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Abstract

Meta-Learning aims to speed up the learning process on new tasks by acquiring useful
inductive biases from datasets of related learning tasks. While, in practice, the number of
related tasks available is often small, most of the existing approaches assume an abundance
of tasks; making them unrealistic and prone to overfitting. A central question in the
meta-learning literature is how to regularize to ensure generalization to unseen tasks. In
this work, we provide a theoretical analysis using the PAC-Bayesian theory and present a
generalization bound for meta-learning, which was first derived by Rothfuss et al. (2021a).
Crucially, the bound allows us to derive the closed form of the optimal hyper-posterior,
referred to as PACOH, which leads to the best performance guarantees. We provide a
theoretical analysis and empirical case study under which conditions and to what extent
these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
The closed-form PACOH inspires a practical meta-learning approach that avoids the reliance
on bi-level optimization, giving rise to a stochastic optimization problem that is amenable to
standard variational methods that scale well. Our experiments show that, when instantiating
the PACOH with Gaussian processes and Bayesian Neural Networks models, the resulting
methods are more scalable, and yield state-of-the-art performance, both in terms of predictive
accuracy and the quality of uncertainty estimates.

Keywords: Meta-Learning, Transfer-Learning, PAC-Bayes, Learning Theory, Bayesian
Neural Networks

1. Introduction

Learning new concepts and skills from a small number of examples as well as adapting them
quickly in the face of changing circumstances is a key aspect of human intelligence. While
modern machine learning systems are remarkably successful in learning complex patterns
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from vast quantities of data, they lack such adaptive capabilities under limited data. As
a result, one often has to train our machine-learning models from scratch even though we
have previously solved similar learning problems/tasks.

Meta-Learning (Thrun and Pratt, 1998; Schmidhuber, 1987) has emerged as a promising
avenue towards alleviating this issue by facilitating transfer across learning tasks, allowing us
to harness related data sources or previous experience. In particular, meta-learning aims to
do so by extracting prior knowledge (i.e., inductive bias) from a set of learning tasks, so that
inference on a new learning task of interest is accelerated. For example, meta-learning can be
instrumental in making medical diagnoses based on imaging data such as MRI or X-ray scans
where obtaining large-scale, disease-specific datasets is challenging. Here, meta-learning can
be used to learn the statistical properties of the medical imaging domain from a variety of
datasets. The gained knowledge about the problem domain is typically represented as some
form of prior. Such a domain-specific prior would then enable us to train reliable prediction
models for new diagnoses with much less data.

The majority of existing meta-learning approaches rely on settings with an abundance of
related tasks/datasets that are available for meta-learning (e.g., Finn et al., 2017; Garnelo
et al., 2018). However, in most practical settings, the number of tasks that are available for
meta-learning is small. In such settings, we face the issue of overfitting on the meta-level,
i.e., overfitting to the tasks used during the meta-learning stage (cf. Qin et al., 2018; Yin
et al., 2020). This would impair our learning performance on yet unseen target tasks. Thus,
a key question is, how to regularize meta-learning so that it does not overfit and generalizes
well to unseen tasks.

PAC-Bayesian learning theory gives us a rigorous framework for reasoning about the
generalization of learners (McAllester, 1999). However, initial PAC-Bayesian analyses of
meta-learning (Pentina and Lampert, 2014; Amit and Meir, 2018) only consider bounded loss
functions, which excludes important applications such as regression or probabilistic inference,
where losses are typically unbounded. More importantly, their generalization bounds involve
PAC-Bayesian posterior distributions for each task as well as a hyper-posterior—a distribution
over meta-learning hypotheses. Obtaining each posterior in itself is a challenging stochastic
optimization problem whose solution, in turn, depends on the hyper-posterior. Hence, the
resulting meta-learning approaches that minimize the corresponding generalization bounds
rely on solving a challenging bi-level optimization problem. This makes them computationally
much more expensive and unstable than standard meta-learning approaches.

This manuscript constitutes a significantly extended version of Rothfuss et al. (2021a)
that aims to address the above-mentioned issues. First, we derive a PAC-Bayesian bound for
meta-learning that also holds for unbounded loss functions. Hence, the corresponding learning
guarantees apply to a much larger set of problems. For Bayesian learners, we further tighten
our PAC-Bayesian bounds, relating them directly to the generalized marginal log-likelihoods
of the Bayesian model instead of the posteriors. This allows us to avoid the difficult bi-
level optimization. Going one step further, we present the PAC-optimal hyper-posterior
(PACOH)—the closed form of the PAC-Bayesian meta-learning problem. In particular, the
PACOH minimizes the upper bounds on the generalization error of meta-learning. Thus, it
promises strong performance guarantees and comes with principled meta-level regularization
which alleviates the aforementioned problem of overfitting. Importantly, the PACOH can
be approximated using standard variational methods (Blei et al., 2017). This gives rise
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to a range of scalable meta-learning algorithms which we explain and compare in depth.
Furthermore, we analyze and discuss the improvement of meta-learning over per-task learning
within the PAC-Bayesian framework. From this, we gain useful insights about factors that
determine how much we can benefit from meta-learning. In a detailed case study on linear
and logistic regression, we validate the tightness of our meta-learning bounds and empirically
compare them to per-task learning bounds.

In our experiments, which are an extension of those in Rothfuss et al. (2021a), we
instantiate our framework with Gaussian Process (GP) and Bayesian Neural Network (BNN)
models and empirically compare different methods for approximating the hyper-posterior.
Across several regression and classification environments, our proposed approach achieves
state-of-the-art predictive accuracy, while also improving the calibration of the uncertainty
estimates. Moreover, we demonstrate that, through its principled regularization on the
meta-level, PACOH effectively alleviates the problem of overfitting on the meta-level. This
allows us to successfully extract inductive bias from as little as five tasks while reliably
reasoning about the learner’s epistemic uncertainty. Thanks to these properties, PACOH
can also be employed in a broad range of sequential decision problems, which we showcase
through a real-world Bayesian optimization task concerning the development of vaccines.
The promising experimental results suggest that many other challenging real-world problems
such as molecular biology or medical imaging may benefit from our approach as well.

2. Related work

In this section, we review the relevant literature and its connections to our work. First, we
discuss the field of meta-learning followed by a second subsection on learning theory. Third, we
draw connections to kernel and multi-task learning, as well as hierarchical Bayesian methods.
Finally, we discuss how this paper relates to Rothfuss et al. (2021a) and follow-up work.

2.1 Meta-Learning

Meta-learning aims to extract inductive bias from a set of related tasks so that inference
on a new learning task is accelerated (Schmidhuber, 1987; Thrun and Pratt, 1998). For
instance, a popular approach is to learn an embedding space shared across tasks (Baxter,
2000; Vinyals et al., 2016; Snell et al., 2017; Goldblum et al., 2020; Xu et al., 2020). Another
class of meta-learning methods learns to update the model parameters (Bengio et al., 1991;
Hochreiter et al., 2001; Andrychowicz et al., 2016; Ravi and Larochelle, 2017; Chen et al.,
2017). Going one step further, Santoro et al. (2016); Mishra et al. (2018); Kim et al. (2019)
train a recurrent or attention-based model to learn the entire learning and inference process.
An alternative popular approach is to learn the initialization of a neural network so it
can be quickly adapted to new tasks (Finn et al., 2017; Li et al., 2017; Nichol et al., 2018;
Rothfuss et al., 2019).

Recent methods also use probabilistic modeling adaptation to enable uncertainty quan-
tification (Yoon et al., 2018; Finn et al., 2018; Garnelo et al., 2018; Kim et al., 2019). Such
approaches partially or fully amortize the training/inference on a target task which is prone
to failure cases and unpredictable behavior. In contrast, our approach learns a prior and
relies on standard methods for (PAC-)Bayesian inference on the target task.
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Although the above-mentioned approaches are all able to learn complex inference patterns,
they rely on the abundance of meta-training tasks and fall short of providing performance
guarantees. The issue of over-fitting on the meta-level has previously been noted (Qin et al.,
2018; Fortuin and Rätsch, 2019; Yin et al., 2020). However, it still lacks a rigorous formal
analysis under realistic assumptions (e.g., unbounded loss functions). Addressing this short-
coming, we study the generalization properties of meta-learners within the PAC-Bayesian
framework and, based on that, contribute a novel meta-learning approach with principled
meta-level regularization.

2.2 Learning Theory

Our work builds on PAC-Bayesian learning theory, a framework for deriving generalization
bounds for randomized predictors (McAllester, 1999; Seeger, 2002; Maurer, 2004; Catoni,
2007; Alquier, 2008; Germain et al., 2016; Alquier et al., 2016). Such bounds typically
require that a prior distribution over hypotheses is given exogenously. Here, we refer to the
PAC-Bayesian prior which differs from Bayesian priors insofar that it does not have to reflect
the data-generating process. The prior has considerable influence on the tightness of PAC-
Bayesian bounds. Hence, a range of works study distribution-dependent (Lever et al., 2013;
Oneto et al., 2016; Rivasplata et al., 2018) and data-dependent priors (Parrado-Hernandez
et al., 2012; Dziugaite and Roy, 2018; Dziugaite et al., 2021; Pérez-Ortiz et al., 2021).

In this paper, we also study a setting where the prior is acquired in a data-driven manner.
However, while data-dependent priors are typcially adjusted to the current learning task, we
consider priors that are meta-learned from a set of related learning tasks. In that, we build
on previous work that studies meta-learning in the PAC-Bayesian framework (Pentina and
Lampert, 2014; Amit and Meir, 2018; Farid and Majumdar, 2021; Liu et al., 2021). However,
their PAC-Bayesian generalization bounds for meta-learning only consider bounded loss
functions. More importantly, they are hard to optimize as they leave both the hyper-posterior
and posterior unspecified, leading to difficult bi-level optimization problems. In contrast,
our bounds also hold for unbounded losses and yield a tractable meta-learning objective
without the reliance on bi-level optimization.

Ding et al. (2021) tailor our bounds (originally introduced in Rothfuss et al. (2021a))
to the few-shot meta-learning setting where the number of samples per task during the
meta-learning stage is much larger than for inference on the target task. Thereby, they are
able to connect popular meta-learning approaches such as MAML (Finn et al., 2017) and
Reptile (Nichol et al., 2018) to the PAC-Bayesian meta-learning setting which is discussed
in this paper. Further extension work provides tighter bounds based on the proof techniques
of Catoni (2007). However, these bounds no longer admit a closed-form hyper-posterior
and do not translate into improved algorithms. Finally, Guan and Lu (2022) present a
generic PAC-Bayesian meta-learning bound that unifies many of the mentioned meta-learning
bounds, including ours.

Other work that theoretically studies generalization in meta-learning uses covering
number arguments to obtain uniform generalization bounds for meta-learning over families of
hypothesis spaces (Baxter, 2000; Maurer and Jaakkola, 2005). Since such approaches translate
into meta-learning hypothesis spaces, it is hard to convey probabilities and uncertainties
from the meta-level learner to the base learner. In contrast, our PAC-Bayesian approach
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learns prior distributions over learning hypotheses, thus, giving us a natural way to also
improve the uncertainty estimates of downstream predictions.

A recent line of work presents information-theoretic generalization bounds for meta-
learning (Chen et al., 2021; Jose and Simeone, 2021; Rezazadeh et al., 2021; Jose et al.,
2022). Unlike our PAC-Bayesian bounds which are high-probability worst-case guarantees
over meta-learning tasks and data, such information-theoretic arguments depend on the task
and per-task data distributions as well as the particularities of the meta-learning algorithm.

2.3 Connections to kernel learning, multi-task learning and hierarchical Bayes

Similar to the GP variant of our proposed method, Ong et al. (2005); Zien and Ong (2007);
Gönen and Alpaydın (2011); Wilson et al. (2016); Reeb et al. (2018) learn kernels. However,
while we meta-learn a kernel from multiple related tasks, such works focus on kernel learning
on a single target task. More recent works study kernel learning in the meta-learning setting
with guarantees (Cella and Pontil, 2021; Kassraie et al., 2022; Cella et al., 2022; Schur
et al., 2023), but only considered linear combinations of known base kernels, restricting its
generality.

Similar to our problem setting, multi-task learning aims to transfer knowledge across
tasks (e.g. Micchelli and Pontil, 2004; Yu et al., 2005; Bonilla et al., 2008; Parameswaran
and Weinberger, 2010; Sener and Koltun, 2018). Such methods perform transduction on the
meta-level, typically requiring a form of task similarity. In contrast, our approach performs
induction on the meta-level, trying to find a global meta-learning hypothesis, i.e., a prior that
works well for all tasks from the distribution over tasks. Finally, our setting closely resembles
hierarchical Bayesian models (e.g. Salakhutdinov et al., 2012; Grant et al., 2018; Yoon et al.,
2018; Ravi and Beatson, 2018). However, compared to such hierarchical Bayesian meta-
learners which assume exact knowledge of the data-generating process, our PAC-Bayesian
model makes much weaker assumptions about the loss function and hyper-prior. In addition,
we provide generalization guarantees which the above-mentioned works lack.

2.4 Relation to Rothfuss et al. (2021a) and follow up work.

This paper is a substantially extended version of Rothfuss et al. (2021a), now including a
theoretical comparison to single-task learning (Section 5), in-depth case studies for linear
and logistic regression (Section 6), algorithms with alternative variational approximations
(Section 7), and additional baselines in the empirical benchmark study (Section 8). Follow-up
work of Rothfuss et al. (2021b) extends the PACOH approach to stochastic processes as
priors on the meta-level (i.e., hyper-priors) and employs the resulting method towards
facilitating lifelong Bayesian Optimization. The work of Rothfuss et al. (2022) discusses
how to ensure that the corresponding meta-learned GP priors satisfy the strict calibration
requirements necessary for interactive learning under safety constraints.

3. Background: PAC-Bayesian Framework

In this section, we explain the relevant background upon which the remainder of the paper
builds. In particular, we first define basic notation and elementary concepts. Then, we briefly
discuss cumulant-generating functions and provide an introduction to PAC-Bayesian learning
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theory. Finally, we discuss the connections and differences between the PAC-Bayesian
framework and classical Bayesian inference. The expositions follow previous work such as
Baxter (2000); Alquier et al. (2016); Germain et al. (2016) .

3.1 Preliminaries and Notation

A learning task is characterized by an unknown data distribution D over a domain Z from
which we are given a set of m observations S = {zi}mi=1, zi ∼ D. By S ∼ Dm we denote the
independent and identically distributed (i.i.d.) sampling of m data points. In supervised
learning, we are typically concerned with pairs zi = (xi, yi), where xi ∈ X are observed input
features and yi ∈ Y are target labels. Given a sample S, the goal is to find a hypothesis
h ∈ H, typically a function h : X → Y in some hypothesis space H, that enables us to make
predictions for new inputs x∗ ∼ Dx. The quality of the predictions is measured by a loss
function l : H × Z → R. Accordingly, we want to minimize the expected error under the
data distribution, that is, L(h,D) = Ez∗∼D l(h, z∗). Since D is unknown, we typically use
the empirical error L̂(h, S) = 1

m

∑m
i=1 l(h, zi) instead.

In the PAC-Bayesian framework, we are concerned with randomized predictors, that
is, probability measures on the hypothesis space H. This allows us to give performance
guarantees for machine learning models that can also reason about the epistemic uncertainty
associated with their predictions. We consider two such probability measures, the prior
P ∈ M(H) and the posterior Q ∈ M(H). Here, M(H) denotes the set of all probability
measures on H. Note that in Bayesian inference, the prior and posterior are assumed
to be tightly connected through the likelihood factor, by Bayes’ theorem. In contrast,
the PAC-Bayesian framework makes fewer assumptions and only requires the prior to be
independent of the observed data, while the posterior may depend on it. For a detailed
discussion of the literature on PAC-Bayesian learning theory, we refer to Alquier (2021). In
the following, we overload the notation by also denoting their probability densities as Q and
P and assume that the Kullback-Leibler (KL) divergence DKL (Q‖P ) exists. Based on the
error definitions above, we can define the so-called Gibbs error for a randomized predictor
Q as L(Q,D) = Eh∼Q L(h,D) and its empirical counterpart as L̂(Q,S) = Eh∼Q L̂(h, S).

3.2 Cumulant-generating functions and concentration inequalities

Before we proceed to PAC-Bayesian theory, we recall the concept of the centered cumulant-
generating function (CGF) which is an essential part of many relevant concentration inequal-
ities (cf. Boucheron et al., 2013) that are employed in learning theory.

Definition 1 (Centered cumulant) For a random variable X ∈ A with distribution
ν ∈M(A) and a real-valued function f : A 7→ R, the centered cumulant-generating function
is defined as

Ψν,f(·)(t) = logEX∼ν
[
et(f(X)−E[f(X)])

]
. (1)

Centered CGFs are defined as the logarithm of the centered moment generating function
and quantify how much the random variable f(X) deviates from its mean. They are a
central tool for obtaining concentration inequalities and are particularly useful when f(X) is
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unbounded. To derive meaningful statistical concentration results for unbounded f(X), we
need to make additional assumptions to ensure that the tails of the probability distribution
of f(X) decay sufficiently fast. Such assumptions can be conveniently expressed in terms of
bounds on the CGF. We will give specific examples of such assumptions in Section 3.3.

3.3 PAC-Bayesian Bounds

In practice, the generalization error L(Q,D) is unknown. Thus, one typically resorts to
empirical risk minimization (ERM), that is, optimizing L̂(Q,S) instead. However, pure
ERM often results in overfitting on the training data set S and poor generalization to
the actual data distribution D (Shalev-Shwartz and Ben-David, 2014). Naturally, we
would like to understand factors that influence the severity of over-fitting and provide
generalization guarantees. PAC-Bayesian learning theory helps us do so by bounding the
unknown generalization error based on its empirical estimate:

Theorem 2 (Germain et al., 2016, Theorem 3) Given a data distribution D, hypothesis
space H, loss function l(h, z), prior P , confidence level δ ∈ (0, 1], and β > 0, with probability
at least 1− δ over samples S ∼ Dm, we have for all Q ∈M(H):

L(Q,D) ≤ L̂(Q,S) +
1

β

[
DKL(Q||P ) + log

1

δ
+ Ψ(β,m)

]
, (2)

with Ψ(β,m) = logEPEDm exp
[
β
(
L(h,D)− L̂(h, S)

)]
.

Note that the prior distribution P must be independent of the data S that is used to evaluate
the empirical risk L̂(Q,S). Ψ(β,m) is the centered cumulant-generating function of the
negative empirical loss L̂(h, S) under the prior P and data distribution D. Typically, β is
chosen as β =

√
m or β = m, such that the influence of the KL-complexity term DKL(Q||P )

decreases as the number of training points m increases (Germain et al., 2016). However,
note that, at the same time, increasing β comes at the cost of a larger CGF Ψ(β,m).

Since Ψ(β, n) contains L(h,D) which is unknown in practice, Theorem 2, as it is, does
not yet provide a tractable bound. However, if we make additional assumptions about the
loss function l, we can bound Ψ(β,m) and thereby obtain useful PAC-Bayesian bounds.
Common assumptions that have been used in the PAC-Bayesian literature are: Bounded
loss functions (McAllester, 1999; Maurer, 2004), assumptions on tail behavior (Alquier et al.,
2016; Germain et al., 2016), and moment assumptions (Alquier and Guedj, 2018; Holland,
2019). In the following, we briefly discuss how to bound the CGF for bounded losses and
under tail assumptions.

