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Abstract

We study the Constrained Convex Markov Decision Process (MDP), where the goal is to
minimize a convex functional of the visitation measure, subject to a convex constraint.
Designing algorithms for a constrained convex MDP faces several challenges, including (1)
handling the large state space, (2) managing the exploration/exploitation tradeoff, and
(3) solving the constrained optimization where the objective and the constraint are both
nonlinear functions of the visitation measure. In this work, we present a model-based
algorithm, Variational Primal-Dual Policy Optimization (VPDPO), in which Lagrangian
and Fenchel duality are implemented to reformulate the original constrained problem into
an unconstrained primal-dual optimization. The primal variables are updated by model-
based value iteration following the principle of Optimism in the Face of Uncertainty (OFU),
while the dual variables are updated by gradient ascent. Moreover, by embedding the
visitation measure into a finite-dimensional space, we can handle large state spaces by
incorporating function approximation. Two notable examples are (1) Kernelized Nonlinear
Regulators and (2) Low-rank MDPs. We prove that with an optimistic planning oracle, our
algorithm achieves sublinear regret and constraint violation in both cases and can attain
the globally optimal policy of the original constrained problem.
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1. Introduction

In recent years, constrained reinforcement learning (RL) has attracted greater research in-
terest. In contrast to unconstrained RL, in which an agent can freely learn to maximize its
cumulative reward or minimize its cost by interacting with an unknown environment, we
face learning problems with various kinds of constraints in many real-world applications.
For example, in autonomous driving, we want to minimize the time cost while avoiding
speeding or colliding with other cars (Garcıa and Fernández, 2015). Other applications in-
clude cost-constrained RL in medical applications and business restrictions for tax collection
optimization (Abe et al., 2010), in which the total budget is restricted.

However, existing works on Markov decision process (MDP) with constraints are still
limited. Currently, most works consider the constrained MDP with both the objectives
and constraints being linear functionals of visitation measures (Efroni et al., 2020; Ding
et al., 2021). However, in many complex scenarios, we encounter problems with certain
nonlinear structures. For example, in apprenticeship learning the agent aims to simulate
the performance of an expert in a demonstrated task (Abbeel and Ng, 2004b). It is difficult
to formulate an explicit reward function, and the learning goal is given by the `2-norm
distance between the visitation measure of the agent and the expert. In multi-objective
MDP, we have to consider nonlinear interaction between different objectives (Wu et al.,
2021; Yu et al., 2021). Other examples include cautious MDP (Zhang et al., 2020a) and
general utility MDP (Zhang et al., 2020b).

In this work, we introduce the Constrained Convex Markov Decision Process (C2MDP),
where we consider a constrained convex optimization over the space of visitation measures.
The agent manipulates her policy over the space of visitation to minimize the objective
while fulfilling the constraints. Compared to previous works, our model allows objectives
and constraints to be nonlinear in visitation measure, thus significantly extending beyond
Constrained MDP (Efroni et al., 2020; Ding et al., 2021). Moreover, our model covers inter-
esting examples such as convex MDP (Zahavy et al., 2021), general utility RL (Zhang et al.,
2020b), and apprenticeship learning (Abbeel and Ng, 2004b) as special cases. Challenges
in designing an efficient online algorithm for constrained convex MDP are threefold:

(i) Most existing theoretical convergence guarantees for convex MDP apply only to the
tabular case (Zhang et al., 2020b; Efroni et al., 2020; Zahavy et al., 2021), where the
visitation measure is a vector of dimension O(H|S||A|), making the convex MDP a
convex optimization problem. However, when facing a continuous state space, the
visitation measure becomes a general distribution on the state-action space. Due to
the curse of dimensionality, algorithms designed for tabular MDP fail to tackle the
problem.

(ii) Highly different from simple constrained MDP, which only imposes a linear constraint
in the value function, the objective and constraint of C2MDP can be nonlinear func-
tionals of the visitation measure. Without knowing further structure, finding optimal
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solutions for such problems is much harder than Constrained MDP, which is equivalent
to solving a linear programming problem (Efroni et al., 2020).

(iii) In a C2MDP, the transition of the environment is unknown, and can only be learned
through the transition through interacting with the environment. With limited infor-
mation, designing an efficient online exploration strategy is hard.

With these coupled challenges, we ask the following question:

Can we find the globally optimal policy of constrained convex MDP in online learning?

In this work, we give an affirmative answer to this question.

• To handle (i), we incorporate function approximation and formulate the optimization
in the embedded space of the visitation measures. In particular, we consider the fea-
ture map in function approximation and its expectation under the visitation measure,
which is known as the kernel embedding of visitation measure (Hofmann et al., 2008;
Muandet et al., 2016). We further consider the optimization with the kernel embed-
ding of the visitation being the decision variables, which motivates us to implement
online optimization techniques for solving C2MDP. Such a formulation recovers the
tabular setting as a special case when using the canonical embedding.

• To handle (ii), we use Lagrangian duality to transform the constrained problem to
an unconstrained minimax optimization problem. In presence of Slater’s condition,
it is guaranteed that the original minimization shares the same optimal value with
the unconstrained one. Moreover, to handle nonlinearity in the objective and the
constraint, we apply Fenchel duality to introduce a linear structure. Combining the
above two types of duality, we obtain a primal-dual optimization problem with a linear
dependency on the kernel embedding. This allows us to construct a linear reward and
adopt techniques of previous works in model-based value iteration, such as Kakade
et al. (2020); Ayoub et al. (2020).

• To handle (iii), we apply the principle of Optimism in the Face of Uncertainty (OFU)
(Jin et al., 2020; Yang et al., 2020) by an optimistic planning oracle (Jin et al., 2021;
Kakade et al., 2020; Ayoub et al., 2020) which behaves as if the model parameters
assume their best possible values in accordance to the observations so far.

With the above techniques, our algorithm is provably sample-efficient. In specific, we
prove that our algorithm achieves O(

√
T ) in both the regret and the constraint violation,

where T is the number of the sampling episodes. To the best of our knowledge, our algorithm
is the first provably sample-efficient algorithm for the constrained nonlinear optimization
over visitation measures. As special cases, our method can be widely applied to multi-
objective MDP, and apprenticeship learning, and lead to efficient algorithms.

1.1 Related Works

Optimization over occupancy measures/Convex MDP. Several early works (Tewari
and Bartlett, 2007; Chen and Wang, 2016; Wang, 2017, 2020) studied tabular MDP via
linear programming reformulation. Zahavy et al. (2021) studied convex MDP via Fenchel
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duality. Zhang et al. (2020a,b,b) studied for convex optimization over occupancy measures.
However, while all these methods are successful in tabular MDP, they cannot (i) avoid the
curse of dimensions in large state space MDP, and (ii) handle constraints.
Constrained MDP. Our work is a generalization of the constrained MDP. Efroni et al.
(2020); Yu et al. (2021); Qiu et al. (2020); Brantley et al. (2021) studied tabular constrained
MDP. Ding et al. (2021) studied safe reinforcement learning under function approximation
setting under a linear mixture MDP model and using upper confidence bound (UCB) al-
gorithm for exploration. Wu et al. (2021) further provided a general algorithm for Multi-
objective MDP with general constraints and objective relies on multiple value functions. All
of these methods assume that a given reward exists and explores the environment following
the principle of optimism, and achieves great success by providing sublinear regret and con-
straint violation. Vaswani et al. (2022) provides a zero-constrained algorithm and provide
a lower bound under such scenario. However, when there is no given reward function, these
methods are no longer applicable.
Provably efficient online RL. Our work is closely related to a line of provably efficient
online RL algorithms on Low-rank MDPs (Agarwal et al., 2020; Uehara et al., 2022) and
kernelized nonlinear regulator (Kakade et al., 2020; Mania et al., 2020), where efficient
exploration of the agent is obtained by choosing an optimistic model in the confidence
set. However, these results are only designed for unconstrained problems that are linearly
dependent on the occupancy measure.

1.2 Notations

We denote by [a : b] the set of integers between a and b, i.e., [a : b] = {i ∈ Z | a ≤ i ≤ b},
and write [n] = [1 : n]. We denote by x = (xh)h∈[H] the column vector obtained by
concatenating the elements of {xh}h∈[H], i.e., x = (x1; · · · ;xH). We write a · b as the inner
product of two finite dimensional vectors, and 〈f, g〉H as the inner product of two functions
f and g in the reproducing kernel Hilbert space (RKHS) H. We also denote by ‖ · ‖2 the
`2-norm in Euclidean space, and Bd the the unit ball in Rd, i.e., {x ∈ Rd : ‖x‖2 ≤ 1}. The
set of probability distribution over a space X is denoted by ∆(X ). We define P(s′ | s, a) as
the probability for the agent transiting to state s′ from s when taking action a.

2. Background

In this section, we briefly introduce the concepts of reinforcement learning, Constrained
Convex MDPs, Low-rank MDPs, and Kernalized nonlinear Regulator (KNR).

2.1 MDP Setting

We consider an episodic Markov decision process problem (S,A, H, c) , where S ⊂ Rd is the
state space embedded in the Euclidean space, A is a (possibly continuous) action space, H
is the horizon, and c = {ch}Hh=1 is a collection of cost functions where ch : S × A → R is
the cost of stage h. In each episode, we consider an agent with policy π = {πh}Hh=1, where
πh : S → ∆(A). At the stage h, the agent takes an action ah ∈ A according to the policy
πh(· | sh). The state then transits to sh+1 with probability Ph(sh+1 | sh, ah) according to the
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underlying transition rule. Since the choice of the initial state does not add complexity to
the problem, for simplicity, we assume that the initial state is fixed, i.e., s1 = s.

We introduce the concepts of action-state value function and state value function from
reinforcement learning. The action-state value function Qπh : S ×A → R is defined as

Qπh(s, a) = Eπ
[ H∑
i=h

ci(si, ai)

∣∣∣∣ sh = s, ah = a

]
, ∀(s, a, h) ∈ S ×A× [H].

Correspondingly, the action-value function V π
h : S → R is defined as

V π
h (s) = Eπ

[ H∑
i=h

ci(si, ai)

∣∣∣∣ sh = s

]
, ∀(s, h) ∈ S × [H]. (1)

Here the expectation Eπ[·] is taken over the trajectory {(sh, ah)}h∈[H] induced by {πh}h∈[H]

and the underlying transition. For notation simplicity, we also write

Phf(sh, ah) = Es′∼P(· | sh,ah)[f(s′)]

for any integrable f : S → R and conditional probability Ph(· | sh, ah).

2.2 Constrained Convex MDP (C2MDP)

We generalize the problem of convex MDP (Zahavy et al., 2021), which considers a non-
constrained convex optimization problem with the occupancy measure dπ = (dπ,h(s, a))(s,a,h)∈S×A×[H]

as the variable. The agent manipulates the occupancy measure by properly adjusting its
policy. The aim is to find the optimal policy that minimizes the objective function. A
tabular C2MDP usually takes the form of

min
π∈∆(A |S,H)

f
(
(dπ,h)h∈[H]

)
s.t. dπ,h(s, a) = Eπ

[
1(sh,ah)=(s,a)

]
, (2)

g(dπ,h(s, a)) ≤ 0,

where f, g : R|S||A|H → R are both convex functions.
In the tabular MDP, the set of all x induced by the agent’s policy is represented by a
polytope represented by O(|S||A|) linear constraints (Efroni et al., 2020; Zahavy et al.,
2021). However, in the continuous state space case, due to the curse of dimensionality
and the shortage of memory, such an LP formulation is generally impossible. Therefore,
we incorporate function approximation to handle the large state space by embedding the
information of the state-action pair with a finite-dimensional feature map ψ : S ×A → Rd.
Such a method is widely used in RL literature (Yang et al., 2020; Jin et al., 2020; Uehara
et al., 2022; Kakade et al., 2020). To describe the visitation of the agent, we apply kernel
embedding of probability distribution to the visitation measure (Muandet et al., 2017;
Zahavy et al., 2021; Efroni et al., 2020) . By embedding the probability distribution induced
by the agent’s policy π on S × A into finite dimension linear space, the objective and
constraints related to the distribution can be reformulated into a function for the kernel
embedding.
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Definition 1 (Kernel Embedding) For a MDP with kernel feature mapping {ψh : S ×
A → Rd}h∈[H], we define its kernel embedding as

Ψπ =
(
Ψπ
h = Eπ[ψh(sh, ah)]

)
h∈[H]

, (3)

where the expectation is taken under the trajectory {(sh, ah)}h∈[H] induced by policy π and
the underlying transition.

