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Abstract
Several algorithms involving the Variational Rényi (VR) bound have been proposed to
minimize an alpha-divergence between a target posterior distribution and a variational
distribution. Despite promising empirical results, those algorithms resort to biased stochastic
gradient descent procedures and thus lack theoretical guarantees. In this paper, we formalize
and study the VR-IWAE bound, a generalization of the importance weighted auto-encoder
(IWAE) bound. We show that the VR-IWAE bound enjoys several desirable properties and
notably leads to the same stochastic gradient descent procedure as the VR bound in the
reparameterized case, but this time by relying on unbiased gradient estimators. We then
provide two complementary theoretical analyses of the VR-IWAE bound and thus of the
standard IWAE bound. Those analyses shed light on the benefits or lack thereof of these
bounds. Lastly, we illustrate our theoretical claims over toy and real-data examples.
Keywords: variational inference, alpha-divergence, importance weighted auto-encoder,
weight collapse, high dimension

1. Introduction

Variational inference methods aim at finding the best approximation to a target posterior
density within a so-called variational family of probability densities. This best approxi-
mation is traditionally obtained by minimizing the exclusive Kullback–Leibler divergence
(Wainwright and Jordan, 2008; Blei et al., 2017), however this divergence is known to have
some drawbacks (for instance variance underestimation, see Minka, 2005).

As a result, alternative divergences have been explored (Minka, 2005; Li and Turner,
2016; Bui et al., 2016; Dieng et al., 2017; Li and Gal, 2017; Wang et al., 2018; Daudel et al.,
2021, 2023; Daudel and Douc, 2021; Rodŕıguez-Santana and Hernández-Lobato, 2022), in
particular the class of alpha-divergences. This family of divergences is indexed by a scalar
α. It provides additional flexibility that can in theory be used to overcome the obstacles
associated to the exclusive Kullback–Leibler divergence (which is recovered by letting α→ 1).
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Among those methods, techniques involving the Variational Rényi (VR) bound introduced
in Li and Turner (2016) have led to promising empirical results and have been linked to key
algorithms such as the importance weighted auto-encoder (IWAE) algorithm (Burda et al.,
2016) in the special case α = 0 and the black-box alpha (BB-α) algorithm (Hernandez-Lobato
et al., 2016).

Yet methods based on the VR bound are seen as lacking theoretical guarantees. This
comes from the fact that they are classified as biased in the community: by selecting
the VR bound as the objective function, those methods indeed resort to biased gradient
estimators (Li and Turner, 2016; Hernandez-Lobato et al., 2016; Bui et al., 2016; Li and
Gal, 2017; Geffner and Domke, 2020, 2021; Zhang et al., 2021; Rodŕıguez-Santana and
Hernández-Lobato, 2022).

Geffner and Domke (2020) have recently provided insights from an empirical perspective
regarding the magnitude of the bias and its impact on the outcome of the optimization
procedure when the (biased) reparameterized gradient estimator of the VR bound is used.
They observe that the resulting algorithm appears to require an impractically large amount of
computations to actually optimise the VR bound as the dimension increases (and otherwise
seems to simply return minimizers of the exclusive Kullback–Leibler divergence). They
postulate that this effect might be due to a weight degeneracy behavior (Bengtsson et al.,
2008), but this behavior is not quantified precisely from a theoretical point of view.

In this paper, our goal is to (i) develop theoretical guarantees for VR-based variational
inference methods and (ii) construct a theoretical framework elucidating the weight degener-
acy behavior that has been empirically observed for those techniques. The rest of this paper
is organized as follows:

• In Section 2, we provide some background notation and we review the main concepts
behind the VR bound.

• In Section 3, we introduce the VR-IWAE bound. We show in Proposition 1 that
this bound, previously defined by Li and Turner (2016) as the expectation of the
biased Monte Carlo approximation of the VR bound, can be actually interpreted as a
variational bound which depends on an hyperparameter α with α ∈ [0, 1). In addition,
we obtain that the VR-IWAE bound leads to the same stochastic gradient descent
procedure as the VR bound in the reparameterized case. Unlike the VR bound, the
VR-IWAE bound relies on unbiased gradient estimators and coincides with the IWAE
bound for α = 0, fully bridging the gap between both methodologies.
We then generalize the approach of Rainforth et al. (2018)—which characterizes the
signal-to-noise ratio (SNR) of the reparameterized gradient estimators of the IWAE—
to the VR-IWAE bound and establish that the VR-IWAE bound with α ∈ (0, 1)
enjoys better theoretical properties than the IWAE bound (Theorem 1). To further
tackle potential SNR difficulties, we also extend the doubly-reparameterized gradient
estimator of the IWAE (Tucker et al., 2019) to the VR-IWAE bound (Theorem 2).

• In Section 4, we provide a thorough theoretical study of the VR-IWAE bound. Following
Domke and Sheldon (2018), we start by investigating the case where the dimension of
the latent space d is fixed and the number of Monte Carlo samples N in the VR-IWAE
bound goes to infinity (Theorem 3). Our analysis shows that the hyperparameter α
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allows us to balance between an error term depending on both the encoder and the
decoder parameters (θ, φ) and a term going to zero at a 1/N rate. This suggests that
tuning α can be beneficial to obtain the best empirical performances.
However, the relevance of such analysis can be limited for a high-dimensional latent
space d (Examples 1 and 2). We then propose a novel analysis where N does not
grow as fast as exponentially with d (Theorems 4 and 5) or sub-exponentially with
d1/3 (Theorem 6), which we use to revisit Examples 1 and 2 in Examples 3 and 4
respectively. This analysis suggests that in these regimes the VR-IWAE bound, and
hence in particular the IWAE bound, are of limited interest.

• In Section 5, we detail how our work relates to the existing litterature.

• Lastly, Section 6 provides empirical evidence illustrating our theoretical claims for
both toy and real-data examples.

2. Background

Given a model with joint distribution pθ(x, z) parameterized by θ, where x denotes an
observation and z is a latent variable valued in Rd, one is interested in finding the parameter
θ which best describes the observations D = {x1, . . . , xT }. This will be our running example.
The corresponding posterior density satisfies:

pθ(z|D) ∝
T∏
i=1

pθ(xi, zi) (1)

with z = (z1, . . . , zT ), so that the marginal log likelihood reads

`(θ;D) =
T∑
i=1

`(θ;xi) with `(θ;x) := log pθ(x) = log
(∫

pθ(x, z)dz
)
. (2)

Unfortunately as this marginal log likelihood is typically intractable, finding θ maximizing
it is difficult. Variational bounds are then designed to act as surrogate objective functions
more amenable to optimization.

Let qφ(z|x) be a variational encoder parameterized by φ, common variational bounds
are the Evidence Lower BOund (ELBO) and the IWAE bound (Burda et al., 2016):

ELBO(θ, φ;x) =
∫
qφ(z|x) logwθ,φ(z;x) dz,

`
(IWAE)
N (θ, φ;x) =

∫ ∫ N∏
i=1

qφ(zi|x) log

 1
N

N∑
j=1

wθ,φ(zj ;x)

dz1:N , N ∈ N?

where for all z ∈ Rd,

wθ,φ(z;x) = pθ(x, z)
qφ(z|x) .
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The IWAE bound generalizes the ELBO (which is recovered for N = 1) and acts as a lower
bound on `(θ;x) that can be estimated in an unbiased manner. Instead of maximizing
`(θ;D) defined in (2), one then considers the surrogate objective

T∑
i=1

`
(IWAE)
N (θ, φ;xi)

which is optimized by performing stochastic gradient descent steps w.r.t. (θ, φ) on it
combined to mini-batching. Optimizing this objective w.r.t. φ is difficult due to high-
variance gradients with low signal-to-noise ratio (Rainforth et al., 2018). To mitigate this
problem, reparameterized (Kingma and Welling, 2014; Burda et al., 2016) and doubly-
reparameterized gradient estimators (Tucker et al., 2019) have been proposed.

Crucially, stochastic gradient schemes on the IWAE bound (and hence on the ELBO)
only resort to unbiased estimators in both the reparameterized (Kingma and Welling, 2014;
Burda et al., 2016) and the doubly-reparameterized (Tucker et al., 2019) cases, providing
theoretical justifications behind those approaches. In particular, under the assumption that
z can be reparameterized (that is z = f(ε, φ;x) ∼ qφ(·|x) where ε ∼ q) and under common
differentiability assumptions, the reparameterized gradient w.r.t. φ of the IWAE bound is
given by

∂

∂φ
`
(IWAE)
N (θ, φ;x) =

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

wθ,φ(zj ;x)∑N
k=1wθ,φ(zk;x)

∂

∂φ
logwθ,φ(f(εj , φ;x);x)

 dε1:N

and the doubly-reparameterized one by

∂

∂φ
`
(IWAE)
N (θ, φ;x)

=
∫ ∫ N∏

i=1
q(εi)

 N∑
j=1

(
wθ,φ(zj ;x)∑N
k=1wθ,φ(zk;x)

)2
∂

∂φ
logwθ,φ′(f(εj , φ;x);x)|φ′=φ

 dε1:N . (3)

Unbiased Monte Carlo estimators of both gradients are hence respectively given by

N∑
j=1

wθ,φ(zj ;x)∑N
k=1wθ,φ(zk;x)

∂

∂φ
logwθ,φ(f(εj , φ;x);x) (4)

and

N∑
j=1

(
wθ,φ(zj ;x)∑N
k=1wθ,φ(zk;x)

)2
∂

∂φ
logwθ,φ′(f(εj , φ;x);x)|φ′=φ,

with ε1, . . . , εN being i.i.d. samples generated from q and zj = f(εj , φ;x) for all j = 1 . . . N .
Maddison et al. (2017) and Domke and Sheldon (2018) in particular established that the
variational gap - that is the difference between the IWAE bound and the marginal log-
likelihood - goes to zero at a fast 1/N rate when the dimension of the latent space d is fixed
and the number of samples N goes to infinity.
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Another example of variational bound is the Variational Rényi (VR) bound introduced
by Li and Turner (2016): it is defined for all α ∈ R \ {1} by

L(α)(θ, φ;x) = 1
1− α log

(∫
qφ(z|x) wθ,φ(z;x)1−α dz

)
(5)

and it generalizes the ELBO (which corresponds to the extension by continuity of the VR
bound to the case α = 1, see Li and Turner, 2016, Theorem 1). It is also a lower (resp.
upper) bound on the marginal log-likelihood `(θ;x) for all α > 0 (resp. α < 0).

In the spirit of the IWAE bound optimisation framework, the VR bound is used for
variational inference purposes in (Li and Turner, 2016, Section 4.1, 4.2 and 5.2) to optimise
the marginal log-likelihood `(θ,D) defined in (2) by considering the global objective function

T∑
i=1
L(α)(θ, φ;xi)

and by performing stochastic gradient descent steps w.r.t. (θ, φ) on it paired up with
mini-batching and reparameterization. This VR bound methodology has provided positive
empirical results compared to the usual case α = 1 and has been widely adopted in the
literature (Li and Turner, 2016; Bui et al., 2016; Hernandez-Lobato et al., 2016; Li and Gal,
2017; Zhang et al., 2021; Rodŕıguez-Santana and Hernández-Lobato, 2022). As discussed
in the remark below, this methodology is obviously not limited to the choice of posterior
density defined in (1) and is more broadly applicable.

Remark 1 (Black-box alpha energy function) Let p0(z) be a prior on a latent variable
z valued in Rd and by p(x|z) the likelihood of the observation x given z, we might consider
the posterior density

p(z|D) ∝ p0(z)
T∏
i=1

p(xi|z), (6)

leading to the marginal log-likelihood

˜̀(D) = log
(∫

p(D, z)dz
)

= log
(
p0(z)

T∏
i=1

p(xi|z)dz
)
.

Here, the latent variable z valued in Rd is shared across all the observations. Now further
assume that the prior density p0(z) = exp(s(z)Tφ0 − logZ(φ0)) has an exponential form,
with φ0 and s being the natural parameters and the sufficient statistics respectively and Z(φ0)
being the normalizing constant ensuring that p0 is a probability density function.

In order to find the best approximation to the posterior density (6), Hernandez-Lobato
et al. (2016) offers to minimize the black-box alpha (BB-α) energy function, which is defined
by: for all α ∈ R \ {1},

E(φ) = logZ(φ0)− logZ(φ̃)− 1
1− α

T∑
i=1

log

∫ qφ(z)
(
p(xi|z)
fφ(z)

)1−α

dz
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where fφ(z) = exp(s(z)Tφ) is within the same exponential family as the prior and qφ(z) =
exp(s(z)T φ̃− logZ(φ̃)) with φ̃ = Tφ+φ0 denoting the natural parameters of qφ and Z(φ̃) its
normalizing constant. Here, the minimisation is carried out via stochastic gradient descent
w.r.t. φ combined with mini-batching and reparameterization.

As observed in Li and Gal (2017), minimizing E(φ) w.r.t. φ is equivalent to maximizing
the sum of VR bounds

T∑
i=1

T

1− α log
(∫

qφ(z)wθ,φ(z;x)
1−α
T dz

)

w.r.t. φ, where this time wθ,φ(z;x) = p(xi|z)T p0(z)/qφ(z).

However, the stochastic gradient descent scheme originating from having selected the VR
bound as the objective function suffers from one important shortcoming: it relies on biased
gradient estimators for all α /∈ {0, 1}, meaning that there exists no convergence guarantees
for the whole scheme. Indeed, Li and Turner (2016) show that the gradient of the VR bound
w.r.t. φ satisfies

∂

∂φ
L(α)(θ, φ;x) =

∫
q(ε) wθ,φ(z;x)1−α ∂

∂φ logwθ,φ(f(ε, φ;x);x) dε∫
q(ε) wθ,φ(z;x)1−α dε ,

with z = f(ε, φ;x) ∼ qφ(·|x) where ε ∼ q. The gradient above being intractable, they
approximate it using

N∑
j=1

wθ,φ(zj ;x)1−α∑N
k=1wθ,φ(zk;x)1−α

∂

∂φ
logwθ,φ(f(εj , φ;x);x), (7)

where ε1, . . . , εN are i.i.d. samples generated from q and zj = f(εj , φ;x) for all j = 1 . . . N .
The cases α = 0 and α = 1 recover the stochastic reparameterized gradients of the IWAE
bound (4) and of the ELBO (consider (4) with N = 1). As a result, we can trace them back
to unbiased stochastic gradient descent schemes for IWAE bound and ELBO optimisation
respectively. Yet, this is no longer the case when α /∈ {0, 1}, hence impeding the theoretical
guarantees of the scheme.

In addition, due to the log function, the VR bound itself can only be approximated using
biased Monte Carlo estimators, with (Li and Turner, 2016, Section 4.1) using

1
1− α log

 1
N

N∑
j=1

wθ,φ(Zj ;x)1−α

 (8)

where Z1, . . . , ZN are i.i.d. samples generated from qφ. Furthermore, while the VR bound
and the IWAE bound approaches are linked via the gradient estimator (7), the VR bound
does not recover the IWAE bound when α = 0.

The next section aims at overcoming the theoretical difficulties regarding the VR bound
mentioned above.

6



Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders

3. The VR-IWAE Bound

For all α ∈ R \ {1}, let us introduce the quantity

`
(α)
N (θ, φ;x) := 1

1− α

∫ ∫ N∏
i=1

qφ(zi|x) log

 1
N

N∑
j=1

wθ,φ(zj ;x)1−α

dz1:N , (9)

which we will refer to as the VR-IWAE bound. Note that for the VR-IWAE bound to be
well-defined we will assume that the following assumption holds in the rest of the paper.

(A1) It holds that 0 < pθ(x) <∞ and the support of qφ(·|x) and of pθ(·|x) are equal.

We may omit the dependency on x in z 7→ qφ(z|x) and z 7→ wθ,φ(z;x) for notational
convenience and we now make two remarks regarding the VR-IWAE bound defined in (9).

• Contrary to the VR bound, VR-IWAE bound (i) can be approximated using an
unbiased Monte Carlo estimator and (ii) recovers the IWAE bound by setting α = 0.
Under common differentiability assumptions, we also have that

lim
α→1

`
(α)
N (θ, φ;x) = ELBO(θ, φ;x)

(see Appendix A.1 for details), meaning that the VR-IWAE bound interpolates between
the IWAE bound and the ELBO.

• Li and Turner (2016) interpreted the quantity defined in (9) as the expectation of the
biased Monte Carlo approximation of the VR bound (8). They established in (Li and
Turner, 2016, Theorem 2) some properties on this quantity. In particular, they showed
that (i) for all α ≤ 1 and all N ∈ N?,

`
(α)
N (θ, φ;x) ≤ `(α)

N+1(θ, φ;x) ≤ L(α)(θ, φ;x)

and (ii) for all α ∈ R, `(α)
N (θ, φ;x) approaches the VR bound L(α)(θ, φ;x) as N goes to

infinity if the function z 7→ wθ,φ(z) is assumed to be bounded.

Based on the two previous remarks, `(α)
N (θ, φ;x) seems to be an interesting candidate as a

variational bound which generalizes the IWAE bound. We take here another perspective
on the quantity `(α)

N (θ, φ;x) by wanting to frame it as a variational bound with ties to the
Rényi’s α-divergence variational inference methodology of Li and Turner (2016) and to the
IWAE bound, hence the name VR-IWAE bound. We now need to check that the VR-IWAE
bound can indeed be used as a variational bound for marginal log-likelihood optimisation in
the context of our running example.

3.1 The VR-IWAE Bound as a Variational Bound

As underlined in the following proposition, the VR-IWAE bound is a variational bound for
all α ∈ [0, 1) which enjoys properties akin to those obtained for the IWAE bound (Burda
et al., 2016) and which becomes looser as α increases.
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Proposition 1 (Properties of the VR-IWAE bound) The following properties hold
for the VR-IWAE bound.

1. For all α ∈ [0, 1) and all N ∈ N?,

ELBO(θ, φ;x) ≤ `(α)
N (θ, φ;x) ≤ `(α)

N+1(θ, φ;x) ≤ L(α)(θ, φ;x) ≤ `(θ;x). (10)

Moreover, if the function z 7→ wθ,φ(z) is bounded, then `
(α)
N (θ, φ;x) approaches the VR

bound L(α)(θ, φ;x) as N goes to infinity.

2. For all α1, α2 ∈ (0, 1) such that α1 > α2 and all N ∈ N?,

`
(α1)
N (θ, φ;x) ≤ `(α2)

N (θ, φ;x) ≤ `(IWAE)
N (θ, φ;x), (11)

where the case of equality is reached if and only if z 7→ wθ,φ(z) is constant for ν-almost
all z ∈ Rd (with ν denoting the Lebesgue measure).

3. Further assuming that z can be reparameterized, that is z = f(ε, φ) ∼ qφ where ε ∼ q,
we have under common differentiability assumptions that

∂

∂φ
`
(α)
N (θ, φ;x)

=
∫ ∫ N∏

i=1
q(εi)

 N∑
j=1

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
logwθ,φ(f(εj , φ))

 dε1:N (12)

and an unbiased estimator of ∂`(α)
N (θ, φ;x)/∂φ is given by

N∑
j=1

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
logwθ,φ(f(εj , φ)) (13)

where ε1, . . . , εN are i.i.d. samples generated from q and zj = f(εj , φ) for all
j = 1 . . . N .

The proof of Proposition 1 is deferred to Appendix A.2 and we now comment on Proposition 1.
Observe that both the VR and VR-IWAE bounds share the same estimated reparameterized
gradient w.r.t. φ, that is (7) is exactly (13), hence they lead to the same stochastic gradient
descent algorithm. However, when α ∈ (0, 1), a key difference is that in the VR bound case
this estimator is biased while it is unbiased for VR-IWAE bound.

This motivates the VR-IWAE bound as a generalization of the IWAE bound that
overcomes the theoretical difficulties of the VR bound, as unbiased gradient estimates provide
the convergence of the stochastic gradient descent procedure (under proper conditions on
the learning rate). In fact, and as we shall see next, the estimated reparameterized gradient
w.r.t. φ written in (7) and (13) - that we have now properly justified using the VR-IWAE
bound - also enjoys an advantageous signal-to-noise ratio behavior when α ∈ (0, 1).
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3.2 Signal-to-noise Ratio (SNR) Analysis

Rainforth et al. (2018) identified some issues associated to using reparameterized gradient
estimators of the IWAE bound. They did so by looking at the signal-to-noise ratio (SNR) of
those estimates: their main theorem (Rainforth et al., 2018, Theorem 1) shows that while
increasing N leads to a tighter IWAE bound and improves the SNR for learning θ, it actually
worsens the SNR for learning φ.

Let us now investigate if and how the conclusions of (Rainforth et al., 2018, Theorem 1)
extend to the VR-IWAE bound. To this end, we first recall the definition of the SNR used
in Rainforth et al. (2018). Given a random vector X = (X1, . . . , XL) of dimension L ∈ N?,
the SNR may be defined as follows:

SNR[X] =
(
|E(X1)|√
V(X1)

, . . . ,
|E(XL)|√
V(XL)

)
.

Writing θ = (θ1, . . . , θL) and φ = (φ1, . . . , φL′) and with L,L′ ∈ N?, we now consider for all
` = 1 . . . L and all `′ = 1 . . . L′ the unbiased estimates of the reparameterized gradient of the
VR-IWAE bound w.r.t. θ` and w.r.t. φ`′ given by: for all M,N ∈ N? and all α ∈ [0, 1),

δ
(α)
M,N (θ`) = 1

(1− α)M

M∑
m=1

∂

∂θ`
log

 1
N

N∑
j=1

wθ,φ(f(εm,j , φ))1−α

 , (14)

δ
(α)
M,N (φ`′) = 1

(1− α)M

M∑
m=1

∂

∂φ`′
log

 1
N

N∑
j=1

wθ,φ(f(εm,j , φ))1−α

 , (15)

where (εm,j)1≤m≤M,1≤j≤N are i.i.d. samples generated from q and zm,j = f(εm,j , φ) for all
m = 1 . . .M and all n = 1 . . . N . Note that the link with the reparameterized gradient
estimator (13) from Proposition 1 can be made by considering the case M = 1 in (15). We
then have the following theorem.