Bounded loss. When the loss function is bounded, that is, l : H × Z → [a, b], we can
use Hoeffding’s lemma to bound Ψ(β,m). In particular, we define the random variable
lj = L(h,D)− l(h, zj) and write

Ψ(β,m) =
m∑
j=1

logE exp

(
β

m
lj

)
≤

m∑
j=1

logE exp

(
β2(b− a)2

8m2

)
=
β2(b− a)2

8m
. (3)
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Sub-gamma loss. A loss function l is considered sub-gamma with variance factor s2 and
scale parameter c, under a prior P and data distribution D, if it can be described by a sub-
gamma random variable V := L(h,D)− l(h, z), i.e., its moment generating function is upper

bounded by that of a Gamma distribution Γ(s, c): logEh∼PEz∼D
[
eλV

]
≤ λ2s2

2(1−cλ) ∀λ ∈
(0, 1/c). For details, see Germain et al. (2016) and Boucheron et al. (2013). Note that the
sub-gamma assumption here is referred to as ”sub-gamma on the right tail” in Boucheron
et al. (2013, chapter 2.4). We can use the sub-gamma assumption with V = lj for j = 1, ...,m
and λ = β/m to bound Ψ(β,m) as follows

Ψ(β,m) =
m∑
j=1

logE exp

(
β

m
lj

)
≤ β2s2

2m(1− cβ
m )

. (4)

Sub-gaussian loss. A sub-gaussian loss function with variance s2 can be considered as
a limit case of the previously discussed sub-gamma assumption when c → 0+. As direct

consequence, Ψ(β,m) can be bounded by Ψ(β,m) ≤ β2s2

2m .

3.4 Connection between the PAC-Bayesian framework and Bayesian Inference

Typically, we are interested in a posterior distribution Q that promises us the lowest gener-
alization error L(Q,D). Thus, it is natural to use the Q ∈M(H) that minimizes the upper
bound in (2). The following lemma gives us the closed-form solution to such a minimization
problem over M(H):

Lemma 3 (Catoni, 2007) Let H be a set, g : H → R a (loss) function, Q ∈ M(H) and
P ∈M(H) probability densities over H. Then, for any β > 0 and h ∈ H,

Q∗(h) :=
P (h)e−βg(h)

Z
=

P (h)e−βg(h)

Eh∼P
[
e−βg(h)

] (5)

is the solution of arg minQ∈M(H) βEh∼Q [g(h)] +DKL(Q||P ).

This distribution is known as the Gibbs posterior Q∗ (Catoni, 2007; Lever et al., 2013). As
a direct consequence of Lemma 3, for fixed P, S,m, δ, we can write the minimizer of the
upper bound given in (2) as

Q∗(h) := arg min
Q∈M(H)

βL̂(Q,S) +DKL(Q||P ) =
P (h)e−βL̂(h,S)

Zβ(S, P )
(6)

where Zβ(S, P ) =
∫
H P (h)e−βL̂(h,S)dh is a normalization constant. In a probabilistic setting,

the loss function is the negative log-likelihood of the data, that is, l(h, zi) := − log p(zi|h).
As has been pointed out by Germain et al. (2016), in this case, the optimal Gibbs poste-

rior coincides with the generalized Bayesian posterior Q∗(h;P, S) = P (h) p(S |h)β/m

Zβ(S,P ) where

Zβ(S, P ) =
∫
H P (h)

(∏m
j=1 p(zj |h)

)β/m
dh is called the generalized marginal likelihood of

the sample S (Guedj, 2019). For β = m we recover the standard Bayesian posterior.
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Figure 1: Overview of our meta-learning framework with environment T , task distributions
Di, target task distribution D, hyper-prior P, hyper-posterior Q, target prior P , target
posterior Q, dataset S, and data points z = (x, y).

4. PAC-Bayesian Bounds for Meta-Learning

In this section, we present our main theoretical contributions. First, we describe and formalize
meta-learning in the PAC-Bayesian setting, following previous work (Pentina and Lampert,
2014; Amit and Meir, 2018). The framework is illustrated in Figure 1. Then, we present
our PAC-Bayesian meta-learning bound and discuss how, under certain instantiations, this
bound can be transformed into a useful meta-learning objective. Finally, we introduce the
PAC-optimal Hyper-Posterior, the closed-form solution of our PAC-Bayesian meta-learning
problem. The corresponding proofs can be found in Appendix A.

4.1 Meta-Learning

In the standard learning setting (cf., Section 3), we assumed that the learner has prior
knowledge in the form of a prior distribution P . When the learner experiences a task, in the
form of a dataset S, then the data are used to update the prior into a posterior Q. A base
learner Q(S, P ) can be formalized as a mapping Q : Zm ×M(H)→M(H) that takes in
a dataset and prior and outputs a posterior (Amit and Meir, 2018). Note that the number
of samples m may vary between datasets. Since we have not specified the base learner in
more detail, the posterior that it produces can in principle be independent of the prior P .
However, in practice, we typically employ base learners such as Bayesian inference, or more
generally, Gibbs learners that output a Gibbs posterior as in (5).

How well such a learner generalizes from a limited dataset S to the entire data distribution
D typically strongly depends on the prior. For instance, if the prior puts a high probability
on hypotheses h that, a priori, describe the data well, the resulting posterior typically has a
much smaller generalization error L(Q,D). Hence, choosing good priors for our learning task
is of great importance. However, doing so by hand is often extremely challenging—especially
when dealing with complex and uninterpretable hypothesis spaces such as those of neural
networks

Meta-learning offers a solution to this problem by acquiring priors P in a data-driven
manner, that is, by consulting a set of n statistically related learning tasks {τ1, ..., τn}. We
follow the setting of Baxter (2000) in which all tasks τi := (Di, Si) share the same data
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domain Z := X × Y, hypothesis space H and loss function l(h, z), but may differ in their
(unknown) data distributions Di ∈M(Z) and the number of points mi in the corresponding
dataset Si ∼ Dmii .1 To simplify our theoretical exposition, we assume that mi = m ∀i.

Hence, we can employ meta-learning whenever we have access to multiple related datasets,
e.g., MRI images labeled for different diagnoses or robotic data collected under different
configurations of the robot (e.g., different tools/payloads). Given such a set of datasets
S1, ..., Sn, the goal is to learn a prior P with which the base learner generalizes well on
learning tasks of the particular problem setting we are concerned with (e.g., MRI imaging).
For this to work, we need to assume that the datasets S1, ..., Sn are representative of
our problem setting which we will henceforth refer to as the environment. Formally, we
assume that each task τi is generated i.i.d. by hierarchical sampling: 1) by sampling a
data distribution Di ∼ T from the environment T ∈ M(M(Z)), a distribution over data
distributions, and, 2) by sampling a corresponding dataset Si ∼ Dmi . For brevity, we also
refer to the distribution of this hierarchical sampling as Th ∈ M(M(Z) × Zm) such that
(Di, Si) ∼ Th. Formally, we want to learn a prior P that leads to small generalization error
on new target tasks τ ∼ Th (Pentina and Lampert, 2014).

Popular meta-learning approaches phrase this as a bi-level optimization problem (e.g.,
Finn et al., 2017; Amit and Meir, 2018). That is, they optimize a prior towards yielding a
small empirical error when given to the base learner. This results in a bi-level optimization
since the output of the base learner is typically the solution of an optimization problem in
itself that depends on the prior.

To extend the PAC-Bayesian analysis to the meta-learning setting, we again consider
the notion of probability distributions over hypotheses. The object of learning on a task has
previously been a hypothesis h ∈ H over which one presumes a prior distribution P ∈M(H)
that is updated into a posterior Q ∈M(H) based on observed data. In meta-learning, in
turn, one presumes a hyper-prior P ∈M(M(H)), i.e., a distribution over priors P . Then,
combining the hyper-prior P with the datasets S1, ..., Sn from multiple tasks, the aim is
to output a hyper-posterior Q ∈ M(M(H)) which can then be used to draw a prior for
learning a new task. Accordingly, the hyper-posterior’s performance is measured via the
expected Gibbs error when sampling priors P from Q and applying the base learner, the
so-called transfer-error:

L(Q, T ) := EP∼QE(D,S)∼Th [L(Q(S, P ),D)] (7)

While the transfer error is unknown in practice, we can estimate it using the empirical
multi-task error

L̂(Q, S1, ..., Sn) := EP∼Q

[
1

n

n∑
i=1

L̂ (Q(Si, P ), Si)

]
. (8)

4.2 PAC-Bayesian Meta-Learning bounds

We present our first main result: An upper bound on the true transfer error L(Q, T ), in terms
of the empirical multi-task error L̂(Q, S1, ..., Sn) plus several tractable complexity terms.

1. Note that, unlike previous work on data-dependent PAC-Bayesian priors (e.g., in Parrado-Hernandez
et al., 2012; Dziugaite and Roy, 2018; Pérez-Ortiz et al., 2021), our approach uses data from different
tasks rather than from the same data distribution.
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Theorem 4 Let Q : Zm ×M(H)→M(H) be a base learner, P ∈M(M(H)) some fixed
hyper-prior and λ ≥ √n, β ≥ √m . For any confidence level δ ∈ (0, 1] the inequality

L(Q, T ) ≤ L̂(Q, S1, ..., Sn) +

(
1

λ
+

1

nβ

)
DKL(Q||P)

+
1

n

n∑
i=1

1

β
EP∼Q [DKL(Q(Si, P )||P )] + Ψ̄I(β) + ΨII(λ) +

1√
n

log
1

δ︸ ︷︷ ︸
:= C(δ,λ,β)

(9)

holds uniformly over all hyper-posteriors Q ∈ M(M(H)) with probability 1 − δ. Here,

Ψ̄I(β) is an upper bound on the CGF ΨI(β) = β
m logEPEPED

[
e
β
m

(L(h,D)−l(h,z))
]
∀ D in

the support of T , and ΨII(λ) = n
λ logEPETh

[
e
λ
n
EThEP [L(Q(P,S),D)]−L(Q(P,S),D)

]
≤ Ψ̄II(λ).

Additionally, we require that the expectation L(Q, T ) exists and is finite.

Next, we provide bounds on the CGFs ΨI(β) and ΨII(λ) under specific assumptions
about the loss. For that, we denote corresponding upper bounds as Ψ̄I(β) and Ψ̄II(λ). If
the loss function is bounded, an upper bound on the CGFs can be obtained via Hoeffding’s
inequality and follows Pentina and Lampert (2014); Amit and Meir (2018):

Corollary 5 (Bounded loss) If the loss is bounded in [a, b], Theorem 4 holds with

Ψ̄I(β) + Ψ̄II(λ) =

(
λ

8n
+

β

8m

)
(b− a)2 . (10)

as upper bounds for the CGFs.

In the case of unbounded loss functions, we require additional assumptions. Inspired by
Germain et al. (2016), but extended to the meta-learning setting, the following corollary
provides a version of Theorem 4 that holds under sub-gamma tail assumptions:

Corollary 6 (Sub-gamma loss) If the loss is sub-gamma with variance factor s2
I and

scale parameter cI under the data distributions D and hyper-prior P, and sub-gamma with
s2
II, cII under the task distribution T and hyper-prior P (see Appendix A.1, Step 3 for details)

then, Theorem 4 holds with

Ψ̄I(β) + Ψ̄II(λ) =
βs2

I

2m(1− (cIβ)/m)
+

λs2
II

2n(1− (cIIλ)/n)
. (11)

as upper bounds for the CGFs if λ < n/cII and β < m/cI.

For bounded losses, Theorem 4 together with Corollary 5 provides a structurally similar,
but tighter bound than Pentina and Lampert (2014). In particular, by using an improved
proof technique, we are able to omit a union-bound argument, allowing us to reduce the
negative influence of the confidence parameter δ. In contrast to Pentina and Lampert (2014)
and Amit and Meir (2018), our theorem together with Corollary 6 also provides guarantees
for unbounded loss functions under moment constraints (see Appendix A.1 for details). This
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makes Corollary 6 particularly relevant for probabilistic models in which the loss function
coincides with the inherently unbounded negative log-likelihood.

Common choices for λ and β are either 1) λ =
√
n, β =

√
m or 2) λ = n, β = m

(Germain et al., 2016). If we choose λ =
√
n, β =

√
m, we obtain consistent bounds, meaning

that the gap between the transfer error and the bound vanishes as n,m→∞. In the second
case (λ = n, β = m), the bound always maintains a gap since C(δ, n,m) does not converge
to zero. However, the KL-divergence terms decay faster, which can be advantageous for
smaller sample sizes. For instance, despite their lack of consistency, sub-gamma bounds with
β = m have been shown to be much tighter in simple Bayesian linear regression scenarios
with limited data (m . 104) (Germain et al., 2016).

Previous work (Pentina and Lampert, 2014; Amit and Meir, 2018) proposes meta-learning
algorithms that minimize uniform generalization bounds like the one in (9). However, such
bounds explicitly depend on the posterior Q(Si, P ) which is often intractable and the
solution of a non-trivial numerical optimization problem; e.g., variational inference in case
of Bayesian Neural Networks. Critically, the solution of such an optimization depends on P
which changes during the course of meta-learning. Thus, employing such bounds as a meta-
learning objective typically results in a challenging two-level optimization problem wherein n
posteriors Qi and the hyper-posterior Q need to be optimized in an interdependent manner.
This becomes highly intractable to solve for rich hypothesis spaces such as neural networks.

While Theorem 4 holds for any base learner Q(S, P ), we would preferably want to use
a base learner that gives us optimal performance guarantees. As discussed in Section 3, the
Gibbs posterior not only minimizes PAC-Bayesian error bounds, but also generalizes the
Bayesian posterior. Assuming a Gibbs posterior as base learner, the bound in (9) can be
re-stated in terms of the partition function Zβ(Si, P ):

Corollary 7 When using a Gibbs posterior Q∗(Si, P ) := P (h) exp(−βL̂(Si, h))/Zβ(Si, P )
as a base learner, under the assumptions of Theorem 4, we have with probability at least 1− δ

L(Q, T ) ≤ − 1

n

n∑
i=1

1

β
EP∼Q [logZβ(Si, P )] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β) . (12)

Remark 8 Among all base learners, the Gibbs posterior Q∗ achieves the smallest possible
value of the bound in (9), i.e., the RHS of (12) is smaller or equal than the RHS of (9).

Since this bound assumes a PAC-optimal base learner, it is at least as small as the bound in
(9), which holds for any, potentially sub-optimal, Q ∈M(H). More importantly, (12) avoids
the explicit dependence on Q(Si, P ), turning the previously mentioned bi-level optimization
problem into a standard stochastic optimization problem. Moreover, if we choose the negative
log-likelihood as the loss function and λ = n, β = m, then logZβ(Si, P ) coincides with the
marginal log-likelihood (MLL), which is tractable for various popular learning models, such
as GPs.

The bound in (12) consists of the expected generalized marginal log-likelihood under
the hyper-posterior Q as well as the KL-divergence term which serves as a regularizer on
the meta-level. As the number of training tasks n grows, the relative weighting of the KL
term in (12) shrinks. This is consistent with the general notion that regularization should
be strong if only little data is available and vanish asymptotically as n,m→∞.
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Finally, Corollary 7 assumes that the same loss function is used for constructing Gibbs
posterior and evaluating the bound. While this is generally the case in regression, in
classification, we may want to obtain a bound on the misclassification error while using
the negative cross-entropy loss to form a posterior. Hence, to evaluate the bound under a
different loss than used for training, we have to resort to the bound in Theorem 4 that holds
for arbitrary posteriors.

4.3 The PAC-Optimal Hyper-Posterior

A natural way to obtain a PAC-Bayesian meta-learning algorithm could be to minimize (12)
with respect to Q. However, we can go one step further and derive the closed-form solution
of the PAC-Bayesian meta-learning problem, i.e., the minimizing hyper-posterior Q∗. For
that, we exploit once more the insight that the minimizer of (12) can be written as Gibbs
distribution (cf., Lemma 3), giving us the following result:

Proposition 9 (PAC-Optimal Hyper-Posterior) Given a hyper-prior P and datasets
S1, ..., Sn, the hyper-posterior minimizing the meta-learning bound in (12) is given by

Q∗(P ) =
P(P ) exp

(
λ

nβ+λ

∑n
i=1 logZβ(Si, P )

)
ZII(S1, ..., Sn,P)

(13)

with ZII(S1, ..., Sn,P) = EP∼P
[
exp

(
λ

nβ+λ

∑n
i=1 logZβ(Si, P )

)]
.

This gives us the closed-form solution of the PAC-Bayesian meta-learning problem, that
is, the PAC-Optimal Hyper-Posterior (PACOH) Q∗(P ). In particular, we have a tractable
expression for Q∗(P ) up to the (level-II) partition function ZII, which is constant with respect
to P . We refer to Q∗ as PAC-optimal, as it provides the best possible meta-generalization
guarantees among all meta-learners in the sense of Theorem 4. These best possible guarantees
can be stated as follows:

Corollary 10 If we use the PACOH Q∗ in (13) as hyper-posterior, under the same assump-
tions as in Corollary 7, with probability ≥ 1− δ , the transfer error L(Q, T ) is bounded by

L(Q∗, T ) ≤ −
(

1

λ
+

1

nβ

)
logZII(S1, ..., Sn,P) + C(δ, λ, β) . (14)

5. Meta-Learning vs. Per-Task Learning

In this section, we aim to understand under which conditions and to what extent meta-
learning improves upon per-task learning,that is, simply using the base learner on tasks
individually without attempting to transfer knowledge across tasks.

A key challenge in this endeavor is that standard (per-task) learners typically use
different assumptions than meta-learners. For instance, Theorem 2 presumes an exogenously
given prior P ∈ M(H) whereas in meta-learning (cf. Section 4.1) we infer such prior in
an endogenous manner from a set of datasets S1, ..., Sn. Suppose we were to assume the
best possible prior for per-task learning, i.e., the prior corresponding to the environment’s
data-generating process T . In that case, no meta-learner can possibly improve upon per-task
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learning. Hence, to be instructive, we must construct our comparison in such a way that
both the meta-learner and the learner start with the same prior knowledge.

Instead of assuming a single prior P as in Theorem 2, we now assume that the per-task
learner is given a distribution over priors, i.e., a hyper-prior P . Given priors, sampled from P ,
we use the PAC-optimal base learner Q∗(S, P ) := P (h) exp(−βL̂(S)i, h))/Z(Si, P ) to infer
the posterior for a given dataset S. How well this per-task PAC-Bayesian learning approach
performs can be quantified by the expected generalization error on (unseen) tasks τ ∼ Th, i.e.,

L(P, T ) := EP∼PE(D,S)∼Th [L(Q(S, P ),D)] . (15)

Note that (15) is similar to the transfer-error in (7) except that the priors are sampled
from the hyper-prior P rather than a meta-learned hyper-posterior Q. We can bound
L(P, T ) using similar proof techniques as before to obtain the following environment-level
generalization bound for per-task learning:

Theorem 11 (Per-Task Learning Bound) Let the base learner be the Gibbs posterior
Q∗(Si, P ) := P (h) exp(−βL̂(Si, h))/Zβ(Si, P ), P some hyper-prior and λ ≥ √n, β ≥ √m.
If we perform per-task learning with priors sampled from P, then the expected generalization
error on tasks τ ∼ Th can be bounded by

L(P, T ) ≤ − 1

n

n∑
i=1

1

β
EP∼P [logZβ(Si, P )] + C(δ, λ, β) (16)

which holds with probability at least 1− δ.

