and G. Leus. Forecasting time series with VARMA
recursions on graphs. IEEE Transactions on Signal Processing, 67(18):4870–4885, 2019.

H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan,
and C. Shahabi. Big data and its technical challenges. Communications of the ACM, 57
(7):86–94, 2014.

B. J. Jain. Statistical graph space analysis. Pattern Recognition, 60:802–812, 2016.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. 2017.

A. Kazi, L. Cosmo, S.-A. Ahmadi, N. Navab, and M. Bronstein. Differentiable graph module
(dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of Interna-
tional Conference on Learning Representations, 2013.

T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for
interacting systems. In International Conference on Machine Learning, pages 2688–2697.
PMLR, 2018.

T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

W. Kool, H. Van Hoof, and M. Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International Conference
on Machine Learning, pages 3499–3508. PMLR, 2019.

W. Kool, H. van Hoof, and M. Welling. Estimating gradients for discrete random variables by
sampling without replacement. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rklEj2EFvB.

P. L’Ecuyer. Note: On the interchange of derivative and expectation for likelihood ratio
derivative estimators. Management Science, 41(4):738–747, 1995.

Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In International Conference on Learning Representations,
2018.

C. Maddison, A. Mnih, and Y. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. In International Conference on Learning Representations, 2017.

33

https://openreview.net/forum?id=rklEj2EFvB

Cini, Zambon and Alippi

I. Marisca, A. Cini, and C. Alippi. Learning to reconstruct missing data from spatiotemporal
graphs with sparse observations. Advances in Neural Information Processing Systems, 35:
32069–32082, 2022.

J. Mei and J. M. Moura. Signal processing on graphs: Causal modeling of unstructured data.
IEEE Transactions on Signal Processing, 65(8):2077–2092, 2016.

P. Minervini, L. Franceschi, and M. Niepert. Adaptive perturbation-based gradient estimation
for discrete latent variable models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 9200–9208, 2023.

A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In
International Conference on Machine Learning, pages 1791–1799. PMLR, 2014.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement rearning. In International
Conference on Machine Learning, pages 1928–1937. PMLR, 2016.

S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. Monte carlo gradient estimation in
machine learning. J. Mach. Learn. Res., 21(132):1–62, 2020.

neptune.ai. Neptune: Metadata store for mlops, built for research and production teams
that run a lot of experiments, 2021. URL https://neptune.ai.

V. Niculae, C. F. Corro, N. Nangia, T. Mihaylova, and A. F. Martins. Discrete latent
structure in neural networks. arXiv preprint arXiv:2301.07473, 2023.

M. Niepert, P. Minervini, and L. Franceschi. Implicit mle: backpropagating through discrete
exponential family distributions. Advances in Neural Information Processing Systems, 34:
14567–14579, 2021.

B. N. Oreshkin, A. Amini, L. Coyle, and M. J. Coates. FC-GAGA: Fully connected gated
graph architecture for spatio-temporal traffic forecasting. In AAAI, 2021.

A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst. Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):
808–828, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32. 2019.

M. Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison. Gradient estimation
with stochastic softmax tricks. Advances in Neural Information Processing Systems, 33:
5691–5704, 2020.

P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

34

https://neptune.ai

Sparse Graph Learning from Spatiotemporal Time Series

L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe for a
general, powerful, scalable graph transformer. arXiv preprint arXiv:2205.12454, 2022.

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training
for image captioning. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7008–7024, 2017.

R. Y. Rubinstein. Some problems in Monte Carlo optimization. PhD thesis, University of
Riga, 1969.

V. G. Satorras, S. S. Rangapuram, and T. Januschowski. Multivariate time series forecasting
with latent graph inference. arXiv preprint arXiv:2203.03423, 2022.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling. Modeling
relational data with graph convolutional networks. In European semantic web conference,
pages 593–607. Springer, 2018.

J. Schulman, N. Heess, T. Weber, and P. Abbeel. Gradient estimation using stochastic
computation graphs. Advances in Neural Information Processing Systems, 28, 2015.

Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson. Structured sequence modeling with
graph convolutional recurrent networks. In International Conference on Neural Information
Processing, pages 362–373. Springer, 2018.

C. Shang and J. Chen. Discrete graph structure learning for forecasting multiple time series.
In Proceedings of International Conference on Learning Representations, 2021.

L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo, S. Li, A. G. Constantinides,
et al. Data analytics on graphs part iii: Machine learning on graphs, from graph topology
to applications. Foundations and Trends R© in Machine Learning, 13(4):332–530, 2020.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12, 1999.

G. Tucker, A. Mnih, C. J. Maddison, J. Lawson, and J. Sohl-Dickstein. Rebar: Low-variance,
unbiased gradient estimates for discrete latent variable models. Advances in Neural
Information Processing Systems, 30, 2017.

E. van Krieken, J. M. Tomczak, and A. T. Teije. Storchastic: A framework for general
stochastic automatic differentiation. In Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=KAFyFabsK88.

T. Variddhisai and D. Mandic. Methods of adaptive signal processing on graphs using
vertex-time autoregressive models. arXiv preprint arXiv:2003.05729, 2020.

35

https://openreview.net/forum?id=KAFyFabsK88

Cini, Zambon and Alippi

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018.

T. Weber, N. Heess, L. Buesing, and D. Silver. Credit assignment techniques in stochastic
computation graphs. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2650–2660. PMLR, 2019.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang. Graph wavenet for deep spatial-temporal
graph modeling. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 1907–1913, 2019.

Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang. Connecting the dots: Multivariate
time series forecasting with graph neural networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 753–
763, 2020.

Z. Wu, D. Zheng, S. Pan, Q. Gan, G. Long, and G. Karypis. Traversenet: Unifying space
and time in message passing for traffic forecasting. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

X. Yi, Y. Zheng, J. Zhang, and T. Li. St-mvl: filling missing values in geo-sensory time series
data. In Proceedings of the 25th International Joint Conference on Artificial Intelligence,
2016.

B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional networks: a deep learning
framework for traffic forecasting. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 3634–3640, 2018.

D. Zambon and C. Alippi. Az-whiteness test: a test for uncorrelated noise on spatio-temporal
graphs. To appear in Advances in Neural Information Processing Systems, 2022.

X. Zhang, M. Zeman, T. Tsiligkaridis, and M. Zitnik. Graph-guided network for irregularly
sampled multivariate time series. In International Conference on Learning Representations,
ICLR, 2022.

D. Zügner, F.-X. Aubet, V. G. Satorras, T. Januschowski, S. Günnemann, and J. Gasthaus.
A study of joint graph inference and forecasting. arXiv preprint arXiv:2109.04979, 2021.

36

	Introduction
	Related Works
	Preliminaries
	Spatiotemporal Time Series with Graph Side Information
	Spatiotemporal Graph Neural Networks
	Message-Passing Neural Networks
	Spatiotemporal Architectures

	Mean Adjacency Matrices

	Problem Formulation
	Graph Learning from Spatiotemporal Time Series
	Core Challenge

	Score-based Sparse Graph Learning from Spatiotemporal Time Series
	Estimating Gradients for Stochastic Message-Passing Networks
	Graph Distributions, Graphs Sampling, and Graphs Likelihood
	Binary Edge Sampler
	Subset Neighborhood Sampler

	Parametrizing

	Reducing the Variance of the Estimator
	Control Variates and Baselines
	Baseline for BES
	Baseline for SNS

	Layer-wise Sampling and Surrogate Objective
	Surrogate Objective

	Experiments
	Datasets
	Controlled Environment Experiments
	Graph Identification and Time Series Forecasting
	Sensitivity Analysis
	Comparison with Path-wise and Straight-through Estimators

	Real-World Datasets
	Graph Identification in AQI
	Joint Training and Forecasting in Traffic Datasets

	Scalability

	Conclusions
	Deferred Proofs
	Proof of Lemma 2
	Proof of Lemma 4

	Details on the Computation of the SNS Likelihood
	Experiments Details
	Synthetic Experiments
	AQI Experiment
	Traffic Experiment

