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Abstract
We study representations of data from an arbitrary metric space X in the space of univariate Gaussian mixtures
equipped with a transport metric (Delon and Desolneux 2020). We prove embedding guarantees for feature maps
implemented by small neural networks called probabilistic transformers. Our guarantees are of memorization
type: we prove that a probabilistic transformer of depth about n log(n) and width about n2 can bi-Hölder embed
any n-point dataset from X with low metric distortion, thus avoiding the curse of dimensionality. We further
derive probabilistic bi-Lipschitz guarantees, which trade off the amount of distortion and the probability that a
randomly chosen pair of points embeds with that distortion. If the geometry of X is sufficiently regular, we
obtain stronger bi-Lipschitz guarantees for all points. As applications, we derive neural embedding guarantees
for datasets from Riemannian manifolds, metric trees, and certain types of combinatorial graphs. When instead
embedding into multivariate Gaussian mixtures, we show that probabilistic transformers compute bi-Hölder
embeddings with arbitrarily small distortion. Our results show that any finite metric dataset, from vertices on a
graph to functions a function space, can be faithfully represented in a single representation space, and that the
representation can be implemented by a simple transformer architecture. Thus one may only need a modular
set of machine learning tools compatible with this one representation space, many of which already exist, for
downstream supervised and unsupervised learning from a great variety of data types.

Keywords: Metric Embeddings, Geometric Deep Learning, Optimal Transport, Representation Learning,
Transformers, Gaussian Mixtures.

1. Introduction
In machine learning practice we face a daunting variety of data sources, but all of them come equipped with
some domain-specific notion of (dis)similarity. The successes of modern machine learning models may be in
part attributed to the fact that they explicitly or implicitly learn representations of data that are compatible
with these domain-specific notions. A key task in a successful machine learning pipeline is thus to identify a
representation spaceR and a feature map φ : X → R which faithfully encodes X . The data space X and the
dissimilarity dX often form a metric space (X , dX ); “faithfully” then means with minimal distortion to dX .
Once data is represented inR, we can learn and predict from φ(X ) using downstream machine learning tools
for classification, regression models, clustering, dimension reduction models, etc.
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For a long time, the default choice for R has been a Euclidean space or a (reproducing kernel) Hilbert
space. Yet there is now a body of work both in machine learning (Samal et al., 2018; Eidi and Jost, 2020;
Muscoloni et al., 2017; Ganea et al., 2018; Giovanni et al., 2022) and in metric embedding theory (Bourgain,
1985; Matoušek, 1996; Naor et al., 2006) showing that Euclidean and Hilbert spaces are suboptimal for many
practically-relevant notions of dissimilarity. This is because Euclidean spaces are “too small” and Hilbert
spaces “too flat” to represent the great variety of geometries in modern datasets.

An archetypal situation where low-dimensional non-Euclidean representations outperform high-dimensional
Euclidean is when working with hierarchical data, organized on trees or graphs with power-law degree distri-
butions (Ravasz and Barabási, 2003), and equipped with the usual combinatorial (geodesic) metric. Any finite
tree X can be faithfully embedded into the two-dimensional hyperbolic space (Sarkar, 2011) while embeddings
in d-dimensional Euclidean space require much greater distortion (Gupta, 2000). Since hierarchical data is
ubiquitous, this favorable property of hyperbolic spaces has inspired a booming development of “hyperbolic”
machine learning models. Examples include clustering (Chami et al., 2020; Tabaghi and Dokmanić, 2021,
2020), PCA-type methods (Chami et al., 2021), classification (López and Strube, 2020), hyperbolic analogues
of feedforward networks (Ganea et al., 2018; Shimizu et al., 2021), and several Python packages supporting
this Riemannian geometry (Miolane et al., 2020; Kochurov et al., 2020). These advances contributed to
state-of-the-art performance when learning from natural language (Zipf, 1949; Dhingra et al., 2018; Le et al.,
2019), knowledge graphs (Kolyvakis et al., 2020), social networks (Krioukov et al., 2010; Muscoloni et al.,
2017), directed graphs (Munzner, 1997), scenario generation for stochastic phenomena (Pflug and Pichler,
2015), and combinatorial trees (Nickel and Kiela, 2017).

Hyperbolic representations perform well when X possesses a “tree-like” geometric prior, but many
datasets lack such structure or exhibit a more complex one. This has motivated the search for representations
of combinatorial graphs in Riemannian manifolds beyond constant-curvature space forms, including products
of space forms (mixed-curvature spaces) (Tabaghi et al., 2021; Samal et al., 2018; Eidi and Jost, 2020) and
representations that match discrete curvature in heterogeneous rotationally-symmetric manifolds (Giovanni
et al., 2022). While these proposals show great promise in addressing the emergent shortcomings of hyperbolic
spaces, each of them introduces additional parameters (such as the choice of space forms or their dimensions
and curvatures) without obvious nominal values on real-world datasets, and each requires a different set of
downstream tools.

We are thus motivated to look for a “universal” representation space. Beyond the geometric considerations
in the previous paragraphs, there may exist no machine learning models on X with favourable approximation,
generalization, and optimization properties even for data from a “nice” X . And when good models do exist,
we often work with datasets from some unknown low-dimensional subset of X and this latent structure is not
leveraged by the off-the-shelf models. We look for a representation that allows us to relay X ’s structure to
downstream tasks optimallyFurthermore, we seek a representation agnostic to the details of X ’s geometry in
the sense that it should work for any dataset equipped with a metric. The implications of such a “universal”
representation spaceR for machine learning is that machine learning tools could be “standardized” to process
inputs fromR. Upon learning a faithful representation of any dataset X inR, these standardized tools could
be used for downstream tasks like classification, regression, and dimensionality reduction.

1.1 “Good” Representation Spaces and Learnable Feature Maps, with Guarantees

We consider the problem of representing a general metric space (X , dX ) in a representation spaceR, using a
feature map φ : X → R. We are interested in “good” representation spaces and computationally tractable
feature maps.

Let us take a moment to reflect on what a “good” R and φ should entail. Empirically successful non-
Euclidean embeddings (Lopez et al., 2021; Giovanni et al., 2022) and Bourgain’s impossibility result for
metric embeddings in Hilbert spaces (Bourgain, 1985) suggest that R must not be flat. On the other hand,
we show in Section 4.3 that for any complete Riemannian manifold R (including all manifolds of positive
curvature) and for any positive integer n, there exists an n-point metric space which cannot be embedded in
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R with metric distortion smaller than O(log n). Finite-dimensional manifolds are thus too small to embed
datasets from arbitrary metric spaces, so we require thatR be infinite-dimensional.

Given a finite dataset from X , its representation in R is often computed by solving an optimization
problem. One example is Laplacian eigenmaps when X is a Riemannian manifold and dX the geodesic
distance (Belkin and Niyogi, 2003, 2006). The feature map φ is thus defined implicitly via an optimization
problem. A drawback of this strategy is that if a new sample is added to the dataset, computing its representation
may require recomputing representations of all points. To avoid this, we are interested in efficient direct
parameterizations of the feature map by deep neural networks with controlled complexity. In machine learning,
this “amortization” of static optimization-based procedures is referred to as (out-of-sample) generalization
(Bartlett et al., 2017; Agarwal and Niyogi, 2009; Bartlett and Long, 2021; Mei et al., 2022; Mei and Montanari,
2022). To make it possible, R should be a familiar representation space with well-understood geometry,
finitely parameterized points, and admitting efficient numerical algorithms. Since only finite-dimensional
representations can be practically implemented, we ask that the feature map φ : X → R implemented by our
deep learning model take values in a finite-dimensional subspace ofR whenever X has a suitable geometric
prior (which we make precise shortly). We informally refer to the dimension of the image of φ as the effective
dimension of the representation φ of X .

We show that the requirements forR are met by a certain space of probability measures equipped with
an optimal transport metric, and that the corresponding feature map φ can be exactly implemented (in the
sense of memorization capacity) by a deep neural network with controlled complexity. Concretely, we prove
that a deep neural network with about n log(n) layers of width n2 can embed any dataset of n points in X
with low metric distortion. Thus, unlike neural networks studied by most universal approximation theorems
(Burger and Neubauer, 2001; Yarotsky, 2017; Kratsios and Papon, 2022; Acciaio et al., 2023; Kidger and
Lyons, 2020; Puthawala et al., 2022; Shen et al., 2021), the PT does not face the curse of dimensionality. Its
number of parameters is a (small-degree) polynomial in the embedded number of points which is independent
of X ’s dimension. In contrast, the networks constructed in universal approximation theorems usually require a
number of parameters exponential in X ’s dimension.

Representation
Learning

Metric Embedding
Theory

Neural Representations
+
n-Point Guarantees

Deep Learning
Theory

The particular n-point dataset (a subset Xn of X ) encodes information
about general points in X . Its points act as reference points or landmarks
for the remainder of X . If X is a polytope (for example, [0, 1]d) then Xn
could be the set of extremal points in X (for example, Xn = {0, 1}d). If
X is a connected compact Riemannian manifold then Xn could be any
maximal δ-dense subset; for a sufficiently small1 δ > 0 this set of n points
encodes most of the metric information in (X , dX ). In machine learning,
Xn is the dataset to be analyzed or the training set which is randomly
drawn from X . In metric embedding theory suitable finite subsets play
an analogous role to Schauder bases in the theory of Banach spaces (see
(Naor, 2018)).

This places our work at the junction between metric embedding theory
and representation learning. The former aims at proving the existence of
low-dimensional and low-distortion embeddings of finite metric spaces

(e.g. Xn), while the latter seeks computationally tractable representations of non-linear data (e.g. X ) which
are performant in downstream learning tasks. Our theoretical guarantees concern n-point datasets from X
because one cannot expect to embed general infinite metric spaces into any single “reasonable”2 space. Finally,
we complement the theory by stylized computer experiments which illustrate low metric distortion of our
proposed representations (compared to Euclidean and hyperbolic) as well as out-of-sample generalization.

1. Let dg be the geodesic distance on X . The main result of (Katz and Katz, 2011) shows that if δ is less than 10 times the length of the
smallest non-contractible loop in X (i.e. X ’s systole) then, map x 7→ (dg(x, xl))

n
l=1 is a high-dimensional Euclidean bi-Lipschitz

embedding of the Riemannian manifold X ; where Xn := {xl}nl=1. A key point here is the trade-off between the embedding
dimension n, which grows exponentially in δ−1 (via an elementary covering argument) and the Lipschitz constant of the map
x 7→ (dg(x, xl))

n
l=1 which is large whenever δ is small.

2. By “reasonable” we mean a separable complete geodesic metric space.
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1.2 The Representation Space

Our search for a “good” representation space begins by examining the Wasserstein space, denoted by
(P2(Rd),W2), (d ≥ 1), which is both infinite-dimensional and exhibits “positive curvatures on all scales”
(Kloeckner and Bertrand, 2016, Section 4.1.1). Furthermore, even when d = 1, (P2(Rd),W2) contains
an isometric copy of any finite-dimensional bounded Euclidean ball. Thus, it has plenty of room and a
complex-enough geometry to make it a viable candidate for a universal representation space. A fortiori, this
intuition has been confirmed by Andoni, Naor, and Neiman (Andoni et al., 2018) who show that (P2(Rd),W2)
embeds any finite dataset with little or no distortion to X ’s metric geometry when d > 2, with d = 2 still an
open problem in geometric analysis.

A computational drawback of (P2(Rd),W2) is that its elements cannot be exactly implemented by a
computer (capable of processing real values) but rather only approximated by an expressive class of probability
measures such as Gaussian mixtures or empirical distributions (atomic probability measures) (Chevallier,
2018). This makes them ill-suited for sharp embedding guarantees since the optimal approximation rate using,
for example, atomic measures with M atoms in P2(Rd) with respect to the Wasserstein distance is O(M−1/d)
(Graf and Luschgy, 2000; Kloeckner, 2012; Liu and Pagès, 2020). Moreover, restricting the Wasserstein-2
distance to either the set of Gaussian mixtures or empirical (atomic) probability measures no longer yields a
complete geodesic space, resulting in an ill-behaved geometry.

We sidestep these issues by instead working on the smaller optimal transport-theoretic space (GM2(R),
MW2), introduced by (Delon and Desolneux, 2020), whose elements are (finitely parameterized) univariate
Gaussian mixtures and whose distance is a strengthening of the Wasserstein distance obtained by considering
only those couplings which are themselves Gaussian mixtures. This space, metrized by restricting the optimal
couplings, is part of a broader line of recent work which encodes additional structure into the transport distance
by constraining the couplings; we highlight adapted optimal transport (Backhoff-Veraguas et al., 2020b;
Acciaio et al., 2020; Backhoff et al., 2022), martingale optimal transport (Dolinsky and Soner, 2014; Beiglböck
et al., 2017b; Guo and Obł ój, 2019; Backhoff-Veraguas and Pammer, 2022b), and semi-martingale optimal
transport (Liu and Neufeld, 2019). The marked advantage of (GM2(R),MW2) over (P2(Rd),W2) is that
its elements can be exactly implemented (up to numerical precision) which eliminates the quantization error
of O(M−1/d). Geometrically, (GM2(R),MW2) shares many of the appealing properties of the classical
Wasserstein space (P2(Rd),W2) (e.g., it is a complete separable geodesic space); thus, there are no geometric
drawbacks of working with (GM2(R),MW2) instead of with (P2(Rd),W2). As byproduct, since the distance
MW2 is strictly stronger than the classical Wasserstein distanceW2, our deep neural embedding results into
(GM2(R),MW2) automatically imply embeddings in (P2(R),W2).

To summarize, we move to the space of univariate Gaussian mixtures with transport distances of (Delon
and Desolneux, 2020) for which there is a well-developed machine learning machinery (including non-linear
dimension reduction (Bigot et al., 2017), clustering (Mi et al., 2018), and regression (Chen et al., 2021)) and
which is neither “too small” nor “too flat”. Furthermore, as we show, the feature maps are computationally
tractable and can be parameterized by deep neural networks. Finally, several maintained Python libraries
streamline the implementation of deep learning algorithms in these spaces (Flamary et al., 2021; Delon and
Desolneux, 2021).

1.3 Universal Feature Maps

We implement the feature maps using an extension of the probabilistic transformer (PT) model (Kratsios et al.,
2022; Kratsios, 2023). PT extends the classical transformer network used in natural language processing3

(Vaswani et al., 2017); in particular, the PT implements the classical transformer “on average”. It can be shown
to universally approximate any continuous function while simultaneously exactly implementing arbitrary
compact (possibly non-convex) constraints (Kratsios et al., 2022).

We adapt the probabilistic transformer by composing it with a non-parameterized input layer which
translates metric information into vectorial data by mapping a point in X to a vector of its distances to a set of

3. And now in many other places in deep learning.
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Figure 1: Schematic view of a probabilistic transformer (gray) representing a metric space X (orange) while
bi-Lipschitz embedding the distinguished points (landmarks, data) Xn (black).
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Figure 2: Embedding landscape of probabilistic transformers. Data from structured spaces such as trees or
manifolds is “easiest” to embed in terms of feature map complexity. Data from unstructured spaces (general
metric graphs, expanders) requires more complex (but still uncursed) neural feature maps.

landmarks {xl}nl=1 ⊆ X (cf. Figure 6a). The resulting process of representing a metric space X with the PT
with embedding guarantees for any distinguished n-point dataset Xn ⊆ X is illustrated in Figure 1.

1.4 Summary of Contributions

Our results can be summarized with reference to the PT’s embedding landscape in Figure 2. Our first two
universal representation theorems relate to the first row, where no “geometric prior” is assumed on the metric
space X . The second and third rows relate to the sharper embedding guarantees we obtain when X does
have a regular geometry. In particular, this regularity allows us to explicitly bound the embedding’s effective
dimension which becomes independent of n, and depends only on X ’s latent geometry.