Now, we can compare the generalization bounds for meta-learning with the per-task
learning bound in Theorem 11. For such a comparison to be insightful, the respective bounds
should be asymptotically consistent. Thus, we use λ =

√
n and β =

√
m henceforth in this

chapter. At first glance, we observe that, unlike Corollary 7, the per-task learning bound no
longer has a KL divergence term on the meta-level. This reflects the absence of meta-learning,
i.e., there is no more potential overfitting of the hyper-posterior to the meta-learning tasks,
which must be compensated. On the other hand, the first term in (16), i.e., the generalized
MLL, is now in expectation under the fixed hyper-prior and thus cannot be reduced. Despite
this intricate trade-off, we can derive the gap between the PACOH meta-learning bound
in Corollary 10 and the per-task learning bound in Theorem 11 in closed form:

Proposition 12 (Meta-learning vs. per-task learning) Let P be a hyper-prior and
S1, ..., Sn datasets corresponding to tasks sampled from Th. We write Z(Si, P ) short
for Zn1/2(Si, P ). The PACOH provides smaller generalization bound values than per-task
learning with the Gibbs posterior (cf., Theorem 4). In particular, the improvement is given by

∆ = (16)− (14) =
1

n

n∑
i=1

√
nm+ 1√
m

ΨP,
∑
i logZ(Si,·)

(
1√

nm+ 1

)
=

(
1√
n

+
1

n
√
m

)
logEP∼P

[
e

1√
nm+1

∑n
i=1(logZ(Si,P )−EP∼P [logZ(Si,P )])

] (17)

and is always non-negative, i.e., ∆ ≥ 0.
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Proposition 12 suggests that the PACOH meta-learning bound always improves upon the
per-task learning bound. This is natural since meta-learning with the PACOH adapts
the hyper-prior into a hyper-posterior so that the corresponding PAC-Bayesian bound is
minimized. To what extent the PACOH meta-learning bounds improves upon per-task
learning depends on the following key factors:

• Hyper-prior informativeness: The CGF in (17) can be understood as quantifying how
much information the hyper-prior already conveys about the tasks S1, ..., Sn, and thus
about the environment T . For instance, if the hyper-prior P has a high variance, i.e.,
is relatively uninformative, then the CGF will be large, suggesting that meta-learning
can significantly improve upon per-task learning. On the other extreme, if the hyper-
prior is a Dirac measure on a single prior, the CGF will be zero, suggesting that no
improvement upon per-task learning is possible. Generally, the more uninformative
the hyper-prior P, the larger the improvement ∆.

• Number of tasks n: ∆ grows with the number of tasks n. This reflects that, as the
meta-learning algorithm gets more training tasks, it can improve its hyper-posterior
and thus improve its generalization on unseen tasks. In contrast, per-task learning
benefits from additional training tasks through transfer.

• Number of samples per task m: While the CGF stays roughly constant with m2, the
pre-factor outside the CGF shrinks with m. This reflects that, the more training
samples are available per task, the smaller the relative influence of the prior on
the posteriors per task. Hence, it becomes increasingly hard for meta-learning to
significantly improve the generalization error.

In Section 6, we provide an empirical evaluation of how some of these factors affect the
improvement of meta-learning over per-task learning.

Finally, we want to emphasize that Proposition 12 compares upper bounds. Hence, it
does not formally guarantee the improvement of meta-learning over per-task learning in all
instances. However, since both bounds were obtained with the same proof techniques, we
believe that the comparison is instructive and demonstrates how meta-learning can give us
better PAC-Bayesian generalization guarantees. Moreover, the fact that the gap ∆ exhibits
the general behavior one would expect from a meta-learner (three factors above), suggests
that it is not a mere difference of vacous bounds, but rather correlates well with the actual
empirical improvement.

6. Case Study: Binary Classification and Linear Regression

In this section, we further examine the theoretical results from Sections 4 and 5 in the setting
of binary classification and linear regression. First, we numerically compare our bound
against previous meta-learning bounds. Since the previous bounds only hold for bounded
losses, we compare them in a binary classification setting where the quantity for which we
want to provide guarantees is the misclassification error. Second, we demonstrate how we can

2. logZ(S, P ) grows at the order of O(
√
n) which cancels with O(1/

√
m) shrinkage of the pre-factor in the

exponent
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apply our PAC-Bayesian analysis from Corollary 10 to unbounded loss functions such as the
negative log-likelihood. Inspired by Germain et al. (2016); Shalaeva et al. (2020), we choose
a simple linear regression setting so that we can derive bounds for cumulant-generating
functions and easily compute the bounds’ values.

6.1 Binary classification

Model. For the binary classification setting, we consider linear classifiers. Hence, the
output space Y = {0, 1} consists of the binary labels and our hypothesis space is H =
{hw(x) = 1(w>x ≤ 0) | w ∈ Rd}. The loss we aim to bound is the misclassification
error l̃(w,x, y) = 1(hw(x) 6= y) ∈ [0, 1]. As prior over weights w, we use a Gaussian
PµP ,σ2

P
(w) = N (w|µP , σ2

P ) with (meta-learnable) mean vector µP ∈ R2 and fixed variance σ2
P .

As hyper-prior we use a zero-centered Gaussian, i.e., P(µP ) = N (µP |0, σ2
P) with variance σ2

P .
To construct posteriors Qi = Q(Si, P ) over the weight vectors w, we use a logistic regression
loss l(w,x, y) = −y log g(w>x)− (1− y) log(1− g(w>x)) where g(z) := 1/(1 + exp(−z)) is
the sigmoid function. We use the corresponding Gibbs posteriors with β =

√
m:

logQi(w) = logPµP ,σ2
P

(w) +
1√
m

m∑
j=1

l(w,xij , yij) + const. (18)

Similarly, we use the PACOH in (13) with λ =
√
n as hyper-posterior. Note that, to reflect

the standard practice in classification, we use the negative log-likelihood loss for training
and the misclassification error to evaluate the bound (i.e., Theorem 4).

Data-generating process. Each task corresponds to a vector w∗i ∈ Rd with d = 2 that
is sampled i.i.d. from the task distribution T = N (µT , σ

2
T I) with µT = 10 · 1 and σT = 3 · 1.

The inputs x are sampled i.i.d. from p(x) = U([−1, 1]d) and the labels are conditionally
independent draws from the Bernoulli distribution p(y = 1|x) = g(w>x). For the evaluation
of the bounds we use m = 5 data points per task.

Comparison of the empirical bounds. We empirically evaluate the meta-learning
bounds as well as the meta-train and -test error in the classification setting with σP = 10 · 1
and σP = 20 ·1. Figure 2a displays the comparison of the bounds and errors across a varying
number of tasks n. In particular, we compare the PACOH bound in Corollary 10 with the
meta-learning bounds of Pentina and Lampert (2014) as well as Amit and Meir (2018).
In the classification setting, the misclassification loss is bounded in [0, 1]. Thus, a trivial
upper bound is 1 and any bound value larger than 1 is vacuous. For our setting with m = 5
number of data points per task, the bound of Amit and Meir (2018) is always vacuous. In
contrast, our bound, as well as the one of Pentina and Lampert (2014), provide non-trivial
bounds (< 1) for more than 30 meta-training tasks. Our PACOH bound is always tighter
than Pentina and Lampert (2014) which is due to our slightly improved proof technique.

6.2 Linear regression

6.2.1 Setting

Model. For linear regression, the hypothesis space is the family of linear predictors
H = {hw(x) = w>x | w ∈ Rd}, mapping from the input space X = Rd to the output
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(a) PAC-Bayesian Logistic Regression
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(b) PAC-Bayesian Linear Regression

Figure 2: Meta-train and meta-test error as well as corresponding worst-case bounds
(e.g., Corollary 10) for δ = 0.1, as functions of the number of meta-training tasks
n.Left: Comparison of our bound with previous PAC-Bayesian meta-learning bounds for
classification. Compared to Pentina and Lampert (2014) and Amit and Meir (2018), the
presented PACOH bound is tighter and gives non-vacuous worst-case guarantees for n > 32.
Right: Meta-level errors and bounds for PAC-Bayesian linear regression as well as the error
for single-task learning and the bound of Theorem 11. The PACOH meta-learning bound
offers meaningful worst-case guarantees for the transfer error which, as n grows, become
tighter than bounds for per-task learning.

space Y = R. Given (x, y) ∈ X × Y and the model parameters w, we consider a Gaussian
likelihood with observation variance σ2 ∈ R+, i.e., p(y|x,w) = N (y|w>x, σ2). Our loss
function, the negative log-likelihood, is l(w,x, y) = 1

2 log(2πσ2) + 1
2σ2 (y −w>x)2. As for

the classification setting, we use a Gaussian prior PµP ,σ2
P

(w) = N (w|µP , σ2
P ) with learnable

mean µP and fixed variance σ2
P and a Gaussian hyper-prior, P(µP ) = N (µP , σ

2
PI).

Data-generating process. We consider a synthetic meta-learning environment where
each task τi corresponds to a vector w∗i ∈ Rd that is sampled i.i.d. from the task distribution
T = N (µT , σ

2
T I) with µT = 1

5 ·1 and σT = 1
10 ·1. Each data point corresponding to the i-th

task is generated as follows: The input is sampled from a Gaussian x ∼ p(x) = N (0, σ2
xI)

with σ2
x = 1 and the associated output is given by y = (w∗i )

>x + ε where ε ∼ N (0, σ2
ε )

is observation noise standard deviation σε = 1
3 . Thus, we can write the conditional label

distribution as pw∗i (y|x) = N ((w∗i )
>x, σ2

ε ). Consequently, the data distribution follows as
Di = p(x) pw∗i (y|x).

6.2.2 Bounding the cumulant-generating functions for linear regression

To compute the bounds in Theorem 4 and Corollary 10, we need to bound the cumulant-
generating functions (CGFs) ΨI(β) and ΨII(γ). In the classification setting, this was
straightforward since the loss function is bounded in [0, 1] and we could use (10). However,
in the linear regression setting, the loss function is typically unbounded. In particular,
we use negative log-likelihood with an i.i.d. Gaussian likelihood function, constituting a
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generalization of the squared loss. Hence, we need to use the particularities of our data-
generating process in Section 6.2.1 to derive a bound for the corresponding CGFs. To give
an intuition, the CGFs quantify the difficulty of the learning problem: ΨI(β) quantifies
the average difficulty of the learning tasks τ1, ..., τn with respect to the prior knowledge
embedded in the two-level prior, i.e., the hierarchical model over hypotheses comprised of
the hyper-prior and prior. ΨII(β) can be understood as quantifying the difficulty of the
meta-learning environment T with respect to the hyper-prior P . We use the same prior and
hyper-prior as in the linear regression case above.

Bounding ΨI(β): First, we aim to bound ΨI(β) which is defined as

ΨI(β) =
1

nβ

n∑
i=1

m∑
j=1

logEPEPEDi
[
e
β
m
V I
ij

]
︸ ︷︷ ︸

:=ΓI
i(β/m)

=
m

nβ

n∑
i=1

ΓI
i(β/m︸︷︷︸

γ

) , (19)

wherein V I
ij = L(h,Di) − l(h, zij) = E(x,y)∼Di [l(w,x, y)] − l(w,xij , yij). Note that, when

defining Γi, we omit the index j since V I
ij , j = 1, ...,m are distributed identically, and, thus,

Γi = Γij = Γij′ . Writing γ := β/m, we show in Appendix B that the cumulant-generating
function can be bounded as follows:

ΓI
i(γ) = logEPEPEDie

γV I
ij ≤ γ2s2

i

2(1− γci)
∀γ ∈ (0, 1/ci) (20)

with s2
i = ϑi

σ2 ( 1
γ−ci)+ ci

γ , ci = d
σ2σ

2
x(σ2

P +σ2
P)+ γ

σ4dσ
2
x(σ2

P +σ2
P)ϑi− ϑi

σ2 and ϑi = σ2
x||w∗i ||2+σ2

ε .

Thus, for β =
√
m, we have that ΦI(1/

√
m) ≤ 1

n

∑n
i=1

s2i
2(
√
m−ci)

which is a monotonically

decreasing positive function of m.

Bounding ΨII(λ): As shown in Appendix A.1,

ΨII(λ) =
1

λ

n∑
i=1

logEPET
[
e
λ
n
V II
i

]
=
n

λ
logEPET

[
e
λ
n
V II
]

︸ ︷︷ ︸
ΓII(λ/n)

(21)

is defined as the sum of the cumulant generating functions of the random variable V II :=
E(D,S)∼ThEP∼P [L(Q(P, S),D)]−L(Q(P, S),D). To simplify the notation, we define κ := λ/n.

The resulting CGF ΓII(κ) is sub-gamma, i.e.,

ΓII(κ) = logET EP
[
eκV

II
]
≤ κ2s2

II

2(1− κcII)
∀κ ∈ (0, 1/cII) (22)

with cII = σ2
x
σ2 (σ2

P +σ2
T ) and s2

II = σ2
x
σ2 cII||µT ||2 +dc2

II. Thus, for λ =
√
n we have ΓII(1/

√
n) ≤

s2II
2(
√
n−cII)

, a monotonically decreasing positive function of n.

6.2.3 Empirical evaluation of the bound values

We now aim to inspect the bound values of the PACOH Q∗. First, we focus on the linear
regression setup. We generate our synthetic meta-learning environments as described in
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Figure 3: Improvement of the meta-learning bound over the per-task bound (i.e., ∆ in
Proposition 12) in response to the number of meta-training tasks n. Left: Different degrees
of misspecification of the hyper-prior mean compared to the true task distribution mean,
fixed σP = 0.4. Right: Differing hyper-prior variances, fixed µP = 0.2. The smaller the
hyper-prior informativeness, i.e., larger σP and/or larger mean misspecification ||µP − µT ||,
the bigger the improvement of meta-learning over the per-task bound.

Section 6.2.1 with d = 5 dimensional features and m = 5 data points per task. Moreover,
we set µP = 0, σ2

P = 1
4 , σ2

P = 1
25 and σ2

x = 1. Figure 2b plots the meta-train and meta-test
(transfer) error together with our PAC-Bayesian transfer error bound of Corollary 10. In
addition, we also display the test error for per-task learning and its corresponding bound
from Theorem 11. Note that the displayed bounds are worst-case bounds, i.e., hold with
high probability over the sampled tasks, whereas the plotted errors are means. The bounds
can be considered fairly tight, giving values in the value range of the generalization error
they bound. As discussed in Section 5, for a small number of tasks n, the meta-learning
bound is almost identical to the per-task learner bound. However, with growing n, it quickly
improves upon the per-task learner bound and offers much better performance guarantees
which reflect the benefits of meta-learning.

Note that the linear and logistic regression settings which we consider here are very
simplistic. The main goal of this section is to provide empirical evidence that the presented
bounds are correct and behave as expected.

6.3 Improvement of meta-learning over per-task learning bounds

Finally, we provide numerical examples of the improvement of the meta-learning over single-
task learning bounds, discussed in detail in Section 5. Again, we consider the linear regression
setting from Section 6.2.1 with d = 10 and m = 5 data points per task. In Figure 3, we
plot the difference between meta-learning and single-task learning bounds, i.e., ∆ as defined
in (17), in response to the number of tasks n. In the left sub-figure, we vary the degree of
misspecification in the hyper-prior mean relative to the true task distribution mean, i.e.,
||µP−µT ||. As one would expect, the larger the misspecification of the hyper-prior, the more
we can gain from meta-learning which is able to correct such misspecification by moving the
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hyper-posterior mean towards the true task distribution when given enough meta-training
tasks. In the right sub-figure, we set µP = µT , i.e., no misspecification, but vary the
hyper-prior standard deviation σP . Similarly, we observe that, the higher σP , the more
uninformative is the hyper-prior which leads to a bigger improvement of the meta-learning
bound over the per-task learning bound. If the variance of the hyper-prior is high, then
the meta-learner already provably improves over the single task learner with only 10–20
meta-training tasks. On the other hand, if the hyper-prior is equivalent to the true task
distribution, i.e., P ≡ T , then it is impossible to improve upon P by meta-learning a better Q.

7. Meta-Learning Algorithms based on the PACOH

After having introduced the closed-form solution of the PAC-Bayesian meta-learning problem
in Section 4, we now discuss how to translate the PACOH into a practical meta-learning
algorithm when employing GPs and BNNs as base learners. For that, we assume a parametric
family of priors {Pφ|φ ∈ Φ} wherein priors Pφ are governed by a parameter vector φ ∈ Φ.
Accordingly, we can express the hyper-posterior and hyper-prior as distributions over prior
parameters, i.e., Q(φ) ∈ M(Φ) and P(φ) ∈ M(Φ) respectively. Later, we will discuss in
further detail our particular choice Pφ for GPs and BNNs, respectively.

7.1 Approximating the PACOH

Given the hyper-prior and generalized marginal log-likelihood (MLL) function logZβ(Si, P ),
we can compute the PACOH Q∗ up to the normalization constant ZII. Such setup lends
itself to classical approximate inference methods (Blei et al., 2017; Liu and Wang, 2016).
Thus, Proposition 9 yields an entire class of possible meta-learning methods. We now briefly
discuss three tractable approximations of Q∗ which we evaluate empirically in Section 8. The
corresponding approximate distributions and approximate inference updates are summarized
in Table 1.

Maximum A Posteriori (MAP). This is the simplest and most crude method, which ap-
proximates Q∗(φ) by a Dirac measure δP (φ∗) at the mode of Q∗, i.e., φ∗ = arg maxφ∈ΦQ∗(φ).

Variational Inference (VI). In the case of VI (Blei et al., 2017), we restrict the space
of considered hyper-posteriors to a parametric variational family F = {Q̃υ|υ ∈ U} ⊂M(Φ)
wherein the variational posterior Q̃υ is governed by a parameter vector υ ∈ U . Then, we
aim to find a Q̃υ that minimizes the KL-divergence to Q∗, that is,

υ∗ = arg min
υ∈U

DKL(Q̃υ||Q∗) . (23)

In fact, it can be shown that the minimizing variational distribution Q̃υ of (23) is the same
as the minimizer of the bound in (12) under the constraint Q ∈ F (see Appendix A.9 for
proof). Consequently, we can directly use (12) as an optimization objective.

Stein Variational Gradient Descent (SVGD). SVGD (Liu and Wang, 2016) approx-
imates Q∗ as a set of K particles, that is, Q̃ = 1

K

∑K
k=1 δ(φk). Initially, we sample K

particles φk ∼ P from the hyper-prior. For notational brevity, we stack the particles into a
K × dim(φ) matrix φ := [φ1, ..., φK ]>. Then, the method iteratively transports the set of
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Approximating Distribution Init Approx Inference

MAP Q̃ = δ(φ̃) φ̃ ∼ P

SVGD Q̃ = 1
K

∑K
k=1 δ(φ̃k), φ̃ =

[
φ̃1, ..., φ̃K

]>
φ̃k ∼ P, k = 1, ...,K

VI Q̃υ = N (µQ, σ
2
Q), υ = (µQ, σ

2
Q) υ = (µP , σ

2
P)

Sample Prior Params Approx Inference Update

MAP φ← φ̃ φ̃← φ̃+ η∇φ logQ∗(φ̃)

SVGD φk ← φ̃k φ̃← φ̃ + η K ∇φlogQ̃∗ +∇
φ
K

VI φk ← µQ + σQ � ε, ε ∼ N (0, I) υ ← υ + η
K

∑K
k=1∇υ

[
logQ∗(φk)− log Q̃υ(φk)

]
Table 1: Summary of approximations of the PACOH Q∗

particles to match Q∗, by applying a form of functional gradient descent that minimizes
DKL(Q̃|Q∗) in the reproducing kernel Hilbert space induced by a kernel function k(·, ·). In
particular, in each iteration, we update the particle matrix using the SVGD update rule:

φ← φ + η K ∇φlnQ∗ +∇φK (24)

where ∇φlnQ∗ := [∇φ1 logQ∗(φ1), ...,∇φK logQ∗(φK)]> denotes the matrix of stacked score
gradients, K := [k(φk, φk′)]k,k′ the kernel matrix induced by a kernel function k(·, ·) and η
the step size for the SVGD updates.

