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Abstract
We consider distributed statistical optimization and inference in the presence of heterogeneity
among distributed data blocks. A weighted distributed estimator is proposed to improve the sta-
tistical efficiency of the standard “split-and-conquer” estimator for the common parameter shared
by all the data blocks. The weighted distributed estimator is at least as efficient as the would-be
full sample and the generalized method of moment estimators with the latter two estimators re-
quiring full data access. A bias reduction is formulated for the weighted distributed estimator to
accommodate much larger numbers of data blocks (relaxing the constraint from K = o(N1/2)
to K = o(N2/3), where K is the number of blocks and N is the total sample size) than the ex-
isting methods without sacrificing the statistical efficiency at the same time. The mean squared
error bounds, the asymptotic distributions, and the corresponding statistical inference procedures
of the weighted distributed and the debiased estimators are derived, which show an advantageous
performance of the debiased weighted estimators when the number of data blocks is large.
Keywords: bias correction; distributed inference; heterogeneity; split-and-conquer method; weighted
estimation.

1 Introduction

Modern big data have brought new challenges to statistical inference. One such challenge is that
despite the sheer volume of the data, full communication among the data points may not be possible
due to either the cost of data communication or the privacy concern. The distributed or the “split-
and-conquer” method has been proposed to divide the full data sample into smaller size data blocks
to avoid data communication. The split-and-conquer estimator is also suited to situations where
the data are naturally divided into data blocks and data communication among the data blocks are
prohibited due to privacy concern. The “split-and-conquer” estimation has been considered in Lin
and Xi (2010) for the U-statistics, Zhang et al. (2013) for the statistical optimization, Chen and Xie
(2014) for the generalized linear models, Volgushev et al. (2017) and Chen et al. (2019) for the
quantile regression, Battey et al. (2018) for high dimensional testing and estimation, and Chen and
Peng (2021) for asymptotic symmetric statistics (Lai and Wang, 1993). Bootstrap resampling-based
methods had been introduced to facilitate statistical inference. Kleiner et al. (2011) proposed the
bag-of-little bootstrap (BLB) method for the plug-in estimators by making up economically the full
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sample for the distributed inference. Sengupta et al. (2015) suggested a sub-sampled double boot-
strap method designed to improve the computational efficiency of the BLB. Chen and Peng (2021)
proposed the distributed and the pseudo-distributed bootstrap methods with the former conducting
the resampling within each data block while the latter directly resampling the distributed statistics.

Privacy has been a major concern in big data applications where people are naturally reluctant
to share the raw data to form a pool of big data as practised in the traditional full sample estimation.
However, the data holders may like to contribute summary statistics without having to give away
the full data information. Federated Learning or the distributed inference with a central host has
been proposed to accommodate such reality (McMahan et al., 2017; Yang et al., 2019; Li et al.,
2020; Kairouz et al., 2021), where summary statistics of the data blocks or the gradients of the
objective functions associated with the private data blocks are submitted to a central host for forming
aggregated estimation or computation.

Homogeneous distribution among the data blocks is assumed in the majority of the statistical
distributed inference studies with a few exceptions (Zhao et al., 2014; Duan et al., 2021). Federated
Learning, on the other hand, was introduced to mitigate challenges arising from classical distributed
optimization. In particular, heterogeneous or non-IID distributed data across different data blocks
is one of the defining characteristics in the Federated Learning (Li et al., 2020; Kairouz et al.,
2021). Indeed, it is natural to expect the existence of heterogeneity, especially for data stored in
different locations or generated by different stochastic mechanisms, for instance, mobile phones of
different users. But few works have focused on the asymptotic statistical properties of the estimator,
especially in a heterogeneous setting.
Main Contributions. This paper considers distributed statistical inference under heterogeneous
distributions among the data blocks, where there is a common parameter shared by the distributions
of the data blocks and data-block-specific heterogeneous parameters. It is noted that Duan et al.
(2021) also considered a heterogeneous setting but under a fully parametric framework. Specifically,
the main contributions of this paper are as follows:

• Our study reveals that in the presence of heterogeneity the full sample estimator of the com-
mon parameter obtained by requiring full data access, can be less efficient than the split-and-
conquer estimator. It is found that this phenomenon disappears if the objective function of the
statistical optimization satisfies a generalized second-order Bartlett’s identity.

• We propose a weighted distributed (WD) estimator, which is asymptotically at least as effi-
cient as the full sample and the split-and-conquer estimators when the number of data blocks
K = o(N1/2), whereK is the number of data blocks andN is the total sample size. The mean
squared error bound and the asymptotic distribution of the proposed weighted distributed es-
timator are derived, as well as the asymptotic equivalence between the weighted distributed
and the generalized method of moment (GMM) estimator (Hansen, 1982).

• We also propose a debiased weighted distributed estimator with a data splitting mechanism on
each data block to remove the dependency between the bias correction and the weights used
to tackle the heterogeneity. The debiased weighted distributed estimator is asymptotically
as efficient as the WD estimator but allows quicker growth for the number of blocks K =
o(N2/3). The bias correction is also applied to the split-and-conquer formulation, leading to
a more communication-efficient debiased split-and-conquer estimator.
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2 Preliminaries

Suppose that there is a large data sample of size N , which is divided into K data blocks of sizes
{nk}Kk=1 such thatN =

∑K
k=1 nk and let n = NK−1 be the average sample size of the data blocks.

For the relative sample sizes among data blocks, we assume the following

Assumption 1 There exist c, C > 0 such that c ≤ nk1/nk2 ≤ C for all pairs of (k1, k2).

The k-th data block consists of a sub-sample {Xk,i}nki=1 which are independent and identically
distributed (IID) random vectors from a probability space (Ω,F , P ) to (Rd,Rd) with Fk as the
distribution. The K distributions {Fk}Kk=1 share a common parameter φ ∈ Rp1 , while each Fk
has another parameter λk ∈ Rp2 specific to Fk. The parameters of interests in the k-th block
are θk = (φT , λTk )T ∈ Rp where p = p1 + p2, and the overall parameters of interests are θ =
(φT , λT1 , λ

T
2 , ..., λ

T
K)T ∈ Rp1+Kp2 .

Suppose there is a common objective function M(X;φ, λk) that is convex with respect to the
parameter θk = (φT , λTk )T and facilitates the statistical optimization in each data block. In gen-
eral, the loss function can be made block-specific, say Mk(·; ·) function. Indeed, the presence of
the heterogeneous local parameters {λk}Kk=1 leads to different Mk(x, φ) = M(x;φ, λk) for the
inference on φ, which connects to the multi-task learning. In the k-th data block the true parameter
θ∗k = (φ∗T , λ∗Tk )T is defined as the unique minimum of the expected objective function, namely

θ∗k = arg min
θk∈Θk

EFk (M(Xk,1;φ, λk)) .

The true common parameter φ∗ appears in all θ∗k, and the block-specific {λ∗k}Kk=1 may differ from
each other. The entire true parameters θ∗ = (φ∗T , λ∗T1 , · · · , λ∗TK )T , can be also identified as

θ∗ = arg min
θ∈Θ

K∑
k=1

γkEFk (M(Xk,1;φ, λk)) ,

where γk = limk→∞ (nk/N) is the asymptotic proportion of the local sample size nk relative to the
total sample size N such that

∑K
k=1 γk = 1.

Our study is conducted under the semiparametirc setting, which does not assume knowledge of
the data distribution of X but knowing the functional form of M(·; ·), and hence semiparametric.
It is a setting situated between the parametric and the nonparametric settings. Parametric setting
means a full knowledge in the data generation distribution, which means that in the context of the
M-estimation one knows the form of each Pk up to some parameter θ so that Pk = Pk(θ), where
Pk(θ) is a parametrized form of Pk. In contrast, the nonparametric setting is where neither the form
of the target quantities nor the distribution of X is known. The difficulty with the nonparametric
setting is due to not knowing the forms of the data distribution and the quantities of interests.

If the data could be shared across the data blocks, we would attain the conventional full sample
estimator

θ̂full = arg min
θ∈Θ

K∑
k=1

nk∑
i=1

M(Xk,i;φ, λk), where θ̂full = (φ̂Tfull, λ̂
T
1,full, · · · , λ̂TK,full)

T ,

which serves as a benchmark for distributed estimators. The estimating equations for the full sample
estimators are {∑K

k=1

∑nk
i=1 ψφ(Xk,i;φ, λk) = 0,∑nk

i=1 ψλ(Xk,i;φ, λk) = 0 k = 1, ...,K,
(1)
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where ψφ(Xk,i;φ, λk) = ∂M(Xk,i;φ, λk)/∂φ and ψλ(Xk,i;φ, λk) = ∂M(Xk,i;φ, λk)/∂λk are
the score functions. The above full sample estimation is not attainable for the distributed situations
due to privacy or the costs associated with the data communication. The distributed estimation
first conducts local estimation on each data block, namely the local estimator θ̂k = (φ̂Tk , λ̂

T
k )T =

arg minθk∈Θk

∑nk
i=1M(Xk,i; θk) with the corresponding estimating equations{∑nk

i=1 ψφ(Xk,i;φk, λk) = 0,∑nk
i=1 ψλ(Xk,i;φk, λk) = 0,

(2)

and the split-and-conquer estimator for the common parameter φ is

φ̂SaC =
1

N

K∑
k=1

nkφ̂k. (3)

The heterogeneity among the distributions of the data blocks calls for study the relative effi-
ciency and the estimation errors, which are the focus of this paper. We are to show that the split-
and-conquer estimator (3) may not be the best formulation for estimating φ. Throughout this paper,
unless otherwise stated, ‖ · ‖2 represents the `2 norm of a vector and a matrix. We will use C and
Ci to denote positive constants independent of (nk,K,N).

An important question is the efficiency and the estimation errors of the split-and-conquer esti-
mator φ̂SaC relative to the full sample estimator φ̂full. For the homogeneous case, Chen and Peng
(2021) found that for the asymptotic symmetric statistics, the split-and-conquer estimator (3) attains
the same efficiency as the full sample estimator in the non-degenerate case but encounters an effi-
ciency loss in the degenerate case1, due to a lack of communication among different data blocks.
Zhang et al. (2013) derived the mean squared error bound for the split-and-conquer estimator in
the homogeneous case and showed that whenever K = O(N1/2), the split-and-conquer estimator
achieves the best possible rate of convergence when all N data are accessible.

Consider the estimating equations of the full sample statistical optimization

ΨN (X; θ) =


∑K

k=1

∑nk
i=1 ψφ(Xk,i;φ, λk)∑n1

i=1 ψλ(X1,i;φ, λ1)
...∑nK

i=1 ψλ(XK,i;φ, λK)

 . (4)

Let Ψθ(θk) = ∇θkE (M(Xk,1; θk)) and Jk(θk) = ∇TθkΨθ(θk) be the first and second order gradi-
ents of the k-th population objective function, respectively, whose matrix forms are:

Ψθ(θk) = (Ψφ(θk)
T ,Ψλ(θk)

T )T , Jk(θk) =

(
Ψφ
φ(θk) Ψλ

φ(θk)

Ψφ
λ(θk) Ψλ

λ(θk)

)
.