Theorem 1 (SNR analysis) Let α ∈ [0, 1) and for all N ∈ N? and all j = 1 . . . N , define
w̃1,j = wθ,φ(f(ε1,j , φ)) and Ẑ1,N,α = N−1∑N

j=1 w̃
1−α
1,j . Assume that the eighth moments of

w̃1−α
1,1 , ∂w̃1−α

1,1 /∂θ` and ∂w̃1−α
1,1 /∂φ`′ are finite, where ` is an integer between 1 and L and

`′ is an integer between 1 and L′. Furthermore, assume that there exists some N ∈ N? for
which E((1/Ẑ1,N,α)4) <∞. Lastly, assume that ∂E(w̃1−α

1,1 )/∂θ` 6= 0 and that

∂V(w̃1−α
1,1 )/∂φ`′ > 0, if α = 0

∂E(w̃1−α
1,1 )/∂φ`′ 6= 0, if α ∈ (0, 1). (16)

Then, under common differentiability assumptions, the SNR of the VR-IWAE bound repa-
rameterized gradient estimates w.r.t θ` and w.r.t φ`′ defined in (14) and (15) respectively
satisfy

SNR[δ(α)
M,N (θ`)] = Θ(

√
MN) (17)

SNR[δ(α)
M,N (φ`′)] =

{
Θ(
√
M/N) if α = 0,

Θ(
√
MN) if α ∈ (0, 1).

(18)
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The proof of Theorem 1 can be found in Appendix A.3. Theorem 1 states that for α ∈ (0, 1),
the SNR for learning the generative network (θ) and for learning the inference network (φ)
both improve as N increases, unlike the IWAE bound case α = 0 where the second SNR
worsens as N increases. This provides theoretical support suggesting that taking α > 0 in
the VR-IWAE bound may help to ensure a good training signal, thus leading to improved
empirical performances compared to the IWAE bound.

In the following, we investigate another way to provide gradient estimators of the
VR-IWAE bound with an advantageous SNR behavior in practice.

3.3 Doubly-reparameterized Gradient for the VR-IWAE Bound

To remedy the SNR issue identified in Rainforth et al. (2018), Tucker et al. (2019) proposed a
new estimator of the gradient of the IWAE bound (3) under the name doubly-reparameterized
gradient estimator. As written in the theorem below, the doubly-reparameterized gradient
estimator of the IWAE bound (3) in fact generalizes to the case α ∈ (0, 1).

Theorem 2 (Generalized doubly-reparameterized gradient) Under common differ-
entiability assumptions and assuming that z can be reparameterized, that is z = f(ε, φ) ∼ qφ
where ε ∼ q, we have that: for all α ∈ [0, 1],

∂

∂φ
`
(α)
N (θ, φ;x) =

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

hj(α) ∂
∂φ

logwθ,φ′(f(εj , φ))|φ′=φ

 dε1:N , (19)

with zj = f(εj , φ) for all j = 1 . . . N and

hj(α) = α
wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

+ (1− α)
(

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

)2

.

An unbiased estimator of ∂`(α)
N (θ, φ;x)/∂φ is then given by

N∑
j=1

hj(α) ∂
∂φ

logwθ,φ′(f(εj , φ))|φ′=φ (20)

where ε1, . . . , εN are i.i.d. samples generated from q and zj = f(εj , φ) for all j = 1 . . . N .

The proof of Theorem 2 is deferred to Appendix A.4. One can then check that we recover
the usual doubly-reparameterized gradient estimator of the IWAE bound (resp. the ELBO)
when α = 0 (resp. α = 1). Like the reparameterized gradient estimator (13), which we
have studied in Section 3.2 as it corresponds to the special case M = 1 in Theorem 1, this
second (doubly-reparameterized) gradient estimator too may lead to improved empirical
performances. From there, large-scale learning occurs by using that Proposition 1 implies

`(θ;D) =
T∑
i=1

`(θ;xi) ≥
T∑
i=1
L(α)(θ, φ;xi) ≥

T∑
i=1

`
(α)
N (θ, φ;xi)

and by following the training procedure for the IWAE bound. Indeed, we have access to
an unbiased estimator of the lower bound of the full data set

∑T
i=1 `

(α)
N (θ, φ;xi) (as well

10
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as an unbiased estimator of its reparameterized/doubly-reparameterized gradient) using
mini-batching. Seeking to maximize the objective function

∑T
i=1 L(α)(θ, φ;xi) by optimising∑T

i=1 `
(α)
N (θ, φ;xi) in fact amounts to seeking to minimize a specific Rényi’s α-divergence

with a mean-field assumption on the variational approximation (see Remark 2 for detail).

Remark 2 Define z = (z1, . . . , zT ) and qφ(z) =
∏T
i=1 qφ(zi). Then, for all α ∈ (0, 1):

T∑
i=1
L(α)(θ, φ;xi) =

T∑
i=1

1
1− α log

(∫
qφ(z)wθ,φ(z;xi)1−αdz

)

=
T∑
i=1

1
1− α log

(∫
qφ(zi)wθ,φ(zi;xi)1−αdzi

)

= 1
1− α log

∫ ∫ T∏
i=1

qφ(zi)
T∏
j=1

wθ,φ(zj ;xj)1−αdz1:T


= 1

1− α log
(∫

qφ(z)wθ,φ(z;D)1−αdz

)
where pθ(D, z) =

∏T
i=1 p(xi, zi) and wθ,φ(z;D) = pθ(D, z)/qφ(z). Observe that the last equal-

ity is a VR bound, meaning that maximizing the global objective function
∑T
i=1 L(α)(θ, φ;xi)

is equivalent to minimizing the Rényi’s α-divergence between the two probability distributions
with associated probability densities qφ(z) and p(z|D) respectively w.r.t. the Lebesgue mea-
sure. Hence, this approach belongs to alpha-divergence variational inference methods with the
particularity that it makes a mean-field assumption on the variational approximation qφ(z).

At this stage, we have formalized and motivated the VR-IWAE bound. We now want to get
an understanding of its theoretical properties.

4. Theoretical Study of the VR-IWAE Bound

The starting point of our approach is to exploit the fact that prior theoretical works study
the particular case α = 0 (corresponding to the IWAE bound) when the dimension of the
latent space dim(z) = d is fixed and the number of samples N goes to infinity.

4.1 Behavior of the VR-IWAE Bound when d is Fixed and N goes to Infinity

A quantity that has been of interest to assess the quality of the IWAE bound is the
variational gap, which is defined as the difference between the IWAE bound and the marginal
log-likelihood:

∆N (θ, φ;x) := `
(IWAE)
N (θ, φ;x)− `(θ;x) =

∫ ∫ N∏
i=1

qφ(zi) log

 1
N

N∑
j=1

wθ,φ(zj)

dz1:N (21)

where for all z ∈ Rd

wθ,φ(z) := wθ,φ(z)
EZ∼qφ (wθ,φ(Z)) = wθ,φ(z)

pθ(x) ,

11
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so that wθ,φ(z1), . . . , wθ,φ(zN ) correspond to the relative weights. The analysis of the
variational gap (21), first performed in Maddison et al. (2017) and then refined in Domke
and Sheldon (2018), investigated the case where dim(z) = d is fixed and N goes to infinity.
Informally, they obtained in their Theorem 3 that the variational gap behaves as follows

∆N (θ, φ;x) = − γ2
0

2N + o

( 1
N

)
with γ0 denoting the variance of the relative weights, that is

γ2
0 := VZ∼qφ(wθ,φ(Z)).

This result suggests that using N is very beneficial to reduce the variational gap, as it goes
to zero at a fast 1/N rate. It motivates a study - in a regime where d is fixed and N goes to
infinity - of the more general variational gap defined for all α ∈ [0, 1) by

∆(α)
N (θ, φ;x) := `

(α)
N (θ, φ;x)− `(θ;x).

The following result generalizes (Domke and Sheldon, 2018, Theorem 3) to the VR-IWAE
bound.

Theorem 3 Let α ∈ [0, 1). Then, it holds that

0 < EZ∼qφ(wθ,φ(Z)1−α) <∞. (22)

Further assume that there exists β > 0 such that

EZ∼qφ(|w(α)
θ,φ(Z)− 1|2+β) <∞, (23)

where we have defined w
(α)
θ,φ(z) = wθ,φ(z)1−α/EZ∼qφ(wθ,φ(Z)1−α) for all z ∈ Rd. Lastly,

assume that the following condition holds

lim sup
N→∞

E(1/Rα,N ) <∞, (24)

where, for all N ∈ N?, Rα,N = N−1∑N
i=1wθ,φ(Zi)1−α and Z1, . . . , ZN are i.i.d. samples

generated according to qφ. Then, denoting γ2
α = (1− α)−1VZ∼qφ(w(α)

θ,φ(Z)), we have:

∆(α)
N (θ, φ;x) = L(α)(θ, φ;x)− `(θ;x)− γ2

α

2N + o

( 1
N

)
. (25)

The proof of this result is deferred to Appendix B.1 and we now aim at interpreting
Theorem 3, starting with the conditions (23) and (24).

4.1.1 Conditions (23) and (24)

A first remark is that the conditions (23) and (24) stated in Theorem 3 exactly generalize
the ones from (Domke and Sheldon, 2018, Theorem 3), which are recovered by setting α = 0.
This then prompt us to investigate in the following proposition how restrictive the conditions
(23) and (24) are as a function of α.

12
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Proposition 2 Let α1, α2 ∈ [0, 1) with α1 > α2. Then, the two following assertions hold.

1. If (23) holds with α = α2, then (23) holds with α = α1.

2. If (24) holds with α = α2, then (24) holds with α = α1.

The proof of this result is deferred to Appendix B.2. It notably relies the fact that the
condition (24) is equivalent to the statement that there exists some N ∈ N? for which
E(1/Rα,N ) <∞, which follows from Lemma 4 in Appendix A.3 with k = 1. Notice that this
provides an interesting equivalent condition to (24) that might be easier to check empirically.

Proposition 2 then states that the conditions (23) and (24) with α = α1 are at worse as
restrictive as the case α = α2, where α1 > α2. Putting this into perspective with Domke
and Sheldon (2018), the conditions (23) and (24) when α > 0 are hence not more restrictice
than the conditions presented in (Domke and Sheldon, 2018, Theorem 3) for the more usual
IWAE bound case α = 0. In fact, one would even be inclined to think that those conditions
become easier to satisfy as α increases, motivating once again the use of α ∈ (0, 1) in practice
to be in the conditions of application of Theorem 3.

4.1.2 Interpreting (25)

Under the assumptions of Theorem 3, (25) states: for all α ∈ [0, 1),

∆(α)
N (θ, φ;x) = L(α)(θ, φ;x)− `(θ;x)− γ2

α

2N + o

( 1
N

)
.

The variational gap ∆(α)
N (θ, φ;x) is hence composed of two main terms:

• A term going to zero at a 1/N rate that depends on γ2
α. Here γ2

α is controlled thanks
to (23), as (23) implies that VZ∼qφ(w(α)

θ,φ(Z)) <∞ or equivalently that γ2
α <∞.

• An error term L(α)(θ, φ;x)− `(θ;x). This term decreases away from zero as α increases
due to the fact that L(α)(θ, φ;x) decreases away from its upper bound `(θ;x) as α
increases (see for example Li and Turner, 2016, Theorem 1). It is equal to zero when
α = 0 or when the posterior and the encoder distributions are equal to one another.
Unless α = 0 or the posterior and encoder distributions are matching, the error term
L(α)(θ, φ;x) − `(θ;x) hence maintains a dependency in (θ, φ) in the variational gap
even as N goes to infinity. This is coherent with Theorem 1, in the sense that the case
α ∈ (0, 1) might ensure a better learning of both θ and φ in practice compared to the
case α = 0 (as the latter does not keep a dependency in φ as N goes to infinity).

Since the error term L(α)(θ, φ;x)− `(θ;x) is decreasing away from zero as α increases and
the term going to zero at a 1/N rate depends on the behavior of γ2

α (with γ2
α going to 0 as

α goes to 1, see Lemma 5 of Appendix B.3), there might then be a tradeoff to achieve when
choosing α in order to obtain the best empirical performances.

To the best of our knowledge, and by appealing to the link between the VR-bound
and the VR-IWAE bound methodologies established in Section 3.1, Theorem 3 is the
first result shedding light via (25) on how the quantity γ2

α alongside with the error term

13
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L(α)(θ, φ;x)− `(θ;x) may play a role to guarantee the success of gradient-based methods
involving the VR-bound. While the result obtained in Theorem 3 is encouraging and
might further motivate the use of α ∈ (0, 1) in practice, one may seek to identify potential
limitations of Theorem 3.

4.1.3 Limitations of Theorem 3

To investigate the limitations of Theorem 3, let us provide below two insightful examples in
which all the terms appearing in (25) are tractable.

Example 1 Let σ > 0, S1, . . . , SN be i.i.d. normal random variables and assume that the
distribution of the relative weights wθ,φ(z1), . . . , wθ,φ(zN ) is log-normal of the form

logwθ,φ(zi) = −σ
2d

2 − σ
√
dSi, i = 1 . . . N, (26)

where the relationship between mean and variance ensures that the relative weights have
expectation 1. Then, we can apply Theorem 3: for all α ∈ [0, 1),

∆(α)
N (θ, φ;x) = L(α)(θ, φ;x)− `(θ;x)− γ2

α

2N + o

( 1
N

)
with

L(α)(θ, φ;x)− `(θ;x) = −ασ
2d

2 and γ2
α = exp

[
(1− α)2σ2d

]
− 1

1− α .

In particular, we can write the weights under the form (26) with σ = 1 by setting pθ(z|x) =
N (z; θ, Id), qφ(z|x) = N (z;φ, Id), θ = 0 · ud and φ = ud, where Id is the d-dimensional
identity matrix and ud the d-dimensional vector whose coordinates are all equal to 1.

The proof of Example 1 is deferred to Appendix B.4 and we now comment on Example 1. A
first comment is that as α increases, the error term L(α)(θ, φ;x)− `(θ;x) worsens linearly
with α while γ2

α decreases with α, which supports our claim that there might exist an optimal
α that balances between the two terms appearing in the variational gap as a rule of thumb.

Furthermore, the variance of the relative weights and more generally γ2
α is exponential

with d. This means that the analysis of Domke and Sheldon (2018)—that we extended to
α ∈ [0, 1) in Theorem 3—may not capture what is happening in some high-dimensional
scenarios as we may never use N large enough in high-dimensional settings for the asymptotic
regime of Theorem 3 to kick in. We now present our second example.

Example 2 We consider the linear Gaussian example from Rainforth et al. (2018), that is
pθ(z) = N (z; θ, Id), pθ(x|z) = N (x; z, Id) with θ ∈ Rd, and qφ(z|x) = N (z;Ax+ b, 2/3 Id)
with A = diag(ã) and φ = (ã, b) ∈ Rd × Rd. Here, the optimal parameter values (θ?, φ?) are
given by θ? = T−1∑T

t=1 xt and φ? = (a?, b?) with a? = 1/2ud and b? = θ?/2 (see Rainforth
et al., 2018, Appendix B). Furthermore, the true marginal likelihood and true posterior
density are given by pθ(x) = N (x; θ, 2Id) and pθ(z|x) = N (z; (θ + x)/2, 1/2 Id) respectively.
Then, we can apply Theorem 3: for all α ∈ [0, 1),

∆(α)
N (θ, φ;x) = L(α)(θ, φ;x)− `(θ;x)− γ2

α

2N + o

( 1
N

)
,
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with

L(α)(θ, φ;x)− `(θ;x) = d

2

[
log

(4
3

)
+ 1

1− α log
( 3

4− α

)]
− 3α

4− α

∥∥∥Ax+ b− θ + x

2

∥∥∥2

γ2
α = 1

1− α

[
(4− α)d(15− 6α)−

d
2 exp

(
24(1− α)2

(5− 2α)(4− α)

∥∥∥Ax+ b− θ + x

2

∥∥∥2
)
− 1

]
.

The proof of Example 2 is deferred to Appendix B.5. To interpret Example 2, observe that
the case of optimality is particularly telling in this example, since when (θ, φ) = (θ?, φ?) it
holds that γ2

α = (1−α)−1[(4−α)d(15− 6α)−d/2 − 1] and γ2
α is thus exponential in d despite

the parameters (θ, φ) being optimal for the setting considered.
Hence, and in line with our conclusions for Example 1, the relevance of Theorem 3 can

be limited for a high-dimensional latent space d. This calls for an in-depth study of the
variational gap as both d and N go to infinity.

4.2 Behavior of The VR-IWAE Bound when both d and N go to Infinity

To better capture what is happening to the VR-IWAE bound in high-dimensional scenarios,
we now let d,N →∞ in the variational gap

∆(α)
N,d(θ, φ;x) := `

(α)
N,d(θ, φ;x)− `d(θ;x),

where we have emphasized notationally the dependence on d in the VR-IWAE bound (9),
the log-likelihood (2) and in the variational gap. We will consider the two cases:

(i) d,N →∞ with logN
d
→ 0,

(ii) d,N →∞ with logN
d1/3 → 0,

that is, N grows slower than exponentially with d as in (i) or slower than sub-exponentially
with d1/3 as in (ii). As we shall see, those two cases will rely on a different set of assumptions
each in order to carry out the analysis. In both scenarios, we will prove that a single
importance weight dominates all the others, which strongly impacts the variational gap.
To this end, let us rewrite the variational gap ∆(α)

N,d(θ, φ;x) under a more convenient form.
Writing wi = wθ,φ(zi) for all i = 1 . . . N , we first re-order the weights w1, . . . , wN as

w(1) < w(2) < · · · < w(N−1) < w(N),

where we have made the assumption that the weights have no tie almost surely. Now
denoting by q(N)

φ the density of w(N) and defining for all α ∈ [0, 1)

T
(α)
N,d =

N−1∑
j=1

(
w(j)

w(N)

)1−α

(27)

(we have dropped the dependency in x appearing in T
(α)
N,d for notational ease here), we then

have the following proposition.
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Proposition 3 For all α ∈ [0, 1), the variational gap ∆(α)
N,d(θ, φ;x) can be rewritten as

∆(α)
N,d(θ, φ;x) = ∆(α,MAX)

N,d (θ, φ;x) +R
(α)
N,d(θ, φ;x) (28)

where

∆(α,MAX)
N,d (θ, φ;x) =

∫
q

(N)
φ (w(N)) log

(
w(N)

)
dw(N) + logN

α− 1 (29)

0 ≤ R(α)
N,d(θ, φ;x) ≤ 1

1− αE(T (α)
N,d). (30)

The proof of Proposition 3 can be found in Appendix B.6. To continue the analysis, the key
intuition will be that the log weights typically satisfy a central limit theorem (CLT), hence the
weights are approximately log-normal as the dimension d increases. One such case for instance
arises when the posterior and variational distributions are such that the log weights satisfy

logwi =
d∑
j=1

Xi,j , i = 1 . . . N, (31)

where, for all i = 1 . . . N , Xi,1, . . . Xi,d are i.i.d. random variables and E(exp(
∑d
j=1Xi,j)) = 1

(since the relative weights satisfy E(wi) = 1). Indeed, denoting ξi,j = −(Xi,j − E(X1,1)),
σ2 = V(ξ1,1) and Si =

∑d
j=1 ξi,j/(σ

√
d), (31) can equivalently be rewritten as

logwi = − logE(exp(−σ
√
dS1))− σ

√
dSi, i = 1 . . . N, (32)

where under the assumption that σ2 < ∞, Si converges in distribution to the standard
normal distribution by the CLT for all i = 1 . . . N . Consequently, the distribution of the
weights originating from (32) can be approximated in high-dimensional settings by the
log-normal distribution from Example 1, that is

logwi = −σ
2d

2 − σ
√
dSi, Si ∼ N (0, 1), i = 1 . . . N.

For this reason, we first show in the following how the rest of the analysis unfolds when
the distribution of the weights is assumed to be exactly log-normal. We will then use this
analysis as a stepping stone to treat the more general case where the distribution of the
weights is approximately log-normal of the form (32).

4.2.1 Log-normal Distribution Assumption for the Weights

Let S1, . . . , SN be i.i.d. random variables and let the weights w1, . . . , wN be of the form

logwi = −σ
2d

2 − σ
√
dSi, Si ∼ N (0, 1), i = 1 . . . N, (33)

that is we consider the case where the distribution of the weights is log-normal. Let S(1) ≤
. . . ≤ S(N) denote the ordered sequence of S1, . . . , SN and recall that w(1) ≤ . . . ≤ w(N)

denotes the ordered sequence of w1, . . . , wN . We then have the following lemma, which
provides asymptotic results on the expectation of S(1) as N →∞.
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Lemma 1 Let S1, . . . , SN be i.i.d. normal random variables. Then,

E(S(1)) = −
√

2 logN +O

( log logN√
logN

)
. (34)

The proof of this lemma can be found in Appendix B.7.1. Intuitively, Lemma 1 will serve
as the basis to study the two terms appearing in Equation (28) of Proposition 3, as both
∆(α,MAX)
N,d (θ, φ;x) and E(T (α)

N,d) depend on S(1) through the relation

logw(N) = −σ
2d

2 − σ
√
dS(1).

From there, we can derive the two propositions below.

Proposition 4 Let S1, . . . , SN be i.i.d. normal random variables. Further assume that the
weights w1, . . . , wN satisfy (33). Then, for all α ∈ [0, 1),

lim
N,d→∞

∆(α,MAX)
N,d (θ, φ;x) + dσ2

2

1− 2

√
2 logN
dσ2 + 1

1− α
2 logN
dσ2 +O

( log logN√
d logN

) = 0.

Proposition 5 Let S1, . . . , SN be i.i.d. normal random variables. Further assume that the
weights w1, . . . , wN satisfy (33). Then, for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d→0

E(T (α)
N,d) = 0. (35)

The proof of these two propositions are deferred to Appendix B.7.2 and Appendix B.7.3
respectively. Importantly, Proposition 5 implies that the largest weight w(N) converges to 1
in probability, meaning that there is a weight collapse when N, d→∞ with logN/d→ 0
(following the definition of weight collapse given in Bengtsson et al., 2008). By using (35)
with α = 0, this weight collapse indeed follows from Markov’s inequality (in order to get
that T (0)

N,d converges to 0 in probability) combined with the fact that w(N) = (1 + T
(0)
N,d)−1.

Building on Proposition 3, Proposition 4 and Proposition 5, we now deduce the following
theorem, which describes the asymptotic behavior of the variational gap as N, d→∞ in the
log-normal distribution case for values of α in [0, 1).