We begin by showing that, for any finite dataset Xn in X and any geometric perturbation parameter
α ∈ (1/2, 1) (Hölder coefficient), there is a PT which bi-α-Hölder embeds Xn intoR with metric distortion
equal to that of the quantitative version of Assouad’s embedding theorem (Assouad, 1979) as derived by Naor
and Neiman (Naor and Neiman, 2012). We note that the result of Naor and Neiman is an existence theorem,
while we prove that the embedding can be implemented by a concrete deep neural network (the PT) with
explicitly controlled width and depth. Of course, it is desirable to transition from α < 1 to a bi-Lipschitz
embedding with α = 1. One reason is that Lipschitz feature maps are easiest to learn from (Kratsios and
Papon, 2022). Our second main result shows that for any D > 1, still without geometric assumptions on X ,
there exists a PT which represents Xn inR and for which a pair of uniformly randomly sampled points are
bi-Lipschitz embedded with metric distortion at most D with probability at least O(n−4e/(1+D)). Thus the PT
exhibits a natural trade-off between embedding quality and satisfiability of the embedding.
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It is natural to expect that if X has a regular geometric prior, it should be possible to obtain a deterministic
small-distortion bi-Lipschitz guarantee for all points in Xn. This is indeed the case: we show that if X is
a compact d-dimensional Riemannian manifold with controlled Ricci curvature, then there is a PT which
bi-Lipschitz embeds Xn into R with effective dimension 3d + 6. A similar fact holds for combinatorial
trees, with PT’s metric distortion coinciding with that of Gupta’s embeddings of trees in Euclidean space
(Gupta, 2000). In these cases, we also obtain explicit depth, width, and effective dimension estimates. It
is worth emphasizing that the depth and the width only depend on the number of points n for which we
seek a memorization guarantee (the number of landmarks) and the effective dimension only depends on the
regularity and geometry of X (cf. Figure 2). Lastly, we show that if one embeds into Gaussian mixtures
on Euclidean space of dimension at least three, then there are probabilistic transformers which implement
bi-Hölder embeddings of arbitrarily low distortion.

The significance of these results for machine learning practice is that (GM2(R),MW2) indeed acts as a
“universal” embedding space with the feature map implemented by a probabilistic transformer. This motivates
the development of downstream tools to work with data points that are probability measures, and in particular
Gaussian mixtures. In fact, some of those tools are already available4, e.g. (Bigot et al., 2017; Mi et al., 2018;
Ye et al., 2017; Ho et al., 2017; Chen et al., 2021). Furthermore, deep neural networks implicitly or explicitly
compute representations of data, but, to the best of our knowledge, there are no prior theoretic results for such
deep neural representations of embedding maps which guarantee low metric distortion. We thus provide the
first theoretical results on embeddings of datasets from general metric spaces using deep neural networks.

Independently of how the embeddings are implemented (by probabilistic transformers or otherwise), these
are also the first guarantees that the discrete geometries covered by our results can be embedded into the space
of Gaussian mixtures on R with an optimal transport-type distance. Finally, we develop new proof techniques
that opportunely combine metric embedding theory (Heinonen, 2003; Krauthgamer et al., 2005; Naor and
Neiman, 2012; Ostrovskii, 2013; Eriksson-Bique, 2018; Andoni et al., 2018), memorization theory of deep
feedforward networks (Sontag, 1997b; Park et al., 2020; Feldman and Zhang, 2020; Daniely, 2020; Vershynin,
2020; Bubeck et al., 2020; Vardi et al., 2022), and computational optimal transport (Delon and Desolneux,
2020). Finally, we note that our results immediately imply embeddings into the usual Wasserstein-2 space
over R.

2. Geometric Background
We briefly overview some of the relevant terminologies from metric embedding theory. For further details we
recommend the book (Ostrovskii, 2013) or the lecture notes (Matoušek, 2013; Naor, 2015).

A metric space is a pair (X , dX ) of a set X and a distance function dX : X × X → [0,∞) which is
symmetric in its arguments, is 0 if and only if x = x̃ (thus can uniquely identify points), and satisfies the
triangle inequality: for every three points x1, x2, x3 in X dX (x1, x3) ≤ dX (x1, x2) + dX (x2, x3). The
prototypical metric space is the Euclidean space; i.e. Rn with Euclidean distance d2(x, x̃)

def.
=
∑n
i=1(xi − x̃i)2.

We now review three other examples which are central to our analysis.

2.1 Combinatorial Graphs

A (combinatorial) graph is a pair G def.
= (V,E) of a set of vertices (or vertices) V and a set of unordered pairs5

E ⊆
(
V
2

)
, called edges, such that {u, v} ∈ E if there is an edge between u, v ∈ V . We will always assume G

to be connected, which means that for any u, v ∈ V there is a sequence of edges {u, v1}, . . . , {vN , v} in E
“linking u to v. Every graph G = (V,E) induces a metric space XG

def.
= (V, dG) whose graph geodesic distance

4. All our results regarding embeddings into (GM2(R),MW2) yield embeddings into (GM2(R),W2) with the same distortion using
the same probabilistic transformer network. Therefore, one can deploy any such available machine learning tool on (W2(R),W2).

5. For a set V ,
(V
2

)
denotes the quotient of the Cartesian product V × V under the equivalence relation ∼ defined on any

(v1, v2), (v3, v4) ∈ V × V by (v1, v2) ∼ (v3, v4) if and only if (v1, v2) = (v3, v4) or (v1, v2) = (v4, v3).
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dG is defined for any u, v ∈ V by

dG(v, u)
def.
= dG(u, v)

def.
= inf

{
N : ∃ {v, v1}, . . . {vN−1, u} ∈ E

}
.

We only consider simple graphs, meaning that any two vertices can be connected by at most one edge.

2.2 Riemannian Manifolds with Lower-Bounded Ricci Curvature

We overview the “smooth geometric prior” considered in this paper; namely, we review the notion of a
Riemannian manifold. For a more detailed exposition on Riemannian geometry, we refer the reader to (Jost,
2017, Chapter 1) on the topic.

A d-dimensional Riemannian manifold (M, g) is a pair of a d-dimensional smooth manifold M and
smoothly varying family of positive-definite inner-products g def.

= (gx)x∈M , with each gx mapping pairs of
vectors in the tangent space Tx(M) above the point x ∈ M to R. Equivalently, by (Nash, 1954, Theorem
2) we may describe any d-dimensional Riemannian manifold “extrinsically” by viewing it as a Riemannian
submanifold of the Euclidean space R2d+1.

We say that (M, g) is complete if every two points in M can be reached by a (continuous) curve and if the
geodesic distance, defined for x, x̃ ∈M by

dg(x, x̃)
def.
= inf

γ

∫ 1

0

〈γ′(t), γ′(t)〉γ(t)dt, (1)

makes (M,dg) into a complete metric space; where the infimum in (1) is taken over all piece-wise continuously
differentiable curves γ : [0, 1]→ R starting at x and ending at x̃; i.e. γ(0) = x and γ(1) = x̃. By the main
result of (Hopf and Rinow, 1931), the completeness of (M,dg) is equivalent to the existence of unique smooth
curves minimizing the objective function (1); these curves are called geodesics.

In this paper, we focus on Riemannian manifolds satisfying a lower-bounded Ricci curvature condition,
which we express using the curvature-dimension inequality of (Baudoin et al., 2014): for every infinitely
differentiable map f : M → R the following holds

1

2
∆‖∇f‖2g − 〈∇f,∇(∆f)〉g ≥

1

d
‖∆f‖2g + r‖∇f‖g, (2)

where ∆ is the Laplacian on (M, g) (which describes heat flow on (M, g)) and ‖·‖g
def.
= 〈·, ·〉g . To make matters

concrete, one can show that a d-dimensional sphere of radius ρ > 0 satisfies (2) with r = ρ−2d(d− 1) > 0,
the hyperbolic plane satisfies (2) with r = −1 < 0, and the Euclidean space satisfies (2) with r = 0. Since ∆
dictates the heatflow on (M, g), then r in (2) can be interpreted as describing the rate at which heat dissipates
on (M, g) with small r being fast (e.g. the hyperbolic plane) and large r being slow (e.g. the sphere).

2.3 Mixed-Gaussian Optimal Transport

We rely on one more example of a non-Euclidean metric space, which is a variant of the space of probability
measures introduced by (Waserstein, 1969), in the context of optimal transport theory. This is the optimal
transport-theoretic space of Gaussian mixtures introduced in (Delon and Desolneux, 2020), which specializes
in the classical optimal transport constructions to the class of Gaussian mixtures. This metric space of
probability measures is part of a broader area of contemporary research encoding structure into transport plans
by restricting the classes of admissible transport plans; see (Beiglböck et al., 2017a; Bion-Nadal and Talay,
2019; Acciaio et al., 2020; Backhoff-Veraguas et al., 2020a; Backhoff-Veraguas and Pammer, 2022a)). In
what follows, we use Pp(Rd) to denote the set of probability measures on the Euclidean space Rd admitting a
pth-moment; i.e. P ∈ Pp(Rd) if EX∼P[‖X‖p] <∞.

We refer to the metric spaceW2(Rd)
def.
= (P2(Rd),W2) as the Wasserstein space, whereW2 is defined for

any two P and Q in P2(Rd) by

W2
2 (P,Q)

def.
= inf
π∈Cpl(P,Q)

E(X,Y )∼π
[
‖X − Y ‖2

]
, (3)
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where the set Cpl(P,Q) consists of all probability distributions on R2d with marginals P and Q. A key point,
highlighting our interest in the case in embedding of metric spaces into univariate distributions, is that when
d = 1 then

W2(P,Q) =

∫ 1

0

(
QP(t)−QQ(t)

)2

dt,

where QP and QQ are the respective quantile functions of P and of Q. Thus, for empirical distributions, unlike
in the multivariate case (d > 1) where computingW2(P,Q) has super-cubic complexity (Orlin, 1988), in
the univariate case (d = 1)W2 can be easily computed via a simple sorting procedure; i.e. with near linear
complexity.

In the case where P and Q are Gaussian mixtures (Delon and Desolneux, 2020, Section 4.1) propose a
stronger distance function than the classical Wasserstein-2 distanceW2(P,Q) on the set of subset of P2(R)
consisting of univariate Gaussian mixtures; we denote this set by GM2(R). This distance is defined by
restricting the couplings in optimization problem (3) to the smaller class couplings π which are themselves
are Gaussian mixtures (on R2d). Denoted byMW2(P,Q), the mixed-Gaussian Wasserstein distance between
two Gaussian mixtures P =

∑I
i=1 w1,iN(µ1,i,Σ1,i) and Q =

∑J
j=1 w2,j N(µ2,j ,Σ2,j) is equivalently

expressed in the following computationally tractable formulation. Denote the Wasserstein-2 distance between
N(µ1,i,Σ1,i) and N(µ2,j ,Σ2,j) by ωij and let Ω = (ω2

ij)
I,J
i,j=1. ThenMW2

2(P,Q) is given by

MW2
2(P,Q)

def.
= min

V ∈[0,∞)I×J
tr(V >Ω)

subject to V 1J = w1

V >1I = w2

where 1L = (1, . . . , 1)> denotes the L-dimensional vector of ones. Central to the tractability ofMW2
2 is that,

by (Cuesta and Matran, 1989), the Wasserstein-2 distance between two Gaussians N(µ1,Σ1) and N(µ2,Σ2)
is given in closed form by

W2
2

(
N(µ1,Σ1), N(µ2,Σ2)

)
= ‖µ1 − µ2‖2 + tr

(
Σ1 + Σ2 − 2

√√
Σ1Σ2

√
Σ1

)
,

where
√
A denotes the square-root of a symmetric positive-definite matrix A.

There are several relationships between the two optimal transport distances. First, clearly by definition one
hasW2 ≤MW2; moreover, the inequality is often strict. Conversely, it holds that

MW2(P,Q) ≤ W2(P,Q) +
√

2

(( I∑
i=1

w1,i tr (Σ1,i)
)1/2

+
( J∑
j=1

wj,i tr (Σ2,j)
)1/2

)
;

from which we see thatMW2 equals toW2 for finitely supported measures. We use (GM(Rd),MW2) to
denote the space of Gaussian mixtures with mixed-Gaussian Wasserstein metric.

2.4 Bi-Hölder Embeddings

A map φ : X ↪→ R from a metric space (X , d) and to a (metric) representation space (R, dR) is called a
bi-Hölder embedding if: there is an 0 < α ≤ 1, a scale s > 0, and a distortion D ≥ 1 such that for every
x, x̃ ∈ X

sdα(x, x̃) ≤ dR(φ(x1), φ(x2)) ≤ sD dα(x, x̃). (4)

The smallest value of D for which (4) holds quantifies the worst-case dilation between any two points induced
by the feature map φ, upon re-scaling6 by s. As an example, if R = Rn, X ⊆ Rm, and if φ is smooth then

6. If R is a normed space and φ is invariant under linear maps then we can always absorb s into the model. However, for general
representation spaces resealing is not meaningful without the scale s.

8
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D is roughly maxx ‖∇φ(x)‖; however, for general metric spaces these quantities are meaningless. Thus, a
large distortion D only globally distorts X ’s geometry by stretching all of it. As illustrated in Figure 3, a small
value of α relatively distorts the space’s geometry by placing more importance (illustrated by bright colours)
on nearby pairs of points and less importance on distant pairs of points (relative to the color redred vertex
in the center of Figure 3). This has the effect that large scales become more minor and small scales become
larger when α� 1, with this effect disappearing as α, approaches 0. Effectively α plays a comparable role to

(a) (b)

Figure 3: Effect of varying α on the geometry of the embedding metric space. a) α = 1 (Lipschitz): all
distances are equally distorted. b) α � 1 (fractional): small distances are prolonged, large distances are
shortened.

tuning the neighbourhood size in classical iterations of graph attention (Veličković et al., 2018) or the role of
neighborhood size when defining the mean average precision performance metric of (Cruceru et al., 2020;
Giovanni et al., 2022).

The parameter α ∈ (0, 1] can also be interpreted through its role in the loss function, which we use
to train our model. If Xn is a set of points which we want to embed intoMW(R) then in our numerical
experiments, we will train a probabilistic transformer to learn a low distortion bi-Hölder embedding by
numerically optimizing the following loss function which is a proxy for condition (4):∑

x,x̃∈Xn

∣∣dαX (x, x̃)−MW2(φ(x), φ(x̃))
∣∣. (5)

Here, the minimization is taken over the set of a set of models. When α � 1 then, (5) over emphasizes
embedding nearby pairs of points over embedding distant pairs of points. In contrast, when α = 1, all pairs of
points are given equal importance in the embedding. Thus, through the loss function (5), α implicitly plays
the role of the neighborhood size defining the graph attention mechanism of (Veličković et al., 2018) or the
average (distance) distortion loss function (used in e.g. (Samal et al., 2018; Giovanni et al., 2022)).

(Krauthgamer et al., 2005) introduce the notion of an aspect ratio of a measure space as the ratio of total
mass over the minimum mass at any point. Similarly, we define the aspect ratio of a finite metric space
(Xn, dn) as the ratio of the maximum distance between any two points therein (its diameter) over the minimum
separation between any two distinct points. We define

aspect(Xn, dn)
def.
=

maxx,x̃∈Xn dn(x, x̃)

minx,x̃∈Xn; x 6=x̃ dn(x, x̃)
.

We note that closely related concepts to the aspect ratio can be found in the (approximate) memorization results
for deep feedforward networks (Park et al., 2021). Furthermore, requiring that the aspect ratio is positive
and finite circumvents otherwise memorization by a feedforward neural network may be impossible (Sontag,
1997a).

A related quantity is the diameter of the n-point metric space (Xn, dn), defined by diam(Xn, dn)
def.
=

maxx,x̃∈Xn dn(x, x̃). Thus, the aspect ratio can be interpreted as (Xn, dn)’s diameter re-scaled by the
reciprocal smallest distance in Xn.

9
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Figure 4: X ’s capacity is
the number of small balls
of radius r/5 that can fit in
any ball of radius r.

Lastly, we will make use of the notion of “metric capacity” cap(X , dX ) of
a metric space (X , dX ). This “dimensional” metric invariant is defined similarly
to box or Hausdorff dimension (in fractal geometry (Falconer, 1986)), is a
formalization of the notion of dimension of a general metric space X . When
X is the m-dimensional Euclidean space or when m-dimensional compact
Riemannian manifold then, the logarithm of its capacity can be shown to be
proportional to m. Illustrated in Figure 4, the capacity cap(X , dX ) of a metric
space (X , dX ) is equal to

sup
{
d ∈ N+ : ∃(xi)di=0 ∈ X d+1,∃r > 0 s.t. tdi=1BX (xi, r/5) ⊆ BX (x0, r)

}
,

where BX (x, r)
def.
= {u ∈ X : dX (u, z) < r} and t denotes the union of disjoint

sets. We refer the reader to (Heinonen, 2001, Chapter 10) and (Bruè et al., 2021,
Proposition 1.7) for further details on metric capacity and to (Le Donne and
Rajala, 2015) for an exposition of metric-theoretic notions of dimension.

3. The Probabilistic Transformer Model
Since any good representation space should admit “nice” feature maps which can be approximated by standard
neural networks. Our main result shows that this holds forMW2(R), with the neural network being the
probabilistic transformer. The PT model, introduced below and illustrated in Figure 5, processes a dataset
(X , dn) from a metric space (X , dX ) in three phases before producing a probabilistic output in GM2(Rd).

Linear Linear

Linear

Linear

Linear 𝕕
Linear

Concat.

