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Abstract

Graph-based learning is a rapidly growing sub-field of machine learning with applications
in social networks, citation networks, and bioinformatics. One of the most popular models
is graph attention networks. They were introduced to allow a node to aggregate informa-
tion from features of neighbor nodes in a non-uniform way, in contrast to simple graph
convolution which does not distinguish the neighbors of a node. In this paper, we theoret-
ically study the behaviour of graph attention networks. We prove multiple results on the
performance of the graph attention mechanism for the problem of node classification for a
contextual stochastic block model. Here, the node features are obtained from a mixture of
Gaussians and the edges from a stochastic block model. We show that in an “easy” regime,
where the distance between the means of the Gaussians is large enough, graph attention
is able to distinguish inter-class from intra-class edges. Thus it maintains the weights of
important edges and significantly reduces the weights of unimportant edges. Consequently,
we show that this implies perfect node classification. In the “hard” regime, we show that
every attention mechanism fails to distinguish intra-class from inter-class edges. In addi-
tion, we show that graph attention convolution cannot (almost) perfectly classify the nodes
even if intra-class edges could be separated from inter-class edges. Beyond perfect node
classification, we provide a positive result on graph attention’s robustness against struc-
tural noise in the graph. In particular, our robustness result implies that graph attention
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can be strictly better than both the simple graph convolution and the best linear classifier
of node features. We evaluate our theoretical results on synthetic and real-world data.

Keywords: graph neural networks, attention mechanism, contextual stochastic block
model, high-dimensional probability, node classification

1. Introduction

Graph learning has received a lot of attention recently due to breakthrough learning mod-
els (Gori et al., 2005; Scarselli et al., 2009; Bruna et al., 2014; Duvenaud et al., 2015; Henaff
et al., 2015; Atwood and Towsley, 2016; Defferrard et al., 2016; Hamilton et al., 2017; Kipf
and Welling, 2017) that are able to exploit multi-modal data that consist of nodes and their
edges as well as the features of the nodes. One of the most important problems in graph
learning is the problem of classification, where the goal is to classify the nodes or edges
of a graph given the graph and the features of the nodes. Two of the most fundamental
mechanisms for classification, and graph learning in general, are graph convolution and
graph attention. Graph convolution, usually defined using its spatial version, corresponds
to averaging the features of a node with the features of its neighbors (Kipf and Welling,
2017).1 Graph attention (Veličković et al., 2018) mechanisms augment this convolution by
appropriately weighting the edges of a graph before spatially convolving the data. Graph
attention is able to do this by using information from the given features for each node.
Despite its wide adoption by practitioners (Fey and Lenssen, 2019; Wang et al., 2019; Hu
et al., 2020) and its large academic impact as well, the number of works that rigorously
study its effectiveness is quite limited.

One of the motivations for using a graph attention mechanism as opposed to a simple
convolution is the expectation that the attention mechanism is able to distinguish inter-
class edges from intra-class edges and consequently weights inter-class edges and intra-class
edges differently before performing the convolution step. This ability essentially maintains
the weights of important edges and significantly reduces the weights of unimportant edges,
and thus it allows graph convolution to aggregate features from a subset of neighbor nodes
that would help node classification tasks. In this work, we explore the regimes in which
this heuristic picture holds in simple node classification tasks, namely classifying the nodes
in a contextual stochastic block model (CSBM) (Binkiewicz et al., 2017; Deshpande et al.,
2018). The CSBM is a coupling of the stochastic block model (SBM) with a Gaussian
mixture model, where the features of the nodes within a class are drawn from the same
component of the mixture model. For a more precise definition, see Section 2. We focus
on the case of two classes where the answer to the above question is sufficiently precise
to understand the performance of graph attention and build useful intuition about it. We
briefly and informally summarize our contributions as follows:

1. In the “easy regime”, i.e., when the distance between the means of the Gaussian mix-
ture model is much larger than the standard deviation, we show that there exists a
choice of attention architecture that distinguishes inter-class edges from intra-class

1. Although the model in Kipf and Welling (2017) is related to spectral convolutions, it is mainly a spatial
convolution since messages are propagated along graph edges. More broadly, graph convolution can refer
to different variants arising from different (approximations of) graph spectral filters. We provide details
in Section 2.
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edges with high probability (Theorem 3). In particular, we show that the attention
coefficients for one class of edges are much higher than the other class of edges (Corol-
lary 4). Furthermore, we show that these attention coefficients lead to a perfect node
classification result (Corollary 5). However, in the same regime, we also show that
the graph is not needed to perfectly classify the data (Proposition 7).

2. In the “hard regime”, i.e., when the distance between the means is small compared to
the standard deviation, we show that every attention architecture is unable to distin-
guish inter-class from intra-class edges with high probability (Theorem 9). More-
over, we show that using the original Graph Attention Network (GAT) architec-
ture (Veličković et al., 2018), with high probability, most of the attention coefficients
are going to have uniform weights, similar to those of simple graph convolution (Kipf
and Welling, 2017) (Theorem 10). We also consider a setting where graph attention
is provided with independent and perfect edge information, and we show that even in
this case, if the distance between the means is sufficiently small, then graph attention
would fail to (almost) perfectly classify the nodes with high probability (Theorem 13).

3. Beyond perfect node classification, we show that graph attention is able to assign a
significantly higher weight to self-loops, irrespective of the parameters of the Gaus-
sian mixture model that generates node features or the stochastic block model that
generates the graph. Consequently, we show that with a high probability, graph at-
tention convolution is at least as good as the best linear classifier for node features
(Theorem 14). In a high structural noise regime when the graph is not helpful for
node classification, i.e., when intra-class edge probability p is close to inter-class edge
probability q, this means that graph attention is strictly better than simple graph
convolution because it is able to essentially ignore the graph structural noise (Corol-
lary 15). In addition, we obtain lower bounds on graph attention’s performance for
almost perfect node classification and partial node classification (Corollary 16).

4. We provide an extensive set of experiments both on synthetic data and on three
popular real-world datasets that validates our theoretical results.

1.1 Limitations of our theoretical setting

In this work, to study the benefits and the limitations of the graph attention mechanism,
we focus on node classification tasks using the CSBM generative model with two classes
and Gaussian node features. This theoretical setting has a few limitations. First, we
note that many real-world networks are much more complex and may exhibit different
structures than the ones obtainable from a stochastic block model. Furthermore, real-world
node attributes such as categorical features may not even follow a continuous probability
distribution. Apparently, there are clear gaps between CSBM and the actual generative
processes of real-world data. Nonetheless, we note that a good understanding of graph
attention’s behavior over CSBM would already provide us with useful insights. For example,
it has been shown empirically that synthetic graph datasets based on CSBM constitute good
benchmarks for evaluating various GNN architectures (Palowitch et al., 2022). To that end,
in Section 6, we summarize some practical implications of our theoretical results which could
be useful for practitioners working with GNNs.
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Second, there are different levels of granularity for machine learning problems on graphs.
Besides node-level tasks such as node classification, other important problems include edge-
level tasks such as link prediction and graph-level tasks such as graph classification. While,
empirically, variants of graph attention networks have been successfully applied to solve
problems at all levels of granularity, our theoretical results mostly pertain to the effects of
graph attention for node classification. This is a limitation on the scope of our study. On
the other hand, we note that edge-level and graph-level tasks are typically solved by adding
a pooling layer which combines node representations from previous graph (attention) convo-
lution layers. Consequently, the quality of graph attention convolution’s output for a node
not only affects node classification but also has a major influence on link prediction and
graph classification. Therefore, our results may be extended to study the effects of graph
attention on link prediction and graph classification under the CSBM generative model.
For example, link prediction is closely related to edge classification which we extensively
study in Section 3. For graph classification, one may consider the problem of classifying
graphs generated from different parameter settings of the CSBM. In this case, our results on
graph attention’s impact on node representations may be used to establish results on graph
attention’s impact on graph representations after certain pooling layers. In particular, if
graph attention convolution generates good node representations that are indicative of node
class memberships, then one can show that the graph representation obtained from appro-
priately aggregating node representations would be indicative of the clustering structure
of the graph, and hence the graph representation would be useful for graph classification
tasks.

1.2 Relevant work

Recently the concept of attention for neural networks (Bahdanau et al., 2015; Vaswani et al.,
2017) was transferred to graph neural networks (Li et al., 2016; Bresson and Laurent, 2018;
Veličković et al., 2018; Lee et al., 2019; Puny et al., 2020). A few papers have attempted to
understand the attention mechanism in Veličković et al. (2018). One work relevant to ours
is Brody et al. (2022). In this paper, the authors show that a node may fail to assign large
edge weight to its most important neighbors due to a global ranking of nodes generated by
the attention mechanism in Veličković et al. (2018). Another related work is Knyazev et al.
(2019), which presents an empirical study of the ability of graph attention to generalize on
larger, complex, and noisy graphs. In addition, in Hou et al. (2019) the authors propose a
different metric to generate the attention coefficients and show empirically that it has an
advantage over the original GAT architecture.

Other related work to ours, which does not focus on graph attention, comes from the
field of statistical learning on random data models. Random graphs and the stochastic
block model have been traditionally used in clustering and community detection (Abbe,
2018; Athreya et al., 2018; Moore, 2017). Moreover, the works by Binkiewicz et al. (2017);
Deshpande et al. (2018), which also rely on CSBM are focused on the fundamental limits of
unsupervised learning. Of particular relevance is the work by Baranwal et al. (2021), which
studies the performance of graph convolution on CSBM as a semi-supervised learning prob-
lem. Within the context of random graphs, Keriven et al. (2021) studies the approximation
power of graph neural networks on random graphs. In Maskey et al. (2022) the authors
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derive generalization error of graph neural networks for graph classification and regression
tasks. In our paper we are interested in understanding graph attention’s capability for
edge/node classification with respect to different parameter regimes of CSBM.

Finally, there are a few related theoretical works on understanding the generalization
and representation power of graph neural networks (Chen et al., 2019; Chien et al., 2021;
Zhu et al., 2020; Xu et al., 2019; Garg et al., 2020; Loukas, 2020a,b). For a recent survey in
this direction see Jegelka (2022). Our work takes a statistical perspective which allows us
to characterize the precise performance of graph attention compared to graph convolution
and no convolution for CSBM, with the goal of answering the particular questions that we
imposed above.

2. Preliminaries

In this section, we describe the Contextual Stochastic Block Model (CSBM) (Deshpande
et al., 2018) which serves as our data model, and the Graph Attention mechanism (Veličković
et al., 2018). We also define notations and terms that are frequently used throughout the
paper.

For a vector x ∈ Rn and n ∈ N, the norm ‖x‖ denotes the Euclidean norm of x, i.e.

‖x‖ def
=
∑

i∈[n] x
2
i . We write [n]

def
= {1, 2, . . . , n}. We use Ber(p) to denote the Bernoulli

distribution, so x ∼ Ber(p) means the random variable x takes value 1 with probability p
and 0 with probability 1 − p. Let d, n ∈ N, and ε1, . . . , εn ∼ Ber(1/2). Define two classes
as Ck = {j ∈ [n] | εj = k} for k ∈ {0, 1}. For each index i ∈ [n], we set the feature
vector Xi ∈ Rd as Xi ∼ N((2εi − 1)µ, σ2I), where µ ∈ Rd, σ ∈ R and I ∈ {0, 1}d×d is
the identity matrix.2 For a given pair p, q ∈ [0, 1] we consider the stochastic adjacency
matrix A ∈ {0, 1}n×n defined as follows. For i, j ∈ [n] in the same class (i.e., intra-class
edge), we set aij ∼ Ber(p), and if i, j are in different classes (i.e., inter-class edge), we set
aij ∼ Ber(q). We denote by (X,A) ∼ CSBM(n, p, q,µ, σ2) a sample obtained according to
the above random process.

An advantage of CSBM is that it allows us to control the noise by controlling the
parameters of the distributions of the model. In particular, CSBM allows us to control the
distance of the means and the variance of the Gaussians, which are important for controlling
the separability of the Gaussians. For example, fixing the variance, then the closer the means
are the more difficult the separation of the node Gaussian features becomes. Another notable
advantage of CSBM is that it allows us to control the structural noise and homophily level
of the graph. The level of noise in the graph is controlled by increasing or reducing the
gap between the intra-class edge probability p and the inter-class edge probability q, and
the level of homophily in the graph is controlled by the relative magnitude between p and
q. For example, when p is much larger than q, then a node is more likely to be connected
with a node from the same class, and hence we obtain a homophilous graph; when q is
much larger than p, then a node is more likely to be connected with a node from a different
class, and hence we obtain a heterophilous graph. There are several recent works exploring
the behavior of GNNs in heterophilous graphs (Lim et al., 2021; Yan et al., 2022; Bodnar
et al., 2022; Luan et al., 2022). Interestingly, we note that our results for graph attention’s

2. The means of the mixture of Gaussians are ±µ. Our results can be easily generalized to general means.
The current setting makes our analysis simpler without loss of generality.
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behavior over the CSBM data model do not depend on whether the graph is homophilous
or heterophilous.

Given node representations hi ∈ RF
′

for i ∈ [n], a (spatial) graph convolution for node
i has output

h′i =
∑
j∈[n]

AijcijWhj , cij =

(∑
`∈[n]

Ai`

)−1

,

where W ∈ RF×F ′ is a learnable matrix. Throughout this paper, we will refer to this
operation as simple graph convolution or standard graph convolution. Our definition of graph
convolution is essentially the mean aggregation step in a general GNN layer (Hamilton
et al., 2017). The normalization constant cij in our definition is closely related to the
symmetric normalization cij = (

∑
`∈[n] Ai`)

−1/2(
∑

`∈[n] Aj`)
−1/2 used in the original Graph

Convolutional Network (GCN) introduced by Kipf and Welling (2017). Our definition does
not affect the discussions or implications we have for GCN with symmetric normalization.
More broadly, there are other forms of graph convolution in the literature (Bronstein et al.,
2021; Defferrard et al., 2016; Levie et al., 2018), which we do not compare within this work.

A single-head graph attention applies some weight function on the edges based on their
node features (or a mapping thereof). Given two representations hi,hj ∈ RF

′
for two nodes

i, j ∈ [n], the attention model/mechanism is defined as the mapping

Ψ(hi,hj)
def
= α(Whi,Whj)

where α : RF × RF → R and W ∈ RF×F ′ is a learnable matrix. The attention coefficient
for a node i and its neighbor j is defined as

γij
def
=

exp(Ψ(hi,hj))∑
`∈Ni

exp(Ψ(hi,h`))
, (1)

where Ni is the set of neighbors of node i that also includes node i itself. Let f be some
element-wise activation function (which is usually nonlinear), the graph attention convolu-
tion output for a node i ∈ [n] is given by

h′i =
∑
j∈[n]

AijγijWhj ,

h̃i = f(h′i).

(2)

A multi-head graph attention (Veličković et al., 2018) uses K ∈ N weight matrices W1, . . .,
WK ∈ RF×F ′ and averages their individual (single-head) outputs. We consider the most
simplified case of a single graph attention layer (i.e., F ′ = d and F = 1) where α is realized
by an MLP using the LeakyRelu activation function. The LeakyRelu activation function is
defined as LeakyRelu(x) = x if x ≥ 0 and LeakyRelu(x) = βx for some constant β ∈ [0, 1)
if x < 0.

The CSBM model induces node features X which are correlated through the graph
G = ([n], E), represented by an adjacency matrix A. A natural requirement of attention
architectures is to maintain important edges in the graph and ignore unimportant edges.
For example, important edges could be the set of intra-class edges and unimportant edges
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could be the set of inter-class edges. In this case, if graph attention mains all intra-class
edges and ignores all inter-class edges, then a node from a class will be connected only
to nodes from its own class. More specifically, a node v will be connected to neighbor
nodes whose associated node features come from the same distribution as node features of
v. Given two sets A and B, we denote A×B def

= {(i, j) : i ∈ A, j ∈ B} and A2 def
= A×A.