7.2 Meta-Learning Gaussian Process Priors

Setup. In GP regression, each data point corresponds to a tuple zi,j = (xi,j , yi,j). For the
i-th dataset, we write Si = (Xi,yi), where Xi = (xi,1, ..., xi,mi)

> and yi = (yi,1, ..., yi,mi)
>.

GPs are a Bayesian method in which the prior Pφ(h) = GP (h|mφ(x), kφ(x, x′)) is specified
by a kernel kφ : X × X → R and a mean function mφ : X → R.

Since we are interested in meta-learning such prior, we define the mean and kernel
function both as parametric functions. Similar to Wilson et al. (2016) and Fortuin and
Rätsch (2019), we instantiate mφ and kφ as neural networks, and meta-learn the parameter
vector φ. To ensure the positive-definiteness of the kernel, we use the neural network as
feature map ϕφ(x) on top of which we apply a squared exponential (SE) kernel. Accordingly,
the parametric kernel reads as kφ(x, x′) = 1

2 exp
(
−||ϕφ(x)− ϕφ(x′)||22

)
.

As typical for GPs, we assume a Gaussian likelihood p(y|h) = N (y;h(x), σ2I) where σ2

is observation noise variance. Moreover, we choose λ = n, β = m, so that the closed-form
GP posterior coincides with the PAC-optimal posterior Q∗. In this case, the empirical loss
under the GP posterior Q∗ coincides with the negative log-likelihood of regression targets yi,
that is, L̂(Q∗, Si) = − 1

mi
log p(yi|Xi). Finally, we use a Gaussian hyper-prior P = N (0, σ2

PI)
over the GP prior parameters φ.

Algorithm. Depending on which approximate inference method from Section 7.1 we
choose, the resulting meta-learning algorithms differ slightly. For this reason, we describe
the algorithm in terms of generic operations that are specified in Table 1.
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Algorithm 1 PACOH-GP - Approximate inference of Q∗
Input: hyper-prior P, datasets S1, ..., Sn, step size η
Q̃ ← Init Approx Inference()
while not converged do
{φ1, ..., φK} ← Sample Prior Params(Q̃)
for k = 1, ...,K do

for i = 1, ..., n do
logZmi(Si, Pφk)← log p(yi|Xi, φk)

end for
∇φk logQ∗ ← ∇φk logP +

∑n
i=1

1
mi+1∇φk logZmi(Si, Pφk)

end for
Q̃ ← Approx Inference Update(Q̃,∇φk logQ∗, η)

end while
Output: Approximate hyper-posterior Q̃

First, we initialize the approximate hyper-posterior Q̃. Then, in each iteration, we sample
K prior parameters3 φk from Q̃, and compute the corresponding score gradients of Q∗,

∇φk logQ∗(φk) = ∇φk logP(φk) +

n∑
i=1

1

mi + 1
∇φk logZmi(Si, Pφk) . (25)

In our setup, logZmi(Si, Pφ) = log p(yi|Xi, φ) is the MLL of the GP which can be computed
in closed form, in particular,

log p(y|X, φ) =− 1

2
(y −mX,φ))> K̃−1

X,φ (y −mX,φ)− 1

2
log |K̃X,φ| −

mi

2
log 2π , (26)

where K̃X,φ = KX,φ + σ2I, with the kernel matrix KX,φ = (kφ(xl, xk))mil,k=1 and mean vector

mX,φ = (mφ(x1), ...,mφ(xmi))
>. Based on the score gradients ∇φk logQ∗(φk), we can then

update the approximate hyper-posterior Q̃, using the corresponding approximate inference
method. Algorithm 1 summarizes the resulting generic meta-learning procedure for GPs
which we henceforth refer to as PACOH-GP.

7.3 Meta-Learning Bayesian Neural Network Priors

Setup. Let hθ : X → Y be a function parametrized by a neural network (NN) with
weights θ ∈ Θ. Using the NN mapping, we define a conditional distribution p(y|x, θ).
For regression, we may set p(y|x, θ) = N (y|hθ(x), σ2), where σ2 is the observation noise
variance. We treat log σ as a learnable parameter similar to the neural network weights θ
such that a hypothesis coincides with a tuple h = (θ, log σ). For classification, we choose
p(y|x, θ) = Categorical(softmax(hθ(x))). Our loss function is the negative log-likelihood
l(θ, z) = − log p(y|x, θ).

Next, we define a family of priors {Pφ : φ ∈ Φ} over the NN parameters θ. For compu-
tational convenience, we employ diagonal Gaussian priors, that is, Pφl = N (µPk , diag(σ2

Pk
))

3. Note that for MAP inference, we always have K = 1.
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with φ := (µPk , log σPk). Note that we represent σPk in the log-space to avoid additional
positivity constraints. In fact, any parametric distribution that supports re-parametrized
sampling and has a tractable log-density (e.g., normalizing flows (cf., Rezende and Mohamed,
2015)) could be used. Moreover, we use a zero-centered, spherical Gaussian hyper-prior
P := N (0, σ2

PI) over the prior parameters φ.

Approximating the marginal log-likelihood. Unlike for GPs, the (generalized) MLL

logZβ(Si, Pφ) = logEθ∼Pφe−βiL̂(θ,Si) is intractable for BNNs. Estimating and optimiz-
ing logZ(Si, Pφ) is not only challenging due to the high-dimensional expectation over Θ

but also due to numerical instabilities inherent in computing e−βiL̂(θ,Si) when mi and,
thus, βi is large. Aiming to overcome these issues, we compute numerically stable Monte
Carlo estimates of ∇φ logZβi(Si, Pφk) by combining the LogSumExp (LSE) with the re-
parametrization trick (Kingma and Welling, 2014). In particular, we draw L samples
θl := f(φk, εl) = µPk + σPk � εl, εl ∼ N(0, I) and compute the generalized MLL estimate as

log Ẑβi(Si, Pφ) := LSELl=1

(
−βiL̂(θl, Si)

)
− logL . (27)

The corresponding gradients follow a softmax-weighted average of score gradients:

∇φ log Ẑβi(Si, Pφ) = −βi
L∑
l=1

e−βiL̂(θl,Si)∑L
l=1 e

−βiL̂(θl,Si)︸ ︷︷ ︸
softmax

∇φf(φ, εl)
>︸ ︷︷ ︸

re-param.
Jacobian

∇θlL̂(θl, Si)︸ ︷︷ ︸
score

(28)

Note that log Ẑ(Si, Pφ) is a consistent but not an unbiased estimator of logZ(Si, Pφ). The
following proposition ensures us that we still minimize a valid upper bound:

Proposition 13 In expectation, replacing logZ(Si, Pφ) in (12) with the Monte Carlo es-

timate log Ẑ(Si, Pφ) still yields a valid upper bound of the transfer error L(Q, T ) for any
L ∈ N, i.e.,

L(Q, T ) ≤ (12) ≤− 1

n

n∑
i=1

1

β
EQ
[
Eθ1,...,θL∼P

[
log Ẑβ(Si, Pφ)

]]
+

(
1

λ
+

1

nβ

)
DKL(Q||P)+C .

Moreover, by the law of large numbers, we have that log Ẑ(Si, P )
a.s.−−→ logZ(Si, P ) as L→∞,

that is, for large sample sizes L, we recover the original PAC-Bayesian bound in (12). In the
opposite edge case, i.e., L = 1, the boundaries between tasks vanish meaning that the meta-
training data {S1, ..., Sn} is treated as if it were one large dataset

⋃
i Si (see Appendix D.3

for further discussion). As an alternative to our proposed MLL estimator in (27), we could
use a Russian roulette estimator (Kahn, 1955; Luo et al., 2020) which would allows us to
construct unbiased Monte Carlo estimates of the generalized MLL. However, albeit unbiased,
Russian roulette estimators suffer from high variance and are hard to implement efficiently in
parallel (Pharr et al., 2016). Thus, we found (27) to be the more favorable choice in practice.

Algorithm. Algorithm 2 summarizes the proposed meta-learning method, henceforth
referred to as PACOH-NN. It follows similar steps as PACOH-GP but uses the proposed
generalized MLL estimator log Ẑβi(Si, Pθ) instead of a closed-form solution. To estimate the
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Algorithm 2 PACOH-NN - Approximate inference of Q∗
Input: hyper-prior P, datasets S1, ..., Sn, step size η
Q̃ ← Init Approx Inference()
while not converged do
{φ1, ..., φK} ← Sample Prior Params(Q̃)
for k = 1, ...,K do
{θ1, ..., θL} ∼ Pφk // sample NN-parameters from prior
for i = 1, ..., n do

log Ẑ(Si, Pφk)← LSELl=1

(
−βiL̂(θl, Si)

)
− logL // estimate generalized MLL

end for
∇φk log Q̂∗(φk)← ∇φk logP(φk) +

∑n
i=1

λ
nβi+λ

∇φk log Ẑβi(Si, Pφk) // compute score
end for
Q̃ ← Approx Inference Update(Q̃,∇φk logQ∗(φk), η)

end while
Output: Approximate hyper-posterior Q̃

hyper-posterior score ∇φk′ log Q̂∗(φk′) = ∇φk logP(φk)+
∑n

i=1
λ

nβi+λ
∇φk log Ẑβi(Si, Pφk), we

can use mini-batching over tasks, only estimating the generalized MLL for a random subset
of nbs ≤ n tasks and adjusting the (truncated) sum of MLL gradients by the factor n

nbs
.

If we use the mini-batched version in conjunction with the SVGD approximate infer-
ence, the resulting algorithm (see Algorithm 3 in Appendix D) maintains K particles to
approximate the hyper-posterior, and in each forward step samples L NN-parameters (of
dimensionaly |Θ|) per prior particle that are deployed on a mini-batch of nbs tasks to estimate
the score of Q∗. As a result, the total space complexity is on the order of O(|Θ|K + L) and
the computational complexity of the algorithm for a single iteration is O(K2 +KLnbs).

A key advantage of PACOH-NN over previous methods for meta-learning BNN priors
(e.g. Pentina and Lampert, 2014; Amit and Meir, 2018) is that it turns the previously nested
optimization problem into a much simpler stochastic optimization problem. This makes
meta-learning not only much more stable but also more scalable. In particular, we do not
need to explicitly compute the task posteriors Qi and can use mini-batching over tasks.
As a result, the space and compute complexity do not depend on the number of tasks n.
In contrast, MLAP (Amit and Meir, 2018) has a memory footprint of O(|Θ|n) making
meta-learning prohibitive for more than 50 tasks.

A central feature of PACOH-NN is that is comes with principled meta-level regularization
in form of the hyper-prior P , which combats overfitting to the meta-training tasks (Qin et al.,
2018). As we show in our experiments, this allows us to successfully perform meta-learning
with as little as 5 tasks. This is unlike the majority of popular meta-learners (Finn et al.,
2017; Yoon et al., 2018; Garnelo et al., 2018, e.g.), which rely on a large number of tasks
to generalize well on the meta-level (Qin et al., 2018; Rothfuss et al., 2021a).
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8. Experiments

We now empirically evaluate the PACOH algorithms introduced in Section 7. In particular,
we evaluate the PACOH approach with GPs and NNs as base learners, i.e., PACOH-GP
and PACOH-NN, as well as the different variational approximations of Q, i.e., MAP, SVGD
and, in case of PACOH-GP, also VI. Comparing them to existing meta-learning approaches
on various regression and classification environments, we demonstrate that our PACOH -
based methods: (i) outperform previous meta-learning algorithms in predictive accuracy,
(ii) improve the calibration of uncertainty estimates, (iii) are much more scalable than pre-
vious PAC-Bayesian meta-learners, and (iv) effectively combat meta-overfitting. Finally, we
showcase how meta-learned PACOH-NN priors can be harnessed in a real-world sequential
decision making task concerning peptide-based vaccine development.

8.1 Experiment Setup

Baselines. We use a Vanilla GP with squared exponential kernel and a Vanilla BNN
with a zero-centered, spherical Gaussian prior and SVGD posterior inference (Liu and Wang,
2016) as baselines. Moreover, we compare our proposed approach against various popular
meta-learning algorithms, including model-agnostic meta-learning (MAML) (Finn et al.,
2017), Bayesian MAML (BMAML) (Yoon et al., 2018) and the PAC-Bayesian approach
by Amit and Meir (2018) (MLAP). For the regression task experiments, we also compare
with two versions of MR-MAML (Yin et al., 2020) which add an information bottleneck
regularization to the NN weights (W) or the activations (A) to prevent meta-overfitting
in MAML. Additionally, we consider neural processes (NPs) (Garnelo et al., 2018) and a
GP with neural-network-based mean and kernel function, meta-learned by maximizing the
marginal log-likelihood (MLL-GP) (Fortuin and Rätsch, 2019). Among all, MLAP is the
most similar to our approach as it is neural-network-based and minimizes PAC-Bayesian
bounds on the transfer error. However, unlike PACOH-NN, it relies on nested optimization
of the task posteriors Qi and the hyper-posterior Q. MLL-GP is similar to PACOH-GP
insofar that it also maximizes the sum of marginal log-likelihoods logZm(Si, Pφ) across tasks.
However, unlike PACOH-GP, it lacks any form of meta-level regularization.

Regression environments. We consider two synthetic and four real-world meta-learning
environments for regression. As synthetic environments, we employ Sinusoids of varying
amplitude, phase, and slope as well as a 2-dimensional mixture of Cauchy distributions
plus random GP functions. As real-world environments, we use datasets corresponding to
different calibration sessions of the Swiss Free Electron Laser (SwissFEL) (Milne et al., 2017;
Kirschner et al., 2019b), as well as data from the PhysioNet 2012 challenge, which consists
of time series of electronic health measurements from intensive care patients (Silva et al.,
2012), in particular, the Glasgow Coma Scale (GCS ) and the hematocrit value (HCT ). Here,
the different tasks correspond to different patients. Moreover, we employ the Intel Berkeley
Research Lab temperature sensor dataset (Berkeley-Sensor) (Madden, 2004) where the tasks
require auto-regressive prediction of temperature measurements corresponding to sensors
installed in different locations of the building. Further details can be found in Appendix E.1.

Classification environments. We conduct experiments with the multi-task classification
environment Omniglot (Lake et al., 2015), consisting of handwritten letters across 50 alpha-
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BNN with sperical, zero-
mean Gaussian prior 

BNN with meta-
learned prior 

Figure 4: BNN posterior predictions with (top) standard Gaussian prior vs. (bottom) meta-
learned prior. Meta-learning conducted on the Sinusoids environment. The meta-learned
PACOH-NN-SVGD prior conveys useful inductive bias, improving the BNN predictions.

bets. Unlike previous work (e.g., Finn et al., 2017), we do not perform data augmentation and
do not recombine letters of different alphabets. This preserves the data’s original structure,
where each task corresponds to classifying letters within an alphabet. In particular, one
task corresponds to 5-way 5-shot classification of letters within an alphabet. This leaves us
with much fewer tasks (30 train, 20 test tasks), making the environment more challenging
and interesting for uncertainty quantification. This also allows us to include MLAP in the
experiment, which hardly scales to more than 50 tasks.

8.2 Experiment Results

Qualitative example. Figure 4 illustrates BNN predictions on a sinusoidal regression
task with a standard Gaussian prior as well as a PACOH-NN prior meta-learned with 20
tasks from the Sinusoids environment. We observe that the standard Gaussian prior provides
poor inductive bias, not only leading to bad mean predictions away from the test points but
also to poor 95% confidence intervals (blue shaded areas). In contrast, the meta-learned
PACOH-NN prior encodes useful inductive bias towards sinusoidal function shapes, leading
to better predictions and uncertainty estimates, even with minimal training data.

PACOH improves the predictive accuracy. Using the meta-learning environments
and baseline methods that we introduced in Section 8.1, we perform a comprehensive bench-
mark study. Table 2 reports the results on the regression environments in terms of the
root mean squared error (RMSE) on unseen test tasks. Table 4 reports the classification
accuracy for the Omniglot classification environments. For the image classification problems,
we only consider the neural network-based methods, since GPs generally perform poorly
on high-dimensional problems. When comparing the different variational approximations of
the PACOH, the SVGD approximation gives the lowest meta-test errors in the majority of
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Cauchy SwissFel Physionet-GCS Physionet-HCT Berkeley-Sensor

Vanilla GP 0.275± 0.000 0.876± 0.000 2.240± 0.000 2.768± 0.000 0.276± 0.000
Vanilla BNN (Liu and Wang, 2016) 0.327± 0.008 0.529± 0.022 2.664± 0.274 3.938± 0.869 0.109± 0.004

MLL-GP (Fortuin and Rätsch, 2019) 0.216± 0.003 0.974± 0.093 1.654± 0.094 2.634± 0.144 0.058± 0.002
MLAP (Amit and Meir, 2018) 0.219± 0.004 0.486± 0.026 2.009± 0.248 2.470± 0.039 0.050± 0.005
MAML (Finn et al., 2017) 0.219± 0.004 0.730± 0.057 1.895± 0.141 2.413± 0.113 0.045± 0.003
MR-MAML (W) (Yin et al., 2020) 0.227± 0.002 0.483± 0.021 1.643± 0.174 2.306± 0.162 0.059± 0.004
MR-MAML (A) (Yin et al., 2020) 0.228± 0.003 0.555± 0.045 1.556± 0.179 2.275± 0.155 0.066± 0.006
BMAML (Yoon et al., 2018) 0.225± 0.004 0.577± 0.044 1.894± 0.062 2.500± 0.002 0.073± 0.014
NP (Garnelo et al., 2018) 0.224± 0.008 0.471± 0.053 2.056± 0.209 2.594± 0.107 0.079± 0.007

PACOH-GP-MAP (ours) 0.213± 0.003 0.486± 0.055 1.492± 0.091 2.574± 0.058 0.056± 0.001
PACOH-GP-SVGD (ours) 0.209± 0.008 0.376± 0.024 1.498± 0.081 2.361± 0.047 0.065± 0.005
PACOH-GP-VI (ours) 0.218± 0.003 0.387± 0.019 1.472± 0.012 2.695± 0.040 0.095± 0.010

PACOH-NN-MAP (ours) 0.202± 0.003 0.375± 0.004 1.564± 0.200 2.480± 0.042 0.047± 0.001
PACOH-NN-SVGD (ours) 0.195± 0.001 0.372± 0.002 1.561± 0.061 2.405± 0.017 0.043± 0.001

Table 2: Comparison of standard and meta-learning algorithms in terms of test RMSE in
5 meta-learning environments for regression. We report the mean and standard deviation
across 5 random seeds. PACOH achieves the best performance across the environments.