Linear + abs

+ Softmax

Figure 5: The architecture of a probabilistic transformer.

First, data in (Xn, dn) is encoded into an L-dimensional vector of distances to a set of landmarks
x1, . . . , xL ∈ Xn. The encoding, illustrated by the Φ{xl}Ll=1

layer in Figure 5, is reminiscent of the graph
attention mechanism of (Veličković et al., 2018). The un-normalized graph attention mechanism is defined as

Φ{xl}Ll=1
: Xn 3 x 7→ (dn(x, xl))

L
l=1 ∈ RL. (6)

The landmarks act as an intrinsic reference frame, they identify points in Xn by their relative positions to
{xl}Ll=1. This can be seen as a non-linear counterpart to a truncated orthonormal basis of a Hilbert space. When
all points in X are chosen as landmarks, this un-normalized graph attention mechanism is a finite-dimensional
version of the embedding of (Xn, dn) into (Rn, `∞) (Fréchet, 1906).

Remark 1 The points in x1, . . . , xL in the definition of Φ{xl}Ll=1
are in principle trainable and could be

discovered algorithmically instead of being specified by the user.

Next, this vectorial data is processed by a set of independent, parallel ReLU-feedforward networksNNw :
RL → RK , and K ReLU-feedforward networks NN 1 : RL → Rd × Rd×d, . . . ,NNK : RL → Rd × Rd×d.
The role of the networks {NN k}Kk=1 is to process inputs to a d-dimensional Gaussian measure-valued outputs

10
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Nd(µ,Σ) by outputting a mean vector µ and a square-root of a covariance matrix Σ>Σ. The role of the
network NNw is to generate input-dependent weights in the K-simplex {w ∈ [0, 1]K :

∑K
k=1 wk = 1} used

to mix the Gaussians into a Gaussian mixture.

Remark 2 It is theoretically sufficient for the ReLU network to be independent. In practice, this can be
relaxed by merging them into a single network as we do in Section 5.

The predictions of all networks are then combined using the probabilistic attention mechanism (Kratsios
et al., 2022) which generalizes the construction of (Bishop, 1994). The (Gaussian) probabilistic attention mech-
anism is defined for any K ∈ N+, any weight w ∈ RK , and any set of keys Y def.

= ((µ1,Σ1), . . . , (µK ,ΣK)) ∈
RK×(d+d2) by

P-Attn(w, Y )
def.
=

K∑
k=1

σK(w)kN(µk,Σ
>
k Σk) ∈ P2(Rd);

where we have identified Rd+d2 with Rd × Rd×d (where RN×M is the set of N ×M matrices) and σK(u)
def.
=

(euk/
∑K
i=1 e

ui)Kk=1 is the softmax function. The probabilistic attention mechanism’s place in our model is
illustrated by the last layer in Figure 6a, which synthesizes the mixtures from the (µk)Kk=1, (Σk)Kk=1, and the
(wk)Kk=1 parameters produced by the feedforward networks.

The parameters defining the Gaussian mixtures are implemented by deep feedforward networks with
ReLU activation function ReLU(x)

def.
= max{0, x}. Let D ∈ N+. Fix a depth7J ∈ N+ and a multi-index

[d]
def.
= (d0, . . . , dJ) of integers with d0 = d and dJ = D. A function NN : Rd → RD is said to be a deep

feedforward network if for every j = 1, . . . , J there are dj × dj−1-dimensional matrices A(j) called weights
and b(j) ∈ Rdj called biases, such that NN admits the iterative representation

NN (x)
def.
=A(J)x(J) + b(J)

x(j) def.
= ReLU •(A(j)x(j−1) + b(j)) for j = 1, . . . , J − 1,

x(0) def.
= x,

(7)

where • denotes component-wise composition. We now formalize the probabilistic transformer in Figure 6a.

Definition 3 (Probabilistic Transformer (PT)) Fix a metric space (X , d) and a D ∈ N+. A probabilistic
transformer is a map T : X → P2(RD) with representation

T (x) = P-Attn
(
NNw(u), (NN k(u))

K
k=1

)
, u

def.
= Φ{xl}Ll=1

(x), (8)

where L ∈ N+, x1, . . . , xL ∈ X , and NNw : RL → RK and NN 1 : RL 7→ RD × RD×D, . . . ,NNK :
RL 7→ RD × RD×D are ReLU feedforward networks.

The depth of a probabilistic transformer T (with representation (8)) is defined as the maximum of the depth of
each of the feedforward networksNNw,NN 1, . . . ,NNK . Similarly, the width of a transformer T is defined
as the maximum of the widths of each feedforward network NNw, NN 1, . . . , NNK . These definitions are
natural since each of the networks NNw, NN 1, . . . , NNK defining T are independent, in the sense that
their layers do not pass inputs to or from one another and their parameters have no explicit relations.

The effective dimension of a probabilistic transformer T , is the maximum number of mixtures output by T
for any input scaled by the number of parameters defining each Gaussian probability measure in

effdim(T ) := K (D +D2),

where we use the notation of Definition 3. Thus, dT
def.
= K. We define the number of trainable param-

eters in T , denoted by par(T ), as the aggregate number of trainable parameters amongst the networks

7. The depth is the total number of affine layers defining the network and not the number of “hidden layers”; that is, the depth is one
more than the number of ReLU activation functions applied component-wise in (7).
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NNw,NN 1, . . . ,NNK ; i.e. par(T )
def.
= par(NNw) +

∑K
k=1 par(NN k). As in (Bartlett et al., 2019), the

number of trainable parameters encodes “network topology” by only counting the number of non-zero entries,
thus only counting the number of weighted and biases between any two neurons with a direct connection. In
the notation of (7), the number of trainable parameters of a neural network NN is defined as

par(NN )
def.
= ‖c0‖0 +

J∑
j=1

(
‖A(j)‖0 + ‖b(j)‖0

)
,

where ‖ · ‖0 counts the number of non-zero entries in a matrix or vector of a given size. For fully connected
feedforward networks of constant width par(NN ) is roughly equal to the network’s depth multiplied by its
width squared; but in general par(NN ) will be much smaller since our networks will tend to have a sparsely
connected architecture analogously to (Suzuki, 2019) or in the convolutional neural network theory (Zhou,
2020). If one replaces ‖ · ‖0 with the Fröbenius and Euclidean norms (for the weight and biases respectively)
then, par(NN ) becomes a path norm (Neyshabur et al., 2015; Zheng et al., 2019; E. and Wojtowytsch, 2022)
typically used in neural network regularization.

4. Main Results
Our quantitative results concerning the embedding capabilities of probabilistic transformers in mixed-Gaussian
Wasserstein spaces fall into two classes. The first set of results concerns the possibility of embedding and the
complexity of the model performing an embedding when no “latent geometric structures” are present in the
dataset, and the latter class of results concerns the embedding of datasets with a latent geometry.

Table 1 summarizes the rates in our main results. We emphasize that explicit constants are also available
and we refer the reader interested in detailed constants, and precise O rates instead of Õ to Tables 3 and 4 in
Appendix A. Note that we use the following asymptotic notation. Given g, f : N→ [0,∞) will say that g is
Õ(f) if g is O(f̃) where f = f̃× logarithmic terms.

Table 1: Complexity of the probabilistic transformers performing n-point embeddings.

Latent Geometry Effective Dimension dT Depth ∈ Õ( · ) Width ∈ Ω( · ) Result

General Ω
(

log(cap(Xn,dn))
α

)
n
(
1 + log(n5/2 aspect(Xn, dn))

)
max{dT , n2} Theorem 4

General O
(
(D − 2)−2θD log2(n)

)
nΘD

(
1 + θD + log(aspect(Xn, dn))

)
max{dT , n2θD} Theorem 5

General - Multivariate Mixtures O
(

n6

(D−1) aspect(Xn, d)2
)

n2 + log
(
n5/2 aspect(Xn, dn)

)
O
(n5(n−1)

(D−1) aspect(Xn, d)2
)

Theorem 7

Discrete: Trees M n
(
1 + log(n5/2 diam(Xn, dn))

)
max{M,n2} Proposition 11

Discrete: 2-Hop Graphs Ω
(

log(1+ρ(AG))
α

)
n
(
1 + log(n5/2 diam(Xn, dn))

)
max{dT , n2} Corollary 12

Manifold: Riemannian, Bounded Curvature Ω
(

m1+α

α(1−α)1+α

)
n
(
1 + log(n5/2 aspect(Xn, dn))

)
max{dT , n2} Corollary 9

Manifold: Riemannian and Compact Ω(d) n
(
1 + log(n5/2 aspect(Xn, dn))

)
max{d, n2} Proposition 8

4.1 Embedding Guarantees for General Datasets

Our first main result shows that any metric space X can be represented in (GM2(R),MW2) with a small PT
guaranteeing that any fixed finite set of points can be embedded with little distortion, if we allow for minor
perturbations to X ’s geometry. By a “small PT”, we mean that the representation implemented by the PT of
Theorem 5 does not face the the curse of dimensionality.

Theorem 4 (Deterministic Fractional Embeddings of Large Data by Small Transformers)
There is an absolute constants C > 0 such that, for every metric space (X , dX ), every finite subset Xn ⊆ X
with n ≥ 2 points, and every “geometric perturbation parameter” 1

2 < α < 1, there exists a probabilistic
transformer T for which: for every x, x̃ ∈ X

dαX (x, x̃) ≤ W2(T (x), T (x̃)) ≤MW2(T (x), T (x̃)) ≤
⌈
CCXn

⌉
dαX (x, x̃),

12
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where CXn
def.
=
(

12 log(cap(Xn))
(1−α)

)1+α

. Furthermore, T ’s effective dimension, depth, and width are recorded in
Table 1 (with explicit constant given in Tables 3 and 4).

Independently of any machine learning model, results such as (Bartal et al., 2005) confirm there are n-point
metric spaces Xn with the property that any finite subset X̃n that bi-Lipschitz embeds into `2 with distortion D
cannot contain more than n1−ϑD points, for some ϑD > 0 depending only on D. Equivalently, if we uniformly
and independently pick a pair of points in Xn at random then they belong to X̃n with probability at-most 1

n2ϑD
.

This places a fundamental limitation on the number of pairs of points which can be bi-Lipschitz embedded
with distortion D using any model. In particular, this type of limitation must translate to the PT model. In
contrast, this is not the case, when working with almost bi-Lipschitz (α-Hölder with α ≈ 1) embeddings.

Nevertheless, the next result provides a probabilistic guarantee that a PT embeds pairs of points in the set
of landmarks Xn with a given distortion. As we may expect, the likelihood that any two given data points are
embedded with a prescribed (maximal) distortion is proportional to the size of the distortion. In other words if
we do not allow any perturbation to the landmark set’s geometry then, with high probability, most pairs of
points can be bi-Lipschitz embedded into (GM2(R),MW2) with large distortion and with small probability
most pairs of points in the landmark set can be embedded with small distortion.

Theorem 5 (PAC-Type Embeddings of Large Data by Small Transformers) Let (X , dX ) be a metric space,
fix a finite subset Xn of X with n ≥ 2 points, and let P be the uniform probability measure on Xn. There
is a 1

e2 < δn < 1 depending only on n such that for every δn < δ < 1, there exists a “scale” s > 0 and a
probabilistic transformer T : (Xn, dn) ↪→ (GM2(R),MW2) satisfying

P

(
sdX (x, x̃) ≤ W2(T (x), T (x̃)) and MW2(T (x), T (x̃)) ≤ sD(D − 1)dX (x, x̃)

)
≥ δ,

Abbreviate λ def.
= logn(

√
δ). The distortion parameter D > 2 is given explicitly by

D = −2

(
1 + λ

) 1+λ
λ

λ

Furthermore, T ’s effective dimension, depth, and width are recorded in Table 1 (explicit constants are in
Tables 3 and 4).

Remark 6 (The Minimum Valid Probability δn in Theorem 5) The quantity δn in Theorem 5 is defined by

δn
def.
= max

{
1
e2 , δ̃n

}
where δ̃n is the unique 1

e2 ≤ δ < 1 solving logn(
√
δ) =

(
1 + logn(

√
δ)
) 1+logn(

√
δ)

logn(
√
δ) .

Even though the multivariate transport distances are more expensive to compute, it is natural to ask
whether there are any advantages in representing metric spaces as mixtures of multivariate instead of univariate
Gaussians. The answer is yes, as shown by the following deep neural analogue of the main finding of (Andoni
et al., 2018). The result shows that if one considers multivariate Gaussian mixtures, there are probabilistic
transformers that implement metric embeddings of arbitrarily low distortion on any finite subset of a given
metric space; however, the effective dimension of these embeddings does become large. We note that it still
depends only polynomially on the number of points being embedded.

Theorem 7 (Distortionless Fractional Embeddings into Multivariate Gaussian Mixtures) Let (X , d) be
a metric space and Xn ⊆ X a finite subset with at least two points. For every distortion D > 1 there exists
a probabilistic transformer T : X → GM2(R3) for which there is a “scale” s > 0 such that for every
x, x̃ ∈ Xn

s d1/2(x, x̃) ≤MW2

(
T (x), T (x̃)

)
≤ Dsd1/2(x, x̃). (9)

Moreover, the complexity of T s given in Table 1.

13



KRATSIOS, DEBARNOT, DOKMANIĆ

Theorem 7 shows that one can achieve arbitrarily low distortion with embeddings into the space of multivariate
Gaussian mixtures. In the more computationally efficient setting, where we consider embeddings into univariate
Gaussian mixtures, Theorems 4 and 5 provide efficient embedding guarantees for arbitrary finite subsets of
general metric spaces with small but non-vanishing distortion. It is natural to ask whether we can obtain
stronger guarantees if Xn is a subset of a well-behaved X with a “geometric prior”. Indeed, we show below
that in this case the guarantees in Theorem 1 can be improved to deterministic bi-Lipschitz guarantees.

4.2 Consequences: Improved Guarantees When (Xn, dn) has a Geometric Priors

Theorems 5 and 4 can be straightforwardly applied to any finite metric space, in the sense that there is no
(Xn, dn) quantities to “plug-in”, and this is true regardless of if dn encoded some additional “latent geometric
priors”. Nevertheless, a fully explicit use of Theorem 4 requires an explicit estimate on (Xn, dn)’s metric
capacity. Conveniently, such estimates can be derived when (Xn, dn) has some latent geometry.

We consider two different types of geometries from which the n-point set of landmarks is drawn. For
instance, one may alternatively interpret Xn as a training dataset. The first is the smooth geometries arising
from suitable Riemannian manifolds and the second is discrete geometries arising from well-behaved types of
combinatorial graphs.

4.2.1 SMOOTH GEOMETRIC PRIORS

In the case of a “smooth geometric prior”, meaning that points are drawn from a Riemannian manifold with
suitable curvature, the required number of mixtures and the embedding distortion can be made independent
of the number of datapoints n. A fortiori, the necessary number of mixtures is proportional to the latent
Riemannian manifold’s dimension.

Proposition 8 (Representation of Riemannian Manifolds with bi-Lipschitz Guarantees) Fix d ∈ N+, let
(M, g) be a d-dimensional Riemannian manifold with geodesic distance dg , and let K ⊆M be compact. For
any finite subset Xn ⊆ K with n ≥ 2 points, there is a constant CK > 0 depending only on K and a PT as in
Theorem 4 satisfying: for every x, x̃ ∈ X the following holds

dg(x, x̃) ≤ W2(ϕ(x), ϕ(x̃)) ≤MW2(ϕ(x), ϕ(x̃)) ≤ CKdg(x, x̃).

Furthermore, T ’s effective dimension, depth, and width are recorded8 in Table 1.

Proposition 8 provides bi-Lipschitz embedding guarantees for finite subsets of a general Riemannian manifold
via a small PT. If the latent Riemannian manifold has bounded Ricci curvature, then we find that the constant
CK can be made explicit and independent of any fixed compact subset of the Riemannian manifold. For this,
we apply Theorem 4, and we turn to representations by our PT model with n-point (non-Lipschitz) bi-Hölder
embedding guarantees.

Corollary 9 (Representation of Riemannian Manifolds with Bounded Ricci Curvature) Fix d ∈ N+, let
(M, g) be a complete m-dimensional Riemannian manifold lower-bounded Ricci curvature and with geodesic
distance dg . There is an absolute constant C̃ > 0 such that, for every finite subset Xn ⊆M with n ≥ 2 points,
there is a PT as in Theorem 4 satisfying

dαg (x, x̃) ≤ W2(T (x), T (x̃)) ≤MW2(T (x), T (x̃)) ≤
⌈
C̃
( m

1− α

)1+α
⌉
dαg (x, x̃).

Furthermore, T ’s effective dimension, depth, and width are recorded in Table 1 (with explicit constant given in
Tables 3 and 4).