3. Separation of edges and its implications for graph attention’s ability
for perfect node classification

In this section, we study the ability of graph attention to separate important edges from
unimportant edges. In addition, we study the implications of graph attention’s behavior for
node classification. In particular, we are interested in whether or not the graph attention
convolution is able to perfectly classify the nodes in the graph. Depending on the parameter
regimes of the CSBM, we separate the results into two parts. In Section 3.1, we study graph
attention’s behavior when the distance between the means of the node features is large. We
construct a specific attention architecture and demonstrate its ability to separate intra-
class edges from inter-class edges. Consequently, we show that the corresponding graph
attention convolution is able to perfectly classify the nodes. In Section 3.2, we study graph
attention’s behavior when the distance between the means of the node features is small.
We show that with high probability no attention architecture is able to separate intra-class
edges from inter-class edges. Consequently, we conjecture that no graph attention is able to
perfectly classify the nodes. We provide evidence of this conjecture in Section 3.2.1, where
we assume the existence of a strong attention mechanism that is able to perfectly classify
the edges independently from node features. We show that using this “idealistic” attention
mechanism still fails to (almost) perfectly classify the nodes, provided that the distance
between the means of the node features is sufficiently small.

The two-parameter regimes of the CSBM that we consider in Section 3.1 and Section 3.2
are as follows. The first (“easy regime”) is where ‖µ‖ = ω(σ

√
log n), and the second (“hard

regime”) is where ‖µ‖ = κσ for some 0 < κ ≤ O(
√

log n). We start by defining edge
separability and node separability.

Definition 1 (Edge separability). Given an attention model Ψ, we say that the model
separates the edges, if the outputs satisfy

sign(Ψ(Xi,Xj)) = − sign(Ψ(Xk,X`))

whenever (i, j) is an intra-class edge, i.e. (i, j) ∈ (C2
1 ∪C2

0 )∩E, and (k, `) is an inter-class
edge, i.e. (k, `) ∈ E \ (C2

1 ∪ C2
0 ).

Definition 2 (Node separability). Given a classification model which outputs a scalar rep-
resentation h′i for node i, we say that the model separates the nodes if h′i > 0 whenever
i ∈ C1 and h′i < 0 whenever i ∈ C0.

Some of our results in this section rely on a mild assumption that lower bounds the spar-
sity of the graph generated by the CSBM model. This assumption says that the expected
degree of a node in the graph is larger than log2 n. It is required to obtain a concentration
of node degrees property used in the proofs. While this assumption may limit a direct
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application of our results to very sparse graphs, for example, graphs whose node degrees
are bounded by a constant, it is mainly an artifact of the proof techniques that we use.
We expect that similar results still hold for sparser graphs, but to rigorously remove the
assumption on graph density one may have to adopt a different proof technique.

Assumption 1. p, q = Ω(log2 n/n).

3.1 “Easy Regime”

In this regime
(
‖µ‖ = ω(σ

√
log n)

)
we show that a two-layer MLP attention is able to

separate the edges with high probability. Consequently, we show that the correspond-
ing graph attention convolution is able to separate the nodes with high probability. At
a high level, we transform the problem of classifying an edge (i, j) ∈ E into the prob-
lem of classifying a point [w̃TXi, w̃

TXj ] in R2, where w̃ = µ/‖µ‖ is a unit vector that
maximizes the total pairwise distances among the four means given below. When we
consider the set of points [w̃TXi, w̃

TXj ] for all (i, j) ∈ E, we can think of each point
as a two-dimensional Gaussian vector whose mean is one of the following: [w̃Tµ, w̃Tµ],
[−w̃Tµ, w̃Tµ], [w̃Tµ,−w̃Tµ], [−w̃Tµ,−w̃Tµ]. The set of intra-class edges corresponds to
the set of bivariate Gaussian vectors whose mean is either [w̃Tµ, w̃Tµ] or [−w̃Tµ,−w̃Tµ],
while the set of inter-class edges corresponds to the set of bivariate Gaussian vectors whose
mean is either [−w̃Tµ, w̃Tµ] or [w̃Tµ,−w̃Tµ]. Therefore, in order to correctly classify
the edges, we need to correctly classify the data corresponding to means [w̃Tµ, w̃Tµ] and
[−w̃Tµ,−w̃Tµ] as 1, and classify the data corresponding to the other means as −1. This
problem is known in the literature as the “XOR problem” (Minsky and Papert, 1969). To
achieve this we consider a two-layer MLP architecture Ψ which separates the first and the
third quadrants of the two-dimensional space from the second and the fourth quadrants. In
particular, we consider the following specification of Ψ(Xi,Xj),

Ψ(Xi,Xj)
def
= rTLeakyRelu

(
S

[
w̃TXi

w̃TXj

])
, (3)

where

w̃
def
=

µ

‖µ‖
, S

def
=


1 1
−1 −1

1 −1
−1 1

 , r
def
= R ·


1
1
−1
−1

 , (4)

where R > 0 is an arbitrary scaling parameter. The particular function Ψ has been chosen
such that it is able to classify the means of the XOR problem correctly, that is,

sign(Ψ(E[Xi],E[Xj ])) =

{
1, if (i, j) is an intra-class edge,
−1, if (i, j) is an inter-class edge.

To see this, we can take look at the following simplified expression of Ψ, which is obtained
by substituting the specifications of S and r from (4) to (3),

Ψ(Xi,Xj) =


−2R(1− β)w̃TXi, if w̃TXj ≤ −

∣∣w̃TXi

∣∣ ,
2R(1− β) sign(w̃TXi)w̃

TXj , if −
∣∣w̃TXi

∣∣ < w̃TXj <
∣∣w̃TXi

∣∣ ,
2R(1− β)w̃TXi, if w̃TXj ≥

∣∣w̃TXi

∣∣ . (5)

8



Graph Attention Retrospective

Then, by substituting w̃ = µ/‖µ‖ into (5), one easily verifies that

Ψ(E[Xi],E[Xj ]) =

{
2R(1− β)‖µ‖, if (i, j) is an intra-class edge,
−2R(1− β)‖µ‖, if (i, j) is an inter-class edge.

(6)

On the other hand, our assumption that ‖µ‖ = ω(σ
√

log n) guarantees that the distance
between the means of the XOR problem is much larger than the standard deviation of the
Gaussians, and thus with high probability there is no overlap between the distributions.
More specifically, one can show that with a high probability,

Ψ(Xi,Xj) =

{
2R(1− β)‖µ‖(1± o(1)), if (i, j) is an intra-class edge,
−2R(1− β)‖µ‖(1± o(1)), if (i, j) is an inter-class edge.

(7)

This property guarantees that with high probability,

sign(Ψ(Xi,Xj)) = sign(Ψ(E[Xi],E[Xj ])), for all (i, j) ∈ E,

which implies perfect separability of the edges. We state this result below in Theorem 3
and provide detailed arguments in the appendix.

Theorem 3. Suppose that ‖µ‖ = ω(σ
√

log n). Then with probability at least 1− o(1) over
the data (X,A) ∼ CSBM(n, p, q,µ, σ2), the two-layer MLP attention architecture Ψ given
in (3) and (4) separates intra-class edges from inter-class edges.

Our analysis of edge separability by the attention architecture Ψ has two important im-
plications. First, edge separability by Ψ implies a nice concentration result for the attention
coefficients γij defined in (1). In particular, one can show that the attention coefficients
have the desirable property to maintain important edges and drop unimportant edges. Sec-
ond, the nice distinguishing power of the attention coefficients in turn implies the exact
recoverability of the node memberships using the graph attention convolution. We state
these two results below in Corollary 4 and Corollary 5, respectively. Denote

Ψ′
def
= (1p≥q − 1p<q) ·Ψ,

that is, Ψ′ = Ψ if p ≥ q and Ψ′ = −Ψ if p < q, where Ψ is the two-layer MLP attention
architecture given in (3) and (4). As it will become clear later, the attention architecture Ψ′

allows attention coefficients to assign more weights to either intra-class or inter-class edges,
depending on if p ≥ q or p < q, and this will help us obtain a perfect separation of the
nodes.

Corollary 4. Suppose that ‖µ‖ = ω(σ
√

log n) and that Assumption 1 holds. Then with
probability at least 1 − o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), the attention ar-
chitecture Ψ′ yields attention coefficients γij such that

1. If p ≥ q, then γij = 2
np(1 ± o(1)) if (i, j) is an intra-class edge and γij = o( 1

n(p+q))
otherwise;

2. If p < q, then γij = 2
nq (1 ± o(1)) if (i, j) is an inter-class edge and γij = o( 1

n(p+q))
otherwise.
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Corollary 5. Suppose that ‖µ‖ = ω(σ
√

log n) and that Assumption 1 holds. Then with
probability at least 1− o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), using the attention
architecture Ψ′ with the graph attention convolution given in (2), where f is set to be the
identify function, the model separates the nodes.

Corollary 4 shows the desired behavior of the attention mechanism, namely it is able
to assign significantly large weights to important edges while it drops unimportant edges.
When p ≥ q, the attention mechanism maintains intra-class edges and essentially ignores
all inter-class edges; when p < q, it maintains inter-class edges and essentially ignores
all intra-class edges. We now explain the high-level idea of the proof and leave detailed
arguments to Appendix A.2. Corollary 4 follows from the concentration of Ψ(Xi,Xj) around
Ψ(E[Xi],E[Xj ]) given by (7). Assume for a moment that p ≥ q so that 1p≥q − 1p<q = 1.
Then Ψ′ = Ψ, and (7) implies that the value of exp(Ψ′(Xi,Xj)) when (i, j) is an intra-class
edge is exponentially larger than the value of exp(Ψ′(Xi,Xj)) when (i, j) is an inter-class
edge. Therefore, by the definition of the attention coefficients in (1), the denominator of γij
is dominated by terms (i, k) where k is in the same class as i. Moreover, using concentration
of node degrees guaranteed by Assumption 1, each node i is connected to 2

np(1±o(1)) many
intra-class nodes. By appropriately setting the scaling parameter R in (4), the values of
Ψ′(Xi,Xk) for all intra-class edges (i, k) can be made within o(1) multiplicative factor from
each other. Therefore we get γij = 2

np(1± o(1)) when (i, j) is an intra-class edge. A similar
reasoning applies to inter-class edges and yields the vanishing value of γij when (i, j) is an
inter-class edge. Finally, the argument for p < q follows analogously.

The concentration result of attention coefficients in Corollary 4 implies the node classifi-
cation result in Corollary 5, which holds for any p, q satisfying Assumption 1. That is, even
when the graph structure is noisy, e.g., when p ≈ q, it is still possible to exactly recover
the node class memberships. Essentially, by applying Corollary 4 and carrying out some
straightforward algebraic simplifications, one can show that with high probability for all
i ∈ [n],

h′i =
∑
j∈Ni

γijw̃
TXj =

{
−(1p≥q − 1p<q)‖µ‖(1± o(1)), if i ∈ C0,

(1p≥q − 1p<q)‖µ‖(1± o(1)), if i ∈ C1,

and hence the model separates the nodes with high probability. We provide details in the
appendix.

While Corollary 5 provides a positive result for graph attention, it can be shown that a
simple linear classifier which does not use the graph at all achieves perfect node separability
with high probability. In particular, the Bayes optimal classifier for the node features
without the graph is able to separate the nodes with high probability. This means that in
this regime, using the additional graph information is unnecessary, as it does not provide
additional power compared to a simple linear classifier for the node classification task.

Lemma 6 (Section 6.4 in Anderson (2003)). Let (X,A) ∼ CSBM(n, p, q,µ, σ2). Then the
optimal Bayes classifier for X is realized by the linear classifier

h(Xi) =

{
0 if µTXi ≤ 0

1 if µTXi > 0
. (8)

10
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Proposition 7. Suppose ‖µ‖ = ω(σ
√

log n). Then with probability at least 1 − o(1) over
the data (X,A) ∼ CSBM(n, p, q,µ, σ2), the linear classifier given in (8) separates the nodes.

The proof of Proposition 7 is elementary. To see the claim one may show that the
probability that the classifier in (8) misclassifies a node i ∈ [n] is o(1). To do this, let us fix
i ∈ [n] and write Xi = (2εi − 1)µ+ σgi where gi ∼ N(0, I). Assume for a moment εi = 0.
Then the probability of misclassification is

Pr
[
µTXi > 0

]
= Pr

[
µTgi
‖µ‖

>
‖µ‖
σ

]
= 1− Φ

(
‖µ‖
σ

)
,

where Φ(·) is the cumulative distribution function of N(0, 1) and the last equality fol-

lows from the fact that µT gi
‖µ‖ ∼ N(0, 1). The assumption that ‖µ‖ = ω(σ

√
log n) implies

‖µ‖ ≥ σ
√

2 log n for large enough n. Therefore, using standard tail bounds for normal
distribution (Vershynin, 2018) we have that

1− Φ

(
‖µ‖
σ

)
≤ σ√

2π‖µ‖
exp

(
−‖µ‖

2

2σ2

)
≤ n−1

√
4π log n

.

This means that the probability that there exists i ∈ C0 which is misclassified is at most
1

2
√

4π logn
= o(1). A similar argument can be applied to the case where εi = 1, and an

application of a union bound on the events that there is i ∈ [n] which is misclassified
finishes the proof of Proposition 7.

3.2 “Hard Regime”

In this regime (‖µ‖ = κσ for κ ≤ O(
√

log n)), we show that every attention architecture Ψ
fails to separate the edges if κ <

√
2 log n, and we conjecture that no graph attention convo-

lution is able to separate the nodes. The conjecture is based on our node separability result
in Section 3.2.1 which says that, even if we assume that there is an attention architecture
which is able to separate the edges independently from node features, the corresponding
graph attention convolution still fails to (almost) perfectly classify the nodes with high
probability.

The goal of the attention mechanism is to decide whether an edge (i, j) is an inter-class
edge or an intra-class edge based on the node feature vectors Xi and Xj . Let X′ij denote
the vector obtained from concatenating Xi and Xj , that is,

X′ij
def
=

(
Xi

Xj

)
. (9)

We would like to analyze every classifier h′ which takes as input X′ij and tries to separate
inter-class edges and intra-class edges. An ideal classifier would have the property

y = h′(X′ij) =

{
0, if (i, j) is an inter-class edge,
1, if (i, j) is an intra-class edge.

(10)

To understand the limitations of all such classifiers in this regime, it suffices to consider
the Bayes optimal classifier for this data model, whose probability of misclassifying an arbi-
trary edge lower bounds that of every attention architecture which takes as input (Xi,Xj).

11
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Consequently, by deriving a misclassification rate for the Bayes classifier, we obtain a lower
bound on the misclassification rate for every attention mechanism Ψ for classifying intra-
class and inter-class edges. The following Lemma 8 describes the Bayes classifier for this
classification task.

Lemma 8. Let (X,A) ∼ CSBM(n, p, q,µ, σ2) and let X′ij be defined as in (9). The Bayes
optimal classifier for X′ij is realized by the following function,

h∗(x) =

{
0, if p cosh

(
xTµ′

σ2

)
≤ q cosh

(
xT ν′

σ2

)
,

1, otherwise,
(11)

where µ′
def
=

(
µ
µ

)
and ν ′

def
=

(
µ
−µ

)
.

Using Lemma 8, we can lower bound the rate of misclassification of edges that every

attention mechanism Ψ exhibits. Below we define Φc
def
= 1 − Φ, where Φ is the cumulative

distribution function of N(0, 1).

Theorem 9. Suppose ‖µ‖ = κσ for some κ > 0 and let Ψ be any attention mechanism.
Then,

1. With probability at least 1−o(1), Ψ fails to correctly classify at least 2 ·Φc(κ)2 fraction
of inter-class edges;

2. For any K > 0 if q > K log2 n
nΦc(κ)2

, then with probability at least 1−O(n−8KΦc(κ)2 logn), Ψ

misclassify at least one inter-class edge.