Theorem 4 (i.i.d. normal random variables) Let S1, . . . , SN be i.i.d. normal random
variables. Further assume that the weights w1, . . . , wN satisfy (33). Then, for all α ∈ [0, 1),
we have

lim
N,d→∞

logN/d→0

∆(α)
N,d(θ, φ;x) + dσ2

2

1− 2

√
2 logN
dσ2 + 1

1− α
2 logN
dσ2 +O

( log logN√
d logN

) = 0.

While Theorem 4 states that increasing N decreases the variational gap ∆(α)
N,d(θ, φ;x) for N

large enough, it does so by a factor which is negligible compared to the term −dσ2/2. This
is in sharp contrast to Theorem 3 and more specifically to Example 1, which predicts that
for log-normal weights the variational gap decreases in 1/N in the fixed d, large N regime.
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Contrary to Example 1, the term −dσ2/2 does not depend on α here. In fact, by taking
the expectation in (33), ELBOd(θ, φ;x) − `d(θ;x) = −dσ2/2, meaning that the following
approximation of the variational gap in the context of Theorem 4 holds: for all α ∈ [0, 1),

∆(α)
N,d(θ, φ;x) ≈ ELBOd(θ, φ;x)− `d(θ;x), as N, d→∞ with logN

d → 0.

Hence, Theorem 4 shows that in high-dimensional scenarios and under the log-normal
distribution assumption (33), we cannot expect to gain much from the VR-IWAE bound
unless N grows exponentially with d, in the sense that the improvement is negligible compared
to the ELBO. This result holds for all values of α in [0, 1), thus it holds for the IWAE
bound (α = 0) as well.

We obtain the following slightly more general result by building on the proof of Theorem 4.

Theorem 5 (General i.i.d. normal random variables) Let S1, . . . , SN be i.i.d. nor-
mal random variables. Further assume that the weights w1, . . . , wN satisfy

logwi = −B
2
d

2 −BdSi, i = 1 . . . N, (36)

and that there exists σ− > 0 such that Bd ≥ σ−
√
d. Then, for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d→0

∆(α)
N,d(θ, φ;x) + B2

d

2

{
1− 2

√
2 logN
Bd

+ 1
1− α

2 logN
B2
d

+O

( log logN
Bd
√

logN

)}
= 0.

The proof of Theorem 5 can be found in Appendix B.7.4. We now revisit the Gaussian
example given in Example 1 in the context of Theorem 5.

Example 3 Set pθ(z|x) = N (z; θ, Id) and qφ(z) = N (z;φ, Id), with θ, φ ∈ Rd. Denoting
Bd = ‖θ − φ‖, we can write the weights w1, . . . , wN under the form (36) (see (81) of
Appendix B.4). Hence, Theorem 5 applies if there exists σ− > 0 such that Bd ≥ σ−

√
d. This

is for example the case if θ = 0 · ud and φ = ud with σ− = 1.

As we shall see next, our conclusion regarding the behavior of the VR-IWAE bound in high-
dimensional settings extends to cases where the log-normal assumption does not necessarily
hold exactly, that is if we assume instead that (32) holds, where S1, . . . SN are i.i.d. random
variables whose distribution is close to a normal as N, d→∞.

4.2.2 Beyond the Log-normal Distribution Assumption

Following (32), let us set

logwi = − logE(exp(−σ
√
dS1))− σ

√
dSi, i = 1 . . . N, (37)

where the i.i.d. random variables S1, . . . , SN are defined as follows:

Si = 1
σ
√
d

d∑
j=1

ξi,j , i = 1 . . . N. (38)

The assumption (A2) below ensures that S1, . . . SN have a distribution that is close to a
normal as N, d→∞, so that (33) is recovered in the limit.
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(A2) For all i = 1 . . . N ,

(a) ξi,1, . . . , ξi,d are i.i.d. random variables which are absolutely continuous with respect
to the Lebesgue measure and satisfy E(ξi,1) = 0 and V(ξi,1) = σ2 <∞.

(b) There exists K > 0 such that:

|E(ξki,1)| ≤ k!Kk−2σ2, k ≥ 3.

Here, the condition (A2)b corresponds to the well-known Bernstein condition. Paired up
with (A2)a, this condition permits us to appeal to classical limit theorems for large deviations
in order to enlarge the so-called zone of normal convergence beyond the CLT (Petrov, 1995;
Saulis and Statulevičius, 2000). This enables us to establish preliminary results which are
used to prove the results of Section 4.2.2 we will now present (we refer to Appendix B.8.2
for the statement of those preliminary results). We first provide the equivalent of Lemma 1
in the more general context of (38) and under (A2).

Lemma 2 Assume (A2). Let S1, . . . , SN be as in (38). Then, as N, d→∞, with logN
d1/3 → 0,

(34) holds.

The proof of this result is deferred to Appendix B.8.3. Notice that we are now assuming
that N grows slower than sub-exponentially with d1/3 in Lemma 2. The following two
propositions give results akin to those obtained in Proposition 4 and Proposition 5.

Proposition 6 Assume (A2). Let S1, . . . , SN be as in (38). Further assume that the weights
w1, . . . , wN satisfy (37). Then, setting

a := logE(exp(−ξ1,1)), (39)

we have that a > 0 and that for all α ∈ [0, 1),

lim
N,d→∞

logN/d1/3→0

∆(α,MAX)
N,d (θ, φ;x) + da

1− σ

a

√
logN
d

+O

( log logN√
d logN

) = 0.

Proposition 7 Assume (A2). Let S1, . . . , SN be as in (38). Further assume that the weights
w1, . . . , wN satisfy (37). Then, for all α ∈ [0, 1),

lim
N,d→∞

logN/d1/3→0

E(T (α)
N,d) = 0.

The proof of Proposition 6 and Proposition 7 can be found in Appendix B.8.4 and Ap-
pendix B.8.5 respectively.

Remark 3 The log-normal case corresponds to setting a = σ2/2 in Proposition 6 (this can
be checked using the definition of a in (39) combined with (94) from the proof of Proposition 6
in Appendix B.8.4). Contrary to Proposition 4, the (1 − α)−1(dσ2)−12 logN term is now
subsumed by the final O(log logN/

√
d logN) term in Proposition 6, which comes from the

fact that Proposition 6 makes the additional assumption logN/d1/3 → 0 as N, d → ∞.
Hence, Proposition 4 and Proposition 6 agree with each other in the log-normal case.
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Proposition 3, Proposition 6 and Proposition 7 lead to the theorem below, which characterizes
the asymptotics of the variational gap as N, d→∞ for α ∈ [0, 1) in the more general case
where the distribution of the weights is approximately log-normal according to (37).

Theorem 6 (i.i.d. random variables) Assume (A2). Let S1, . . . , SN be as in (38). Fur-
ther assume that the weights w1, . . . , wN satisfy (37) and let a > 0 be defined as in (39).
Then, for all α ∈ [0, 1),

lim
N,d→∞

logN/d1/3→0

∆(α)
N,d(θ, φ;x) + da

1− σ

a

√
2 logN
d

+O

( log logN√
d logN

) = 0.

We have thus obtained that, under the assumptions of Theorem 6, the VR-IWAE bound is
of limited interest for all values of α ∈ [0, 1) unless N grows at least sub-exponentially with
d1/3. In fact, by taking the expectation in the expression of the log-weights, we have that
ELBOd(θ, φ;x)− `d(θ;x) = −da (using for example (95) from the proof of Proposition 6 in
Appendix B.8.4). Hence, the following approximation of the variational gap holds in the
context of Theorem 6: for all α ∈ [0, 1),

∆(α)
N,d(θ, φ;x) ≈ ELBOd(θ, φ;x)− `d(θ;x), as N, d→∞ with logN

d1/3 → 0.

Since the weights are assumed to be approximately log-normal this time as opposed to
Section 4.2.1, the condition that N should grow at least exponentially with d to avoid a
weight collapse effect has now been replaced by the less restrictive yet still stringent condition
that N should grow at least sub-exponentially with d1/3.

As described below, the assumptions on the distribution of the weights—that is, on the
ratio between the posterior and the variational distributions—appearing in Theorem 6 are
met for the linear Gaussian setting from Example 2.

Example 4 We consider the linear Gaussian setting from Rainforth et al. (2018) that we
recalled in Example 2. Denoting λ =

∥∥ θ+x
2 −Ax− b

∥∥/√d, the weights can be written in the
form of (37) with σ2 = 1/18 + 8/3λ2 and we also have a = λ2 + 1/6 + 1/2 log(3/4). As a
result, we can apply Theorem 6 if (A2) holds. This is for example the case at optimality when
(θ, φ) = (θ?, φ?) (and the derivation details for this example can be found in Appendix B.8.6).

Example 4 states that we are in the conditions of application of Theorem 6 when the
parameters (θ, φ) are optimal, with corresponding optimal posterior density pθ?(z|x) =
N (z; (θ? + x)/2, 1/2Id) and optimal variational density qφ?(z|x) = N (z; (θ? + x)/2, 2/3Id).

This example showcases how, in some instances where the variational family is not
large enough to contain the target density, there can be a weight collapse phenomenon as
d increases that severely impacts the VR-IWAE bound, even when the parameters (θ, φ)
are set to be the optimal ones for the problem considered. This concludes our theoretical
study of the VR-IWAE bound, which sheds lights on the conditions behind the success or
failure of this bound. In the next section, we describe how our theoretical results relate to
the existing literature.
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5. Related Work

Alpha-divergence variational inference. Our work provides the theoretical grounding behind
VR-bound gradient-based schemes (Hernandez-Lobato et al., 2016; Bui et al., 2016; Li and
Turner, 2016; Dieng et al., 2017; Li and Gal, 2017; Zhang et al., 2021; Rodŕıguez-Santana and
Hernández-Lobato, 2022). It also unifies the VR and IWAE bound methodologies (Burda
et al., 2016; Rainforth et al., 2018; Tucker et al., 2019; Domke and Sheldon, 2018; Maddison
et al., 2017) and serves as a foundation for improving on both methodologies.

Proof techniques. Several of our theoretical results generalize known findings from the
literature in order to build the VR-IWAE bound methodology and to characterize its
asymptotics. Some of our proofs are straightforwardly derived from existing ones, such
as the proofs of Theorems 2 and 3 (which are established by directly adapting the proofs
written in Tucker et al. (2019) and in Domke and Sheldon (2018) respectively). However, a
number of our proof techniques differs significantly from/alter parts of known proofs (see
Appendix C for details). Lastly, the derivations made in Section 4.2 for the asymptotics of
the VR-IWAE bound when N, d→∞ are, to the best of our knowledge, the first of their kind.

Importance sampling. Common variational bounds and their gradients can often be expressed
in terms of the importance weights wθ,φ (with our novel VR-IWAE bound being no exception
to that rule). As such, the success of gradient-based variational inference has been known
to depend on the behavior of the importance weights and there has been a growing interest
in understanding this behavior through the use of insights and tools from the importance
sampling (IS) literature (Maddison et al., 2017; Domke and Sheldon, 2018; Dhaka et al.,
2021; Geffner and Domke, 2021). In particular, it is well-known that IS can perform poorly
in high dimensions unless the target and reference/proposal distributions are close.

Picklands III (1975) for instance showed that, under commonly satisfied assumptions,
the right tail of the importance weights distribution approximates a generalized Pareto
distribution, that is, a heavy-tailed distribution with three parameters (u, σ, k) and moments
of order up to b1/kc. This behavior is typical in high dimensions and it makes IS fail, as the
IS estimators are dominated by the few largest terms. Leveraging this result, Dhaka et al.
(2021) considered the case of black-box variational inference and viewed the importance
weights as approximately drawn from a generalized Pareto distribution with tail index k.
The importance weights taken to an exponent 1 − α are then approximately distributed
according to a generalized Pareto distribution with tail index (1− α)k and they deduced
that the estimates should be more stable as α increases towards 1 due to lighter tails.

The analysis from Dhaka et al. (2021) goes hand in hand with our findings, as (i)
Theorems 1 and 3 predict improvements in terms of SNR and variance as α increases, at
the cost of an increasing bias and (ii) our results from Section 4.2 show that, as d increases,
the VR-IWAE bound fails regardless of the value of α ∈ [0, 1) and provides negligible
improvements compared to the ELBO (α = 1). However, one main specificity of our work is
our precise characterization of how the distribution of the importance weights impacts the
tightness of the VR-IWAE bound. Specifically, Theorem 3 generalizes Domke and Sheldon
(2018) to the VR-IWAE bound, while the results from Section 4.2 provide the first theoretical
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justification behind the empirical findings from Geffner and Domke (2021) regarding the
impact of weight collapse on the tightness of variational bounds.

The next section is devoted to illustrating the theoretical claims we have made thus far
over toy and real-data experiments.

6. Numerical Experiments

In this section, our goal is to verify the validity of the theoretical results we established over
several numerical experiments, starting with a Gaussian example in which the distribution
of the weights is exactly log-normal.

6.1 Gaussian Example

We consider the Gaussian example described in Example 3, for which the weights w1, . . . , wN
can be written under the form (36) with Bd = ‖θ− φ‖, meaning that the distribution of the
weights is log-normal. On the one hand, Theorem 3 predicts that for all α ∈ [0, 1),

∆(α)
N,d(θ, φ;x) = −αB

2
d

2 − exp
[
(1− α)2B2

d

]
− 1

2(1− α)N + o

( 1
N

)
(40)

(this follows from a straightforward adaptation of Example 1). On the other hand, Theorem 5
tells us that if there exists σ− > 0 such that Bd ≥ σ−

√
d, then: for all α ∈ [0, 1),

lim
N,d→∞

logN/d→0

∆(α)
N,d(θ, φ;x) + B2

d

2

{
1− 2

√
2 logN
Bd

+ 1
1− α

2 logN
B2
d

+O

( log logN
Bd
√

logN

)}
= 0.

(41)

We now want to check the validity of the two asymptotic results above. To do so, we need
to be able to approximate the variational gap ∆(α)

N,d(θ, φ;x), which can be done using the
unbiased Monte Carlo (MC) estimator given for all N ∈ N? by

1
1− α log

 1
N

N∑
j=1

wθ,φ(Zj)1−α

 ,
with Z1, . . . , ZN being i.i.d. samples generated according to qφ. As for the approximation
returned by Theorem 3, we will represent it according to (40) through functions of the form

c1 7→ −
αB2

d

2 − exp
[
(1− α)2B2

d

]
− 1

2(1− α)N + c1
N

(42)

and for the approximation returned by Theorem 5, we will represent it according to (41)
through functions of the form

c2 7→ −
B2
d

2 +Bd
√

2 logN + logN
α− 1 + c2Bd log logN√

logN
. (43)

We first consider the case where θ = 0 · ud and φ = ud. In that setting, Bd =
√
d and we

have that (i) the 1/N term from (40) is exponential in (1 − α)2d and (ii) we are in the
conditions of application of Theorem 5 by setting σ− = 1.
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Consequently, for this choice of (θ, φ) and regardless of the value of α ∈ [0, 1), we are
expecting Theorem 5 to capture the behavior of the variational gap as d and N increase in
such a way that logN/d decreases. This is indeed what we observe in Figure 1, in which
we let d ∈ {10, 100, 1000}, α ∈ {0., 0.2, 0.5}, N ∈

{
2j : j = 1 . . . 9

}
and we compare the

behavior of the variational gap to the behavior predicted by Theorem 5 through curves of
the form (43).

Unsurprisingly, although valid in low dimensions for a proper choice of α, the analysis of
Theorem 3 requires an unpractical amount of samples N to properly capture the behavior of
the variational gap as d increases (additional plots providing the comparison with Theorem 3
are made available in Appendix D.1 for the sake of completeness).

Figure 1: Plotted in blue is the MC estimate of the variational gap ∆(α)
N,d(θ, φ;x) (averaged

over 1000 MC samples) for the toy example described in Section 6.1 as a function
of N , for varying values of (α, d) and with (θ, φ) = (0 · ud,ud) so that Bd =

√
d.

Plotted in orange are curves of the form (43) with tailored values of c2.

We next train the parameter φ in order to measure the impact of the training procedure
on the validity of our asymptotic results. Here, this impact is reflected in the quantity Bd
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through the simple relation Bd = ‖θ − φ‖. In case the training is successful, Bd/
√
d is then

anticipated to decrease from 1 to 0 (having set θ = 0 · ud and initialized with φ = ud).
Hence, as the training progresses, we will be less and less able to find σ− > 0 such that

Bd ≥ σ−
√
d, which will contradict the assumption we make in Theorem 5. At the same time,

the 1/N term from (40) will decrease thanks to its dependency in Bd, meaning that (40)
may become a better approximation than (41) during the training procedure.

This behavior is empirically confirmed in Figure 2 (and we also check in Figure 14
of Appendix D.1 that Bd/

√
d indeed goes from 1 to 0 during the training procedure).

In those plots, the parameter φ was optimised via stochastic gradient descent using the
reparameterized gradient estimator (13) with N = 100 and we set α = 0.2 and d = 1000
(and a similar trend can be observed for other values of α and d).

Figure 2: Plotted in blue is the MC estimate of the variational gap ∆(α)
N,d(θ, φ;x) (averaged

over 1000 MC samples) at epochs {1000, 3000, 5000} for the toy example described
in Section 6.1 as a function of N , for α = 0.2 and d = 1000. Plotted in orange
(resp. in purple) are curves of the form (43) with tailored values of c2 (resp. of
the form (42) with tailored values of c1).

The main insight we get from our first numerical experiment is then that: as the
dimension d increases and N does not grow faster than exponentially with d, we should
not expect much empirically from the VR-IWAE bound as a lower bound to the marginal
log-likelihood when the distribution of the weights is log-normal. This is true unless the
encoder and decoder distributions become very close to one another, in which case Theorem 3
does apply instead of Theorem 5.

Thus, while this limitation of the VR-IWAE bound holds for all α ∈ [0, 1), it may be
mitigated by (i) proposing successful training procedures (further shedding light on the im-
portance of finding gradient estimators with good SNR properties) and (ii) selecting suitable
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variational families which can capture the complexity within the target posterior density.
Furthermore, the analysis provided by Theorem 3 may also apply in lower dimensional
settings, under the condition that the variance term appearing in Theorem 3 is well-behaved
and that the value of α is properly tuned. We next present a second numerical experiment,
where this time the weights are not exactly log-normal.

6.2 Linear Gaussian Example

We are interested in the linear Gaussian example from Rainforth et al. (2018), which we
already highlighted in Examples 2 and 4. The data set D = {x1, . . . , xT } is generated by
sampling T = 1024 datapoints from N (0, 2Id) and we will consider three initializations for
the parameters (θ, φ) involving a Gaussian perturbation of standard deviation σperturb of
the ground truth values (θ?, φ?):

(i) σperturb = 0.5: the parameters are initialized far from (θ?, φ?),
(ii) σperturb = 0.01: the parameters are initialized close to (θ?, φ?),
(iii) σperturb = 0.: the parameters are equal to (θ?, φ?).

The first two initializations follow from Rainforth et al. (2018) and should notably permit
us to approximately characterize the behavior of the linear model before and after training.

Our first step is to check that, as written in Example 4, the distribution of the weights is
approximately log-normal as d increases for the initializations above. To do so, we randomly
select a datapoint x, draw N = 1000000 weight samples in dimension d = {20, 100, 1000} for
σperturb ∈ {0.5, 0.01, 0.}, before plotting for each d a histogram of the resulting log-weight
distribution as well as a Q-Q plot to test the normality assumption of those log-weights.

The results are shown on Figure 3 and we see that while the log-normality phenomenon
happens in dimension d = 100 when a large perturbation is being considered, even a small
perturbation to no perturbation at all can induce some log-normality of the weights as d
further increases, which is in line with the theory (and similar plots can be observed for
other randomly selected datapoints).

We next want to test the validity of our asymptotic results. On the one hand, Theorem 3
predicts that: for all α ∈ [0, 1),

∆(α)
N,d(θ, φ;x) = L(α)

d (θ, φ;x)− `d(θ;x)−
γ2
α,d

2N + o

( 1
N

)
, (44)

where L(α)
d (θ, φ;x)− `d and γ2

α,d can be analytically computed using Example 2 (and we have
emphasized the dependency in d in each of those terms). On the other hand, Theorem 6
predicts under (A2) that: for all α ∈ [0, 1),

lim
N,d→∞

logN/d1/3→0

∆(α)
N,d(θ, φ;x) + da

1− σ

a

√
2 logN
d

+O

( log logN√
d logN

) = 0,
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Figure 3: Plotted is the distribution of logwi and the corresponding QQ-plot for the linear
Gaussian example described in Section 6.2 for a randomly selected datapoint x,
varying values of d and three different initializations of the parameters (θ, φ).

where σ2 and a can be computed analytically according to Example 4. Hence, to check
whether these results apply, we want to look at functions of the form

(Theorem 3) c1 7→ L(α)
d (θ, φ;x)− `d(θ;x)−

γ2
α,d

2N + c1
N

(45)

(Theorem 6) c2 7→ −da+
√
dσ
√

2 logN + c2
√
d log logN√

logN
(46)

and see how well they approximate the behavior of the variational gap ∆(α)
N,d(θ, φ;x). Based

on Example 4, we are expecting the regime predicted by Theorem 6 to apply as d increases
if N does not grow faster than d1/3 and this is indeed what we observe in Figure 4.

While this process is noticeably quicker for an initialization that is far from the optimum
(σperturb = 0.5), all three initializations considered here eventually exhibit the behavior
predicted by Theorem 6 as d further increases. As already mentioned in Section 4.2.2,
this sends the important message that the VR-IWAE bound can strongly deteriorate as d
increases due to a mismatch between the targeted density and its variational approximation,
even though the parameters themselves are optimal.

As for Theorem 3, we obtain that this theorem applies in low to medium dimensions
when the value of α is well-chosen and/or the parameters are close to being optimal, but
fails as d increases unless we use an unpractical amount of samples N (see Appendix D.2.1).

We now want to get insights regarding the training of the VR-IWAE bound in practice.
We follow the methodology used in Rainforth et al. (2018), which looked into the convergence
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Figure 4: Plotted in blue is the MC estimate of the VR-IWAE bound `(α)
N,d(θ, φ;x) (averaged

over 1000 MC samples) for the linear Gaussian example described in Section 6.2
as a function of N , for varying values of (α, d) and three different initializations
of (θ, φ). Plotted in green are curves of the form (46) with tailored values of c2.

of the SNR for the numerical example considered here in the specific case of the IWAE
bound (α = 0). Our goal is thus to check whether we can observe the SNR advantages when
α > 0 predicted by Theorem 1 in the reparameterized case.