Cauchy SwissFel Physionet-GCS Physionet-HCT Berkeley-Sensor

Vanilla GP 0.087± 0.000 0.135± 0.000 0.268± 0.000 0.277± 0.000 0.119± 0.000
Vanilla BNN (Liu and Wang, 2016) 0.055± 0.006 0.085± 0.008 0.277± 0.013 0.307± 0.009 0.179± 0.002

MLL-GP (Fortuin and Rätsch, 2019) 0.059± 0.003 0.096± 0.009 0.277± 0.009 0.305± 0.014 0.153± 0.007
MLAP (Amit and Meir, 2018) 0.086± 0.015 0.090± 0.021 0.343± 0.017 0.344± 0.016 0.108± 0.024
BMAML (Yoon et al., 2018) 0.061± 0.007 0.115± 0.036 0.279± 0.010 0.423± 0.106 0.161± 0.013
NP (Garnelo et al., 2018) 0.057± 0.009 0.131± 0.056 0.299± 0.012 0.319± 0.004 0.210± 0.007

PACOH-GP-MAP (ours) 0.058± 0.006 0.055± 0.005 0.267± 0.010 0.298± 0.003 0.155± 0.004
PACOH-GP-SVGD (ours) 0.056± 0.004 0.038± 0.006 0.262± 0.004 0.296± 0.003 0.098± 0.005
PACOH-GP-VI (ours) 0.057± 0.002 0.046± 0.016 0.265± 0.002 0.311± 0.005 0.089± 0.003

PACOH-NN-MAP (ours) 0.051± 0.002 0.031± 0.003 0.268± 0.015 0.306± 0.003 0.063± 0.016
PACOH-NN-SVGD (ours) 0.046± 0.001 0.027± 0.003 0.267± 0.005 0.302± 0.003 0.067± 0.005

Table 3: Comparison of standard and meta-learning methods in terms of the test calibration
error in 5 regression environments. We report the mean and standard deviation across 5 ran-
dom seeds. PACOH yields the best uncertainty calibration in the majority of environments.

environments. Throughout the benchmark study, PACOH-NN and PACOH-GP consistently
perform best or are among the best methods. Similarly, PACOH-NN achieves the highest
accuracy in the Omniglot classification environment (see Table 4). Overall, this demonstrates
that the introduced meta-learning framework is not only theoretically sound, but also yields
state-of-the-art empirical performance in practice.

PACOH improves the predictive uncertainty. We hypothesize that by acquiring the
prior in a principled data-driven manner (e.g., with PACOH ), we can improve the quality of
the GP’s and BNN’s uncertainty estimates. To investigate the effect of meta-learned priors
on the uncertainty estimates of the base learners, we compute the probabilistic predictors’
calibration errors, reported in Table 3 and 4. In regression, the calibration error measures the
discrepancy between the predicted confidence regions and the actual frequencies of test data
points in the respective areas (Kuleshov et al., 2018). In the case of classification, it measures
how well the probability of the predicted class reflects the corresponding misclassification
rate (Guo et al., 2017). Note that, since MAML only produces point predictions, the concept
of calibration does not apply to it. We observe that meta-learning priors with PACOH-NN
consistently improves the Vanilla BNN’s uncertainty estimates. Similarly, PACOH-GP yields
a lower calibration error than the Vanilla GP in the majority of the environments. For meta-
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Accuracy Calibration error

Omniglot 2-shot Omniglot 5-shot Omniglot 2-shot Omniglot 5-shot

BNN (Liu and Wang, 2016) 0.6709± 0.006 0.795± 0.006 0.173± 0.009 0.135± 0.009

MLAP-M (Amit and Meir, 2018) 0.635± 0.015 0.804± 0.0168 0.108± 0.008 0.119± 0.019
MLAP-S (Amit and Meir, 2018) 0.615± 0.037 0.700± 0.0135 0.129± 0.018 0.108± 0.010

FO-MAML (Nichol et al., 2018) 0.429± 0.047 0.590± 0.010 N/A N/A
MAML (Finn et al., 2017) 0.571± 0.018 0.693± 0.013 N/A N/A

BMAML (Yoon et al., 2018) 0.651± 0.008 0.764± 0.025 0.132± 0.007 0.191± 0.018

PACOH-NN-SVGD (ours) 0.733± 0.009 0.885± 0.090 0.094± 0.004 0.091± 0.010
PACOH-NN-MAP (ours) 0.735± 0.010 0.866± 0.005 0.099± 0.009 0.075± 0.006

Table 4: Comparison of meta-learning algorithms in terms of test accuracy and calibration
error on the Omniglot environment with 2-shot and 5-shot 5-way-classification tasks. We
report the mean and standard deviation across 5 random seeds. PACOH achieves the best
performance, while yielding the best uncertainty calibration.
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Figure 5: Test RMSE on meta-training and meta-testing tasks as a function of the number
of meta-training tasks for PACOH-GP-MAP and MLL-GP. The performance gap between
the train and test tasks demonstrates overfitting in the MLL method, while PACOH
performs consistently better and barely overfits.

learning environments where the task similarity is high, like SwissFEL and Berkeley-Sensor,
the improvement is substantial.

PACOH combats meta-overfitting. As Qin et al. (2018) and Yin et al. (2020) point
out, many popular meta-learners (e.g., Finn et al., 2017; Garnelo et al., 2018) require a
large number of meta-training tasks to generalize well. When presented with only a limited
number of tasks, such algorithms suffer from severe meta-overfitting, adversely impacting
their performance on unseen tasks from T . This can even lead to negative transfer, such
that meta-learning actually hurts the performance when compared to standard learning.
In our experiments, we also observe such failure cases: For instance, in the classification
environment (Table 4), MAML fails to improve upon the Vanilla BNN. Similarly, in the
regression environments (Table 3) we find that NPs, BMAML, and MLL-GP often yield
worse-calibrated predictive distributions than the Vanilla BNN and GP, respectively. In
contrast, thanks to its theoretically principled construction, PACOH-NN is able to achieve
positive transfer even when the tasks are diverse and small in number. In particular, the
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Figure 6: Comparison of PACOH-NN and MLAP in memory footprint and compute time,
as the number of meta-training task grows. PACOH-NN scales much better in the number
of tasks than MLAP.

hyper-prior acts as a meta-level regularizer by penalizing complex priors that are unlikely
to convey useful inductive bias for unseen learning tasks.

To investigate the importance of meta-level regularization through the hyper-prior in more
detail, we compare the performance of our proposed method PACOH-GP to MLL-GP (For-
tuin and Rätsch, 2019), which also maximizes the sum of GP marginal log-likelihoods across
tasks but has no hyper-prior nor meta-level regularization. Figure 5 shows that MLL-GP per-
forms significantly better on the meta-training tasks than on the meta-test tasks in both of our
synthetic regression environments. This gap between meta-train performance and meta-test
performance signifies overfitting on the meta-level. In contrast, our method hardly exhibits
this gap and consistently outperforms MLL-GP. As expected, this effect is particularly pro-
nounced when the number of meta-training tasks is small (i.e., less than 100) and vanishes as
n becomes large. Once more, this demonstrates the importance of meta-level regularization,
and shows that our proposed framework effectively addresses the problem of meta-overfitting.

PACOH is scalable. A key feature of the proposed approach is that it drastically simplifies
PAC-Bayesian meta-learning by converting the bi-level minimization of a PAC-Bayesian
bound (cf., Eq. 9) into a variational approximation of the closed-form PACOH. Hence,
unlike MLAP (Amit and Meir, 2018), PACOH-NN does not need to maintain posteriors
Qi for the meta-training tasks and can use mini-batching on the task level. Thus, it is
computationally much faster and more scalable than previous PAC-Bayesian meta-learners.
This is reflected in its computation and memory complexity, discussed in Section 5. Figure
6 showcases this computational advantage during meta-training with PACOH-NN and
MLAP on the Sinusoids environment with varying number of tasks, reporting the maximum
memory requirements, as well as the training time. While MLAP’s memory consumption
and compute time grow linearly and become prohibitively large even for less than 100 tasks,
PACOH-NN maintains a constant memory and compute load as the number of tasks grow.
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Figure 7: MHC-I peptide design task: Regret for different priors (GP, standard BNN prior
and meta-learned PACOH-NN prior) and bandit algorithms (UCB and TS). A meta-learned
PACOH-NN prior substantially improves the regret, compared to a standard BNN/GP prior.

8.3 Meta-Learning for Sequential Decision Making

In Section 8.2, we have considered supervised learning problems. Now, we go one step
further and study our PACOH approach in the context of sequential decision-making where
the predictions and uncertainty estimates are used to interactively collect the training data.

We consider a Bayesian Optimization (BO) problem where the goal is to optimize a
(black-box) target function with as few function queries as possible (see, e.g., Shahriari
et al., 2015). To do so efficiently, BO approaches typically use a probabilistic model of the
objective function together with an uncertainty-aware acquisition function to decide where
to sequentially query the objective function.

In particular, we study a problem from molecular biology: The goal is to discover peptides
that bind to major histocompatibility complex class-I molecules (MHC-I). MHC-I molecules
present fragments of proteins from within a cell to T-cells, allowing the immune system
to distinguish between healthy and infected cells. Following the setup of Krause and Ong
(2011), the considered BO problem corresponds to searching for maximally binding peptides,
a vital step in the design of peptide-based vaccines. In each iteration, the experimenter (i.e.,
the BO algorithm) chooses to test one peptide among the pool of more than 800 candidates
and receives its binding affinity as evaluation of the objective function.

We have a number of such BO tasks that differ in their targeted MHC-I allele, corre-
sponding to different genetic variants of the MHC-I protein. We use data from Widmer
et al. (2010), which contains the standardized binding affinities (IC50 values) of different
peptide candidates (encoded as 45-dimensional feature vectors) to the MHC-I alleles. Since
the feature space is high-dimensional, this BO problem is very challenging. We aim to
investigate whether PACOH allows us to transfer useful knowledge across alleles and, thus,
accelerate the optimization for new alleles.

In our experiment, we use the datasets for 5 alleles (tasks) to meta-learn a BNN prior with
PACOH-NN and leave the most genetically dissimilar allele (A-6901) as the test BO task. In
particular, we use a BNN with meta-learned prior as a probabilistic model of the objective
function. To pick the next protein candidates to evaluate based on the BNN’s predictions,
we employ the UCB (Auer, 2002) and Thompson-Sampling (TS) (Thompson, 1933) BO
algorithms. We refer to the respective approaches as PACOH-UCB and PACOH-TS. As
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baselines, we compare against a BNN with zero-centered Gaussian prior (BNN-UCB/TS )
and a Gaussian process as dynamics model (GP-UCB) (Srinivas et al., 2009). For further
details we refer to Appendix E.4.

Figure 7 reports the respective average regret and simple regret over 50 iterations. Unlike
the bandit algorithms with standard BNN/GP prior, PACOH-UCB/TS reaches near-optimal
regret within less than 10 iterations, and after 50 iterations still maintains a significant
performance advantage. This highlights the importance of transfer (learning) for solving
real-world problems and demonstrates the effectiveness of PACOH-NN to this end. While
the majority of meta-learning methods rely on a large number of meta-training tasks (Qin
et al., 2018), PACOH-NN allows us to achieve promising positive transfer, even in complex
real-world scenarios with only a few of tasks (in this case 5).

9. Summary and Critical Discussion

This paper provides a theoretical analysis of generalization in meta-learning, studying the fac-
tors that drive positive transfer and improvement over single-task learning. We present novel
PAC-Bayesian generalization bounds on the transfer error and derive the PAC-optimal hyper-
posterior (PACOH) in closed form. This transforms PAC-Bayesian meta-learning from a previ-
ously difficult bi-level optimization problem into simple approximate inference on the PACOH.

However, this comes at a price. While Theorem 4 holds for arbitrary choices of base
learners and hyper-posteriors, the bound for Gibbs learners (Corollary 7) and for the PACOH
(Corollary 10) only hold when we employ the exact Gibbs posterior and PAC-optimal hyper-
posterior. In most practical settings, however, we can only approximate these distributions.
Hence, the respective bounds formally do not hold for the algorithms proposed in Section 7.
Additionally, for complex and over-parametrized hypothesis spaces such as those of neural
networks, PAC-Bayesian bounds are well-known to be loose or even vacuous. This is most
likely also the case for the bounds in this paper.

Nonetheless, the presented PACOH framework gives rise to a range of meta-learning
algorithms that are practical and scalable. As demonstrated in the experiments, the proposed
algorithms achieve state-of-the-art performance in terms of predictive accuracy and the qual-
ity of uncertainty estimates across both regression and classification tasks. Thanks to their
foundation in learning theory, our meta-learning methods are equipped with principled meta-
level regularization which allows them to achieve positive transfer with as little as five learning
tasks. As shown by our experiments on vaccine design, our meta-learned priors can be effec-
tively employed in realistic sequential decision-making problems. Overall, we believe that our
approach provides an important step towards understanding generalization in meta-learning
and, in practice, reliably learning useful inductive biases when meta-training data is scarce.
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Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Rätsch, Richard Turner,
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Appendix

Appendix A. Proofs and Derivations

Various proofs in this section follow along with Rothfuss et al. (2021a), i.e., the short
conference version of this paper. In particular, the proofs of Corollary 7 and Proposition 9
are almost identical to Rothfuss et al. (2021a). The proofs of Theorem 4, Corollary 5, and
Corollary 6 have seen significant revisions to make them easier to follow and more rigorous.
The proofs of Corollary 10, Theorem 11, and Proposition 12 are new additions.

A.1 Proof of Theorem 4

A key tool in the PAC-Bayesian framework which we also use in our proofs is the change of
measure inequality:

Lemma 14 (Csiszár (1975); Donsker and Varadhan (1975)) Let f be a random
variable taking values in a set A and g : A→ R a function. For distributions π, ρ ∈M(A)
and any λ > 0, if Ef∼ρ [g(f)] exists and is finite, we have that

Ef∼ρ [g(f)] ≤ 1

λ

(
DKL(ρ||π) + logEf∼π

[
eλg(f)

])
. (29)

Lemma 14 follows from the positivity of the KL-divergence and is a special case of the convex
duality of the KL divergence (see e.g., Seeger (2002, Appendix A) for a proof). Hence, it is
fairly general and only requires the integrability of g(f) under ρ. Importantly, it also holds
for random functions g, a property we will use in our proof.
To prove Theorem 4, we need to bound the difference between transfer error L(Q, T ) and
the empirical multi-task error L̂(Q, S1, ..., Sn). To this end, we make use of an intermediate
quantity, the expected multi-task error :

L̃(Q, τ1, ..., τn) = EP∼Q

[
1

n

n∑
i=1

L(Q(Si, P ),Di)
]

(30)

In the following, we invoke Lemma 14 twice. First, in step 1, we bound the difference
between L̃(Q, τ1, ..., τn) and L̂(Q, S1, ..., Sn), then, in step 2, the difference between L(Q, T )
and L̃(Q, τ1, ..., τn). Finally, in step 3, we combine both results and bound the cumulant-
generating functions that arise from applying (29).

Step 1 (Task-specific generalization) First, we bound the expected generalization
error across the observed tasks τi = (Di, Si), i = 1, ..., n, when using a hyper-posterior
Q ∈M(M(H)) and a base learner Q : Zm ×M(H)→M(H). Remember from Section 4.1
that the base learner takes as an input a prior distribution P ∈M(H) as well as a dataset
Si ∼ Dmi of size m and outputs a posterior distribution Qi = Q(Si, P ) over hypotheses
h ∈ H. For brevity, we also write Qi short for Q(Si, P ) in the following.
Instantiations for Lemma 14: To use Lemma 14, we set A =M(H)×Hn, and, correspond-
ingly, f = (P, h1, ..., hn) ∈ A. We can interpret this as a joint two-level hypothesis of a prior P
(i.e., the hypothesis of the meta-learner) and n base hypotheses hi, one for each task. Denoting
Pn as product distribution of n prior distributions P , we set π = (P, Pn) which is a distribu-
tion over the joint two-level hypotheses corresponding to hierarchical sampling via P ∼ P and
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hi ∼ P ∀i = 1, ..., n. Furthermore, we denote Qn = Q1 · · ·Qn as product distribution of the
task-specific posteriors and set ρ = (Q, Qn) as a distribution over the joint two-level hypothe-
ses corresponding to hierarchical sampling via P ∼ Q and hi ∼ Qi = Q(Si, P ) ∀i = 1, ..., n.
Finally, we set g(f) = g(P, h1, ..., hn) = 1

n

∑n
i=1 L(hi,Di)− L̂(hi, Si) and λ = γ.

Integrability conditions for Lemma 14: Finally, we check whether the integrability conditions
for the application of Lemma 14 are satisfied. By assumption, the expectation

L(Q, T ) = ED∼T ES∼DmEP∼Q [L(Q(S, P ),D)] (31)

is finite. Thus, the probability that we sample a (D, S) ∼ Th so that either EP∼Q [L(Q(S, P ),D)]

or EP∼Q
[
L̂(Q(S, P ), S)

]
are infinite or undefined must be zero. Hence, we have with prob-

ability 1 that every summand in

Ef∼ρ[g(f)] =
1

n

n∑
i=1

EP∼Q [L(Q(Si, P ),Di)]−
1

n

n∑
i=1

EP∼Q
[
L̂(Q(Si, P ), Si)

]
(32)

is finite, and, thus that the overall sum, i.e., Ef∼ρ[g(f)] is finite.

Application of Lemma 14: Finally, we can invoke Lemma 14 to obtain that, with probability
1, for any γ > 0,

E(P,h1,...,hn)∼(Q,Qn)

[
1

n

n∑
i=1

L(hi,Di)− L̂(hi, Si)

]
≤ 1

γ

(
DKL((Q, Qn)||(P, Pn))

+ logE(P,h1,...,hn)∼(P,Pn)

[
eγ(

1
n

∑n
i=1 L(hi,Di)−L̂(hi,Si))

])
.

(33)

By using the definitions of L(Qi,Di) and L̂(Qi, Si), and that hi ∼ P are i.i.d., we can write
(33) as

EP∼Q

[
1

n

n∑
i=1

L(Qi,Di)− L̂(Qi, Si)

]
≤ 1

γ
DKL((Q, Qn)||(P, Pn))

+
1

γ
logEP∼PEh∼P

[
e
γ
n

∑n
i=1 L(h,Di)−L̂(h,Si)

]) (34)

Next we follow the arguments of Pentina and Lampert (2014) and use the above definitions
to rewrite the KL-divergence term as follows:

DKL [(Q, Qn)||(P, Pn)] = EP∼Q
[
Eh1∼Q1 ...Ehn∼Qn

[
log
Q(P )

∏n
i=1Qi(hi)

P(P )
∏n
i=1 P (hi)

]]
(35)

= EP∼Q
[
log
Q(P )

P(P )

]
+

n∑
i=1

EP∼Q
[
Eh∼Qi

[
log

Qi(h)

P (h)

]]
(36)

= DKL(Q||P) +

n∑
i=1

EP∼Q [DKL(Qi||P )] (37)
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By inserting (37) into (34) and using the definitions of L̃(Q, τ1, ..., τn) and L̂(Q, S1, ..., Sn)
we obtain a bound on the expected multi-task error:

L̃(Q, τ1, ..., τn) ≤ L̂(Q, S1, ..., Sn) +
1

γ
DKL(Q||P) +

1

γ

n∑
i=1

EP∼Q [DKL(Qi||P )]

+
1

γ
logEP∼PEh∼P

[
e
γ
n

∑n
i=1 L(h,Di)−L̂(h,Si)

]
︸ ︷︷ ︸

:=ΥI(γ)

(38)

Step 2 (Task environment generalization) Now, we apply Lemma 14 on the meta-level
to bound the difference between the transfer error L(Q, T ) and the expected multi-task error
L̃(Q, τ1, ..., τn). For that, we use the following instantiations for Lemma 14: A =M(H), f =
P , ρ = Q, π = P and g(f) = g(P ) = 1

n

∑n
i=1 ED∼T ES∼Dm [L(Q(S, P ),D)]−L(Q(Si, P ),Di).