Part 1 of Theorem 9 implies that if ‖µ‖ is linear in the standard deviation σ, that is
if κ = O(1), then with overwhelming probability the attention mechanism fails to distin-
guish a constant fraction of inter-class edges from intra-class edges. Furthermore, part 2 of
Theorem 9 characterizes a regime for the inter-class edge probability q where the attention
mechanism fails to distinguish at least one inter-class edge. It provides a lower bound on q
in terms of the scale at which the distance between the means grows compared to the stan-
dard deviation σ. This aligns with the intuition that as we increase the distance between
the means, it gets easier for the attention mechanism to correctly distinguish inter-class
and intra-class edges. However, if q is also increased with the right proportion, in other
words, if the noise in the graph is increased, then the attention mechanism would still fail
to correctly distinguish at least one inter-class edge. For instance, for κ =

√
2 log log n and

K = log2 n, we get that if q > Ω( log6+o(1) n
n ), then with probability at least 1 − o(1), Ψ

misclassifies at least an inter-class edge.
The proof of Theorem 9 relies on analyzing the behavior of the Bayes optimal classifier

in (11). We compute an upper bound on the probability with which the optimal classifier
correctly classifies an arbitrary inter-class edge. Then the proof of part 1 of Theorem 9
follows from a concentration argument for the fraction of inter-class edges that are mis-
classified by the optimal classifier. For part 2, we use a similar concentration argument to
choose a suitable threshold for q that forces the optimal classifier to fail on at least one
inter-class edge. We provide formal arguments in the appendix.
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As a motivating example of how the attention mechanism would fail and what exactly
the attention coefficients would behave in this regime, we focus on one of the most popular
attention architecture (Veličković et al., 2018), where α is a single-layer neural network
parameterized by (w,a, b) ∈ Rd×R2×R with LeakyRelu activation function. Namely, the
attention coefficients are defined by

γij
def
=

exp

(
LeakyRelu

(
aT
[
wTXi

wTXj

]
+ b

))
∑

`∈Ni
exp

(
LeakyRelu

(
aT
[
wTXi

wTX`

]
+ b

)) . (12)

We show that, as a consequence of the inability of the attention mechanism to distinguish
intra-class and inter-class edges, with overwhelming probability most of the attention coef-
ficients γij given by (12) are going to be Θ(1/|Ni|). In particular, Theorem 10 says that for
the vast majority of nodes in the graph, the attention coefficients on most edges are uniform
irrespective of whether the edge is inter-class or intra-class. As a result, this means that
the attention mechanism is unable to assign higher weights to important edges and lower
weights to unimportant edges.

Theorem 10. Assume that ‖µ‖ ≤ Kσ and σ ≤ K ′ for some absolute constants K and
K ′. Moreover, assume that the parameters (w,a, b) ∈ Rd × R2 × R are bounded. Then,
with probability at least 1 − o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), there exists
a subset A ⊆ [n] with cardinality at least n(1 − o(1)) such that for all i ∈ A the following
hold:

1. There is a subset Ji,0 ⊆ Ni ∩ C0 with cardinality at least 9
10 |Ni ∩ C0|, such that

γij = Θ(1/|Ni|) for all j ∈ Ji,0.

2. There is a subset Ji,1 ⊆ Ni ∩ C1 with cardinality at least 9
10 |Ni ∩ C1|, such that

γij = Θ(1/|Ni|) for all j ∈ Ji,1.

Theorem 10 is proved by carefully computing the numerator and the denominator in
(12). In this regime, ‖µ‖ is not much larger than σ, that is, the signal does not dominate
noise, so the numerator in (12) is not indicative of the class memberships of nodes i, j but
rather acts like Gaussian noise. On the other hand, denote the denominator in (12) by δi
and observe that it is the same for all γi` where ` ∈ Ni. Using concentration arguments
about {wTX`}`∈[n] yields γij = Θ(1/δi) and δi = Θ(|Ni|) finishes up the proof. We provide
details in the appendix.

Compared to the easy regime, it is difficult to obtain a separation result for the nodes
without additional assumptions. In the easy regime, the distance between the means was
much larger than the standard deviation, which made the “signal” (the expectation of the
convolved data) dominate the “noise” (i.e., the variance of the convolved data). In the hard
regime the “noise” dominates the “signal”. Thus, we conjecture the following.

Conjecture 11. There is an absolute constant M > 0 such that, whenever ‖µ‖ ≤ M ·
σ
√

logn
n(p+q)(1−max(p, q)) · p+q|p−q| , every graph attention model fails to perfectly classify the

nodes with high probability.
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The above conjecture means that in the hard regime, the performance of the graph
attention model depends on q as opposed to the easy regime, where in Corollary 5 we
show that it doesn’t. This property is verified by our synthetic experiments in Section 5.

The quantity σ
√

logn
n(p+q)(1−max(p, q)) in the threshold comes from our conjecture that the

expected maximum “noise” of the graph attention convolved data over the nodes is at least

cσ
√

logn
n(p+q)(1−max(p, q)) for some constant c > 0. The quantity p+q

|p−q| in the threshold

comes from our conjecture that the distance between the means (i.e. “signal”) of the graph
attention convolved data is reduced to at most |p−q|/(p+q) of the original distance. Proving
Conjecture 11 would require delicate treatment of the correlations between the attention
coefficients γij and the node features Xi for i ∈ [n].

3.2.1 Are good attention coefficients helpful in the “hard regime”?

In this subsection we are interested in understanding the implications of edge separability on
node separability in the hard regime and when Ψ is restricted to a specific class of functions.
In particular, we show that Conjecture 11 is true under an additional assumption that Ψ
does not depend on the node features. In addition, we show that even if we were allowed to
use an “extremely good” attention function Ψ̃ which separates the edges with an arbitrarily
large margin, with high probability the graph attention convolution (2) will still misclassify
at least one node as long as ‖µ‖/σ is sufficiently small.

We consider the class of functions Ψ̃ which can be expressed in the following form:

Ψ̃(i, j) =

{
sign(p− q)t, if (i, j) is an intra-class edge,
− sign(p− q)t, if (i, j) is an inter-class edge,

(13)

for some t ≥ 0. The particular class of functions in (13) is motivated by the property of the
ideal edge classifier in (10) and the behavior of Ψ in (6) when it is applied to the means of
the Gaussians. There are a few possible ways to obtain a function Ψ̃ which satisfies (13). For
example, in the presence of good edge features which reflect the class memberships of the
edges, we can make Ψ̃ take as input the edge features. Moreover, if |√p−√q| >

√
2 log n/n,

one such Ψ̃ may be easily realized from the eigenvectors of the graph adjacency matrix. By
the exact spectral recovery result in Lemma 12, we know that there exists a classifier τ̂
which separates the nodes. Therefore, we can set Ψ̃(i, j) = sign(p − q)t if τ̂(i) = τ̂(j) and
Ψ̃(i, j) = − sign(p− q)t otherwise.

Lemma 12 (Exact recovery in (Abbe, 2018)). Suppose that p, q = Ω(log2 n/n) and |√p−
√
q| >

√
2 log n/n. Then there exists a classifier τ̂ taking as input the graph A and perfectly

classifies the nodes with probability at least 1− o(1).

Theorem 13. Suppose that p, q satisfy Assumption 1 and that p, q are bounded away from
1. For every ε > 0, there are absolute constants M,M ′ = O(

√
ε) such that, with probability

at least 1 − o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), using the graph attention
convolution in (2) and the attention architecture Ψ̃ in (13), the model misclassifies at least
Ω(n1−ε) nodes for any w such that ‖w‖ = 1, if

1. t = O(1) and ‖µ‖ ≤Mσ
√

logn
n(p+q)(1−max(p, q)) p+q

|p−q| ;
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2. t = ω(1) and ‖µ‖ ≤M ′σ
√

logn
n(p+q)(1−max(p, q)).

Theorem 13 warrants some discussions. We start with the role of t in the attention
function (13). One may think of t as the multiplicative margin of separation for intra-class
and intra-class edges. When t = O(1), the margin of separation is at most a constant. This
includes the special case when Ψ̃(i, j) = 0 for all (i, j) ∈ E, i.e, the margin of separation
is 0. In this case, the graph attention convolution in (2) reduces to the standard graph
convolution with uniform averaging among the neighbors. Therefore, part 1 of Theorem 13
also applies to the standard graph convolution. On the other hand, when t = ω(1), the
margin of separation is not only bounded away from 0 but also it grows with n.

Next, we discuss the additional assumption that p, q are bounded away from 1. This
assumption is used to obtain a concentration result required for the proof of Theorem 13.
It is also intuitive in the following sense. If both p and q are arbitrarily close to 1, then
after the convolution the convolved node feature vectors collapse to approximately a single
point, and thus this becomes a trivial case where no classifier is able to separate the nodes;
on the other hand, if p is arbitrarily close to 1 and q is very small, then after the convolution
the convolved node feature vectors collapse to approximately one of two points according
to which class the node comes from, and in this case the nodes can be easily separated by
a linear classifier.

We now focus on the threshold for ‖µ‖ under which the model is going to misclassify at
least one node with high probability. In part 1 of Theorem 13, t = O(1), i.e., the attention
mechanism Ψ̃ is either unable to separate the edges or unable to separate the edges with a
large enough margin. In this case, one can show that all attention coefficients are Θ( 1

n(p+q)).

Consequently, the quantity |p− q| appears in denominator of the threshold for ‖µ‖ in part
1 of Theorem 13. Because of that, if p and q are arbitrarily close, then the model is not able
to separate the nodes irrespective of how large ‖µ‖ is. For example, treating 1−max(p, q)
as a constant since p and q are bounded away from 1 by assumption, we have that

|p− q| = o

(√
p+ q

n

)
implies Mσ

√
log n

n(p+ q)
(1−max(p, q))

p+ q

|p− q|
= ω(σ

√
log n).

This means that if p and q are close enough, every attention function Ψ̃ in the form of (13)
and t = O(1) cannot help classify all nodes correctly even if ‖µ‖ = ω(σ

√
log n). On the

contrary, recall that in the easy regime where ‖µ‖ = ω(σ
√

log n), the attention mechanism
given in (3) and (4) helps separate the nodes with high probability. This illustrates the
limitation of every attention mechanism in the form of (13) which have an insignificant
margin of separation. According to Theorem 10, the vast majority of attention coefficients
are uniform, and thus in Conjecture 11 we expect that graph attention in general shares
similar limitations in the hard regime.

In part 2 of Proposition 13, t = ω(1), i.e., the attention mechanism Ψ̃ separates the
edges with a large margin. In this case, one can show that the attention coefficients on
important edges (e.g. intra-class edges) are exponentially larger than those on unimportant
edges (e.g. inter-class edges). Consequently, the factor (p+ q)/|p− q| no longer appears in
the threshold for ‖µ‖ in part 2 of Theorem 13. However, at the same time, the threshold
also implies that, even when we have a perfect attention mechanism that is able to separate
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the edges with a large margin, as long as ‖µ‖/σ is small enough, then the model is going
to misclassify at least one node with high probability.

Finally, notice that in Theorem 13 the parameter ε captures a natural tradeoff between
the threshold for ‖µ‖ and the lower bound on the number of misclassified nodes. Namely,
the smaller the ε is, the smaller the threshold for ‖µ‖ becomes, and hence the less signal
there is in the node features, the more mistakes the model is going to make. This is precisely
demonstrated by the scaling of M,M ′ = O(

√
ε) and misclassification bound Ω(n1−ε) with

respect to ε. We leave the proof of Theorem 13 to the appendix.

4. Robustness to structural noise and its implications beyond perfect
node classification

In this section, we provide a positive result on the capacity of graph attention convolution
for node classification beyond the perfect classification regime. In particular, we show that
independent of the parameters of CSBM, i.e., independent of p, q, µ and σ, the two-layer
MLP attention architecture Ψ from Section 3.1 is able to achieve the classification per-
formance obtainable by the Bayes optimal classifier for node features. This is proved by
showing that there is a parameter setting for Ψ where the attention coefficient on self-loops
can be made exponentially large. Consequently, the corresponding graph attention convo-
lution behaves like a linear function of node features. We provide two corollaries of this
result. The first corollary provides a ranking of graph attention convolution, simple graph
convolution, and linear function in terms of their ability to classify nodes in CSBM. More
specifically, by noticing that the simple graph convolution is also realized by a specific pa-
rameter setting of the attention architecture Ψ, our result implies that the performance of
graph attention convolution for node classification in CSBM is lower bounded by the best
possible performance between a linear classifier and simple graph convolution. In particular,
graph attention is strictly more powerful than simple graph convolution when the graph is
noisy (e.g. when p ≈ q), and it is strictly more powerful than a linear classifier when the
graph is less noisy (e.g. when p and q are significantly different). The second corollary pro-
vides perfect classification, almost perfect classification, and partial classification results for
graph attention convolution. It follows immediately from the reduction of graph attention
convolution to a linear function under the specification of Ψ that we will discuss. In what
follows we start with high-level ideas, then we present formal statements of the results, and
we discuss the implications in detail.

Recall the two-layer MLP attention architecture Ψ from (3) and (4) is equivalently
written in (5) as

Ψ(Xi,Xj) =


−2R(1− β)w̃TXi, if w̃TXj ≤ −

∣∣w̃TXi

∣∣ ,
2R(1− β) sign(w̃TXi)w̃

TXj , if −
∣∣w̃TXi

∣∣ < w̃TXj <
∣∣w̃TXi

∣∣ ,
2R(1− β)w̃TXi, if w̃TXj ≥

∣∣w̃TXi

∣∣ .
We make the following observations. Assuming that the scaling parameter R > 0,

• If w̃TXi > 0, then the function Ψ assigns more weight to an edge (i, j) such that
w̃TXj > 0 than an edge (i, j′) such that w̃TXj′ < 0;

• If w̃TXi < 0, then the function Ψ assigns more weight to an edge (i, j) such that
w̃TXj < 0 than an edge (i, j′) such that w̃TXj′ > 0;
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• If w̃TXi = 0, then the function Ψ assigns uniform weight to every edge (i, j).

This means that the behavior of Ψ depends on which side of the hyperplane {x : w̃Tx = 0}
that Xi comes from. In other words, for fixed Xj , whether the attention function Ψ will
up-weight or down-weight an edge (i, j) depends entirely on the classification of Xi based
on the linear classifier w̃. Moreover, note that the attention function value satisfies

2R(1− β) ·max{−|w̃TXi|,−|w̃TXj |} ≤ Ψ(Xi,Xj) ≤ 2R(1− β) ·min{|w̃TXi|, |w̃TXj |}.

Therefore, out of all unit norm vectors w, our choice w̃ = µ/‖µ‖ maximizes the range of
values that Ψ can output. Recall from Lemma 6 that w̃ also happens to characterize the
Bayes optimal classifier for the node features. Finally, the attention function Ψ achieves
minimum/maximum at self-attention, i.e.

Ψ(Xi,Xi) = 2R(1− β)|w̃TXi| = max
j∈[n]

Ψ(Xi,Xj),

Ψ(Xi,−Xi) = −2R(1− β)|w̃TXi| = min
j∈[n]

Ψ(Xi,Xj).

A consequence of these observations is that, by setting the scaling parameter R sufficiently
large, one can make exp(Ψ(Xi,Xj)) exponentially larger than exp(Ψ(Xi,Xj′)) for any j, j′

such that sign(w̃TXj) = sign(w̃TXi) and sign(w̃TXj′) 6= sign(w̃TXi). According to the
definition of attention coefficients in (1), this means that the attention coefficients γij where
sign(w̃TXj) = sign(w̃TXi) are going to be exponentially larger than the attention coeffi-
cients γij′ where sign(w̃TXj′) 6= sign(w̃TXi). Therefore, one could expect that in this case,
if the linear classifier w̃ correctly classifies Xi for some i ∈ [n], e.g., for i ∈ C1 this means
that w̃TXi > 0, then graph attention convolution output h′i =

∑
j∈Ni

γijw̃
TXj also satisfies

h′i > 0, due to sufficiently larger attention coefficients γij for which w̃TXj > 0. We state
the result below in Theorem 14 and leave detailed arguments in the appendix.

Theorem 14. With probability at least 1−o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2),
using the two-layer MLP attention architecture Ψ given in (3) and (4) with R = Ω(n log2 n/σ),
the graph attention convolution output satisfies

h′i =
∑
j∈Ni

γijw̃
TXj > 0 if and only if w̃TXi > 0, ∀i ∈ [n],

h′i =
∑
j∈Ni

γijw̃
TXj < 0 if and only if w̃TXi < 0, ∀i ∈ [n].