Let us decompose θ as (θ`)1≤`≤d and φ as (φ`′)1≤`′≤d+1. We then look at the reparame-
terized estimated gradients of the VR-IWAE bound (δ(α)

1,N (θ`))1≤`≤d and (δ(α)
1,N (φ`′))1≤`′≤d+1

defined in (14) and (15) respectively as a function of N , for varying values of α, varying
values of d and for the two initializations σperturb = 0.01 and σperturb = 0.5. The results are
shown in Figure 5 (resp. Figure 6) and they have been obtained by randomly selecting 10
indexes ` ranging between 1 and d and averaging over the resulting SNR(δ(α)

1,N (θ`)) values
(resp. by randomly selecting 10 indexes `′ ranging between 1 and d+ 1 and averaging over
the resulting SNR(δ(α)

1,N (φ`′)) values). Theoretical lines have also been added to Figures 5
and 6 in order to reflect the asymptotic regimes predicted by Theorem 1.
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Figure 5: Plotted is the SNR of the generative network (θ) gradients in the reparameterized
case (computed over 1000 MC samples) for the linear Gaussian example described
in Section 6.2 as a function of N , for varying values of (α, d), a randomly selected
datapoint x and 10 different initializations of the parameters (θ, φ).

Observe that, in the favourable setting of low to medium dimensions with a small
perturbation near the optimum (that is d ∈ {20, 100} with σperturb = 0.01), the asymptotic
rates predicted by Theorem 1 for the SNR match the observed rates. In particular, the SNR
of the inference network gradients vanishes for α = 0 while it does not for α > 0, which
showcases the potential benefits of using the VR-IWAE bound with α > 0 instead of the
IWAE bound. More generally, increasing α increases the SNR of both the generative and
the inference networks, with what seems to be a monotonic increase with α.

However, the improvement in SNR for both the generative and inference networks
becomes less pronounced as we get further away from the optimum (σperturb = 0.5) and/or
increase d (d = 1000). We relate this behavior to the weight collapse effect established
in Theorem 6 and anticipate that observing the asymptotic rates predicted by Theorem 1
requires an unpractical amount of samples N as d increases, regardless of the value of
α ∈ [0, 1). Note that the use of doubly-reparameterized gradient estimators for φ mitigates
the decay in SNR (see Figure 16 of Appendix D.2.2).

Lastly, the behavior of the VR-IWAE bound as well as the SNR behavior of its gradient
estimators are not the only way to measure the success of gradient-based methods involving
the VR-IWAE bound. For example, we observe that while increasing α does not lower the
Mean Squared Error (MSE) for log-likelihood estimation, it can be useful in lowering the
MSE of the θ gradient estimates (see Figures 17 and 18 of Appendix D.2.2). We now move
on to our third and final numerical experiment, in which we examine a real-data scenario.
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Figure 6: Plotted is the SNR of the inference network (φ) gradients in the reparameterized
case (computed over 1000 MC samples) for the linear Gaussian example described
in Section 6.2 as a function of N , for varying values of (α, d), a randomly selected
datapoint x and 10 different initializations of the parameters (θ, φ).

6.3 Variational Auto-encoder

We consider the case of a variational auto-encoder (VAE) model designed to generate
MNIST digits with a d-dimensional latent space, where pθ(z) is a fixed standard Gaussian
distribution, pθ(x|z) is a product over the output dimensions of independent Bernoulli
random variables with logits πθ(z), qφ(z|x) = N (z;µφ(x), σφ(x)) and the functions πθ(z)
and (µφ(x), σφ(x)) are parameterized by neural networks. More precisely, both the encoding
and decoding networks are MLPs with two hidden layers of size 200 and tanh nonlinearities.

We first want to investigate whether the distribution of the weights appears to become
log-normal in this setting as the dimension of the latent space d increases.

To verify this claim empirically, we randomly select a datapoint x in the test set and for
d ∈ {5, 10, 50, 100, 1000, 5000} we randomly generate some model parameters (θ, φ), before
drawing N = 1000000 (unnormalized) weight samples. For each d, we then normalize
the weights and plot a histogram of the resulting log-weight distribution, alongside with
a QQ-plot to test the normality assumption of those log-weights. The results are shown
in Figure 7 and they illustrate the fact that the weights tend to become log-normal as d
increases (and similar plots can be obtained for other randomly selected datapoints and
other initializations of the parameters (θ, φ)).

From there, we want to check the validity of our asymptotic results. To do so, a first
comment is that, regardless of the distribution of the weights, Theorem 3 predicts the
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Figure 7: Plotted is the distribution of logwi and the corresponding QQ-plot for the VAE
in Section 6.3, for a randomly selected datapoint x in the test set, randomly
generated model parameters (θ, φ) and varying values of d.

following: for all α ∈ [0, 1),

`
(α)
N,d(θ, φ;x) = L(α)

d (θ, φ;x)−
γ2
α,d

2N + o

( 1
N

)
, (47)

where, `(α)
N,d(θ, φ;x) denotes the VR-IWAE bound, L(α)

d (θ, φ;x) the VR-bound and γ2
α,d =

(1 − α)−1VZ∼qφ(w(α)
θ,φ(Z)) (and we have emphasized the dependency in d in each of those

30



Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders

terms). If we further make the assumption that the weights are of the form (37) (which
appears to approximately be the case as the dimension d increases as per Figure 7), then
Theorem 6 predicts under (A2) that: for all α ∈ [0, 1),

lim
N,d→∞

logN/d1/3→0

`
(α)
N,d(θ, φ;x)− ELBOd(θ, φ;x)−

√
dσ
√

2 logN +O

(√
d log logN√

logN

)
= 0. (48)

Here we have emphasized the dependency in d in ELBOd(θ, φ;x) and we have also used the
fact that ELBOd(θ, φ;x)− `d(θ;x) = −da (as previously stated, this follows from taking the
expectation in (95) from the proof of Proposition 6 in Appendix B.8.4). Hence, to check
whether these results apply, we want to look at functions of the form

(Theorem 3) c1 7→ L(α)
d (θ, φ;x)−

γ2
α,d

2N + c1
N

(49)

(Theorem 6) c2 7→ ELBOd(θ, φ;x) +
√
dσ
√

2 logN + c2
√
d log logN√

logN
(50)

and see how well they approximate the behavior of the VR-IWAE bound `
(α)
N,d(θ, φ;x).

Although the functions above contain unknown terms, those terms can all be estimated: the
VR bound can be estimated using MC sampling as in (8) and so can the ELBO. As for σ, it
can be estimated from the sample standard deviation of the log-weights (and γ2

α,d can be
estimated in a similar fashion).

Note as a side remark that we are considering the VR-IWAE bound as the quantity of
interest whose behavior shall be mimicked by (47) or (48) (through (49) or (50)). Indeed,
while we were working with the variational gap in our previous numerical experiments, com-
puting this quantity requires us to estimate both the VR-IWAE bound and the log-likelihood
here, which would have incurred an additional source of randomness that we have been able
to avoid in both (47) and (48).

Based on Figure 7, we expect two situations to arise at this stage: (i) the asymptotic
regime suggested by Theorem 3 captures the behavior of the VR-IWAE bound in low to
medium dimensions and (ii) the asymptotic regime predicted by Theorem 6 is accurate as d
increases and N does not grow faster than d1/3.

This is exactly what we observe in Figures 8 and 9, in which σ is estimated with the
1000000 (unnormalized) weight samples used to build Figure 7 and so are the VR bound
and the ELBO (additional plots are also available in Figures 19 and 20 of Appendix D.3). In
particular, we see in Figure 8 that the asymptotic regime of Theorem 3 mimics the behavior
of the VR-IWAE bound in low to medium dimensions as long as γ2

α,d does not grow too
quickly with d (and we already observe a mismatch between the two for α = 0 and d = 100).

Nevertheless, the VR-IWAE bound ends up straying away from the behavior predicted
by Theorem 3 as d increases unless N becomes impractically large (with the particularity
that this process happens slower as α increases). We then see on Figure 9 that, as d increases
to reach high-dimensional settings so that the ratio logN/d1/3 becomes small for the values
of N considered here, the behavior predicted by Theorem 6 starts to emerge.
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Figure 8: Plotted in blue is the MC estimate of the VR-IWAE bound `(α)
N,d(θ, φ;x) (averaged

over 100 MC samples) for the VAE in Section 6.3, for a randomly selected datapoint
x in the test set, randomly generated model parameters (θ, φ) and varying values
of (α, d). Plotted in purple are curves of the form (49) with tailored values of c1.

Figure 9: Plotted in blue is the MC estimate of the VR-IWAE bound `(α)
N,d(θ, φ;x) (averaged

over 100 MC samples) for the VAE in Section 6.3, for a randomly selected datapoint
x in the test set, randomly generated model parameters (θ, φ) and varying values
of (α, d). Plotted in green are curves of the form (50) with tailored values of c2.
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Figure 10: Plotted is the SNR of the generative network (θ) gradients in the reparameterized
case (computed over 10000 MC samples) for the VAE in Section 6.3 as a function
of N , for a randomly selected datapoint x in the test set, randomly generated
model parameters (θ, φ) and varying values of (α, d).

Figure 11: Plotted is the SNR of the inference network (φ) gradients in the reparameterized
case (computed over 10000 MC samples) for the VAE in Section 6.3 as a function
of N , for a randomly selected datapoint x in the test set, randomly generated
model parameters (θ, φ) and varying values of (α, d).

We now look into the training of the VR-IWAE bound and more specifically into the SNR
in medium to high dimensions at initialization, since this scenario corresponds to situations
where the VR-IWAE bound seems to resemble more and more the behavior predicted
by Theorem 6 (as observed in Figure 9). Following the methodology from the previous
subsection, the results are presented in Figures 10 and 11, in which we have plotted the SNR
for the generative network and for the inference network respectively in the reparameterized
case alongside theoretical lines that reflect the asymptotic regimes predicted by Theorem 1.

As already observed in Section 6.2, the SNR benefits from setting α > 0 and the
asymptotic rates predicted by Theorem 1 do not capture the SNR behavior as d increases
(unless N is unpractically large and/or we appeal to higher values of α). Furthermore, and
as we can see in Figure 12, resorting to doubly-reparameterized estimators improves the SNR.
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Figure 12: Plotted is the SNR of the inference network (φ) gradients in the doubly-
reparameterized case (computed over 10000 MC samples) for the VAE in Sec-
tion 6.3 as a function of N , for a randomly selected datapoint x in the test set,
randomly generated model parameters (θ, φ) and varying values of (α, d).

We thus confirmed that approximately log-normal weights can arise in real data scenarios
as d increases and that our theoretical study provides a useful framework to capture the
impact of the weights on the VR-IWAE bound as a function of N , d and α. In line with
our empirical findings for the SNR, we also obtained that the asymptotic rates predicted
by Theorem 1 match the observed rates in low to medium dimensions and we postulated
that the weight collapse occuring in the VR-IWAE bound as d increases may deteriorate
the SNR too.

One aspect that remains unexplored empirically is the role of M in the VR-IWAE bound
methodology, and in particular the interplay between M and N in the learning outcome.
Indeed, the total number of samples needed per iteration in the gradient descent procedure
is N ×M , with M being responsible for the usual 1/M variance reduction in gradient
estimators such as (14). Intuitively, and following a similar line of reasoning as for α, we
expect to see a bias-variance tradeoff between increasing M or N while keeping M ×N fixed
(we refer to Appendix D.3 for details).

Furthermore, if the weight collapse appearing in the VR-IWAE bound as d increases ends
up badly impacting the associated gradient descent, our results indicate that practitioners
should either (i) set N = 1 and allocate the maximum computational budget to M , which in
fact corresponds to setting α = 1 in the VR-IWAE bound, (ii) find more suitable variational
approximations that can capture the complexity within the posterior density or (iii) resort
to/construct better gradient estimates (e.g. doubly-reparameterized gradient estimators).

7. Conclusion

In this paper, we formalized the VR-IWAE bound, a variational bound depending on an
hyperparameter α ∈ [0, 1) which generalizes the standard IWAE bound (α = 0). We showed
that the VR-IWAE bound provides theoretical guarantees behind various VR bound-based
schemes proposed in the alpha-divergence variational inference literature and identified other
additional desirable properties of this bound.
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We then provided two complementary analyses of the variational gap, that is of the
difference between the VR-IWAE bound and the marginal log-likelihood. The first analysis
shed light on how α may play a role in reducing the variational gap. We then proposed a
second analysis to better capture the behavior of the variational gap in high-dimensional
scenarios, establishing that the variational gap suffers in this case from a damaging weight
collapse phenomenon for all α ∈ [0, 1). Lastly, we illustrated our theoretical results over
several toy and real-data examples.

Overall, our work provides foundations for improving the IWAE and VR methodologies
and we now state potential directions of research to extend it. Firstly, one may investigate
whether the weight collapse behavior applies beyond the cases we highlighted. Looking into
how this weight collapse affects the gradient descent procedures associated to the VR-IWAE
bound could be a second direction of research. Thirdly, and in order to improve on the
VR-IWAE bound methodology beyond the weight collapse phenomenon, one may seek to
further build on the fact that the VR-IWAE bound is the theoretically-sound extension of the
IWAE bound that originates from the alpha-divergence variational inference methodology.
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Appendix A. Deferred Proofs of Section 3

A.1 Extension of `(α)
N to the Case α = 1

We prove that under common differentiability assumptions, the following limit holds:

lim
α→1

`
(α)
N (θ, φ;x) = ELBO(θ, φ;x).

Proof Setting f(α) =
∫ ∫ ∏N

i=1 qφ(zi) log
(

1
N

∑N
j=1wθ,φ(zj)1−α

)
dz1:N , the bound `(α)

N (θ, φ;x)
can be rewritten as

`
(α)
N (θ, φ;x) = −f(α)− f(1)

α− 1
and hence, limα→1 `

(α)
N (θ, φ;x) = −f ′(1). We then get the desired result by observing that

f ′(α) =
∫ ∫ N∏

i=1
qφ(zi)

( 1
N

∑N
j=1− log(w̄φ,θ(zj))w̄φ,θ(zj)1−α

1
N

∑N
j=1 w̄φ,θ(zj)1−α

)
dz1:N

and letting α→ 1 in the quantity above.
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A.2 Proof of Proposition 1

Proof of Proposition 1 The results for the case α = 0 follow from Burda et al. (2016)
and we focus on the case α ∈ (0, 1) in the proof below.

1. One the one hand, (Li and Turner, 2016, Theorem 1) implies that: for all α ∈ (0, 1),

L(α)(θ, φ;x) ≤ `(θ;x). (51)

On the other hand, we obtain from (Li and Turner, 2016, Theorem 2) that:

• For all N ∈ N? and all α < 1

`
(α)
N (θ, φ;x) ≤ `(N+1)

N (θ, φ;x) ≤ L(α)(θ, φ;x)

which gives (10) when paired with (51).
• If the function z 7→ wθ,φ(z) is bounded, then `

(α)
N (θ, φ;x) approaches the VR

bound L(α)(θ, φ;x) as N goes to infinity.

2. Let 1 > α1 > α2 > 0. Then, the functions u 7→ u
1−α1
1−α2 and u 7→ u1−α2 are concave for

all u > 0 and hence Jensen’s inequality implies

`
(α1)
N (θ, φ;x) = 1

1− α1

∫ ∫ N∏
i=1

qφ(zi|x) log

 1
N

N∑
j=1

[
wθ,φ(zi)1−α2

] 1−α1
1−α2

 dz1:N

≤ `(α2)
N (θ, φ;x)

≤ `(0)
N (θ, φ;x)

The desired result (11) follows by using that `(0)
N (θ, φ;x) = `

(IWAE)
N (θ, φ;x). As for the

case of equality, it is obtained as the case of equality of Jensen’s inequality.

3. Under the reparameterization trick,

`
(α)
N (θ, φ;x) = 1

1− α

∫ ∫ N∏
i=1

q(εi) log

 1
N

N∑
j=1

wθ,φ(f(εj , φ))1−α

 dε1:N

leading, under common differentiability assumptions, to

∂

∂φ
`
(α)
N (θ, φ;x) =

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

wθ,φ(f(εj , φ))−α ∂
∂φwθ,φ(f(εj , φ))∑N

k=1wθ,φ(f(εk, φ))1−α

 dε1:N .

The desired result (12) is then obtained using the REINFORCE trick

∂

∂φ
wθ,φ(f(εj , φ)) = wθ,φ(f(εj , φ)) ∂

∂φ
logwθ,φ(f(εj , φ))

and the unbiased estimator (13) follows immediately.
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A.3 Proof of Theorem 1

The proof of Theorem 1 is based on the proof of the corresponding result in (Rainforth et al.,
2018, Theorem 1) (arxiv version of 5 Mar 2019). First, we prove the following useful lemma,
which is an extension of (Rainforth et al., 2018, Lemma 1).

Lemma 3 Suppose we have random variables Xi,j for all i = 1 . . . r and j = 1 . . . N
satisfying

(i) E (Xi,j) = 0 for all i = 1 . . . r and j = 1 . . . N ;

(ii) E (|Xi,j |r) <∞ for all i = 1 . . . r and j = 1 . . . N ;

(iii) for each i = 1 . . . r, the random variables Xi,1, . . . , Xi,N are i.i.d.;

(iv) for each i = 1 . . . r and j = 1 . . . N , the random variables Xi,j and {Xi′,j′}i′=1...r; j′ 6=j
are independent.

Then

E

 1
N

N∑
j=1

X1,j

 . . .
 1
N

N∑
j=1

Xr,j

 =
{
O(N−r/2) if r is even,
O(N−(r+1)/2) if r is odd.

Proof We have 1
N

N∑
j=1

X1,j

 . . .
 1
N

N∑
j=1

Xr,j

 = 1
N r

∑
{A1,...,At}

∑
(j1,...,jt)

∏
i∈A1

Xi,j1

 . . .
∏
i∈At

Xi,jt

 (52)

where the first sum is over all partitions {A1, . . . , At} of the set {1, . . . , r} (so that t is an
integer between 1 and r for each partition) and the second sum is over all tuples (j1, . . . , jt)
with each element being a distinct integer between 1 and N (e.g. for the partition {A1}
with A1 = {1, . . . , r} and t = 1, the second sum reduces to the sum over j1 = 1 . . . N and
for the partition {A1, . . . , Ar} with Ap = {p} for all p = 1 . . . r and t = r, the second sum
corresponds to the sum over all permutations over the subsets of length r of (1, . . . , N)).

Now consider the case where |Ap| = 1 for some integer p between 1 and t in a certain
partition {A1, . . . , At}. Without any loss of generality, we let |A1| = 1. Then, by the
independence of condition (iv) followed by condition (i), we have

E

 ∏
i∈A1

Xi,j1

 . . .
∏
i∈At

Xi,jt

 = E [Xi∗,j1 ]E

 ∏
i∈A2

Xi,j2

 . . .
∏
i∈At

Xi,jt


= 0

where i∗ is the single element of A1. Hence, we can restrict the sum over {A1, . . . , At} to
only consider partitions where every partition has at least two elements. Furthermore, by
the generalized Hölder’s inequality (i.e. given the r random variables X1, . . . , Xr, it holds
that E(|

∏r
p=1Xp|) ≤

∏r
p=1 E(|Xp|r)1/r) and conditions (ii) and (iii), we also have

E

∣∣∣∣∣
 ∏
i∈A1

Xi,j1

 . . .
∏
i∈At

Xi,jt

 ∣∣∣∣∣
 ≤ r∏

i=1
E (|Xi,1|r)1/r <∞,
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where we have used that the product on the l.h.s. of the equation above contains exactly r
terms since {A1, . . . , At} is a partition of {1, . . . , r}. Putting this together with (52) yields:∣∣∣∣∣E

 1
N

N∑
j=1

X1,j

 . . .
 1
N

N∑
j=1

Xr,j

 ∣∣∣∣∣ ≤ 1
N r

∑
{A1,...,At}
all |Ap|≥2

∑
(j1,...,jt)

(
r∏
i=1

E (|Xi,1|r)1/r
)

≤ 1
N r

∑
{A1,...,At}
all |Ap|≥2

N t

(
r∏
i=1

E (|Xi,1|r)1/r
)
.

Finally, note that (i) any partition {A1, . . . , At} of {1, . . . , r} where each part has size at
least 2 can have at most br/2c parts, so t ≤ br/2c and (ii) we can crudely bound the number
of partitions by rr. Hence∣∣∣∣∣E

 1
N

N∑
j=1

X1,j

 . . .
 1
N

N∑
j=1

Xr,j

 ∣∣∣∣∣ ≤ rr

N r−br/2c

(
r∏
i=1

E (|Xi,1|r)1/r
)

=
{
O(N−r/2) if r is even
O(N−(r+1)/2) if r is odd.

We next prove a second lemma.

Lemma 4 Let k be a positive integer. Set Rα,N = N−1∑N
i=1wθ,φ(Zi)1−α, where Z1, . . . , ZN

are i.i.d. samples generated according to qφ. Then, the condition

lim sup
N→∞

E
(
(1/Rα,N )k

)
<∞ (53)

is equivalent to the statement that there exists some N ∈ N? for which E((1/Rα,N )k) <∞.

Proof of Lemma 4 Fix a positive integer N ≥ 2. For all x ∈ [0, 1), we have by convexity
of the function x 7→ (1− x)−k that( 1

1− x

)k
≥
(

N

N − 1

)k
+ k

(
N

N − 1

)k+1 (
x− 1

N

)
.

It follows that if x1, . . . , xN ∈ (0, 1) are such that
∑N
i=1 xi = 1, then

1
N

N∑
i=1

( 1
1− xi

)k
≥
(

N

N − 1

)k
.