1. The symmetric statistics admits the expansion Tn = θ+n−1 ∑n
i=1 α(Xi;F )+n−2 ∑

1≤i<j≤n β(Xi, Xj ;F )+Rn
(Lai and Wang, 1993), which covers the U -statistics and M -estimator as special cases. The functions α(x;F ) and
β(x, y;F ), depending on the underlying data distribution F , are known measurable functions of x and y, satisfying
E (α(X1;F )) = 0 and Var(α(X1;F )) = σ2

α ∈ [0,∞) and β(x, y;F ) being symmetric in x and y such that
E (β(X1, X2;F )|X1) = 0 and Var(β(X1, X2;F )) = σ2

β ∈ [0,∞). The degenerate and non-degenerate case
correspond to the σ2

α = 0 and σ2
α > 0 cases, respectively.
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Let Jφ|λ(θk) = Ψφ
φ(θk)−Ψλ

φ(θk)Ψ
λ
λ(θk)

−1Ψφ
λ(θk), Jλ|φ(θk) = Ψλ

λ(θk)−Ψφ
λ(θk)Ψ

φ
φ(θk)

−1Ψλ
φ(θk),

Sφ(Xk,i; θk) = ψφ(Xk,i; θk) − Ψλ
φ(θk)Ψ

λ
λ(θk)

−1ψλ(Xk,i; θk) and Sλ(Xk,i; θk) = ψλ(Xk,i; θk) −
Ψφ
λ(θk)Ψ

φ
φ(θk)

−1ψφ(Xk,i; θk). Then, apply Taylor’s expansion to obtain (see Appendix A.1)

φ̂full − φ∗ = −

(
K∑
k=1

nk
N
Jφ|λ(θ∗k)

)−1

N−1

(
K∑
k=1

nk∑
i=1

Sφ(Xk,i; θ
∗
k)

)
+ op(N

−1/2).

For the local estimator (φ̂k, λ̂k) that solves (2), the same derivation leads to{
φ̂k − φ∗ = −n−1

k Jφ|λ(θ∗k)
−1
∑nk

i=1 Sφ(Xk,i; θ
∗
k) + op(n

−1/2
k ),

λ̂k − λ∗k = −n−1
k Jλ|φ(θ∗k)

−1
∑nk

i=1 Sλ(Xk,i; θ
∗
k) + op(n

−1/2
k ).

Our analysis requires the following conditions.

Assumption 2 (Identifiability) The parameters θ∗k = (φ∗, λ∗k) is the unique minimizer ofMk(θk) =
E(M(Xk,1; θk)) for θk ∈ Θk.

Assumption 3 (Compactness) The true parameter θ∗k is an interior point of the parameter space
Θk which is a compact and convex set in Rp, and supθk∈Θk

‖θk − θ∗k‖2 ≤ r for all k ≥ 1 and some
r > 0. The true common parameter φ∗ is an interior point of a subset Φ ⊂ Θk.

Assumption 4 (Local strong convexity) The population objective function on the k-th data block
Mk(θk) = E(M(Xk,1; θk)) is twice differentiable, and there exists a constant ρ− > 0 such that
∇2
θk
Mk(θ

∗
k) � ρ−Ip×p. Here A � B means A−B is a positive semi-definite matrix.

Assumption 5 (Smoothness I) The objective function on the k-th data is twice differentiable with
respect to θk ∈ Uk, where Uk = {θk | ‖θk − θ∗k‖2 ≤ ρ} and ρ is a positive constant. There are
positive constants R,L, v and v1 such that

E
(
‖∇θkM(Xk,1; θ∗k)‖

2v1
2

)
≤ R2v1 and E

(
‖∇2

θk
M(Xk,1; θ∗k)−∇2

θk
Mk(θ

∗
k)‖2v2

)
≤ L2v

for all k ≥ 1. There also exist a positive function G(·) and a corresponding positive constant G
such that

‖∇2
θk
M(x; θk)−∇2

θk
M(x; θ′k)‖2 ≤ G(x)‖θk − θ′k‖2

for all θk, θ′k ∈ Uk and x ∈ Rd, and E(G(Xk,1)2v) ≤ G2v.

Assumptions 1-5 are standard ones on the parameter space and population objective functions for
the homogeneous case (Jordan et al., 2019). In the heterogeneous case, Duan et al. (2021) requires
the parameter space for the common parameter to be bounded, i.e. ‖φ − φ∗‖ ≤ r under a fully
parametric setting, while we need the overall parameter space to be bounded. The stronger condition
is needed since we do not fully specify the distributions {Fk}Kk=1 and it will be used when we derive
the mean squared error bound for the proposed weighted distributed estimator in Section 4. Besides,
since the differentiability of the objective function is assumed locally, we need Assumption 5 to
define a high probability event in (34), under which all the derivatives are well-defined.
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3 Full Sample versus split-and-conquer Estimation

When the full data communication is available, one would in general prefer making the estimation
based on the pooled data, namely solving the estimating equations (1) rather than the local esti-
mating equations (2). This choice is based on the common belief that the estimator φ̂full utilizes
the full sample information and allow full communications among data blocks. In contrast, for dis-
tributed data, some information requiring interactions between observations may be prohibited (the
degenerate U-statistics), and thus may reduces the statistical efficiency of the SaC estimator φ̂SaC

as compared with φ̂full. In the homogeneous setting, there have been works justifying this reality
(Zhang et al., 2013; Chen and Peng, 2021). However, we will show in this section that this is not
necessarily the case under heterogeneity via a theorem and a concrete example. It is worth men-
tioning that we assume K being fixed in the following Proposition 1 and Theorem 2 for simplicity
of formulating the asymptotic variance of the estimators, which helps us to motivate the construc-
tion of the weighted distributed estimator. We will show more general results and allow diverging
K along with N in the subsequent theoretical results and the supplementary material (see Lemma
B.2 for the uniform consistency of {θ̂k}Kk=1 under diverging K and the relationship between the
divergence rate and the smoothness factors v, v1). In particular, we will discuss how to improve the
divergence rate of K in Section 5.

Proposition 1 Under Assumptions 1 - 4 and Assumption 5 with v, v1 ≥ 1, and if K is fixed, then
θ̂k → θ∗k and θ̂full → θ∗ in probability; φ̂SaC = (1/N)

∑K
k=1 nkφ̂k and φ̂full are consistent to φ∗.

Theorem 2 Under Assumptions 1 - 4 and Assumption 5 with v, v1 ≥ 2, if K is fixed and nk/N →
γk ∈ (0, 1) for a set of constants {γk}Kk=1, then

√
N(φ̂SaC − φ∗)→ N

(
0p1 ,

K∑
k=1

γkJφ|λ(θ∗k)
−1Σk(θ

∗
k)Jφ|λ(θ∗k)

−1

)
and

√
N(φ̂full − φ∗)→ N

(
0p1 , (

K∑
k=1

γkJφ|λ(θ∗k))
−1(

K∑
k=1

γkΣk(θ
∗
k))(

K∑
k=1

γkJφ|λ(θ∗k))
−1

)
,

where Σk = Var (Sφ(Xk,1; θ∗k)).

Theorem 2 suggests that the asymptotic variance of the full sample estimator may surpass that
of the SaC estimator. To appreciate this, define V (Σ, A) = (AT )−1ΣA−1 as a mapping from
Sp1×p1++ × GL(Rp1) to Sp1×p1++ , where Sp1×p1++ and GL(Rp1) denote the symmetric positive definite
matrices and invertible real matrices of order p1, respectively. Since ΣK

k=1γk = 1 and γk > 0,
the asymptotic variance of φ̂SaC can be interpreted as a convex combination of function values
{V (Σk(θ

∗
k), Jφ|λ(θ∗k))}Kk=1 and that of φ̂full can be expressed as V (

∑K
k=1 γkΣk(θ

∗
k),
∑K

k=1 γkJφ|λ(θ∗k)).
However, V (·, ·) is not convex with respect to its arguments (Σ, A), which means that

(
K∑
k=1

γkJφ|λ(θ∗k))
−1(

K∑
k=1

γkΣk(θ
∗
k))(

K∑
k=1

γkJφ|λ(θ∗k))
−1 6�

K∑
k=1

γkJφ|λ(θ∗k)
−1Σk(θ

∗
k)Jφ|λ(θ∗k)

−1.

In other words, φ̂full is not necessarily more efficient than φ̂SaC under heterogeneity. In contrast, in
the homogeneous setting (Jφ|λ(θ∗k),Σk(θ

∗
k)) are all equal for different k, then the non-convexity of
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V (·, ·) does not matter anymore and the first-order equivalence between the SaC estimator and the
full sample estimator holds as long as K = o(N1/2). A conclusion from Theorem 2 is that naively
using the pooled data to solve the statistical optimization problem may not be a good choice when
the underlying distributions of the data are heterogeneous.

To gain confirmation of Theorem 2, we consider the errors-in-variables model. Suppose there
are K independent data blocks {(Xk,i, Yk,i)}ni=1 for k = 1, 2...,K, where (Xk,i, Yk,i) are IID and
generated from

Xk = Zk + ek, Yk = φ∗ + λ∗kZk + fk, (6)

where {Zk}Kk=1 are random variables whose measurements {(Xk, Yk)}Kk=1 are subject to errors
{(ek, fk)}Kk=1, and (ek, fk) are bivariate normally distributed with zero mean and covariance matrix
σ2I2 and is independent of Z. Obviously, φ∗ is the common parameter across all data blocks while
λ∗k(λ

∗
k > 0) represents the block specific parameter. The condition Var(e) = Var(f) is assumed

to avoid any identification issue arising when Z is also normally distributed (Reiersol, 1950) 2. We
consider the approach in Example 5.26 of van der Vaart (1999) as detailed in Appendix A.2, which
leads to the M -function

M(Xk, Yk; θk) =
1

(1 + λ2
k)

(λkXk − (Yk − φ))2. (7)

For simplicity we assume K = 2, then from Theorem 2 we have
Var(φ̂full) ≈

(
σ2E(Z2)
Var(Z)

2
1

1+λ∗21
+ 1

1+λ∗22

+ σ4(E(Z))2

Var2(Z)

2

(1+λ∗21 )2
+ 2

(1+λ∗22 )2

( 1

1+λ∗21
+ 1

1+λ∗22
)2

)
1
N ,

Var(φ̂SaC) ≈
(
σ2E(Z2)
Var(Z)

(1+λ∗21 )+(1+λ∗22 )
2 + σ4(E(Z))2

Var2(Z)

)
1
N .

(8)

Note that the coefficients to σ2E(Z2)/Var(Z) in the first terms of the variances are harmonic and
arithmetic means of {1 + λ∗21 , 1 + λ∗22 }, respectively. Hence, the coefficient in the first term of
Var(φ̂SaC) is larger than that in Var(φ̂full). The second terms of the variances involves (E(Z))2

as a multiplicative factor. Thus, if the unobserved Z has zero mean, the full-sample estimator will
be at least as good as the SaC estimator in terms of variance when the full sample size N goes to
infinity. However, the situation may change when E(Z) 6= 0, because the second term of Var(φ̂full)
has a factor which is the square of a ratio between the quadratic mean and the arithmetic mean of
{ 1

1+λ∗21
, 1

1+λ∗22
}. The factor is larger than or equal to 1, where the equality holds if and only if λ∗1 =

λ∗2, namely the homogeneous case. In the heterogeneous case, by adjusting σ4(E(Z))2

Var2(Z)
/σ

2E(Z2)
Var(Z) , we

can find cases such that λ∗1 6= λ∗2 so that the full sample estimator has a larger variance than the SaC
estimator. Appendix C.1 displays such cases.

4 Weighted Distributed Estimator

That the full sample estimator φ̂full under heterogeneity may be less efficient than the simple aver-
aged φ̂SaC suggests that the wisdom formulated in the homogeneous context may not be applicable

2. When Z is normal, (X,Y ) is also jointly normal, whose distribution can be fully characterized by the five parameters
(E(X),Var(X), E(Y ),Var(Y ), E(XY )). Now, if we do not require Var(e) = Var(f), there will be six unknown
parameters: (Var(e),Var(f), E(Z),Var(Z), φ, λ), leading to identification issues. For more detailed discussions
on the errors-in-variables model, see Fuller (1987).
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to the heterogeneous case. How to better aggregate the local estimators {φ̂k}Kk=1 for more efficient
estimation is the focus of this section.

4.1 Formulation and Results

Consider a class of estimators formed by linear combinations of the local estimators {φ̂k}Kk=1:

{φ̂SaC
w | φ̂SaC

w =
K∑
k=1

Wkφ̂k,Wk ∈ Rp1×p1 ,
K∑
k=1

Wk = Ip1×p1}.