Theorem 14 means that there is a parameter setting for the attention architecture Ψ
such that the performance of graph attention convolution matches with the performance of
the Bayes optimal classifier for node features. This shows the ability of graph attention to
“ignore” the graph structure, which can be beneficial when the graph is noisy. For example,
if p = q, then it is easy to see that simple graph convolution completely mixes up the
node features, making it not possible to achieve any meaningful node classification result.
On the other hand, as long as there is some signal from the original node features, i.e.
‖µ‖ > 0, then graph attention will be able to pick that up and classify the nodes at least
as good as the best classifier for the node features alone. It is also worth noting that by
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setting R = 0, the attention function Ψ has a constant value, and hence graph attention
convolution reduces to the standard graph convolution, which has been shown to be useful
in the regime where the original node features are not very strong but the graph has a nice
structure (Baranwal et al., 2021). For example, when there is a significant gap between
p and q, |p − q|/(p + q) = Ω(1), then setting R = 0 could significantly improve the node
separability threshold over the best linear classifier (Baranwal et al., 2021). This shows
the robustness of graph attention against noise in one of the two sources of information,
namely node features and edge connectivities. Unlike the Bayes optimal classifier for node
features which is sensitive to feature noise or the simple graph convolution which is sensitive
to structural noise, one can expect graph attention to work as long as at least one of the
two sources of information has a good signal. Therefore, we obtain a ranking of node
classification models among graph attention convolution, simple graph convolution, and a
linear classifier. We state this below in Corollary 15.

Corollary 15. The node classification performance obtainable by graph attention convolu-
tion is lower bounded by the best possible node classification performance between a simple
graph convolution and a linear classifier.

By a straightforward characterization of the performance of the linear classifier w̃ =
µ/‖µ‖, we immediately obtain the following classification results in Corollary 16. Recall
that we denoted Φ as the cumulative distribution function of the standard normal distribu-
tion. Write

‖µ‖ = κσ for some κ > 0.

Corollary 16. With probability at least 1−o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2),
using the two-layer MLP attention architecture Ψ given in (3) and (4) with R = Ω(n log2 n/σ),
one has that

• (Perfect classification) If κ ≥
√

2 log n then all nodes are correctly classified;

• (Almost perfect classification) If κ = ω(1) then at least 1− o(1) fraction of all nodes
are correctly classified;

• (Partial classification) If κ = O(1) then at least Φ(κ)− o(1) fraction of all nodes are
correctly classified.

Interestingly, we note that the perfect classification result in Corollary 16 is nearly equiv-
alent (up to a small order in the threshold κ) to the perfect classification result in Corollary 5
from Section 3.1. They are obtained from different behaviors of the attention coefficients.
This shows that there could be more than one type of “good” attention coefficients that are
able to deliver good node classification performance.

5. Experiments

In this section, we demonstrate empirically our results on synthetic and real data. The
parameters of the models that we experiment with are set by using an ansatz based on our
theorems. The particular details are given in Section 5.1. For real datasets, we use the
default splits which come from PyTorch Geometric (Fey and Lenssen, 2019) and OGB (Hu
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et al., 2020). In all our experiments we use MLP-GAT, where the attention mechanism Ψ
is set to be the two-layer network in (3) and (4) with R = 1. For synthetic experiments
using CSBM with known p and q, we use the variant that takes p, q into account, Ψ′ =
(1p≥q − 1p<q)Ψ. In Figure 2b and Figure 3b we additionally consider the original GAT
architecture of Veličković et al. (2018) to demonstrate Theorem 10.

5.1 Ansatz for GAT, MLP-GAT and GCN

For the original GAT architecture we fix w = µ/‖µ‖ and define the first head as a1 =
1√
2
(1, 1) and b1 = − 1√

2
wTµ; The second head is defined as a2 = −a1 and b2 = −b1. We

now discuss the choice of such an ansatz. The parameter w is picked based on the optimal
Bayes classifier without a graph, and the attention is set such that the first head maintains
intra-class edges in C1 and the second head maintains intra-class edges in C0. Note that
for the original GAT (Veličković et al., 2018), due to the fact that the attention mechanism
consists of just one layer (i.e. a nonlinear activation applied on a linear transformation, see
(12)), it is not possible for the original GAT to keep only γij which correspond to intra-
class edges. More specifically, one may use the same techniques in the proof of Theorem 3
and Corollaries 4 and 5 to prove the node separability results for the original GAT. In this
particular case, the result will depend on q in contrast to the result we get for MLP-GAT,
where no dependence of q was needed. For MLP-GAT we use the ansatz Ψ′ = (1p≥q−1p<q)Ψ
where Ψ is given in (3) and (4) with R = 1. This choice of two-layer network allows us to
bypass the “XOR problem” (Minsky and Papert, 1969) and separate inter-class from intra-
class edges as shown in Theorem 3. Note that no single-layer architecture will be able to
separate the edges due to the “XOR problem”. For GCN we used the ansatz from Baranwal
et al. (2021) which is also w = µ/‖µ‖.

5.2 Synthetic data

We use the CSBM to generate the data. In a recent work (Palowitch et al., 2022), a simple
variant of the CSBM was also chosen as the default generative model for benchmarking
GNN performance for node classification tasks. We present two sets of experiments. In the
first set, we fix the distance between the means and vary q, and in the second set, we fix q
and vary the distance. We set n = 1000, d = n/ log2(n), p = 0.5 and σ = 0.1. Results are
averaged over 10 trials.

5.2.1 Fixing the distance between the means and varying q

We consider the two regimes separately, where for the “easy regime” we fix the mean µ to
be a vector where each coordinate is equal to 10σ

√
log n2/2

√
d. This guarantees that the

distance between the means is 10σ
√

log n2. In the “hard regime” we fix the mean µ to a
vector where each coordinate is equal to σ/

√
d, and this guarantees that the distance is σ.

We fix p = 0.5 and vary q from log2(n)/n to 1− log2(n)/n.

In Figure 1 we illustrate Theorem 3 and Corollaries 4, 5 for the easy regime, and in
Figure 2 we illustrate Theorem 9 and Theorem 10 for the hard regime. In particular, in
Figure 1a we show Theorem 3, MLP-GAT is able to classify intra-class and inter-class edges
perfectly. In Figure 1b we show that in the easy regime, as claimed in Corollary 4 for MLP-
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GAT, when p ≥ q, the γ that correspond to intra-class edges concentrate around 2/np, while
the γ for the inter-class edges concentrate to tiny values; when p < q, we see the opposite,
that is the γ that correspond to intra-class edges concentrate to tiny values, while the γ for
the inter-class edges concentrate around 2/nq. In Figure 1c we observe that the performance
of MLP-GAT for node classification is independent of q in the easy regime as claimed in
Corollary 5. However, in this plot, we observe that not using the graph also achieves
perfect node classification, a result which is proved in Proposition 7. In the same plot, we
also show the performance of simple graph convolution, where its performance depends on
q (see Baranwal et al. (2021)). In Figure 2a we show Theorem 9. MLP-GAT misclassifies a
constant fraction of the intra and inter edges as proved in Theorem 9. In Figure 2b we show
Theorem 10, where γ’s in the hard regime concentrate around uniform (GCN) coefficients
for both MLP-GAT and GAT. In Figure 2c we illustrate that node classification accuracy
is a function of q for MLP-GAT. This is conjectured in Conjecture 11. On the other hand,
note that the performance of MLP-GAT is lower bounded by the performance of not using
the graph, as proved in Theorem 14.
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Figure 1: Demonstration of Theorem 3 and Corollaries 4, 5 for the easy regime. The shaded
areas in the plots show standard deviation. Unlike GCN, the performance of
MLP-GAT does not degrade as we vary q.
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Figure 2: Demonstration of Theorem 9 and Theorem 10 for the hard regime. The shaded
areas in the plots show standard deviation. Unlike GCN, the performance of
MLP-GAT is lower bounded by the performance of not using the graph.

5.2.2 Fixing q and varying the distance between the means

We consider the case where q = 0.1. In Figure 3 we show how the attention coefficients
of MLP-GAT and GAT, the node and edge classification depend on the distance between
the means. We also add a vertical line at σ to approximately separate the easy (left of σ)
and hard (right of σ) regimes. Figure 3c illustrates Theorems 3 and 9 in the hard and easy
regimes, respectively. In particular, we observe that in the hard regime, MLP-GAT fails to
distinguish intra from inter edges, while in the easy regime, it is able to do that perfectly
for a large enough distance between the means.

In Figure 3a we observe that in the hard regime, γ concentrate around the uniform
(GCN) coefficients, while in the easy regime, MLP-GAT is able to maintain the γ for intra-
class edges, while it sets the γ to tiny values for inter-class edges. In Figure 3b. we observe
that in the hard regime, the γ of GAT concentrate around the uniform coefficients (proved
in Theorem 10), while in the easy regime although the γ concentrate, GAT is not able to
distinguish intra from inter edges. This makes sense since the separation of edges can’t
be done by simple linear classifiers used by GAT, see the discussion below Theorem 10.
Finally, in Figure 3d we show node classification results for MLP-GAT. In the easy regime,
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we observe perfect classification as proved in Corollary 5. However, as the distance between
the means decreases, we observe that MLP-GAT starts to misclassify nodes.
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Figure 3: Attention coefficients of MLP-GAT and GAT, node and edge classification as a
function of the distance between the means. Shaded areas show standard devia-
tion. When there is a sufficient distance between the means, attention coefficients
of MLP-GAT demonstrate a nice separation while GAT does not.

5.3 Real data

For the experiment on real data, we illustrate the attention coefficients, node and edge
classification for MLP-GAT as a function of the distance between the means. We use popular
real-world graph datasets Cora, PubMed, and CiteSeer collected by PyTorch Geometric (Fey
and Lenssen, 2019) and ogbn-arxiv from Open Graph Benchmark (Hu et al., 2020). The
datasets come with multiple classes, however, for each of our experiments, we do a one-
v.s.-all classification for a single class. This is a semi-supervised problem, only a fraction
of the training nodes have labels. The rest of the nodes are used for measuring prediction
accuracy. To control the distance between the means of the problem we use the true labels
to determine the class of each node and then we compute the empirical mean for each class.
We subtract the empirical means from their corresponding classes and we also add means
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µ and −µ to each class, respectively. This modification can be thought of as translating
the mean of the distribution of the data for each class.
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Figure 4: Attention coefficients, node and edge classification for MLP-GAT as a function
of the distance between the means for real data.

The results of this experiment are shown in Figure 4. For Cora, PubMed, and CiteSeer
we show results for class 0 since these are small datasets, each dataset contains at most 7
classes, and the classes have similar sizes. In our experiments on other classes, we observed
that the results are similar. For ogbn-arxiv we show results for the largest class (i.e. class
16) since this is a larger dataset which has 40 imbalanced classes. Picking a large class
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makes the one-v.s.-all classification task more balanced. In our experiments on other classes
having similar sizes, we obtained similar results. We note that in the real data, we also
observe similar behavior of MLP-GAT in the easy and hard regimes as for the synthetic
data. In particular, for all datasets as the distance of means increases, MLP-GAT is able
to accurately classify intra-class and inter-class edges, see Figures 4a, 4d and 4g. Moreover,
as the distance between the means increases, the average intra-class γ becomes much larger
than the average inter-class γ, see Figures 4b, 4e, 4h, and 4k, and the model is able to
classify the nodes accurately, see Figures 4c, 4f, 4i, and 4l. On the contrary, in the same
figures, we observe that as the distance between the means decreases then MLP-GAT is not
able to separate intra-class from inter-class edges, the averaged γ are very close to uniform
coefficients and the model can’t classify the nodes accurately.

Note that Figure 4 does not show the standard deviation for the attention coefficients γ.
We show the standard deviation of γ in Figure 5. We observe that the standard deviation is
higher than what we observed in the synthetic data. In particular, it can be more than half
of the averaged γ. This is to be expected since for the real data the degrees of the nodes
do not concentrate as well. In Figure 5 we show that the standard deviation of the uniform
coefficients 1/|Ni| is also high. For Cora, PubMed, and CiteSeer, the standard deviation
for intra-class γ is similar to that of 1/|Ni|, while the deviation for inter-class γ is large
for a small distance between the means, but it gets much smaller as the distance increases.
For ognb-arxiv, the standard deviation of 1/|Ni| is particularly high. This implies that the
degree distribution of nodes of ogbn-arxiv has a heavy tail, which could potentially result
from the graph structure being noisier than other datasets and also explain GCN’s relatively
much worse performance when the distance between the means is large.
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Figure 5: Standard deviation for attention coefficients of MLP-GAT.
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6. Summary of implications for practitioners

While this work focuses on theoretical understanding of graph attention’s capability for
edge and node classification using the CSBM generative model, our findings yield a series
of potential suggestions for GNN practitioners. In this section we provide some interesting
practical implications of our results.

6.1 Why graph attention? Benefits of graph attention’s robustness to
structural noise

When the graph is very noisy, e.g. when a node has a similar number of neighbors from the
same class and from different classes, simple graph convolution will mix up node features
and thus make nodes from different classes indistinguishable. In this case, simple graph
convolution can do more harm than good. However, in practice, it is difficult to determine
how noisy the graph is, or if the graph is even useful at all. This could pose a challenge
in choosing an architecture. Our results in Theorem 14 and Corollary 15 imply that graph
attention has the ability to dramatically reduce the impact of a noisy graph, in a way such
that the output is at least as good as the output from the best linear classifier (on the
input) which does not rely on the graph. This shows that graph attention convolution is
more robust against structural noise in the graph, and hence on noisy graphs, it is strictly
better than simple graph convolution.

6.2 Which attention architecture? Benefits of multi-layer attention
architecture

In this work, we are able to obtain positive results for graph attention by using the two-layer
MLP attention architecture in (3). This is different from the original GAT which uses a
single-layer attention architecture (Veličković et al., 2018). In our analyses and empirical
experiments, we found that the original single-layer attention does not have the important
properties required for obtaining positive results (e.g. Theorem 3, Corollary 5, Theorem 14,
Corollary 16) for graph attention convolution. Coincidentally, this aligns with the findings
of Brody et al. (2022), where the authors study limitations of the original GAT architecture
from a different perspective than ours, and they propose a new architecture termed GATv2.
The two-layer MLP attention architecture that we consider in (3) encompasses GATv2 as a
special case. Therefore, the two-layer MLP attention architecture can be a good candidate
to consider when practitioners search for a suitable graph attention architecture for their
specific downstream tasks. On the other hand, our results in Section 3.2 imply that even the
two-layer MLP attention architecture (and hence GATv2) has limitations when the node
features are noisy. To fix that, a potential solution is to incorporate additional information
such as edge features, which we discuss next.

6.3 Will additional information help? Benefits of incorporating good edge
features

Even though we do not consider edge features in our analyses, our results in Theorem 13
imply that good attention functions that are able to classify the edges independently from
the node features can be very helpful, as they help reduce the threshold under which graph
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attention convolution would fail to separate the nodes. One potential way to obtain good
attention functions that behave like the one given in (13) is by incorporating good edge
features. Furthermore, given our result in Theorem 9, which says that graph attention based
on noisy node features cannot perfectly classify the edges, the importance of incorporating
informative edge features that are more indicative of edge class memberships (if they are
accessible in practice) into the attention mechanism is more pronounced.

7. Conclusion and future work

In this work, we study the impact of graph attention on edges and its implications for node
classification. We show that graph attention improves robustness to noise in the graph
structure. We also show that graph attention may not be very useful in a “hard” regime
where the node features are noisy. Our work shows that single-layer graph attention con-
volution has limited power at distinguishing intra-class from inter-class edges. Given the
empirical successes of graph attention and its many variants, a promising future work is to
study the power of multi-layer graph attention convolutions for distinguishing intra-class and
inter-class edges. Moreover, our negative results in Section 3.2 for edge/node classification
pertains to perfect classification and almost perfect classification. In practice, misclassifica-
tion of a small constant fraction of nodes/edges is often inevitable, but nonetheless useful.
Therefore, an interesting future line of work is to characterize the threshold under which
graph attention is going to misclassify a certain proportion of nodes. Finally, variants of
graph attention networks have been successfully used in tasks other than node classification,
such as link prediction and graph classification. These tasks are typically solved by archi-
tectures that add a final aggregation layer which combines node representations generated
from graph attention convolution. It is an interesting future direction to develop a good
understanding of the benefits and limitations of the graph attention mechanism for those
tasks.
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Appendix A. Proofs

We define the following high-probability events which will be used in some proofs. Each
of these events holds with probability at least 1− o(1), which follows from straightforward
applications of Chernoff bound and union bound, e.g., see (Baranwal et al., 2021).