8. Explicit constant are recorded in Tables 3 and 4.
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As a concrete example of Corollary 9 we obtain the following embedding guarantee for spherical data. It is
worth noting that the sphere is both a simple yet interesting example since even in a Euclidean representation
space, the result of (Robinson, 2006a) implies that the sphere cannot be embedded into any Euclidean space
with no distortion9.

Example 1 (Embedding Spherical Data) Consider the m-dimensional sphere Sm def.
= {x ∈ Rm+1 : ‖x‖ =

1} with Riemannian geometry inherited from its inclusion into the Euclidean space Rm+1. In this geometry,
the distance between any two x1, x2 ∈ Sm is dg(x1, x2) = arccos(x>1 x2) and Sm has lower-bounded Ricci
curvature (see (Jost, 2017, page 276)). Therefore, for every n-point subset Xn ⊆ Sm (n ∈ N+) there exists a
PT T with width, depth, and number of mixture components as in Corollary 9 satisfying: for every x, x̃ ∈ Sm
it holds that

d3/4
g (x, x̃) ≤MW2(T (x), T (x̃)) ≤

⌈
C
(

4m
)1+3/4

⌉
d3/4
g (x, x̃),

and C > 0 is independent of n and of m.

4.2.2 COMBINATORIAL PRIORS

A particularly useful class of combinatorial graphs are trees; i.e. graphs in which no path originating at
one vertex can ever come back to itself without passing the same edge at least twice. The simplicity of the
combinatorial geometry of trees begs the question: can the transition between the deterministic embeddings of
Theorem 4 (with geometric perturbation parameter α < 1) and the probabilistic embeddings of Theorem 5
(with geometric perturbation parameter α = 1) be avoided, and can the simple geometry of combinatorial tree
allows us to obtain purely deterministic embedding results? The following result gives an affirmative answer.
Furthermore, an embedding with O(n1/(M−1)) distortion is possible by using a probabilistic transformer with
at most O(M) mixture components.

Remark 10 (Simplified Result Formulation for Graphs) For simplicity, we consider the case where the
graph in question is finite and where each point in X is a landmark. However, one can easily see how the
statement extends to the general case considered in Theorem 4.

Proposition 11 (Bi-Lipschitz Representations of Combinatorial Trees) Let G = (V,E) be an n-vertex
tree and let (V, dG) be its associated metric space (as in Example 2.1). There is an absolute constant C > 0
such that, for any positive integer M where M,n ≥ 2, there exists a PT T with width and depth as in
Theorem 4 and such that

dG(x, x̃) ≤ W2(T (x), T (x̃)) ≤MW2(T (x), T (x̃)) ≤ Cn1/(M−1)dG(x, x̃).

Furthermore, T ’s effective dimension, depth, and width are recorded in Table 1 (with explicit constant given in
Tables 3 and 4).

Therefore, for combinatorial graphs with simple geometric priors, the deterministic to probabilistic transition
between Theorem 4 and 5 can be avoided. Next, we consider where we wish to represent data with manifold
priors using the probabilistic transformer architecture.

Proposition 11 was derived using the same method of proof as for Theorem 4, but specialized to the
geometry of combinatorial trees. Instead, the next result is a consequence of Theorem 4.

Many well-studied graphs are such that each vertex is reachable by hopping over at most one other. We
refer to these types of graphs as “2-hop graphs”. Examples of 2-hop combinatorial graphs include, friendship
graphs (Erdős et al., 1966), complete bipartite graphs as in Mantel’s Theorem (Erdős, 1964/65), cocktail-party
graphs (Jungerman and Ringel, 1978), wheel graphs (Buckley and Harary, 1988), and various others.

To state our guarantees for 2-hop graphs we require some additional terminology. The adjacency matrix
AG of a graph G = (V,E), whose vertices we enumerate by V = {vi}ni=1, is the n× n-matrix with binary

9. We note this, to clarify the misconception that the “embeddings” of (Nash, 1954) are not in the metric sense (as considered in this
article) but are in a different (Riemannian sense).
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with (AG)i,j = 1 if and only if there is an edge between the vertices vi and vj . The spectral radius of AG,
denoted by ρ(AG), is the largest absolute eigenvalue of AG.

Corollary 12 (Representation for 2-Hop Combinatorial Graphs) Let G = (V,E) be an n-vertex 2-hop
graph and let (V, dG) be its associated metric space (as in Example 2.1). Fix 1

2 < α < 1, and let T be the PT
of Theorem 4. Each T (x) is comprised of no more than d12Cα−1 log(1 + ρ(AG))e mixture components and
satisfies: for each x, x̃ ∈ Xn the following holds

dαG(x, x̃) ≤ W2(T (x), T (x̃)) ≤MW2(T (x), T (x̃)) ≤

⌈
C

(
12 log(1 + ρ(AG)

1− α

)1+α
⌉
dαG(x, x̃).

Furthermore, T ’s effective dimension, depth, and width are recorded in Table 1 (with explicit constant given in
Tables 3 and 4).

The embedding guarantee in Corollary 12 can be further approximated using additional information about G’s
connectivity. Specifically, define G’s maximum degree to be the maximum number of edges connected to any
of its vertices, denoted by deg+(G), and its minimum degree to be the smallest number of edges connected to
any of its vertices, denoted by deg−(G).

We use the following example to showcase the explicit constants and PT complexity estimates which are
derived through our analysis (also recorded Appendix A).

Example 2 (Embedding of 2-Hop Graphs in Terms of Connectivity Information) Consider the setting of
Corollary 12, with α = 3

4 , n ≥ 12, and let T be the probabilistic transformer described by that result. The
upper-bound on the spectral radius ρ(AG) given in (Das and Kumar, 2004, Theorem 2.7) implies the following
embedding guarantee

d
3/4
G (x, x̃) ≤MW2(T (x), T (x̃)) ≤ dCCGe d3/4

G (x, x̃),

whereCG =

(
48 log

(
1 +

√
2(#E)(n− 1) deg+(G) + (deg+(G)− 1) deg−(G)

))7/4

. Furthermore, the

“complexity” of T can be estimated in terms of G’s degree, its number of edges, and its diameter; namely,

effdim(T ) = O
(

log
(

1 +

√
2(#E)(n− 1) deg+(G) + (deg+(G)− 1) deg−(G)

))
depth(T ) = O

(
n

{
1 +

√
n log(n)

[
1 +

log(2)

log(n)

(
c+

log
(
n5/2 diam(Xn, dn)

)
log(2)

)
+

]})
.

We conclude our theoretical analysis by illustrating the fundamental limits of what can be achieved
when embedding arbitrary finite metric spaces. Our results highlight the limitations of our model when
globally embedding an (Xn, dn) with no geometric prior into (GM2(R),MW2), as well as the mathematical
limitations of any model embedding such a space into any smooth and finite-dimensional representation space.

4.3 Limitations to Global Embedding Capacity for Datasets with no Geometric Priors

It is natural to ask if the transition between the probabilistic bi-Lipschitz embedding of Theorem 5 and the
deterministic bi-Hölder embedding of Theorem 4 is just an artifact of our analysis. The answer is no. The next
result confirms as the phenomenon is generic and persists for any “regular” finite-dimensional embedding.

We begin by considering the case of complete Riemannian manifoldR of bounded negative curvature for
which the frequently used hyperbolic spaces in non-Euclidean representation learning are prototypical. Our
next result combines the results of (Naor et al., 2006) and (Biggs and Hoare, 1983) to construct an explicit
sequence of bipartite combinatorial graphs (namely the sextet graphs introduced by (Biggs and Hoare, 1983))
which cannot be embedded intoR with non-diverging distortion.
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Proposition 13 (Impossibility of Manifold Embedding of Fixed Finite Dimension) Let R be a complete
Riemannian manifold with negative sectional curvature bounded in [−C,−c] where 0 < c ≤ C. Then
there exists a constant cR > 0 depending only on R such that, for every prime integer n ≥ 2 satisfying
n mod 16 ∈ {±3,±5,±7} there is a combinatorial graph (X , dX ) with n-vertices and degree exactly 3 such
that every bi-Lipschitz embedding f : X → R must have distortion D bounded below by

D ≥ cR

√
4

3
log2(n)− 2. (10)

Remark 14 (Improved Lower Bound Via Expander Graphs) One can explicitly obtain larger lower bounds
than in 10 by using the result of (Margulis, 1982, 1988) (both discovered independently and improving a result
of (Erdös and Sachs, 1963)) stating that: for every δ ≥ 3 there is a diverging sequence {nk}k∈N and graphs
{Gnk}n∈N each with nk-vertices such that each Gnk has girth at-least 3

4 logδ−1

(
nk
)
. Using this sequence of

expander graphs, instead of the sequence of Sextet graphs used in the proof of Proposition 13, implies that
there is no bi-Lipschitz embedding of Gnk intoR with distortion less that

O
(

(δ − 2)

√
4

3
logδ−1(n) + 2

)
.

The advantage of the construction in Proposition 13 is a simple explicit class of graphs.

We complement Proposition 13 by considering the case of compact Riemannian manifolds or Euclidean
spaces. We again find that there is a sequence of pathological finite metric spaces which cannot be bi-Lipschitz
embedded into such representation spaces with non-diverging distortion.

Proposition 15 (Impossibility of Manifold Embedding of Fixed Finite Dimension) Let R be a Rieman-
nian manifold which is bi-Lipschitz embedded in the Hilbert space `2. There is a constant cR > 0 (depending
only onR) such that for every positive integer n, there is an n-point metric space (X , dX ) for which every
bi-Lipschitz embedded f : X → R has distortion D satisfying

D ≥ cR
log(n)

log
(

log(n)
) .

Example 3 (Compact Manifolds Satisfy Proposition 15) IfR is a compact Riemannian manifold then Whit-
ney’s embedding theorem implies that there is a smooth diffeomorphism (onto its image) ϕ : R → R2d.
Therefore, Rademacher’s theorem and the compactness ofR implies that ϕ is a bi-Lipschitz embedding. Thus,
R satisfies the conditions of Proposition 15 by the Whitney embedding theorem.

The PAC-type bound of Theorem 5 can be reformulated as a function of the distortion D (instead of
the probability δ). Doing so allows us to compare our bi-Lipschitz embedding results with the above two
impossibility results. We now record this inverted formulation.

Remark 16 (Inverted Form of Theorem 5 where Distortion is Given Instead of δ) The relationship between
the distortion D and the “probabilistic level” 0 < δ < 1 in Theorem 5 can be inverted. In that case, our proof
implies that for any prespecified distortion level D > 2 there is a PT T as in Theorem 5 satisfying:

P
(
sdX (x, x̃) ≤ W2(T (x), T (x̃)) and MW2(T (x), T (x̃)) ≤ sD(D − 1)dX (x, x̃)

)
≥ n−2+2θD ,

where θD is the unique solution to 2
D = (1− θ)θ/(1−θ) over [1− 2e/D, 1).

Juxtaposing either of the impossibility results in Proposition 15 or Proposition 13 with Theorem 4 (as
formulated in Remark 16), we find that, even if there are n-point metric spaces which simply cannot be
well-represented in most Riemannian representation spaces, we can always identify a subset of any such
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space which can be arbitrarily well-represented inMW2(R). Furthermore, the embeddings are explicitly
implemented by PT models whose required number of parameters we now know. The distortion D > 2
controls the size of this subspace we are willing to accept. For instance when comparing against (13) we can

select any distortion D ∈
(
2, cR

√
4
3 log2(n)− 2

]
and always deduce the existence of an embedding on a

subset of those sextet graphs (this is not necessarily the case for a complete Riemannian representation space
with pinched negative curvature).

5. Experiments
In this section we complement the theoretical embedding guarantees from Section 4 by preliminary computer
experiments on synthetic data. We show that the proposed feature maps can indeed be trained in a standard deep
learning framework, that the theoretical advantages of PT mixture-Wasserstein embeddings over Euclidean
and hyperbolic carry over to practice, and that the PT-based feature maps generalize beyond Xn. We compare
our proposed representation maps to learned representation maps in Euclidean and hyperbolic space when
representing trees, random graphs and graphs “sampled from” Riemannian manifolds.10,11

Our first experiment compares the capacity of deep neural embedding in the space (GM2(R),WG2(R))
to embed combinatorial trees against the state of the art; namely embeddings into the hyperbolic plane. Our
second experiment examines the efficiency with which PTs utilize dimension. We compare how well the PT
embeds points on a simple high-dimensional compact Riemannian manifold, namely the sphere, to how well a
standard feed-forward network can embed those same points into a Euclidean space of equal dimension.

The probabilistic transformer we implement is illustrated in Figure 6a. The weights of the network are
computed following (Delon and Desolneux, 2020), by minimizing

LPT(θ) =
∑

x,y∈Xtrain

(
MW2

2(Tθ(x), Tθ(y))− d2α
X (x, y)

)2
. (Loss)

In practice we set α = 1 as it does not have a strong influence on empirical performance. We conjecture that
this is due to the influence of sampling and optimization which result in an “error floor”.

Numerical parameters All networks are trained by the Adam optimizer in pytorch, with weight decay
parameter 10−6, initial learning rate 10−4 and final learning rate 10−6.

5.1 Hyperbolic vs. Gaussian Mixtures Geometry: Embedding Trees

Hyperbolic embeddings are the state-of-the-art when embedding metric trees. Indeed, results such as (Sarkar,
2011) show that two dimensions is enough to embed any metric tree with low distortion whereas finite trees
can only be embedded into d-dimensional Euclidean space with low distortion if d is large (Gupta, 2000).

We compare the ability of (GM2(R),MW2)’s geometry to accommodate deep neural embeddings of
metric trees against that of the hyperbolic plane. We implement the embedding maps using (universal (Kratsios
and Papon, 2022; Acciaio et al., 2023)) overparamterized neural network models, in an effort to minimize
the chance that differences in expressivity obscure the geometric effects. As we show below, the additional
flexibility of (GM2(R),MW2) over the hyperbolic plane is manifested even when embedding regular binary
trees.

EMBEDDING INTO THE HYPERBOLIC PLANE

We first consider the hyperbolic plane (Ganea et al., 2018; Cruceru et al., 2021) which theoretically embeds trees
with arbitrarily small distortion (Sarkar, 2011, Theorem 6). In the next section we look at a higher-dimensional

10. More precisely, on neighborhood graphs constructed over points sampled from manifolds.
11. The Python codes used to produce the results of this section are available at https://github.com/swing-research/

Universal-Embeddings.
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hyperbolic space of the same dimension as the number of the degrees of freedom of our mixture-Wasserstein
embedding.

The hyperbolic space has several isometric (up to a scalar) representations. In this section, we first rely on
its canonical (in the sense of (Dowty, 2018)) information geometric representation12. The set of non-degenerate
Gaussian probability measures on R is defined by

G+
1

def.
=

{
N (µ, σ) ∈ P1(R) :

N(µ, σ)

dx
∝ exp

(
− (x− µ)2

2σ2

)
, µ ∈ R, σ ∈ (0,∞)

}
.

This set can be made into a Riemannian manifold with the Riemannian metric defined by the Fisher information
matrix (Amari, 2016). As shown in (Costa et al., 2015, Equation (7)), the geodesic distance (called the Fisher–
Rao distance) between two Gaussian probability measures N(µ1, σ1), N(µ2, σ2) ∈ G+

1 in this Riemannian
geometry is

dF (N(µ1, σ1), N(µ2, σ2)) =
√

2 ln

(
‖( µ1√

2
, σ1)− ( µ2√

2
,−σ2)‖+ ‖( µ1√

2
, σ1)− ( µ2√

2
, σ2)‖

‖( µ1√
2
, σ1)− ( µ2√

2
,−σ2)‖ − ‖( µ1√

2
, σ1)− ( µ2√

2
, σ2)‖

)
.

Moreover, importantly for our comparison, dF is (up to a constant factor of
√

2) equal to the hyperbolic
distance on H2 def.

= R× (0,∞) which is precisely the parameter space of G+
1 as well as the upper half-plane

model of the hyperbolic space. There are two reasons to first look at the 2D hyperbolic embeddings. First, they
are easy to visualize; second, it allows us to some extent to dissociate the effects of geometry and expressivity
and ease of optimization of neural networks. We benchmark our representations against the metric transformer
model of (Acciaio et al., 2023, Example 11) (which for clarity we call the G+

1 -transformer) since that model is
universal (Acciaio et al., 2023, Theorem 3.6). It is a variant of hyperbolic neural networks (Cruceru et al.,
2021), which are known to be universal (Bilokopytov and Kratsios, 2020, Corollary 3.16).