The kernel embedding in (3) represents the agent’s visitation distribution on every state-
action pair under the policy π. The kernel method is also frequently used in existing MDP
literature, as it can be used to incorporate function approximation when designing learning
targets. For example, The reward function is often regarded as a linear function of a
kernelized feature mapping in RL literature (Yang et al., 2020; Jin et al., 2020; Ding et al.,
2021; Wu et al., 2021). When the reward function is known, we can also take the reward
function as the kernel feature (Kakade et al., 2020; Uehara et al., 2022). In an MDP with an
underlying kernelized structure, we can evaluate the agent’s policy by its initial state value
function V π

1 = Eπ[
∑H

h=1 ch(sh, ah)] . The function V π
1 can be reformulated to V π

1 = θ ·Ψπ

under the linear function approximation case (Yang et al., 2020; Jin et al., 2020), which is
a linear mapping with respect to the kernel embedding. In the general case, when ψh is not
given, we can learn it through a supervised learning oracle or a model-free exploration, and
subsequently employ it in our downstream algorithms, e.g. see Algorithm 1 in Modi et al.
(2022). Thus, in an MDP-related optimization, it is reasonable to use the kernel embedding
as a measure of how a state-action pair (s, a) contributes to the objective. To this end, we
aim to solve the following optimization problem defined as a constrained convex MDP,

min
π∈∆(A |S,H)

f
(
Ψπ
)

s.t. g(Ψπ) ≤ 0. (4)

To measure the efficiency of policies in the first T episodes, we introduce the following
performance measures,

Regret(T ) = T
(
f
(
Ψπ̂
)
− f

(
Ψπ∗

))
, Violation(T ) = Tg

(
Ψπ̂
)
. (5)

Here Ψπ̂ = 1/T
∑T

t=1 Ψπk is the average kernel embedding corresponding to the mixed
policy π̂ = {π̂h}Hh=1 of the first episode. By mixed policy we mean the agent rolls out and
performs a random policy of index from 1 to T in equal probability at the beginning state.
The performance measures in (5) are widely adopted by previous works in RL where a
convex objective function is concerned (see, e.g., Ding et al. (2021); Brantley et al. (2021);
Yu et al. (2021); Wu et al. (2021)).
We remark that our model is more general than the standard RL problem. To see this, we
can reduce the C2MDP to standard RL by setting ψh(sh, ah) = ch(sh, ah) , f as the linear
mapping with a H-dimension one hot feature vector, and removing the constraint.

Example 1 (Multi-objective MDP, (Yu et al., 2021; Wu et al., 2021)) A Multi-objective
MDP considers the following problem,

min
π∈∆(A|S,H)

h1(V π) s.t. h2(V π) ≤ 0, (6)
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where

V π =

(
Eπ
[ H∑
h=1

cih(sh, ah)

])
i∈[I]

is the initial state value function vector, and h1, h2 : RI → R are 1-Lipschitz convex func-
tions. If we use linear function approximation for the cost function, i.e.

cih(s, a) = ψ(s, a) · θih, ∀i ∈ [I]

the Multi-objective MDP turns into a constrained convex MDP,

min
π∈∆(A|S,H)

h1

(
Ξ ·Ψπ

)
s.t. h2

(
Ξ ·Ψπ

)
≤ 0.

Here Ξ = (θ1,>
1 , · · · θ1,>

H ; · · · θI,>1 , · · · , θI,>H ) is a matrix formed by concatenating by {θih}
h∈[H]
i∈[I] .

Note that when I = 1 and h1(x) = h2(s) = x, Multi-objective MDP reduces to the con-
strained MDP in Ding et al. (2021) and Efroni et al. (2020). We also claim that our model
is more general than the one in (Yu et al., 2021; Wu et al., 2021), since they assume h1, h2

to be monotone in all components and h2 can only take the form d(x,W), with W being a
convex set.

Example 2 (Feasibility/Apprenticeship Learning, (Abbeel and Ng, 2004a; Syed et al., 2008; Miryoosefi et al., 2019; Zahavy et al., 2020))
Feasibility learning considers minimizing the distance between the kernel embedding of the
probability induced by the performance policy and a convex set W, i.e.,

min
π∈∆(A|S,H)

dist(Ψπ,W). (7)

Here dist can be chosen as any sort of discrepancy measure.When W reduces to a singleton
{Ψ = (EP [ψ(sh, ah)])h∈[H]}, i.e. the kernel embedding of a given probability distribution
{Ph}h∈[H], the optimization reduced to apprenticeship learning.

2.3 Examples of the Underlying Transition Models

Recall that C2MDP is defined for any decision problem with a given linear kernel in its
objective. With additional assumptions on the underlying transition, we can define dif-
ferent algorithms for solving it. The transition models we discuss here are (1) Kernelized
Nonlinear Regulator (KNR) setting and (2) Low-rank MDP setting, which cannot be solved
by algorithms design for tabular setting.

Kernelized Nonlinear Regulator. The Kernelized Nonlinear Regulator setting gener-
alizes the linear quadratic regulator (LQR) setting (Kakade et al., 2020) and is especially
helpful in continuous control problems. A KNR is an MDP with the following transition
model,

sh+1 = W ∗φ(sh, ah) + ε, ε ∼ N
(
0, σ2I

)
(8)

for all h ∈ [H], where φ : S × A → H is a given kernel feature mapping of a d-dimension
euclidean space Rd (Kakade et al., 2020; Mania et al., 2020; Song and Sun, 2021). The
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transition parameterization W ∗ characterizes the mapping from the feature φ(sh, ah) to the
expectation of the next state sh+1. We also remark that the KNR is a general model in the
sense that both the state space S and the action space A can be continuous.

Low-rank MDP. In a Low-rank MDP(Uehara and Sun, 2021; Agarwal et al., 2020; Modi
et al., 2022), the underlying transition takes the form

P∗h(sh+1 | sh, ah) = 〈φ∗h(sh, ah), µ∗h(sh+1)〉 (9)

for all h ∈ [H]. Here the vector µh = (µ
(1)
h , . . . , µ

(d)
h ) is the concatenation of d unknown

(signed) measures over S. Unlike KNR , both the feature mapping φ∗h and the measure
µ∗h in Low-rank MDP are unknown to the agent and need to be learned. For Low-rank
MDP, it is natural to assume the agent access to two function classes Θ ⊂ S ×A → Rd and
Υ ⊂ S → Rd for candidate mappings for learning the true embeddings (µ∗h, φ

∗
h). Thus we

make the following assumption,

Assumption 2 (Realizability) The model class (Θ,Υ) with {µ∗h}h∈[H] ⊂ Θ and {φ∗h}h∈[H] ⊂
Υ is known, where both Θ and Υ are finite sets.

Uehara et al. (2022) show that the case of finite function class can be easily generalized to
infinite case. When feature φ∗ is known, such a setting degerates to the linear MDP Yang
and Wang (2019, 2020) Without loss of generality, we also make the following standard
assumptions (Kakade et al., 2020; Uehara et al., 2022). The choice of the upper bound will
not add complexity to our analysis.

Assumption 3 We have the following assumptions.

1. For the KNR case, we assume that the feature φ of the underlying RKHS is uniformly
bounded, i.e., ‖φ(s, a)‖2 ≤ 1 for all (s, a) ∈ S×A. For simplicity, we also assume that
the transition parametrization satisfies ‖W ∗‖2 ≤ 1, here ‖ · ‖2 is the matrix 2-norm.

2. For the Low-rank MDPs, we assume that ‖φh(s, a)‖2 ≤ 1 for all (s, a) ∈ S × A, and
for any function g : S → [0, 1] and µ ∈ Υ, ‖

∫
S µh(s)g(s)dν‖2 ≤

√
d, here ν(·) is a

given abstract measure defined on the state space S.

3. For the kernel vectors {ψh}h∈[H] in the objective and constraint, we assume ‖ψh(s, a)‖2 ≤
B.

4. We assume that the objective f and the constraint g in (4) are convex and 1-Lipschitz,
which further implies that {‖∂f‖2, ‖∂g‖2} ≤ 1.

For both cases mentioned above, the underlying transition probability is unknown, and can
only be estimated through stochastic interactions with the environment. Thus, directly
representing the set of all kernel embedding, i.e., V = {Ψπ : any π ∈ ∆(A |S, H)} is impos-
sible, which makes (4) a challenging problem. As a consequence, we cannot simply regard
(4) as a constrained optimization problem. Instead, we have to learn the optimal policy
by collecting data via interacting the environment. Moreover, with the general constraint
g(Ψπ) ≤ 0 on the distribution, the simple dual optimization method for set constraint (Yu
et al., 2021) becomes infeasible. To address these challenges, we introduce a primal-dual
algorithm in the subsequent section.
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3. Main Algorithm

In this section, we provide a primal-dual algorithm Variational Primal-Dual Policy Optimization
(VPDPO) for (4), which achieves sublinear in both regret and constraint violation.

3.1 Reformulation: Double Duality

In this subsection, we reformulate (4) as an unconstrained convex-concave problem, so that
we can utilize the standard MDP method to solve it. Doing so will enable us to design a
provably efficient algorithm.
The convex problem (4) is nontrivial only when its feasible set is none-empty. With the set
of all reachable kernel embedding V, we assume that V ∩ {g(Ψπ) ≤ 0} is not empty, so that
(4) is well-posed. To verify the convexity of feasible set (4), we first present the following
proposition.

Proposition 4 (Convex Problem) The generalized optimization problem in (4) is a con-
vex problem.

Proof See Appendix E.3 for detailed proof.

Next, we make the following assumption on g, which is standard in convex optimization
and constrained convex MDP literature (Zahavy et al. (2021), Efroni et al. (2020), Ding
et al. (2021)).

Assumption 5 (Slater Point) There exists a policy π′, such that (4) holds with strict
inequality, i.e., g(Ψπ′) < 0.

Note that in Assumption 5, we do not require a pre-knowledge for π′. From an optimization
perspective, a problem-dependent Slater condition is a measure of the size of the feasible
region and determines the difficulty of solving a constrained optimization. The absence of
such a condition may result in the lack of constraint qualification and cause failure in even
simple optimization problems, for example, see Hijazi and Liberti (2016). With Assumption
5, we can reformulate (4) to a standard Lagrangian optimization problem (Corollary 28.1.1,
Rockafellar (1970)). The Lagrangian function of (4) takes the form

min
Ψ∈V

max
γ≥0

(
f(Ψ) + γ · g(Ψ)

)
. (10)

Slater’s condition not only justifies the application of the Lagrangian duality but also
allows us to bound the optimal value of the Lagrangian dual variable γ∗ from above, which
will further be helpful for our algorithm for the gradient update of the dual variables.

Lemma 6 (Bounded Lagrangian Dual Variable) With Slater’s condition in (5) , we
have

0 ≤ γ∗ ≤ Γ := −
(
f(Ψπ′)− f(Ψπ∗)

)
/g(Ψπ′). (11)
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Proof See Appendix E for detailed proof.

Lemma 6 provides an upper bound for the optimal dual variable γ∗. In order to find γ∗, we
only need to focus on the interval [0,Γ]. In practice, we only need to know an upper bound
of Γ, which can be easily achieved through linear search.

Since f , g are 1-Lipschitz continuous and satisfy the closed-proper function condition,
we have

f(Ψπ) = max
α∈BdH

(
α>Ψπ − f∗(α)

)
, γg(Ψπ) = max

β/γ∈BdH

(
β>Ψπ − γ · g∗(β/γ)

)
, (12)

for all γ ≥ 0 (Corollary 13.3.3, Rockafellar (1970)). Here f∗ and g∗ are the Fenchel duals
of f and g, respectively. With these relations, we linearize the objective functions in (10)
by introducing the variables α, β,

min
Ψπ∈V

max
γ≥0,α,β/γ∈BdH

D(α, β, γ, π) =
(
(α+ β)>Ψπ − f∗(α)− γ · g∗(β/γ)

)
. (13)

We now reformulate the originally non-linear minimization problem into a min-max problem
that is linear in Ψ and concave in (α, β, γ). Note that V is a closed convex set due to our
setting and Assumption 3. Meanwhile, the feasible set for the dual variables (α, β, γ) is
a convex compact set. Therefore, by the minimax theorem (Rockafellar, 1970), we can
reformulate (13) to

max
γ≥0,α,β/γ∈BdH

min
Ψπ∈V

D(α, β, γ, π) =
(
(α+ β)>Ψπ − f∗(α)− γ · g∗(β/γ)

)
. (14)

In the rest of this paper, we denote by α∗, β∗ and γ∗ the optima of the dual variables in
(14), π∗ = {π∗h}h∈[H] the optimal policy, and Ψ∗ the kernel embedding corresponding to
π∗. We can rewrite (14) as maxγ,α,β L(γ, α, β), where L(γ, α, β) = minΨπ∈V D(α, β, γ, π).
When the dual variables are fixed, it suffices to implement model-based value iteration for
solving L(γ, α, β). By simultaneously updating γ, α and β, we can reach optimality by a
primal-dual method.