Definition 17. Define the following events over the randomness of A and {εi}i∈[n] and
{Xi}i∈[n],

• E1 is the event that |C0| = n
2 ±O(

√
n log n) and |C1| = n

2 ±O(
√
n log n).

• E2 is the event that for each i ∈ [n], Dii = n(p+q)
2

(
1± 10√

logn

)
.

• E3 is the event that for each i ∈ [n], |C0 ∩ Ni| = Dii · (1−εi)p+εiq
p+q

(
1± 10√

logn

)
and

|C1 ∩Ni| = Dii · (1−εi)q+εip
p+q

(
1± 10√

logn

)
.

• E4 is the event that for each i ∈ [n],
∣∣w̃TXi −E

[
w̃TXi

]∣∣ ≤ 10σ
√

log n.

• E∗ is the intersection of the above 4 events.

Lemma 18 (Baranwal et al. (2021)). With probability at least 1− o(1) event E∗ holds.

Some of our proofs also utilize the following simple observation on the mutual indepen-
dence among {wTgi}i∈[n]when {gi}i∈[n] are i.i.d. Gaussian random vectors.

Observation 19. Fix w 6= 0 in Rd and let g1, . . . , gn be i.i.d. drawn from N(0, I). Then
wTg1,w

Tg2, . . . ,w
Tgn are independent.

Proof Note that since wTgi ∼ N(0, ‖w‖2), it suffices to prove that the covariance E[wTgi ·
wTgj ] = 0 for all i 6= j. By definition, for i 6= j,

E[wTgi ·wTgj ] = E

∑
k∈[d]

∑
`∈[d]

wkw`gikgj`

 =
∑
k∈[d]

∑
`∈[d]

wkw` E[gikgj`] = 0,

where the last equality follows from independence between gi and gj .

A.1 Proof of Theorem 3

We restate Theorem 3 for convenience.

Theorem. Suppose that ‖µ‖ = ω(σ
√

log n). Then with probability at least 1 − o(1) over
the data (X,A) ∼ CSBM(n, p, q,µ, σ2), the two-layer MLP attention architecture Ψ given
in (3) and (4) separates intra-class edges from inter-class edges.

Recall from (5) that

Ψ(Xi,Xj) =


−2R(1− β)w̃TXi, if w̃TXj ≤ −

∣∣w̃TXi

∣∣ ,
2R(1− β) sign(w̃TXi)w̃

TXj , if −
∣∣w̃TXi

∣∣ < w̃TXj <
∣∣w̃TXi

∣∣ ,
2R(1− β)w̃TXi, if w̃TXj ≥

∣∣w̃TXi

∣∣ .
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We will condition on the event that
∣∣w̃TXi −E

[
w̃TXi

]∣∣ ≤ 10σ
√

log n for all i ∈ [n], which
holds with probability at least 1−O(1/n99) following a union bound and the Gaussian tail
probability. Under this event, because ‖µ‖ = ω(σ

√
log n), for all i, j ∈ C1 we have

sign(w̃TXi) = sign(w̃TXj) = 1,

min{w̃TXi, w̃
TXj} ≥ ‖µ‖ − 10σ

√
log n,

max{w̃TXi, w̃
TXj} ≤ ‖µ‖+ 10σ

√
log n,

and hence

Ψ(Xi,Xj) ≥ 2R(1− β) ·min{w̃TXi, w̃
TXj} ≥ 2R(1− β) · (‖µ‖ −O(σ

√
log n)),

Ψ(Xi,Xj) ≤ 2R(1− β) ·max{w̃TXi, w̃
TXj} ≤ 2R(1− β) · (‖µ‖+O(σ

√
log n)),

which implies that Ψ(Xi,Xj) = ‖µ‖ ±O(σ
√

log n) for i, j ∈ C1. Similarly, we get that

Ψ(Xi,Xj) =

{
‖µ‖ ±O(σ

√
log n) = ‖µ‖(1± o(1)), if (i, j) is an intra-class edge,

−‖µ‖ ±O(σ
√

log n) = −‖µ‖(1± o(1)), if (i, j) is an inter-class edge.
(14)

Therefore, we probability at least 1− o(1), we have that

sign(Ψ(Xi,Xj)) =

{
1, if (i, j) is an intra-class edge,
−1, if (i, j) is an inter-class edge,

which means perfect separability of edges, and the proof is complete.

A.2 Proof of Corollary 4

We restate Corollary 4 for convenience.

Corollary. Suppose that ‖µ‖ = ω(σ
√

log n) and that Assumption 1 holds. Then with proba-
bility at least 1−o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), the attention architecture
Ψ′ yields attention coefficients γij such that

1. If p ≥ q, then γij = 2
np(1 ± o(1)) if (i, j) is an intra-class edge and γij = o( 1

n(p+q))
otherwise;

2. If p < q, then γij = 2
nq (1 ± o(1)) if (i, j) is an inter-class edge and γij = o( 1

n(p+q))
otherwise.

The proof is straightforward by considering the cases p ≥ q and p < q separately. When
p ≥ q, we have Ψ′ = Ψ. Using the specification of Ψ in (3) and (4), the definition of attention
coefficients in (1), the high probability event in Lemma 18, the expression of Ψ(Xi,Xj) in
(14), and picking R such that 1/R = ω(σ

√
log n) and 1/R = o(‖µ‖), we obtain the claimed

results. The result when p < q is obtained in the same way.
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A.3 Proof of Corollary 5

We restate Corollary 5 for convenience.

Corollary. Suppose that ‖µ‖ = ω(σ
√

log n) and that Assumption 1 holds. Then with
probability at least 1− o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), using the attention
architecture Ψ′ with the graph attention convolution given in (2), where f is set to be the
identify function, the model separates the nodes.

We prove the case p ≥ q and the case p < q follows analogously. Consider the attention
architecture Ψ′ = (1p≥q − 1p<q) · Ψ = Ψ, where Ψ is given in (3) and (4). Pick R such
that 1/R = ω(σ

√
log n) and 1/R = o(‖µ‖)). Assume that i ∈ C1, and denote the graph

attention convolution output as

h′i
def
=
∑
j∈Ni

γijw̃
TXj .

We will condition on the event E∗, which holds with probability at least 1− o(1). By using
Corollary 4 we have∑

j∈Ni

γijw̃
TXj =

∑
j∈C0∩Ni

γijw̃
TXj +

∑
j∈C1∩Ni

γijw̃
TXj

≤ |C1 ∩Ni|
(

2

np
(1± o(1))

(
‖µ‖+ 10σ

√
log n

))
+ |C0 ∩Ni|

(
o

(
1

n(p+ q)

)(
−‖µ‖+ 10σ

√
log n

))
= (1± o(1)) ·

(
‖µ‖+ 10σ

√
log n

)
− nq(1± o(1))

ω(n(p+ q))
·
(
‖µ‖ − 10σ

√
log n

)
= ‖µ‖(1± o(1)).

Similarly, we have that∑
j∈Ni

γijw̃
TXj ≥ (1± o(1)) ·

(
‖µ‖ − 10σ

√
log n

)
− nq(1± o(1))

ω(n(p+ q))
·
(
‖µ‖+ 10σ

√
log n

)
= ‖µ‖(1± o(1)).

This means that h′i = ‖µ‖(1 ± o(1)) for i ∈ C1. Applying the same reasoning we get that
h′i = −‖µ‖(1 ± o(1)) for i ∈ C0. Therefore, with probability at least 1 − o(1), the graph
attention convolution separates the nodes.

A.4 Proof of Lemma 8

We restate Lemma 8 for convenience.

Lemma. Let (X,A) ∼ CSBM(n, p, q,µ, σ2) and let X′ij be defined as in (9). The Bayes
optimal classifier for X′ij is realized by the following function,

h∗(x) =

{
0, if p cosh

(
xTµ′

σ2

)
≤ q cosh

(
xT ν′

σ2

)
,

1, otherwise,
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where µ′
def
=

(
µ
µ

)
and ν ′

def
=

(
µ
−µ

)
.

Proof Note that X′ij is a mixture of 2d-dimensional Gaussian distributions,

X′ij ∼


N(−µ′, σ2I) i ∈ C0, j ∈ C0

N(µ′, σ2I) i ∈ C1, j ∈ C1

N(−ν ′, σ2I) i ∈ C0, j ∈ C1

N(ν ′, σ2I) i ∈ C1, j ∈ C0

.

The optimal classifier is then given by

h∗(x) = arg max
c∈{0,1}

Pr[y = c | x].

Note that Pr[y = 0] = q
p+q and Pr[y = 1] = p

p+q . Thus, by Bayes rule, we obtain that

Pr[y = c | x] =
Pr[y = c] · fx|y(x | y = c)

Pr[y = 0]fx|y=0(x | y = 0) + Pr[y = 1]fx|y=1(x | y = 1)

=
1

1 +
Pr[y=1−c]·fx|y(x|y=1−c)

Pr[y=c]·fx|y(x|y=c)

.

Suppose that x = X′ij such that i � j. Then h∗(x) = 0 if and only if Pr[y = 0 | x] ≥ 1
2 .

Hence, for c = 0 we require that

Pr[y = 1− c] · fx|y(x | y = 1− c)
Pr[y = c] · fx|y(x | y = c)

=
p

q

fx|y(x | y = 1)

fx|y(x | y = 0)
=
p

q

cosh
(

1
σ2x

Tµ′
)

cosh
(

1
σ2xTν ′

) ≤ 1,

Similarly, we obtain the reverse condition for h∗(x) = 1.

A.5 Proof of Theorem 9

We restate Theorem 9 for convenience.

Theorem. Suppose ‖µ‖ = κσ for some κ > 0 and let Ψ be any attention mechanism.
Then,

1. With probability at least 1−o(1), Ψ fails to correctly classify at least 2 ·Φc(κ)2 fraction
of inter-class edges;

2. For any K > 1 if q > K log2 n
nΦc(κ)2

, then with probability at least 1−O(n−
K
4

Φc(κ)2 logn), Ψ

misclassify at least one inter-class edge.

We will write i ∼ j if node i and node j are in the same class and i � j otherwise. From
Lemma 8, we observe that for successful classification by the optimal classifier, we need

p cosh
(
xTµ′

σ2

)
≤ q cosh

(
xT ν′

σ2

)
for i � j,

p cosh
(
xTµ′

σ2

)
> q cosh

(
xT ν′

σ2

)
for i ∼ j.
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We will split the analysis into two cases. First, note that when p ≥ q we have for i � j that

p cosh
(
xTµ′

σ2

)
≤ q cosh

(
xT ν′

σ2

)
=⇒ cosh

(
xTµ′

σ2

)
≤ cosh

(
xT ν′

σ2

)
=⇒ |xTµ′| ≤ |xTν ′|.

In the first implication, we used that p ≥ q, while the second implication follows from the
fact that cosh(a) ≤ cosh(b) =⇒ |a| ≤ |b| for all a, b ∈ R. Similarly, for p < q we have for
i ∼ j that

p cosh
(
xTµ′

σ2

)
> q cosh

(
xT ν′

σ2

)
=⇒ cosh

(
xTµ′

σ2

)
> cosh

(
xT ν′

σ2

)
=⇒ |xTµ′| > |xTν ′|.

Therefore, for each of the above cases, we can upper bound the probability for either i ∼ j
or i � j that X′ij is correctly classified, by the probability of the event |X′Tij µ′| ≤ |X

′T
ij ν
′|

or equivalently |X′Tij µ′| > |X
′T
ij ν
′|. We focus on the former as the latter is equivalent and

symmetric. Writing Xi = µ+σgi and Xj = −µ+σgj , we have that for i ∈ C1 and j ∈ C0,

Pr[h∗(X′ij) = 0] ≤ Pr
[
|X′Tij µ′| ≤ |X

′T
ij ν
′|
]

= Pr
[
|XT

i µ+ XT
j µ| ≤ |XT

i µ−XT
j µ|

]
= Pr

[
σ|gTi µ+ gTj µ| ≤ | ± 2‖µ‖2 + σgTi µ− σgTj µ|

]
≤ Pr

[
|gTi µ̂+ gTj µ̂| − |gTi µ̂− gTj µ̂| ≤

2‖µ‖
σ

]
= Pr

[
|gTi µ̂+ gTj µ̂| − |gTi µ̂− gTj µ̂| ≤ 2κ

]
,

where we denote µ̂ = µ/‖µ‖. In the second to last step above, we used triangle inequality
to pull 2‖µ‖2 outside the absolute value, while in the last equation we use ‖µ‖ = κσ.

We now denote zi = gTi µ̂ for all i ∈ [n]. Then the above probability is Pr[|zi + zj | −
|zi− zj | ≤ 2κ], where zi, zj ∼ N(0, 1) are independent random variables. Note that we have

Pr[h∗(X′ij) = 0] ≤ Pr[|zi + zj | − |zi − zj | ≤ 2κ]

= Pr[|zi + zj | − |zi − zj | ≤ 2κ, |zi| ≤ κ]

+ Pr[|zi + zj | − |zi − zj | ≤ 2κ, |zi| > κ]

= Pr[|zi| ≤ κ] + Φ(κ) Pr[|zi| > κ]. (15)

To see how we obtain the last equation, observe that if |zi| ≤ κ then we have

|zi + zj | − |zi − zj | = |zi + zj | − |zj − zi|
≤ |zi|+ |zj | − |zj − zi| by triangle inequality

≤ |zi|+ |zj | −
∣∣|zj | − |zi|∣∣ by reverse triangle inequality

≤ |zi|+ |zj | − (|zj | − |zi|) = 2|zi|
≤ 2κ,

hence, Pr[|zi + zj | − |zi − zj | ≤ 2κ, |zi| ≤ κ] = Pr[|zi| ≤ κ]. On the other hand, for
|zi| > κ, we look at each case, conditioned on the events zi > κ and zi < −κ for each of
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the four cases based on the signs of zi + zj and zi − zj . We denote by E the event that
|zi + zj | − |zi − zj | ≤ 2κ, and analyze the cases in detail. First consider the case zi < −κ:

Pr[E, zi + zj ≥ 0, zi − zj ≥ 0 | zi < −κ] = Pr[zj ≤ zi, zj ≥ −zi | zi < −κ] = 0,

Pr[E, zi + zj ≥ 0, zi − zj < 0 | zi < −κ] = Pr[zj > |zi|, zi ≤ κ | zi < −κ] = Φ(zi),

Pr[E, zi + zj < 0, zi − zj ≥ 0 | zi < −κ] = Pr[zj < −|zi|, zi ≥ −κ | zi < −κ] = 0,

Pr[E, zi + zj < 0, zi − zj < 0 | zi < −κ] = Pr[zi < zj < −zi, zj > −κ | zi < −κ]

= Φ(κ)− Φ(zi).

The sum of the four probabilities in the above is Pr[E | zi < −κ] = Φ(κ). Similarly, we
analyze the other case, zi > κ:

Pr[E, zi + zj ≥ 0, zi − zj ≥ 0 | zi > κ] = Pr[−zi ≤ zj ≤ zi, zj ≤ κ | zi > κ]

= Φ(κ)− Φc(zi),

Pr[E, zi + zj ≥ 0, zi − zj < 0 | zi > κ] = Pr[zj > |zi|, zi ≤ κ | zi > κ] = 0,

Pr[E, zi + zj < 0, zi − zj ≥ 0 | zi > κ] = Pr[zj < −|zi|, zi ≥ −κ | zi > κ] = Φc(zi),

Pr[E, zi + zj < 0, zi − zj < 0 | zi > κ] = Pr[zj < −zi, zj > zi | zi > κ] = 0.

The sum of the four probabilities above is Pr[E | zi > κ] = Φ(κ). Therefore, we obtain
that

Pr[|zi + zj | − |zi − zj | ≤ 2κ | |zi| > κ] = Φ(κ),

which justifies (15).
Next, note that Pr[|zi| ≤ κ] = Φ(κ)−Φc(κ) and Pr[|zi| > κ] = 2Φc(κ), so we have from

(15) that

Pr[h∗(X′ij) = 0] ≤ Φ(κ)− Φc(κ) + 2Φc(κ)Φ(κ)

= 1− 2Φc(κ) + 2Φc(κ)Φ(κ) = 1− 2Φc(κ)2.