Given α ∈ [0, 1) and N positive reals w1, . . . , wN , we may set xi = w1−α
i /

(∑n
i=1w

1−α
i

)
in

the above to get

1
N

N∑
i=1

 N − 1∑N
j=1
j 6=i

w1−α
j


k

≥
(

N∑N
j=1w

1−α
j

)k
.
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Now consider setting wi = wθ,φ(Zi) where the Zi are i.i.d. samples generated according to
qφ. We see that the r.h.s. of the above expression is distributed as (1/Rα,N )k, while each
term in the sum on the l.h.s. is distributed as (1/Rα,N−1)k. We conclude that

E
(
(1/Rα,N−1)k

)
≥ E

(
(1/Rα,N )k

)
for all N ≥ 2. Hence E

(
(1/Rα,N )k

)
is decreasing in N , so lim supN→∞ E

(
(1/Rα,N )k

)
<∞

if and only if there exists some N such that E
(
(1/Rα,N )k

)
<∞.

We now move on to the proof of Theorem 1.
Proof of Theorem 1 We use the following shorthand notation

w̃m,j = wθ,φ(f(εm,j , φ)), m = 1 . . .M, j = 1 . . . N
Zα = Eε∼q(wθ,φ(f(ε, φ))1−α)

and we also recall the notation

Ẑ1,N,α = 1
N

N∑
j=1

w̃1−α
1,j .

We will first prove that

SNR[δ(α)
M,N (θ`)] =

√
M

∣∣∣∣√N ∂Zα
∂θ`
− Zα

2
√
N

∂
∂θ`

[
V(w̃1−α

1,1 )
Z2
α

]
+O

(
1

N3/2

)∣∣∣∣√
E
(
w̃

2(1−α)
1,1

[
(1− α)∂ log w̃1,1

∂θ`
− ∂ logZα

∂θ`

]2)
+O

(
1
N

) (54)

SNR[δ(α)
M,N (φ`′)] =

√
M

∣∣∣∣√N ∂Zα
∂φ`′
− Zα

2
√
N

∂
∂φ`′

[
V(w̃1−α

1,1 )
Z2
α

]
+O

(
1

N3/2

)∣∣∣∣√
E
(
w̃

2(1−α)
1,1

[
(1− α)∂ log w̃1,1

∂φ`′
− ∂ logZα

∂φ`′

]2)
+O

(
1
N

) . (55)

As the two expressions above follow the same form, it is in fact enough to only prove
(54). We will do so by studying the asymptotic variance and expected value of δ̃(α)

M,N (θ`) :=
(1− α)δ(α)

M,N (θ`) separately, before combining them to deduce (54).

• Study of V(δ̃(α)
M,N (θ`)).

We start from the identity

∂ log Ẑ1,N,α
∂θ`

= ∂ logZα
∂θ`

+ ∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)
−
(
Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

)
,

which can for example be verified by using the following identity (which is a version of the
Taylor expansion to first order with an explicit form for the remainder)

log(1 + x) = x−
∫ x

0

t

1 + t
dt,
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substituting x = (Ẑ1,N,α − Zα)/Zα, differentiating with respect to θ` and using the chain
rule where necessary. Hence,

M · V
(
δ̃

(α)
M,N (θ`)

)
= V

(
δ̃

(α)
1,N (θ`)

)
= V

(
∂ log(Ẑ1,N,α)

∂θ`

)

= V
(
∂ logZα
∂θ`

+ ∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)
−
(
Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

))

= V
(
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)
−
(
Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

))

= V
(
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

))

+ 2 Cov
(
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)
,

(
Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

))

+ V
((

Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

))

Furthermore, observe that

∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)
= 1
N

N∑
j=1

∂

∂θ`

(
w̃1−α

1,j − Zα
Zα

)

= 1
N

N∑
j=1

Zα
∂(w̃1−α

1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

Z2
α

. (56)

As a result,

E
[
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]
=

E[∂(w̃1−α
1,1 )
∂θ`

]− ∂Zα
∂θ`

Zα
= 0, (57)

where we have used that under common differentiability assumptions E[∂(w̃1−α
1,1 )/∂θ`] =

∂Zα/∂θ`, that is we can interchange the order of integration and differentiation. Consequently,
we can simplify the expression of M · V

(
δ̃

(α)
M,N (θ`)

)
to obtain that

M · V
(
δ̃

(α)
M,N (θ`)

)
= E

[ ∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2


+ 2E

( Ẑ1,N,α − Zα
Ẑ1,N,α

)
·
[
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2


+ V
((

Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

))
(58)

We now control the three terms in the r.h.s. of (58) separately.
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1. First term in the r.h.s. of (58). To control the first term in the r.h.s. of (58), we use
(56) to get that

E

[ ∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2
 = 1

N2E

 N∑
j=1

[
∂

∂θ`

(
w̃1−α

1,j − Zα
Zα

)]2

= 1
N2E

 N∑
j=1

Zα ∂(w̃1−α
1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

Z2
α


2

= 1
NZ4

α

E

[Zα∂(w̃1−α
1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

]2
= 1
NZ4

α

E
([
w̃−α1,1

{
(1− α)Zα

∂w̃1,1
∂θ`

− w̃1,1
∂Zα
∂θ`

}]2)
,

(59)

where the cross-terms disappeared due to the independence of the (ε1,j)1≤j≤N paired
up with (57).

2. Second term in the r.h.s of (58). We deal with the cross term in (58) by splitting it
into two parts

E

( Ẑ1,N,α − Zα
Ẑ1,N,α

)
·
[
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2


= E

( Ẑ1,N,α − Zα
Zα

)
·
[
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2


+ E

( Ẑ1,N,α − Zα
Zα

)
·
[
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2(
Zα

Ẑ1,N,α
− 1

) . (60)

Using the expression of ∂
∂θ`

(
Ẑ1,N,α−Zα

Zα

)
given in (56) and the fact that

Ẑ1,N,α − Zα = 1
N

N∑
j=1

(
w̃1−α

1,j − Zα
)
, (61)

we set: for all j = 1 . . . J ,

X1,j = w̃1−α
1,j − Zα,

X2,j = X3,j =
Zα

∂(w̃1−α
1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

Z2
α

and we can then apply Lemma 3 with r = 3 (by noting in particular that the required
moments are finite under our assumptions): we thus obtain that

E

(Ẑ1,N,α − Zα
) [ ∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2
 = O

( 1
N2

)
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which controls the first term in the r.h.s. of (60). The second term in the r.h.s. of
(60) can be bounded as follows

E

( Ẑ1,N,α − Zα
Zα

)[
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2(
Zα

Ẑ1,N,α
− 1

)
≤ E

( Ẑ1,N,α − Zα
Zα

)2 [
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]4
1/2

E

( Zα

Ẑ1,N,α
− 1

)2
1/2

. (62)

By taking this time: for all j = 1 . . . N ,

X1,j = X2,j = w̃1−α
1,j − Zα,

X3,j = X4,j = X5,j = X6,j =
Zα

∂(w̃1−α
1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

Z2
α

,

in Lemma 3 with r = 6 (and noting once again that the required moments are finite
under our assumptions), we see that the first term in the r.h.s. of (62) is O(N−3/2).
As for the second term of the r.h.s. of (62), Cauchy-Schwarz implies that

E

( Zα

Ẑ1,N,α
− 1

)2
 ≤ E

(
1

Ẑ4
1,N,α

)1/2

E
((
Zα − Ẑ1,N,α

)4
)1/2

.

Now note that under our assumptions, Lemma 4 can be applied with k = 4 so that
(53) with k = 4 holds and controls the first term in the r.h.s. above. Furthermore,
applying Lemma 3 with r = 4 and for all j = 1 . . . N ,

X1,j = X2,j = X3,j = X4,j = w̃1−α
1,j − Zα

yields

E
((
Zα − Ẑ1,N,α

)4
)

= O

( 1
N2

)
.

We can then conclude that

E

( Zα

Ẑ1,N,α
− 1

)2
1/2

= O

( 1
N1/2

)
, (63)

and so the r.h.s. of (62) is bounded above by O(N−2). It follows that the second term
in the r.h.s. of (60) is O(N−2) too and we can conclude that

E

( Ẑ1,N,α − Zα
Ẑ1,N,α

)
·
[
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2
 = O

( 1
N2

)
(64)

that is the second term of the r.h.s. of (58) is O(N−2).
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3. Third term of the r.h.s. in (58). For the third term of the r.h.s. in (58), note that

V
((

Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

))

≤ E

[( Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2


≤ E

[(Ẑ1,N,α − Zα
)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

)]4
1/2

E
(

1
Ẑ4

1,N,α

)1/2

where the final line follows from Cauchy–Schwarz. As a result, using (56) and (61),
taking for all j = 1 . . . N

X1,j = X2,j = X3,j = X4,j = w̃1−α
1,j − Zα

X5,j = X6,j = X7,j = X8,j =
Zα

∂(w̃1−α
1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

Z2
α

,

and since the required moments are finite under our assumptions, Lemma 3 with r = 8
implies that

E

[(Ẑ1,N,α − Zα
)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

)]4
 = O

( 1
N4

)
.

Combined with (53) with k = 4 (which holds under our assumptions by Lemma 4 with
k = 4), this implies that

V
((

Ẑ1,N,α − Zα
Ẑ1,N,α

)
· ∂
∂θ`

(
Ẑ1,N,α − Zα

Zα

))
= O

( 1
N2

)
. (65)

Putting (58), (59), (64) and (65) together, we see that

V
(
δ̃

(α)
M,N (θ`)

)
= 1
MNZ4

α

E
([
w̃−α1,1

{
(1− α)Zα

∂w̃1,1
∂θ`

− w̃1,1
∂Zα
∂θ`

}]2)
+O

( 1
MN2

)

= 1
MNZ2

α

E
(
w̃

2(1−α)
1,1

[
(1− α)∂ log w̃1,1

∂θ`
− ∂ logZα

∂θ`

]2)
+O

( 1
MN2

)
and it follows that√

V(δ̃(α)
M,N (θ`)) = 1√

MNZα

√√√√E
(
w̃

2(1−α)
1,1

[
(1− α)∂ log w̃1,1

∂θ`
− ∂ logZα

∂θ`

]2)
+O

( 1
N

)

= 1√
MNZα

√√√√E
(
w̃

2(1−α)
1,1

[
(1− α)∂ log w̃1,1

∂θ`
− ∂ logZα

∂θ`

]2)√
1 +O

( 1
N

)

= 1√
MNZα


√√√√E

(
w̃

2(1−α)
1,1

[
(1− α)∂ log w̃1,1

∂θ`
− ∂ logZα

∂θ`

]2)
+O

( 1
N

) .
(66)
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• Study of E(δ̃(α)
M,N (θ`)).

We start from the identity

∂ log Ẑ1,N,α
∂θ`

= ∂ logZα
∂θ`

+ ∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)
− 1

2
∂

∂θ`

[ Ẑ1,N,α − Zα
Zα

]2


+
(

(Ẑ1,N,α − Zα)2

Zα · Ẑ1,N,α

)
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)
,

which can for example be proved using the following identity (which is a version of the
Taylor expansion to second order with an explicit form for the remainder)

log(1 + x) = x− x2

2 +
∫ x

0

t2

1 + t
dt,

substituting x = (Ẑ1,N,α − Zα)/Zα, differentiating with respect to θ` and using the chain
rule where necessary. It follows that

E
(
δ̃

(α)
M,N (θ`)

)
= E

(
δ̃

(α)
1,N (θ`)

)
= E

(
∂ log Ẑ1,N,α

∂θ`

)

= E
(
∂ logZα
∂θ`

+ ∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)
− 1

2
∂

∂θ`

[ Ẑ1,N,α − Zα
Zα

]2


+
(

(Ẑ1,N,α − Zα)2

Zα · Ẑ1,N,α

)
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

))

= ∂ logZα
∂θ`

− 1
2E

 ∂

∂θ`

[ Ẑ1,N,α − Zα
Zα

]2
+R2(Ẑ1,N,α)

= ∂ logZα
∂θ`

− 1
2N

∂

∂θ`

[
V(w̃1−α

1,1 )
Z2
α

]
+R2(Ẑ1,N,α) (67)

where we denote

R2(Ẑ1,N,α) = E
((

(Ẑ1,N,α − Zα)2

Zα · Ẑ1,N,α

)
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

))
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and where we have used (56), (57), (61) and the fact that under common differentiability
assumptions, we have that

E

 ∂

∂θ`

[ Ẑ1,N,α − Zα
Zα

]2
 = 2E

([
Ẑ1,N,α − Zα

Zα

]
∂

∂θ`

([
Ẑ1,N,α − Zα

Zα

]))

= 2
N2E

 N∑
j=1

w̃1−α
1,j − Zα
Zα

·
Zα

∂(w̃1−α
1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

Z2
α


= 1
N

E

 ∂

∂θ`

[ w̃1−α
1,j − Zα
Zα

]2
= 1
N

∂

∂θ`

[
V(w̃1−α

1,1 )
Z2
α

]
(here the cross-terms disappear due to the independence of the (ε1,j)1≤j≤N paired up with
(57)). Notice then that we can split up R2(Ẑ1,N,α) as

R2(Ẑ1,N,α) = E
((

(Ẑ1,N,α − Zα)2

Z2
α

)
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

))

+ E
((

(Ẑ1,N,α − Zα)2

Z2
α

)(
Zα

Ẑ1,N,α
− 1

)
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

))
(68)

The first term in (68) can be bounded by applying Lemma 3 with r = 3 and for all j = 1 . . . N ,

X1,j = X2,j = w̃1−α
1,j − Zα,

X3,j =
Zα

∂(w̃1−α
1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

Z2
α

,

noting the required moments are finite under our assumptions, so that

E
((
Ẑ1,N,α − Zα

)2 ∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

))
= O

( 1
N2

)
.

The second term in (68) can be bounded using Cauchy-Schwarz as follows

E
((

(Ẑ1,N,α − Zα)2

Z2
α

)(
Zα

Ẑ1,N,α
− 1

)
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

))

≤ E

((Ẑ1,N,α − Zα)2

Z2
α

)2 [
∂

∂θ`

(
Ẑ1,N,α − Zα

Zα

)]2
1/2

E

( Zα

Ẑ1,N,α
− 1

)2
1/2

The second term is O(N−1/2) by (63), while the first can be bounded by O(N−3/2) using
Lemma 3 with r = 6 and for all j = 1 . . . N :

X1,j = X2,j = X3,j = X4,j = w̃1−α
1,j − Zα,

X5,j = X6,j =
Zα

∂(w̃1−α
1,j )
∂θ`

− w̃1−α
1,j

∂Zα
∂θ`

Z2
α

.
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Hence by combining with (67), we have

E
(
δ̃

(α)
M,N

)
= ∂ logZα

∂θ`
− 1

2N
∂

∂θ`

[
V(w̃1−α

1,1 )
Z2
α

]
+O

( 1
N2

)
(69)

• Deducing SNR[δ(α)
M,N (θ`)].

Finally, putting (66) and (69) together, we get

SNR[δ(α)
M,N (θ`)] =

∣∣∣∣∂ logZα
∂θ`

− 1
2N

∂
∂θ`

[
V(w̃1−α

1,1 )
Z2
α

]
+O

(
1
N2

)∣∣∣∣
1√

MNZα

(√
E
(
w̃

2(1−α)
1,1

[
(1− α)∂ log w̃1,1

∂θ`
− ∂ logZα

∂θ`

]2)
+O

(
1
N

))

=
√
M

∣∣∣∣√N ∂Zα
∂θ`
− Zα

2
√
N

∂
∂θ`

[
V(w̃1−α

1,1 )
Z2
α

]
+O

(
1

N3/2

)∣∣∣∣√
E
(
w̃

2(1−α)
1,1

[
(1− α)∂ log w̃1,1

∂θ`
− ∂ logZα

∂θ`

]2)
+O

(
1
N

)

which is exactly (54). Since we have assumed that ∂Zα
∂θ`

is non-zero and since this term
corresponds to the leading order term, we then deduce that

SNR[δ(α)
M,N (θ`)] = Θ(

√
MN)

and we thus recover (17).
Similarly, (55) holds for SNR[δ(α)

M,N (φ`′)] and we obtain the desired result (18) by splitting
the cases α ∈ (0, 1) and α = 0. In the former, we have ∂Zα/∂φ`′ = ∂E(w̃1−α

1,1 )/∂φ`′ 6= 0 by
(16), so the leading order term is Θ(

√
MN), while in the latter case we have ∂Zα/∂φ`′ = 0

while ∂V(w̃1−α
1,1 )/∂φ`′ > 0 and so the leading order term is Θ(

√
M/N)

A.4 Proof of Theorem 2

Proof of Theorem 2 Recall from Proposition 1 that

∂

∂φ
`
(α)
N (θ, φ;x) =

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
logwθ,φ(f(εj , φ))

 dε1:N .

We will now follow the reasoning of Tucker et al. (2019). To do so, we expand the total
derivative of `(α)

N with respect to φ by using that

∂

∂φ
logwθ,φ(f(εj , φ)) = − ∂

∂φ
log qφ(f(εj , φ′))|φ′=φ + ∂

∂φ
f(εj , φ) ∂

∂zj
logwθ,φ(zj)
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which gives

∂

∂φ
`
(α)
N (θ, φ;x) = −

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
log qφ(f(εj , φ′))|φ′=φ

 dε1:N

+
∫ ∫ N∏

i=1
q(εi)

 N∑
j=1

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
f(εj , φ) ∂

∂zj
logwθ,φ(zj)

 dε1:N

:= −A+B. (70)

Notice now that

A =
N∑
j=1

∫ ∫ N∏
i=1

q(εi)
(

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
log qφ(f(εj , φ′))|φ′=φ

)
dε1:N

=
N∑
j=1

∫ ∫ N∏
i=1

qφ(zi)
(

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
log qφ(z′j)|z′j=zj

)
dz1:N , (71)

where we have set z′j = f(εj , φ′). Observe in addition that for all j = 1 . . . N , the reparame-
terization trick implies:∫

qφ(zj)
wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
log qφ(z′j)|z′j=zj dzj

=
∫
q(εj)

∂

∂zj

(
wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

)
∂

∂φ
f(εj , φ) dεj

and hence∫
qφ(zj)

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

∂

∂φ
log qφ(z′j)|zj=z′j dzj

= (1−α)
∫
q(εj)

 wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

−
(

wθ,φ(zj)1−α∑N
k=1wθ,φ(zk)1−α

)2
 ∂

∂φ
f(εj , φ) ∂

∂zj
logwθ,φ(zj) dεj .

The desired equality (19) is then obtained by combining the last equality above with (70)
and (71).

Appendix B. Deferred Proofs and Results of Section 4

B.1 Proof of Theorem 3

Proof of Theorem 3 For convenience in the proof, let us first introduce the notation

Rα = wθ,φ(Z)1−α

with Z ∼ qφ and let us observe that under (A1) we have that E(Rα) > 0. Furthermore, (A1)
and Jensen’s inequality applied to the concave function u 7→ u1−α yield

E(Rα) ≤ pθ(x)1−α <∞, (72)
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meaning that (22) holds. Now decompose the variational gap into the two following terms:

∆(α)
N (θ, φ;x) =

[
`
(α)
N (θ, φ;x)− L(α)(θ, φ;x)

]
+
[
L(α)(θ, φ;x)− `(θ;x)

]
.

To get the desired result (25), we only need to study the behavior of the term inside the
first bracket. This will be done via an adaptation of the proof of (Domke and Sheldon,
2018, Theorem 3) to our more general framework, which is provided here for the sake of
completeness. We write

`
(α)
N (θ, φ;x)− L(α)(θ, φ;x) = 1

1− αE (log (1 + δα,N ))

where for all z ∈ Rd,

δα,N = Rα,N
E(Rα) − 1 ∈ (−1,∞).

The second-order Taylor expansion of log (1 + δα,N ) gives

log (1 + δα,N ) = δα,N −
1
2δ

2
α,N +

∫ δα,N

0

x2

1 + x
dx.

Now using that E(δα,N ) = 0 and that E(δ2
α,N ) = VZ∼qφ(w(α)

θ,φ(Z))/N , we deduce

`
(α)
N (θ, φ;x)− L(α)(θ, φ;x) = − γ

2
α

2N + 1
1− αE

(∫ δα,N

0

x2

1 + x
dx
)
.

All that is left to prove is then that

lim
N→∞

N

∣∣∣∣∣E
(∫ δα,N

0

x2

1 + x
dx
)∣∣∣∣∣ = 0. (73)

By (Domke and Sheldon, 2018, Lemma 7), we have that for all ε > 0 and all β ∈ (0, 1] there
exist positive constants Cε and Dβ such that∣∣∣∣∣

∫ δα,N

0

x2

1 + x
dx
∣∣∣∣∣ ≤ Cε

∣∣∣∣∣ 1
1 + δα,N

∣∣∣∣∣
ε

1+ε

|δα,N |
2+3ε
1+ε +Dβ|δα,N |2+β

and as a result

N

∣∣∣∣∣E
(∫ δα,N

0

x2

1 + x
dx
)∣∣∣∣∣ ≤ CεNE

∣∣∣∣∣ 1
1 + δα,N

∣∣∣∣∣
ε

1+ε

|δα,N |
2+3ε
1+ε

+DβNE
(
|δα,N |2+β

)
. (74)

Recall that under our assumptions, there exists β > 0 such that (23) holds. Without loss
of generality, one can assume that β ∈ (0, 1]. [Indeed, assuming that β > 1, we can find
0 < β′ ≤ 1 < β so that

EZ∼qφ(|w(α)
θ,φ(Z)− 1|2+β′) <∞,

which follows from Jensen’s inequality applied to the concave function u 7→ u(2+β′)/(2+β) and
from (23).] Let us now show that the two terms in (74) go to 0 as N →∞ for a suitable
choice of ε (ε = β/3).
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• First term of (74). Observe first that Hölder’s inequality with p = (1 + ε)/ε and
q = 1 + ε implies the following:

E

∣∣∣∣∣ 1
1 + δα,N

∣∣∣∣∣
ε

1+ε

|δα,N |
2+3ε
1+ε

 ≤ E
(∣∣∣∣∣ 1

1 + δα,N

∣∣∣∣∣
) ε

1+ε

E
(
|δα,N |2+3ε

) 1
1+ε .