Remark 7 In (14), the term γg∗(β/γ) is a convex function composed with a perspective
function, so it must be convex in (β, γ). See Boyd et al. (2004) for details.

3.2 Solution: Primal-Dual Method

The minimax structure in (13) implies us to implement a primal-dual method. Such im-
plementation is common when facing nonlinearity in visitation measures (e.g., Wu et al.
(2021) and Efroni et al. (2020)).
Dual Update. We perform an online projected gradient ascent method for a dual update.
In each iteration, we update α by moving αk to a direction of maximizing the dual function
D(α, β, γ, π) and then project it to the unit ball. To represent the projection set for (β, γ),
we combine the restriction imposed by Fenchel dual and Slater’s condition and define

G = {(β, γ) : ‖β‖2 ≤ γ, γ ∈ [0,Γ]}.

When the Slater’s condition holds, the optimal solution (β∗, γ∗) always lies in G by Lemma
6. If we know the underlying transition map W ∗ in priori, we can solve the outer iteration

10
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of the minimax problem in (13) by value iteration and implement Ψπt in the gradient ascent
step. However, since the transition remains obscure to us, we use Ψt = (Ψh)h∈[H] as a proxy,

where Ψt
h = Eπ,Pt [Ψh(sh, ah)]. In the dual update, the step size ηt is set as O(1/

√
t) (or

O(1/
√
T ) when T is given). In Algorithm 1, ∂γ and ∂β are the subgradient operator with

γ and β as the variable, respectively.

Algorithm 1 Variational Primal-Dual Policy Optimization

Require: Step size {ηt}Tt=1, α1 ∈ BdH , γ1 ∈ [0,Γ], β1 ∈ γ1 · BdH
1: for t = 1, . . . , T do
2: αt+1 ← ΠBdH

{
αt + ηt

(
Ψt − ∂f∗(αt)

)}
3: β̂t+1 ← βt + ηt

(
Ψt − ∂βg∗(βt/γt)

)
4: γ̂t+1 ← γt + ηt

(
∂γ(−γtg(βt/γt))

)
5: (βt, γt) = ΠG(β̂t+1, γ̂t+1)
6: θt+1 ← αt+1 + βt+1

7: Update the cost function {ct+1
h (s, a) = θt+1

h · ψ(s, a)}h∈[H]

8: Update the confidence set Ct+1 by Algorithm 2 or 3
9: (πt+1,Pt+1)← argminπ minP∈Ct+1 V t+1,π

1,P .

10: Calculate Ψt+1 = (Eπt+1,Pt+1 [ψ(sh, ah)])h∈[H]

11: end for

Primal Update: Construct a cost. Algorithm 1 further relies on the agent’s exploration
to estimate the transition Pt with experience in the previous t−1 episodes. Since an explicit
cost does not necessarily occur in our optimization problem, to implement value iteration,
we construct a cost by introducing the dual vector θt = αt+βt for all t, and set a temporary
reward cth = ψh ·θh. Note that in the minimax problem (13), with fixed (α, β), the objective
function turns into

min
π

(
(α+ β) ·Ψπ

)
=

H∑
h=1

Eπ,P∗ [Ψh(sh, ah) · (αh + βh)],

which can be viewed as an accumulative cost minimization problem. This is essentially an
optimal control problem. Corresponding to cth, we set the value functions

V t,π
h,P(s) = Eπ,P

[ H∑
i=h

cth(si, ai)

∣∣∣∣ sh = s

]
, (15)

Qt,πh,P(s, a) = Eπ,P
[ H∑
i=h

cth(si, ai)

∣∣∣∣ sh = s, ah = a

]
. (16)

for policy π. For simplicity, we denote V t,πt
h,P and Qt,πth,P as V t

h,P and Qth,P , respectively.
Here and in the rest of this paper, we denote by Eπ,P [·] the expectation taken over the
trajectory {(sh, ah)}h∈[H] induced by {πh}h∈[H] and the underlying transition kernel P.
With the confidence set Ct given by Algorithms 2 and 3, Line 9 in Algorithm 1 follows the
principle of “Optimism in the Face of Uncertainty”, and chooses the policy and model in

11
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the confidence set that can incur the smallest cost. We highlight that Algorithm 1 is a
model-based algorithm, as it explicitly learns the underlying transition probability.

Algorithm 2 VPDPO for KNR case

Require: {(sih, aih)}i∈[t],h∈[H] , λ > 0, C1 > 0, θt,Λ0 = λI, π0 = a0

1: Execute πt to sample a new trajectory {(sth, ath)}h∈[H]

2: Ŵ t ← arg minW
∑t

τ=1

∑H
h=1

∥∥Wφ (sτh, a
τ
h)− sτh+1

∥∥2

2
+ λ‖W‖2F .

3: Λt ← λI +
∑t

τ=1

∑H
h=1 φ (sτh, a

τ
h)φ (sτh, a

τ
h)>.

4: Update Ct ←
{
P |

∥∥(W − Ŵ t
) (

Λt
)1/2 ∥∥2

2
≤ Rt, ‖W‖2 ≤ 1,P parametrized by W

}
with Rt defined in (17).

5: return Confidence set Ct

Algorithm 3 VPDPO for Low-rank MDP case

Require: model set M = {(µ, φ) : µ ∈ Υ, φ ∈ Θ}, D0,h = ∅, π0 = U(A)
1: Collect a set of tuples {(sth, ath, sth+1)}h∈[H−1] by rolling out sth with policy πt and then

select ath by a uniform distribution on A, i.e. ath ∼ U(A), sth+1 ∼ P(· | sth, ath), .
2: Update Dh,t = Dh,t−1 ∪ {(sth, ath, sth+1)}.
3: (µ̂th, φ̂

t
h)← argmax(µ,φ)∈MEDh,t [log(µ(sh+1)>φ(sh, ah))] .

4: P̂th(· | sh, ah)← µ̂th(·)>φ̂th(sh, ah).

5: Update Ct ←
{
P = {Ph}h∈[H]

∣∣EDth[‖P̂th(· | sh, ah) − Ph(· | sh, ah)‖21
]
≤ Rt

}
with Rt

defined in (18)
6: return Confidence set Ct

Algorithms 2 and 3 interact with the environment with policy πt = {πth}h∈[H] given by
Algorithm 1, and then construct confidence set for possible models. In each episode, we
construct a confidence set Ct, whose center and weighted radius are designed deliberately.
The center of the confidence set is chosen by the maximum likelihood estimation (MLE),
and the weighted radius Rt is chosen so that the real transition mapping P∗ lies in Ct for
every t with a high probability. Specifically, in Algorithm 2 we set

Rt = c(λσ2 + σ2(d+ log(tdet(Λt)/δ det(Λ0))) (17)

for the KNR case, and in Algorithm 3 for Low-rank MDP we set

Rt = c log(TH|Υ||Θ|/δ)/t (18)

The difference between Algorithms 2 and 3 is that, in the KNR setting, the agent collects
a full trajectory by performing the same policy πt, while in the Low-rank MDP setting,
for each epoch t and for h ∈ [H], the agent performs πt for the first h step and then
augment the trajectory by a randomly choose an action and then transit to the next state,
i.e., ah ∼ U(A), sh+1 ∼ P(· | sh, ah). Note that this exploration manner only influences
the degree of H in the sampling complexity, and does not affect the sublinear regret and
violation.

12
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We remark on the computation efficiency of Algorithms 1-3. For Algorithm 1, the
projection set G for dual variable (β, γ) can be seen as an intersection of a second-order
cone {(x, t) : ‖x‖2 ≤ t} and a half space {(x, t) : t ∈ [0,Γ]}. Projection to both sets has
a closed-form solution. The projection to G can thus be computed via implementing the
alternating projection method, which involves a sequence of gradient steps and projection
(Bregman, 1967). The proxy Ψt can be estimated by Monte Carlo method, with W t as a
known transition. We would also like to remark that the calculation of Line 9 of Algorithm
1, known as the optimistic planning, is in general NP-hard (Dani et al., 2008), and we
assume there is an oracle to implement it (Kakade et al., 2020; Uehara and Sun, 2021; Jin
et al., 2021; Ayoub et al., 2020). Then we only focus on the statistical complexity. From
that, we make the following assumption.

Assumption 8 (Black-box Computation Oracle) We assume that there is an oracle
that implements Line 9 of Algorithm 1.

In practice, several effective heuristics may be available through gradient-based methods
such as iLQG (Todorov and Li, 2005), and CIO Mordatch et al. (2012), or sampling-based
methods, such as MPPI (Williams et al., 2015) and DMDMPC (Wagener et al., 2019).

In the Low-rank MDP setting, motivated by the estimation of conditional probability
(Uehara et al., 2022; Agarwal et al., 2020), we use MLE for estimating the underlying
transition. Unlike in the KNR case where the MLE has a closed-form solution, it is hard
to find a general closed-form solution for representation learning by MLE. Correspondingly,
we need an oracle for efficient MLE computation for Line 1 in Algorithm 3.

Assumption 9 (Maximum-Likelihood Estimation) Consider the model class M and
a dataset D in the form of (s, a, s′), the MLE oracle returns the maximum likelihood esti-
mator,

(µ̂, φ̂) = argmax(µ,φ)∈M ED
[

log
(
µ
(
s′
)>
φ(s, a)

)]
,

which implements Line 3 of Algorithm 3.

We assume there exists practical algorithms that avoid explicitly enumerating over all func-
tions in the model space M. In practice, such oracles can be reasonably approximated
whenever optimizing over M is feasible, such as in neural networks.

4. Theoretical Results

In this section, we provide theoretical analysis for Algorithms 1 and 2. For the regret and
the constraint violation, we make the decompositions

T
(
f(Ψπ̂)− f(Ψ∗)

)
= T

(
f(Ψπ̂)− f(Ψ̂)

)︸ ︷︷ ︸
(R.i)

+T
(
f(Ψ̂)− f(Ψ∗)

)︸ ︷︷ ︸
(R.ii)

,

T
(
g(Ψπ̂)

)
= T

(
g(Ψπ̂)− g(Ψ̂)

)︸ ︷︷ ︸
(V.i)

+T · g(Ψ̂)︸ ︷︷ ︸
(V.ii)

,

where we recall that Ψπ̂ = 1/T
∑T

t=1 Ψπt , Ψ̂ = 1/T
∑T

t=1 Ψt. Here (R.i) and (V.i) are
the estimation errors incurred by the noise in the regression. With the Lipschitz condition
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imposed on f and g, it suffices to bound ‖
∑T

t=1(Ψπt − Ψt)‖2. We reformulate it into

bounding a value difference summation
∑T

t=1(V t
1,Pt − V

t
1,P∗). The gradient update for the

dual variables allows us to give an upper bound for (R.ii) and (V.ii) in terms of a value
difference sequence as well.
However, we first need to handle the non-linearity in (4). By implementing the online
gradient ascent method in Algorithm 1, we can guarantee that the following coupling term
can be bounded by the value difference of two processes and an O(

√
T ) term.

Lemma 10 (Dual Update: Gradient Ascent) For all γ ∈ [0,Γ], we have

T ·
[
f(Ψ̂)− f(Ψ∗) + γ · g(Ψ̂)

]
≤

T∑
t=1

θt · (Ψt −Ψ∗) + CBΓ
√
HT, (19)

where C > 0 is an absolute constant.

Proof See Appendix B for detailed proof.

Lemma 10 displays a coupling between the regret and the constraint violation, which is also
frequently met in online algorithms using dual updates, such as CMDP and Multi-objectives
(Ding et al., 2021; Yu et al., 2021). The proof of Lemma 10 incorporates the standard re-
gret analysis of online gradient ascent and the self-dual property of Fenchel dual, which
is a common technique in analyzing nonlinear function differences with gradient updates.
The occurrence of the coupling term directly comes from the gradient update of the dual
variables in Algorithm 1.
In the following lemma we introduce the difference of a sequence of projected kernel embed-
ding, which can be interpreted as the performance difference of two systems in T episodes.
When P∗ falls in Ct, by the principle of optimism implemented in Line 9 of Algorithm 1,
the value difference is always negative. In this paper, we denote the event of P∗ ∈ Ct for
all t ∈ [T ] by Ecb, i.e., Ecb = ∪Tt=1{P∗ ∈ Ct}. By the construction of the confidence set, we
can further prove that P∗ always lies in Ct with the probability of at least 1− δ. With the
construction of confidence set in Algorithms 2 and 3, we choose the transition model and
policy that would incur the highest accumulative reward in expectation. Therefore, as long
as the real dynamic falls in the confidence set, we can obtain optimism in the sense of the
following lemma,

Lemma 11 (Optimism: Value Difference) If the real model P∗ falls in the confidence
set Ct for all t, then we have the following inequality,

T∑
t=1

θt · (Ψt −Ψ∗) ≤ 0. (20)

Proof The inequality comes from the construction of the cost function in (15) and the
choice of Pt and πt in Line 9 in Algorithm 1.