We want to minimize the asymptotic variance of φ̂SaC
w with respect to the weighting matrices

{Wk}Kk=1. It may be shown from Theorem 2 that Var(φ̂SaC
w ) ≈

∑K
k=1 n

−1
k WkA

−1
k Σk(A

T
k )−1W T

k ,
where Ak = Jφ|λ(θ∗k) and Σk = Var (Sφ(Xk,i; θ

∗
k)). It is noted that the asymptotic variance is de-

fined via the asymptotic normality of the statistical optimization. For the time being, Ak and Σk are
assumed known and we denote Hk = A−1

k Σk(A
T
k )−1. We choose the trace operator as a measure

of the size of the covariance matrix, which leads to a minimization problem:

Minimize
{Wk}Kk=1

trace

( K∑
k=1

n−1
k WkHkW

T
k

)
s.t.

K∑
k=1

Wk = Ip1×p1 . (9)

It is a convex optimization problem and can be solved via the Lagrangian multiplier method, which
gives the optimal weighting matrices W ∗k = (

∑K
s=1 nsH

−1
s )−1nkH

−1
k . If we replace the trace with

the Frobenius norm in (9), the same solution is attained as shown in Appendix A.3. The split-and-
conquer estimator with the optimal weights W ∗k is called the weighted distributed estimator and
denoted as φ̂WD, which is at least as efficient as φ̂SaC by construction.

To compare the statistical efficiency between φ̂full and φ̂WD, we note that their covariances

Var(φ̂full) ≈

(
(

K∑
k=1

nkAk)
T (

K∑
k=1

nkΣk)
−1(

K∑
k=1

nkAk)

)−1

and

Var(φ̂WD) ≈

(
K∑
k=1

nkA
T
k Σ−1

k Ak

)−1

, respectively. (10)

Define Ṽ (Σ, A) = ATΣ−1A, which is a generalized convex function with respect to the matrix
inequality shown in Lemma B.1. Applying Jensen’s inequality leads to the conclusion that the
weighted distributed estimator is at least as efficient as the full sample estimator φ̂full. Thus, the
estimating equations (4) obtained from the first-order derivatives of the simple summation of local
objectives

∑nk
i=1M(Xk,i; θk) may not be the best formulation. In contrast, the weighted distributed

estimator exploits the potential efficiency gain from the heterogeneity by re-weighting of the local
estimators, which is why the full sample estimator may not be as efficient as the weighted distributed
estimator.

4.2 Likelihood and Quasi-likelihood

The above results lead us to wonder whether the weighted distributed estimator can also be more
efficient than the full sample estimator under the heterogeneity in a fully parametric setting. The
answer is negative as shown below.
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When the distribution of Xk,i is fully parametric with density function f(·;φ, λk), the Fisher
information matrix in the k-th data block is

I(θk) = I(φ, λk) =

(
Iφφ Iφλk
Iλkφ Iλkλk

)
= −E

(
∂2

∂φ2
log f(Xk,1; θk)

∂2

∂φ∂λT
log f(Xk,1; θk)

∂2

∂λ∂φT
log f(Xk,1; θk)

∂2

∂λ2
log f(Xk,1; θk)

)
,

and the partial information matrix Iφ|λk = Iφφ − IφλkI
−1
λkλk

Iλkφ.
Now, the objective function for the statistical optimization isM(Xk,i;φ, λk) = − log f(Xk,i;φ, λk).

Routine derivations show that Σk = Var (Sφ(Xk,1; θ∗k)) = Iφ|λk and Ak = Jφ|λ(θ∗k) = Iφ|λk .

Hence, Var(φ̂full) ≈ Var(φ̂WD) ≈
(∑K

k=1 nkIφ|λk

)−1
and Var(φ̂SaC) ≈ (1/N2)

∑K
k=1 nkI

−1
φ|λk .

A direct application of Lemma B.1 shows that
(∑K

k=1 nkIφ|λk

)−1
� (1/N2)

∑K
k=1 nkI

−1
φ|λk . Thus,

the full sample maximum likelihood estimator automatically adjusts for the heterogeneity and has
the same asymptotic efficiency as that of the weighted distributed estimator. Both estimators are at
least as efficient as the split-and-conquer estimator φ̂SaC. The same is true for the quasi-likelihood
estimation with independent observations (see Appendix A.4).

A close examination reveals that the underlying reason for the asymptotic equivalence between
the weighted distributed estimator and the likelihood-based full sample estimators is that the two
statistical optimization functions satisfy the second-order Bartlett’s identity (Bartlett, 1953; McCul-
lagh, 1983): E

(
∇M(Xk, θ

∗
k)∇M(Xk, θ

∗
k)
T
)

= E
(
∇2M(Xk, θ

∗
k)
)
. By the asymptotic variance

formula of the estimator and Lemma B.1, it is apparent that Bartlett’s identity can be relaxed by
allowing a factor γ 6= 0 such that

E
(
∇M(Xk, θ

∗
k)∇M(Xk, θ

∗
k)
T
)

= γE
(
∇2M(Xk, θ

∗
k)
)
. (11)

An example of such cases is the least square estimation in the parametric regression with ho-
moscedastic and non-autocorrelated residuals in Appendix A.5. Otherwise, the full sample least
square estimator may not be efficient and there is an opportunity for the weighted least square esti-
mation such as the case in the errors-in-variables model (6). Thus, if M(xk, θk) satisfies (11), φ̂full

attains the same statistical efficiency as φ̂WD.

4.3 Relation to Generalized Method of Moment Estimation

To further justify the statistical efficiency of the weighted distributed estimation, we consider the
generalized method of moment (GMM) estimator (Hansen, 1982), which has certain optimal prop-
erties for the semiparametric inference that the weighted distributed estimation can compare with,
despite it requires full data sharing.

The score functions of the statistical optimization on each data block are aggregated to form the
moment equations {∑nk

i=1 ψφ(Xk,i;φ, λk) = 0,∑nk
i=1 ψλ(Xk,i;φ, λk) = 0, k = 1, ...,K,

(12)

which have pK estimating equations, where the dimension of θ∗ is pK − (K − 1)p1. Thus, the pa-
rameter is over-identified, offering potential efficiency gain for the generalized method of moment.
The GMM estimation based on the moment restrictions (12) solves the minimization problem

θ̂GMM = arg min
θ∈Θ

ψ̃TN (θ)W0ψ̃N (θ),

9
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whereW0 =
(

Var(ψ̃N (θ∗))
)−1

is the optimal weighting matrix (Hansen, 1982; Yaron et al., 1996)
and

ψ̃N (θ) = (

n1∑
i=1

ψφ(X1,i; θ1)T ,

n1∑
i=1

ψλ(X1,i; θ1)T , · · · ,
nK∑
i=1

ψφ(XK,i; θK)T ,

nK∑
i=1

ψλ(XK,i; θK)T )T .

Let the first p1 elements of θ̂GMM be φ̂GMM as an estimator of the common parameter. A derivation

in Appendix A.6 shows that Var(φ̂GMM) ≈
(∑K

k=1 nkJφ|λΣ−1
k Jφ|λ

)−1
. Thus, the weighted dis-

tributed estimator’s asymptotic efficiency is the same as that of φ̂GMM. This is encouraging as the
weighted distributed estimator does it without requiring so much data sharing among the blocks.

4.4 Estimation of weights with one round communication

To formulate the weighted distributed estimator, we have to estimate the optimal weights W ∗k =(∑K
s=1 nsH

−1
s

)−1
nkH

−1
k . As we will show in Theorem 4, the estimation of the weights will

not affect the estimation efficiency of the weighted distributed estimator attained in (10). By the
structure of W ∗k , we only need to estimate Hk, the leading principal submatrix of order p1 of the
asymptotic covariance matrix H̃k of θ̂k. Note that

H̃k = (∇Ψθ(θ
∗
k))
−1E

(
ψθk(Xk,1; θ∗k)ψθk(Xk,1; θ∗k)

T
)

(∇Ψθ(θ
∗
k))
−1 =

(
Hk ∗
∗ ∗

)
,

where Ψθ(θk) = E (ψθk(Xk,1; θk)). We can construct a sandwich type estimator (Stefanski and
Boos, 2002) to estimate H̃k and thenHk. The procedure to obtain the weighted distributed estimator
is summarized in Algorithm 1.

Input: Distributed datasets: {Xk,i, k = 1, ...,K; i = 1, ..., nk}
Output: Weighted distributed estimator: φ̂WD

1 In each data block k (k = 1, 2, · · · ,K):
2 Solve (2) and obtain θ̂k = (φ̂k, λ̂k) ;
3 Calculate Ĥk(θ̂k), which is the leading principal sub-matrix of order p1 of

(∇θkΨ̂θk)−1(n−1
k

∑nk
i=1 Z(Xk,i; θ̂k))(∇θkΨ̂θk)−T , where Z(x, θk) is defined in

Assumption 6 and Ψ̂θk = n−1
k

∑nk
i=1 ψθk(Xk,i; θ̂k);

4 In a central server:
5 Collect (φ̂k, Ĥk(θ̂k)

−1) from all the K data blocks;

6 Calculate φ̂ =
(∑K

k=1 nkĤk(θ̂k)
−1
)−1∑K

k=1 nk(Ĥk(θ̂k))
−1φ̂k ;

7 φ̂WD = φ̂I(φ̂ ∈ Φ) + φ̂SaCI(φ̂ 6∈ Φ), where φ̂SaC = N−1
∑K

k=1 nkφ̂k.
Algorithm 1: Weighted Distributed estimator

Step 7 of the algorithm is necessary since there is no guarantee that after weighting the estimator
φ̂ belongs to the set Φ as required in Assumption 3. However, the event {φ̂ ∈ Φ} should happen
with probability approaching one. Hence, the φ̂SaCI(φ̂ 6∈ Φ) term is asymptotically negligible. To
establish the theoretical properties of the weighted distributed estimator, we impose the following
assumptions.

10
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Assumption 6 (Smoothness II) Denote Z(x, θk) = ∇θkM(x; θk)∇θkM(x; θk)
T , then there are

positive constants ρ and B, and a positive function B(x) such that Z(x, θk) is B(x)−Lipschitz
continuous with respect to θk, in the sense that ‖Z(x, θk) − Z(x, θ′k)‖2 ≤ B(x)‖θk − θ′k‖2 for all
θk, θ

′
k ∈ Uk = {θk | ‖θk − θ∗k‖2 ≤ ρ} and x ∈ Rd, and E(B(Xk,1)2v) ≤ B2v .

Assumption 6 specifies the Lipschitz continuity of the outer product Z(x; θk) with respect to θk,
which is to control the estimation errors when we estimate the asymptotic covariance matrices of
the local estimators {θ̂k}Kk=1. Appendix A.7 shows it is valid for the logistic regression model.

Assumption 7 (Boundedness) Denote ΣS,k(θk) = EFk
(
ψθk(Xk,1; θk)ψθk(Xk,1; θk)

T
)
, then there

exists constants ρσ, c > 0 such that ‖ΣS,k(θ
∗
k)‖2 ≤ ρσ andHk � cIp1×p1 for k ≥ 1, where θ∗k is the

minimizer of the k-th population objective function and Hk = A−1
k ΣkA

−1
k , where Ak = Jφ|λ(θ∗k)

and Σk = Var (Sφ(Xk,i; θ
∗
k))

ByHk’s definition, ‖Hk‖2 ≤ ‖Jk(θ∗k)−1‖22‖ΣS,k(θ
∗
k)‖2 ≤ ρσρ

−2
− , implyingH−1

k � (ρ2
−/ρσ)Ip1×p1 .

The above inequality also leads to the inequality ‖Jk(θ∗k)−1‖2 ≥ (c/ρσ)1/2, indicating a finite upper
bound for the norm of the Hessian, as assumed in Jordan et al. (2019) and Duan et al. (2021).