The weights of the metric transformer Tθ are obtained by minimizing

LG+
1

(θ) =
∑

x,y∈Xtrain

(
d2
F (Tθ(x), Tθ(y))− d2

X (x, y)
)2

. (11)

The main difference with our model is that the metric transformer makes convex combinations in the parameter
space of Gaussian measures, not in the space of probability measures itself.

EMBEDDING INTO THE d-DIMENSIONAL HYPERBOLIC SPACE

Even though the hyperbolic plane is theoretically sufficient to embed trees with small distortion (Sarkar, 2011),
experimental evidence indicates that neural networks representations into higher dimensional hyperbolic space
perform better (Giovanni et al., 2022). We therefore also compare our representations with representations in
d-dimensional hyperbolic space represented by the Poincaré upper-half space model, whose underlying set it

Hd = {x ∈ Rd+1 such that xd+1 > 0},

and whose geodesic distance is given by

dHd(x, y) = arccosh

(
1 +

‖x− y‖22
2xd+1yd+1

)
,∀x, y ∈ Hd.

We adapt the output of the probabilistic transformer to return vectors in Hd, by swapping its last layer
for a trainable linear readout map (see Figure 6c) and modifying the embedding objective to minimize the
distortion with respect to the hyperbolic distance. The d-dimensional hyperbolic model is then trained using
the following loss function:

LHd(θ) =
∑

x,y∈Xtrain

(
d2

Hd(Tθ(x), Tθ(y))− d2
X (x, y)

)2

. (12)

12. Because it shares many similarities with our embedding space (GM2(R),MW2)
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Linear Linear

Linear

Linear

Linear 𝕕
Linear

Concat.

Linear + abs
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+ Softmax
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Linear
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Figure 6: Two different networks implementing feature (embedding) maps. The first block (violet dashed line)
is common to all networks; the output blocks change to accommodate different target spaces. a) Probabilistic
transformer of (8). b) G+

1 -transformer. c) Hd-transformer.

EXPERIMENTAL RESULTS

We consider a regular binary tree X = (V,E) (Figure 7a) of depth six with a total of |V | = 127 vertices.
The distance dX is the shortest path distance. We partition the vertices V into training and testing sets,
Vtrain ∪ Vtest = V , with |Vtrain| = 111 and |Vtest| = 16. The test vertices (colored white in Figure 7a) are used
to evaluate the quality of out-of-sample representations (that is to say, the generalization) computed by the
different representation maps. We designate L = 20 training vertices as landmarks (colored black in Figure
7a). The two probabilistic transformers take as input the distances between a vertex and the L landmarks.
The neural networks contains more than 7, 000 parameters with only the last layer being adapted to produce
an output in the desired space. We use K = 5 mixture components and d = 15 for the dimension of the
hyperbolic space to ensure a fair comparison with the probabilistic transformer’s effective dimension.

GM2(R) H2 H15

Training points Mean error 0.03 0.15 0.04
Max. error 0.25 0.44 0.26

Testing points Mean error 0.02 0.19 0.05
Max. error 0.25 0.44 0.26

Table 2: Average and maximum relative embedding errors for binary tree representations.

Table 2 shows that our neural representations in the space of Gaussian mixtures perform better than H2

even when embedding simple trees, and that they perform on par or slightly better than H15. The difference
in performance between H2 and H15 epitomizes the difficulty in verifying theoretical facts with computer
experiments: even though theoretically both spaces can achieve low distortion, it is easier to approximate a
good feature map for H15. We report the average relative absolute difference between the pairwise distances in
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the binary tree as compared to embeddings in the respective representation spaces. The training set evaluates
the embedding quality of the given set of landmarks. The role of the test set is to check whether the learned
representation still provides a good embedding using the set of landmarks in the binary graph13.

We visually assess the quality of the computed representations in Figure 7: Figure 7b displays the
probability density functions of the GM(R) representations and Figure 7c displays the information-theoretic
hyperbolic representations using Gaussian measures. In both cases the networks learn representations that
change continuously with the shortest path distance in X .

(a)

0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

(b)

0.25 0.50 0.75 1.00

0.5

1.0

1.5

2.0

(c)

Figure 7: Two embeddings of colored vertices in the binary tree X shown in (a); white vertices are not
seen during training; landmarks are colored black. We apply the transformation σ 7→ log10(σ + 2.1) to aid
visualization. (b) Mixture Gaussian Wasserstein embeddings represented by their density. (c) hyperbolic
(univariate Gaussian) embeddings represented by their density.

Figure 7 visually examines the stability of the embeddings produced by the PT against those learned by its
hyperbolic counterpart. Since both output univariate probability distributions, a visual comparison can easily
be drawn. When comparing Figure 7c to Figure 7b we see that the embedding of the path in Figure 7 is only a
bit more contorted than the embedding produced by the PT’s hyperbolic counterpart. This can explain why
both embeddings generalize similarly well, but that the gap in embedding quality is explained by the richness
of the geometry of (GM2(R),MW2) as compared to the rigidity of the hyperbolic plane’s geometry.

13. Our theorems give “memorization” guarantees, or, phrased differently, approximation guarantees for embeddings of finite metric
spaces. In computer experiments we thus deliberately explore the generalization aspect. The related theoretical questions remain
open.
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5.2 PTs Leverage Dimension Efficiently: Manifold Embeddings

We now compare the capacity of the Euclidean space with (GM2(R),MW2) to represent smooth geometries
using few effective dimensions. We represent datasets fromN -dimensional spheres equipped with the geodesic
distance. We remark that, as shown in (Robinson, 2006b), there exist no bi-Lipschitz embeddings of the sphere
into any Euclidean space with arbitrarily low distortion.14 In this case our findings corroborate known facts and
also show that the PT leverages the rich geometry of (GM2(R),MW2) to produce better low-dimensional
embeddings standard feedforward neural networks taking values in high-dimensional Euclidean spaces.

EMBEDDING INTO EUCLIDEAN SPACE

Despite negative theoretical results, Euclidean representations are attractive in practice thanks to the wealth
of available machine learning and numerical tools. It is thus desirable to compare them with our proposed
representations in the space of measures. To this end we modify the output of our probabilistic transformer to
output vectors in Rd, by swapping its last layer for a trainable linear readout map (see Figure 8) and modifying
the embedding objective to minimize the distortion with respect to the Euclidean distance ‖ · − · ‖`2d . Naively,
one may expect a well-performing Euclidean representation for sufficiently high embedding dimension d.
However, as shown below, even for very large d there is a hard limit to representation quality, reflecting the
introductory theoretical notes.

We let SN def.
= {z ∈ RN+1 : ‖z‖ ≤ 1} denote the N -dimensional sphere and equip it with the geodesic

distance dSN (x, x̃) = cos−1
(
x>x̃

)
, x, x̃ ∈ SN (Dai and Müller, 2018; Fletcher et al., 2009). We randomly

sample data points {xi}ni=1 from the uniform probability measure on SN . The resulting Euclidean model is a
feedforward network with a suitable Euclidean loss function,

LEuclid(θ) =
∑

x,y∈Xtrain

(
‖Tθ(x)− Tθ(y)‖2`2d − d

2
X (x, y)

)2

. (13)

5.2.1 2-DIMENSIONAL SPHERE S2

We begin by visualizing the GM2(R) embeddings of points on the 2-sphere to develop intuition. A good
representation should achieve comparably low distortion across the entire manifold and vary continuously
with respect to the geodesic distance on S2. The learned feature map should generalize well from a set of
landmarks to arbitrary points on the sphere.

We train a PT for 160 iterations with the Adam optimizer (Kingma and Ba, 2015). In each iteration, we
use random batch of 32 points among the 10,000 fixed training points chosen from a uniform measure on the
sphere. The 13 landmarks are not updated during training. The network contains about 200,000 parameters
and returns a Gaussian mixture with K = 5 components.

14. We note that this is different from positive results on Riemannian embeddings of the sphere in Euclidean spaces as exemplified by
Nash’s theorems (Nash, 1954). These “embeddings” view the sphere as a submanifold of the Euclidean space but make no guarantees
that the embedding preserves the geodesic distance.

Linear

Figure 8: Replacing the PT’s final layer by a linear readout layer yields our feedforward network benchmark.
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The results are shown in Figure 9. For each point xk, colors in Figures 9a and 9b represent the quantities

1

K

K∑
j=1

∣∣∣d2
M(xk, xj)−MW2

2(T̂θ(xk), T̂θ(xj))
∣∣∣ and sup

1≤i,j≤K

∣∣∣d2
M(xi, xj)−MW2

2(T̂θ(xi), T̂θ(xj))
∣∣∣.

We can see from the figure that the distances in the representation space faithfully represent those on the
sphere. This is further detailed in Figure 9c where color of a point encodes the embedding error between the
point and the red cross. Notice that even if the maximum error between points may seem large (about 0.35), it
is reached only for a very small number of point pairs; most pairs have a relative error bellow 10−2.

(a) (b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) .

Figure 9: Embedding quality of 2-dimensional sphere S2 in GM2(R). a) Average error of a point and all the
other elements. b) Maximum error of a point and all the other elements. c) Error between the point marked by
a red cross and all other points.

We then assess the continuity of the embedding in Figure 10. We plot the probability density function of a
sequence of points spiralling up from the bottom of the sphere to the top, which we colour-code as progressing
from red to blue. As expected, the Gaussian mixtures representing points on the sphere progressively change.
We also see that only a few significant mixture components are required to perform the embedding. To aid
visualization, we normalize the support of the densities and transform the standard deviation of the Gaussian
components using the mapping σ 7→ log10(σ + 2.1).

Figure 10: Probability density functions of the embeddings of points on S2 into GM2(R).
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5.2.2 EMBEDDING THE N -DIMENSIONAL SPHERE

The motivation to use Gaussian mixtures instead of Euclidean embeddings is that they easily capture com-
plex geometries; achieving comparable distortion would either require a very high-dimensional Euclidean
embedding or is simply impossible due to curvature. To illustrate this, we set up an experiment on N -spheres
where we vary N . We fix the number of mixture components at the output of the PT to K = 5. The Euclidean
network outputs vectors in R15, thus having the same number of degrees of freedom. We also compare these
two networks with embedding in the hyperbolic space H15. All networks contain about 200,000 parameters.
We set the number of landmarks to L = N + 10 (note that we need at least N landmarks to uniquely localize
a point on SN ). We distribute the landmarks quasi-uniformly on the N -sphere adapting a procedure from
(Debarnot and Weiss, 2022).

15 25 35 45
Manifold dimension

0.1
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0.3
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Euclidean - Feedforward
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Figure 11: Impact of dimension.

Figure 11 shows the results. As the manifold dimension N increases, the quality of the Euclidean and
Hyperbolic embeddings implemented by the deep feedforward networks rapidly deteriorate. In contrast, the
distortion of the embedding implemented by the probabilistic transformer into the space (GM2(R),MW2)
of (Delon and Desolneux, 2020) remains stable.

6. Outline of the Proofs of Main Results
This section overviews the main steps toward proving Theorem 4. Similar techniques are used in deriving the
probabilistic Theorem 5. The latter proof is more technical as it relies on the non-linear Dvoretzky theorem
(Naor and Tao, 2012) which is a metric version of the classical result of Dvoretzky (Dvoretzky, 1961); we
defer it to Appendix B.

Our proofs use a novel two-step approach. In step one, we use a key lemma (Lemma 17 below) to show that
certain probability-measure-valued functions can be implemented by metric transformers with few parameters.
In step two, given any of the three aforementioned “geometric priors”, we demonstrate the existence of
“optimal” embeddings of the required form. Each of the proofs then concludes by applying the key lemma to
show that the embedding can be exactly implemented (memorized) by the probabilistic transformer. The proof
is completed by remarking that the PT we have built is defined on the entire metric space X .

We note that the d-dimensional Gaussian measure with mean µ ∈ Rd and d× d covariance matrix Σ is be
denoted by Nd(µ,Σ).

Lemma 17 (Key Lemma: Probabilistic Transformers Memorize Empirical Markov Kernels) Let d,K be
a positive integer, let 1 ≤ p < ∞, #Xn = n > 2, and let σ def.

= ReLU. Let (Xn, dn) be an n-point metric
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space and for k = 1, . . . ,K, let µk : Xn → Rd. Define the map ϕ : Xn → GM2(Rd) by

ϕ(x)
def.
=

1

K

K∑
k=1

Nd(µk(x), 0).

Then, there exists a probabilistic transformer with unnormalized graph attention T : Xn → GM2(Rd), which
exactly implements ϕ; i.e.:

ϕ(x) = T (x) for every x ∈ Xn
such that

width(T ) = max{n,K, d2, n(n− 1) + max{d, 12}}, (14)

depth(T ) = O

(
n

{
1 +

√
n log(n)

[
1 +

log(2)

log(n)

(
Cn +

log
(
n5/2 aspect(Xn, dn)

)
log(2)

)
+

]})
(15)

effdim(T ) ≤ K (d+ d2) (16)

par(T ) = O

(
Kn
(

11
4 max{n, d}n2 − 1

){
d+ max{d, 12}2

√
n log(n) (17)

×

[
1 +

log(2)

log(n)

(
Cn +

log
(
n5/2 aspect(Xn, dn)

)
log(2)

)
+

]})
.

Moreover, the “dimensional constant” Cn > 0 is defined by Cn
def.
=

2 log(5
√

2π)+ 3
2 log(n)− 1

2 log(n+1)

2 log(2) .

Before stating the next lemma, let us recall the notion of a doubling metric space. Briefly, these are metric
spaces for which a maximal ratio determines the number of open balls of finite radius required to cover an
open ball of twice their radius. More precisely, a metric space (X , d) is said to be doubling if and only if, there
is a constant Cd > 0 for every point x ∈ X and every radius r > 0 the open metric ball about x of radius r,
i.e. the set B(x, r)

def.
= {u ∈ X : d(u, x) < r}, there are at most Cd points x1, . . . , xn ∈ X (i.e. n ≤ Cd) such

that the collection of open metric balls {B(xi, r/2)}ni=1 cover B(x, r). The smallest constant Cd > 0 for
which the above relation holds is called the doubling constant of (X , d). Examples of doubling metric spaces
are any finite metric space, Carnot Groups such as the Heisenberg group (Pansu, 1989), and more generally,
any metric space that can be bi-Hölder embedded into some Euclidean space (see (Heinonen, 2001, Theorem
12.2) and (Naor and Neiman, 2012)).

The doubling constant Cd of a doubling metric space (X , d) plays the role of dimension; for example,
for a compact n-dimensional Riemannian manifold log2(Cd) is of the order O(n) and the same is true of the
n-dimensional Euclidean space. However, in general it can be difficult to compute the doubling constant of
(X , d). Thus, we turn to the notion of metric capacity as defined in (Bruè et al., 2021). The reason is that, as
shown in (Bruè et al., 2021, Proposition 1.7) the doubling constant and the metric capacity are proportional
(we refer the reader to that paper or the proof of Lemma 21 for details).

Our second main embedding lemma concerns the case where (Xn, dn) has its points drawn from a
doubling metric space. Since the logarithm of the doubling constant of such spaces plays the role of topological
dimension for manifolds (see (Heinonen, 2001, Chapter 12)), it is intuitive that the number of (parameterized)
point masses required to embed (Xn, dn) into the Wasserstein space depends on the logarithm of the doubling
constant.

Lemma 18 (Datasets in Doubling Metric Spaces bi-Hölder Embed into (GM2(R),MW2)) Let (X , d) be
a doubling metric space with doubling constant Cd > 0, Xn ⊆ X , and dn

def.
= dXn . There are constants

c, C > 0, such that for any 1
2 < α < 1, there exists an injective map ϕ : (Xn, dn) ↪→ (GM2(R),MW2) of

the form

ϕ(x) =
1

dcα−1 log(Cd)e

dcα−1 log(Cd)e∑
k=1

N1(φ(x)k, 0),
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satisfying: for every x, x̃ ∈ X the following holds

dαX (x, x̃) ≤ W2(ϕ(x), ϕ(x̃)) ≤MW2(ϕ(x), ϕ(x̃)) ≤

⌈
C

(
log(Cd)

(1− α)

)1+α
⌉
dαX (x, x̃),

where φ : (Xn, dn)→ (Rdc log(Cd)e, `2) is a α-Hölder with α-Hölder constant
⌈
C
(

log(Cd)2

(1−α)

)1+α
⌉

.

Since every finite metric space is a doubling space, then Lemma 18 applies to any finite subset Xn of any
general metric space X . Consequentially, Theorem 4 is obtained by applying Lemma 17 to the embedding in
Lemma 18.