Conditioning on the event that Lemma 36 holds, we actually claim that the coupling term
in (19) can be bounded by O(

√
T ). Combining this with the optimization trick of Theorem

33, we can further prove that (R.i) and (V.i) are bounded by O(
√
T ). We leave the detailed

proof in Section B.
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Lemma 12 Assume that P∗ ∈ Ct for all t ∈ [T ]. Then for all γ ∈ [0,Γ], we have

T (f(Ψ̂)− f(Ψ∗)) ≤ CBΓ
√
HT, (21)

T · g(Ψ̂) ≤ CB
√
HT. (22)

We now bound the difference of the coupling of the objective and constraint violation by√
T , with the estimated feature embedding Ψ̂ as a self variable. But what can we say

about the difference between the estimated average feature embedding Ψ̂ and the real
average feature embedding Ψπ̂, ‖Ψπ̂ − Ψ̂‖2? To tackle this issue, we interpret the difference
of the kernel mean embedding as the supreme of a set of value differences. For a fixed
x = (xh)h∈[H] ∈ RdH with ‖x‖2 ≤ 1, we can consider

∑T
t=1(Ψπ̂ − Ψ̂) · x as the value

difference of two processes, with cost at stage h defined as ch(sh, ah) = ψ(sh, ah) · xh. For
simplicity, we denote x · (Ψπt −Ψt) = V πt

1 − V t
1 . As long as we can uniformly upper bound

V πt
1 − V t

1 for all ‖x‖2 ≤ 1, we can give a bound for ‖Ψπ̂ − Ψ̂‖2. The following lemma allows
us to decompose a value difference and is useful in our analysis.

Lemma 13 (Value Difference Lemma) Consider two MDPs
(
S,A, {P1

h}Hh=1, {rh}Hh=1

)
and

(
S,A, {P2

h}Hh=1, {rh}Hh=1

)
and a given policy π = {πh}h∈[H]. Then for all h ∈ [H] the

following relation holds,

V π
h (s)− V π′

h (s) = Eπ,P2

[ H∑
i=h

(P1
iV

π
i+1(si, ai)− P2

iV
π
i+1(si, ai))

∣∣∣∣ sh = s

]
. (23)

Proof This lemma is a direct corollary of Lemma 36 in the appendix, as the two MDP
share the same reward.

Next, we directly give the performance guarantees for KNR and low-rank MDP cases, and
give a brief proof under this value difference routine for the two cases respectively. Both
results contain a O(

√
T log T ) scale in the regret and violation, which shows that VODPO

learns in C2MDPs in a statistically efficient manner. As T grows bigger, the mixed policy
π̂ would achieve an suboptimality that decreases in a O(log T/

√
T ) manner. To the best of

our knowledge, this algorithm is the first one that achieves sublinear regret and constraint
violation in C2MDP.

4.1 Analysis of the KNR Case

Theorem 14 Assume that Assumptions 3-5 and 8 hold. Set λ = max{σ2, 1}. For Algo-
rithm 1 and 2, with probability at least 1− δ, the regret is bounded by

Regret(T ) ≤ O
(

ΓB
√
HT + CBHd

√
T log

(
HT

dδ

))
,

and the constraint violation is bounded by

Violation(T ) ≤ O
(
CBHd

√
T log

(
HT

dδ

))
.
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4.2 Proof Sketch of Theorem 14

In this section, we sketch the proof of Theorem 14. The detailed proof is deferred to
Appendix C.

Lemma 15 (Simulation Lemma) For any policy π, feature mapping W , bounded cost c,
and for any initial state s1, with the value function defined in (15)(with a upper bound of√
H), we have

V π
1,P∗ (s1)− V π

1,P (s1) ≤ O
(
B
√
H · Eπ,P∗

[ H∑
h=1

∥∥(W ? −W
)
φ(sh, ah)

∥∥
2

])
,

where the state-value function is defined with underlying cost c. Here P∗ and P are the
conditional distribution induced by W ∗ and W , respectively.

Proof With Lemma 13 we have

V π
1,P∗(s1)− V π

1,P(s1) ≤ Eπ,P∗
[
B
√
H

H∑
h=1

∥∥P∗h(· | sh, ah)− Ph(· | sh, ah)
∥∥

1

]

. B
√
HEπ,P∗

[ H∑
h=1

∥∥(W ? −W )φ(sh, ah)
∥∥

2

]
,

where the second inequality follows from the estimation

‖P∗h(· | sh, ah)− Ph(· | sh, ah)
∥∥

1
= O

(∥∥(W ? −W )φ(sh, ah)
∥∥

2

)
from Devroye et al. (2018). Here we drop the constants that only depend on σ.

By Lemma 15 and the Elliptical Potential Lemma (Uehara and Sun, 2021), following the
value decomposition routine, we give an upper bound for the estimation error in terms of
the maximum information gain in the following lemma.

Lemma 16 (Estimation Error) For Algorithms 1 and 2, with λ = max{σ2, 1}, we have
P∗ ∈ Ct for all t ∈ [T ] holds with probability at least 1− δ, and

T‖Ψπ̂ − Ψ̂‖2 ≤ CBHd
√
T log

(
HT

dδ

)
(24)

holds with probability at least 1− δ, where C > 0 is an absolute constant that only depends
on σ.

Proof See Appendix B for detailed proof.

With the 1-Lipschitz assumption for f, g, Lemma 16 in fact gives a uniform upper bound
for (R.i) and (V.i). Combining the results on regret and constraint violation in Lemma 12
with the error estimation in Lemma 16, we finish the proof of Theorem 14.
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4.3 Analysis of the Low-rank MDP case

For the Low-rank MDPs, we also prove the sublinear regret and violation under Algorithms
1 and 3.

Theorem 17 Assume that Assumptions 3-5 and 9 hold. Set Rt as in (18). For Algorithms
2 and 3, with probability 1− δ, the regret is bounded by

Regret(T ) ≤ O
(

ΓB
√
HT +B

√
TH|A|d2 log

(
TH|Θ||Υ|

δ

))
,

and the constraint violation is bounded by

Violation(T ) ≤ O
(
B
√
TH|A|d2 log

(
TH|Θ||Υ|

δ

))
.

We remark that our regret and constraint violation guarantees in Theorem 14 and 17 serve
as Probably Approximately Correct (PAC) bounds: with probability at least 1 − δ, we can
obtain a Markov policy π̂ := 1

T

∑T
t=1 π

t such that f(Ψπ̂) − f(Ψπ∗) = O(1/
√
T ), and the

constraint violation g(Ψπ̂) = O(1/
√
T ). Consequently, with a sample complexity of O(1/ε2),

the Markov policy π̂ such that f(Ψπ̂)−f(Ψπ∗) ≤ ε and g(Ψπ̂) ≤ ε hold simultaneously with
hight probability. From an asymptotic perspective, with T tends to infinity, f(Ψπ̂) converges
to the optimal value, while the violation of constraint g(Ψπ̂) can be arbitrarily small with
high probability. Our result is different in form from the standard definitions in online
convex optimization due the existence of both optimality gap and constraint violation.

4.4 Proof Sketch of Theorem 17

In this section we briefly sketch the proofs of efficiencies of Algorithm 1 and 3 in the Low-
rank MDP setting. For detailed proof, see Appendix D.
We define the state-action visitation induced by the mixed Markov policy before epoch t
and the one augmented by choosing random action,

ρth(sh, ah) =
1

t− 1

∑
i∈[t−1]

dπi,h,P∗(sh, ah), ρ̂th(sh, ah) =
1

t− 1

∑
i∈[t−1]

dπi,h,P∗(sh)u(ah),

where dπ,h,P(sh, ah) is the visitation probability on the h-th state-action pair induced by
policy π and transition kernel P, and u(a) is the uniform distribution on the action set A.
By implementing MLE in every epoch t, we claim that with high probability, the model
error under the distribution of the previous policy Eρ̂t [‖P̂th(·|sh, ah) − P∗h(·|sh, ah)‖21] is of

Õ(1/t). With a standard Bernstein-type argument for martingales, we have the following
lemma.

Lemma 18 (Shrinking Confidence Ball) With probability at least 1− δ, we have P∗ ∈
Ct and

Eρ̂th
[
‖P∗h(· | sh, ah)− Ph(· | sh, ah)‖21

]
≤ c log(TH|Υ||Θ|/δ)

t
,

for all transition P ∈ Ct, t ∈ [T ] and h ∈ [H], where c is an absolute constant. Here P̂th is
the transition learned by the MLE in Algorithm 3.
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Proof See Appendix D for details.

Lemma 18 implies that with high probability, our choice of the confidence set Ct is good
enough for the real transition to fall in. Moreover, the distance between P∗ and other ele-
ments in Ct also decreases under the distribution of the mixed policy ρ̂t. By the construction
of the value function of (15), we obtain the following lemma. As in the KNR case, we also
care for the error brought by our insufficient model estimation, ‖Ψt −Ψπt‖2. To overcome
this tissue, the underlying linear structure of low-rank MDPs is crucial. We introduce the
following lemma, which is a modification of Lemma 16 in Uehara et al. (2022):

Lemma 19 Take any h ∈ S ×A → R such that ‖h‖∞ ≤ D. Then,

Eπ[h(sh, ah)] ≤ Eπ‖φ?h−1(sh−1, ah−1)‖Σ−1

ρt,φ?
h−1

√
t|A|Eρ̂t [h2(s, a)] + λdD2,

where Σρt,φ?h
= tE(s,a)∼ρt

[
φ?h(s, a)φ?h(s, a)>

]
+ λI.

Proof See Appendix D for details.

Note that here the parameter λ and the matrix Σρt,φ∗h
do not occur in the actual implemen-

tation. This lemma introduces an elliptical potential structure. By then, using the same
method as in the KNR case, we prove the upper bound for the 2-norm estimation error.

Lemma 20 (Estimation Error) With Assumption 3 and Algorithm 3, we have

T‖Ψ̂−Ψπ̂‖2 ≤ c
√
TH|A|d2 log

(
TH|Θ||Υ|

δ

)
holds with probability at least 1− δ.

Note that f, g are both 1-Lipschitz by Assumption 4, we can thereby control the upper
bound of |f(Ψπ) − f(Ψ̂)| and |g(Ψπ) − g(Ψ̂)| can be bounded by the same scale, combine
this with Lemma 12 concludes our proof.

4.5 Applications to Concrete Examples

With the general results above, we also highlight their applications on concrete examples
rise in RL. In Section 2 we introduced several settings that are well known in MDP liter-
aturewhich can be regarded as examples of C2MDP, with f being their objectives and g
being their constraints. We then implement VODPO to solve them, In this section we use
Multi-objective MDPs and Feasiblity Learning as examples to show the power of VODPO.
First, we have the following corollary for the KNR setting,

Corollary 21 Under Assumptions 2 - 8, we assume that ‖θih‖2 ≤
√
d for all i ∈ [I] and

h ∈ [H]. Set λ = max{σ2, 1}, we have

Regret(T ) ≤

{
O
(
ΓH
√
IT + CH3/2d

√
IT log

(
HT
dδ

))
for Multi-objective MDP,

O
(
CHd

√
T log

(
HT
dδ

))
for Feasibility Learning,

(25)

18



Primal-Dual Policy Optimization for Constrained Reinforcement Learning

and

Violation(T ) ≤ O
(
CH3/2d

√
IT log

(
HT

dδ

))
for Multi-objective MDP,

hold with probability at least 1 − δ. Here C > 0 is an absolute constant that only depends
on σ.

Under the low-rank MDP setting, we have similar results.

Corollary 22 Under Assumptions 2 - 9, assuming that ‖θih‖2 ≤
√
d for all i ∈ [I] and

h ∈ [H], we have

Regret(T ) ≤

{
O
(
ΓH
√
IdT +H

√
|A|Id3T log

(TH|M|
δ

))
for Multi-objective MDP,

O
(√

H|A|d2T log
(TH|M|

δ

))
for Feasibility Learning,

(26)

and

Violation(T ) ≤ O
(
H
√
|A|Id3T log

(
TH|M|

δ

))
for Multi-objective MDP,

hold with probability at least 1− δ. Here |M| = |Θ||Υ| is total number of the model classes.

We claim that when f degenerates to a linear function, our results recover the regret of
standard KNR in Kakade et al. (2020). Specifically, our results in regret matches Theorem
3.2Kakade et al. (2020) in terms of H and d, where they accomplish a regret of O(

√
H3d2T ).