Thus, X′ij is misclassified with probability at least 2Φc(κ)2.
We will now construct sets of pairs with mutually independent elements, such that the

union of those sets covers all inter-class edges. This will enable us to use a concentration
argument that computes the fraction of the inter-class edges that are misclassified. Since
the graph operations are permutation invariant, let us assume for simplicity that C0 =
{1, . . . , n2 } and C1 = {n2 + 1, . . . , n} for an even number of nodes n. Also, define the
function

m(i, l) =

{
i+ l, i+ l ≤ n

2 ,

i+ l − n
2 , i+ l > n

2 .
.

We now construct the following sequence of sets for all l ∈ {0, . . . , n2 − 1}:

Sl = {(Xm(i,l), Xi+n
2
) for all i ∈ C0 such that (m(i, l), i+ n/2) ∈ E}.

Fix l ∈ {0, . . . , n2 − 1} and observe that the pairs in the set Sl are mutually independent.
Define a Bernoulli random variable, βi, to be the indicator that (Xm(i,l), Xi+n

2
) is misclas-

sified. We have that E[βi] ≥ 2Φc(κ)2. Note that the fraction of pairs in the set Sl that are
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misclassified is 1
|Sl|
∑

i:(Xm(i,l),Xi+n/2)∈Sl
βi, which is a sum of independent Bernoulli random

variables. Hence, by the additive Chernoff bound, we obtain

Pr

 ∑
i∈C0∩Nm(i,l)

βi ≥ 2|Sl|Φc(κ)2 − |Sl|t

 ≥ 1− exp(−2|Sl|t2).

Since p, q = Ω( log2 n
n ), we have by the Chernoff bound and a union bound that with proba-

bility at least 1−1/poly(n), |Sl| = nq(1±o(1)) for all l. We now choose t =
√

C logn
|Sl| = o(1)

to obtain that on the event where |Sl| = nq(1 ± o(1)), we have the following for any large
C > 1:

Pr

 1

|Sl|
∑

i∈C0∩Nm(i,l)

βi ≥ 2Φc(κ)2 − o(1)

 ≥ 1− n−C .

Following a union bound over all l ∈ {0, . . . , n2 − 1}, we conclude that for any c > 0,

Pr

 1

|Sl|
∑

i∈C0∩Nm(i,l)

βi ≥ 2Φc(κ)2 − o(1), ∀l ∈
{

0, . . . ,
n

2
− 1
} ≥ 1−O(n−c).

Thus, out of all the pairs X′ij with j � i, with probability at least 1 − o(1), we have that

at least a fraction 2Φc(κ)2 of the pairs are misclassified by the attention mechanism. This
concludes part 1 of the theorem.

For part 2, note that by the additive Chernoff bound we have for any t ∈ (0, 1),

Pr

 ∑
i∈C0∩Nm(i,l)

βi ≥ 2|Sl|Φc(κ)2 − |Sl|t

 ≥ 1− exp(−2|Sl|t2).

Since |Sl| = nq
2 (1±o(1)) with probability at least 1/poly(n), we choose t = 2

√
KΦc(κ)2 log2 n

nq
to obtain

Pr

 ∑
i∈C0∩Nm(i,l)

βi ≥ nqΦc(κ)2(1± o(1))−
√
KnqΦc(κ)2 log2 n

 ≥ 1−O(n−8KΦc(κ)2 logn).

Now note that if q > K log2 n
nΦc(κ)2

then we have nqΦc(κ)2 > K log2 n, which implies that

nqΦc(κ)2 −
√
KnqΦc(κ)2 log2 n > 0.

Hence, in this regime of q,

Pr

 ∑
i∈C0∩Nm(i,l)

βi > 0

 ≥ 1−O(n−8KΦc(κ)2 logn),

and the proof is complete.

33



Fountoulakis, Levi, Yang, Baranwal and Jagannath

A.6 Proof of Theorem 10

We restate Theorem 10 for convenience

Theorem. Assume that ‖µ‖ ≤ Kσ and σ ≤ K ′ for some absolute constants K and K ′.
Moreover, assume that the parameters (w,a, b) ∈ Rd × R2 × R are bounded. Then, with
probability at least 1−o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), there exists a subset
A ⊆ [n] with cardinality at least n(1− o(1)) such that for all i ∈ A the following hold:

1. There is a subset Ji,0 ⊆ Ni ∩ C0 with cardinality at least 9
10 |Ni ∩ C0|, such that

γij = Θ(1/|Ni|) for all j ∈ Ji,0.

2. There is a subset Ji,1 ⊆ Ni ∩ C1 with cardinality at least 9
10 |Ni ∩ C1|, such that

γij = Θ(1/|Ni|) for all j ∈ Ji,1.

For i ∈ [n] let us write Xi = (2εi − 1)µ + σgi where gi ∼ N(0, I), εi = 0 if i ∈ C0 and
εi = 1 if i ∈ C1. Moreover, since the parameters (w,a, b) ∈ Rd × R2 × R are bounded,
we can write w = Rŵ and a = R′â such that ‖ŵ‖ = 1 and ‖â‖ = 1 and R,R′ are some
constants. We define the following sets which will become useful later in our computation
of γij ’s. Define

A def
=

{
i ∈ [n]

∣∣∣∣ |â1ŵ
Tgi| ≤ 10

√
log(n(p+ q)), and

|â2ŵ
Tgj | ≤ 10

√
log(n(p+ q)), ∀j ∈ Ni

}
.

For i ∈ [n] define

Ji,0
def
=
{
j ∈ Ni ∩ C0 | |â2ŵ

Tgj | ≤
√

10
}
,

Ji,1
def
=
{
j ∈ Ni ∩ C1 | |â2ŵ

Tgj | ≤
√

10
}
,

Bt
i,0

def
=
{
j ∈ Ni ∩ C0 | 2t−1 ≤ â2ŵ

Tgj ≤ 2t
}
, t = 1, 2, . . . , T,

Bt
i,1

def
=
{
j ∈ Ni ∩ C1 | 2t−1 ≤ â2ŵ

Tgj ≤ 2t
}
, t = 1, 2, . . . , T,

where T
def
=
⌈
log2

(
10
√

log(n(p+ q))
)⌉

.

We start with a few claims about the sizes of these sets.

Claim 20. With probability at least 1− o(1), we have that |A| ≥ n(1− o(1)).

Proof Because |â2| ≤ 1 we know that A is a superset of A′ where

A′ def
=

{
i ∈ [n]

∣∣∣∣ |ŵTgi| ≤ 10
√

log(n(p+ q)), and

|ŵTgj | ≤ 10
√

log(n(p+ q)), ∀j ∈ Ni

}
.

We give a lower bound for |A′| and hence prove the result. First of all, note that if p+ q ≥
Ω(1/ log2 n), then log(n(p+ q)) = log n(1− o(1)) and we easily get that with probability at
least 1−o(1), |ŵTgi| ≤ 10

√
log(n(p+ q)) for all i ∈ [n], and thus |A| = |A′| = n. Therefore

34



Graph Attention Retrospective

let us assume without loss of generality that p + q ≤ O(1/ log2 n). Consider the following
sum of indicator random variables

S
def
=
∑
i∈[n]

1{|ŵT gi|≥10
√

log(n(p+q))
}.

By the multiplicative Chernoff bound, for any δ > 0 we have

Pr [S ≥ nb(1 + δ)] ≤ exp

(
− δ2

2 + δ
nb

)

where b
def
= Pr(|ŵTgi| ≥ 10

√
log(n(p+ q))). Moreover, by the standard upper bound

on the Gaussian tail probability (Proposition 2.1.2, Vershynin (2018)) we know that b <
e−50 log(n(p+q)). Let us set

δ
def
=

1

bn(p+ q) log n
.

Then by the upper bound on b and the assumption that p, q = Ω(log2 n/n) we know that

δ ≥ (n(p+ q))49

log n
≥ Ω(log97 n) = ω(1).

It follows that
δ2

2 + δ
nb ≥ Ω(δnb) = Ω

(
1

(p+ q) log n

)
≥ Ω(log n).

Therefore, with probability at least 1− o(1) we have that

S ≤ nb(1 + δ) ≤ n

(n(p+ q))50
+

n

n(p+ q) log n
= O

(
n

n(p+ q) log n

)
.

Apply the concentration result of node degrees, this means that with probability at least
1− o(1),∣∣∣{i ∈ [n]

∣∣ |ŵTgi| ≥ 10
√

log(n(p+ q)) or ∃j ∈ Ni such that |ŵTgj | ≥ 10
√

log(n(p+ q))
}∣∣∣

≤ S · n
2

(p+ q)(1± o(1)) = O

(
n

n(p+ q) log n

)
· n

2
(p+ q)(1± o(1)) = O

(
n

log n

)
.

Therefore we have

|A′| ≥ n−O(n/ log n) = n(1− o(1)).

Claim 21. With probability at least 1− o(1), we have that for all i ∈ [n],

|Ji,0| ≥
9

10
|Ni ∩ C0| and |Ji,1| ≥

9

10
|Ni ∩ C1|.
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Proof We prove the result for Ji,0, the result for Ji,1 follows analogously. First, fix i ∈ [n].
For each j ∈ |Ni ∩ C0| we have that

Pr[|â2w
Tgj | ≥

√
10] ≤ Pr[|wTgj | ≥

√
10] ≤ e−50.

Denote Jci,0
def
= (Ni ∩ C0) \ Ji,0. We have that

E[|Jci,0|] = E

 ∑
j∈Ni∩C0

1{|â2wT gj |≥
√

10}

 ≤ e−50|Ni ∩ C0|,

Apply Chernoff’s inequality (Theorem 2.3.4 in Vershynin (2018)) we have

Pr

[
|Jci,0| ≥

1

10
|Ni ∩ C0|

]
≤ e−E[|Jc

i,0|]
(

eE[|Jci,0|]
|Ni ∩ C0|/10

)|Ni∩C0|/10

≤
(
ee−50|Ni ∩ C0|
|Ni ∩ C0|/10

)|Ni∩C0|/10

= exp

(
−
(

1

2
− log 10

10
− 1

10

)
|Ni ∩ C0|

)
≤ exp

(
− 4

25
|Ni ∩ C0|

)
.

Apply the union bound we get

Pr

[
|Ji,0| ≥

9

10
|C0 ∩Ni|,∀i ∈ [n]

]
≥ 1−

∑
i∈[n]

exp

(
− 4

25
|Ni ∩ C0|

)

≥ Pr(E3) ·

1−
∑
i∈[n]

exp

(
− 4

25

nmin(p, q)(1− o(1))

2

)
= (1− o(1)) ·

(
1− n exp

(
−2nmin(p, q)(1− o(1))

25

))
= 1− o(1).

The second inequality follows because |Ni ∩ C0| ≥ n
2 min(p, q)(1 − o(1)) under the event

E3 (cf. Definition 17) for all i ∈ [n]. The last equality is due to our assumption that

p, q = Ω( log2 n
n ).

Claim 22. With probability at least 1−o(1), we have that for all i ∈ [n] and for all t ∈ [T ],

|Bt
i,0| ≤ E[|Bt

i,0|] +
√
T |Ni ∩ C0|

4
5 and |Bt

i,1| ≤ E[|Bt
i,1|] +

√
T |Ni ∩ C1|

4
5 .

Proof We prove the result for Bt
i,0, and the result for Bt

i,1 follows analogously. First fix
i ∈ [n] and t ∈ [T ]. By the additive Chernoff inequality, we have

Pr
(
|Bt

i,0| ≥ E[|Bt
i,0|] + |Ni ∩ C0| ·

√
T |Ni ∩ C0|−

1
5

)
≤ e−2T |Ni∩C0|3/5 .
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Taking a union bound over all i ∈ [n] and t ∈ [T ] we get

Pr

 ⋃
i∈[n]

⋃
t∈[T ]

{
|Bt

i,0| ≥ E[|Bt
i,0|] +

√
T |Ni ∩ C0|

4
5

}
≤ nT exp

(
−2T

(n
2

min(p, q)(1− o(1))
)3/5

)
+ o(1) = o(1),

where the last equality follows from Assumption 1 that p, q = Ω( log2 n
n ), and hence

nT exp

(
−2T

(n
2

min(p, q)(1− o(1))
)3/5

)
= nT exp

(
−ω

(√
2T log n

))
= O

(
n−c

)
for some absolute constant c > 0. Moreover, we have used degree concentration, which
introduced the additional additive o(1) term in the probability upper bound. Therefore we
have

Pr
[
|Bt

i,0| ≤ E[|Bt
i,0|] +

√
T |Ni ∩ C0|

4
5 , ∀i ∈ [n] ∀t ∈ [T ]

]
≥ 1− o(1).

We start by defining an event E# which is the intersection of the following events over
the randomness of A and {εi}i and Xi = (2εi − 1)µ+ σgi,

• E ′1 is the event that for each i ∈ [n], |C0 ∩ Ni| = n
2 ((1 − εi)p + εiq)(1 ± o(1)) and

|C1 ∩Ni| = n
2 ((1− εi)q + εip)(1± o(1)).

• E ′2 is the event that |A| ≥ n− o(
√
n).

• E ′3 is the event that |Ji,0| ≥ 9
10 |Ni ∩ C0| and |Ji,1| ≥ 9

10 |Ni ∩ C1| for all i ∈ [n].

• E ′4 is the event that |Bt
i,0| ≤ E[|Bt

i,0|] +
√
T |Ni∩C0|

4
5 and |Bt

i,1| ≤ E[|Bt
i,1|] +

√
T |Ni∩

C1|
4
5 for all i ∈ [n] and for all t ∈ [T ].

By Claims 20, 21, 22, we get that with probability at least 1−o(1), the event E# def
=
⋂4
i=1 E

′
i

holds. We will show that under event E#, for all i ∈ A, for all j ∈ Ji,c where c ∈ {0, 1}, we
have γij = Θ(1/|Ni|). This will prove Theorem 10.

Fix i ∈ A and some j ∈ Ji,0. Let us consider

γij =
exp

(
LeakyRelu(a1w

TXi + a2w
TXj + b)

)∑
k∈Ni

exp (LeakyRelu(a1wTXi + a2wTXk + b))

=
exp

(
σRR′ LeakyRelu(κij + â1ŵ

Tgi + â2ŵ
Tgj + b′)

)∑
k∈Ni

exp (σRR′ LeakyRelu(κik + â1ŵTgi + â2ŵTgk + b′))

=
1∑

k∈Ni
exp(∆ik −∆ij)
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where for l ∈ Ni, we denote

κil
def
= (2εi − 1)ŵTµ/σ + (2εl − 1)ŵTµ/σ,

∆il
def
= σRR′ LeakyRelu(κil + â1w

Tgi + â2w
Tgl + b′),

and b = σRR′b′. We will show that

∑
k∈Ni

exp(∆ik −∆ij) = Θ(|Ni|)

and hence conclude that γij = Θ(1/|Ni|). First of all, note that since ‖µ‖ ≤ Kσ for some
absolute constant K, we know that

|κil| ≤
√

2K = O(1).

Let us assume that â1ŵ
Tgi ≥ 0 and consider the following two cases regarding the magni-

tude of â1ŵ
Tgi.