Theorem 3 Under Assumptions 1 - 4 and 7, and Assumption 5 - 6 with v ≥ 2 and v1 ≥ 4 , for
n = NK−1, the mean-squared error of the weighted distributed estimator φ̂WD satisfies

E
(
‖φ̂WD − φ∗‖22

)
≤ C1

R2

nK
+ C2

(L2 + L4) +R2(R2 +R6 +G2)

n2
+
C3

n3
+ C4K

(
1 + L2v

nv
+
R2v1

n
v1
2

+
R2v1

nv1

)
.

The v1 and v appeared in Assumptions 5 - 6 quantify the moments of the first two orders of the
gradients of the M -function and their corresponding Lipschitz functions. When the number of data
blocks K = O(N1/2) namely K = O(n), the convergence rate of mean squared error of φ̂WD is
O((nK)−1), which is the same as the standard full sample estimator. However, when there are too
many data blocks such that K � n, the convergence rate is reduced to O(n−2).

Theorem 4 Under Assumptions 1 - 4 and 7, and Assumptions 5 - 6 with v, v1 ≥ 2, ifK = o(N1/2),
then

(
φ̂WD − φ∗)T

(∑K
k=1 nkH

−1
k

) (
φ̂WD − φ∗)→ χ2

p1 .

As mentioned before, K is allowed to diverge with the full sample size at the rate o(N1/2).
Although {Hk}Kk=1 have bounded spectral norms,

∑K
k=1(nk/N)H−1

k may not converge to a fixed
matrix in the presence of heterogeneity. Thus, we can only obtain the asymptotic normality of the

standardized N−1/2
(∑K

k=1(nk/N)H−1
k

)1/2
(φ̂WD − φ∗). This is why Theorem 4 is presented in

the limiting chi-squared form, which implies that we can construct confidence regions for φ with
confidence level 1− α as{

φ |
(
φ̂WD − φ)T

(
K∑
k=1

nkĤk(θ̂k)
−1

)(
φ̂WD − φ) ≤ χ2

p1,α

}

after replacing
∑K

k=1 nkH
−1
k with its sample counterpart

∑K
k=1 nkĤk(θ̂k)

−1, where χ2
p1,α is the

upper α quantile of the χ2
p1 distribution. Given the weighted distributed estimator of the common

11
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parameter φ∗, a natural question is that whether a more efficient estimator of the block-specific λ∗k
can be obtained, if we plug in the weighted distributed estimator to each data block and re-estimate
λk: Let λ̂(2)

k be the updated estimator, and Theorem 9 in Appendix A.8 will show that λ̂(2)
k is not

necessarily more efficient than the local estimator λ̂k.

5 Debiased Estimator for Diverging K

It is noted that K = o(N1/2) is required in Theorems 3 and 4 to attain the O(N−1) leading order
mean squared error and the limiting chi-squared distribution of the weighted distributed estimator
φ̂WD. A reason for this requirement is that the bias of the local estimator θ̂k is at order Op(n−1

k ),
which can not be reduced by the weighted averaging. This leads to the bias of N1/2(φ̂WD−φ∗) be-
ing at the order Op(KN−1/2), which is not necessarily diminishing to zero unless K = o(N1/2). It
is worth mentioning that Duan et al. (2021) needed the same K = o(N1/2) order in their maximum
likelihood estimation framework to obtain the N1/2-convergence since Li et al. (2003) showed that
the maximum likelihood estimator is asymptotically biased when K/n→ C ∈ (0,+∞). This calls
for a bias reduction step for the local estimators before aggregation to allow for a larger K.

To facilitate the bias correction, we have to simplify the notation. Suppose F (θ) is a p × 1
vector function, ∇F (θ) is the usual Jacobian whose l-th row contains the partial derivatives of the
l-th element of F (θ). Then, the matrices of higher derivatives are defined recursively so that the
j-th element of the l-th row of∇sL(θ) (a p×ps matrix) is the 1×p vector fvlj(θ) = ∂fv−1

lj (θ)/∂θT ,
where fv−1

lj is the l-th row and j-th element of ∇v−1F (θ). Let ⊗ denote the Kronecker product.
Using Kronecker product we can express ∇vF (θ) = ∂vF (θ)/(∂θT ⊗ ∂θT ⊗ · · · ⊗ ∂θT ). Be-
sides, define Mn,k(θk) = n−1

k

∑nk
i=1M(Xk,i; θk), H3,k(θk) = E(∇2

θk
ψθk(Xk,1; θk)), Qk(θk) =

(−E(∇θkψθk(Xk,1; θk)))
−1 , di,k(θk) = Qk(θk)ψθk(Xk,i; θk) and vi,k(θk) = ∇θkψθk(Xk,i, θk) −

∇θkΨθ(θk). Then, the leading order bias of θ̂k (Rilstone et al., 1996) is

Bias(θ̂k) = n−1
k Qk(θ

∗
k)

(
E (v1,k(θ

∗
k)d1,k(θ

∗
k)) +

1

2
H3,k(θ

∗
k)E (d1,k(θ

∗
k)⊗ d1,k(θ

∗
k))

)
.

Let Bk(θk) = Qk(θk)
(
E (v1,k(θk)d1,k(θk)) + 1

2H3,k(θk)E (d1,k(θk)⊗ d1,k(θk))
)
, whose first p1

dimension associated with φ are denoted as B1
k(θk). An estimator of Bk(θk) is

B̂k(θk) = Q̂k(θk)
(
n−1
k

nk∑
i=1

v̂i,k(θk)d̂i,k(θk) +
1

2
Ĥ3,k(θk)n

−1
k

nk∑
i=1

(d̂i,k(θk)⊗ d̂i,k(θk))
)
, (13)

where Ĥ3,k(θk) = n−1
k

∑nk
i=1∇2

θk
ψθk(Xk,i; θk), Q̂k(θk) =

(
−n−1

k

∑nk
i=1∇θkψθk(Xk,i; θk)

)−1
,

d̂i,k(θk) = Q̂k(θk)ψθk(Xk,i; θk) and v̂i,k(θk) = ∇θkψθk(Xk,i; θk). Applying it to each data block,
we have the bias-corrected local estimator

θ̂k,bc = θ̂k − n−1
k B̂k(θ̂k)1Ek,bc ,

where Ek,bc = {θ̂k − n−1
k B̂k(θ̂k) ∈ Θk}, and the indicator function is to ensure that θ̂k,bc ∈ Θk.

After the local debiased estimators are obtained, we need to aggregate them via the estimated
weights. A direct aggregation will invalidate the bias correction due to the dependence between the
estimated weights and the local debiased estimator if they are constructed with the same dataset.

12
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The accumulation of dependence over a large number of data blocks can make the bias correction
fail. To remove the dependence between the local estimator θ̂k,bc and the estimated local weights

Ŵk =
(∑K

s=1 Ĥs(θ̂s)
−1
)−1

Ĥk(θ̂k)
−1, we divide each local dataset {Xk,i}nki=1 to two basically

equal-sized splits Ds
k = {X(s)

k,i }
nk/2
i=1 , s = 1, 2. For s = 1, 2, we calculate the local estimators θ̂k,s

and obtain Ĥk,s(θ̂k,s), which is the first p1 principal sub-matrix of

(∇θkΨ̂θk)−1((2/nk)

nk/2∑
i=1

ψθk(X
(s)
k,i ; θ̂k,s)ψθk(X

(s)
k,i ; θ̂k,s)

T )(∇θkΨ̂θk)−T ,

where Ψ̂θk = (2/nk)
∑nk/2

i=1 ψθk(X
(s)
k,i ; θ̂k,s). We perform the local bias correction to θ̂k,s based on

a split with the weight obtained by the other, leading to two debiased estimators of the form(
K∑
k=1

nkĤk,s(θ̂k,s)
−1

)−1 K∑
k=1

nk(Ĥk,s(θ̂k,s))
−1φ̂bck,2−|s−1| for s = 1, 2.

The two debiased local estimators are averaged to obtain the final debiased weighted distributed
estimator, whose procedure is summarized in Algorithm 2. To provide a theoretical guarantee on
the bias correction, we need an assumption on the third-order gradient of the M -function (Zhang
et al., 2013), which strengthens a part of Assumption 5.

Assumption 8 (Strong smoothness) For each x ∈ Rp, the third order derivatives ofM(x; θk) with
respect to θk exist and are A(x)− Lipschitz continuous in the sense that

‖(∇2
θk
ψθk(x; θk)−∇2

θk
ψθk(x; θ

′
k))(u⊗ u)‖2 ≤ A(x)‖θk − θ

′
k‖2‖u‖22,

for all θk, θ
′
k ∈ Uk defined in Assumption 5 and u ∈ Rp, where A(x) is a positive function,

E(A(Xk,i)
2v) ≤ A2v for some v > 0 and A <∞.

Theorem 5 Under Assumptions 1 - 4 and 7 - 8, and Assumptions 5 - 6 with v, v1 ≥ 4 ,

E
(
‖φ̂dWD − φ∗‖22

)
≤ C1

R2

nK
+ C2

R2(L2 +R2)

n2K
+ C3

G2R2(G2 +R2 +G4) +A2R6

n3
+ C4

CB
n3

+C5K

(
1 + L2v

nv
+
R2v1

n
v1
2

+
R2v1

nv1

)
,

where the CBn−3 term characterizes the error due to the estimation of the bias correction terms
{Bk(θ∗k)}Kk=1, whose definition can be found in the proof of this theorem presented in the Appendix.

The main difference between the upper bounds in Theorem 5 from that in Theorem 3 for the
weighted distributed estimator is the disappearance of the O(n−2) term for the weighted distributed
estimator, which has been absorbed into the O((n2K)−1 + n−3) terms for the debiased weighted
distributed estimator. As shown next, this translates to a more relaxed K = o(N2/3) condition as
compared with the K = o(N1/2) condition for the weighted distributed estimator in Theorem 4.
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Input: Distributed datasets: {Xk,i, k = 1, ...,K; i = 1, ..., nk}
Output: debiased weighted distributed estimator: φ̂dWD

1 In each data block k (k = 1, 2, · · · ,K):

2 Split the local dataset into two equal sized subsets: Ds
k = {X(s)

k,i }
nk/2
i=1 , s = 1, 2 ;

3 Solve (2) based on Ds
k and obtain θ̂k,s = (φ̂k,s, λ̂k,s) for s = 1, 2 ;

4 Calculate Ĥk,s(θ̂k,s) based on Ds
k and θ̂sk for s = 1, 2;

5 Calculate θ̂bck,s = θ̂k,s − 2n−1
k B̂k,s(θ̂k,s)1Ek,bc,s using formula (13) for s = 1, 2, where

Ek,bc,s = {θ̂k,s − 2n−1
k B̂k,s(θ̂k,s) ∈ Θk} ;

6 In a central server:
7 Collect {φ̂bck,s, Ĥk,s(θ̂k,s)

−1, s = 1, 2} from all the K data blocks;

8 Construct φ̂s =
(∑K

k=1 nkĤk,s(θ̂k,s)
−1
)−1∑K

k=1 nkĤk,s(θ̂k,s)
−1φ̂bck,2−|s−1|;

9 Calculate φ̂dWD
s = φ̂sI(φ̂s ∈ Φ) +K−1

∑K
k=1 nkφ̂

bc
k,2−|s−1|I(φ̂s 6∈ Φ) for s = 1, 2;

10 φ̂dWD = 2−1
∑2

s=1 φ̂
dWD
s .

Algorithm 2: debiased Weighted Distributed (dWD) Estimator

Theorem 6 Under the conditions required by Theorem 5, if K = o(N2/3),

(φ̂dWD − φ∗)T
(

K∑
k=1

nkHk(θ
∗
k)
−1

)
(φ̂dWD − φ∗) d→ χ2

p1 .

Theorem 6 is also formulated in the chi-squared distribution form for the same reason when we
formulate Theorem 4, and similar confidence region with confidence level 1−α can be constructed
as
{
φ |
(
φ̂dWD − φ)T {

∑K
k=1 nkHk(θ̂k)

−1}
(
φ̂dWD − φ) ≤ χ2

p1,α

}
.