7. Limitations and Possible Improvements
As mentioned in the introduction, our results are the first theoretical guarantees for deep neural representations
of finite datasets from arbitrary metric spaces. We prove several embedding guarantees which pleasingly
reflect the impact of the ambient geometry of space on the complexity of the representations and the number
of parameters of the feature map. These results can be seen as deep neural approximation theorems for
embeddings of finite metric spaces which are usually studied in metric geometry non-constructively. To obtain
these results we developed a new proof technique which combines elements of metric embedding theory and
memorization theory for deep neural networks; this technique may by a tool of independent interest.

At the same time, the preludial nature of our work makes it likely that a number of improvements are
possible. One natural question is whether we can extend the n-point guarantees to the whole X when X has a
regular geometry (for example, when it is a compact Riemannian manifold). While this may require rephrasing
some of our questions and using different mathematical tools, it does seem plausible.

Further, there are several aspects of the proofs, for embeddings into the space of Univariate Gaussian
mixtures, which suggest improvements are possible: 1) a key step passes through a high-dimensional Euclidean
space, but we know experimentally that Euclidean embeddings under-perform and theoretically (Naor, Andoni,
Neiman (Andoni et al., 2018)) that this is not necessary; 2) the Gaussian mixtures are often degenerated into
empirical measures with equal atomic weights, but numerical experiments suggest a clear advantage of using
proper Gaussian mixtures. While at the moment we do not know how to leverage these observations, they
remain a subject of ongoing work.
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A. Explicit Network Complexities: Theorems and Examples
The next table summarizes the precise complexities of the probabilistic transformer representing the metric
spaces with generic n-point embedding guarantees, which are covered in any one of the theoretical results in
this paper. This table is an explicit analogue of Table 1.

Remark 19 (Approximate Complexity of T For Low-Distortion Embeddings) The proof of Theorem 5
and a remark on (Naor and Tao, 2012, page 492) shows if D ≈ 2 (but D > 2) then, the probabilistic
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Table 3: Width of the probabilistic transformers performing n-point embeddings, with explicit constants.

Latent Geometry Effective Dimension dT Width Result

General 2d12Cα−1 (log(cap(Xn, dn)))e max{dT , n(n− 1) + 12} Theorem 4

General O
(
(D − 2)−2θD log2(n)

)
O
(

max{dT , n2θD + 12}
)

Theorem 5

General - Multivariate Mixtures 12n(n− 1)/2 (5 5n4

2(D−1) aspect(Xn, d)2 + 2) max

{
n, 25n5(n−1)

4(D−1) (aspect(Xn, d)2 + 2), 9, n(n− 1) + 12

}
Theorem 7

Discrete: Trees 2M max{dT , n(n− 1) + 12} Proposition 11
Discrete: 2-Hop Graphs 2d12Cα−1 log(1 + ρ(AG))e max{dT , n(n− 1) + 12} Corollary 12

Manifold: Riemannian, Bounded Curvature 2
⌈
C̃ m1+α

α(1−α)1+α

⌉
max

{
dT , n(n− 1) + 12

}
Corollary 9

Manifold: Riemannian & Compact 4d max{dT , n(n− 1) + 12} Proposition 8

Table 4: Depth of the probabilistic transformers performing n-point embeddings, with explicit constants.

Here c def.
=

2 log(5
√

2π)+ 3
2 log(n)− 1

2 log(n+1)

2 log(2) .

Latent Geometry Depth Result

General O

(
n

(
1 +

√
n log(n)

(
1 + log(2)

log(n)

[
c+

log
(
n5/2 aspect(Xn,dn)

)
log(2)

]
+

)))
Theorem 4

General O

(
nθD

(
1 +

√
θD log(n)

(
1 + log(2)

θD log(n)

[
c+

3θD log(n)+log
(

aspect(Xn,dn)
)

log(2)

]
+

)))
Theorem 5

General - Multivariate Mixtures O

(
n

{
1 +

√
n log(n)

[
1 + log(2)

log(n)

(
Cn +

log
(
n5/2 aspect(Xn,dn)

)
log(2)

)
+

]})
Theorem 7

Discrete: Trees O

(
n

(
1 +

√
n log(n)

(
1 + log(2)

log(n)

[
c+

log
(
n5/2 diam(Xn,dn)

)
log(2)

]
+

)))
Proposition 11

Discrete: 2-Hop Graphs O

(
n

(
1 +

√
n log(n)

(
1 + log(2)

log(n)

[
c+

log
(
n5/2 diam(Xn,dn)

)
log(2)

]
+

)))
Corollary 12

Manifold: Riemannian, Bounded Curvature O

(
n

(
1 +

√
n log(n)

(
1 + log(2)

log(n)

[
c+

log
(
n5/2 aspect(Xn,dn)

)
log(2)

]
+

)))
Corollary 9

Manifold: Riemannian & Compact O

(
n

(
1 +

√
n log(n)

(
1 + log(2)

log(n)

[
c+

log
(
n5/2 aspect(Xn,dn)

)
log(2)

]
+

)))
Proposition 8

transformer T in Theorem 5 has depth about the order15Õ
(
n

11(D−2)

log(1/(D−2)4)
+O
(

11(D−2) log log(1/(D−2))

2 log(1/(D−2))2

))
. When n

is also large then it has width of the order Õ
(
n

D−2
log(D−2)

+O
(

(2D−4) log log(1/(D−2))

log(1/(D−2))2

))
.

B. Proof Details
This section contains the paper’s main proofs.

We begin with the following memorization lemma, on which the proof of Lemma 17 is developed. This
result extends the quantitative “class memorization” result of (Vardi et al., 2022) to a quantitative vector-valued
interpolation result. The next Lemma can be contrasted with the VC-bounds of (Bartlett et al., 2019) which
imply that a ReLU feedforward network of depth D memorizing how to match N inputs in Rn with C classes
must have at-least Ω

(
D

ln(D)

)
parameters. We recall that the following convenient notation is used in the next

lemma. For each u ∈ R we denote [u]+
def.
= max{u, 1} = ReLU(u− 1).

Lemma 20 (Memory Capacity of Deep ReLU Regressors) Let n, d,N ∈ N+, let f : Rn → Rd be some
function, and consider distinct x1, . . . , xN ∈ Rn. There exists a deep ReLU network NN : Rn → Rd

satisfying
NN (xi) = f(xi),

15. We use the notation Õ to hide logarithmic factors.
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for every i = 1, . . . , N . Furthermore, we have the following quantitative model complexity estimates:

width(NN ) = n(N − 1) + max{d, 12},

depth(NN ) = O

(
N

{
1 +

√
N log(N)

[
1 +

log(2)

log(N)

(
Cn +

log
(
N2 aspect(XN , ‖ · ‖2)

)
log(2)

)
+

]})
,

par(NN ) = O
(
N
(11

4
max{n, d}N2 − 1

) {
d+

√
N log(N)

[
1 +

log(2)

log(N)

×

(
Cn +

log
(
N2 aspect(XN , ‖ · ‖2)

)
log(2)

)
+

]
max{d, 12}

[
1 + max{d, 12}

]})
.

The “dimensional constant” is defined by Cn
def.
=

2 log(5
√

2π)+ 3
2 log(n)− 1

2 log(n+1)

2 log(2) > 0 .

Proof [Proof of Lemma 20] Step 1: Centering Data
Let XN

def.
= {xi}Ni=1 and for any x̄ ∈ Rn and any r > 0 denote B2(x̄, r)

def.
=
{
u ∈ Rn : ‖u− x̄‖2 ≤ r

}
. Since

XN is finite it is compact and therefore by Jung’s Theorem (see (Jung, 1901)) there exists some x̄ ∈ Rn such
that

XN
def.
= B2

(
x̄, r
)

and r def.
= diam(XN , ‖ · ‖2)

n1/2

(2(n+ 1))1/2
,

where diam(XN , ‖ · ‖2)
def.
= max1≤i,j≤N ‖xi − xj‖2. Thus, the (affine) isometry W : Rn → Rn sending any

x ∈ Rn to x− x̄, bijectively maps XN to the subset X̃N
def.
= {u ∈ Rn : (∃xi ∈ XN )u = xi − x̄} of B2(0, r).

In particular, since W is an isometry then

aspect(XN , ‖ · ‖2) = aspect(X̃N , ‖ · ‖2).

Since W is an affine map then, the pre-composition of any deep feedforward network by W yields a deep
feedforward network of the same depth and width.

Step 2: Independently Memorizing Classes
By (Vardi et al., 2022, Theorem 3.1), for every x ∈ XN there exists a feedforward network ˜NN x : Rn → Rd

with ReLU activation function satisfying the “class memorization property”

˜NN x(u) =

{
1 : if u = x− x̄
0 : if u 6= x− x̄

(18)

for every u ∈ X̃N . Furthermore, ˜NN x has width 12 and depth

O
((

N log(N)
)1/2

+
( N

log(N)

)1/2

max
{

log(R), log(C)
})

, (19)

where C = 2 and R = 10π1/2n1/2N2 rδ−1 and where δ def.
= min1≤i,j≤N ; i 6=j ‖(xi − x̄) − (xj − x̄)‖2 =

min1≤i,j≤N ; i6=j ‖xi − xj‖2. We may therefore rewrite (19) as

O

(√
N log(N)

(
1 +

log(2)

log(N)

[
Cn +

log
(
N2 aspect(XN , ‖ · ‖2)

)
log(2)

]
+

))
, (20)

where the “dimensional” constant Cn > 0 is defined by Cn
def.
=

2 log(5
√

2π)+ 3
2 log(n)− 1

2 log(n+1)

2 log(2) and where, for

any u ∈ R we define [u]+
def.
= max{u, 1}.

Step 3: Parallel Interpolating ReLU Network for each x in XN
For every x ∈ XN , we view the vector f(x) ∈ Rd as a d × 1 matrix in Rd×1. Now, since the composition
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of affine maps is again affine and since the first and last layers of each ˜NN x are affine maps then, for every
x ∈ XN , the map NN x : Rn → Rd defined by

NN x(u)
def.
= f(x) [ ˜NN x ◦W−1(u)], (21)

is a ReLU feedforward network satisfying

1. depth(NN x) = depth( ˜NN x) where each depth( ˜NN x) is as in (20),

2. width(NN x) = max{d,width( ˜NN x)} = max{d, 12},

3. par(NN x) ≤ d+ par( ˜NN x).

Moreover, by construction, for each x ∈ XN it holds that

NN x(u) =

{
f(x) : if u = x

0 : if u 6= x,
(22)

for every u ∈ XN . Furthermore, we can bound the number of parameters par(NN x) defining each of the
ReLU networks NN x above by

par(NN x) ≤ d+ par( ˜NN x)

≤ depth( ˜NN x1)width( ˜NN x1
)(width(NN x1

) + 1) + d

≤ O

(
d+

√
N log(N)

(
1 +

log(2)

log(N)

[
Cn +

log
(
N2 aspect(XN , ‖ · ‖2)

)
log(2)

]
+

)
×

(
max{d, 12}(max{d, 12}+ 1)

))
.

(23)

Step 4: Assembling the Parallel Interpolating ReLU Networks
Next, we assemble each of the ReLU networks {NN x}x∈XN into a single ReLU network interpolating f on
XN . Since ReLU(x)

def.
= max{0, x} has the 2-identity property (as defined in (Cheridito et al., 2021, Definition

4) and discussed on page 3 of that manuscript) then, (Cheridito et al., 2021, Proposition 5) implies that there
exists a “deep diagonalized parallelization”; that is, a map ‖NN : Rn → Rd satisfying the following for every
u ∈ Rn

‖NN (u) =

NN x1
(u)

...
NN xN (u)

 . (24)

Furthermore, (Cheridito et al., 2021, Proposition 5) shows that NN has width, depth, and number of non-zero
parameters are estimated by

1. Width: ‖NN (u) has width n(N − 1) + max{d, 12}

2. Depth: ‖NN (u) has depth

O

(
N

(
1 +

√
N log(N)

(
1 +

log(2)

log(N)

[
Cn +

log
(
N2 aspect(XN , ‖ · ‖2)

)
log(2)

]
+

)))
, (25)

3. Number of non-zero parameters: The number of non-zero parameters determining ‖NN is(
11
4 max{n, d}N2 − 1

) ∑N
i=1 par(NN x). When expanded, this can be rewritten as

O

(
N
(11

4
max{n, d}N2 − 1

) (
d+

√
N log(N)

(
1 +

log(2)

log(N)

[
Cn +

log
(
N2 aspect(XN , ‖ · ‖2)

)
log(2)

]
+

) (
max{d, 12}(max{d, 12}+ 1)

)))
.
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Consider the d× (Nd) block-matrix A def.
= (Id, . . . , Id). Multiplying the outputs of ‖NN (u) on the left by

the matrix A defines a map NN ? : Rn → Rd; i.e. for every u ∈ Rn the map NN ? is defined by

NN ?(u)
def.
= A‖NN (u). (26)

Furthermore, since the post-composition of ReLU feedforward networks is again a ReLU feedforward network
then NN ? is a ReLU feedforward network. Moreover, by construction, the width, depth, and number of
parameters defining NN ? satisfy the same estimates as ‖NN , respectively.

Step 5: Verifying that NN ? Implements f on XN
It remains only to verify that NN ? equals to f on XN . Upon combining the identities in (22), (26), and (24)
we conclude that: for each x ∈ X the following holds

NN ?(x) =

N∑
i=1

NN xi =

N∑
i=1

f(xi)Ixi=x = f(x). (27)

Relabeling “NN def.
= NN ?” yields the lemma’s statement.

We now move to the proof of the main memorization lemma, namely Lemma 17, which guarantees that
probabilistic transformer networks can memorize “conditionally Gaussian” Markov kernels for any finite
number of inputs. In the following, we make use of the finite-dimensional Fréchet embedding

ι̃ : (Xn, dn) 3 x 7→ (d(x, x̃))x̃∈Xn . (28)

Proof [Proof of Lemma 17] Set L def.
= n (where L is as in (6)) and identify the space of d × d-matrices

with Fröbenius norm Rd×d with Rd
2

with Euclidean norm (NB, these are isometric metric spaces). Then,
ι̃ = Φ{xl}Nl=1

, where ι̃ is the Fréchet isometric embedding defined in (28).

For each k = 1, . . . ,K define the maps µ̃k
def.
= µk ◦ ι−1 : ι(Xn) → Rd. By Lemma 20, for every

k = 1, . . . ,K there exists a ReLU network µ̂k : Rn → Rd satisfying the following

µ̂k(x) = µ̃k(x) = µk ◦ ι−1(x), (29)

for every x ∈ Xn. The following equivalence of the norms ‖ · ‖∞ ≤ ‖ · ‖2 ≤
√
n‖ · ‖∞ and the fact that ι is

an isometric embedding of (Xn, dn) into (Rn, ‖ · ‖∞) implies

aspect(Xn, dn)
def.
=

max1≤i,j≤n dn(xi, xj)

min1≤k,s≤n; k 6=s dn(xk, xs)

=
max1≤i,j≤n ‖ι(xi)− ι(xj)‖∞

min1≤k,s≤n; k 6=s ‖ι(xk)− ι(xs)‖∞

≤
√
n

max1≤i,j≤n ‖ι(xi)− ι(xj)‖2
min1≤k,s≤n; k 6=s ‖ι(xk)− ι(xs)‖2

=
√
n

maxu,ũ∈ι(XN ) ‖u− ũ‖2
minv,ṽ∈ι(XN ); v 6=ṽ ‖v − ṽ‖2

def.
=
√
n aspect(ι(XN ), ‖ · ‖2).

(30)

Thus, Lemma 20 (i)-(iii) and (30) imply that for each k = 1, . . . ,K the ReLU network µ̂k satisfies

(i) Width: NN has width n(n− 1) + max{d, 12},

(ii) Depth: NN has depth of the order of

O

(
n

(
1 +

√
n log(n)

(
1 +

log(2)

log(n)

[
Cn +

log
(
n5/2 aspect(Xn, dn)

)
log(2)

]
+

)))
,
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(iii) Number of non-zero parameters: The number of non-zero parameters in NN is at most

O

(
n
(

11
4 max{n, d}n2 − 1

) (
d+

√
n log(n)

(
1 + log(2)

log(n)

[
Cn +

log
(
n5/2 aspect(Xn,dn)

)
log(2)

]
+

) (
max{d, 12}(max{d, 12}+ 1)

)))
,

and where the “dimensional constant” Cd > 0 is defined by Cd
def.
= 2 log(5

√
2π)+3 log(d)−log(d+1)

2 log(2) .