Case 1. If κij + â1ŵ
Tgi + â2ŵ

Tgj + b′ < 0, then

∆ik −∆ij = σRR′
(

LeakyRelu(κik + â1ŵ
Tgi + â2ŵ

Tgk + b′)

− LeakyRelu(κij + â1ŵ
Tgi + â2ŵ

Tgj + b′)
)

= σRR′
(

LeakyRelu(â1ŵ
Tgi + â2ŵ

Tgk ±O(1))

− β(κij + â1ŵ
Tgi + â2ŵ

Tgj + b′)
)

= σRR′
(
LeakyRelu(â2ŵ

Tgk ±O(1))±O(1)
)

= σRR′
(
Θ(â2ŵ

Tgk)±O(1)
)
,

where β is the slope of LeakyRelu(x) for x < 0. Here, the second equality follows from
|κik + b′| ≤

√
2K + |b′| = O(1) and κij + â1ŵ

Tgi + â2ŵ
Tgj + b′ < 0. The third equality

follows from

• We have j ∈ Ji,0 and hence |â2ŵ
Tgj | = O(1);

• We have κij + â1ŵ
Tgi+ â2ŵ

Tgj + b′ < 0, so â1ŵ
Tgi < |κij |+ |â2ŵ

Tgj |+ |b′| = O(1),
moreover, because â1ŵ

Tgi ≥ 0, we get that |â1ŵ
Tgi| = O(1);

• We have |κij + â1ŵ
Tgi + â2ŵ

Tgj + b′| ≤ |â1ŵ
Tgi|+ |â2ŵ

Tgj |+ |κij + b′| = O(1) +
O(1) +O(1) = O(1).
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Case 2. If κij + â1ŵ
Tgi + â2ŵ

Tgj + b′ ≥ 0, then

∆ik −∆ij = σRR′
(

LeakyRelu(κik + â1ŵ
Tgi + â2ŵ

Tgk + b′)

− LeakyRelu(κij + â1ŵ
Tgi + â2ŵ

Tgj + b′)
)

= σRR′
(

LeakyRelu(κik + â1ŵ
Tgi + â2ŵ

Tgk + b′)

− κij − â1ŵ
Tgi − â2ŵ

Tgj − b′
)

= σRR′
(
LeakyRelu(κik + â1ŵ

Tgi + â2ŵ
Tgk + b′)− â1ŵ

Tgi ±O(1)
){

= σRR′
(
Θ(â2ŵ

Tgk)±O(1)
)
, if k ∈ Ji,0 ∪ Ji,1

≤ σRR′
(
O(â2ŵ

Tgk)±O(1)
)
, otherwise.

To see the last (in)equality in the above, consider the following cases:

1. If k ∈ Ji,0 ∪ Ji,1, then there are two cases depending on the sign of κik + â1ŵ
Tgi +

â2ŵ
Tgk + b′.

• If κik + â1ŵ
Tgi + â2ŵ

Tgk + b′ ≥ 0, then we have that

LeakyRelu(κik + â1ŵ
Tgi + â2ŵ

Tgk + b′)− â1ŵ
Tgi ±O(1)

= κik + â1ŵ
Tgi + â2ŵ

Tgk + b′ − â1ŵ
Tgi ±O(1)

= â2ŵ
Tgk + κik + b′ ±O(1)

= â2ŵ
Tgk ±O(1).

• If κik+â1ŵ
Tgi+â2ŵ

Tgk+b′ < 0, then because â1ŵ
Tgi ≥ 0 and |κik+â2ŵ

Tgk+
b′| ≤ |κik|+ |â2ŵ

Tgk|+ |b′| = O(1), we know that â1ŵ
Tgi < |κik|+ |â2ŵ

Tgk|+
|b′| = O(1) and |κik + â1ŵ

Tgi + â2ŵ
Tgk + b′| = O(1). Therefore it follows that

LeakyRelu(κik + â1ŵ
Tgi + â2ŵ

Tgk + b′)− â1ŵ
Tgi ±O(1)

= LeakyRelu(±O(1))−O(1)±O(1)

= ±O(1)

= â2ŵ
Tgk ±O(1)

where the last equality is due to the fact that k ∈ Ji,0∪Ji,1 so |â2ŵ
Tgk| = O(1).

2. If k 6∈ Ji,0 ∪ Ji,1, then there are two cases depending on the sign of κik + â1ŵ
Tgi +

â2ŵ
Tgk + b′.

• If κik + â1ŵ
Tgi + â2ŵ

Tgk + b′ ≥ 0, then we have that

LeakyRelu(κik + â1ŵ
Tgi + â2ŵ

Tgk + b′)− â1ŵ
Tgi ±O(1)

= κik + â1ŵ
Tgi + â2ŵ

Tgk + b′ − â1ŵ
Tgi ±O(1)

= â2ŵ
Tgk + κik + b′ ±O(1)

= â2ŵ
Tgk ±O(1).
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• If κik + â1ŵ
Tgi + â2ŵ

Tgk + b′ < 0, then we have that,

LeakyRelu(κik + â1ŵ
Tgi + â2ŵ

Tgk + b′)− â1ŵ
Tgi ±O(1)

= βκik + βâ1ŵ
Tgi + βâ2ŵ

Tgk + βb′ − â1ŵ
Tgi ±O(1)

= βâ2ŵ
Tgk − (1− β)â1ŵ

Tgi ±O(1)

≤ βâ2ŵ
Tgk ±O(1),

where β is the slope of LeakyRelu(·).

Combining the two cases regarding the magnitude of â1ŵ
Tgi and our assumption that

σ,R,R = O(1), so far we have showed that, for any i such that â1ŵ
Tgi ≥ 0, for all j ∈ Ji,0,

we have

∆ik −∆ij =

{
Θ(â2ŵ

Tgk)±O(1), if k ∈ Ji,0 ∪ Ji,1
O(â2ŵ

Tgk)±O(1), otherwise.
(16)

By following a similar argument, one can show that Equation 16 holds for any i such that
â1ŵ

Tgi < 0.

Let us now compute∑
k∈Ni

exp(∆ik −∆ij) =
∑

k∈Ni∩C0

exp(∆ik −∆ij) +
∑

k∈Ni∩C1

exp(∆ik −∆ij)

for some j ∈ Ji,0. Let us focus on
∑

k∈Ni∩C0
exp(∆ik − ∆ij) first. We will show that

Ω(|Ni ∩ C0|) ≤
∑

k∈Ni∩C0
exp(∆ik −∆ij) ≤ O(|Ni|).

First of all, we have that∑
k∈Ni∩C0

exp(∆ik −∆ij) ≥
∑
k∈Ji,0

exp(∆ik −∆ij) =
∑
k∈Ji,0

exp
(
Θ(â2ŵ

Tgk)±O(1)
)

≥
∑
k∈Ji,0

ec1 = |Ji,0|ec1 = Ω(|Ni ∩ C0|),
(17)

where c1 is an absolute constant (possibly negative). On the other hand, consider the
following partition of Ni ∩ C0:

P1
def
= {k ∈ Ni ∩ C0 | â2ŵ

Tgk ≤ 1},

P2
def
= {k ∈ Ni ∩ C0 | â2ŵ

Tgk ≥ 1}.

It is easy to see that∑
k∈P1

exp(∆ik −∆ij) ≤
∑
k∈P1

exp
(
O(â2ŵ

Tgk)±O(1)
)
≤
∑
k∈P1

ec2 = |P1|ec2 = O(|Ni ∩ C0|),

(18)
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where c2 is an absolute constant. Moreover, because i ∈ A we have that P2 ⊆
⋃
t∈[T ]B

t
i,0.

It follows that ∑
k∈P2

exp(∆ik −∆ij) =
∑
t∈[T ]

∑
k∈Bt

i,0

exp(∆ik −∆ij)

≤
∑
t∈[T ]

∑
k∈Bt

i,0

exp
(
O(â2ŵ

Tgk)±O(1)
)

≤
∑
t∈[T ]

|Bt
i,0|ec32t ,

(19)

where c3 is an absolute constant. We can upper bound the above quantity as follows. Under
the Event E∗, we have that

|Bt
i,0| ≤ mt +

√
T |Ni ∩ C0|

4
5 , for all t ∈ [T ],

where

mt
def
= E[|Bt

i,0|] =
∑

k∈Ni∩C0

Pr(2t−1 ≤ â2ŵ
Tgk ≤ 2t) ≤

∑
k∈Ni∩C0

Pr[â2ŵ
Tgk ≥ 2t−1]

≤
∑

k∈Ni∩C0

Pr[ŵTgk ≥ 2t−1] ≤ |Ni ∩ C0|e−22t−3
.

It follows that∑
t∈[T ]

|Bt
i,0|ec32t ≤

∑
t∈[T ]

(
|Ni ∩ C0|e−22t−3

+
√
T |Ni ∩ C0|

4
5

)
ec32t

≤ |Ni ∩ C0|
∞∑
t=1

e−22t−3
ec32t +

∑
t∈[T ]

√
T |Ni ∩ C0|

4
5 ec32T

≤ c4|Ni ∩ C0|+ o(|Ni|)
≤ O(|Ni|),

(20)

where c4 is an absolute constant. The third inequality in the above follows from

• The series
∑∞

t=1 e
−22t−3

ec32t converges absolutely for any constant c3;

• The sum
∑

t∈[T ]

√
T |Ni ∩ C0|

4
5 ec32T = T

3
2 |Ni ∩ C0|

4
5 ec32T = o(|Ni|) because

log
(
T

3
2 ec32T

)
=

3

2
log
⌈
log2

(
10
√

log(n(p+ q))
)⌉

+ c32

⌈
log2

(
10
√

log(n(p+q))
)⌉

≤ 3

2
log
⌈
log2

(
10
√

log(n(p+ q))
)⌉

+ 20c3

√
log(n(p+ q))

≤ O
(

1

c
log(n(p+ q))

)
,

for any c > 0. In particular, by picking c > 5 we see that T
3
2 ec32T ≤ O((n(p+ q))

1
c ) ≤

o(|Ni|
1
5 ), and hence we get T

3
2 ec32T |Ni ∩ C0|

4
5 ≤ |Ni|

4
5 · o(|Ni|

1
5 ) = o(|Ni|).
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Combining Equations 19 and 20 we get∑
k∈P2

exp(∆ik −∆ij) ≤ O(|Ni|), (21)

and combining Equations 18 and 21 we get∑
k∈Ni∩C0

exp(∆ik −∆ij) =
∑
k∈P1

exp(∆ik −∆ij) +
∑
k∈P1

exp(∆ik −∆ij) ≤ O(|Ni|). (22)

Now, by Equations 17 and 22 we get

Ω(|Ni ∩ C0|) ≤
∑

k∈Ni∩C0

exp(∆ik −∆ij) ≤ O(|Ni|). (23)

It turns out that repeating the same argument for
∑

k∈Ni∩C1
exp(∆ik −∆ij) yields

Ω(|Ni ∩ C1|) ≤
∑

k∈Ni∩C1

exp(∆ik −∆ij) ≤ O(|Ni|). (24)

Finally, Equations 23 and 24 give us∑
k∈Ni

exp(∆ik −∆ij) = Θ(|Ni|),

which readily implies

γij =
1∑

k∈Ni
exp(∆ik −∆ij)

= Θ(1/|Ni|)

as required. We have showed that for all i ∈ A and for all j ∈ Ji,0, γij = Θ(1/|Ni|).
Repeating the same argument we get that the same result holds for all i ∈ A and for all
j ∈ Ji,1, too. Hence, by Claims 20 and 21 about the cardinalities of A, Ji,0 and Ji,1 we have
thus proved Theorem 10.

A.7 Proof of Proposition 13

We restate Proposition 13 for convenience.

Proposition 23. Suppose that p, q satisfy Assumption 1 and that p, q are bounded away
from 1. For every ε > 0, there are absolute constants M,M ′ = O(

√
ε) such that, with

probability at least 1 − o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), using the graph
attention convolution in (2) and the attention architecture Ψ̃ in (13), the model misclassifies
at least Ω(n1−ε) nodes for any w such that ‖w‖ = 1, if

1. t = O(1) and ‖µ‖ ≤Mσ
√

logn
n(p+q)(1−max(p, q)) p+q

|p−q| ;

2. t = ω(1) and ‖µ‖ ≤M ′σ
√

logn
n(p+q)(1−max(p, q)).
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We start with part 1 of the proposition. Let us assume that p ≥ q. The result when p < q
follows analogously. We will condition on the events E1,E2,E3 defined in Definition 17.
These events are concerned with the concentration of class sizes |C0| and |C1| and the
concentration of the number of intra-class and inter-class edges, i.e. |C0 ∩Ni| and C1 ∩Ni|
for all i. By Lemma 18, the probability that these events hold simultaneously is at least
1 − o(1). Fix any w ∈ Rd such that ‖w‖ = 1. Without loss of generality, assume that
wTµ > 0. Because t = O(1), by the definition of Ψ̃ in (13) and the attention coefficients in
(1) we have that

γij =

{
c1

n(p+q)(1± o(1)), if (i, j) is an intra-class edge,
c2

n(p+q)(1± o(1)), if (i, j) is an inter-class edge,
(25)

for some positive constants c1 ≥ 1 and c2 ≤ 1. Let us write Xi = (2εi − 1)µ + σgi where
gi ∼ N(0, I), εi = 0 if i ∈ C0 and εi = 1 if i ∈ C1. Let us consider the classification of
nodes in C0 based on the model output

∑
j∈Ni

γijw
TXj for node i. Note that, depending

on whether i ∈ C0 or i ∈ C1, the expectation of the model output is symmetric around 0,
and therefore we consider the decision boundary at 0. Let 0 < ε < 1 and fix any partition
of C0 into a set of disjoint subsets,

C0 =
⋃̀
h=1

C
(h)
0

such that ` = |C0|1−ε and |C(h)
0 | = |C0|ε for every h = 1, 2, . . . , `. In what follows we

will consider the classification of nodes in each C
(h)
0 separately. We will show that, with

probability at least 1 − o(1), for each one of more than half of the subsets C
(h)
0 where

h = 1, 2, . . . , `, the model is going to misclassify at least one node, and consequently, the
model is going to misclassify at least `/2 = |C0|1−ε/2 = Ω(n1−ε) nodes, giving the required
result on misclassification rate.

Fix any h′ ∈ {1, 2, . . . , `}. Using (25) we get that, for large enough n, the event that the

model correctly classifies all nodes in C
(h)
0 satisfies

{
max
i∈C(h′)

0

∑
j∈Ni

γijw
TXj < 0

}

=

{
max
i∈C(h′)

0

( ∑
j∈Ni∩C1

γij −
∑

j∈Ni∩C0

γij

)
wTµ+ σ

∑
j∈Ni

γijw
Tgj < 0

}

⊆

{
c3

(
q − p
p+ q

)
wTµ+ σ max

i∈C(h′)
0

∑
j∈Ni

γijw
Tgj < 0

}
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for some absolute constant c3 > 0, and hence the probability that the model correctly

classifies all nodes in C
(h′)
0 satisfies, for large enough n,

Pr

(
max
i∈C(h′)

0

∑
j∈Ni

γijw
TXj < 0

)
≤ Pr

(
max
i∈C(h′)

0

∑
j∈Ni

wTgj < c3

(
p− q
p+ q

)
|wTµ|
σ

)

≤ Pr

(
max
i∈C(h′)

0

∑
j∈Ni

wTgj < M̃

√
log n

n(p+ q)
(1−max(p, q))

)

where the last inequality follows from our assumption on ‖µ‖ and we denote M̃
def
= c3M > 0.

Now we will use Sudakov’s minoration inequality (Vershynin, 2018) to obtain a lower bound
on the expected maximum, and then apply Borell’s inequality to upper bound the above
probability. In order to apply Sudakov’s result we will need to define a metric over the node

index set [n]. Let zi
def
=
∑

j∈Ni
wTgj . For i, j ∈ C0, i 6= j, consider the canonical metric

d◦(i, j) given by

d◦(i, j)
2 def

= E[(zi − zj)2]

=
∑
k∈Ni

γ2
ik +

∑
k∈Nj

γ2
jk − 2

∑
k∈Ni∩Nj

γikγjk

≥ c4

∑
k∈Jij

1

n2(p+ q)2

=
c4|Jij |

n2(p+ q)2
,

where Jij
def
= (Ni ∪ Nj)\(Ni ∩ Nj) is the symmetric difference of the neighbors of i and j,

c4 > 0 is an absolute constant, and the inequality is due to (25). We lower bound |Jij | as
follows. For i, j ∈ C0, i 6= j, and a node k ∈ [n], the probability that k is a neighbor of
exactly one of i and j is 2p(1 − p) if k ∈ C0 and 2q(1 − q) if k ∈ C1. Therefore we have
E[|Jij |] = n(p(1− p) + q(1− q)). It follows from the multiplicative Chernoff bound that for
any 0 < δ < 1,

Pr[|Jij | < E[|Jij |](1− δ)] ≤ exp(−δ2 E[|Jij |]/3).