The fact that the confidence regions of debiased weighted distributed and weighted distributed
estimators use the same standardizing matrix

∑K
k=1 nkĤk(θ̂k)

−1 reflects that both estimators have
the same estimation efficiency. However, the debiased version has a more relaxed constraint on
K = o(N2/3) than that of the WD estimator requiring K = o(N1/2) .

Both the debiased and non-debiased weighted distributed estimators are communication effi-
cient as they only require one round of communication. When the communication budget is strictly
limited, people may only share the debiased estimators without transmitting the weights. In this
case, one may consider the following debiased split-and-conquer estimator

φ̂dSaC = N−1
K∑
k=1

nk(φ̂k − n−1
k B̂1

k(θ̂k)1Ek,bc), (14)

which only performs bias correction and may be preferable when the heterogeneity is not severe.
The asymptotic property of φ̂dSaC is summarized in the following theorem.

Theorem 7 Under the conditions required by Theorem 5, if K = o(N2/3), the debiased split-and-
conquer estimator φ̂dSaC satisfies that (i) E

(
‖φ̂dSaC − φ∗‖22

)
≤ C1/(nK) +C2/(n

2K) +C3/n
3

and (ii) N2(φ̂dSaC − φ∗)T
(∑K

k=1 nkHk(θ
∗
k)
)−1

(φ̂dSaC − φ∗)→ χ2
p1 .

14
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The corresponding confidence region with confidence level 1 − α can be constructed as {φ |
N2
(
φ̂dSaC−φ)T

(∑K
k=1 nkĤk(θ̂k)

)−1 (
φ̂dSaC−φ) ≤ χ2

p1,α}. It is noted that the debiased version

of the split-and-conquer estimator φ̂dSaC has the same asymptotic distribution as that of φ̂SaC, but
under a much more relaxed constraint on the divergence rate of K. Hence, the confidence regions
based on the split-and-conquer estimator can be constructed in the same way as that based on the
weighted distributed estimator with φ̂dSaC replaced by φ̂SaC.

To compare with the subsampled average mixture method (SAVGM) estimator proposed in
Zhang et al. (2013), which also performs local bias correction but under the homogeneous setting,
we have the following corollary to Theorem 7.

Corollary 8 Under the homogeneous case such that {Xk,i, k = 1, ...,K, i = 1, ..., n; } are IID
distributed, and the assumptions required by Theorem 5,

E
(
‖θ̂dSaC − θ∗1‖22

)
≤

2E
(
‖∇θ1Ψθ(θ

∗
1)−1ψθ1(X1,1; θ∗1)‖22

)
nK

+
C1

n2K
+
C2

n3
,

where θ∗1 is the true parameter for all the K data blocks.

The SAVGM estimator resamples brnkc data points from each data block k for a r ∈ (0, 1) to
obtain a local estimator θ̂k,r based on the sub-samples, and has the form

θ̄SAVGM =
K∑
k=1

nk
K

θ̂k − rθ̂k,r
1− r

. (15)

Its mean squared error bound as given in Theorem 4 of Zhang et al. (2013) is

E
(
‖θ̄SAVGM − θ∗1‖22

)
≤ 2 + 3r

(1− r)2

E
(
‖∇θ1Ψθ(θ

∗
1)−1ψθ1(X1,1; θ∗1)‖22

)
nK

+
C1

n2K
+
C2

n3
. (16)

Thus, the mean squared error bound (16) of the SAVGM estimator has an inflated factor (2+3r)(1−
r)−2/2 > 1 for r ∈ (0, 1) when compared with that of the dSaC estimator, although it is com-
putationally more efficient than the debiased split-and-conquer and debiased weighted distributed
estimators as it only draws one subsample in its resampling. For more comparisons between the
debiased split-and-conquer estimator and one-step estimators proposed by Huang and Huo (2019),
see Appendix A.9.

To facilitate an overall comparison among the existing and the proposed estimators, Table 1
summarizes the non-asymptotic MSE rates of the estimators along with the details on the smooth-
ness condition and the restriction on K, and the statue of statistical efficiency relative to the full
sample GMM estimator. It is noted that the smoothness parameters v and v1 can be large if the
corresponding random variables are of thin tails, such as the sub-exponential or sub-gaussian dis-
tributions, as assumed in Jordan et al. (2019) and Duan et al. (2021). As a result, the smoothness
condition becomes trivial, and the Kn−min(v,v1/2) term that appeared in the non-asymptotic rates
can be ignored.

6 Numerical Results

The purpose of this section is to examine the numerical performances of the estimators via both the
simulation study in Section 6.1 and the real data analysis in Section 6.2.
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Table 1: MSE bounds in estimating the common parameter φ∗ by the ideal full sample M-estimator
(Full), the distributed SaC, dSaC, WD, dWD and SAVGM estimators, and the estimator in Chen
and Peng (2021) (CP). The column headed by “Smoothness” states the needed moment restriction
in Assumption 5. The column headed by “K” further states the condition on the block size under
which the asymptotic normality of the estimator holds, while that by “Efficiency” indicates if an
estimator is statistically efficient (X) or not (5) relative to the GMM estimator φ̂GMM. For the CP
estimator, τ1 ≥ 1 and τ1 = 1 under the current M-estimation setting.

Estimator Smoothness Non-asymptotic Regime Asymptotic Regime

MSE bound K Efficiency
Full v, v1 ≥ 1 C1(nK)−1 + C2(nK)−2 - 5

SaC v, v1 ≥ 2 C1(nK)−1 + C2n
−2 o(N1/2) 5

CP - C1(nK)−1 + C2(n2K)−1 + C3n
−2τ1 o(N

1− 1
2τ1 ) 5

WD v ≥ 2, v1 ≥ 4 C1(nK)−1 + C2n
−2 + C3Kn

−min(v,v1/2) o(N1/2) X
dSaC v, v1 ≥ 4 C1(nK)−1 + C2n

−2K−1 + C3n
−3 o(N2/3) 5

SAVGM v, v1 ≥ 4 C1(nK)−1 + C2n
−2K−1 + C3n

−3 o(N2/3) 5

dWD v, v1 ≥ 4 C1(nK)−1 + C2n
−2K−1 + C3n

−3 + C3Kn
−min(v,v1/2) o(N2/3) X

6.1 Simulation study

We report results from simulation experiments designed to verify the theoretical findings made in
the previous sections, which was to evaluate the numerical performance of the proposed weighted
distributed (WD), debaised split-and-conquer (dSaC) and debiased weighted distributed (dWD) es-
timators of the common parameter and compare them with the existing split-and-conquer (SaC)
and subsampled average mixture method (SAVGM) (with subsampling rate r = 0.05) estimators.
Although Zhang’s SAVGM estimator (Zhang et al., 2013) was proposed under the homogeneous
setting, but since its main bias correction is performed locally on each data block k as shown in
(15), similar theoretical bounds as (16) can be derived without much modifications on the original
proof. Throughout the simulation experiments, the results of each simulation setting were based
on B = 500 number of replications and were conducted in R with a 10-core Intel(R) Core(TM)
i9-10900K @3.7 GHz processor. We evaluated the numerical performance of the five estimators
for the common parameter φ under a logistic regression model. For each of K data blocks with
K ∈ {10, 50, 100, 250, 500, 1000, 2000}, {(Xk,i;Yk,i)}ni=1 ⊂ Rp × {0, 1} were independently
sampled from the following model:

Xk,i ∼ N (0p×1, 0.752Ip×p) and P (Yk,i = 1 | Xk,i) =
exp(XT

k,iθ
∗
k)

1 + exp(XT
k,iθ
∗
k)
,

where θ∗k = (φ∗T , λ∗Tk )T , φ∗ = 1, λ∗k = (λ∗k,1, λ
∗
k,2, · · · , λ∗k,p2)T and λ∗k,j = (−1)j10(1 − 2(k −

1)/(K − 1)). The sample sizes of the data blocks were equal at n = NK−1 with N = 2 × 106.
Two levels of the dimension p2 = 4 and 10 of the nuisance parameter λk were considered. Due to
space limit, we only report the set of result with p2 = 10 in the main paper. See Appendix C.2 for
the result with p2 = 4 and Appendix A.10 for a derivation of the bias correction formula for the
logistic model.

Figure 1 reports the root mean squared errors and absolute bias of the estimators when p2 = 10.
It is observed that the weighted distributed estimator and the two debiased estimators had smaller
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root mean squared errors than those of the SaC and SAVGM for almost all the simulation settings.
The classical split-and-conquer estimator fared better than Zhang’s SAVGM estimator asK became
larger, which is due to the extra variation introduced by the subsampling method as indicated in (16),
especially when K is large (the local sample size n is small). It was evident that the WD estimator
had much smaller root mean squared errors than the SaC and SAVGM estimators for all the block
numberK, realizing its theoretical promises. In most cases, the WD estimator had smaller bias than
the SaC estimator although it was not debiased. The WD estimator was advantageous for K ≤ 250.
In comparison, both bias corrected dWD and dSaC were very effective in reducing the bias of the
WD and SaC estimators, respectively, especially for larger K when the bias was more severe. The
dWD attained the smallest root mean squared error and the bias in all settings, suggesting the need
for conducting both weighting and the bias correction in the distributed inference especially for large
K. These empirical results were consistent with Theorems 3 and 5, namely the leading root mean
squared error term of the WD estimator changes from O((nK)−1) to O(n−2) when K surpasses
the local sample size n, while the leading term of the dWD is still O((nK)−1) until K is much
larger than n2.

(a) Absolute Bias (p2 = 10) (b) RMSE (p2 = 10)

Figure 1: Average simulated bias (a) and the root mean squared errors (RMSE) (b) of the weighted
distributed (WD) (red circle), the split-and-conquer(SaC) (blue triangle), the debiased split-and-
conquer (dSaC) (green square), the debiased weighted distributed (dWD) (purple cross), the sub-
sampled average mixture SAVGM (pink square cross) estimators, with respect to the number of data
blockK for the logistic regression model with the dimension p2 of the nuisance parameter λk being
10, and the full sample size N = 2× 106.

We also evaluated the coverage probabilities and widths of the 1 − α (α = 0.01, 0.05, 0.1)
confidence intervals (CIs) of the common parameter based on the asymptotic normality as given
after Theorems 4 and 6. The SAVGM estimator was not included as its asymptotic distribution was
not made available in Zhang et al. (2013). Table 2 reports the empirical coverage and the average
width of the CIs. It is observed that the four types of the CIs all had quite adequate coverage levels
when K ≤ 100. However, for K ≥ 250, the SaC CIs first started to lose coverage, followed
by those of the WD, while the CIs of the dSaC and dWD estimators can hold up to the promised
coverage for all cases of K. Although the dSaC CIs had comparable coverages with the dWD
CIs, their widths were much wider than those of the dWD. This was largely due to the fact that
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the weighted averaging conducted in the weighted distributed estimation reduced the variation and
hence the width of the CIs. The widths of the WD CIs were largely the same with those of the dWD,
and yet the coverage levels of the dWD CIs were much more accurate indicating the importance of
the bias correction as it shifted the CIs without inflating the width.