Next, for every k = 1, . . . ,K, define the ReLU network Σ̂k : Rn → Rd
2

by

Σ̂k(x)
def.
= 0̄d2 ReLU •

(
0̄d2×nx+ 0̄d2

)
+ 0̄d2 , (31)

where 0̄d2×n is the d2 × n-matrix with all entries 0, 0̄d2 ∈ Rd
2

is the vector with all entries 0. NB, by
construction

max
k=1,...,K

par(Σ̂k) = 0. (32)

Similarly, define the ReLU network ŵ : Rn → RK by

ŵk(x)
def.
= 0̄K ReLU •

(
0̄K×nx+ 0̄K

)
+ 0̄K . (33)

Combining (29), (31), and (33) with the fact that Φ{xl}Nl=1
= ι̃ = ι̃

∣∣∣−1

ι̃(Xn)
we have that: for every x ∈ Xn the

following holds

T (x)
def.
=

K∑
k=1

[σK ◦ ŵ ◦ Φ{xl}Nl=1
(x)]k×

Nd

(
µ̂k ◦ Φ{xl}Nl=1

(x), Σ̂k ◦ Φ{xl}Nl=1
(x)
)

=

K∑
k=1

σK(0)kNd
(
µk ◦ ι̃−1 ◦ ι̃(x), 0

)
=

K∑
k=1

e0∑K
j=1 e

0
Nd
(
µk ◦ ι̃−1 ◦ ι̃(x), 0

)
=

K∑
k=1

1

K
Nd
(
µk ◦ ι̃−1 ◦ ι̃(x), 0

)
=φ(x).

It remains only to compute the width, depth, and number of non-zero parameters determining T . Since T
has width

max

{
width(ŵ), max

k=1,...,K
width(Σk), max

k=1,...,K
width(µk)}

}
.

Therefore, we deduce that

width(T ) = max{max{n,K},max{n, d2}, n(n− 1) + max{d, 12}}
= max{n,K, d2, n(n− 1) + max{d, 12}},

and T has depth max {depth(ŵ),maxk=1,...,K depth(Σk),maxk=1,...,K depth(µk)}. Since depth(ŵ) =
maxk=1,...,K depth(Σk) = 1 then, T has depth of the following order

O

(
n

(
1 +

√
n log(n)

(
1 +

log(2)

log(n)

[
Cn +

log
(
n5/2 aspect(Xn, dn)

)
log(2)

]
+

)))
.
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Furthermore, the number of parameters defining T equals

par
(
T
)

def.
=par

(
ŵ
)

+

K∑
k=1

[
par
(
µ̂k

)
+ par

(
Σ̂k

)]
=0 +K

[
0 + par

(
Σ̂1

)]
.

Thus, the number of non-zero parameters defining T is

O

(
Kn
(11

4
max{n, d}n2 − 1

) (
d+

√
n log(n)

(
1 +

log(2)

log(n)

[
Cn +

log
(
n5/2 aspect(Xn, dn)

)
log(2)

]
+

)
max{d, 12}2

))
.

We now turn our attention to the proof of Theorem 5.

B.1 Proof of PAC-Type Representation Theorem for “Unstructured Case”

The following argument uses the notation of an ultrametric space; briefly, an ultrametric space (Z, dZ) is
a metric space which satisfies the strong triangle inequality: for all z1, z2, z3 ∈ Z one has dZ(z1, z2) ≤
max{dZ(z1, z2), dZ(z2, z3)}. Note that, max{dZ(z1, z2), dZ(z2, z3)} ≤ dZ(z1, z2) + dZ(z2, z3) so the
strong triangle inequality implies the familiar triangle inequality.
Proof [Proof of Theorem 5] Let n ≥ 2 and fix an n-point metric subset Xn of X . Denote (Xn, dn)

def.
=

(Xn, dX ).
Step 1 - Embedding of a Dvoretzky-Type Subspace into Low-Dimensional Euclidean Space
Fix ε ∈ (0,∞] and let (Xn, dn) be an n-point metric space. By (Naor and Tao, 2012, Theorem 1.2) there
exists a θε ∈ (0, 1) (depending only on ε) and subset X̃n ⊆ Xn of cardinality

#X̃n ≥ nθε ≥ n1− 2e
2+ε , (34)

with the following property: there exists a separable ultrametric space (Z, dZ) and a bi-Lipschitz map
ϕ1 : (X̃n, dn) ↪→ (Z, dZ) such that for every x, x̃ ∈ X̃n it holds that

dn(x, x̃) ≤ dZ(ϕ1(x), ϕ1(x̃)) ≤ (2 + ε) dn(x, x̃). (35)

Since (Z, dZ) is a separable ultrametric space then (Vestfrid and Timan, 1979) (or (Shkarin, 2004)) implies
that there exists an isometric embedding ϕ2 : (Z, dZ) ↪→ (`∞2 , `2), where the norm ‖ · ‖`2 is defined for any
x ∈ RN by ‖x‖2`2

def.
=
∑∞
k=1 x

2
k, `∞2

def.
= {x ∈ RN : ‖x‖`2 < ∞}, and thus

(
`∞2 , `2

)
the infinite dimensional

separable Hilbert space. Define ϕ3
def.
= ϕ2 ◦ ϕ1. It follows from (35) that: for all x, x̃ ∈ X̃n

dn(x, x̃) ≤ ‖ϕ3(x)− ϕ3(x̃)‖`2 ≤ (2 + ε)dn(x, x̃). (36)

By the Johnson-Lindenstrauss Flattening Theorem (Matoušek, 2002, Theorem 15.2.1) there exist an s > 0 and
a map ϕ4 : (`∞2 , `2) → (`nε2 , `2), where nε ∈ O(ε−2 log2(#X̃n)) = O(ε−2θε log2(n))) (thus nε is at-most
O(ε−2 log2(n) since θε < 1) satisfying

s ‖z − z̃‖`2 ≤ ‖ϕ4(z)− ϕ4(z̃)‖`2 ≤ s(1 + ε) ‖z − z̃‖`2 , (37)

for all z, z̃ ∈ ϕ3(X̃n). Set ϕ5
def.
= ϕ4 ◦ϕ3 : (X̃n, dn) ↪→ (Rnε , `2). Together (36) and (37) imply that: for every

x, x̃ ∈ X̃n it holds that

sdn(x, x̃) ≤ ‖ϕ5(x)− ϕ5(x̃)‖`2 ≤ s(1 + ε)(2 + ε)dn(x, x̃). (38)

Step 2 - Constructing The Embedding into (GM(R)2,MW2)
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Since X̃n is finite, then (X̃n, dn) is compact. Since ϕ5 is a bi-Lipschitz map then it is continuous. There-
fore, by (Munkres, 2000, Theorem 26.5) ϕ5(X̃n) is a compact subset of (Rnε , `2). By the Heine-Borel
theorem (Munkres, 2000, Theorem 27.3), there exists an r > 0 such that ϕ5(X̃n) ⊆ BallRnε ,`2(0, r); where,
BallRnε ,`2(0, r)

def.
= {u ∈ Rnε : ‖x‖`2 ≤ r}. Since ϕ5(X̃n) ⊆ Ball(Rnε ,`2)(0, r) then (Kloeckner, 2010,

Proposition 7.4) applies. More specifically, as formulated in (Bertrand and Kloeckner, 2012, Example 5.5))
there exists some b ∈ Rnε (which can be computed explicitly using Algorithm 1) such that the map

ι : (Ball(Rnε ,`2)(0, r), `2) 3 x 7→ 1

nε

nε∑
k=1

δ√nε(x+b)k ∈ (P2(R),W2),

is an isometry. Since the composition of isometries is itself an isometry then, the map ϕ def.
= ι◦ϕ5 : (X̃n, dn) ↪→

(P2(R),W2) is an isometry and is of the required form. Lastly, since ϕ is has range in the set of “degenerate
Gaussian mixtures” Z def.

= {P ∈ GM2(R) : ∃N ∈ N+ ∃w ∈ ∆N ∃µ1, . . . , µN ∈ R s.t.P =
∑N
n=1 wnδµn}

then, we obtain the conclusion by applying the comparison result in (Delon and Desolneux, 2020, Proposition
6) which states that the “identity map” on (W2(R),W2) 3 P 7→ P ∈ (GM2(R),MW2) is an isometry on
the collection of finitely supported probability measures (i.e. “degenerate Gaussian mixtures”). Applying
Lemma 17 to the map φ : (Xn, dn) → (GM2(R),MW2), defined for each x ∈ Xn by φ(x)

def.
= ϕ ◦ [x 7→

(d(x, x̃)x̃∈Xn)], yields the desired tranformer T satisfying

sdn(x, x̃) ≤MW2(T (x), T (x̃)) ≤ s(2 + ε)2dn(x, x̃),

for all x, x̃ ∈ X̃n.
Comment: From here, it now only remains to estimate the probability that a uniformly and independently

chosen pair of random points in Xn lie in X̃n.

Step 3 - Estimating Probability of Independently and Uniformly Sampling two Points in the Dvoretzky-
type Subspace
Let P be the uniform probability distribution on Xn and let X, X̃ ∼ P be independent Xn-valued random
elements. By independence and the fact that X and X̃ have the same law we can compute the following

P
(
X ∈ X̃n and X̃ ∈ X̃n

)
= P

(
X ∈ X̃n

)
P
(
X̃ ∈ X̃n

)
= P

(
X ∈ X̃n

)2

. (39)

Together, the lower-bound in (34), the definition of P, and (39) imply that

P
(
X ∈ X̃n and X̃ ∈ X̃n

)
= P

(
X ∈ X̃n

)2

=

(
#X̃n
#Xn

)2

≥
(
nθε

n

)2

≥
(
n1−(2e/2+ε)

n

)2

= n−4e/(2+ε).

(40)

Moreover, by (Naor and Tao, 2012, Theorem 1.2) the precise value of θε is given by the unique solution
θ ∈ (0, 1) to 2

2+ε = (1− θ)θθ/(1−θ); nb, θε ∈ [1− 2e/(2 + ε), 1). Labeling D def.
= 2 + ε, θD

def.
= θε, observing

that T is defined on all of X , and noting that by construction dT = k yields the theorem’s statement and
concludes our proof.
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Step 4 - Inverting the relation between D and θD:
Fix δ ∈ (0, 1) such that n−2+2θD = δ. Solving for θD yields

θD = 1 + logn(
√
δ). (41)

Since θD must belong to (0, 1) then (41) only gives a valid θD if δ ∈
(
1/e2, 1

)
; thus, we now impose that

constraint. Since θD solves 2
D = (1− θ) θθ/(1−θ) where θ ∈ [1− 2e

D , 1) then (41) implies that

D = −2

(
1 + logn(

√
δ)
) 1+logn(

√
δ)

logn(
√
δ)

logn(
√
δ)

. (42)

In order for D in (42) to be a valid distortion (compatible with our argument) we need that D > 2. Therefore,
we require that δ > δn; where δ̃n ∈ [ 1

e2 , 1) is the unique solution to

logn(
√
δ) =

(
1 + logn(

√
δ)
) 1+logn(

√
δ)

logn(
√
δ) .

Set δn
def.
= max{ 1

e2 , δ̃n}. Restricting δ ∈ (δn, 1) yields a δ for which θD and D both satisfy the required
assumptions of our argument. This complete the proof.

B.2 Proof of Distortionless Multivariate Embeddings

Proof [Proof of Theorem 7] Fix a positive integer n and let Xn be a n-point subset of a metric space (X , d)
which we view as an n-point metric space (Xn, d). Let ι : (Xn, d)→ (Rn, ‖ · ‖∞) be the Fréchet embedding
defined by ι(x)

def.
= (d(x, xi))

n
i=1 and denote X̃n

def.
= ι(Xn). Clearly, (Xn, d) and (X̃n, ‖ · ‖∞) are isometric

with isometry given by ι. It is therefore sufficient to bi-Hölder embed (Xn, ‖ · ‖∞) into (P2(R3),W2); we
do this now. In the proof of (Andoni et al., 2018, Theorem 1) from (Andoni et al., 2018, Equation (12) to
Equation(22)), the authors define a map φ̃ : X̃n → (P2(R3),W2) with the property that: there is some positive
integer N such that for every x ∈ X̃n

φ̃(x) =
1

N

N∑
n=1

δun(x) (43)

for some set of points {un(x) : n = 1, . . . , N, x ∈ X̃n} in R3. Moreover, a careful reading of the construction
show that the positive integer N is such bounded above by16

N ≤ n(n− 1)/2 (5K + 2) (44)

for some hyperparameter K ∈ N+ to be decided upon shortly. The quantitative version of the result
in question, namely (Andoni et al., 2018, Lemma 15), shows that for every distortion D > 1, taking

5n4

2(D−1) aspect(X̃n, d)2 ≤ K implies that: there is some scale s > 0 such that for every x, x̃ ∈ X̃n it holds
that

s ‖x− x̃‖1/2∞ ≤ W2

(
φ̃(x), φ̃(x̃)

)
≤ Ds ‖x− x̃‖1/2∞ . (45)

Since ι is an isometry and every pointmass on R3 is a Gaussian measure with mean at that point and zero
variance then the map φ def.

= φ̃ ◦ ι−1 sends (Xn, d) to (GM2(R3),MW2) and it has representation

φ(x) =

N∑
n=1

1

N
N3(un(x),0),

16. As a brief reference, we note that, in the notation of (Andoni et al., 2018), N ≤ #C, C ⊆ ∪i,j=1,...,n; i<j Bi,j and #Bi,j =
5K + 2; for some hyperparameter K ∈ N+ independent of the construction thus far.
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where 0 is the 3× 3-dimensional zero matrix. Moreover, since ι is an isometry and by (Delon and Desolneux,
2020, Proposition 6) the inclusion of the set of finitely supported probability measures in (P2(R3),W2) into
(GM2(R3),MW2) is an isometry then (45) implies that: there is a scale s > 0 such that for every x, x̃ ∈ Xn
it holds that

s d(x, x̃)1/2 ≤MW2

(
φ(x), φ(x̃)

)
≤ Dsd(x, x̃)1/2. (46)

That is, φ is a 1
2 -bi-Hölder embedding of (Xn, d) into (GM2(R3),MW2). Applying the Key Lemma,

Lemma 17, and to the map φ yields the conclusion; upon noting that the probabilistic transformer T is defined
on all of X .

B.3 Proof of Embedding Lemmata

Proof [Proof of Lemma 18] Since (X , d) is a doubling metric space then, by (Naor and Neiman, 2012,
Theorem 1.2) there exist constant c, C > 0 such that for any 0 < ε < 1

2 there exists an injective function
φ : (X , d) ↪→ (RD, `2) satisfying

d1−ε
X (x, x̃) ≤ ‖φ(x)− φ(x̃)‖`2 ≤

⌈
C log(Cd)

2

(1− (1− ε))2

⌉
d1−ε
X (x, x̃); (47)

where D ≤ c log(Cd). Since Xn ⊆ X is finite, then Xn is compact. By (47), φ is ( 1
2 , 1) 3 (1 − ε)-Hölder

continuous and therefore, by (Munkres, 2000, Theorem 26.5) φ(Xn) must be a compact subset of (RD, `2).
As before, by appealing to the Heine-Borel theorem ((Munkres, 2000, Theorem 27.3)) we conclude that there
must exist some r > 0 such that φ(Xn) ⊆ BallRD,`2(0, r); where BallRD,`2(0, r)

def.
= {u ∈ RD : ‖x‖`2 ≤ r}.

Thus, (Kloeckner, 2010, Proposition 7.4) implies that there exists some b ∈ RD (which can be constructed
using Algorithm 1) such that the map

ι : (Ball(RD,`2)(0, r), `2) 3 x 7→ 1

D

D∑
k=1

δ√D(x+b)k
∈ (P2(R),W2),

is an isometry. As in the proof of Lemma 24, since ι◦φ is has range in the set of “degenerate Gaussian mixtures”;
i.e. belonging to Z def.

= {P ∈ GM2(Rd) : ∃N ∈ N+ ∃w ∈ ∆N ∃µ1, . . . , µN ∈ Rd s.t.P =
∑N
n=1 wnδµn}

then, we obtain the conclusion by applying the comparison result in (Delon and Desolneux, 2020, Proposition
6) which states that the identity map on (GM2(Rd),W2) 3 P 7→ P ∈ (GM2(Rd),MW2) is an isometry on
the collection of degenerate mixtures of in Z . Setting φ def.

= ι ◦ φ and α def.
= 1− ε concludes the proof.

B.4 Proof of Main Results

The proof of Theorem 4 relies on the following lemma relating the rate at which the volume of a ball doubles
as a function of its radius to Xn’s metric capacity. To formulate the required lemma, we must first revisit the
notion of a doubling measure (Heinonen, 2001, Page 3 and Chapter 13).