When considering a low-rank MDP with a finite horizon, Uehara et al. (2022) achieves a
regret of O(

√
d3H2|A|T ), which is also consistent with our result for low-rank MDP case.

We also compare our results of low-rank MDP with existing works such as Yu et al. (2021),
which focuses on the study of online Multi-objective MDP under the tabular case. Tabular
MDP can be regarded as a special case of low-rank MDP with a known feature, with the
dimension d = SA. By assuming approachability, Yu et al. (2021) propose an algorithm
with regret of O(Γ

√
IH3S2A/T ) and a constraint violation of O(

√
IH3S2A/T ) , where

S and A are the cardinality of S and A, respectively. We claim that our results have a
higher-order dependence on d = SA due to the error inherited from MLE and the invoke
of one step back inequality. For a technical understanding, we recommend the readers to
Appendix D.

5. Conclusion

In this paper, we have developed a provably efficient online algorithm, Variational Primal-
Dual Policy Optimization (VPDPO) for constrained constrained convex MDP. KNR and
Low-rank MDP are two examples. The algorithm extends the reward-based RL algorithm
to constrained convex MDP where no explicit reward is needed and incorporates the La-
grangian primal-dual method to transform the constrained optimization into a minimax
problem. To handle the balance between exploration and exploitation, we follow the prin-
ciple of optimism in the face of uncertainty. We prove that that our algorithm enjoys a
Õ(
√
T ) regret and a Õ(

√
T ) violation with high probability under standard optimization

assumptions, where T is the total number of episodes taken by the algorithm.
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Appendix A. Additional Notations

We write P(A) as the probability of event A. For a KNR, P(· | W, sh, ah) denotes the
probability distribution over S when the agent is in state sh and takes action ah, with the
transition parametrization W . For two series {an}n≥1 and {bn}n≥1, we write an . bn if
an ≤ C · bn holds for constant C and all sufficient large n.

Appendix B. Proof of Lemma 10

In the dual update, the cost is related to the non-stationary variable θ. With the summation
of the value difference bounded, we directly prove the following lemma by adding a O(

√
T )

scale regret which comes from the employment of online gradient ascent.
Recall that Ψ̂ = 1/T

∑T
t=1 Ψt. We present the following lemma, which can be seen as a

corollary of Theorem 30.

Lemma 23 Suppose that Assumptions 3 and 4 holds. For all γ ∈ [0,Γ], we have

T
(
f(Ψ̂)− f(Ψ∗) + γ · g(Ψ̂)

)
. BΓ

√
HT,

which further implies

T (f(Ψ̂)− f(Ψ∗)) . BΓ
√
HT, (27)

T · g(Ψ̂) .
√
HT. (28)

Proof We have the following relations holds for all γ ∈ [0,Γ],

f(Ψ̂)− f(Ψ∗) + γ · g(Ψ̂) (29)

= max
α∈B,β∈γ·B

{
α>Ψ̂− f∗(α)− f(Ψ∗) + β>Ψ̂− γg∗(β/γ)

}
.

Thus, the dual update is equivalent to implementing online gradient ascent on ht, where

ht(α, β, γ) = α>Ψt − f∗(α) + β>Ψt − γg∗(β/γ).

By Theorem 30, we set the step size ηt = 2Γ/H
√
t (or 2Γ/H

√
T when T is pre-decided), the

constants R = 2Γ and G = 2B
√
H (to verify the conditions, note that g∗ is B

√
H-Lipschitz,

see Dubovitskii and Milyutin (1965)) to get

T

[
f(Ψ̂)− f(Ψ∗) + γ · g(Ψ̂)

]
≤

T∑
t=1

Ψt · (αt + βt)− f∗(αt)− γtg∗(βt/γt)− Tf(Ψ∗) + CBΓ
√
HT,

(30)

where C is an absolute constant. With γt ≥ 0 and g(Ψ∗) ≤ 0, by the definition of Fenchel
dual, we have

0 ≥ γtg(Ψ∗) ≥ βt ·Ψ∗ − γtg∗(βt/γt), f(Ψ∗) ≥ αt ·Ψ∗ − f(αt). (31)
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Recall that θt = αt + βt. Plugging (31) back to (30), we obtain the following relation holds
for all γ ∈ [0,Γ],

T

[
f(Ψ̂)− f(Ψ∗) + γ · g(Ψ̂)

]
≤

T∑
t=1

θt · (Ψt −Ψ∗) + cBΓ
√
HT

≤ cBΓ
√
HT,

where the second inequality comes from Lemma 36 and c is an absolute constant. With
γ = 0 we obtain (27). With γ = Γ, we have

T

[
f(Ψ̂)− f(Ψ∗) + Γ · g(Ψ̂)

]
. Γ
√
HT.

And with Theorem 33 we obtain (28). Therefore, we conclude the proof.

Appendix C. Proof of Theorem 14

We first show that W t ∈ Ct with high probability if Rt is properly chosen, which ensures
that Algorithm 2 induces sufficient optimism. The following lemma is frequently used to
provide a sufficient trustworthy radius for a confidence set and is first proved by Kakade
et al. (2020). We provide its proof for completeness.

Lemma 24 (Confidence Ball) For all t ∈ [T ], we set E tcb as the event that W ∗ falls in
Ct, i.e.,

E tcb =

{∥∥ (W̄ t −W ?
) (

Λt
)1/2 ∥∥2

2
≤ Rt

}
,

and Ecb as the event that all W t falls in Ct, and Ecb = ∩Tt=1E tcb. Let

Rt = 2λ‖W ?‖22 + 8σ2
(
d log(5) + 2 log(t) + log(4) + log(det(Λt)/ det(Λ0)/δ)

)
,

We have
∞∑
t=0

P(Ē tcb) =

∞∑
t=0

P
(∥∥∥(W̄ t −W ?

) (
Λt
)1/2∥∥∥2

2
> Rt

)
≤ δ/2.

Proof The center of the confidence ball, W̄ t, is the minimizer of the ridge regression
objective, and its closed-form expression is

W̄ t =
t∑

τ=1

H∑
h=1

sτh+1φ(sτh, a
τ
h)>(Λt)−1,
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where Λt = λI +
∑t

τ=1

∑H
h=1 φ(sτh, a

τ
h)>φ(sτh, a

τ
h)>. Since sτh+1 = W ?φ(sτh, a

τ
h) + ετh with

ετh ∼ N
(
0, σ2I

)
, we have

W̄ t −W ? =
t∑

τ=1

H∑
h=1

sτh+1φ(sτh, a
τ
h)>(Λt)−1 −W ?

=

t∑
τ=1

H∑
h=1

(W ?φ(sτh, a
τ
h) + ετh)φ(sτh, a

τ
h)>

(
Λt
)−1 −W ?

= W ?

( t∑
τ=1

H∑
h=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>
)

(Λt)−1 −W ? +

t∑
τ=1

H∑
h=1

ετhφ(sτh, a
τ
h)>(Λt)−1

= −λW ?(Λt)−1 +
t∑

τ=1

H∑
h=1

ετhφ(sτh, a
τ
h)>(Λt)−1.

For any 0 < δt < 1, using Lemma 38, it holds with probability at least 1− δt,∥∥∥∥(W̄ t −W ?)(Λt)1/2

∥∥∥∥
2

≤
∥∥∥∥λW ?(Λt)−1/2

∥∥∥∥
2

+

∥∥∥∥ t∑
τ=1

H∑
h=1

ετhφ(sτh, a
τ
h)>(Λt)−1/2

∥∥∥∥
2

≤
√
λ‖W ?‖2 + σ

√
8d log(5) + 8 log

(
det(Λt) det(Λ0)−1/δt

)
,

where the first inequality follows from the triangle inequality. Therefore, we obtain P
(
E tcb
)
≤

δt. We seek to bound
∑∞

t=0 P(Ē tcb). Note that at t = 0 we have initialized C0 to contain W ?,
we have P(Ē0

cb) = 0. For t ≥ 1, let us assign failure probability δt = (3δ/π2)/t2 for the t-th
event.We obtain

∞∑
t=1

P(Ē tcb) ≤
∞∑
t=1

(δ/t2)(3/π2) = δ/2.

Therefore, we conclude the proof of Lemma 24.

For all t ∈ [T ], we set E tcb as the event that W ∗ falls in Ct, i.e.,

E tcb =

{∥∥ (W̄ t −W ?
) (

Λt
)1/2 ∥∥2

2
≤ Rt

}
,

and Ecb as the event that all W t falls in Ct, i.e., Ecb = ∩Tt=1E tcb. We prove in Lemma 24 that∑∞
t=1 P(Ē tcb) ≤ δ/2, where Ē tcb denotes the complement of E tcb. The following lemma shows

that by efficiently implementing the principle of optimism in Algorithm 2, the summation
of the expected discrepancy of two projected kernel features is bounded. The main idea is
to cast the projected kernel embedding to an initial state value function. Then by the value
iteration implemented in Algorithm 2, we give a general bound for regret and violation in
O(
√
T ) scales.

Lemma 25 (Optimism for KNR) Suppose that Assumption 3 holds. For Algorithms 1
and 2, the following inequality holds with probability at least 1− δ,

E
[ T∑
t=1

θt · (Ψt −Ψ∗)

]
≤ (1 + Γ)

√
H. (32)
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Proof If W t falls in Ct for all t, it holds that
∑T

t=1 θ
t · (Ψt−Ψ∗) ≤ 0 by optimism induced

by line 9 in Algorithm 2. We condition on the event E tcb and the proof is done.

The final step is to bound the estimation error of the visitation f(Ψπ̂)− f(Ψ̂) and g(Ψπ̂)−
g(Ψ̂). With f and g being 1-Lipschitz, it suffices to bound T‖Ψπ̂ − Ψ̂‖2.

Lemma 26 (Bound for estimation error) Suppose that Assumptions 5-3 and 8 hold.
For Algorithms 1 and 2, we have

T‖Ψπ̂ − Ψ̂‖2 ≤ CBHd
√
T log

(
HT

dδ

)
(33)

holds with probability at least 1− δ, here C is an absolute constant only depends on σ.

Proof For all x = (xh)h∈[H] ∈ RdH with ‖x‖2 ≤ 1, we can consider
∑T

t=1(Ψπ̂− Ψ̂) ·x as the
value difference of two processes, with cost at stage h defined as ch(sh, ah) = ψ(sh, ah) · xh.
For simplicity, we denote x · (Ψπt −Ψt) = V πt

1 − V t
1 . In the following analysis we condition

on the event Ecb, further estimate the value difference. With Lemma 15, we have

T∑
t=1

(
V πt

1 (s)− V t
1 (s)) .

T∑
t=1

B
√
HEπt

[ H∑
h=1

∥∥(W ? −W t
)
φ(sth, a

t
h)
∥∥

2

∣∣Ht], (34)

Here {Ht}t∈[T ] is the history before episode t, and the inequality holds by Lemma 15. For
W ∗ ∈ Ct, we have∥∥(Ŵ t −W ∗

)
φ(sth, a

t
h)
∥∥

2
≤
∥∥(Ŵ t −W ∗

)
(Λt)1/2

∥∥
2

∥∥(Λt)−1/2φ(sth, a
t
h)
∥∥

2

≤
(∥∥(Ŵ t − W̄ t

)(
Λt
)1/2∥∥

2
+
∥∥(W̄ t −W ∗

)
(Λt)1/2

∥∥
2

)∥∥φ(sth, a
t
h)
∥∥

(Λt)−1

≤ 2
√
Rt
∥∥φ(sth, a

t
h)
∥∥

(Λt)−1 . (35)

Summing up (35) over h ∈ [H], we obtain

H∑
h=1

∥∥(W ? −W t
)
φ(sth, a

t
h)
∥∥

2
≤ 2
√
Rt

H∑
h=1

‖φ(sth, a
t
h)‖(Λt)−1 . (36)

Plugging (36) back to (34), we have the following holds with probability at least 1− δ,

T∑
t=1

(
V πt

1 (s)− V t
1 (s)

)
. B
√
H

T∑
t=1

E
[√

RT
H∑
h=1

‖φ(sth, a
t
h)‖(Λt)−1

∣∣∣∣Ht]

. B

√
Hσ2d log

(
HT

dδ

) T∑
t=1

E
[ H∑
h=1

‖φ(sth, a
t
h)‖(Λt)−1

∣∣∣∣Ht]

. B

√
Hσ2d log

(
HT

dδ

) T∑
t=1

H∑
h=1

‖φ(sth, a
t
h)‖(Λt)−1 +

T∑
t=1

MT
t ,

≤ CB

√
THd log

(
HT

dδ

)( T∑
t=1

H∑
h=1

‖φ(sth, a
t
h)‖2(Λt)−1

)1/2

+H
√

2T log(4/δ),
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holds with probability at least 1− δ. Here C is some absolute constant that only depends
on σ. The second inequality comes from the fact that Rt is non-decreasing, and

RT = max{2σ2, 2}+ 8σ2

(
d log(5) + 2 log(T ) + log(4) + log

(
det(ΛT ) det(Λ0)−1

)
/δ

)
≤ C ′σ2

(
d+ log(T ) + log

(
det(ΛT ) det

(
Λ0
)−1

/δ
))

. σ2(d log(TH/dδ))

and λ = max{σ2, 1}. The third inequality decompose the expectation term into a elliptical
potential summation and a martingale difference series. The last inequality comes from the
martingale difference is bounded by H, and with Hoeffding’s inequality, we have

P(|
T∑
t=1

MT
t | ≥ s) ≤ 2 exp(

−s2

2TH2
),

set s = H
√

2T log(4/p) and we prove that
∑T

t=1M
T
t ≤ H

√
T log(4/p) with probability at

least 1 − δ/2. Since we condition on Ecb, which holds with probability at least 1 − δ/2,
the inequality holds with probability at least 1− δ. Next, we bound the elliptical potential
term. By Lemma 42, we have

T∑
t=1

H∑
h=1

‖φ(sth, a
t
h)‖2(Λt)−1 ≤ 2H log

(
det(ΛT ) det(Λ0)−1

)
. dH log(

TH

d
),

where the third inequality comes from 41. Combining the results above we have

T∑
t=1

(
V πt

1 (s)− V t
1 (s)

)
. CBHd

√
T log

(
HT

dδ

)
,

here C is an absolute constant that only relates to σ. Since the argument above holds for all
x with ‖x‖2 ≤ 1, set x = (Ψπt−Ψt)/‖Ψπt−Ψt‖2, and we conclude the proof of Lemma 26.