Table 2: Coverage probabilities and widths (in parentheses, multiplied by 100) of the 1 − α confi-
dence intervals for the common parameter φ in the logistic regression model based on the asymp-
totic normality of the split-and-conquer (SaC), the weighted distributed (WD), the debiased split-
and-conquer (dSaC) and the debiased weighted distributed (dWD) estimators with respect to the
number of data blocks K. The dimension p2 of the nuisance parameter λk is 10 and total sample
size N = 2× 106

K SaC WD dSaC dWD
1− α 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90

10 0.99 0.94 0.88 1.00 0.96 0.92 1.00 0.94 0.88 1.00 0.96 0.92
(3.05) (2.32) (1.95) (2.41) (1.84) (1.54) (3.05) (2.32) (1.95) (2.42) (1.84) (1.54)

50 0.99 0.93 0.87 0.99 0.95 0.88 0.98 0.94 0.88 0.99 0.96 0.88
(2.94) (2.24) (1.88) (2.29) (1.74) (1.46) (2.94) (2.24) (1.88) (2.29) (1.74) (1.46)

100 0.97 0.89 0.84 0.97 0.93 0.87 0.98 0.95 0.90 0.98 0.94 0.89
(2.93) (2.23) (1.87) (2.28) (1.74) (1.46) (2.93) (2.23) (1.87) (2.29) (1.74) (1.46)

250 0.89 0.72 0.63 0.98 0.92 0.87 1.00 0.97 0.90 1.00 0.96 0.90
(2.94) (2.24) (1.88) (2.28) (1.74) (1.46) (2.94) (2.24) (1.88) (2.29) (1.74) (1.46)

500 0.51 0.28 0.18 0.93 0.81 0.70 0.99 0.94 0.90 0.98 0.94 0.88
(2.97) (2.26) (1.90) (2.29) (1.74) (1.46) (2.97) (2.26) (1.90) (2.30) (1.75) (1.47)

1000 0.00 0.00 0.00 0.66 0.37 0.28 0.99 0.95 0.90 0.99 0.96 0.89
(3.04) (2.31) (1.94) (2.30) (1.75) (1.47) (3.04) (2.31) (1.94) (2.34) (1.78) (1.49)

2000 0.00 0.00 0.00 0.02 0.00 0.00 0.99 0.96 0.90 0.99 0.93 0.87
(3.22) (2.45) (2.06) (2.34) (1.78) (1.49) (3.22) (2.45) (2.06) (2.40) (1.82) (1.53)

In addition to the simulation experiments on the statistical properties of the estimators, the com-
putation efficiency of the estimators was also evaluated. Table 3 reports the average CPU time per
simulation run based on 500 replications of the five estimators for a range of K of the nuisance
parameter for the logistic regression model with the total sample size N = 2 × 106 and p2 = 10.
The computation speed of the dSaC and dWD estimators were relatively slower than those of the
SaC, WD and Zhang’s SAVGM estimators. The WD estimator was quite fast, which means that the
re-weighting used less computing time than the bias-reduction. In comparison, the dWD estimator
was the slowest as a cost for attaining the best root mean squared error among the five estima-
tors in all settings. It is observed in Table 3 that the overall computation time for each estimator
first decreased and then increased as K became larger. The decrease in time was because of the
benefit of the distributed computation, while the increase was due to the increase in the number
of optimization associated with the statistical optimization performed as K got larger. However,
it is worth mentioning that these results did not account for the potential time expenditure in data
communication among different data blocks.
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Table 3: Average CPU time for each replication based on B = 500 replications for the split-and-
conquer (SaC), the Zhang’s SAVGM, the weighted distributed (WD), the debiased split-and-conquer
(dSaC) and the debiased weighted distributed (dWD) estimators for the logistic regression model
with respect to K. The dimension p2 of the nuisance parameter λk is 10 and total sample size
N = 2× 106

K SaC SAVGM WD dSaC dWD
10 34.60 35.19 43.84 50.47 55.35
50 20.13 20.18 24.16 29.99 33.69
100 15.60 16.20 17.74 23.63 24.47
250 10.77 12.61 11.88 18.22 20.39
500 11.55 14.50 12.56 18.80 23.73
1000 15.23 18.27 16.28 22.38 32.24
2000 23.42 27.99 24.62 30.43 48.05

6.2 Real data analysis

We report results from an empirical analysis of an airline’s on-time performance data to demonstrate
the proposed weighted distributed estimation for massive data. We aim to quantify the association
between flight departure delay and a set of covariates, the arrival delay of the previous flight of the
same plane, the seasonal effects, and the weather conditions with a logistic regression model, based
on data from the top 10 busiest airports in the United States in 2007. The flight data are available
from https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009 and the weather data
are obtained from https://cds.climate.copernicus.eu/. We segmented the full data of N = 2412782
according to the airports of departing flights and obtained 10 data segments. For each segment, we
split it to data blocks of size n = 5000, while the residual data blocks were discarded, such that the
total number of blocks K = 479.

We included seven covariates in the logistic regression: the arrival delay of the previous flight,
the season (encoded by three dummy variables: spring (March-May), summer (June-August), au-
tumn (September-November) with winter as the baseline, the near-surface air temperature and pres-
sure, and the rain rate before the scheduled departure time. The coefficients of the three weather
variables were treated as the common parameters while the remaining coefficients including the
intercept were regarded as heterogeneous; see Section C.3 in the supplementary material for the
justification. The estimated common parameters of the near-surface air pressure, temperature, and
convective rain rate with 95% confidence intervals using the weighted distributed estimator and the
split-and-conquer estimator are shown in Figure 2. Both methods successfully identified a signifi-
cant association between the three weather variables and the departure delay of a flight. Besides, the
weighted distributed estimator reduced the lengths of the confidence intervals of the estimated com-
mon parameters compared with the split-and-conquer method. In particular, the confidence interval
of the rain parameter was shortened by 19.1%, while those of the other two common parameters
were shorted by 2.2% (pressure) and 2.9% (temperature), which justified the statistical efficiency of
the weighted distributed estimator.

The data analysis demonstrated the feasibility of implementing the proposed weighted dis-
tributed estimation method for real-world distributed inference problems. With only one round
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of weighting to tackle the heterogeneity among the nuisance parameters, more efficient estimation
can be obtained.

Figure 2: Estimated common parameters of the near surface air pressure, temperature and convective
rain rate with 95% confidence intervals using the weighted distributed estimator and the split-and-
conquer estimator
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7 Discussion

This paper investigates distributed statistical optimization in the presence of heterogeneity among
the data blocks. The weighted distributed estimator can improve the estimation efficiency of the
split-and-conquer estimator for the common parameter. Two debiased estimators are proposed to
allow for larger numbers of data blocks K. The statistical properties of the proposed estimators
are shown to be advantageous over the split-and-conquer and SAVGM estimators. In particular, the
weighted distributed estimator performs well for smallerK relative toN , and the debiased weighted
distributed estimator that conducted both bias correction and weighting offers good estimation ac-
curacy for large K.

An important issue for the distributed estimation is the size of K relative to the full sample
size N . Both the split-and-conquer and weighted distributed estimators require K = o(N1/2) to
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preserve the the N1/2 convergence rate. The debiased weighted distributed and debiased split-and-
conquer estimators relax the restriction toK = o(N2/3) without sacrificing the statistical efficiency.

Our finding that the heterogeneity requires separate weighting for better efficiency gain has im-
plications beyond the current context. In particular, the proposed WD estimator can be extended
to a multi-round procedure, where one can substitute the WD estimator back to the local loss func-
tions, update the remaining local parameters, and then repeat the WD procedure. However, it may
be shown that under the current M-estimation framework which is non-degenerate in the sense of
Chen and Peng (2021), doing so could not lead to further gain in the efficiency beyond the WD
estimator, as it suffices to achieve statistical efficiency with a one-round averaging as the WD. Nev-
ertheless, it is of interest to explore further for the degenerate cases as the above statement may no
longer be applicable.

The heterogeneous M-estimation framework in this work is related to the federated learning
(McMahan et al., 2017), where one wants to minimize a federated risk function

M(φ) =

K∑
k=1

wkMk(φ), (17)

where Mk(Xk; ·) is the k-th client specific loss function, Mk(φ) = EPk (Mk(Xk;φ)) is the corre-
sponding risk function, φ ∈ Rp1 is the parameter of interest andwk is the pre-specified weight of the
k-th client with a natural choice wk = 1/K. The local distributions {Pk}Kk=1 may be not identically
distributed to reflect heterogeneity. In (17), only a shared parameter φ needs to be estimated, and
the heterogeneity is hidden in the local loss and risk functions.

Our formulation is different from the federated risk function (17), where the {Mk}Kk=1 are pa-
rameterized via the heterogeneous local parameters {λk}Kk=1, leading to

Mk(Xk; ·) = M(X;φ, λk) (18)

for inference on φ. Our finding that by actively weighting with respect to the heterogeneity as in
the WD estimation can provide useful guideline for the selection of the weights wk in (17) of the
federated learning.

Different from (17), the federated multi-task learning (Smith et al., 2017) is designed to tackle
the heterogeneity in a distributed network, which fits separate local parameters {φk}Kk=1 ⊂ Rp1 to
different data blocks (tasks) through loss functions {`k(·, ·)}Kk=1 and its general formulation is

min
Φ,Ω

{ K∑
k=1

nk∑
i=1

`k(φ
T
kXk,i, Yk,i) +R(Φ,Ω)

}
, (19)

where Φ is the matrix with {φk}Kk=1 as column vectors, Ω ∈ RK×K andR(·, ·) measures the extent
of the heterogeneity among different data blocks. Choices of R(·, ·) include the bi-convex func-
tion R(Φ,Ω) = δ1trace(ΦΩΦT ) + δ2‖Φ‖2F for δ1, δ2 > 0 and Ω = IK×K − (1/K)1K1TK such
that trace(ΦΩΦT ) =

∑K
k=1 ‖φk − φ̄K‖22 where φ̄K = (1/K)

∑K
k=1 φk, which leads to the mean-

regularized multi-task learning (Evgeniou and Pontil, 2004) with R conducting regularization on
each local model. Similar regularization formulations have also been applied in personalized feder-
ated learning (T. Dinh et al., 2020; Li et al., 2021). Other than regularization methods, Marfoq et al.
(2021) proposed a clustering-based method, where the {Pk}Kk=1 are assumed to be sampled from a
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mixture of S (S � K) underlying distributions. It is also noted that although federated multi-task
learning assumes different parameters {φk}Kk=1 over the data blocks, it regularizes them toward a
common one. In contrast, we assume there is a common parameter φ shared by the distributions. By
doing so, we can clarify the source of heterogeneity {λk}Kk=1 and homogeneity φ instead of putting
an equal treatment on all the dimensions of the parameter and focusing on the statistical inference
of the common parameter.
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The Appendix is organized as follows. Section A provides derivations of the formulas given in
the main text. Section B contains detailed proofs of the theoretical results. More simulation results
and details about the real data analysis are reported in Section C.

Appendix A. Derivation of formulas

A.1 Expansion of the full sample estimator φ̂full

By integral form of Taylor’s expansion around the true value θ∗, we have

0p×1 = ΨN (X; φ̂full, λ̂1,full, ..., λ̂K,full)

= ΨN (X; θ∗) + J(θ∗)(θ̂full − θ∗) + (∇ΨN (X; θ∗)− J(θ∗))(θ̂full − θ∗)

+{
∫ 1

0
∇ΨN (X; θ∗ + t(θ̂full − θ∗))(θ̂full − θ∗)dt−∇ΨN (X; θ∗)}(θ̂full − θ∗),

where J(θ) = E (∇ΨN (X; θ)). Then, inverting the above leads to

θ̂full − θ∗ = −J(θ∗)−1ΨN (X; θ∗) +RN1 +RN2, (20)

whereRN1 = −J(θ∗)−1{∇ΨN (X; θ∗)−J(θ∗)}(θ̂full−θ∗) andRN2 = −J(θ∗)−1{
∫ 1

0 ∇ΨN (X; θ∗+

t(θ̂full−θ∗))(θ̂full−θ∗)dt−∇ΨN (X; θ∗)}(θ̂full−θ∗) are both higher-order remainder terms. Since
J(θ) has the following form

J(θ) =


∑K

k=1 nkΨ
φ
φ(θk) n1Ψλ

φ(θ1) · · · nKΨλ
φ(θK)

n1Ψφ
λ(θ1) n1Ψλ

λ(θ1) 0 0
... 0

. . . 0

nKΨφ
λ(θK) 0 0 nKΨλ

λ(θK),

 , (21)

then the right bottom part of J(θ) is a block diagonal matrix, whose inverse is at hand. Thus we can
see J(θ) as a 2× 2 block matrix and directly apply the block matrix inverse formula (Lu and Shiou,
2002). Thus from (20) we have

φ̂full − φ∗ = −

(
K∑
k=1

(nk/N)Jφ|λ(θ∗k)

)−1

(1/N)

(
K∑
k=1

nk∑
i=1

Sφ(Xk,i; θ
∗
k)

)
+ op(N

−1/2).