Again, we have to check the integrability conditions: By assumption, the expectation L(Q, T )
is finite and, thus, Ef∼ρ[g(f)] must be finite with probability 1 over sampled tasks τ ∼ Th
(proof analogous to Step 1). Hence, we obtain that, with probability 1, for all λ > 0,

L(Q, T ) ≤ L̃(Q, τ1, ..., τn) +
1

λ
DKL(Q||P)

+
1

λ
logEP∼P

[
e
λ
n

∑n
i=1 ED∼T ES∼Dm [L(Q(S,P ),D)]−L(Q(Si,P ),Di)

]
︸ ︷︷ ︸

:=ΥII(λ)

. (39)

Combining (38) with (39), we obtain

L(Q, T ) ≤ L̂(Q, S1, ..., Sn) +

(
1

λ
+

1

γ

)
DKL(Q||P)

+
1

γ

n∑
i=1

EP∼Q [DKL(Qi||P )] +
1

γ
ΥI(γ) +

1

λ
ΥII(λ)

(40)

Step 3 (Bounding the cumulant-generating functions) Finally, we aim to bound
the random quantity 1

γΥI(γ) + 1
λΥII(λ). Note that the randomness of ΥI(γ) is governed by

the random data points zi,j sampled i.i.d. from the respective data distribution Di, while
ΥII(λ) is governed by random tasks sampled from the environment T .
First, we factor out

√
n from γ and λ, obtaining

1

γ
ΥI(γ) +

1

λ
ΥII(λ) =

1√
n

(√
n

γ
ΥI(γ) +

√
n

λ
ΥII(λ)

)
(41)

Next, we proceed by bounding the inner part on the RHS, i.e.,
√
n
γ ΥI(γ) +

√
n
λ ΥII(λ). Using

Markov’s inequality, we have

e

√
n
γ

ΥI(γ)+
√
n
λ

ΥII(λ) ≤
E
[
e

√
n
γ

ΥI(γ)+
√
n
λ

ΥII(λ)
]

δ
(42)

and thus √
n

γ
ΥI(γ) +

√
n

λ
ΥII(λ) ≤ logE

[
e

√
n
γ

ΥI(γ)+
√
n
λ

ΥII(λ)
]
− log δ (43)
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with probability at least 1− δ. Next, we bound the expectation, i.e.,

E
[
e

√
n
γ

ΥI(γ)+
√
n
λ

ΥII(λ)
]

= ET

[
e
√
n
λ

ΥII(λ) ED1 ...ED1

[(
eΥI(γ)

)√n
γ

]]
. (44)

If γ ≥ √n and x 7→ x
√
n/γ is a concave function, and we can obtain an upper bound on (44)

by using Jensen’s inequality to move the exponent in (44) outside the inner expectation.
Further, we denote V II

i := ET [L(Qi,D)] − L(Qi,Di) as i.i.d. realizations of the random
variable under the task distribution. Similarly, for each i = 1, ...., n and j = 1, ....,m, we
denote the independent realizations of L(h,Di)− l(h, zij) as V I

ij . Hence, we can write

(44) ≤ ET

[
e
√
n
λ

ΥII(λ) ED1 ...EDn
[
eΥI(γ)

]√n
γ

]
(45)

= ET
[
EP
[
e
λ
n

∑n
i=1 V

II
i

]√n/λ
· EPEPED1 ... EDn

[
e
γ
nm

∑n
i=1

∑m
j=1 V

I
ij

]√n/γ ]
(46)

= ET
[
EP

[
n∏
i=1

e
λ
n
V II
i

]√n/λ
· EPEPED1 ... EDn

 n∏
i=1

m∏
j=1

e
γ
nm

V I
ij


√
n/γ ]

. (47)

Following the arguments of Pentina and Lampert (2014, Proof of Lemma 2) and Germain
et al. (2016, Proof of Corollary 4), given a fixed h sampled via h ∼ P , P ∼ P, the V I

ij are

independent. Similarly, given a P sampled via P ∼ P, the V II
i are independent. Hence, we

can write (47) as

(44) ≤ ET
[ n∏
i=1

EP
[
e
λ
n
V II
i

]√n/λ n∏
i=1

m∏
j=1

EPEPEDie
γ
nm

V I
ij


√
n/γ ]

. (48)

Next, we set γ = βn and use the uniform bound Ψ̄I(β) ≥ ΨI(β) = m
β logEPEPED

[
e
β
m
V I
]
∀ D

in the support of T . Crucially, if we upper bound
∏n
i=1

∏m
j=1 EPEPEDie

γ
nm

V I
ij by eβnΨ̄I(β),

the upper bound no longer depends on the tasks sampled from T , allowing us to move it
outside the expectation. As a result, we obtain

(44) ≤ ET
[ n∏
i=1

EP
[
e
λ
n
V II
i

]√n/λ
e
√
nΨ̄I(β)

]
(49)

=

n∏
i=1

ET EP
[
e
λ
n
V II
i

]√n/λ
e
√
nΨ̄I(β) . (50)

Further, with ΨII(λ) = n
λ logEPET

[
e
λ
n
V II
i

]
, we have that

(44) ≤ e
√
nΨII(λ) · e

√
nΨ̄I(β). (51)
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Finally, we insert (51) into (43) to obtain that

1

γ
ΥI(γ) +

1

λ
ΥII(λ) ≤ Ψ̄I(β) + ΨII(λ)− 1√

n
log δ (52)

with probability at least 1− δ which concludes our high-probability bound.

A.2 Proof of Corollary 5

If the loss function l(hi, zij) is bounded in [a, b], we can apply Hoeffding’s lemma to ΨI(β)
and ΨII(λ). In particular, we have that

ΨI(β) =
m

β
logEPEPED

[
e
β
m
V I
]
≤ β2(b− a)2

8m2
= Ψ̄I(γ) ∀ D . (53)

Similarly, we can bound ΨII(λ) as

ΨII(λ) ≤ λ2(b− a)2

8n2
= Ψ̄II(λ) . (54)

When unserting these bounds on the CGFs into (52), we have that Theorem 4 holds with

C(β, λ, δ) =
λ(b− a)2

8n
+
β(b− a)2

8m
− 1√

n
log δ . (55)

A.3 Proof of Corollary 6

First, we bound the CGF corresponding to Ψ̄I(β). If the loss is sub-gamma with variance
factor s2

I and scale parameter cI under the two-level prior and any data distribution D in
the support of T , i.e.,

EP∼PEh∼PEz∼D
[
eν(L(D,h)−l(h,z))

]
≤ exp

(
ν2s2

I

2(1− νcI)

)
∀ ν ∈ (0, 1/cI) (56)

then, with ν := β/m, we have that, if β < m
cI

,

m

β
logEPEPED

[
e
β
m
V I
]
≤ m

β

β2s2
I

2m2(1− cIβ
m )

=
βs2

I

2m(1− cIβ
m )

= Ψ̄I(β) ∀ D . (57)

Second, we bound the remaining CGF corresponding to ΨII(λ). For that, we use the
assumption that the random variable V II

i := ETh [L(Qi,D)]− L(Qi,Di) is sub-gamma with
variance factor s2

II and scale parameter cII under the hyper-prior P and the task distribution
Th. That is, its moment generating function can be bounded by that of a Gamma distribution
Γ(s2

II, cII):

E(D,S)∼ThEP∼P
[
eκE(D,S)∼Th [L(Q(P,S),D)]−L(Q(P,S),D)

]
≤ exp

(
κ2s2

II

2(1− cIIκ)

)
∀κ ∈ (0, 1/cII) .

(58)
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Using the sub-gamma assumption with κ := λ/n, we obtain that

ΨII(λ) ≤ λ2s2
II

2n2(1− λcII
n )

, (59)

under the condition that λ < n
cII

.

Finally, we insert (59) and (57) into (52) to obtain that, if β < m/cI and λ ≤ n/cII, Theorem
4 holds with

C(λ, β, δ) =
βs2

I

2m(1− cIβ
m )

+
λs2

II

2n(1− λcII
n )
− 1√

n
log δ (60)

with probability at least 1− δ. This concludes our high-probability bound on the CGFs in
the case of sub-gamma tail assumptions.

A.4 Proof of Corollary 7

The proof of Corollary 7 is inspired by Germain et al. (2016). When we choose the posterior
Q as the optimal Gibbs posterior Q∗i := Q∗(Si, P ), we have that

L̂(Q, S1, ..., Sn) +
1

n

n∑
i=1

1

β
EP∼Q [DKL(Q∗i ||P )] (61)

=
1

n

n∑
i=1

(
EP∼QEh∼Q∗i

[
L̂(h, Si)

]
+

1

β
(EP∼Q [DKL(Q∗i ||P )])

)
(62)

=
1

n

n∑
i=1

1

β

(
EP∼QEh∼Q∗i

[
βL̂(h, Si) + log

P (h)e−βL̂(h,Si)

P (h)Zβ(Si, P )

])
(63)

=
1

n

n∑
i=1

1

β
(−EP∼Q [logZβ(Si, P )]) . (64)

This allows us to write the inequality in (9) as

L(Q, T ) ≤ − 1

n

n∑
i=1

1

β
EP∼Q [logZβ(Si, P )] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β) . (65)

According to Lemma 3, the Gibbs posterior Q∗(Si, P ) is the minimizer of (62), in particular
∀P ∈M(H),∀i = 1, ..., n :

Q∗(Si, P ) =
P (h)e−βL̂(h,Si)

Zβ(Si, P )
= arg min

Q∈M(H)
Eh∼Q

[
L̂(h, Si)

]
+

1

β
DKL(Q||P ) . (66)

Hence, we can write

L(Q, T ) ≤− 1

n

n∑
i=1

1

β
EP∼Q [logZβ(Si, P )] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β)
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=
1

n

n∑
i=1

EP∼Q
[

min
Q∈M(H)

L̂(Q,Si) +
1

β
DKL(Q||P )

]
+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, n, m̃)

≤ 1

n

n∑
i=1

EP∼Q
[
L̂(Q,Si) +

1

β
DKL(Q||P )

]
+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C

which proves that the bound for Gibbs-optimal base learners in (65) and (12) is smaller
than the bound in Theorem 4 which holds uniformly for all Q ∈M(H).

A.5 Proof of Proposition 9: PAC-Optimal Hyper-Posterior

An objective function corresponding to (12) reads as

J(Q) = −EQ
[

λ

nβ + λ

n∑
i=1

logZ(Si, P )

]
+DKL(Q||P) . (67)

To obtain J(Q), we omit all additive terms from (12) that do not depend on Q and multiply
by the scaling factor λnβ

nβ+λ . Since the described transformations are monotone, the minimizing
distribution of J(Q), that is,

Q∗ = arg min
Q∈M(M(H))

J(Q) , (68)

is also the minimizer of (12). More importantly, J(Q) is structurally similar to the generic
minimization problem in Lemma 3. Hence, we can invoke Lemma 3 with A = M(H),
g(a) = −∑n

i=1 logZ(Si, P ), β = 1√
nm̃+1

, to show that the optimal hyper-posterior is

Q∗(P ) =
P(P ) exp

(
λ

nβ+λ

∑n
i=1 logZβ(Si, P )

)
ZII(S1, ..., Sn,P)

, (69)

wherein ZII(S1, ..., Sn,P) = EP∼P
[
exp

(
λ

nβ+λ

∑n
i=1 logZβ(Si, P )

)]
. �

A.6 Proof of Corollary 10

The proof follows the same scheme as the proof of Corollary 7. However, for completeness,
we’ll state it the following: If we choose Q = Q∗, the first two terms of the PAC-Bayes
bound in (12) can be re-arranged as follows:

− 1

n

n∑
i=1

1

β
EP∼Q [logZβ(Si, P )] +

(
1

λ
+

1

nβ

)
DKL(Q∗||P) (70)

=EP∼Q

− 1

n

n∑
i=1

1

β
logZβ(Si, P ) +

(
1

λ
+

1

nβ

)
log
P(P ) exp

(
λ

nβ+λ

∑n
i=1 logZβ(Si, P )

)
P(P )ZII(S1, ..., Sn,P)


(71)

=EP∼Q
[
−
(

1

λ
+

1

nβ

)
logZII(S1, ..., Sn,P)

]
= −

(
1

λ
+

1

nβ

)
logZII(S1, ..., Sn,P) (72)
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Hence, if we insert (72) in (12), we obtain

L(Q, T ) ≤ −
(

1

λ
+

1

nβ

)
logZII(S1, ..., Sn,P) + C(δ, λ, β) . (73)

which concludes the proof. �

A.7 Proof of Theorem 11

Step 1: Uniform bound for any Qi ∈ M(H). In the following, we bound the gener-
alization error of a base learner Q(S, P ) with priors P ∼ P when applied to a new task
τ ∼ Th, i.e.,

L(P, T ) = EP∼PE(D,S)∼Th [L(Q(S, P ),D)] . (74)

Similar to the proof of Theorem 4, we first bound the intermediary average generalization
error across a set of given tasks {τ1, ..., τn}, i.e.,

L(P, τ1, ..., τn) = EP∼P

[
1

n

n∑
i=1

L(Q(P, Si),Di)
]
.

However, unlike in the meta-learning case, the priors are directly sampled from the hyper-prior
P instead of a data-dependent hyper-posterior Q. Thus, we only need to apply the change-of-
measure inequality once. In particular, we apply Lemma 14 with the following instantiations.
We set A = M(H) × Hn, f = (P, h1, ..., hn) ∈ A, π = (P, Pn) and ρ = (P, Qn) as a
distribution over the joint two-level hypotheses corresponding to hierarchical sampling via
P ∼ P and hi ∼ Qi = Q(Si, P ) ∀i = 1, ..., n. Furthermore, we set g(f) = g(P, h1, ..., hn) =
1
n

∑n
i=1 L(hi,Di)− L̂(hi, Si) and λ = γ. Hence, we obtain that, for γ > 0,

L(P, τ1, ..., τn) ≤ 1

n

n∑
i=1

EP∼P [L(Qi, Si)] +
1

γ

n∑
i=1

EP∼P [DKL(Qi||P )]

+
1

γ
logEP∼PEh∼P

[
e
γ
n

∑n
i=1(L(h,Di)−L̂(h,Si))

]
︸ ︷︷ ︸

ΥI(γ)

.
(75)

Next, we bound the difference between L(P, Th) and L(P, τ1, ..., τn). Unlike the meta-learning
bound, we do not require the change of measure lemma since there is no meta-learned hyper-
posterior. Instead, we can simply use Jensen’s inequality to obtain that

L(P, T )− L(P, τ1, ..., τn) ≤ 1

λ
logEP∼P

[
e
λ
n

∑n
i=1 ED∼T ES∼Dm [L(Q(S,P ),D)]−L(Q(Si,P ),Di)

]
︸ ︷︷ ︸

ΥII(λ)

.

(76)

Combining (76) with (75) we have that

L(P, T ) ≤ 1

n

n∑
i=1

EP∼P [L(Qi, Si)] +
1

γ

n∑
i=1

EP∼P [DKL(Qi||P )] + ΥI(γ) + ΥII(λ) . (77)
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Now, it remains to bound (with high probability) the CGFs ΥI(γ) + ΥII(λ) which are
identical to those in the proof of Theorem 4. Using the results from there and γ := nβ we
have with probability at least 1− δ that

L(P, T ) ≤ 1

n

n∑
i=1

EP∼P [L(Qi, Si)] +
1

nβ

n∑
i=1

EP∼P [DKL(Qi||P )] (78)

+ Ψ̄I(β) + ΨII(λ) +
1√
n

log
1

δ︸ ︷︷ ︸
=C(β,λ,δ)

. (79)

Step 2: Bound for Gibbs learner. Now, we assume a Gibbs distribution as base learner

Q∗(Si, P ) := P (h)e−βL̂(h,Si)

Zβ(Si,P ) . Following the same steps as in Appendix 7, we obtain

L(P, T ) ≤ − 1

nβ

n∑
i=1

EP∼P [logZβ(Si, P )] + C(β, λ, δ) (80)

which concludes the proof of the bound. �

A.8 Proof of Proposition 12

To show that meta-learning improves upon single-task learning, we study the difference be-
tween (14) and (16), i.e., ∆ = (16)−(14). After removing terms that cancel out, we have that

∆ =

(
1

λ
+

1

nβ

)
logZII(S1, ..., Sn,P)− 1

n

n∑
i=1

1

β
EP∼P [logZβ(Si, P )] (81)

=

(
1

λ
+

1

nβ

)[
logEP∼P

[
exp

(
λ

nβ + λ

n∑
i=1

logZβ(Si, P )

)]
(82)

− EP∼P

[
λ

nβ + λ

n∑
i=1

logZβ(Si, P )

] ]
(83)

=

(
1

λ
+

1

nβ

)
logEP∼P

[
exp

(
λ

nβ + λ

n∑
i=1

(logZβ(Si, P )− EP∼P [logZβ(Si, P )])

)]
(84)

Using λ =
√
m and β =

√
m, we can re-write this as

∆ =

(
1√
m

+
1

n
√
m

)
logEP∼P

[
exp

(
1√

mn+ 1

n∑
i=1

(logZ(Si, P )− EP∼P [logZ(Si, P )])

)]
(85)

where we have abbreviated Z√n(Si, P ) as Z(Si, P ).
Finally, we show that ∆ is non-negative via Jensen’s inequality. In particular, the non-
negativity follows from

logEP∼P
[
e

1√
nm+1

∑n
i=1(logZβ(Si,P )−EP∼P [logZβ(Si,P )])

]
(86)

48



Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior

≥ 1√
nm+ 1

n∑
i=1

EP∼P [(logZβ(Si, P )− EP∼P [logZβ(Si, P )])] (87)

= 0 . (88)

A.9 Proof of the Equivalence of Variational Inference and Minimization of the
PAC-Bayes Meta-Learning Bound

Here, we show that performing variational inference (Blei et al., 2017) on the PACOH Q∗ is
equivalent to minizing the PAC-Bayesian meta-learning bound in (12). A similar connection
for per-task learning has previously been pointed out by Thakur et al. (2019). We can write
the optimal variational distribution Q̃ with respect to Q∗ as

Q̃ = arg min
Q∈F

DKL(Q||Q∗) = arg min
Q∈F

EP∼Q [logQ(P )− logQ∗(P )] (89)

= arg min
Q∈F

EP∼Q

[
logQ(P )− logP(P )−

(
β

β + λ

n∑
i=1

1

βi
logZ(Si, P )

)
+ logZII

]
(90)

= arg min
Q∈F

− 1

n

n∑
i=1

1

βi
EP∼Q [logZ(Si, P )] +

(
1

λ
+

1

β

)
DKL(Q||P) . (91)

Now it is straightforward to see that (91) is the same as the meta-learning PAC-Bayes bound
in (12) up to the constant C(δ, n, β). Hence, we can conclude that variational inference with
respect to Q∗ is equivalent to minimizing (12) over the same variational family F .