From there, we deduce that

lim sup
N→∞

NE

∣∣∣∣∣ 1
1 + δα,N

∣∣∣∣∣
ε

1+ε

|δα,N |
2+3ε
1+ε


≤ lim sup

N→∞
E
(∣∣∣∣∣ 1

1 + δα,N

∣∣∣∣∣
) ε

1+ε

lim sup
N→∞

[
NE

(
|δα,N |2+3ε

) 1
1+ε
]
,

having used that for any two sequences of non-negative real numbers (aN )N∈N∗ and
(bN )N∈N∗ , lim supN→∞(aNbN ) ≤ lim supN→∞ aN · lim supN→∞ bN .
We then obtain that the first limit is bounded by a constant by appealing to (24).
[Indeed, (24) means that for sufficiently large N , E(1/Rα,N ) is bounded by a constant,
and hence so is E(|1/(1 + δα,N )|) by combining the boundedness of E(1/Rα,N ) with
(72)].
As for the second limit, (Domke and Sheldon, 2018, Lemma 5) with s = 2 + 3ε ≥ 2
and Ui = w

(α)
θ,φ(Zi)− 1 implies that there exists a constant Bε > 0 such that

E
(
|δα,N |2+3ε

)
≤ BεN−(2+3ε)/2EZ∼qφ

(∣∣∣w(α)
θ,φ(Z)− 1

∣∣∣2+3ε
)
.

Setting ε = β/3, we can rewrite the term on the r.h.s. as

Bβ/3N
−(2+β)/2EZ∼qφ

(∣∣∣w(α)
θ,φ(Z)− 1

∣∣∣2+β
)
,

leading in particular to the inequality

E
(
|δα,N |2+β

)
≤ Bβ/3N−(2+β)/2EZ∼qφ

(∣∣∣w(α)
θ,φ(Z)− 1

∣∣∣2+β
)
. (75)

Hence, by (23) and since N−(2+β)/2 = o(N−1), we obtain

lim sup
N→∞

[
NE

(
|δα,N |2+3ε

) 1
1+ε
]

= 0 when ε = β/3.

As a consequence

lim sup
N→∞

NE

∣∣∣∣∣ 1
1 + δα,N

∣∣∣∣∣
ε

1+ε

|δα,N |
2+3ε
1+ε

 = 0 when ε = β/3. (76)
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• Second term of (74). Using (75) combined with (23) and since N−(2+β)/2 = o(N−1),
we deduce:

lim
N→∞

DβNE
(
|δα,N |2+β

)
= 0. (77)

Combining (74) with (76) and (77) yields (73) and the proof is concluded.

B.2 Proof of Proposition 2

Proof of Proposition 2 We prove the two assertions separately.

1. Assume that (23) holds with α = α2, that is, there exists β > 0 such that

EZ∼qφ
(∣∣∣w(α2)

θ,φ (Z)− 1
∣∣∣2+β

)
<∞

or equivalently using (22) with α = α2 and setting a2 := EZ∼qφ(wθ,φ(Z)1−α2) so that
a2 ∈ (0,∞),

EZ∼qφ
(∣∣∣wθ,φ(Z)1−α2 − a2

∣∣∣2+β
)
<∞. (78)

We now want to prove that (78) implies (23) with α = α1. Using that |uη−1| ≤ |u−1|
for all u ≥ 0 and all η ∈ (0, 1), we have: for all z ∈ Rd,

∣∣∣w(α1)
θ,φ (z)− 1

∣∣∣ ≤
∣∣∣∣∣∣∣

wθ,φ(z)1−α2

EZ∼qφ(wθ,φ(Z)1−α1)
1−α2
1−α1

− 1

∣∣∣∣∣∣∣
where we have set η = (1− α1)/(1− α2). Hence,

EZ∼qφ
(∣∣∣w(α1)

θ,φ (Z)− 1
∣∣∣2+β

)
≤ ã−1

1 EZ∼qφ
(∣∣∣wθ,φ(Z)1−α2 − ã1

∣∣∣2+β
)
, (79)

where ã1 = a
(1−α2)/(1−α1)
1 with a1 := EZ∼qφ(wθ,φ(Z)1−α1). Note in particular that a1

belongs to (0,∞) as a consequence of (22) with α = α1 and thus so does ã1. Now
observe that, setting p = 2 + β > 1, Minkowski’s inequality implies that

EZ∼qφ
(∣∣∣wθ,φ(Z)1−α2 − ã1

∣∣∣p) 1
p ≤ EZ∼qφ

(∣∣∣wθ,φ(Z)1−α2 − a2
∣∣∣p) 1

p + EZ∼qφ (|a2 − ã1|p)
1
p

that is

EZ∼qφ
(∣∣∣wθ,φ(Z)1−α2 − ã1

∣∣∣2+β
) 1

2+β
≤ EZ∼qφ

(∣∣∣wθ,φ(Z)1−α2 − a2
∣∣∣2+β

) 1
2+β

+ |a2 − ã1|

We then deduce that (23) holds with α = α1 by combining (79) with the inequality
above and the fact that (i) ã−1

1 < ∞, (ii) EZ∼qφ(|wθ,φ(Z)1−α2 − a2|2+β)1/(2+β) < ∞
by (78) and (iii) |a2 − ã1| <∞.
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2. Assume (24) holds for α = α2. Then by Lemma 4 with k = 1 we may pick N such
that E(1/Rα2,N ) <∞. Observe now that

E (1/Rα1,N ) = E
(

N∑N
i=1wθ,φ(Zi)1−α1

)

≤ E
(

N∑N
i=1wθ,φ(Zi)1−α1

∣∣∣∣∣ wθ,φ(Zi) ≤ pθ(x) for all i = 1, . . . , N
)

where we have used that N/(
∑N
i=1wθ,φ(Zi)1−α1) is a decreasing function of each

wθ,φ(Zi), with wθ,φ(Zi) being independent random variables. Since α1 > α2, it follows
that

E (1/Rα1,N ) ≤ E
(

Npθ(x)α1−α2∑N
i=1wθ,φ(Zi)1−α2

∣∣∣∣∣ wθ,φ(Zi) ≤ pθ(x) for all i = 1 . . . N
)

≤ pθ(x)α1−α2E
(

1
Rα2,N

∣∣∣∣ wθ,φ(Zi) ≤ pθ(x) for all i = 1 . . . N
)

≤ pθ(x)α1−α2 E(1/Rα2,N )
P (wθ,φ(Z) ≤ pθ(x))N

<∞

since E(wθ,φ(Z)) = pθ(x) which implies that P (wθ,φ(Z) ≤ pθ(x)) > 0. We see that
there exists a choice of N for which E (1/Rα1,N ) < ∞, from which (24) follows by
Lemma 4 with k = 1.

B.3 Behavior of γ2
α

Lemma 5 Let α ∈ [0, 1). Then, under common integrability and differentiability assump-
tions

lim
α→1

γ2
α = 0.

Proof By definition of γ2
α, we have that

γ2
α = 1

E(w1−α
θ,φ )2 ·

1
1− αE

([
w1−α
θ,φ − E(w1−α

θ,φ )
]2)

.

On the one hand, we have that E(w1−α
θ,φ ) → 1 as α → 1 under convenient integrability

assumptions. On the other hand, for all z ∈ Rd,

lim
α→1

1
1− α

[
wθ,φ(z)1−α − E(w1−α

θ,φ )
]2

= lim
α→1

{
2
[
wθ,φ(z)1−α − E(w1−α

θ,φ )
]
·
[
−wθ,φ(z)1−α logwθ,φ(z) + E

(
w1−α
θ,φ logwθ,φ

)]}
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so that under convenient differentiability assumptions,

lim
α→1

1
1− αE

([
w1−α
θ,φ − E(w1−α

θ,φ )
]2)

= 0

thus implying that limα→1 γ
2
α = 0.

B.4 Proof of Example 1

Proof of Example 1 Using (26), we first deduce that: for all m ∈ R,

EZ∼qφ (wθ,φ(Z)m) = ES∼N (0,1)

[
exp

(
−mσ

2d

2 −mσ
√
dS

)]

= exp
(
−mσ

2d

2

)
ES∼N (0,1)

[
exp

(
−mσ

√
dS
)]

= exp
(
−mσ

2d

2

)
exp

(
m2σ2d

2

)

= exp
(
m(m− 1)σ2d

2

)
.

Therefore, plugging in m = 1− α,

L(α)(θ, φ;x)− `(θ;x) = 1
1− α logEZ∼qφ

(
wθ,φ(Z)1−α

)
= −ασ

2d

2 ,

which gives the desired result for L(α)(θ, φ;x)− `(θ;x). In addition: for all m ∈ R,

EZ∼qφ(wθ,φ(Z)m) = exp
(
m(m− 1)σ2d

2

)
pθ(x)m. (80)

Now note that (26) can be rewritten as: for all i = 1 . . . N ,

logwθ,φ(zi) = −σ
2d

2 − σ
√
dSi + log pθ(x), Si ∼ N (0, 1).

Hence, we get that: for all i = 1 . . . N ,

logw(α)
θ,φ(zi) = (1− α) logwθ,φ(zi)− logEZ∼qφ(wθ,φ(Z)1−α)

= −(1− α)σ
√
dSi −

(1− α)2σ2d

2
where we have used (80) with m = 1− α. As a result,

VZ∼qφ(w(α)
θ,φ(Z)) = VS∼N (0,1)

(
exp

{
−(1− α)σ

√
dS
}

exp
{
−(1− α)2σ2d

2

})
= exp

(
(1− α)2σ2d

) (
exp

(
(1− α)2σ2d

)
− 1

)
exp

(
−(1− α)2σ2d

)
= exp

(
(1− α)2σ2d

)
− 1,
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which yields the desired result for γ2
α. In addition, we show that (23) and (24) both hold,

meaning that we can apply Theorem 3. To see this, note that EZ∼qφ (wθ,φ(Z)m) and
EZ∼qφ(w(α)

θ,φ(Z)m) are well-defined and finite for all α,m ∈ R. Furthermore, observe that by
convexity of the function u 7→ |u|2+β with β > 0, it holds that

EZ∼qφ(|w(α)
θ,φ(Z)− 1|2+β) ≤ 21+β

(
EZ∼qφ(w(α)

θ,φ(Z)2+β) + 1
)

thus (23) holds for all β > 0. Lastly, E(1/Rα,N ) ≤ E(N−1∑N
i=1wθ,φ(Zi)α−1) by the HM-AM

inequality and the r.h.s. is finite for all α ∈ R thus (24) also holds.
In the particular case pθ(z|x) = N (z; θ, Id) and qφ(z|x) = N (z;φ, Id): for all i = 1 . . . N ,

logwθ,φ(zi) = −1
2
(
‖zi − θ‖2 − ‖zi − φ‖2

)
= −1

2
(
‖θ‖2 − ‖φ‖2 + 2〈zi, φ− θ〉

)
= −1

2 (〈θ − φ, θ + φ〉+ 2〈zi, φ− θ〉)

= −1
2 (〈θ − φ, θ − φ+ 2φ〉+ 2〈zi, φ− θ〉)

= −1
2
(
B2
d + 2〈zi − φ, φ− θ〉

)
= −B

2
d

2 −BdSi with Si = 1
Bd
〈zi − φ, φ− θ〉, (81)

where we have set Bd = ‖φ − θ‖. Since zi − φ ∼ N (0, Id), it follows that Si ∼ N (0, 1) as
required. Lastly, when θ = 0 · ud and φ = ud, we have that Bd =

√
d.

B.5 Proof of Example 2

Proof Let us first prove that pθ(x) = N (x; θ, 2Id) and pθ(z|x) = N (z; (θ + x)/2, 1/2 Id).
To see this, note that

pθ(x, z) =
( 1

(2π)d/2

)2
exp

(
−1

2
{
‖z − θ‖2 + ‖x− z‖2

})
.

As a result, only considering the dependency in z, we have that

pθ(x, z) ∝ exp
(
−1

2 · 2
∥∥∥z − θ + x

2

∥∥∥2)
,

which implies that pθ(z|x) = N (z; (θ + x)/2, 1/2 Id). Furthermore,

pθ(x) =
∫
pθ(x, z)dz

= 1
(2π · 2)d/2

∫ 1
(2π · 1/2)d/2

exp
(
−1

2 · 2
∥∥∥z − θ + x

2

∥∥∥2)
dz · exp

(
−1

2 ·
1
2‖θ − x‖

2
)

= N (x; θ, 2Id).
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Hence, for all z ∈ Rd

logwθ,φ(z) = log
(
pθ(z|x)
qφ(z|x)

)
= log

(
(2π · 2/3)d/2

(2π · 1/2)d/2
exp

[
−
∥∥∥z − θ + x

2

∥∥∥2
+ 3

4‖z −Ax− b‖
2
])

and from there, we can straightforwardly deduce that: for all i = 1 . . . N ,

logwθ,φ(zi) = d

2 log
(4

3

)
−
∥∥∥zi − θ + x

2

∥∥∥2
+ 3

4‖zi −Ax− b‖
2. (82)

Using (82) we can write that

L(α)(θ, φ;x)− `(θ;x) = 1
1− α log

(∫
qφ(z|x)wθ,φ(z)1−αdz

)
= d

2 log
(4

3

)
+ 1

1− α log (I)

where

I =
∫ 1

(4π/3)d/2
exp

[
−3

4‖z −Ax− b‖
2 + (1− α)

(
−
∥∥∥z − θ + x

2

∥∥∥2
+ 3

4‖z −Ax− b‖
2
)]

dz

=
∫ 1

(4π/3)d/2
exp

[
−3α

4 ‖z −Ax− b‖
2 − (1− α)

∥∥∥z − θ + x

2

∥∥∥2]
dz.

I is well-defined and finite for all α < 4. Completing the square leads to

I =
( 3

4− α

)d/2
exp

(( 4
4− α

)∥∥∥3α
4 (Ax+ b)

+(1− α)θ + x

2

∥∥∥2
− 3α

4 ‖Ax+ b‖2 − (1− α)
∥∥∥θ + x

2

∥∥∥2)
.

As a result,

L(α)(θ, φ;x)− `(θ;x) = d

2

[
log

(4
3

)
+ 1

1− α log
( 3

4− α

)]
+ 4

(4− α)(1− α)

∥∥∥3α
4 (Ax+ b) + (1− α)θ + x

2

∥∥∥2
− 3α

4(1− α)‖Ax+ b‖2 −
∥∥∥θ + x

2

∥∥∥2
.

It can then be checked that the second line simplifies to − 3α
4−α

∥∥∥Ax + b − θ+x
2

∥∥∥2
, from

which we deduce the desired result for L(α)(θ, φ;x) − `(θ;x). [Notice in particular that
L(α)(θ, φ;x)− `(θ;x) is well-defined for all α 6= 1, α < 4 with continuous extension at α = 1.]
On the other hand, we have that

γ2
α = 1

1− αVZ∼qφ(w(α)
θ,φ(Z)) = 1

1− α

(
EZ∼qφ

(
wθ,φ(Z)2−2α)

EZ∼qφ (wθ,φ(Z)1−α)2 − 1
)
.

Furthermore, for all α′ ∈ R \ {1}, it holds that

EZ∼qφ
(
wθ,φ(Z)1−α′

)
= exp

(
(1− α′)

[
L(α′)(θ, φ;x)− `(θ;x)

])
. (83)
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Now using (83) with α′ = α and α′ = 2α − 1 and combining with the expression of
L(α)(θ, φ;x)− `(θ;x), we obtain

γ2
α = 1

1− α (exp(A)− 1)

with

A = 2(1− α)
{
d

2

[
log

(4
3

)
+ 1

2(1− α) log
( 3

5− 2α

)]
− 3(2α− 1)

5− 2α

∥∥∥Ax+ b− θ + x

2

∥∥∥2}
− 2(1− α)

{
d

2

[
log

(4
3

)
+ 1

1− α log
( 3

4− α

)]
− 3α

4− α

∥∥∥Ax+ b− θ + x

2

∥∥∥2}
= d

2 log
(

(4− α)2

5− 2α

)
+ 24(1− α)2

(5− 2α)(4− α)

∥∥∥Ax+ b− θ + x

2

∥∥∥2

from which we deduce the desired result for γ2
α [notice in particular that γ2

α is well-defined
for all α < 5/2].

In addition, the assumptions made in Theorem 3 are satisfied for all α ∈ [0, 1). To see this,
set m = 1− α′ in (83) and use that L(α)(θ, φ;x)− `(θ;x) is well-defined for all α 6= 1, α < 4
with continuous extension at α = 1, so that EZ∼qφ(wθ,φ(Z)m) and thus EZ∼qφ (wθ,φ(Z)m)
and EZ∼qφ(w(α)

θ,φ(Z)m) are well-defined and finite for all m > −3. Furthermore, the convexity
of the function u 7→ |u|2+β with β > 0 implies that

EZ∼qφ(|w(α)
θ,φ(Z)− 1|2+β) ≤ 21+β

(
EZ∼qφ(w(α)

θ,φ(Z)2+β) + 1
)

thus (23) holds for all β > 0. Lastly, E(1/Rα,N ) ≤ E(N−1∑N
i=1wθ,φ(Zi)α−1) by the HM-AM

inequality and the r.h.s. is finite for all α > −2 thus (24) also holds.

B.6 Proof of Proposition 3

Proof of Proposition 3 For all α ∈ [0, 1), we can rewrite the variational gap ∆(α)
N,d(θ, φ)

as

∆(α)
N,d(θ, φ;x) = 1

1− α

∫ ∫ N∏
i=1

qφ(zi) log

 1
N

N∑
j=1

w1−α
j

 dw1:N

= 1
1− α

∫ ∫ N∏
i=1

qφ(zi) log

 1
N

N∑
j=1

(w(j))1−α

dw1:N

= 1
1− α

[∫ ∫ N∏
i=1

qφ(zi) log
( 1
N

(w(N))1−α
)

dw1:N

+
∫ ∫ N∏

i=1
qφ(zi) log

1 +
N−1∑
j=1

(
w(j)

w(N)

)1−α
dw1:N


= ∆(α,MAX)

N,d (θ, φ;x) +R
(α)
N,d(θ, φ;x)
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where we have used (29) and where we have set

R
(α)
N,d(θ, φ;x) := 1

1− α

∫ ∫ N∏
i=1

qφ(zi) log

1 +
N−1∑
j=1

(
w(j)

w(N)

)1−α
 dw1:N .

All that is left to do is now to prove (30). Observe that by definition of T (α)
N,d in (27) and

since α ∈ [0, 1), we can write

0 ≤ R(α)
N,d(θ, φ;x) = 1

1− α

∫ ∫ N∏
i=1

qφ(zi) log
(
1 + T

(α)
N,d

)
dw1:N

≤ 1
1− α

∫ N∏
i=1

qφ(zi) T (α)
N,d dw1:N

= 1
1− αE(T (α)

N,d),

which concludes the proof.

B.7 Deferred Proofs of Section 4.2.1

B.7.1 Proof of Lemma 1

Proof of Lemma 1 First, note that since S1, . . . , SN are i.i.d. normal random variables,
so are −S1, . . . ,−SN . Setting MN = max1≤i≤N −Si, we also have S(1) = −MN . A standard
result (obtained, for example, by combining Theorem 1.1.2 and Example 1.1.7 in de Haan
and Ferreira, 2007) is that for all x ∈ R,

lim
N→∞

P
(
a−1
N (MN − bN ) ≤ x

)
= exp(−e−x) (84)

with aN = 1/
√

2 logN and bN =
√

2 logN − 1
2(log logN + log 4π)/(

√
2 logN). Since

E(|MN |) ≤ E(M2
N )1/2 ≤ E(

∑N
i=1 S

2
i )1/2 ≤ N1/2 <∞ for all N , it follows by (Pickands III,

1968, Theorem 2.1) that

lim
N→∞

a−1
N (E (MN )− bN ) = E(U),

where U is a Gumbel random variable and E(U) is given by the Euler–Masceroni constant.
Using that S(1) = −MN , we deduce

lim
N→∞

−a−1
N

(
E(S(1)) + bN

)
= E(U).

Finally, plugging in the definition of aN and bN , we obtain

E(S(1)) = −
√

2 logN + log logN + log 4π
2
√

2 logN
− E(U)√

2 logN
+ o

( 1√
2 logN

)
= −

√
2 logN +O

( log logN√
logN

)
and we have thus recovered (34).
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B.7.2 Proof of Proposition 4

Proof of Proposition 4 First note that

logw(N) = −dσ
2

2 −
√
dσS(1).

Combining this result with the definition of ∆MAX
N,d (θ, φ;x) in (29) yields

∆MAX
N,d (θ, φ) = −dσ

2

2 −
√
dσE(S(1)) + logN

α− 1 .

Now using (34), we deduce

∆MAX
N,d (θ, φ) = −dσ

2

2 +
√
dσ

(√
2 logN +O

( log logN√
logN

))
+ logN
α− 1

= −dσ
2

2

1− 2

√
2 logN
dσ2 + 1

1− α
2 logN
dσ2 +O

( log logN√
d logN

) ,
which concludes the proof.

B.7.3 Proof of Proposition 5

We first prove a useful intermediate lemma regarding the concentration of S(1).

Lemma 6 Let S1, . . . , SN be i.i.d. normal random variables, set S(1) = min1≤i≤N Si, and
define IN = [−4

√
logN,−

√
logN ]. Then as N →∞, we have

P(S(1) 6∈ IN ) = O

( 1
N4

)
.

Proof We control the probability of the events {S(1) > −
√

logN} and {S(1) < −4
√

logN}
separately. First, note that

logP(S(1) > −
√

logN) = N log(Φ(−
√

logN))

= N log
(
1− Φ(

√
logN)

)
= −NΦ(

√
logN)(1 + o(1))

= −N φ(
√

logN)√
logN

(1 + o(1)) (85)

where in the final line we have used the standard approximation

Φ(x) = φ(x)
x

(1 + o(1)) (86)

as x→∞. We deduce that

P(S(1) > −
√

logN) = exp
{
−N N−1/2
√

2π
√

logN
(1 + o(1))

}
= O

( 1
N4

)
(87)
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as N →∞. Second, as N →∞ we have, by a union bound, that

P(S(1) < −4
√

logN) ≤ NΦ(−4
√

logN)

= N
φ(4
√

logN)
4
√

logN
(1 + o(1))

= N−7

4
√

2π
√

logN
(1 + o(1))

= O

( 1
N4

)
(88)

and so the result follows.