A.2 Errors-in-variables model

We first give a derivation of the objective function from the perspective of statistical optimization.
As we will see, the derived objective is exactly the same as that when we do orthogonal regres-
sion or “Deming’s regression” (Carroll and Ruppert, 1996). Consider the conditional likelihood of
(Xk,i, Yk,i) given Zk,i in block k

f({Xk,i}, {Yk,i}|{Zk,i}, θk) =
n∏
i=1

f1(Xk,i|Zk,i)f2(Yk,i|Zk,i)

=(
1

2πσ2
)n

n∏
i=1

exp

(
− 1

2σ2

[
(X2

k,i + (Yk,i − φ)2)− 2Zk,i(Xk,i + λk(Yk,i − φ)) + (1 + λ2
k)Z

2
k,i

])
.
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By the factorization theorem, Xk,i + λk(Yk,i − φ) is a sufficient statistic for Zk,i if θk = (φ, λk) is
assumed to be known. And Xk,i + 2λk(Yk,i − φ)|Zk,i ∼ N ((1 + λ2

k)Zk,i, (1 + λ2
k)σ

2). Then, the
above conditional likelihood can be factorized as

f({Xk,i}, {Yk,i}|{Zk,i}, θk)

= (

√
1 + λ2

k√
2πσ

)n
n∏
i=1

exp

(
− 1

2σ2(1 + λ2
k)

(λkXk,i − (Yk,i − φ))2

)
h(Xk,i + λk(Yk,i − φ)|Zk,i),

where h(si|zi) is the conditional density of N ((1 + λ2
k)zi, (1 + λ2

k)σ
2). Since {Zk,i}ni=1 are not

observable, we discard the factor h and construct the estimator based on the first part of the factoriza-
tion, which is denoted as f̃({Xk,i}, {Yk,i}|{Zk,i}, θk). Differentiate log f̃({Xk,i}, {Yk,i}|{Zk,i}, θk)
with respect to θk = (φ, λk)

T , we obtain

∂

∂φ
log f̃({Xk,i}, {Yk,i}|{Zk,i}, θk) = − 1

σ2(1 + λ2
k)

n∑
i=1

(λkXk,i − (Yk,i − φ)) and

∂

∂λk
log f̃({Xk,i}, {Yk,i}|{Zk,i}, θk) = n

λk
1 + λ2

k

+
n∑
i=1

λk
σ2(1 + λ2

k)
2
(λkXk,i − (Yk,i − φ))2

−
n∑
i=1

Xk,i

σ2(1 + λ2
k)

(λkXk,i − (Yk,i − φ)).

However,E
(
∇f̃({Xk,i}, {Yk,i}|{Zk,i}, θ∗k)

)
= (0, nλ∗k/(1+λ∗2k ))T 6= 02×1, thus a correction

term should be added to construct an appropriate objective function which satisfies the standard
first-order condition in statistical optimization framework:

Mn,k({Xk,i}, {Yk,i}|{Zk,i}, θk) = − log f̃({Xk,i}, {Yk,i}|{Zk,i}, θk) +
n

2
log(1 + λ2

k)

=
1

2σ2(1 + λ2
k)

n∑
i=1

(λkXk,i − (Yk,i − φ))2 + C(σ),

where C(σ) = n log(
√

2πσ) is an absolute constant so we also discard it. The corresponding
M -function is

M(Xk, θk) =
1

2σ2(1 + λ2
k)

(λkXk − (Yk − φ))2. (22)

Below we check the identification of the true parameter under this objective function. We can
directly solve the population level first-order conditions (FOC) using E (∇M(Xk, Yk|Zk, θk)) =
02×1, which are given as

02×1 =

(
(1 + λ2

k)
(
(λk − λ∗k)E (Zk)− (φ∗ − φ)

)
(λkλ

∗
k + 1)(λk − λ∗k)E

(
Z2
k

)
− λk(φ− φ∗)2 + (φ− φ∗)(1 + 2λkλ

∗
k − λ2

k)E (Zk)

)
.

(23)
To solve the above set of equations, we consider the two scenarios. When E (Zk) = 0, from

the first equation we obtain φ = φ∗, then the second equation reduces to C(λkλ
∗
k + 1)(λk −
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λ∗k)E
(
Z2
k

)
= 0. Since we have assumed λk, λ∗k > 0, we must have λk = λ∗k. When E (Zk) 6= 0, if

λk 6= λ∗k we would obtain E (Zk) = (φ∗ − φ)/(λk − λ∗k). Plugging it into the second equation of
(23) and we can obtain

(1 + λkλ
∗
k)

σ2(1 + λ2
k)

2(λk − λ∗k)

(
(λk − λ∗k)2E

(
Z2
k

)
− (φ− φ∗)2

)
= 0,

which is impossible unless Zk is degenerate, namely Zk = (φ∗−φ)(λk−λ∗k) with probability one.
This leads to a contradiction. Thus we must have λk = λ∗k. Again from the first equation of (23) we
will obtain that φ = φ∗. In summary, E (∇M(Xk, Yk|Zk, θk)) = 02×1 if and only if θk = θ∗k.

To give an explicit form of asymptotic variance of the estimator obtained from the M -function
(22), we can directly calculate the following two terms:

E
(
∇2M(Xk, Yk|Zk; θ∗k)

)
= E

 1
σ2(1+λ∗2k )

Xk
σ2(1+λ∗2k )

− 2λ∗k(λ∗kXk−(Yk−φ∗))
σ2(1+λ∗2k )2

Xk
σ2(1+λ∗2k )

− 2λ∗k(λ∗kXk−(Yk−φ∗))
σ2(1+λ∗2k )2

(3λ∗2k −1)(λ∗kXk−(Yk−φ∗))2
σ2(1+λ∗2k )3

− 4λ∗kXk(λ∗kXk−(Yk−φ∗))
σ2(1+λ∗2k )2

+
X2
k

σ2(1+λ∗2k )


=

1

σ2(1 + λ∗2k )

(
1 E (Zk)

E (Zk) E
(
Z2
k

)) and

E
(
∇M(Xk, Yk|Zk, θ∗k)(∇M(Xk, Yk|Zk, θ∗k))T

)
=

 1
σ2(1+λ∗2k )

E(Zk)
σ2(1+λ∗2k )

E(Zk)
σ2(1+λ∗2k )

E(Z2
k)

σ2(1+λ∗2k )
+ 1

(1+λ∗2k )2

 =
1

σ2(1 + λ∗2k )

(
1 E (Zk)

E (Zk) E
(
Z2
k

)
+ σ2

1+λ∗2k

)
.

Thus we have

Jφ|λ(θ∗k) =
1

σ2(1 + λ∗2k )
(1− (EZk)

2

EZ2
k

) =
1

σ2(1 + λ∗2k )

Var(Zk)

EZ2
k

and

Var(Sφ) =
(

1 − E(Zk)

E(Z2
k)

) 1

σ2(1 + λ∗2k )

(
1 EZk

EZk EZ2
k + σ2

1+λ∗2k

)(
1

− E(Zk)

E(Z2
k)

)

=
1

σ2(1 + λ∗2k )

(
Var(Zk)

EZ2
k

+
σ2

1 + λ∗2k

(EZk)
2

(EZ2
k)2

)
,

which leads to the Equation (8) in the main text.

A.3 Equivalent variance minimization formulations of the weighted estimators

For simplicity, we assume that n1 = n2 = · · · = nK = n. We claim that the following two
formulations of the variance minimization problem have identical solution.

Formulation 1: Trace Operator

Minimize
Wk

trace

( K∑
k=1

WkHkW
T
k

)
, s.t.

K∑
k=1

Wk = Ip1 . (24)

Formulation 2: Frobenius Norm

Minimize
Wk

‖
K∑
k=1

WkHkW
T
k ‖F , s.t.

K∑
k=1

Wk = Ip1 . (25)
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Proof We solve the problem (24) first. The Lagrangian of this problem is

L̃1 = trace

( K∑
k=1

WkHkW
T
k

)
+ < Λ1,

K∑
k=1

Wk − Ip1 >,

where Λ1 ∈ Rp1×p1 is the corresponding Lagrangian multiplier. If we take derivative of L̃1 w.r.t. Wk

we can obtain 2WkHk + Λ1 = 0, k = 1, 2, · · · ,K. Then Wk = −1
2Λ1H

−1
k . Using the constraint∑K

k=1Wk = Ip1 , we can obtain Λ∗1 = −2(
∑K

s=1A
−1
s )−1 and W ∗k = (

∑K
s=1A

−1
s )−1A−1

k . Now
we turn to solve the problem (25). Equivalently we can minimize the square of the Frobenius norm,
and the corresponding Lagrangian is

L̃2 = ‖
K∑
k=1

WkHkW
T
k ‖2F+ < Λ2,

K∑
k=1

Wk − Ip1 > .

Taking derivative w.r.t. Wk we can obtain 4(
∑K

s=1WsAsW
T
s )WkAk + Λ2 = 0. Now we can use

the constraint
∑K

k=1Wk = Ip1 and get Λ∗2 = −4(
∑K

s=1WsAsW
T
s )(
∑K

s=1A
−1
s )−1 and W ∗k =

(
∑K

s=1A
−1
s )−1A−1

k .

A.4 Second-order Bartlett’s indentity under QMLE

For the quasi maximum likelihood estimation (QMLE), we only check that the second order Bartlett’s
identity holds for independent observarions. Suppose that the components of the response vector
Y are independent with mean vector µ and covariance matrix σ2V (µ), where σ2 maybe unknown
and V (µ) is a matrix of known functions. It is assumed that the parameters of interest, θ, is a func-
tion of µ. By independence of the components of Y and the physical mechanism plausibility, it is
reasonable to assume further that Vi(µ) depends on µ only through µi, which implies that

V (µ) = diag{V1(µ1), V2(µ2), · · · , Vn(µn)}.

For a single observation Y , we can construct the score function asU = u(µ;Y ) = (Y−µ)/(σ2V (µ)).
Then the corresponding objective function can be defined as

Q(µ; y) = −
∫ µ

y

y − t
σ2V (t)

dt, (26)

which behaves like a negative log-likelihood: E (∇µQ) = 0, Var(∇µQ) = E(∇2
µQ) = 1/{σ2V (µ)}.

We refer to Q(µ; y) as the negative quasi-likelihood (McCullagh, 1983), or more precisely the neg-
ative log quasi-likelihood for µ based on data y. By independence, the negative quasi-likelihood
for the complete data is the sum of the individual contributions: Q(µ; y) =

∑n
i=1Q(µi; yi). The

quasi-likelihood estimating equations for the regression parameters θ, obtained by differentiating
Q(µ; y), can be written in the form U(θ̂) = 0, where U(θ) = −DV −1(Y − µ)/σ2 is called the
quasi-score function. The components of D, of order n × p, are Dir = ∂µi/∂θr, the derivatives
of µ(θ) with respect to the parameters. Suppose the true parameters are θ∗ and µ∗, then by the
zero-mean of U(θ∗), we have

CoV{U(θ∗)} = E
(
U(θ∗)U(θ∗)T

)
= DTV −1D/σ2 and

E

(
∂U

∂θT
(θ∗)

)
= E{DTV −1 ∂µ

∂θT
/σ2 +

∂DTV −1

∂θT
Y − µ∗

σ2
} = DTV −1D/σ2.
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A.5 Generalized second-order Bartlett’s identity for parametric regression

Suppose that we observe a random sample (X1, Y1), (X2, Y2), · · · , (Xn, Yn), which follows

Y = fθ∗(X) + e, E(e|X) = 0,Var(e|X) = σ2(X), X ∼ p(x).