Appendix B. Bounding the CGF for linear regression

The setting and analysis in this section is inspired by Germain et al. (2016) who provide
CGF bounds for per-task learning with linear regression. However, we bound the CGFs
for meta-learning which is significantly more involved due to the hierarchical nature of the
priors and data-generating process.

Assumptions: Regression problem with X × Y ⊂ Rd × R, family of linear predictors:
H = {hw(x) = w>x | w ∈ Rd}, Gaussian prior PµP ,σ2

P
= N (µP , σ

2
P I), Gaussian hyper-prior

P(µp) = N (0, σ2
PI), Loss function l(w,x, y) = 1

2 ln(2πσ2) + 1
2σ2 (w>x− y)2.

Data generating process: w∗i ∼ N (µT , σ
2
T I), x ∼ p(x) = N (0, σ2

x), y = w∗i
>x + ε

where ε ∼ N (0, σ2
ε ). Thus, we can write the conditional label distribution as pw∗i (y|x) =

N (w∗i
>x, σ2

ε ). Accordingly, the data distribution follows as Di = p(x) pw∗i (y|x).

Bounding ΨI(γ): We aim to bound

ΦI(β) =
1

nβ

n∑
i=1

m∑
j=1

lnEPEPEDi
[
e
β
m
V I
ij

]
(92)

For that, we focus on the cumulant-generating function of Vij = L(h,Di) − l(h, z) =
E(x,y)∼Di [l(w,x, y)]− l(w,x, y), i.e.,

ΓI(γ) = lnEPEPEDie
γVi ≤ γ2s2

2(1− γc) , ∀γ ∈ (0, 1/c) . (93)
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ΓI(γ) = lnEwE(x,y) exp
( γ

2σ2

(
E(x,y) [l(w,x, y)]− l(w,x, y)

))
(94)

= lnEwE(x,y) exp
( γ

2σ2

(
σ2
x||w −w∗i ||2 + σ2

ε − (w>x− y)2
))

(95)

= lnEwExEε exp
( γ

2σ2

(
σ2
x||w −w∗i ||2 + σ2

ε − ((w −w∗i )
>x + ε)2

))
(96)

= lnEw

exp
( γ

2σ2

(
σ2
x||w −w∗i ||2 + σ2

ε

))
ExEε exp

(
− γ

2daσ2
((w −w∗i )

>x + ε)2
)

︸ ︷︷ ︸
(∗)


(97)

(∗) =ExEε exp
(
− γ

2σ2
((w −w∗i )

>x + ε)2
)

(98)

=

(
1 + γ

σ2
ε

σ2

)− 1
2

Ex exp

(
−

γ
2σ2

1 + γ σ
2
ε
σ2

((w −w∗i )
>x)2

)
(99)

=

(
1 + γ

σ2
ε

σ2

)− 1
2

(
1 +

γ
σ2

1 + γ σ
2
ε
σ2

||w −w∗i ||2σ2
x

)− 1
2

(100)

=

(
1 + γ

σ2
ε

σ2
+

γ

σ2
||w −w∗i ||2σ2

x

)− 1
2

(101)

Now, we can insert (101) into (97):

ΓI(γ) = lnEw∼N (0,σ2
P Id)

[
exp

( γ
2σ2

(
σ2
x||w −w∗i ||2 + σ2

ε

))
(1 + γ σ

2
ε
σ2 + γ

σ2 ||w −w∗i ||2σ2
x)

1
2

]
(102)

≤ γ

2σ2

(
σ2
x||w∗i ||2 + σ2

ε

)
+ lnEw∼N (0,σ2

P Id)

[
exp

( γ
2σ2σ

2
x||w||2

)
(1 + γ σ

2
ε
σ2 + γ σ

2
x
σ2 ||w −w∗i ||2)

1
2

]
(103)

≤ γ

2σ2

(
σ2
x||w∗i ||2 + σ2

ε

)
+ lnEw∼N (0,σ2

P )

[
exp

( γ
2σ2σ

2
xdw

2
)

(1 + γ σ
2
ε
σ2 + γ σ

2
x
σ2 ||w∗i ||2 + γ σ

2
x
σ2 dw2)

1
2

]
(104)

Lemma 15 Let a, b ∈ R+ and x ∼ N (0, σ2) be a Gaussian random variable with mean 0
and variance σ2. Then, we have

Ex∼N (0,σ2)

[
eax

2

(b+ 2ax2)
1
2

]
<

1

(b− 2baσ2))
1
2

(105)

Proof

Ex∼N (0,σ2)

[
eax

2

(b+ 2ax2)
1
2

]
=
e
b
8

(
1
aσ2
−2
)
K0

(
b
8

(
1
aσ2 − 2

))
√

4aπσ2
(106)
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wherein Kv(y) is the modified Bessel function of the second kind. In particular, for v = 0
we have

K0(y) =

∫ ∞
0

e−y cosh(t)dt <

√
πe−y√
2y

(107)

For a proof of the inequality in (107), we refer to Yang and Chu (2017). Using (107) to
upper-bound (106), we obtain

Ex∼N (0,σ2)

[
eax

2

(b+ 2ax2)
1
2

]
<

1√
b(1− 2aσ2)

(108)

which concludes the proof.

Next, we invoke Lemma 15 with a = γ
2σ2σ

2
xd and b = 1 + γ

σ2σ
2
ε + γ

σ2σ
2
x||w∗i ||2, such that

(104) ≤ γ

2σ2

(
σ2
x||w∗i ||2 + σ2

ε

)
− 1

2
ln
(
b(1− 2a(σ2

P + σ2
P))
)

(109)

=
γ

2σ2

(
σ2
x||w∗i ||2 + σ2

ε

)︸ ︷︷ ︸
ϑi

−1

2
ln


1 +

γ

σ2

(
σ2
x||w∗i ||2 + σ2

ε

)︸ ︷︷ ︸
ϑi

(1− γ

σ2
dσ2

x(σ2
P + σ2

P)
)

(110)

=
γ

2σ2
ϑi −

1

2
ln

(
(1 +

γ

σ2
ϑi −

γ

σ2
dσ2

x(σ2
P + σ2

P)− γ2

σ4
dσ2

x(σ2
P + σ2

P)ϑi

)
(111)

≤ γ

2σ2
ϑi +

γ
2σ2dσ

2
x(σ2

P + σ2
P) + γ2

2σ4dσ
2
x(σ2

P + σ2
P)ϑi − γ

2σ2ϑi

1 + γ
σ2ϑi − γ

σ2dσ2
x(σ2

P + σ2
P)− γ2

σ4dσ2
x(σ2

P + σ2
P)ϑi

(112)

=
γ

2σ2
ϑi +

γ
2 ci

1− γci
=
γ2
(
ϑi
σ2 ( 1

γ − ci) + ci
γ

)
2(1− γci)

=
γ2s2

i

2(1− γci)
(113)

with s2
i = ϑi

σ2 ( 1
γ−ci)+ ci

γ , ci = d
σ2σ

2
x(σ2

P +σ2
P)+ γ

σ4dσ
2
x(σ2

P +σ2
P)ϑi− ϑi

σ2 and ϑi = σ2
x||w∗i ||2+σ2

ε .

Bounding ΨII(γ): To show that the cumulant-generating function of the random variable
V II := E(D,S)∼T EP∼P [L(Q(P, S),D)]−L(Q(P, Si),Di) is sub-gamma, we aim to find values
s2

II > 0 and parameter cII > 0 such that

ΨII(γ) = lnE(D,S)∼T EP∼P
[
exp

(
γV II

)]
≤ exp

(
γ2s2

II

2(1− cIIγ)

)
∀γ ∈ (0, 1/cII) (114)

ΨII(λ) = lnET EP exp

(
λ

2σ2
(ET EP [L(Q(P,S),D)]− L(Q(P,S),D))

)
= lnET EP exp

(
λ

2σ2

(
ET EP

[
Ew∼Q

[
σ2
x||w∗ −w||2

]]
− Ew∼Q

[
σ2
x||w∗ −w||2

]))
≤ lnET EP exp

(
λ

2σ2

(
ET EP

[
Ew∼P

[
σ2
x||w∗ −w||2

]]
− Ew∼P

[
σ2
x||w∗ −w||2

]))
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= lnET EP exp

(
λ

2σ2

([
σ2
x(||µT ||2 + dσ2

T + dσ2
P)
]
− (σ2

x||w∗ − µP ||2)
))

=
λ

2σ2
σ2
x(||µT ||2 + dσ2

T + dσ2
P) + lnET EP exp

(
− λ

2σ2
σ2
x||w∗ − µP ||2

)
=

λ

2σ2
σ2
x(||µT ||2 + dσ2

T + dσ2
P) + ln

(
1 +

λ

σ2
σ2
xσ

2
P

)− d
2

ET exp

(
−

λ
2σ2σ

2
x||w∗||2

1 + λ
σ2σ2

xσ
2
P

)
=

λ

2σ2
σ2
x(||µT ||2 + dσ2

T + dσ2
P)− d

2
ln

(
1 + λ

σ2
x

σ2
(σ2
P + σ2

T )

)
−

λ
2σ2σ

2
x||µT ||2

1 + λσ
2
x
σ2 (σ2

P + σ2
T )

≤ λ

2σ2
σ2
x(||µT ||2 + dσ2

T + dσ2
P)− d λ

2σ2σ
2
x(σ2
P + σ2

T )

1 + λσ
2
x
σ2 (σ2

P + σ2
T )
−

λ
2σ2σ

2
x||µT ||2

1 + λσ
2
x
σ2 (σ2

P + σ2
T )

=
( λ

2σ2σ
2
x||µT ||2 + λd2cII)(1 + λcII)− λd2cII − λ

2σ2σ
2
x||µT ||2

1 + λcII

=
λ2(σ

2
x
σ2 cII||µT ||2 + dc2

II)

2(1 + λcII)
=

λ2s2
II

2(1 + λcII)

with cII = σ2
x
σ2 (σ2

P + σ2
T ) and s2

II = σ2
x
σ2 cII||µT ||2 + dc2

II.

Appendix C. PACOH-GP algorithm details

C.1 Meta-training with PACOH-GP

Prior parametrization. When meta-learning a GP prior, we instantiate the GP’s mean
mφ and kernel function kφ as neural networks, where the parameter vector φ can be meta-
learned. To ensure the positive-definiteness of the kernel, we use the neural network as
feature map ϕφ(x) on top of which we apply a squared exponential (SE) kernel. Accordingly,
the parametric kernel reads as kφ(x, x′) = 1

2 exp
(
−||ϕφ(x)− ϕφ(x′)||22

)
. Both mφ(x) and

ϕφ(x) are fully-connected neural networks with 4 layers with each 32 neurons and tanh
non-linearities. The parameter vector φ represents the weights and biases of both neural
networks. As hyper-prior we choose a zero-mean isotropic Gaussian P(φ) = N (0, σ2

PI).

Estimating the hyper-posterior score. To estimate ∇φQ∗(φ), we use mini-batching
on the task level. In each iteration, we sample a mini-batch of H ≤ n datasets S1, ..., SH
and form an unbiased estimate of the hyper-posterior score as follows:

∇̃φ logQ∗(φ) =
n

H
·
H∑
h=1

1

mh + 1
∇φ logZ(Sh, Pφ) +∇φ logP(φ) . (115)

Here, ∇φ logZ(Sh, Pφ) is the derivative of the closed-form marginal log-likelihood (see Eq.
26) w.r.t. the prior parameters φ.

MAP approximation. A maximum a-posteriori (MAP) approximation of Q∗ is the
simplest way to obtain a practical meta-learning algorithm from our PAC-Bayesian theory.
In particular, it approximates the Q∗(φ) by a Dirac measure δφ(φ∗) on the prior parameter
vector φ∗ that maximizes Q∗, i.e., φ∗ = arg maxφQ∗(φ). To find φ∗, we initially randomly

initialize φ, and then optimize φ by performing gradient descent on ∇̃φ logQ∗(φ).
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SVGD approximation. SVGD (Liu and Wang, 2016) approximates Q∗ as a set of par-
ticles Q̂ = {P1, ..., PK}. In our setup, each particle corresponds to the parameters of the GP
prior, i.e., Q̂ = {φ1, ..., φK}. Initially, we sample random priors φk ∼ P from our hyper-prior.
Then, the SVGD iteratively transports the set of particles to match Q∗, by applying a form
of functional gradient descent that minimizes DKL(Q̂|Q∗) in the reproducing kernel Hilbert
space induced by k(·, ·). We choose a squared exponential kernel with length scale (hyper-

)parameter `, i.e., k(φ, φ′) = exp
(
− ||φ−φ

′||22
2`

)
. In each iteration, the particles are updated by

φk ← φk + ηtψ
∗(φk) , with ψ∗(φ) =

1

K

K∑
l=1

[k(φl, φ)∇φl logQ∗(φl) +∇φlk(φl, φ)] .

VI approximation. When aiming to approximate Q∗ via variational inference, we
consider the variational family of Gaussians with diagonal covariance matrices over our prior
parameters φ. In particular, we have variational hyper-posteriors of the form

Q̃υ(φ) = N (φ;µQ, σ
2
Q), with υ = (µQ, log σQ)

where we parameterize the variance of Q̃ in the log-space to avoid a positivity constraint.
The resulting VI loss follows as

JVI(υ) = −Eφ∼Qυ

[
m̃

m̃+ 1

n∑
i=1

1

mi
logZ(Si, Pφ) + logP(φ)− logQυ(φ)

]
. (116)

Here, m̃ is the harmonic mean of dataset sizes m1, ...,mn. To estimate the gradients of JVI(υ)
w.r.t. υ, we employ a pathwise gradient estimator, also known as reparametrization trick.
That is, we sample a set ofK prior parameters φk := µQ+σQεk, εk ∼ N (0, I) as well as a mini-
batch of H datasets S1, ..., SH and compute an unbiased gradient estimate of (116) as follows:

∇υJVI(υ) ≈ − 1

K

L∑
k=1

∇µQ,σQ

(
n

H
· m̃

m̃+ 1

H∑
h=1

1

mh
logZ(Sh, Pφk) + logP(φk)− logQυ(φk)

)
.

(117)
During gradient descent with ∇υJVI(υ), we employ the adaptive learning rate method Adam.
Due to the double stochasticity (mini-batches of tasks and mini-batches of φk ∼ Qυ), we
found that in practice the gradient estimates of the marginal log-likelihood term in (117)
are very noisy whereas the second and third term (meta-level KL-divergence) are subject
to less variance. As a result, the less noisy gradients of the KL-divergence dominate during
gradient-descent, pushing the VI posterior towards the prior which in turn leads to a higher
entropy of Qυ and even noisier gradient estimates for the marginal log-likelihood term. To
counteract this explosion in hyper-posterior entropy, we add a weight 0 < η < 1 in front of
logP(φ)− logQυ(υ) which effectively down-scales the effect of DKL(Qφ||P) and improves
results significantly. Such tempering of the prior often help when the Gaussian prior (here
hyper-prior) is misspecified and has been studied in e.g. Fortuin et al. (2022).

C.2 Meta-Testing / target training with PACOH-GP

Meta-learning with PACOH gives us an approximation of Q∗. In target-testing (see Figure 1),
the base learner is instantiated with the meta-learned prior Pφ, receives a dataset S̃ = (X̃, ỹ)
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from an unseen task D ∼ T and outputs a posterior Q as product of its inference. In our GP
setup, Q is the GP posterior and the predictive distribution p̂(y∗|x∗, X̃, ỹ, φ) is a Gaussian (for
details, see Rasmussen and Williams, 2006). Since the meta-learner outputs Q, a distribution
over priors, we may obtain different predictions for different priors Pφ ∼ Q, sampled from
the hyper-posterior. To obtain a predictive distribution we empirically marginalize Q. That
is, we draw a set of prior parameters φ1, ..., φK ∼ Q from the hyper-posterior, compute their
respective predictive distributions p̂(y∗|x∗, X̃, ỹ, φk) and form an equally weighted mixture:

p̂(y∗|x∗, X̃, ỹ,Q) = Eφ∼Q
[
p̂(y∗|x∗, X̃, ỹ, φ)

]
≈ 1

K

K∑
k=0

p̂(y∗|x∗, X̃, ỹ, φk) , φk ∼ Q (118)

Since we are concerned with GPs, (118) coincides with a mixture of Gaussians. As one
would expect, the mean prediction under Q (i.e., the expectation of (118)), is the average
of the mean predictions corresponding to the sampled prior parameters φ1, ..., φK . In case
of PACOH-GP-VI, we sample K = 100 priors from the variational hyper-posterior Q̃. For
PACOH-GP-SVGD, samples from the hyper-posterior correspond to the K = 10 particles.
PACOH-GP-MAP can be viewed as a special case of SVGD with K = 1, that is, only one
particle. Thus, p̂(y∗|x∗, X̃, ỹ,Q) ≈ p̂(y∗|x∗, X̃, ỹ, φMAP ) is a single Gaussian.

Appendix D. PACOH-NN algorithm details

Here, we summarize and further discuss our proposed meta-learning algorithm PACOH-NN.
An overview of our proposed framework is illustrated in Figure 1. Overall, it consists of the
two stages meta-training and meta-testing, which we explain in more details in the following.

D.1 Meta-training with PACOH-NN

The hyper-posterior distribution Q that minimizes the upper bound on the transfer error

is given by Q∗(P ) ∝ P(P ) exp
(∑n

i=1
λ

nβi+λ
log Z̃(Si, P )

)
. Here, we no longer assume that

m = mi ∀i = 1, ..., n, which was done in the theory to maintain notational brevity. Thus,
we use a different βi for each task as we want to set βi = mi or βi =

√
mi. Provided with a

set of datasets S1, ..., Sn, the meta-learner minimizes the respective meta-objective, in the
case of PACOH-NN-SVGD, by performing SVGD on the Q∗. PACOH-NN-MAP can be
considered a special case of the SVGD-based approximation of Q∗ with only one particle, i.e.,
K = 1. Algorithm 2 outlines the required steps in more detail. Alternatively, to estimate
the score of ∇φkQ̃∗(φk), we can use mini-batching at both the task and the dataset level.
Specifically, for a given meta-batch size of nbs and a batch size of mbs, we get Algorithm 3.

D.2 Meta-testing / target training with PACOH-NN

The result of meta-training with PACOH-NN is a set of neural network priors {Pφ1 , ..., PφK}.
To understand how good these meta-learned priors are, we need to instantiate our base learner
with these priors and evaluate its performance on an unseen learning task τ = (D,m) ∼ T
when given a corresponding training dataset S̃ ∼ Dm. In case of neural networks, our base
learner forms a generalized Bayesian posterior Q∗(S, Pφ) over neural networks parameters φ.
Since this Q∗(S, Pφ) is intractable for neural networks, we employ SVGD to approximate it—a
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Algorithm 3 PACOH-NN-SVGD: mini-batched meta-training

Input: hyper-prior P, datasets S1, ..., Sn
Input: kernel function k(·, ·), SVGD step size η, number of particles K
{φ1, ..., φK} ∼ P // Initialize prior particles
while not converged do
{T1, ..., Tnbs} ⊆ [n] // sample nbs tasks uniformly at random
for i = 1, ..., nbs do
S̃i ← {z1, ..., zmbs} ⊆ STi // sample mbs datapoints from STi uniformly at random

end for
for k = 1, ...,K do
{θ1, ..., θL} ∼ Pφk // sample NN-parameters from prior
for i = 1, ..., nbs do

log Z̃(S̃i, Pφk)← LSELl=1

(
−βiL̂(θl, S̃i)

)
− logL // estimate generalized MLL

end for
∇φk log Q̃∗(φk)← ∇φk logP(φk) + n

nbs

∑nbs
i=1

λ
nβi+λ

∇φk log Z̃(Si, Pφk) // compute
score

end for
φk ← φk + η

K

∑K
k′=1

[
k(φk′ , φk)∇φk′ log Q̃∗(φk′) +∇φk′k(φk′ , φk)

]
∀k ∈ [K] // SVGD

end while
Output: set of priors {Pφ1 , ..., PφK}

standard procedure in the context of Bayesian Neural Networks. Algorithm 4 details the steps
of the approximating procedure—referred to as target training—when performed via SVGD.
For a data point x∗, the respective predictor outputs a probability distribution given as
p̃(y∗|x∗, S̃)← 1

K·L
∑K

k=1

∑L
l=1 p(y∗|hθkl (x∗)). We evaluate the quality of the predictions on a

held-out test dataset S̃∗ ∼ D from the same task, in a target testing phase (see Appendix E.2).