Appendix D. Proof for Theorem 17

In this section we give a detailed proof for Theorem 17. The main tool is the MLE funda-
mental theorem and Bernstein’s inequality for martingales.
Proof First, we prove that the choice of the confidence set Ct is fully efficient, i.e. P∗ ∈ Ct
with high probability.

Lemma 27 With probability at least 1 − δ, we have the true underlying transition kernel
P∗h : S × S ×A → R lies in the confidence set Ct for all t ∈ [T ] and h ∈ [H], i.e.,

EDth [‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21] ≤ c log(TH|Θ||Υ|/δ)
t

,

where ED[f(s, a)] takes the average of f on the dataset D.
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Proof By the construction of Dth in Algorithm 3, we have sth ∼ πt and ath ∼ U(A). Recall
that

ρ̂th(sh, ah) =
1

t− 1

∑
i∈[t−1]

dπi,h(sh)u(ah),

Therefore, EDth [‖P∗h(·|sh, ah) − P̂th(·|sh, ah)‖21] is a empirical realization of the visitation

measure for (sh, ah) under the Markov policy ρ̂t. For notation simplicity, for each (h, t) ∈
[H]× [T ], define Ft,h to be to the σ-algebra generated by the trajectories,

Ft,h = σ({(sτi , aτi )}(i,τ)∈[H]×[t−1] ∪ {(sti, ati)}i∈[h−1]),

since πτ = πi(s1
1, a

1
1, ..., s

τ−1
H ) and is measurable with respect to Ft,h, we have

t(EDth [‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21]− Eρ̂th [‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21])

=
∑
τ∈[t]

‖P∗h(·|sτh, aτh)− P̂th(·|sτh, aτh)‖21 − Esh∼πτ ,ah∼U(A)‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21

being a martingale process with respect to the filtration {Ft,h}(h,t)∈[H]×[T ] for all (h, t) ∈
[H]× [T ]. Therefore, by applying the Bernstein type inequality for martingale (Lemma 43),
with probability at least 1− δ that∣∣EDth [‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21]− Eρ̂th [‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21]

∣∣
≤

√
2 Varρ̂th

[
‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21

]
log(2TH/δ)

t
+

log(2TH/δ)

3t

≤

√
8Eρ̂th

[
‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21

]
log(2TH/δ)

t
+

log(2TH/δ)

3t
,

where the second inequality follows from ‖P∗h(·|sh, ah)−P̂th(·|sh, ah)‖21 ≤ 4. Recall that with
Lemma 39, we have

Eρ̂th
[
‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21 ≤ c

log(TH|Θ||Υ|/δ)
t

.

Therefore, we have∣∣EDth [‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21]− Eρ̂th [‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21]
∣∣ ≤ c log(TH|Θ||Υ|/δ)

t
.

Summing this and D and we conclude the proof.

The next lemma ensures that as we explore and shrink the radius of the confidence set, the
statistical distances between the MLE estimation and all transitions in the confidence set
uniformly decrease in a Õ(1/t) manner.

Lemma 28 For all P = {Ph}h∈[H] ∈ Ct and all t ∈ [T ], with probability at least 1− δ, we
have

Eρ̂t [‖Ph(·|sh, ah)− P∗h(·|sh, ah)‖21] ≤ c′ log(TH|Θ||Υ|/δ)
t

.
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Proof By the construction of Ct, we have the following inequality holds for all P =
{Ph}h∈[H] in Ct with high probability,

EDth [‖Ph(·|sh, ah)− P∗h(·|sh, ah)‖21]

≤ 2(EDth [‖Ph(·|sh, ah)− Pth(·|sh, ah)‖21] + EDth [‖Pth(·|sh, ah)− P∗h(·|sh, ah)‖21])

≤ 2c
log(TH|Θ||Υ|/δ)

t
,

The first inequality comes from (a+ b)2 ≤ 2(a2 + b2). Define

A(Ph) = Eρ̂th [‖Ph(·|sh, ah)− P∗h(·|sh, ah)‖21]− EDth [‖Ph(·|sh, ah)− P∗h(·|sh, ah)‖21].

We have

Eρ̂th [‖Ph(·|sh, ah)− P∗h(·|sh, ah)‖21] ≤ A(Ph) + 2c
log(TH|Θ||Υ|/δ)

t
,

for all (h, t) ∈ [H]× [T ]. Applying Bernstein’s inequality again, for any {Ph}h∈[H] ∈ Ct and
t ∈ [T ], we have with probability 1− δ that

A(Ph) ≤

√
c1 Varρ̂t

[
‖P∗h(·|sh, ah)− P̂th(·|sh, ah)‖21

]
log(TH|Θ||Υ|/δ)

t
+
c2 log(TH|Θ||Υ|/δ)

t

≤

√
c1Eρ̂th

[
‖Ph(·|sh, ah)− P∗h(·|sh, ah)‖41

]
log(TH|Θ||Υ|/δ)

t
+
c2 log(TH|Θ||Υ|/δ)

t

≤

√
4c1Eρ̂th

[
‖Ph(·|sh, ah)− P∗h(·|sh, ah)‖21

]
log(H|Θ||Υ|/δ)

t
+
c2 log(H|Θ||Υ|/δ)

t
,

where the first inequality comes from Bernstein’s inequality, and the second inequality
comes from the fact that ‖P(·|s, a) − P ′(·|s, a)‖21 ≤ 4 for two probability distributions.
Denote ξ = log(|Θ||Υ|TH/δ)/t and taking square in both side of the (D), we have

A2(Ph) .

(√
c(A(Ph) + ξ) log(TH|Θ||Υ|/δ)

t
+
c log(|Θ||Υ|/δ)

t

)2

.
(A(Ph) + ξ) log(TH|Θ||Υ|/δ)

t
+

{
c ln(TH|Θ||Υ|/δ)

t

}2

.
(A(Ph) + ξ) log(TH|Θ||Υ|/δ)

t
+
c2 log(TH|Θ||Υ|/δ)

t
.

.
(A(Ph) + 1/t log(TH|Θ||Υ|/δ)) log(TH|Θ||Υ|/δ)

t
.

Then, we have

A2(Ph)−B1A(Ph)−B2 ≤ 0, B1 = c log(TH|Θ||Υ|/δ)/t, B2 = c(1/t)2 log(TH|Θ||Υ|/δ)2

holds for all {Ph}h∈[H] ∈ Ct for all t ∈ [T ]. This concludes

0 ≤ A(Ph) ≤ B1 +
√
B2

1 + 4B2

2
≤ c

(
B1 +

√
B2

)
≤ c log(TH|Θ||Υ|/δ)

t
. ξ.
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Thus, by using the above A(P) . ξ
(
P ∈ Ct

)
and , with probability 1− δ, we have

Eρ̂th
[
‖Ph(·|sh, ah)− P∗h(·|sh, ah)‖21

]
≤ A(P ) + cξ . ξ, {Ph}h∈[H] ∈ Ct.

To conclude our proof, the final step is to bound T‖Ψ̂−Ψπ̂‖2 = ‖
∑T

t=1(Ψt−Ψπt)‖2. To this

end, we still consider to find an uniform upper bound for
∑T

t=1(Ψt−Ψπt) · θ , θ = (θh)h∈[H]

with ‖θ‖2 ≤ 1. As in the case of KNR, we define

cth(s, a) = ψh(s, a) · θh,

Ψt · θ = Eπt,Pt
[ H∑
h=1

cth(sh, ah)

]
= V t

1 ,

Ψπt · θ = Eπt,P∗
[ H∑
h=1

rth(sh, ah)

]
= V πt

1 ,

With standard notations in reinforcement learning, we can define value function Vh(s, a) for
all stage h ∈ [H]. Using the value-decomposition lemma, we decompose the value difference
V t

1 − V πt
1 ,

T∑
t=1

(Ψt −Ψπt) · θ =

T∑
t=1

V t
1 − V πt

1

=

H∑
h=1

T∑
t=1

Eπt
[
P∗hV πt

h+1(sh, ah)− PthV πt

h+1(sh, ah)
]

≤
H∑
h=1

T∑
t=1

B
√
HEπt

[
‖Pth(·|sh, ah)− P∗h(·|sh, ah)‖1

]
,

(37)

here the second equation comes from the value difference lemma, and the third inequality
comes from the fact that ‖V π

1 ‖∞ ≤ B
√
H, since ‖θ‖2 ≤ 1 and ‖ψh(s, a)‖2 ≤ B. The next

lemma shows that we can upper bound Eπt [H(sh, ah)] using Eπt‖φ∗h(sh, ah)‖Σ−1

ρt,φ∗
h−1

once

we can upper bound Eρ̂t [H2(sh, ah)].

Lemma 29 (One step back inequality) Take any H ∈ S × A → R such that ‖H‖∞ ≤
B. Then,

Eπ[H(sh, ah)] ≤ Eπ‖φ?h−1(sh−1, ah−1)‖Σ−1

ρt
h−1

,φ?
h−1

√
t|A|Eρ̂th [H2(s, a)] + λdB2,

where Σρth,φ
?
h

= tEρth
[
φ?h(sh, ah)φ?h(sh, ah)>

]
+ λI. Note that here the parameter λ and the

matrix Σρt,φ∗h
doesn’t occur in the actual implementation.
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Proof First, we have

Eπ[H(sh, ah)] = E(sh−1,ah−1)∼π,sh∼P(sh−1,ah−1),ah∼π[H(sh, ah)]

= Eπ
[
φ∗h−1(sh−1, ah−1)>

∫ ∑
ah

µ∗h−1(sh)πh(ah|sh)H(sh, ah)dν

]
≤ Eπ

[
‖φ∗h−1(sh−1, ah−1)‖Σ−1

ρt
h
,φ?
h−1

∥∥∥∥∫ ∑
ah

µ∗h−1(sh)πh(ah|sh)H(sh, ah)dν

∥∥∥∥
Σ
ρt
h
,φ?
h−1

]
,

where the third inequality comes from Cauchy’s inequality. Here, we have∥∥∥∥∥
∫ ∑

ah

µ?h−1(s)πh(ah|sh)H(sh, ah)dν(s)

∥∥∥∥∥
2

Σ
ρt
h−1

,φ?
h−1

≤

{∫ ∑
ah

µ?h−1(sh)πh(ah|sh)H(sh, ah)dν(s)

}> {
tEρth−1

[
φ?h−1(sh−1, ah−1)

{
φ?h−1(sh, ah)

}>]
+ λI

}{∫ ∑
a

µ?h−1(sh)πh(ah|sh)H(sh, ah)dν(s)

}

≤ tEρth−1


[∫ ∑

a

µ?h−1(sh)>φ?h−1(sh−1, ah−1)πh(ah | sh)H(sh, ah)dν(s)

]2
+ λdB2

≤ t
{
E(sh−1,ah−1)∼ρth−1,sh∼P ?(sh−1,ah−1),ah∼π(s)

[
H2(sh, ah)

]}
+ λdB2,

where the last inequality comes from Jensen’s inequality. Further, we have that

E(sh−1,ah−1)∼ρt,sh∼P ?(sh−1,ah−1),ah∼π(s)

[
H2(sh, ah)

]
≤ |A|E(sh−1,ah−1)∼ρt,sh∼P ?(sh−1,ah−1),ah∼U(A)

[
H2(sh, ah)

]
= |A|Eρ̂th [H2(sh, ah)]

which concludes the proof.