Let us begin by recalling that, given any x ∈ Xn and any r > 0, the metric ball about x of radius r is
defined by B(x, r)

def.
= {u ∈ Xn : dX (u, z) < r}. Briefly, we say that a (finite Borel) measure µ on (Xn, dn)

is a doubling measure with doubling constant cµ if for every x ∈ Xn and every r > 0 it holds that

µ(B(x, 2r)) ≤ cµµ(B(x, r)). (48)

In (Vol’berg and Konyagin, 1987) it was shown that the existence of a doubling measure is equivalent to dn
being doubling as a metric space; this means that there is a (metric) doubling constant cdn > 0 such that:
for each r > 0 every metric ball in Xn of radius 2r can be covered by at most cdn metric balls of radius r.
In (Bruè et al., 2021, Proposition 1.7), it is shown that the existence of a bound on cap(Xn) is equivalent
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to the existence and a bound for cdn . Thus, a bound on the constant of a doubling measure cµ should, in
principle, imply a bound on the cap(Xn). The next explicitly spells out the relationship between these “metric
quantities”.

Lemma 21 (Bounds of Metric Capacity via (Metric and Measure) Doubling Constants) Let µ be a dou-
bling measure on (Xn, dn) with doubling constant cµ, as in (48). Then, the metric capacity of (Xn, dn) is
bounded above by

log(cdn) ≤ log(cap(Xn)) ≤ 12 log(cµ).

Proof [Proof of Lemma 21] Suppose that N is a positive integer for which there does not exist points
x1, . . . , xN ∈ B(x, r) satisfying

Ballg(x, r) ⊆
N⋃
i=1

Ballg(xi, r/2),

then, N is an upper-bound for cdn . Moreover, there must exist N points x1, . . . , xn in B(x, r) for which

0 < min
i,j=1,...,N ; i 6=j

min
u∈Xn, dn(u,xi)≤2−2r

min
ũ∈Xn, dn(ũ,xj)≤2−2r

dn(u, ũ).

Pick N? ∈ argmin
i=1,...,N

µ(B(xi, r)). Thus, we have that

µ(B(xN? , 4r)) ≥
N∑
i=1

µ(B(xi, 2
−2r))

≥ n min
i=1,...,N

µ(B(xi, r)) = nµ(B(xN? , r)).

Therefore, cd ≤ c4µ. Now, by (Bruè et al., 2021, Proposition 1.7 (i)), we have that

cap(Xn) ≤ C3
d . (49)

Combining the estimate (49) with the estimate cd ≤ c4µ yields the desired upper-bound on cap(Xn). The
lower-bound on cap(Xn) is given in (Bruè et al., 2021, Proposition 1.7 (i)).

Proof [Proof of Theorem 4] Fix an n ≥ 2-point metric subspace (Xn, dn) of (X , dX ). Restricting to (Xn, dn),
the result for X = Xn follows from Lemma 17 applied to Lemma 18 and then using Lemma 21 to upper-bound
log2(cdn) by 12 log2(cap(Xn, dn)). The general statement, follows by simply noting that T constructed this
way is defined on all of X .

Remark 22 The proof of Theorem 4 implies that the result holds with cap(Xn, dn) replaced by Xn’s doubling
constant. Nevertheless, one can still derive the result with C3

d in place of cap(Xn) as a consequence of the
present formulation of Theorem 4 and of (Bruè et al., 2021, Proposition 1.7 (ii)). Thus, we only make the
remark to state that the result can be sharpened if one prefers to consider doubling constants rather than
metric capacity.

B.5 Proofs of Secondary Results

B.5.1 PROOFS OF DETERMINISTIC EMBEDDINGS

Let us consider the case where (Xn, dn) is a tree.
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Lemma 23 (Bi-Lipschitz Embedding of (Finite) Combinatorial Trees into (GM2(R),MW2)) Let G =
(V,E) be an n-vertex tree and let (V, dG) be its associated metric space (as in Example 2.1). There is an
absolute constant C > 0 such that, for every M ∈ N+ there exists a map of the form

ϕ(x)
def.
=

1

M

M∑
k=1

Nd(φ(x)k, 0),

such that the following holds: for every x, x̃ ∈ Xn we have that

dG(x, x̃) ≤ W2(ϕ(x), ϕ(x̃)) ≤MW2(ϕ(x), ϕ(x̃)) ≤ Cn1/(d−1)dG(x, x̃),

where φ : V → RM and C > 0 is an absolute constant independent of n, d, and of (Xn, dn).

Proof [Proof of Lemma 23] Fix ε > 0. Since dn is a tree metric on Xn then (Gupta, 2000, Theorem 1)
implies there is an absolute constant C > 0 (independent of n and of (Xn, dn)) and bi-Lipschitz embedding
φ : V → Rd satisfying: for every x, x̃ ∈ V

dn(x, x̃) ≤ ‖φ(x)− φ(x̃)‖ ≤ Cn1/(d−1)dn(x, x̃). (50)

Since Xn is finite, then (Xn, dn) is compact. Since φ is a bi-Lipschitz map then, it is continuous
and therefore by (Munkres, 2000, Theorem 26.5), φ(Xn) is a compact subset of (Rd, `2). By the Heine-
Borel theorem ((Munkres, 2000, Theorem 27.3)), there exists an r > 0 such that φ(Xn) ⊆ BallRd,`2(0, r);
where BallRd,`2(0, r)

def.
= {u ∈ Rd : ‖x‖`2 ≤ r}. Since φ(Xn) ⊆ Ball(Rd,`2)(0, r) then (Kloeckner, 2010,

Proposition 7.4) applies. More specifically, the proof of (Kloeckner, 2010, Proposition 7.4) (see the comment
in (Bertrand and Kloeckner, 2012, Example 5.5)) guarantee that there exists some b ∈ Rd (which can be
constructed using Algorithm 1 in Section C) such that the map

ι : (Ball(R5,`2)(0, r), `2) 3 x 7→ 1

d

d∑
k=1

δ√d(x+b)k
∈ (P2(R),W2),

is an isometry. Since the composition of isometries is itself an isometry, then the map ϕ def.
= ι ◦ φ : (Xn, dn) ↪→

(P2(R),W2) is an isometry and is of the required form. Lastly, since ι ◦ φ is has range in the set of “de-
generate Gaussian mixtures” Z def.

= {P ∈ GM2(Rd) : ∃N ∈ N+ ∃w ∈ ∆N ∃µ1, . . . , µN ∈ Rd s.t.P =∑N
n=1 wnδµn} then, we obtain the conclusion by applying the comparison result in (Delon and Desolneux,

2020, Proposition 6) which states that the “identity map” on (W2(R),W2) 3 P 7→ P ∈ (GM2(R),MW2) is
an isometry on the collection of finitely supported probability measures (i.e. “degenerate Gaussian mixtures”).

Proof [Proof of Proposition 11] Since (Xn, dn) is a combinatorial (metric) graph then aspect(Xn, dn) ≤
diam(Xn, dn). The result now follows directly from Lemma 17 applied to Lemma 23.

Our next case concerns the structure of a low-distortion embedding of a graph whose points are drawn from a
Riemannian manifold. In this case, we see that the number of pointmasses required scales quadratically in the
dimension of the latent Riemannian manifold.

Lemma 24 (Bi-Lipschitz Embeddings of Riemannian Datasets - For Compact Manifolds)
Let n, d ∈ N+. Let (M, g) be a d-dimensional Riemannian manifold with geodesic distance dg and letK ⊆M
be compact. There exists a constant CK (depending only on K) such that for any Xn ⊆ M if dn

def.
= dg|Xn ,

then exists a map ϕ : (Xn, dn)→ (GM2(R),MW2) of the form

ϕ(x) =
1

2d

2d∑
k=1

N1(φ(x)k, 0);
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satisfying: for every x, x̃ ∈ X the following holds

dX (x, x̃) ≤ W2(ϕ(x), ϕ(x̃)) ≤MW2(ϕ(x), ϕ(x̃)) ≤ C CKdX (x, x̃);

where φ : (Xn, dn)→ (R2d, `2) is a class-C1-(Riemannian) isometric embedding.

Proof [Proof of Lemma 24] Since (M, g) is a Riemannian manifold then, (Nash, 1954, Theorem 2) implies
that there exists a class-C1 (Riemannian isometric embedding) φ : (M,dg) ↪→ (R2d, `2). Since φ is a class
C1 Riemannian isometric embedding, it is a diffeomorphism onto its image and therefore, φ has a class C1

inverse on φ(M) which we denote by φ−1. Since K is compact and φ is continuous then φ(K) is compact
and therefore the following is finite

CK
def.
= max{max

x∈K
‖∇φ(x)‖, max

x∈φ(K)
‖∇φ−1(x)‖}.

Therefore, by the Rademacher-Stepanov Theorem (Federer, 1978, Theorem 3.1.6) we have that: for every
x, x̃ ∈ K

dg(x, x̃) ≤ ‖φ(x)− φ(x̃)‖ ≤ CKdg(x, x̃). (51)

Since φ is class-C1, it is continuous and since Xn is a compact subset of M (since it is finite) then by
(Munkres, 2000, Theorem 26.5) φ(Xn) is a non-empty compact subset of (R2d, `2). By the Heine-Borel
Theorem (Munkres, 2000, Theorem 27.3), there exists some r > 0 such that φ(Xn) ⊆ Ball(R2d,`2)(0, r) where
Ball(R2d,`2)(0, r)

def.
= {z ∈ R2d : ‖z‖`2 ≤ r}.

Since φ(Xn) ⊆ Ball(R2d,`2)(0, r) then (Kloeckner, 2010, Proposition 7.4) applies. More specifically, the
proof of (Kloeckner, 2010, Proposition 7.4) (see the comment in (Bertrand and Kloeckner, 2012, Example
5.5)) guarantee that there exists some b ∈ R2d (that can be built explicitly via Algorithm 1 in Section C) such
that the map

ι : (Ball(R2d,`2)(0, r), `2) 3 x 7→ 1

2d

2d∑
k=1

δ√2d(x+b)k
∈ (P2(R),W2),

is an isometry. Combining the two maps, we find that the composite map

ϕ : (Xn, dg) 3 x 7→
1

2d

2d∑
k=1

δ√2d(φ(x)+b)k
∈ (P2(R),W2),

is an isometry. As in the proof of Lemma 23, since ι ◦ φ is has range in the set of “degenerate Gaussian
mixtures” Z def.

= {P ∈ GM2(Rd) : ∃N ∈ N+ ∃w ∈ ∆N ∃µ1, . . . , µN ∈ Rd s.t.P =
∑N
n=1 wnδµn} then,

we obtain the conclusion by applying the comparison result in (Delon and Desolneux, 2020, Proposition
6) which states that the “identity map” on (W2(R),W2) 3 P 7→ P ∈ (GM2(R),MW2) is an isometry on
the collection of finitely supported probability measures in Z . Relabeling φ as φ(·)+b yields the conclusion.

Proof [Proof of Proposition 8] The result is directly follows from Lemma 17 applied to the map ϕ of Lemma 24
and relabeling C CK as CK .

B.5.2 PROOF OF COROLLARIES TO MAIN RESULTS

Proof [Proof of Corollary 12] We only upper-bound cap(Xn) in order to apply Theorem 4. By Lemma 21
log(cap(Xn, dn)) ≤ 12 log(cµ) for any doubling measure µ on (Xn, dn). Since (Xn, dn) is the metric space
associated to a (finite) combinatorial graph in which every two vertices are connected by at most 2 edges then,
(Durand-Cartagena et al., 2021, Theorem 5, Proposition 18, and Proposition 19) we know that cµ = 1+ρ(AV ).
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Note also that aspect(Xn, dn) = diam(Xn, dn) since the shortest distance between any two points in a com-
binatorial (metric) graph is 1. Thus, log(cap(Xn, dn)) ≤ 12 log(1 + ρ(AV )) and the result now follows from
Theorem 4.

Proof [Proof of Corollary 9] As argued in (Baudoin and Garofalo, 2011, pages 1121-1122), the complete
d-dimensional Riemannian manifold (M, g) satisfies the curvature-dimension inequality of (2) for some r ∈ R
if and only if (M, g)’s Ricci curvature tensor ((Jost, 2017, Definition 4.3.3)) is uniformly lower-bounded by r.
As demonstrated in (Baudoin and Garofalo, 2011, Equation (1.1)) the lower Ricci-cuvature bound on (M, g) to-
gether with the Bishop-Gromov Volume Comparison Theorem (e.g. see (Chavel, 1993, Theorem 3.10)) implies
that cdn ≤ d. Therefore, (Bruè et al., 2021, Proposition 1.7 (ii)) implies that log(cap(Xn, dn)) ≤ 3 log(cdn).
The result therefore follows from Theorem 4.

B.5.3 PROOF OF IMPOSSIBILITY RESULTS

Proof [Proof of Proposition 13]
Step 1 - A lower Bound when Embedding into Spaces of Markov type p ≥ 2
On (Naor et al., 2006, page 173) the authors discuss that the proof of a result in (Linial et al., 2002)
implies the following for any metric space R of Markov type 2 (see (Naor et al., 2006, Definition 1.1)).
If Γg,δ

def.
= (Xg,δ, dg,δ) is a graph (equipped with the usual graph geodesic distance) in which the shortest loop

has length at least g > 0 (called Γg,δ’s girth) and its average degree is δ > 2 then, any bi-Lipschitz embedding
f : Γg,δ → (R, dR) (here s = 1) has distortion Dist(f) at-least

Dist(f) ≥ δ − 2

2Mp(R)
g(p−1)/p, (52)

where p is the Markov-type of (R, dR) as defined by in (Ball, 1992, Definition 1.1) and Mp(R) > 0 is a
constant depending only onR’s geometry.

Step 2 - Markov Type of (M, g)

Let (R, dR)
def.
= (M,dg) where (M, g) is a complete Riemannian manifold with sectional curvature pinched

between [−C,−c] for some 0 < c ≤ C <∞. Therefore, (Naor et al., 2006, Corollary 6.5) applies implying
that (M,dg) has Markov type p = 2.

Step 3 - Realizing the Diverging Lower-Bound via Sextet Graphs
The main result of (Weiss, 1984) shows that, for every prime integer n > 2 satisfying n mod 16 ∈
{±3,±5,±7}, the sextet graph with n vertices is a cubic graph (i.e. each vertex has exactly 3 edges connected
to it and therefore δ = 3 > 2) and its girth g is at-least 4

3 log2(n)− 2. Therefore, setting Γg,δ to be the sextet
graph with n-vertices we deduce from (52) and step 2 that any bi-Lipschitz embedding f : Γg,δ → R satisfies

Dist(f) ≥ 1

2Mp(R)

√
4

3
log2(n)− 2.

Setting cR
def.
= 1

2Mp(R) yields the conclusion.

Proof [Proof of Proposition 15] We argue by contradiction. Assume thatR is a Riemannian manifold which
is bi-Lipschitz embedded in the Hilbert space `2 with distortion D1; denote this bi-Lipschitz embedding
by ψ : (R, g) ↪→ (R2d, `2) and with the property that: for every n ∈ N+ there is no n-point metric space
(Xn, dn) which can be bi-Lipschitz embedded in (R, dg) with distortion D2

(
log(n)

log(log(n))

)
(here D2 is a

constant depending only onR).
Therefore, for every n-point metric space (Xn, dn) there exists a bi-Lipschitz embedding φ : (Xn, dn) ↪→

(R, dg) whose distortionD is less than D2
log(n)

log(log(n)) . Thus ψ ◦φ : Xn → `2, is a bi-Lipschitz embedding with
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at-least distortion D1D2. Thus, for n large enough there is an n-point metric space which bi-Lipschitz embeds
into (`2, `2) with distortion less than O

(
log(n)

log(log(n))

)
. This is a contradiction of a main result of (Bourgain,

1985). Whence, (R, g) does not exist.

C. Algorithmic Construction of the “Bias Term” in our Embeddings’ Proofs
This short appendix contains an explicit algorithmic construction of the shift (or “bias term”), denoted by
b, used when embedding a bounded Euclidean ball into the Wasserstein space. The term b ∈ Rd maps the
Euclidean ball into the space Rd<

def.
= {x ∈ Rd : x1 < · · · < xd} used in (Bertrand and Kloeckner, 2012,

Example 5.5) and initially proposed in (Kloeckner, 2010, Proposition 7.4) .

Algorithm 1 Initialize Bias

Require: Set of n-vectors X
def.
= {x(1), . . . , x(n)} in RK ,

b0
def.
= 0 . Initialize first shift

for n = 1, . . . , N do x̃n1
def.
= x

(n)
1 + b1 . Dummy vectors

end for
for k = 1, . . . ,K do . Iteratively build bias components

bk
def.
= maxn≤N ReLU(x

(n)
k−1 − x

(n)
k−1)

for n ≤ N do x̃nk
def.
= x

(n)
k + bk . Dummy vectors

end for
end for
return b def.

= (b1, . . . , bK) . Return Bias)
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