We now prove Proposition 5 by building on the proof from Snyder et al. (2008) and on
Lemma 6.
Proof of Proposition 5 Denote σα = (1− α)σ for all α ∈ [0, 1). A first remark is that,
conditional upon S(1), we can think of the sum in (27) as the sum over N − 1 i.i.d. random
variables

E(T (α)
N,d|S

(1)) = (N − 1)E
(
exp

(
−σα
√
d(S − S(1))

))
where the expectation is w.r.t. the density of S given by

p(z) = φ(z)
Φ(S(1))

I(z ≥ S(1)),

with φ(z) denoting the standard normal density and Φ(x) =
∫∞
x φ(z)dz denoting the

normalizing constant. Then,

E(T (α)
N,d|S

(1)) =
(N − 1)

∫∞
S(1) exp

(
−σα
√
d
(
z − S(1)

))
φ(z)dz

Φ(S(1))
.

We can then calculate explicitly∫ ∞
S(1)

exp
(
−σα
√
d
(
z − S(1)

))
φ(z)dz

= exp(σα
√
dS(1) + σ2

αd/2)
∫ ∞
S(1)

(
√

2π)−1 exp
(
−1

2(z + σα
√
d)2
)

dz

= exp(σα
√
dS(1) + σ2

αd/2)Φ(σα
√
d+ S(1)).

Denoting IN = [−4
√

logN,−
√

logN ], on the event {S(1) ∈ IN}, as N, d → ∞ with
logN/d→ 0, we have

σα
√
d+ S(1) = σα

√
d(1 + oN,d(1)),

where we use the notation oN,d(1) to denote that the implicit constant, which goes to zero
as N, d→∞ with logN/d→ 0, does not depend on S(1). Using the approximation (86) for
Φ(x) as x→∞,

Φ(σα
√
d+ S(1)) = φ(σα

√
d+ S(1))

σα
√
d+ S(1)

(1 + oN,d(1)).
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Hence, observing that exp(σα
√
dS(1) + σ2

αd/2)φ(σα
√
d+ S(1)) = φ(S(1)), it follows that∫ ∞

S(1)
exp

(
−σα
√
d
(
z − S(1)

))
φ(z)dz = φ(S(1))

σα
√
d

(1 + oN,d(1))

on the event {S(1) ∈ IN}. Using (86), we can also write

Φ(S(1)) = Φ(−S(1)) = φ(−S(1))
−S(1) (1 + oN,d(1)).

Combined with φ(−S(1)) = φ(S(1)), this allows us to deduce that∫ ∞
S(1)

exp
(
−σα
√
d
(
z − S(1)

))
φ(z)dz = (−S(1))Φ(S(1))

σα
√
d

(1 + oN,d(1))

≤ Φ(S(1))4
√

logN
σα
√
d

(1 + oN,d(1)), (89)

all on the event {S(1) ∈ IN}. Finally, since S(1) < −
√

logN implies

Φ(S(1)) = 1 + oN,d(1),

we have
E(T (α)

N,d|S
(1)) ≤ (N − 1)Φ(S(1))4

√
logN

σα
√
d

(1 + oN,d(1)).

We conclude by using the tower law of expectation and splitting according to whether
S(1) ∈ IN , giving

E(T (α)
N,d) = E

(
E(T (α)

N,d|S
(1))
)

≤ E
(
1{S(1)∈IN}(N − 1)Φ(S(1))4

√
logN

σα
√
d

(1 + oN,d(1))
)

+ E
(
1{S(1) 6∈IN}

)
≤ (N − 1)4

√
logN

σα
√
d

E
(
Φ(S(1))

)
(1 + o(1)) + P(S(1) 6∈ IN )

≤ 4
√

logN
σα
√
d

(1 + o(1)) +O

( 1
N4

)
→ 0

where in the final line we have used Lemma 6 and that Φ(S(1)) is distributed as the minimum
of N independent uniform random variables on [0, 1] and so E(Φ(S(1))) = 1

N+1 .

B.7.4 Proof of Theorem 5

First note that Lemma 1 and Lemma 6 are not affected by the change in the distribution of
the weights we have made in (36). As for Proposition 4 and Proposition 5, they are modified
according to Proposition 8 and Proposition 9 below.
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Proposition 8 Let S1, . . . , SN be i.i.d. normal random variables. Further assume that the
weights w1, . . . , wN satisfy (36) and that there exists σ− > 0 such that Bd ≥ σ−

√
d. Then,

for all α ∈ [0, 1),

lim
N,d→∞

∆(α,MAX)
N,d (θ, φ;x) + B2

d

2

{
1− 2

√
2 logN
Bd

+ 1
1− α

2 logN
B2
d

+O

( log logN
Bd
√

logN

)}
= 0.

Proof First note that
logw(N) = −B

2
d

2 −BdS
(1).

Combining this result with the definition of ∆MAX
N,d (θ, φ;x) in (29) yields

∆MAX
N,d (θ, φ) = −B

2
d

2 −BdE(S(1)) + logN
α− 1 .

Now using (34) of Lemma 1, we deduce

∆MAX
N,d (θ, φ) = −B

2
d

2 +Bd

(√
2 logN +O

( log logN√
logN

))
+ logN
α− 1 ,

which concludes the proof.

Proposition 9 Let S1, . . . , SN be i.i.d. normal random variables. Further assume that the
weights w1, . . . , wN satisfy (36) and that there exists σ− > 0 such that Bd ≥ σ−

√
d. Then,

for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d→0

E(T (α)
N,d) = 0.

Proof Conditional upon S(1), we can think of the sum in (27) as the sum over N − 1 i.i.d.
random variables

E(T (α)
N,d|S

(1)) = (N − 1)E
(
exp

(
−(1− α)Bd(S − S(1))

))
where the expectation is w.r.t. the density of S given by

p(z) = φ(z)
Φ(S(1))

I(z ≥ S(1)),

with φ(z) denoting the standard normal density and Φ(x) =
∫∞
x φ(z)dz denoting the

normalizing constant. Now denoting σα = (1− α)σ− for all α ∈ [0, 1) and using that

E(T (α)
N,d|S

(1)) ≤ (N − 1)E
(
exp

(
−σα
√
d(S − S(1))

))
we obtain by following the proof of Proposition 5 that the term on the r.h.s. above goes to 0
as logN/d→ 0 with N, d→∞. We deduce the desired result by combining this with the
fact that E(T (α)

N,d|S(1)) ≥ 0.

The proof of Theorem 5 then follows immediately from Proposition 8 and Proposition 9.
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B.8 Deferred Proofs and Results of Section 4.2.2

We start by recalling some useful results from Saulis and Statulevičius (2000) regarding
large deviations for sums of independent random variables.

B.8.1 Large Deviations for Sums of Independent Random Variables

The random variable ξ is said to satisfy the assumption (A-ξ) if the following holds.

(A-ξ) There exists ∆ > 0 such that |Γk(ξ)| ≤ k!
∆k−2 for all integer k ≥ 3, where Γk(ξ) denotes

the k-th cumulant of ξ.

We now state without proof (Saulis and Statulevičius, 2000, Lemma 2.3) and (Saulis and
Statulevičius, 2000, Theorem 3.1) in the particular case γ = 0.

Lemma 7 ((Saulis and Statulevičius, 2000, Lemma 2.3) with γ = 0) Let ξ be a ran-
dom variable with E(ξ) = 0 and E(ξ2) = 1. Denote by G(·) the cdf of ξ. Assume that (A-ξ)
holds and set

∆0 =
√

2
36 ∆.

Then, in the interval 0 ≤ x < ∆0, the relations of large deviations

1−G(x) = (1− Φ(x)) exp(P (x))
(

1 + θ1f(x)x+ 1
∆0

)
G(−x) = Φ(−x) exp(P (−x))

(
1 + θ2f(x)x+ 1

∆0

)
are valid, with Φ denoting the standard normal distribution. Here, P and f are defined by

P (x) =
∞∑
k=3

λkx
k + θ (x/∆0)3

f(x) =
60(1 + 10∆2

0 exp
{
− (1− x/∆0)

√
∆0
}

)
1− x/∆0

,

where θ, θ1, θ2 are some variables not exceeding 1 in absolute value and where for all k ≥ 3

|λk| ≤
2
k

(16/∆)k−2

so that

P (x) ≤ x3

2(x+ 8∆0) and P (−x) ≥ − x3

3∆0
.

Theorem 1 ((Saulis and Statulevičius, 2000, Theorem 3.1) with γ = 0) Let ξ1, . . . ,
ξd be independent random variables with E(ξj) = 0 and σ2

j = V(ξj) <∞. Set

Sd = 1
Bd

(ξ1 + . . .+ ξd) ,
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where B2
d =

∑d
j=1 σ

2
j . Assume that there exists K > 0 such that: for all j = 1 . . . d,

|E(ξkj )| ≤ k!Kk−2σ2
j , k ≥ 3. (90)

Then,

|Γk(Sd)| ≤
k!

∆k−2
d

, k ≥ 3

with
∆d = Bd

Kd
, where Kd = 2 max

{
K, max

1≤j≤d
σj

}
,

that is, (A-ξ) holds with ξ = Sd and ∆ = ∆d.

B.8.2 Preliminary Results

Building on Lemma 7 and Theorem 1, we can now state some preliminary results that will
come in handy when proving the results from Section 4.2.2.

Lemma 8 Let ξ1, . . . , ξd be i.i.d. random variables with E(ξ1) = 0 and σ2 = V(ξ1) < ∞.
Set

Sd = 1
Bd

(ξ1 + . . .+ ξd) ,

where Bd = σ
√
d. Assume that there exists K > 0 such that:

|E(ξk1 )| ≤ k!Kk−2σ2, k ≥ 3.

Set ∆d = Bd/Kd where Kd = 2 max {K,σ}. Then, as d → ∞, there exists an analytic
function Pd such that the cdf of Sd, denoted Gd(·), satisfies

1−Gd(x) = (1− Φ(x)) exp(Pd(x))(1 + o(1))
Gd(−x) = Φ(−x) exp(Pd(−x))(1 + o(1))

uniformly for all x ≥ 0 and x = o(
√
d). Here, Φ denotes the standard normal distribution,

Pd is such that

Pd(x) =
∞∑
k=3

λk,dx
k

with

|λk,d| ≤ A(c/
√
d)k−2, k ≥ 3

for some constants A, c > 0.

Proof Observe first that Sd satisfies E(Sd) = 0 and E(S2
d) = 1 with Bd = σ

√
d and

Kd = 2 max(K,σ). Furthermore, (A-ξ) holds with ξ = Sd and ∆ = ∆d by Theorem 1. Then,
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we can apply Lemma 7 with ξ = Sd and ∆ = ∆d to obtain that in the interval 0 ≤ x < ∆0,d,
the relations of large deviations

1−Gd(x) = (1− Φ(x)) exp(P (x))
(

1 + θ1f(x)x+ 1
∆0,d

)
,

Gd(−x) = Φ(−x) exp(P (−x))
(

1 + θ2f(x)x+ 1
∆0,d

)

are valid. Here, ∆0,d =
√

2
36 ∆d and P , f are defined by

P (x) = Pd(x) + θ (x/∆0,d)3

f(x) =
60(1 + 10∆2

0,d exp
{
− (1− x/∆0,d)

√
∆0,d

}
)

1− x/∆0,d

Pd(x) =
∞∑
k=3

λk,dx
k,

where θ, θ1, θ2 are some variables not exceeding 1 in absolute value and

|λk,d| ≤
2
k

(16/∆d)k−2 ≤ A(c/
√
d)k−2, k ≥ 3

for some constants A, c > 0. Under the assumption x = o(
√
d), P (x) = Pd(x) + o(1),

f(x) x+1
∆0,d

= o(1) and we can thus deduce that as d → ∞ the relations of large deviations
become

1−Gd(x) = (1− Φ(x)) exp(Pd(x)) (1 + o(1))
Gd(−x) = Φ(−x) exp(Pd(−x)) (1 + o(1))

uniformly for all x ≥ 0 and x = o(
√
d).

The corollary below then follows from Lemma 8.

Corollary 1 Under the assumptions of Lemma 8, as d→∞,

1−Gd(x) = (1− Φ(x))(1 + o(1))
Gd(−x) = Φ(−x)(1 + o(1))

uniformly for all x ≥ 0 and x = o(d1/6).

Proof Since we consider the case x ≥ 0 and x = o(d1/6), we can apply Lemma 8 to get: as
d→∞,

1−Gd(x) = (1− Φ(x)) exp(Pd(x))(1 + o(1))
Gd(−x) = Φ(−x) exp(Pd(−x))(1 + o(1))
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where Pd is defined in Lemma 8. In addition, using successively that (i) |λk,d| ≤ A(c/
√
d)k−2

by Lemma 8 (ii) x = o(
√
d) and (iii) x3 = o(

√
d), we have that:

|Pd(x)| ≤
∞∑
k=3
|λk,d|xk

≤ Acx3d−1/2
∞∑
k=3

(
cxd−1/2

)k−3

≤ Acx3d−1/2(1 + o(1))
= o(1).

Similarly, |Pd(−x)| = o(1) and consequently,
1−Gd(x) = (1− Φ(x))(1 + o(1))
Gd(−x) = Φ(−x)(1 + o(1))

uniformly for all x ≥ 0 and x = o(d1/6).

We also prove the following concentration result, which parallels the corresponding result
Lemma 6 from the exact log-normal case and which will be useful in subsequent proofs.

Lemma 9 Let S1, . . . , SN be i.i.d. distributed according to (38), set S(1) = min1≤i≤N Si
and define IN = [−4

√
logN,−

√
logN ]. Then as N, d→∞ with logN/d1/3 → 0, we have

P(S(1) 6∈ IN ) = O

( 1
N4

)
.

Proof The proof follows the same structure as the proof of Lemma 6, using Corollary 1 to
relate the approximately log-normal case to the exact case.

We control the probability of the events {S(1) > −
√

logN} and {S(1) < −4
√

logN}
separately. First, since

√
logN = o(d1/6) as N, d→∞ with logN/d1/3 → 0, by Corollary 1

we have
logP(S(1) > −

√
logN) = N log

(
1−Gd(−

√
logN)

)
= N log

(
1− (1 + o(1))Φ(

√
logN)

)
= −N φ(

√
logN)√

logN
(1 + o(1))

using the same method as in (85). Following (87), we deduce that

P(S(1) > −
√

logN) = O

( 1
N4

)
Second, we can write

P(S(1) < −4
√

logN) ≤ NGd(−4
√

logN)
= NΦ(4

√
logN)(1 + o(1))

= O

( 1
N4

)
using the same method as in (88), from which the result follows.
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B.8.3 Proof of Lemma 2

Proof of Lemma 2 The idea of the proof will be to relate it to the case where S1, . . . , SN
are exactly normally distributed, which was proved in Section B.7.1. Recall that we have
S1, . . . , SN with cdf Gd and S(1) = min1≤i≤N Si. Also, let S̃1, . . . , S̃N be auxiliary i.i.d.
standard Gaussian random variables, and set S̃(1) = min1≤i≤N Si.

By the assumption that the ξi,j are absolutely continuous with respect to the Lebesgue
measure, Gd is continuous and hence we can construct S1, . . . , SN and S̃1, . . . , S̃N on a
common probability space by drawing N uniform random variables U1, . . . , UN ∼ U [0, 1]
and setting Si = G−1

d (Ui), S̃i = Φ−1(Ui). We then have that S(1) = G−1
d (U (1)) and

S̃(1) = Φ−1(U (1)).
From Lemma 1 we know that

E(S̃(1)) = −
√

2 logN +O

( log logN√
logN

)
so it suffices to prove that

E(|S̃(1) − S(1)|) = O

( log logN√
logN

)
. (91)

Letting IN = [−4
√

logN,−
√

logN ], we will split the above expectation according to whether
S̃(1) ∈ IN .

• Assuming first that S̃(1) ∈ IN , so that S̃(1) = o(d1/6), if we let h ∈ R be an arbitrary
real satisfying h = oN,d(1), then using Corollary 1 we can write

Gd(S̃(1) + h) = Φ(S̃(1) + h)(1 + oN,d(1))

= −φ(S̃(1) + h)
S̃(1) + h

(1 + oN,d(1))

= Φ(S̃(1))φ(S̃(1) + h)
φ(S̃(1))

(1 + oN,d(1))

= U (1) exp
{
−hS̃(1) − h2/2

}
(1 + oN,d(1))

and so it follows by the continuity of Gd that there is a choice of h, satisfying
h = ON,d(1/

√
logN), such that Gd(S̃(1) + h) = U (1). We conclude that

|S̃(1) − S(1)| ≤ ON,d
( 1√

logN

)
and so

E
(
|S̃(1) − S(1)|1{S̃(1)∈IN}

)
≤ O

( 1√
logN

)
. (92)

• On the other hand, we may also write

E
(
|S1|1{S̃(1) 6∈IN}

)
≤ E

(
|S1|1{|S1|≥N2}

)
+ E

(
|S1|1{|S1|<N2}∩{S̃(1) 6∈IN}

)
≤ 1
N2E(|S1|2) +N2P

(
S̃(1) 6∈ IN

)
≤ O

( 1
N2

)
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where we have used E(|S1|2) = 1 and Lemma 6 to bound the second term.

The same result also holds with S̃1 in place of S1 (e.g. by considering taking the ξi to
be i.i.d. Gaussians), and so we see that

E
(
|S̃(1) − S(1)|1{S̃(1) 6∈IN}

)
≤

N∑
i=1

E
(
|S̃i − Si|1{S̃(1) 6∈IN}

)
= O

( 1
N

)
(93)

Combining (92) and (93) yields (91) and the proof is concluded.

B.8.4 Proof of Proposition 6

Proof of Proposition 6 First, note that since the weights satisfy (37), we may write

logw(N) = − log
(
E(exp(−σ

√
dS1))

)
− σ
√
dS(1).

In addition, using the definition of S1 written in (38), that is

S1 = 1
σ
√
d

d∑
j=1

ξ1,j ,

where the ξ1,1, . . . , ξ1,d are i.i.d. random variables, we have that

E(exp(−σ
√
dS1)) =

d∏
j=1

E(exp(−ξ1,j))

= (E(exp(−ξ1,1)))d .

Thus,

− log
(
E(exp(−σ

√
dS1))

)
= −d logE(exp(−ξ1,1)) = −da (94)

By Jensen’s inequality applied to the strictly convex function u 7→ − log(u), we have that

a < E(ξ1,1) = 0.

Hence,

logw(N) = −da− σ
√
dS(1) (95)

with a > 0. Following the proof of Proposition 4 in Appendix B.7.2, we can then conclude
by combining (95) with the definition of ∆MAX

N,d (θ, φ) in (29). Indeed,

∆MAX
N,d (θ, φ;x) = −da− σ

√
dE(S(1)) + logN

α− 1
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and using (34), we deduce:

∆MAX
N,d (θ, φ;x) = −da+ σ

√
d

(√
2 logN +O

( log logN√
logN

))
+ logN
α− 1

= −da

1− σ

a

√
2 logN
d

+ 1
1− α

logN
da

+O

( log logN√
d logN

) ,
Hence, using now that 1

1−α
logN
da = O

(
log logN√
d logN

)
under the assumption logN/d1/3 → 0, we

can deduce

lim
N,d→∞

logN/d1/3→0

∆(α,MAX)
N,d (θ, φ) + da

1− σ

a

√
2 logN
d

+O

( log logN√
d logN

) = 0,

which yields the desired result.

B.8.5 Proof of Proposition 7

Proof of Proposition 7 The proof will build on the proof of Proposition 5. As in that
proof, we denote σα = (1−α)σ for all α ∈ [0, 1) and observe that, conditional upon S(1), we
can think of the sum in (27) as the sum over N − 1 i.i.d. random variables

E(T (α)
N,d|S

(1)) = (N − 1)E
(
exp

(
−σα
√
d(S − S(1))

))
where the expectation is w.r.t. the density of S given by

p(z) = gd(z)
Gd(S(1))

I(z ≥ S(1)),

with gd denoting the pdf of S1 and Gd(x) =
∫∞
x gd(z)dz for all x ∈ R, that is

E(TN,d|S(1)) = (N − 1)
∫∞
S(1) exp(−σα

√
d(z − S(1)))gd(z)dz

Gd(S(1))
.

We are thus required to show that

(N − 1)E
[∫∞

S(1) exp(−σα
√
d(z − S(1)))gd(z)dz

Gd(S(1))

]
→ 0 (96)

as N, d→ 0 with logN/d1/3 → 0. First, we show that contributions due to extreme values
of S(1) are negligible. To see this, note that∣∣∣∣∣

∫∞
S(1) exp(−σα

√
d(z − S(1)))gd(z)dz

Gd(S(1))

∣∣∣∣∣ ≤ 1,
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so that Lemma 9 implies

(N − 1)E
[
1{S(1) 6∈IN}

∫∞
S(1) exp(−σα

√
d(z − S(1)))gd(z)dz

Gd(S(1))

]
≤ (N − 1)E

(
1{S(1) 6∈IN}

)
→ 0.

Hence it suffices to show that

(N − 1)E
[
1{S(1)∈IN}

∫∞
S(1) exp(−σα

√
d(z − S(1)))gd(z)dz

Gd(S(1))

]
→ 0.

Note that by Corollary 1, we have Gd(S(1)) ≥ Gd(0) = 1 − Φ(0)(1 + o(1)) on the event
{S(1) ∈ IN} as N, d→∞ with logN/d1/3 → 0, so Gd(S(1)) is uniformly bounded below. It
thus suffices to prove

(N − 1)E
[
1{S(1)∈IN}

∫ ∞
S(1)

exp(−σα
√
d(z − S(1)))gd(z)dz

]
→ 0.

We will in fact show that

(N − 1)E
[
1{S(1)∈IN}

∫ ∞
S(1)

exp(−σα
√
d(z − S(1)))φ(z)dz

]
→ 0 (97)

and

(N − 1)E
[
1{S(1)∈IN}

∣∣∣∣∫ ∞
S(1)

exp(−σα
√
d(z − S(1))) (gd(z)− φ(z)) dz

∣∣∣∣]→ 0. (98)

• Proof of (97). Following the proof of Proposition 5, we see that (89) holds whenever
S(1) ∈ IN . Restricting to the event {S(1) ∈ IN} and taking expectations over S(1), we
get

(N − 1)E
[
1{S(1)∈IN}

∫ ∞
S(1)

exp(−σα
√
d(z − S(1)))φ(z)dz

]
≤ (N − 1)4

√
logN

σα
√
d

E
[
1{S(1)∈IN}Φ(S(1))

]
(1 + o(1)).