Choose

δ = 3

√
log n

E[|Jij |]
= 3

√
log n

n(p(1− p) + q(1− q))
= o(1),

where the last equality follows from n(p(1 − p) + q(1 − q)) = Ω(log2 n), which is in turn
due to the assumptions that p, q = Ω(log2 n/n) and p, q are bounded away from 1. Apply
a union bound over all i, j ∈ C0, we get that with probability at least 1− o(1), the size of
Jij satisfies

|Jij | ≥ n(p(1− p) + q(1− q))(1− o(1)), ∀i, j ∈ C0. (26)

Therefore it follows that, for large enough n,

d◦(i, j) ≥

√
c4|Jij |

n2(p+ q)2
=

√
c4n(p(1− p) + q(1− q))(1− o(1))

n2(p+ q)2
= Ω

(√
1−max(p, q)

n(p+ q)

)
.
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We condition on the event that the inequality (26) holds for all i, j ∈ C0, which happens
with probability at least 1− o(1). Apply Sudakov’s minoration with metric d◦(i, j), we get
that for large enough n, for all h = 1, 2, . . . , `,

E

max
i∈C(h)

0

∑
j∈Ni

γijw
Tgj

 ≥ c5d◦(i, j)

√
log |C(h)

0 | ≥ c6

√
ε

√
log n

n(p+ q)
(1−max(p, q)) (27)

for some absolute constants c5, c6 > 0. The last inequality in the above follows from

|C(h)
0 | = |C0|ε = Ω(nε). In addition, note that since by assumption Ψ is independent

from the node features, using (25) we have that
∑

j∈Ni
γijw

Tgj is Gaussian with variance

O( 1
n(p+q)). We use Borell’s inequality (Adler and Taylor (2007) Chapter 2) to get that for

any t > 0 and large enough n,

Pr

 max
i∈C(h′)

0

∑
j∈Ni

γijw
Tgj < E

 max
i∈C(h′)

0

∑
j∈Ni

γijw
Tgj

− t
 ≤ exp(−c7t

2n(p+ q)).

for some absolute constant c7 > 0. By the lower bound of the expectation (27), we get that

Pr

 max
i∈C(h′)

0

∑
j∈Ni

γijw
Tgj < c6

√
ε

√
log n

n(p+ q)
(1−max(p, q))− t

 ≤ exp(−c7t
2n(p+ q)).

Now, let M > 0 be any constant that also satisfies M < c6
√
ε/c3. Recall that we defined

M̃ = c3M , and hence M̃ < c6
√
ε. Set

t = (c6

√
ε− M̃)

√
log n

n(p+ q)
(1−max(p, q)) = Ω

(√
log n

n(p+ q)
(1−max(p, q))

)
, (28)

then combine with the events we have conditioned so far we get

Pr

 max
i∈C(h′)

0

∑
j∈Ni

γijw
Tgj ≤ M̃

√
log n

n(p+ q)
(1−max(p, q))

 = o(1).

Recall that the above probability is the probability of correctly classifying all nodes in C
(h′)
0 .

Since our choice of h′ was arbitrary, this applies to every h ∈ {1, 2, . . . , h}. Let I
(h)
0 denote

the indicator variable of the event that there is at least one node in C
(h)
0 that is misclassified,

then

E

[∑̀
h=1

I
(h)
0

]
= ` ·E[I

(1)
0 ] = ` · (1− o(1)) = `− o(`).

Apply the reverse Markov inequality, we get

Pr

[∑̀
h=1

I
(h)
0 ≤ 1

2
`

]
≤
`−E

[∑`
h=1 I

(h)
0

]
`− 1

2`
=
o(`)

1
2`

= o(1).
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Therefore, with probability at least 1 − o(1), we have
∑`

h=1 I
(h)
0 ≥ 1

2` = Ω(n1−ε). This
implies the required result that the model misclassifies at least Ω(n1−ε) nodes.

The proof of part 2 is similar to the proof of part 1. Let us assume that p ≥ q since the
result when p < q can be proved analogously. We condition on the events E1,E2,E3 defined
in Definition 17 which simultaneous hold with probability at least 1 − o(1) by Lemma 18.
Fix any w ∈ Rd such that ‖w‖ = 1. Because t = ω(1), by the definition of Ψ̃ in (13) and
the attention coefficients in (1) we have that

γij =

{
2
np(1± o(1)), if (i, j) is an intra-class edge,

o( 1
n(p+q)), if (i, j) is an inter-class edge.

(29)

Write Xi = (2εi − 1)µ + σgi where gi ∼ N(0, I), εi = 0 if i ∈ C0 and εi = 1 if i ∈ C1. We
consider the classification of nodes in C0 based on the model output

∑
j∈Ni

γijw
TXj for

node i and the decision boundary at 0. As before, let 0 < ε < 1 and fix any partition of C0

into a set of disjoint subsets C0 =
⋃`
h=1C

(h)
0 such that ` = |C0|1−ε and |C(h)

0 | = |C0|ε for
every h = 1, 2, . . . , `. We proceed to show that, with high probability, for each one of more

than half of the subsets C
(h)
0 where h = 1, 2, . . . , `, the model is going to misclassify at least

one node, and consequently, the model is going to misclassify at least `/2 = Ω(n1−ε) nodes
as required. Fix any h′ ∈ {1, 2, . . . , `}. Using (29) we get that, for large enough n, the event

that the model correctly classifies all nodes in C
(h′)
0 satisfies{

max
i∈C(h′)

0

∑
j∈Ni

γijw
TXj < 0

}
⊆

{
c1w

Tµ+ σ max
i∈C(h′)

0

∑
j∈Ni

γijw
Tgj < 0

}
for some absolute constant c1 > 0, and hence the probability that the model classifies all
nodes in Ch

′
0 correctly satisfies, for large enough n,

Pr

(
max
i∈C(h′)

0

∑
j∈Ni

γijw
TXj < 0

)
≤ Pr

(
max
i∈C(h′)

0

∑
j∈Ni

wTgj < c1
|wTµ|
σ

)

≤ Pr

(
max
i∈C(h′)

0

∑
j∈Ni

wTgj < M̃

√
log n

n(p+ q)
(1−max(p, q))

)

where the last inequality follows from our assumption on ‖µ‖ and we denote M̃
def
= c1M

′ > 0.
The rest of the proof of part 2 proceeds as the proof of part 1.

A.8 Proof of Theorem 14

We restate Theorem 14 for convenience. Recall that we write ‖µ‖ = κσ for some κ > 0.

Theorem. With probability at least 1−o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), us-
ing the two-layer MLP attention architecture Ψ given in (3) and (4) with R = Ω(n log2 nσ),
the graph attention convolution output satisfies

h′i =
∑
j∈Ni

γijw̃
TXj > 0 if and only if w̃TXi > 0, ∀i ∈ [n],

h′i =
∑
j∈Ni

γijw̃
TXj < 0 if and only if w̃TXi < 0, ∀i ∈ [n].
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We will condition on the following two events concerning the values of w̃TXi for i ∈ [n].
Both events hold with probability at least 1− o(1). First, for ε > 0 consider the event{

w̃TXi 6∈ [−εσmax{1, κ}, εσmax{1, κ}] for all i ∈ [n]
}
.

Since w̃ = µ/‖µ‖ and ‖µ‖ = κσ, each w̃TXi follows a normal distribution with mean εiκσ
and variance σ2 (recall that εi ∈ {0, 1} generates the node memberships in CSBM), we have
that

Pr
(
−εσmax{1, κ} ≤ w̃TXi ≤ εσmax{1, κ}

)
=

∫ κ+εmax{1,κ}

κ−εmax{1,κ}

1√
2π
e−x

2/2dx

≤


√

2
π ε, if κ ≤ 1,√
2
πe
−κ2(1−ε)2/2εκ, if κ > 1.

Let us pick ε such that

ε =
1

n
√

log n
if κ ≤ 2

√
log n, and ε =

1

4
if κ > 2

√
log n.

This gives that

Pr
(
w̃TXi 6∈ [−εσmax{1, κ}, εσmax{1, κ}] for all i ∈ [n]

)
≥ 1− n · o(1/n) = 1− o(1).

Second, consider the event that |w̃TXi − E[w̃TXi]| ≤ 10σ
√

log n. By Lemma 18 we know
that it holds with probability at least 1− o(1). Under these two events, we have that

εσmax{1, κ} ≤ w̃TXi ≤ κσ + 10σ
√

log n if w̃TXi > 0,

−κσ − 10σ
√

log n ≤ w̃TXi ≤ −εσmax{1, κ} if w̃TXi < 0.

Recall from (5) that

Ψ(Xi,Xj) =


−2R(1− β)w̃TXi, if w̃TXj ≤ −

∣∣w̃TXi

∣∣ ,
2R(1− β) sign(w̃TXi)w̃

TXj , if −
∣∣w̃TXi

∣∣ < w̃TXj <
∣∣w̃TXi

∣∣ ,
2R(1− β)w̃TXi, if w̃TXj ≥

∣∣w̃TXi

∣∣ .
Consider an arbitrary node i where w̃TXi > 0. We will show that hi =

∑
j∈Ni

γijw̃
TXj > 0.

By the definition of attention coefficients in (1), we know that∑
j∈Ni

γijw̃
TXj > 0 ⇐⇒

∑
j∈Ni

exp(Ψ(Xi,Xj))w̃
TXj > 0.

Using the above expression for Ψ, we have that∑
j∈Ni

exp(Ψ(Xi,Xj))w̃
TXj

= exp(Ψ(Xi,Xi))w̃
TXi +

∑
j∈Ni
j 6=i

exp(Ψ(Xi,Xj))w̃
TXj

≥ exp(Ψ(Xi,Xi))w̃
TXi − (n− 1) exp(Ψ(Xi,−Xi))(κσ + 10σ

√
log n)

≥ e2R(1−β)εσmax{1,κ}εσmax{1, κ} − (n− 1)e−2R(1−β)εσmax{1,κ}(κσ + 10σ
√

log n),

(30)
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where the second last inequality follows from the event that |w̃TXj | ≤ κσ + 10σ
√

log n for
all j, and |Ni| ≤ n, and the last inequality follows from the fact that the function

f(x) = xe2R(1−β)x − (n− 1)(κσ + 10σ
√

log n)e−2R(1−β)x

is increasing with respect to x for x ≥ 0. To see that h′i =
∑

j∈Ni
exp(Ψ(Xi,Xj))w̃

TXj > 0,
consider the following cases separately.

• If κ ≤ 2
√

log n, recall that we picked ε = 1/(n log n), then because R = Ω(n log2 n/σ),
for large enough n we have that

4R(1− β)σ >
n
√

log n

max{1, κ}

(
log n+ log

(
n
√

log n

max{1, κ}

)
+ log(κ+ 10

√
log n)

)
⇐⇒ 4R(1− β)σ >

1

εmax{1, κ}

(
log n+ log

(
1

εmax{1, κ}

)
+ log(κ+ 10

√
log n)

)
⇐⇒ e4R(1−β)σεmax{1,κ} >

n(κ+ 10
√

log n)

εmax{1, κ}
⇐⇒ e2R(1−β)σεmax{1,κ}σεmax{1, κ} > ne−2R(1−β)σεmax{1,κ}(κσ + 10σ

√
log n).

By (30) this means that h′i > 0.

• If κ > 2
√

log n, then ε = 1/4. Because R = Ω(n log2 n/σ), for large enough n we have

4R(1− β)σ >
log n+ log(κ+ 10

√
log n)− log(κ/4)

κ/4

⇐⇒ 4R(1− β)σ >
log n+ log(κ+ 10

√
log n)− log(εκ)

εκ

⇐⇒ e4R(1−β)σεκ >
n(κ+ 10

√
log n)

εκ

⇐⇒ e2R(1−β)σεκσεκ > n(κσ + 10σ
√

log n)

By (30) this means that h′i > 0.

This shows that h′i > 0 whenever w̃TXi > 0. Similarly, one easily gets that h′i < 0 whenever
w̃TXi < 0. Therefore the proof is complete.

A.9 Proof of Corollary 16

We restate Corollary 16 for convenience. Recall that we write ‖µ‖ = κσ for some κ > 0.

Corollary. With probability at least 1 − o(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2),
using the two-layer MLP attention architecture Ψ given in (3) and (4) with R = Ω(n log2 nσ),
one has that

• (Perfect classification) If κ ≥
√

2 log n then all nodes are correctly classified;

• (Almost perfect classification) If κ = ω(1) then at least 1− o(1) fraction of all nodes
are correctly classified;
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• (Partial classification) If κ = O(1) then at least Φ(κ)− o(1) fraction of all nodes are
correctly classified.

Fix i ∈ [n] and write w̃TXi = (2εi−1)‖µ‖+σ/‖µ‖ ·µTgi where gi ∼ N(0, I), where we
recall that εi ∈ {0, 1} defines the class membership of node i. We have that w̃TXi follows a
normal distribution with mean (2εi−1)κσ and standard deviation σ. Part 1 of the corollary
is exactly Proposition 7 whose proof is given in the main text. We consider the other cases
for κ. For both classes εi = 0 and εi = 1, the probability of correct classification is Φ(κ)
(using 0 as the decision boundary). Therefore, by applying additive Chernoff bound, we
have that

Pr

[
At most nΦ(κ)−

√
n log n nodes are correctly classified

]

= Pr

∑
i∈[n]

1{node i is correctly classified} ≤ nΦ(κ)−
√
n log n

 ≤ 2

n
.

The proof is complete by noticing that nΦ(κ)−
√
n log n = n(1− o(1)) when κ = ω(1) and

nΦ(κ)−
√
n log n = n(Φ(κ)− o(1)) when κ = O(1).
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A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems (NeurIPS),
2015.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

V. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In
IEEE International Joint Conference on Neural Networks (IJCNN), 2005.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on graph-structured data.
In arXiv:1506.05163, 2015.

50



Graph Attention Retrospective

Y. Hou, J. Zhang, J. Cheng, K. Ma, R. T. B. Ma, H. Chen, and M.-C. Yang. Measuring
and improving the use of graph information in graph neural networks. In International
Conference on Learning Representations (ICLR), 2019.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open
graph benchmark: datasets for machine learning on graphs. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2020.

S. Jegelka. Theory of graph neural networks: Representation and learning. In
arXiv:2204.07697, 2022.

N. Keriven, A. Bietti, and S. Vaiter. On the universality of graph neural networks on large
random graphs. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

B. Knyazev, G. W. Taylor, and M. Amer. Understanding attention and generaliza-
tion in graph neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

B. J. Lee, R. A. Rossi, S. Kim, K. N. Ahmed, and E. Koh. Attention models in graphs: A
survey. ACM Transactions on Knowledge Discovery from Data (TKDD), 2019.

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cayleynets: Graph convolutional
neural networks with complex rational spectral filters. IEEE Transactions on Signal
Processing, 67(1):97–109, 2018.

Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow. Gated graph sequence neural networks.
In International Conference on Learning Representations (ICLR), 2016.

D. Lim, F. Hohne, X. Li, S. L. Huang, V. Gupta, O. Bhalerao, and S. N. Lim. Large scale
learning on non-homophilous graphs: New benchmarks and strong simple methods. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

A. Loukas. How hard is to distinguish graphs with graph neural networks? In Advances in
Neural Information Processing Systems (NeurIPS), 2020a.

A. Loukas. What graph neural networks cannot learn: Depth vs width. In International
Conference on Learning Representations (ICLR), 2020b.

S. Luan, C. Hua, Q. Lu, J. Zhu, M. Zhao, S. Zhang, X.-W. Chang, and D. Precup. Revisiting
heterophily for graph neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

S. Maskey, R. Levie, Y. Lee, and G. Kutyniok. Generalization analysis of message passing
neural networks on large random graphs. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

M. Minsky and S. Papert. Perceptron: an introduction to computational geometry, 1969.

51



Fountoulakis, Levi, Yang, Baranwal and Jagannath

C. Moore. The computer science and physics of community detection: Landscapes, phase
transitions, and hardness. Bulletin of The European Association for Theoretical Computer
Science, 1(121), 2017.

J. Palowitch, A. Tsitsulin, B. Mayer, and B. Perozzi. Graphworld: Fake graphs bring
real insights for gnns. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2022.

O. Puny, H. Ben-Hamu, and Y. Lipman. Global attention improves graph networks gener-
alization. In arXiv:2006.07846, 2020.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1), 2009.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.
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