Algorithm 4 PACOH-NN: meta-testing

Input: set of priors {Pφ1 , ..., PφK}, target training dataset S̃
Input: kernel function k(·, ·), SVGD step size ν, number of particles L
for k = 1, ...,K do
{θk1 , ..., θkL} ∼ Pφk // initialize NN posterior particles from k-th prior
while not converged do

for l = 1, ..., L do
∇θkl Q

∗(θkl ))← ∇θkl logPφk(θkl )) + β ∇θkl L(l, S̃) // compute score

end for
θkl ← θkl + ν

L

∑L
l′=1

[
k(θkl′ , θ

k
l )∇θk

l′
logQ∗(θkl′) +∇θk

l′
k(θkl′ , θ

k
l )
]
∀l ∈ [L] // update

end while
end for
Output: a set of NN parameters

⋃K
k=1{θk1 ..., θkL}
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D.3 Properties of the score estimator

Since the marginal log-likelihood of BNNs is intractable, we have replaced it by a numerically
stable Monte Carlo estimator log Z̃β(Si, Pφ) in (27), in particular

log Z̃β(Si, Pφ) := log
1

L

L∑
l=1

e−βL̂(θl,Si) = LSELl=1

(
−βL̂(θl, Si)

)
− logL , θl ∼ Pφ . (119)

Since the Monte Carlo estimator involves approximating an expectation of an exponential,
it is not unbiased. However, we can show that replacing logZβ(Si, Pφ) by the estimator
log Z̃β(Si, Pφ), we still minimize a valid upper bound on the transfer error (see Proposition
13).

Proposition 16 In expectation, replacing logZβ(Si, Pφ) in (12) by the Monte Carlo esti-

mate log Z̃β(Si, P ) := log 1
L

∑L
l=1 e

−βL̂(θl,Si), θl ∼ P still yields a valid upper bound of the
transfer error. In particular, it holds that

L(Q, T ) ≤ − 1

n

n∑
i=1

1

β
EP∼Q [logZ(Si, P )] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C (120)

≤ − 1

n

n∑
i=1

1

β
EP∼Q

[
Eθ1,...,θL∼P

[
log Z̃(Si, P )

]]
+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C.

(121)

Proof First, we show that:

Eθ1,...,θL∼P
[
log Z̃β(Si, P )

]
= Eθ1,...,θL∼P

[
log

1

L

L∑
l=1

e−βL̂(θl,Si)

]

≤ log
1

L

L∑
l=1

Eθl∼P
[
e−βL̂(θl,Si)

]
= logZβ(Si, P ) (122)

which follows directly from Jensen’s inequality and the concavity of the logarithm. Now,
Proposition 16 follows directly from (122).

By the law of large numbers, it is straightforward to show that as L→∞, the log Z̃(Si, P )
a.s.−−→

logZ(Si, P ), i.e., the estimator becomes asymptotically unbiased and we recover the original
PAC-Bayesian bound (i.e., (121)

a.s.−−→ (120)). Also, it is noteworthy that the bound in (121)
we get by our estimator is, in expectation, tighter than the upper bound when using the
näıve estimator log Ẑβ(Si, P ) := −β 1

L

∑L
l=1 L̂(θl, Si) θl ∼ Pφ which can be obtained by

applying Jensen’s inequality to logEθ∼Pφ
[
e−βL̂(θ,Si)

]
. In the edge case L = 1, our LSE

estimator log Z̃β(Si, P ) falls back to this näıve estimator and coincides in expectation with

E[log Ẑβ(Si, P )] = −β Eθ∼P L̂(θl, Si). As a result, we effectively minimize the looser upper
bound

L(Q, T ) ≤ 1

n

n∑
i=1

Eθ∼P
[
L̂(θ, Si)

]
+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, n, m̃).
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Figure S1: Depiction of tasks (i.e., functions) sampled from the Sinusoid and Cauchy task
environment, respectively. Note that the Cauchy task environment is two-dimensional
(dim(X ) = 2), while (b) displays a one-dimensional projection.

= Eθ∼P

 1

n

n∑
i=1

1

mi

mi∑
j=1

− log p(yij |xij , θ)

+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, n, m̃)

Since the boundaries between the tasks vanish in the edge case of L = 1, i.e., all data-
points are treated as if they would belong to one dataset, we should choose L > 1. In our
experiments, we used L = 5 and found the corresponding approximation to be sufficient.

Appendix E. Experiments

E.1 Meta-Learning Environments

We provide further details on the meta-learning environments used in Section 8. Information
about the numbers of tasks and samples per environments can be found in Table S1.

Sinusoid Cauchy SwissFEL Physionet Berkeley

n 20 20 5 100 36
mi 5 20 200 4 - 24 288

Table S1: Number of tasks n and samples per task mi for the meta-learning environments.

Sinusoids. Each task of the sinusoid environment corresponds to a parametric function

fa,b,c,β(x) = β · x+ a · sin(1.5 · (x− b)) + c , (123)

which, in essence, consists of an affine as well as a sinusoid function. Tasks differ in the
function parameters (a, b, c, β) that are sampled from the task environment T as follows:

a ∼ U(0.7, 1.3), b ∼ N (0, 0.12), c ∼ N (5.0, 0.12), β ∼ N (0.5, 0.22) . (124)

Figure S1a depicts functions fa,b,c,β with parameters sampled according to (124). To draw

57



Rothfuss, Josifoski, Fortuin, Krause

training samples from each task, we draw x uniformly from U(−5, 5) and add Gaussian noise
with standard deviation 0.1 to the function values f(x):

x ∼ U(−5, 5) , y ∼ N (fa,b,c,β(x), 0.12) . (125)

Cauchy. Each task of the Cauchy environment can be interpreted as a two-dimensional
mixture of Cauchy distributions plus a function sampled from a Gaussian process prior with

zero mean and SE kernel function k(x, x′) = exp
(
||x−x′||22

2l

)
with l = 0.2. The (unnormalized)

mixture of Cauchy densities is defined as:

m(x) =
6

π · (1 + ||x− µ1||22)
+

3

π · (1 + ||x− µ2||22)
, (126)

with µ1 = (−1,−1)> and µ2 = (2, 2)>. Functions from the environment are sampled as

f(x) = m(x) + g(x) , g ∼ GP(0, k(x, x′)) . (127)

Figure S1b depicts a one-dimensional projection of functions sampled according to (127).
To draw training samples from each task, we draw x from a truncated normal distribution
and add Gaussian noise with standard deviation 0.05 to the function values f(x):

x := min{max{x̃, 2},−3} , x̃ ∼ N (0, 2.52) , y ∼ N (f(x), 0.052) . (128)

SwissFEL. Free-electron lasers (FELs) accelerate electrons to generate pulsed laser beams
in the X-ray spectrum. They can be used to map nanometer-scale structures, e.g., in
molecular biology and material science. The accelerator and the electron beam line of a
FEL consist of multiple undulators whose parameters can be adjusted to maximize the pulse
energy (Kirschner et al., 2019a). Due to different operational modes, parameter drift, and
changing (latent) conditions, the laser’s pulse energy function changes across time. Hence,
optimizing the laser’s parameters is a recurrent task.
Overall, our meta-learning environment consists of different parameter optimization runs
(i.e., tasks) on the SwissFEL (Milne et al., 2017). The input space, corresponding to the
laser’s parameters, has 12 dimensions. The scalar regression target is the pulse energy.
For details on the individual parameters, we refer to Kirschner et al. (2019b). For each
run, we have around 2000 data points. Since these data-points are generated with online
optimization methods, the data are non-i.i.d. and get successively less diverse throughout
the optimization. Hence, we only take the first 400 data points per run and split them into
training and test subsets of size 200. Overall, we have 9 runs (tasks) available. 5 of those
runs are used for meta-training and the remaining 4 runs are used for meta-testing.

PhysioNet. The 2012 Physionet competition (Silva et al., 2012) published a dataset of
patient stays on the intensive care unit (ICU). Each patient stay consists of a time series
over 48 hours, where up to 37 clinical variables are measured. The original task in the
competition was binary classification of patient mortality, but, due to the large number of
missing values (ca. 80 % of features), the dataset is also popular as a test bed for time series
prediction. We treat each patient as a separate task and the different clinical variables as
different environments. We use the Glasgow coma scale (GCS) and hematocrit value (HCT)

58



Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior

as environments for our study, since they are among the most frequently measured variables
in this dataset. From the dataset, we remove all patients where less than four measurements
of CGS (and HCT respectively) are available. From the remaining patients we use 100
patients for meta-training and 500 patients each for meta-validation and meta-testing. Here,
each patient corresponds to a task. Since the number of available measurements differs
across patients, the number of training points mi ranges between 4 and 24.

Berkeley-Sensor. We use data from 46 sensors deployed in different locations at the Intel
Research lab in Berkeley (Madden, 2004). The dataset contains 4 days of data, sampled
at 10 minute intervals. Each task corresponds to one of the 46 sensors and requires auto-
regressive prediction, in particular, predicting the next temperature measurement given the
last 10 measurement values. 36 sensors (tasks) with data for the first two days are used
for meta-training, whereas the remaining 10 sensors with data for the last two days are
employed for meta-testing. Note that we separate meta-training and -testing data both
temporally and spatially, since the data is non-i.i.d. For the meta-testing, we use the 3rd
day as context data, i.e., for target training, and the remaining data for target testing.

E.2 Experimental Methodology

In the following, we describe our experimental methodology and provide details on how the
empirical results reported in Section 8 were generated. Overall, evaluating a meta-learner
consists of two phases, meta-training and meta-testing, outlined in Appendix D. The latter
can be further sub-divided into target training and target testing. Figure 1 illustrates these
different stages for our PAC-Bayesian meta-learning framework.

The outcome of the training procedure is an approximation of the generalized Bayesian
posterior Q∗(S, P ) (see Appendix D), pertaining to an unseen task τ = (D,m) ∼ T from
which we observe a dataset S̃ ∼ Dm. In target-testing, we evaluate its predictions on a
held-out test dataset S̃∗ ∼ D from the same task. For PACOH-NN, NPs, and MLAP, the
respective predictor outputs a probability distribution p̂(y∗|x∗, S̃) for the x∗ in S̃∗. The
respective mean prediction corresponds to the expectation of p̂, that is ŷ = Ê(y∗|x∗, S̃). In
the case of MAML, only a mean prediction is available. Based on the mean predictions,
we compute the root mean-squared error (RMSE) and the calibration error (see Appendix
E.2.1). Rather than reporting the test log-likelihood, this allows us to measure the quality of
mean predictions and the quality of uncertainty estimates separately. The meta-training and
meta-testing procedure is repeated for five random seeds that influence both the initialization
and gradient-estimates of the algorithms. The reported averages and standard deviations
are based on the results obtained for different seeds.

E.2.1 Calibration Error

The concept of calibration applies to probabilistic predictors that, given a new target input
xi, produce a probability distribution p̂(yi|xi) over predicted target values yi.

Calibration error for regression. Corresponding to the predictive density, we denote a
predictor’s cumulative density function (CDF) as F̂ (yj |xj) =

∫ yj
−∞ p̂(y|xi) dy. For confidence
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levels 0 ≤ qh < ... < qH ≤ 1, we can compute the corresponding empirical frequency

q̂h =
|{yj | F̂ (yj |xj) ≤ qh, j = 1, ...,m}|

m
, (129)

based on dataset S = {(xi, yi)}mi=1 of m samples. If we have calibrated predictions we would
expect that q̂h → qh as m → ∞. Similar to (Kuleshov et al., 2018), we can define the
calibration error as a function of residuals q̂h − qh, in particular,

calib-err =
1

H

H∑
h=1

|q̂h − qh| . (130)

Note that while Kuleshov et al. (2018) report the average of squared residuals |q̂h − qh|2, we
report the average of absolute residuals |q̂h − qh| in order to preserve the units and keep the
calibration error easier to interpret. In our experiments, we compute (130) with M = 20
equally spaced confidence levels between 0 and 1.
Calibration error for classification. Our classifiers output a categorical probability
distribution p̂(y = k|x) for k = 1, ..., C where Y = {1, ..., C} with C denoting the number
of classes. The prediction of the classifier is the most probable class label, i.e., ŷj =
arg maxk p̂(yj = k|xj). Correspondingly, we denote the classifiers confidence in the prediction
for the input xj as p̂j := p̂(yj = ŷj |xj). Following the calibration error definition of Guo
et al. (2017), we group the predictions into H = 20 interval bins of size 1/H depending
on their prediction confidence. In particular, let Bh = {j | pj ∈

(
h−1
H , hH

]
} be the set of

indices of test points {(xj , yj)}mj=1 whose prediction fall into the interval
(
h−1
H , hH

]
⊆ (0, 1].

Formally, we define the accuracy of within a bin Bh as acc(Bh) = 1
|Bh|

∑
j∈Bh 1(ŷi = yj)

and the average confidence within a bin as conf(Bh) = 1
|Bh|

∑
j∈Bh p̂j . If the classifier is

calibrated, we expect that the confidence of the classifier reflects its accuracy on unseen test
data, that is, acc(Bh) = conf(Bh) ∀h = 1, ....,H. As proposed by Guo et al. (2017), we use
the expected calibration error (ECE) to quantify how much the classifier deviates from this
criterion: More precisely, in Table 4, we report the ECE with the following definition:

calib-err = ECE =
H∑
h=1

|Bh|
m

∣∣acc(Bh)− conf(Bh)
∣∣ (131)

with m denoting the overall number of test points.

E.3 Open Source Code and Hyper-Parameter Selection

We provide open-source implementations of the PACOH method. In particular, the PACOH-
GP variants are implemented in PyTorch and available in the PACOH-GP code repository4.
The PACOH-NN variants are implemented in Tensorflow and available here5.
For each of the meta-environments and algorithms, we ran a separate hyper-parameter search
to select the hyper-parameters. In particular, we used the hyperopt6 package (Bergstra et al.,

4. https://github.com/jonasrothfuss/meta learning pacoh

5. https://github.com/jonasrothfuss/pacoh nn

6. http://hyperopt.github.io/hyperopt/
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Allele A-0202 A-0203 A-0201 A-2301 A-2402

mi 1446 1442 3088 103 196

Table S2: MHC-I alleles used for meta-training and corresponding number of samples mi.

2013) which performs Bayesian optimization based on regression trees. As the optimization
metric, we employed the average log-likelihood, evaluated on a separate validation set of tasks.

The scripts for reproducing the hyper-parameter search are included in the PACOH-GP
code repository. For the reported results, we provide the selected hyper-parameters and
detailed evaluation results under https://tinyurl.com/s48p76x.

E.4 Meta-Learning for Bayesian Optimization: Vaccine Development

Here, we provide additional details on the experiment in Section 8.3.

Data and BO task setup. We use data from Widmer et al. (2010), which contains the
binding affinities (IC50 values) of many peptide candidates to seven different MHC-I alleles.
Following Krause and Ong (2011), we convert the IC50 values into negative log-scale and
normalize them such that 500nM corresponds to zero, i.e., r := − log10(IC50) + log10(500),
which is used as the reward signal (i.e. objective function) for our Bayesian Optimization .

We use 5 alleles (A-0202, A-0203, A-0201, A-2301, A-2402) to meta-learn a BNN prior. The
alleles and the corresponding number of data points, available for meta-training, are listed
in Table S2. The most genetically dissimilar allele (A-6901) is used for our BO task. In
each iteration, the experimenter (i.e., BO algorithm) chooses to test one peptide among
the pool of 813 candidates and receives r as the reward feedback. Hence, we are concerned
with an 813-arm bandit wherein the action at ∈ {1, ..., 813} = A in iteration t corresponds
to testing the at-th peptide candidate. In response, the algorithm receives the respective
negative log-IC50 as reward r(at).

As metrics, we report the average regret

Ravg.T := max
a∈A

r(a)− 1

T

T∑
t=1

r(at)

and the simple regret

RsimpleT := max
a∈A

r(a)− max
t=1,...,T

r(at) .

The PACOH-UCB/TS approach. First, we perform meta-learning with PACOH-NN-
SVGD on the five datasets S1, ..., S5 which correspond to the five alleles A-0202, A-0203,
A-0201, A-2301, A-2402. As a result, we obtain an approximate hyper-posterior, i.e., a set
of priors {Pφ1 , ..., PφK}.
After the meta-learning stage, we perform BO on the test allele (A-6901). Initially, we
query a random action a0 ∈ A. From then on, actions at (t > 0) are chosen either via
UCB or Thompson Sampling (TS). In every iteration t = 1, ..., T , we have access to the
previously queried data S̃<t = {(sat′ , yat′ )}

t−1
t′=0. As described in Appendix D.2, we use this

data in combination with the meta-learned prior to obtain an approximate posterior which
is represented as a set of NN parameters

⋃K
k=1{θk1 , . . . , θkL} (cf. Algorithm 4). In the case
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of the Upper-Confidence Bound (UCB) acquisition algorithm, we choose the action that
maximizes the UCB, i.e.,

at = arg max
a∈A

µ̃(ya|xa, S̃<t) + βσ̃(ya|xa, S̃<t) , (132)

where µ̃(y|x, S̃<t) = 1
K·L

∑K
k=1

∑L
l=1 hθkl

(x) is the predictive mean and σ̃2(y|xS̃<t) =
1

K·L
∑K

k=1

∑L
l=1(hθkl

(x) − µ̃(y|x, S̃<t))2 the epistemic variance of the BNN trained with

S̃<t. We use β = 2 for the BO experiments. In the case of Thompson Sampling (TS), the
next action is chosen by sampling a function from the posterior and picking its maximum.
In our case, this is done by uniformly sampling one of the NN particles/parameters and
taking the action a that maximizes the corresponding NN function hθkl

(xa)

at = arg max
a∈A

hθkl
(xa) with k ∼ U(1, ..., L), l ∼ U(1, ..., L) . (133)

Baselines. The BNN-UCB and BNN-TS baselines work analogously except that instead
of meta-learned priors, we use a zero-centered Gaussian prior over the NN parameters. In
the case of GP-UCB (Srinivas et al., 2009), a Gaussian Process (GP) instead of a BNN
is used as a surrogate model of the objective function. To ensure a fair comparison, the
prior parameters of the GP are meta-learned by minimizing the GP’s marginal log-likelihood
on the five meta-training tasks. For the prior, we use a constant mean function and tried
various kernel functions (linear, SE, Matern). Due to the 45-dimensional feature space, we
found the linear kernel to work best. So, the constant mean and the variance parameter
of the linear kernel are meta-learned.
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