Since S(1) = o(d1/6), Corollary 1 implies that

Φ(S(1)) = Gd(S(1))(1 + oN,d(1)),

where the uniformity over x in the statement of the theorem implies that the implicit
constant is independent of S(1). Restricting to {S(1) ∈ IN} and taking expectations
again, noting that Gd(S(1)) is distributed as the minimum of N uniform random
variables on [0, 1], we see

E
[
1{S(1)∈IN}Φ(S(1))

]
= E

[
1{S(1)∈IN}Gd(S

(1))
]

(1 + o(1)) ≤ 1
N + 1(1 + o(1)). (99)

We conclude that

(N − 1)E
[
1{S(1)∈IN}

∫ ∞
S(1)

exp(−σα
√
d(z − S(1)))φ(z)dz

]
≤ 4
√

logN
σα
√
d

(1 + o(1))→ 0,

proving (97).
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• Proof of (98). Two applications of integration by parts give∫ ∞
S(1)

exp{−σα
√
d(z − S(1))}gd(z)dz = −Gd(S(1))

+
∫ ∞
S(1)

σα
√
d exp{−σα

√
d(z − S(1))}Gd(z)dz

and∫ ∞
S(1)

exp{−σα
√
d(z − S(1))}φ(z)dz = −Φ(S(1))

+
∫ ∞
S(1)

σα
√
d exp{−σα

√
d(z − S(1))}Φ(z)dz.

It follows that∣∣∣∣∫ ∞
S(1)

exp(−σα
√
d(z − S(1))) (gd(z)− φ(z)) dz

∣∣∣∣
≤
∣∣∣Φ(S(1))−Gd(S(1))

∣∣∣+ ∣∣∣∣∫ ∞
S(1)

σα
√
d exp{−σα

√
d(z − S(1))}(Gd(z)− Φ(z))dz

∣∣∣∣ .
We now deal with each of these terms separately. On the event {S(1) ∈ IN}, we know
Φ(S(1)) = Gd(S(1))(1 + oN,d(1)) so we have∣∣∣Φ(S(1))−Gd(S(1))

∣∣∣ ≤ oN,d(1)Gd(S(1))

and so by restricting to {S(1) ∈ IN} and taking expectations

(N−1)E
(
1{S(1)∈IN}

∣∣∣Φ(S(1))−Gd(S(1))
∣∣∣) ≤ (N−1)·o(1)E

(
1{S(1)∈IN}Gd(S

(1))
)
→ 0.

along the same lines as (99).
We split the second term as an integral from S(1) to 0 and an integral from 0 to ∞
and we write:∣∣∣∣∫ ∞

S(1)
σα
√
d exp{−σα

√
d(z − S(1))}(Gd(z)− Φ(z))dz

∣∣∣∣ ≤ A1 +A2

with

A1 =
∫ 0

S(1)
σα
√
d exp{−σα

√
d(z − S(1))} |Gd(z)− Φ(z)| dz

A2 =
∫ ∞

0
σα
√
d exp{−σα

√
d(z − S(1))}dz.

Again, we bound each term individually. For A2, assuming that S(1) ∈ IN we have the
bound

A2 = exp{σα
√
dS(1)} ≤ exp{−σα

√
d logN} ≤ exp{−σα(logN)2}
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for sufficiently large N, d with logN/d1/3 → ∞ and so (N − 1)E(1{S(1)∈IN}A2) → 0.
To bound A1, note that by Corollary 1

|Gd(z)− Φ(z)| ≤ oN,d(1)Φ(z)

for all z ∈ [S(1), 0] so long as S(1) ∈ IN , and hence under this assumption we can write

A1 ≤ oN,d(1)
∫ 0

S(1)
σα
√
d exp{−σα

√
d(z − S(1))}Φ(z)dz.

Changing the upper limit from 0 to ∞, which can only weaken the bound, and then
integrating by parts gives

≤ oN,d(1)
∫ ∞
S(1)

σα
√
d exp{−σα

√
d(z − S(1))}Φ(z)dz

≤ oN,d(1)
{

Φ(S(1)) +
∫ ∞
S(1)

exp{−σα
√
d(z − S(1))}φ(z)dz

}
.

We conclude that

(N − 1)E
(
1{S(1)∈IN}A1

)
≤ o(1)

{
(N − 1)E

(
1{S(1)∈IN}Φ(S(1))

)
+ (N − 1)E

(
1{S(1)∈IN}

∫ ∞
S(1)

exp{−σα
√
d(z − S(1))}φ(z)dz

)}
The former term tends to zero by (99) and the latter tends to zero by (97). We thus
see that (98) holds, completing the proof.

B.8.6 Proof of Example 4

Proof of Example 4 Recall that by (82): for all i = 1 . . . N ,

logwi = d

2 log
(4

3

)
−
∥∥∥zi − θ + x

2

∥∥∥2
+ 3

4‖zi −Ax− b‖
2.

We want to show that if zi ∼ qφ(·|x) = N (Ax + b, 2/3 Id), then logwi can be written
in the form of (37). For this purpose, denote 1 = (1, . . . , 1)T and observe that there
exists an orthogonal matrix U such that U

(
θ+x

2 −Ax− b
)

= λ1. We can then sample
zi ∼ N (Ax+ b, 2/3 Id) by setting zi = U−1yi +Ax+ b where yi ∼ N (0, 2/3 Id). With this
parameterization, (82) becomes

logwi = −
∥∥∥U−1yi +Ax+ b− θ + x

2

∥∥∥2
+ 3

4‖U
−1yi‖2 + const.

= −‖yi − λ1‖2 + 3
4‖yi‖

2 + const.

= −
d∑
j=1

{
(yij − λ)2 − 3

4y
2
ij

}
+ const.

70



Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders

where const. denotes a fixed constant which depends only on d, θ, A, b and x.
Let us now set ζij = (yij − λ)2 − 3y2

ij/4 and ξi,j = ζij − E (ζij). Since yi ∼ N (0, 2/3Id)
it follows that ξi,1, . . . , ξi,d are i.i.d. random variables with E (ξi,j) = 0. Now defining
σ2 = V(ξ1,1) <∞, we have that σ2 can be computed analytically by observing that

E(ζij) = E
(
(yij − λ)2

)
− E

(3
4y

2
ij

)
= 1

4E(y2
ij) + λ2 = 1

6 + λ2

from which we can deduce that

σ2 = E
(
[ζij − E(ζij)]2

)
= E

([1
4y

2
ij − 2λyij −

1
6

]2
)

= 1
16E(y4

ij) +
(

4λ2 − 1
12

)
E(y2

ij) + 1
36

= 1
18 + 8

3λ
2 <∞.

Hence, (37) holds by defining Si as in (38) (noting that the constant terms must match
since wi is normalised and so has expected value 1). In addition, we can also analytically
compute the quantity a defined in (39) by noting that

E (exp (−ξ1,1)) =
∫ ∞
−∞

exp
(
−
[1

4u
2 − 2λu− 1

6

])
· 1√

2π · 2
3

e−
3
4u

2 du

=
√

3
4 exp

(
λ2 + 1

6

)
so that

a = λ2 + 1
6 + 1

2 log
(3

4

)
.

Finally, we check that (A2) holds in the case where (θ, φ) = (θ?, φ?). For this choice of
parameters, λ = 0, hence σ is independent of d. Furthermore, ξi,j is clearly absolutely
continuous with respect to the Lebesgue measure, and the distribution of ξi,j is independent
of d. It follows that (A2)a holds using our previous observations.

To now check (A2)b, we let k ≥ 3. In that case, u 7→ |u|k is convex and for all real-valued
u1, u2 and u3, we have that:∣∣∣13u1 + 1

3u2 + 1
3u3

∣∣∣k ≤ ∣∣∣13 |u1|+
1
3 |u2|+

1
3 |u3|

∣∣∣k
≤ 1

3
(
|u1|k + |u2|k + |u3|k

)
so that, setting u1 = (yij − λ)2, u2 = −3

4y
2
ij and u3 = −E (ζij), it holds that

∣∣∣(yij − λ)2 − 3
4y

2
ij − E (ζij)

∣∣∣k ≤ 3k−1
(

(yij − λ)2k +
(3

4yij
)2k

+ |E (ζij) |k
)
.

Using a similar argument applied to (yij − λ)2k, we then deduce that∣∣∣(yij − λ)2 − 3
4y

2
ij − E (ζij)

∣∣∣k ≤ 3k−1
(

22k−1
(
y2k
ij + λ2k

)
+
(3

4yij
)2k

+ |E (ζij) |k
)
.
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Hence,

E
(
|ξi,1|k

)
= E

(∣∣∣(yij − λ)2 − 3
4y

2
ij − E (ζij)

∣∣∣k)
≤ 3k−1

(
22k−1

(
E(y2k

ij ) + λ2k
)

+ 32k

42kE(y2k
ij ) + |E (ζij) |k

)

≤ 3k−1
(

(22k−1 + 32k

42k ) · (2k − 1)!! · 2k

3k + 22k−1λ2k +
∣∣E (ζij)

∣∣k)

≤ 3k−1
(

(22k−1 + 32k

42k ) · 22k

3k · k! + 22k−1λ2k +
(1

6 + λ2
)k)

where we have used that the (2k)-th moment of a standard Gaussian random variable is
(2k − 1)!!. Finally, since λ = 0 in our case, we obtain that

E
(
|ξi,1|k

)
≤ k!Kk−2σ2

for some sufficiently large choice of K which is independent of d, and (A2) thus holds.

Remark 4 We have obtained that (A2) holds when (θ, φ) are equal to the optimal parameters.
If we now assume that x, θ and φ are initially drawn from Gaussian distributions with
bounded covariance matrices (like it is the case in Rainforth et al., 2018), we anticipate that
(A2) should approximately hold even for values of the parameters other than the optimal
choice. Notice indeed that in that case we inuitively expect

∥∥ θ+x
2 −Ax− b

∥∥ = O(
√
d) for most

values of x, θ and φ. It follows that we should expect λ = O(1) and σ = Θ(1) in practice as
d→∞, and so (A2) should approximately hold.

Appendix C. Futher Details Regarding Related Proof Techniques

As mentioned in Section 5, a number of our proof techniques differs significantly from/alter
parts of known proofs, which in some cases impacts the corresponding theoretical results.
Namely,

• Theorem 1. The proof of this result is based on the proof for the case α = 0 written
in the arxiv version of 5 Mar 2019 of (Rainforth et al., 2018, Theorem 1), which was
the latest version available to us. Nevertheless, and contrary to Rainforth et al. (2018),
we (i) use an explicit form for the remainder term in Taylor’s theorem rather than
the mean value form of the remainder, allowing us to get more precise control on
the magnitude of the remainder and its gradients, and (ii) we consequently rely on
Lemma 3, which is a non-immediate extension of (Rainforth et al., 2018, Lemma 1).
This significantly impacts the proof technique and as a result, the main difference
in terms of assumptions compared to (Rainforth et al., 2018, Theorem 1) is that,
for a given α ∈ [0, 1), we are requiring the eighth moments of w̃1−α

1,1 , ∂w̃1−α
1,1 /∂θ` and

∂w̃1−α
1,1 /∂φ`′ to be finite in Theorem 1, where (Rainforth et al., 2018, Theorem 1) asked

for the fourth moments to be finite with α = 0. In addition, we need to further assume
that there exists some N ∈ N? for which E((1/Ẑ1,N,α)4) <∞.
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• Proposition 5. The proof of this result mostly mirrors the proof written in (Snyder
et al., 2008, Section 4.a) which considers the case α = 0 and is used in the context of
particle filtering. The main difference is that we require an additional lemma (Lemma 6
of Appendix B.7.3) to provide us with a more precise concentration result for S(1).
This lemma will also have other uses in the rest of the paper. This does not result in
any change of assumptions compared to (Snyder et al., 2008, Section 4.a).

• Proposition 7. The proof of this result is arguably the one that required the most
alterations out of the three discussed here. It borrows some ideas from the proofs
written in the context of particle filtering in Li et al. (2005); Bengtsson et al. (2008);
Li et al. (2005), which all aimed at establishing that E(T (0)

N,d)→ 0 in the approximate
log-normal case under some conditions on N and d. However, we are significantly more
thorough in our control of the error terms, which we bound precisely with the aid of
two results from Saulis and Statulevičius (2000) and Lemma 9, rather than simply
working under convergence in probability.

In terms of assumptions, it is closest to Li et al. (2005), except for the fact that our
result relies on a Bernstein condition while Li et al. (2005) uses Cramer’s conditions.
Both are in fact equivalent in the i.i.d. setting, and we choose to use Bernstein
condition as we believe it might make it easier to generalize our result beyond the i.i.d.
case using the results from Saulis and Statulevičius (2000) recalled in Appendix B.8.1.

Appendix D. Additional Numerical Experiments and Derivation Details

D.1 Gaussian Example from Section 6.1

Figure 13 empirically confirms that the asymptotic regime predicted by Theorem 3 does not
reflect what is happening in reality in the variational gap ∆(α)

N,d(θ, φ;x) when the dimension
d increases, N is small and the distribution of the weight is log-normal.

Note that we only plotted the variational gap ∆(α)
N,d(θ, φ;x) for the cases d = {10, 100} in

the figure above. This is due to the fact that when d = 1000, computing γ2
α the 1/N term

returns an overflow, further illustrating the limitations of the approach from Theorem 3 in
the specific setting considered here. Note also that since the variance term is exponential
in (1− α)2d, increasing α does play a role in decreasing γ2

α so that the asymptotic regime
predicted by Theorem 3 applies in lower dimensions (e.g. d = 10 with α = 0.5).

D.2 Linear Gaussian Example from Section 6.2

D.2.1 Empirical Experiments for Theorem 3 in the Context of Section 6.2

Figure 15 empirically confirms that we need an unpractical amount of samples N for the
asymptotic regime predicted by Theorem 3 to capture the behavior of the variational gap as
d increases when σperturb = 0. Note that similar plots and conclusions can be obtained for
σperturb ∈ {0.01, 0.5}. Those are not given here for the sake of conciseness.
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Figure 13: Plotted in blue is the MC estimate of the variational gap ∆(α)
N,d(θ, φ;x) (averaged

over 1000 MC samples) for the toy example described in Section 6.1 as a function
of N , for varying values of (α, d) and with (θ, φ) = (0 · ud,ud) so that Bd =

√
d.

Plotted in purple are curves of the form (42) with tailored values of c1.

Figure 14: Evolution of B2
d/d during the training of the φ parameter for the toy example

described in Section 6.1.

D.2.2 Additional Experimental Results for Section 6.2

We provide some additional results in the context of Section 6.2 regarding the signal-to-noise
ratio (SNR) in the doubly-reparameterized case and the Mean Squared Error (MSE) for the
VR-IWAE bound and its θ, φ gradients.

• SNR in the doubly-reparameterized case. In line with Tucker et al. (2019), we
observe in Figure 16 that using the doubly-reparameterized gradient estimator for φ
increases the SNR when α = 0. We in fact see that the SNR is increased for all values

74



Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders

Figure 15: Plotted in blue is the MC estimate of the VR-IWAE bound `(α)
N,d(θ, φ;x) (averaged

over 1000 MC samples) for the linear Gaussian example described in Section 6.2
as a function of N , for varying values of (α, d). Plotted in purple are curves of
the form (45) with tailored values of c1.

of α, extending the conclusions from Tucker et al. (2019) to α ∈ [0, 1) in the example
considered here.

However, as we get further away from the optimum (σperturb = 0.5) and/or increase
the dimension (d = 1000), we observe that it still remains challenging to obtain an
increasing SNR for the φ gradients for small values of α, even when using doubly-
reparameterized gradient estimators.

• MSE for the VR-IWAE bound and its θ, φ gradients. We observe on Figures 17
and 18 that while increasing α does not lower the MSE of the VR-IWAE estimator

1
1− α log

 1
N

N∑
j=1

wθ,φ(Zj ;x)1−α
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Figure 16: Plotted is the SNR of the inference network (φ) gradients in the doubly-
reparameterized case (computed over 1000 MC samples) for the linear Gaussian
example in Section 6.2 as a function of N , for varying values of (α, d), a randomly
selected datapoint x and 10 different initializations of the parameters (θ, φ).

for log-likelihood estimation, it can be useful in lowering the MSE of its θ gradients

1
1− α∇θ log

 1
N

N∑
j=1

wθ,φ(Zj ;x)1−α


compared to the θ gradients of the true log-likelihood ∇θ`d(θ;x).
In the low perturbation regime (σperturb = 0.01) and in medium to high dimensions
(d = 100, 1000), we indeed see in Figure 17 that every tested value of α > 0 achieves
lower θ gradient MSE than α = 0 for low values of N . As we increase to N = 29, the
value of α achieving the lowest MSE is α = 0.3 for d = 100, and α = 0.8 for d = 1000.
This sheds light on a bias-variance tradeoff between low bias at α = 0 and low variance
at α = 1, and is in line with the findings of Theorem 3.
In the high perturbation regime (σperturb = 0.5), we see in Figure 17 that the choice of
α appears to make less of a difference, especially when the dimension d is high. This
suggests that bias reduction may be more important when the inference distribution
qφ(z|x) is far from the optimum.

D.3 Variational Auto-encoder from Section 6.3

We present additional results for the VAE example discussed in Section 6.3.
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Figure 17: Plotted is the MSE of the generative network (θ) gradients (computed over 1000
MC samples) compared to the log-likelihood gradients for the linear Gaussian
example described in Section 6.2 as a function of N , for varying values of (α, d),
a randomly selected datapoint x and 10 different initializations of the parameters
(θ, φ).

Figure 18: Plotted is the MSE of the VR-IWAE estimate (computed over 1000 MC samples)
compared to the log-likelihood gradients for the linear Gaussian example described
in Section 6.2 as a function of N , for varying values of (α, d), a randomly selected
datapoint x and 10 different initializations of the parameters (θ, φ).
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D.3.1 Complementary Plots for the VR-IWAE Bound

Figures 19 and 20 provide additional plots to Figures 8 and 9 reinforcing the conclusions
drawn in Section 6.3.

Figure 19: Plotted in blue is the MC estimate of the VR-IWAE bound `(α)
N,d(θ, φ;x) (averaged

over 100 MC samples) for the VAE in Section 6.3, for a randomly selected
datapoint x in the testing set, randomly generated model parameters (θ, φ) and
varying values of (α, d). Plotted in purple are curves of the form (49) with
tailored values of c1.

D.3.2 Impact of α and of M on Empirical Performances

We discuss here the impact of α and of M on the empirical performances of the VR-IWAE
bound metholodogy in the reparameterized and doubly-reparameterized cases.

• Impact of α on the empirical performances. We investigate how the choice of α
impacts the Negative Log Likelihood (NLL) after training the VAE with the VR-IWAE

78



Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders

Figure 20: Plotted in blue is the MC estimate of the VR-IWAE bound `(α)
N,d(θ, φ;x) (averaged

over 100 MC samples) for the VAE in Section 6.3, for a randomly selected
datapoint x in the testing set, randomly generated model parameters (θ, φ) and
varying values of (α, d). Plotted in green are curves of the form (50) with tailored
values of c2.

bound. The NLL can indeed be used to evaluate the empirical performances of VAEs
(since a lower NLL corresponds to a higher likelihood of the data under the VAE model,
which indicates better training of the generative network θ). Furthermore, although
the NLL is intractable, following Burda et al. (2016) it can be approximated using the
negative IWAE bound with N = 5000.
We plot in Figure 21 the NLL estimate on the MNIST test set as a function of α after
training VAEs on the MNIST training set using either the reparameterized (“rep”) or
the doubly-reparameterized (“drep”) gradient estimators of the VR-IWAE objective
with N = 10, 100 and d = 50. Here, all the models are trained for 1000 epochs using
the Adam optimizer with learning rate 1e− 3 and batch size 100.
We observe that the doubly-reparameterized gradient estimator generally achieves
better NLL results than the reparameterized one when α is fixed. In addition, for both
cases the value of α achieving the best NLL performance lies in the middle of (0, 1),
around α = 0.5. In line with Theorem 3, this suggests that there is a bias-variance
tradeoff to consider when choosing α, and that the best setting can lie between the
standard IWAE (α = 0, low bias) and ELBO (α = 1, low variance) objectives, with
the optimal choice of α being dependent on the data set, model architecture, as well
as the stochastic gradient descent procedure used for training.

• Impact of M on the empirical performances. We investigate how the choice of M
and N affects the training of VAE when M×N is fixed in the VR-IWAE bound method-
ology. We plot in Figure 22 the NLL on the MNIST test set after training the VAE on
the MNIST training set for 1000 epochs, with M ×N = 100, d = 50 and α ∈ {0, 0.2}.
We observe a bias-variance tradeoff that is similar to the analysis above for the impact
of α. Indeed, the cases M = 100 and M = 1 have a particular meaning in the plots
of Figure 22: M = 100 corresponds to the ELBO with maximum computational
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Figure 21: Plotted is the Negative Log Likelihood (NLL) estimate on the test set of the
MNIST data set as described in Section 6.3 as a function of α, after training on
the train set for 1000 epochs with N ∈ {10, 100}. The error bars are computed
over 3 trials with different network initialisations and seeds during training.

Figure 22: Plotted is the Negative Log Likelihood (NLL) estimate on the test set of the
MNIST data set as described in Section 6.3 as a function of M while fixing
M × N = 100, after training on the train set for 1000 epochs with α = 0, 0.2.
The error bars are computed over 3 trials with different network initialisations
and seeds during training.

budget for M (i.e. α = 1, low variance), while M = 1 corresponds to the VR-IWAE
bound with maximum computational budget for N (i.e. low bias, with the lowest
bias being achieved for α = 0). Here, the best value of test NLL is obtained for
α = 0.2,M = 4, N = 25 among our tested combinations. Note that one potential
advantage of tuning α instead of M and N is that α resides on a one-dimensional
continuous interval, whereas M and N are integer values and so their choice is more
limited (that is, they can be more difficult to tune for a given computational budget).

80



Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders

References

Thomas Bengtsson, Peter Bickel, and Bo Li. Curse-of-dimensionality revisited: Collapse
of the particle filter in very large scale systems. In Probability and Statistics: Essays in
honor of David A. Freedman, pages 316–334. Institute of Mathematical Statistics, 2008.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017. doi:
10.1080/01621459.2017.1285773.

Thang D. Bui, Daniel Hernández-Lobato, José Miguel Hernández-Lobato, and Yingzhen Li.
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