We then condition on the event

Eρ̂th [‖Pth(·|sh, ah)− P∗h(·|sh, ah)‖21] ≤ c log(TH|Υ||Θ|)
t

, ∀(h, t) ∈ [H]× [T ],

which holds with probability at least 1 − δ, and use Lemma 29 on (37) by setting π = πt

for ‖Pth(·|sh, ah)− P∗h(·|sh, ah)‖1, we have

H∑
h=1

T∑
t=1

Eπt
[
‖Pth(·|sh, ah)− P∗h(·|sh, ah)‖1

]
≤

H∑
h=1

T∑
t=1

Eπt‖φ∗h(sh, ah)‖Σ−1

ρt
h
,φ∗
h

√
t|A|Eρ̂th [‖Pth − P∗h‖21] + 4λd

.
H∑
h=1

T∑
t=1

Eπt‖φ∗h(sh, ah)‖Σ−1

ρt
h
,φ∗
h

√
|A| log(TH|Θ||Υ|/δ) + λd,
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here the first inequality comes from the one-step back inequality and the fact that every
term in the summation is positive, the second inequality comes from our condition event.
We also have √

|A| log(TH|Θ||Υ|/δ) + λd .
√
|A|λd log(TH|Θ||Υ|/δ) = ξT ,

therefore
H∑
h=1

T∑
t=1

Eπt
[
‖Pth(·|sh, ah)− P∗h(·|sh, ah)‖1

]
.

H∑
h=1

ξT
( T∑
t=1

Eπt‖φ∗h(sh, ah)‖Σ−1

ρt
h
,φ∗
h

)

≤
H∑
h=1

ξT ·

√√√√T
T∑
t=1

Eπt
[
φ∗h(sh, ah)>Σ−1

ρth,φ
∗
h
φ∗h(sh, ah)

]
,

where the second inequality comes from Jensen’s inequality. By Lemma 40 and Lemma 41,
we have

T∑
t=1

Eπt
[
φ∗h(sh, ah)>Σ−1

ρth,φ
∗
h
φ∗h(sh, ah)

]
=

T∑
t=1

Tr

(
Σ−1
ρth,φ

∗
h
· Eπt

[
φ∗h(sh, ah)φ∗h(sh, ah)>

])
≤ 2

(
log det

(
ΣρTh ,φ

∗
h

)
− 2 log det

(
λI
))

≤ d log

(
1 +

T

dλ

)

holds for all h ∈ [H]. By then we have

H∑
h=1

T∑
t=1

Eπt
[
‖Pth(·|sh, ah)−P∗h(·|sh, ah)‖1

]
≤

√
T log

(
1 +

T

dλ

)
|A|1/2dλ1/2 log(TH|Θ||Υ|/δ),

combine with (37) and set λ = 1, θ = (Ψ̂−Ψπ̂)/‖Ψ̂−Ψπ̂‖2, we conclude the proof of Lemma
20

Combine Lemma 12 and 20 we finish the proof of Theorem 17.

Appendix E. Lemmas for Optimization

E.1 Online learning

Online learning involves two players: the adversary and the player. The online learning
protocol is shown in Algorithm 4.
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Algorithm 4 Protocol of Online Learning

1: for t = 1, . . . , T do
2: The player chooses an action xt.
3: The adversary picks a function ft.
4: The player obtains reward ft(xt).
5: The player learns via ft.
6: end for

Note that there is no assumption on how the adversary will pick the function ft, and it may
be adversarially chosen. The player aims to minimize the regret:

Regret = max
x

T∑
t=1

ft(x)−
T∑
t=1

ft(xt), (38)

which measures the quality of the player’s strategy x1, . . . , xT compared with the single best
decision in hindsight.
Projected Subgradient Method. The projected subgradient method is a particular case
of mirror descent/ascent with Euclidean distance. Applying this method to online learning
produces a regret bound of the order O(

√
T ).

Suppose that the actions xt are required to be contained in some convex set X , i.e., xt ∈ X .
Denote a subgradient of ft at xt by gt ∈ ∂ft(xt), G and R are two constants such that
maxx,y∈X ‖x − y‖2 ≤ R and maxt∈[T ] ‖∂ft(xt)‖2 ≤ G. We set the step length ηt at the

t-th iteration to R/G
√
t if we do not know the number of iterations T in advance and to

R/G
√
T if we have the knowledge of T . The latter case will leads to an upper bound with

a smaller constant multiplicative factor. With these notations, the update rule of projected
subgradient method can be expressed as

xt+1 ← arg max
x∈X

{
ft(xt) + 〈ηtgt, x− xt〉 − ‖x− xt‖22/2

}
.

We describe the complete method in Algorithm 5.

Algorithm 5 projected subgradient method

1: Arbitrarily initialize x1 ∈ X .
2: for t = 1, . . . , T − 1 do
3: Update xt+1 ← arg maxx∈X

{
ft(xt) + 〈ηtgt, x− xt〉 − ‖x− xt‖22/2

}
4: end for

By this method, the regret is guaranteed to increase sublinearly as stated in the following
theorem.

Theorem 30 Using projected subgradient method mentioned in Algorithm 5, it holds that
for all x in the convex set X we have

T∑
t=1

ft(x)−
T∑
t=1

ft(xt) ≤ CRG
√
T ,

where C is an absolute constant.

31



Li, Liu, Yang, Wang, Wang

Proof See Zinkevich (2003) for a detailed proof. Note that the choice of x is irrelevant in
the proof.

E.2 Constrained Optimization

In this subsection we consider a general constrained optimization and discuss its properties.
We consider

fopt = min
x∈X
{f(x) : g(x) ≤ 0, Ax+ b = 0}, (39)

where and f, g : R → (−∞,∞) are convex real-valued functions, A ∈ Rp×n, b ∈ Rp. We
define a value function associated with (39),

v(u, t) = min
x∈X
{f(x) : g(x) ≤ u,Ax+ b = t}.

Furthermore, we define the dual problem to (39). The dual function is

q(λ, γ) = min
x∈X

{
L(x, λ, γ) = f(x) + λT g(x) + γT (Ax+ b)

}
,

where λ ∈ Rm+ , γ ∈ Rp. The corresponding dual problem is

qopt = max
λ∈Rm+ ,γ∈Rp

{q(λ, γ) : (λ, γ) ∈ dom(−q)}.

Where dom(−q) =
{

(λ, γ) ∈ Rm+ , γ ∈ Rp : q(λ, γ) > −∞
}
. Furthermore, we denote an op-

timal solution of (E.2) by λ∗, γ∗.

We make the following assumption which will be verified to hold. The assumption
implies strong duality, i.e., qopt = fopt.

Assumption 31 The optimal value of (39) is finite and exists a Slater point x such that
g(x < 0 and exists a point x̂ ∈ ri(X) satisfying Ax̂ + b = 0, where ri(X) is the relative
interior of X.

The following theorem is proved in Beck (2017).

Theorem 32 The dual variable (λ∗, γ∗) is an optimal solution of (39) if and only if

−(λ∗, γ∗) ∈ ∂v(0, 0),

where ∂f(x) denotes the set of all sub-gradients of f at x.

Proof See Theorem 3.59, Beck (2017).

Using this result we arrive at the following theorem, which is a variant of Beck (2017) ,
Theorem 3.60.
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Theorem 33 Let λ∗ be an optimal solution of the dual (39) and assume that 2‖λ∗‖1 ≤ ρ.
Let x̃ satisfy Ax̃+ b = 0 and

f(x̃)− fopt + ρ‖[g(x̃)]+‖∞ ≤ δ

Then we have

‖[g(x̃)]+‖∞ ≤
δ

ρ
.

Proof Let

v(u, t) = min
x∈X
{f(x) : g(x) ≤ u,Ax+ b = t}.

Since (−λ∗, γ∗) is an optimal solution of the dual problem it follows by Theorem 32 that
(−λ∗, γ∗) ∈ ∂v(0, 0). Therefore, for any (u, 0) ∈ dom(v),

v(u, 0)− v(0, 0) ≥ 〈−λ∗, u〉 . (40)

Set u = ũ = [g(x̃)]+. Since u ≥ 0, we have

v(ũ, 0) ≤ v(0, 0) = fopt ≤ f(x̃).

Thus, (40) implies that

f(x̃)− fopt ≥ 〈−λ∗, ũ〉. (41)

Thus, we obtain

(ρ− ‖λ∗‖1)‖ũ‖∞ = −‖λ∗‖1‖ũ‖∞ + ρ‖ũ‖∞
≤ 〈−λ∗, ũ〉+ ρ‖ũ‖∞
= f(x̃)− fopt + ρ‖u‖∞ ≤ δ,

where the last relation follows from (41). Rearranging the terms and using the assumption
2‖λ∗‖1 ≤ ρ, we obtain

‖[g(x̃)]+‖∞ = ‖u‖∞ ≤
δ

ρ− ‖λ∗‖1
≤ 2

ρ
δ.

Therefore, we conclude the proof of Theorem 32.

For the solution of the dual function, the following lemma is an adjustment of Beck
(2017).

Theorem 34 Let x ∈ X be a point satisfying g(x̄) < 0 and Ax + b = 0. Then, for any
λ, γ ∈ {λ ∈ Rm+ , γ ∈ Rp+ : q(λ, γ) ≥M}, we have

‖λ‖1 ≤
f(x̄)−M

minj∈[m]{−gj(x̄)}
.
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Proof Let
SM = {λ ∈ Rm+ , γ ∈ Rp+ : q(λ, γ) ≥M}.

By the definition of SM , for any λ, γ ∈ SM we have

M ≤ q(λ, γ)

= min
x∈X
{f(x) + λT g(x) + γT (Ax+ b)}

≤ f(x) + λT g(x) + γT (Ax+ b)

= f(x) +
m∑
j=1

λjgj(x).

Therefore, we obtain

−
m∑
j=1

λjgj(x) ≤ f(x)−M,

which implies that for any (λ, γ) ∈ SM ,

m∑
j=1

λj = ‖λ‖1 ≤
f(x)−M

minj∈[m]{−gj(x)}
.

Therefore, we conclude the proof of Theorem 34.

A simple corollary gives an estimation of the optimal dual solution λ∗.

Corollary 35 Let x ∈ X be a point satisfying g(x̄) < 0 and Ax + b = 0, and λ∗ be an
optimal dual solution. Then, it holds that

‖λ∗‖1 ≤
f(x̄)−M

minj∈[m]{−gj(x̄)}
.

Proof Since (λ∗, γ∗) ∈ Sfopt be an optimal solution of the dual problem equation 39, we
finish the proof by Theorem 34.

E.3 Proof of Proposition 4

Proof To prove the convexity of (4), it suffices to show that V is convex. We allow some
initial randomizing mechanisms such that the policy {πh}h∈[H] not only rely on h, but also
depends on a randomizing mechanism. We may have a set of policies U and a distribution
q ∈ ∆(U). Then the mixed policy π̂ of U , is defined such that we choose some policy π ∈ U
using q and then the agent proceeds executing with only that policy (Altman, 1999). We
have the following equality,

Ψπ̂ = Eq[Ψπ],

where the expectation is taken with respect to the underlying distribution q and all policy
π ∈ U . When q is set as the uniform distribution on set {πk}k∈[K], we have

Ψπ̂ =
1

K

K∑
k=1

Ψπk .
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Since Ψπ̂ ∈ V with our definition, V is a convex set. The optima of (4) over the mixed
policy will remain the same, and V is proved to be a convex set. The feasible set for (4) is
thus convex and the problem is indeed a convex optimization.

Appendix F. Auxiliary Results

The difference of value functions between two MDPs has the following general decomposi-
tion, which is rather useful in our analysis.

Lemma 36 (Value Difference Lemma) Consider two MDPs
(
S,A, {P1

h}Hh=1, {r1
h}Hh=1

)
and

(
S,A, {P2

h}Hh=1, {r2
h}Hh=1

)
and a given policy π = {πh}h∈[H]. Their corresponding value

functions in the h-th horizon are V π
h and V π′

h respectively. Then for all h ∈ [H] the following
relation holds,

V π
h (s)− V π′

h (s) = Eπ,P [
H∑
i=h

(ri(si, ai)− r
′
i(si, ai)) | sh = s] (42)

+ Eπ,P ′ [
H∑
i=h

(PiV π
i+1(si, ai)− P

′
iV

π
i+1(si, ai)) | sh = s] (43)

Proof See Lemma E.15 in Dann et al. (2017) for details.

We introduce the following lemma, which gives a self-normalized bound for vector value
martingales(Abbasi-Yadkori et al., 2011).

Lemma 37 (Self-Normalized Bound for Vector-Valued Martingales) Let {εi}∞i=1 be
a real-valued stochastic process with corresponding filtration {Fi}∞i=1 such that εi is Fi mea-
surable, E[εi | Fi−1] = 0, and εi is conditionally σ-sub-Gaussian with σ ∈ R+. Let {Xi}∞i=1

be a stochastic process with Xi ∈ H (some Hilbert space) and Xi being Ft-measurable. As-
sume that a linear operator V : H → H is positive definite, i.e., x>V x > 0 for any x ∈ H.
For any t, define the linear operator Vt = V +

∑t
i=1XiX

>
i (here xx> denotes outer-product

in H ). With probability at least 1− δ, we have for all t ≥ 1∥∥∥∥ t∑
i=1

Xiεi

∥∥∥∥2

V −1
t

≤ 2σ2 log

(
det(Vt)

1/2 det(V )−1/2

δ

)
.

Proof For a detailed proof, see Abbasi-Yadkori et al. (2011).

Lemma 38 can be generalized to the case of matrix-valued martingales.

Lemma 38 (Self-Normalized Bound for Matrix-Valued Martingales) Let {εi}∞i=1 be
a d-dimensional vector-valued stochastic process with corresponding filtration {Fi}∞i=1 such
that εi is Fi measurable, E [εi | Fi−1] = 0, and εi is conditionally σ-sub-Gaussian with
σ ∈ Rd Let {Xi}∞i=1 be a stochastic process with Xi ∈ H (some Hilbert space) and Xi being
Ft measurable. Assume that a linear operator V : H → H is positive definite. For any t,
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define the linear operator Vt = V +
∑t

i=1XiX
>
i Then, with probability at least 1 − δ, we

have for all t, we have:∥∥∥∥ t∑
i=1

εiX
>
i V
−1/2
t

∥∥∥∥2

2

≤ 8σ2d log(5) + 8σ2 log

(
det(Vt)

1/2 det(V )−1/2

δ

)
.

Proof Denote S =
∑t

i=1 εiX
>
i . Let us form an ε-net, in `2 distance, C over the unit ball

{w : ‖w‖2 ≤ 1, w ∈ Rd
}

. Via a standard covering argument, we can choose C such that
log(|C|) ≤ d log(1 + 2/ε).

Consider a fixed w ∈ C and w>S =
∑t

i=1w
>εiX

T
i . Note that w>εi is a σ-sub Gaussian

due to ‖w‖2 ≤ 1. Hence, Lemma 38 implies that with probability at least 1− δ, for all t∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√√√√log

(
det (Vt)

1/2 det(V )−1/2

δ

)
.

Now apply a union bound over C, we get that with probability at least 1− δ,

∀w ∈ C :

∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√√√√d log(1 + 2/ε) + log

(
det (Vt)

1/2 det(V )−1/2

δ

)
.

For any w with ‖w‖2 ≤ 1, there exists a w′ ∈ C such that ‖w − w′‖2 ≤ ε. Hence, for all w
such that ‖w‖2 ≤ 1,∥∥∥∥∥V −1/2

t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√√√√d log(1 + 2/ε) + log

(
det (Vt)

1/2 det(V )−1/2

δ

)

+ ε

∥∥∥∥∥
t∑
i=1

εiX
>
i V
−1/2
t

∥∥∥∥∥
2

.

By the definition of the spectral norm, this implies that,∥∥∥∥∥
t∑
i=1

εiX
>
i V
−1/2
t

∥∥∥∥∥
2

≤ 1

1− ε
√

2σ

√√√√d log(1 + 2/ε) + log

(
det (Vt)

1/2 det(V )−1/2

δ

)
.

Taking ε = 1/2 concludes the proof.

We introduce the following lemma, which guarantees the MLE convergence refer to Agarwal
et al. (2020).

Lemma 39 (MLE bound, Agarwal et al. (2020)) By Algorithm 3, for a fixed t ≥ 0
and h ∈ [H], with probability at least 1− δ, we have

Eρ̂t [‖P∗h(·|s, a)− P̂t(·|s, a)‖21] ≤ 2 log(|Θ||Υ|/δ)
t

.

As a straightforward corollary, we have with probability at least 1− δ,

Eρ̂t [‖P∗h(·|s, a)− P̂t(·|s, a)‖21] ≤ 2 log(TH|Θ||Υ|/δ)
t

,

for all t ∈ [T ] and h ∈ [H].
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The following is a standard inequality to prove regret bounds for online learning in linear
models.

Lemma 40 (Agarwal et al. (2020)) Consider the following process. For t = 1, · · · , T,Mt =
Mt−1 + Gt with M0 = λ0I and Gt being a positive semidefinite matrix with eigenvalues
upper-bounded by 1. We have that

2 ln det (MT )− 2 ln det (λ0I) ≥
T∑
n=1

Tr
(
GtM

−1
t−1

)
.

The next lemma provides an upper bound for the potential elliptical lemma and was first
proved in Lemma 20 of Uehara et al. (2022). For completeness, we provide its proof.

Lemma 41 ((Uehara et al., 2022)) Suppose Tr (Gn) ≤ B2.

2 ln det (MN )− 2 ln det (λ0I) ≤ d ln

(
1 +

NB2

dλ0

)
.

Proof Let σ1, · · · , σd be the set of singular values of MN recalling MN is a positive
semidefinite matrix. Then, by the AM-GM inequality,

ln det (MN ) / det (λ0I) = ln
d∏
i=1

(σi/λ0) ≤ d ln

(
1

d

d∑
i=1

(σi/λ0)

)

Since we have
∑

i σi = Tr (MN ) ≤ dλ0 +NB2, the statement is concluded.

The next lemma provides an upper bound for the summation of potential function and is
a simple generalization of the elliptical potential lemma(Abbasi-Yadkori et al., 2011). In
fact, it is a special case of Lemma 40.

Lemma 42 (Elliptical Potential Lemma) For any sequence of {φh(sth, a
t
h)}t∈[T ],h∈[H],

we have
T∑
t=1

H∑
h=1

∥∥φh(sth, a
t
h)
∥∥2

(Λt)−1 ≤ 2H log

(
det(ΛT ) det(Λ0)−1

)
.

Proof Denote φh(sth, a
t
h) by φth. Recall that Λt+1 = Λt +

∑H−1
h=0 φ

t
h

(
φth
)>

and Λ0 = λI.
Since λ ≥ 1 and ‖φ‖2 ≤ 1, ‖φth‖(Λt)−1 ≤ 1 for all (t, h) ∈ [T ]× [H]. Use x ≤ 2H log(1 + x)
for x ∈ [0, H], we have

H∑
h=1

∥∥φth∥∥2

(Λt)−1 ≤ 2H log

(
1 +

H∑
h=1

∥∥φth∥∥2

(Λt)−1

)
.

For Λt+1, using its recursive formulation, we have:

log det(Λt+1) = log det(Λt) + log det

(
I + (Λt)−1/2

H∑
h=1

φth(φth)>(Λt)−1/2

)
.
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Denote the eigenvalues of (Λt)−1/2
∑H

h=1 φ
t
h(φth)>(Λt)−1/2 as σi for i ≥ 1. We have

log det

(
I + (Λt)−1/2

H∑
h=1

φth(φth)>(Λt)−1/2

)
= log

∏
i≥1

(1 + σi) ≥ log
(
1 +

∑
i≥1

σi
)
,

where the last inequality uses that σi ≥ 0 for all i. Using the above and the definition of
the trace,

log det

(
I + (Λt)−1/2

H∑
h=1

φth(φth)>(Λt)−1/2

)
≥ log

(
1 + tr

(
(Λt)−1/2

H∑
h=1

φth(φth)>(Λt)−1/2

))

= log

(
1 +

H∑
h=1

(φth)>(Λt)−1φth

)
.

(44)
Telescoping over t ∈ [T ], we have

2H

T∑
t=1

log

(
1 +

H∑
h=1

(φth)>(Λt)−1φth

)
≤ 2H

T∑
t=1

(
log det(Λt+1)− log det(Λt)

)
= 2H log

(
det(ΛT ) det(Λ0)−1

)
,

Therefore, we conclude the proof of Lemma 42.

The following lemma was proved in Freedman (1975) and generalizes Bernstein’s in-
equality for independent variables to martingale case.

Lemma 43 (Bernstein’s inequality for martingales) Suppose X1, . . . , Xn is a sequence
of random variables such that 0 ≤ Xi ≤ 1. Define the martingale difference sequence
{Yn = E [Xn | X1, . . . , Xn−1]−Xn} and note Kn the sum of the conditional variances

Kn =

n∑
t=1

Var [Xn | X1, . . . , Xn−1] .

Let Sn =
∑n

i=1Xi, then for all ε, v ≥ 0,

P (
∑n

i=1 E [Xn | X1, . . . , Xn−1]− Sn ≥ ε,Kn ≤ k) ≤ exp
(
− ε2

2k+2ε/3

)
Lemma 44 (χ2-Distance Between Two Gaussians) For Gaussian distributions N

(
µ1, σ

2I
)

and N
(
µ2, σ

2I
)
, the (squared) chi-squared distance between N1 and N2 is,∫

(N1(z)−N2(z))2

N1(z)
dz = exp

(
‖µ1 − µ2‖2

2σ2

)
− 1.

Proof Note that,∫
(N1(z)−N2(z))2

N1(z)
dz =

∫
N1(z)− 2N2(z) +

N2(z)2

N1(z)
dz = −1 +

∫
N2(z)2

N1(z)
dz.
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Also note that for N 2
2 (z)/N1(z), we have

N 2
2 (z)/N1(z) =

1

Z
exp

(
− 1

2σ2

(
2 ‖z − µ2‖22 − ‖z − µ1‖22

))
,

where Z is the normalization constant for N
(
0, σ2I

)
, i.e. Z =

∫
exp

(
− 1

2σ2 ‖z‖22
)
dz. Thus,

for 2 ‖z − µ2‖22 − ‖z − µ1‖22, we can verify that

2 ‖z − µ2‖22 − ‖z − µ1‖22 = ‖z + (µ1 − 2µ2)‖22 − 2 ‖µ1 − µ2‖22 .

which implies,∫
N2(z)2

N1(z)
dz =

1

Z

∫
exp

(
− 1

2σ2

(
‖z − (2µ2 − µ1)‖22 − 2 ‖µ1 − µ2‖

))
dz

=
1

Z
exp

(
‖µ1 − µ2‖22

σ2

)∫
exp

(
− 1

2σ2
‖z − (2µ2 − µ1)‖22

)
dz

= exp

(
‖µ1 − µ2‖22

σ2

)
.

Therefore, we conclude the proof.

Lemma 45 (Expectation Difference Under Two Gaussians) For Gaussian distribu-
tion N (µ1, σ

2I) and N (µ2, σ
2I), suppose that {‖µ1‖2, ‖µ2‖2} ≤ B, then for any (appropri-

ately measurable) positive function g, it holds that:

Ez∼N1 [g(z)]− Ez∼N2 [g(z)] ≤ C(σ,B) ·
‖µ1 − µ2‖2

σ

√
Ez∼N1 [g(z)2],

where C(σ,B) = exp(B2/σ2).

Proof Define mi = Ez∼N1 [g(z)] for i ∈ {0, 1}. We have:

m1 −m2 = Ez∼N1

[
g(z)

(
1− N2(z)

N1(z)

)]

≤
√

Ez∼N1 [g(z)2]

√∫
(N1(z)−N2(z))2

N1(z)
dz

=
√
Ez∼N1 [g(z)2]

√
exp

(
‖µ1 − µ2‖22

2σ2

)
− 1.

By convexity we have exp(x) ≤ 1 + x exp(x) for all x, we have

exp

(
‖µ1 − µ2‖22

2σ2

)
− 1 ≤ ‖µ1 − µ2‖22

2σ2
· exp

(
‖µ1 − µ2‖22

2σ2

)
≤ ‖µ1 − µ2‖22

2σ2
· exp

(
2B2

σ2

)
.
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Therefore, we have

m1 −m2 ≤ exp

(
B2

σ2

)
· ‖µ1 − µ2‖2

σ

√
Ez∼N1 [g(z)2].
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Sobhan Miryoosefi, Kianté Brantley, Hal Daume III, Miro Dudik, and Robert E Schapire.
Reinforcement learning with convex constraints. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-
free representation learning and exploration in low-rank mdps, 2022.
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