Then the objective function for the least square estimation is M(Z, θ) = (Y − fθ(X))2 with Z =
(X,Y ). Note that

E (M(Z, θ)) = E(fθ(X)− fθ∗(X))2 + Ee2 ≈ E (M(Z, θ∗)) + E((θ − θ∗)T∇fθ∗(X))2, (27)

which suggests that ∇2
θM(θ∗) = 2E∇fθ∗(X)∇fθ∗(X)T where M(θ) = EM(Z, θ). For the

approximation (27), see van der Vaart (1999). If we assume the independence between e and X ,
which implies Var(e) = σ2, then E

(
∇M(Z, θ∗)∇M(Z, θ∗)T

)
= 4σ2E

(
∇fθ∗(X)∇fθ∗(X)T

)
with the multiplicative factor γ for the generalized second-order Bartlett’s identity being 4σ2.

A.6 GMM formulation of the full sample statistical optimization under heterogeneity

It is noted that W0 admits the following form

W0 =


Var{ψθ1(X1,1;φ∗, λ∗1)}−1 0 · · · 0

0 Var{ψθ2(X2,1;φ∗, λ∗2)}−1 0
...

. . .
0 0 Var{ψθK (XK,1;φ∗, λ∗K)}−1

 .

Thus, W0 is a block diagonal matrix. Also note that

GT0 = E{
∂ψ̃TN (θ∗)

∂θ
}

= E



ψφφ(X1,i;φ
∗, λ∗1) ψλφ(X1,i;φ

∗, λ∗1) · · · · · · ψφφ(XK,i;φ
∗, λ∗K) ψλφ(XK,i;φ

∗, λ∗K)

ψφλ(X1,i;φ
∗, λ∗1) ψλλ(X1,i;φ

∗, λ∗1) 0 0 · · · 0

0 0 ψφλ(X2,i;φ
∗, λ∗2) ψλλ(X2,i;φ

∗, λ∗2) · · · 0
...

...
...

...
. . .

...
0 0 0 0 ψφλ(XK,i;φ

∗, λ∗K) ψλλ(XK,i;φ
∗, λ∗K)

 ,

then the asymptotic variance of the GMM estimtator (Hansen, 1982) is AsyV Ar(θ̂GMM) =
(GT0 W0G0)−1 and has the following form:

∑K
k=1 nkDΨφ(θ∗k)

TΣ−1
S,kDΨφ(θk) n1DΨφ(θ∗1)TΣ−1

S,1DΨλ(θ∗1) · · · · · · nKDΨφ(θ∗K)TΣ−1
S,KDΨλ(θ∗K)

n1DΨλ(θ∗1)TΣ−1
S,1DΨφ(θ∗1) n1DΨλ(θ∗1)TΣ−1

S,1DΨλ(θ∗1) 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0

nKDΨλ(θ∗K)TΣ−1
S,KDΨφ(θ∗K) 0 · · · 0 nKDΨλ(θ∗K)TΣ−1

S,KDΨλ(θ∗K)



−1

,

where

DΨφ(θk)
T =

(
Ψφ
φ(θk) Ψλ

φ(θk)
)
, DΨλ(θk)

T =
(

Ψφ
λ(θk) Ψλ

λ(θk)
)

and ΣS,k = Var{ψθk(Xk,1;φ∗, λ∗k)}.
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By the inversion of block matrix, approximately Var(φ̂GMM)−1 has the following form:

K∑
k=1

nk

{
DΨφ(θ∗k)

TΣ−1
S,kDΨφ(θ∗k)

−DΨφ(θ∗k)
TΣ−1

S,kDΨλ(θ∗k)

(
DΨλ(θ∗k)

TΣ−1
S,kDΨλ(θ∗k)

)−1

DΨλ(θ∗k)
TΣ−1

S,kDΨφ(θ∗k)

}
.

If we denote the elements in the above summation as nkUk, then it is straightforward to verify that

(
U−1
k ∗
∗ ∗

)
=

{(
DΨφ(θ∗k)

T

DΨλ(θ∗k)
T

)
ΣS,k

(
DΨφ(θ∗k) DΨλ(θ∗k)

)}−1

,

namely, the inverse of Uk is the left top part of the inverse of a bigger matrix in the RHS of the
above equation, from which we are able to obtain the simplified expression of Uk:

Uk =

{
J−1
φ|λ
(
Ip1×p1 −Ψλ

φ(θ∗k)Ψ
λ
λ(θ∗k)

−1
)

ΣS,k

(
Ip1×p1

−Ψλ
λ(θ∗k)

−1Ψφ
λ(θ∗k)

)
J−1
φ|λ∗k

}−1

= Jφ|λΣ−1
k Jφ|λ.

Now we conclude that Var(φ̂GMM) ≈
(∑K

k=1 Jφ|λΣ−1
k Jφ|λ

)−1
, which is the same as that of the

WD estimator φ̂WD.

A.7 Lipschitz continuity of the outer product of the gradient in logistic regression model

First we define the logit function logit(a) = exp(a)/(1 + exp(a)) for a ∈ R. Then the logistic
regression model can be defined as P (Y = 1|X) = logit(XTβ∗), where X,β∗ ∈ Rp. If we define
the objectiveM asM(z, β) = −y log(logit(xTβ))+(y−1) log(1−logit(xTβ)), where z = (y, x),
then the outer product of gradient, denoted as f(z, β), is f(z, β) = (y − logit(xTβ))2xxT . Now
we have

‖f(z, β1)− f(z, β2)‖2
= ‖xxT (2y − logit(xTβ1)− logit(xTβ2))(logit(xTβ1)− logit(xTβ2))‖2
= ‖xxT (2y − logit(xTβ1)− logit(xTβ2))(1− logit(ξ))logit(ξ)x(β1 − β2)‖2
≤ ‖x‖32‖β1 − β2‖2,

where the second equality comes from an application of the mean value theorem.

A.8 Asymptotic efficiency comparison of λ̂k and λ̂(2)
k

Theorem 9 Under the conditions required in Theorem 4, ifK →∞, then for the updated estimator
λ̂

(2)
k , we have that

√
nk(λ̂

(2)
k − λ

∗
k)

d→ N (0,Ψλ
λ(θ∗k)

−1Eψλ(Xk,1; θ∗k)ψλ(Xk,1; θ∗k)
TΨλ

λ(θ∗k)
−1). (28)
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Hence, the asymptotic distribution of λ̂(2)
k is the same as that of the estimator of λ∗k obtained

when the common parameter φ∗ is known. It is noted that the joint asymptotic distribution for the
estimator θ̂k = (φ̂Tk , λ̂

T
k )T is

√
nk(θ̂k − θ∗k)

d→ N (0, Jk(θ
∗
k)
−1Eψθk(Xk,1; θ∗k)ψθk(Xk,1; θ∗k)

TJk(θ
∗
k)
−1),

which leads to

√
nk(λ̂k − λ∗k)

d→ N (0, Jλ|φ(θ∗k)
−1Var(Sφ(Xk,1; θ∗k))Jλ|φ(θ∗k)

−1). (29)

There is not a definite order on the relative efficiency between λ̂k and λ̂(2)
k by comparing the two

asymptotic variances in (28) and (29), suggesting it would depend on the specific M function and
the model setting. For general statistical optimization, a known nuisance parameter (here φ∗) does
not necessarily improve the efficiency of a parameter of interest Yuan and Jennrich (2000); Henmi
and Eguchi (2004), which is the case for the current setting. Consider again the errors-in-variables
model where it can be shown that

Var(λ̂
(2)
k ) ≈ σ4

(Var(Zk))2

1

nk
and Var(λ̂k) ≈

(
σ4

(E(Z2
k))2

+
σ2(1 + λ2

k)

E(Z2
k)

)
1

nk
.

When E (Zk) = 0, i.e. Var(Zk) = E(Z2
k), the updated estimator λ̂(2)

k is more efficient, and the
efficiency gain gets large as λ2

k increases. However, if E (Zk) has a large absolute magnitude, λ̂k
can be more efficient than λ̂(2)

k . Moreover, the requirement in Theorem 9 that K →∞ is to obtain
a succinct asymptotic variance of λ̂(2)

k . The above conclusion does not change for the fixed K
case. Consider block 1, we assume λ̂(2)

1
p→ λ∗1 and φ̂WD is

√
n1− consistent (detailed proofs of

both claims are available in the next section). Then by Theorem 1 in Yuan and Jennrich (2000), if
√
n1

(
1
n1

∑n1
i=1 ψλ(X1,i; θ

∗
1) + Ψφ

λ(θ∗1)(φ̂WD − φ∗)
) d→ N (0, Q), we will have

√
n1(λ̂

(2)
1 − λ∗1)

d→
N (0,Ω) where Ω = Ψλ

λ(θ∗1)−1QΨλ
λ(θ∗1)−1. Denote Tn,K =

√
nΨλ

λ(θ∗1)−1
(

1
n

∑n
i=1 ψλ(X1,i; θ

∗
1) +

Ψφ
λ(θ∗1)(φ̂WD − φ∗)

)
, then Tn,K should have the same asymptotic distribution as

√
n(λ̂

(2)
1 − λ∗1).

So, we study the limiting behavior of Tn,K for simplicity. Consider the homogeneous scenario as a
special case when θ∗1 = θ∗2 = · · · = θ∗K , n1 = n2 = · · · = nK = n, then the optimal weights are
W ∗1 = W ∗2 = · · · = W ∗K = 1

K Ip1×p1 . Now we have

Tn,K =
1√
n

Ψλ
λ(θ∗1)−1

( n∑
i=1

ψλ(X1,i; θ
∗
1)−Ψφ

λ(θ∗1)
K∑
k=1

1

K
(φ̂k − φ∗)

)
=

1√
n

Ψλ
λ(θ∗1)−1

( n∑
i=1

ψλ(X1,i; θ
∗
1)−Ψφ

λ(θ∗1)

K∑
k=1

1

K

n∑
i=1

J−1
φ|λSφ(Xk,i; θ

∗
k)
)

+ op(1)

=
(

(1− 1
K )Ψλ

λ(θ∗1)−1Ψφ
λ(θ∗1) Ip2×p2

)
∇2M1(θ∗1)−1 1√

n

n∑
i=1

(
ψφ(X1,i; θ

∗
1)

ψλ(X1,i; θ
∗
1)

)

−Ψλ
λ(θ∗1)−1Ψφ

λ(θ∗1)
1√
n

1

K

K∑
k=2

n∑
i=1

J−1
φ|λSφ(Xk,i; θ

∗
k) + op(1)

∆
= T

(1)
n,k + op(1).
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We can verify that Var(T
(1)
n,k) = (1 − 1

K )Ψλ
λ(θ∗1)−1Var(ψλ(X1,1; θ∗1))Ψλ

λ(θ∗1)−1 + n
KVar(λ̂1), or

equivalently, Var(λ̂
(2)
1 ) ≈ (1 − 1

K )Ψλ
λ(θ∗1)−1Var(ψλ(X1,1; θ∗1))Ψλ

λ(θ∗1)−1 1
n + 1

KVar(λ̂1). Thus

Var(λ̂
(2)
1 ) � Var(λ̂1) if and only if

Ψλ
λ(θ∗1)−1Var(ψλ(X1,1, θ

∗
1))Ψλ

λ(θ∗1)−1/n � Var(λ̂1). (30)

The LHS of inequality (30) is the asymptotic variance of the estimator of λ∗1 if φ∗1 is known and RHS
is the asymptotic variance of estimator of λ∗1 when we jointly estimate (φ∗T1 , λ∗T1 )T . Henmi and
Eguchi (2004) showed that the inequality does not always hold for general statistical optimization
problem and derived a sufficient condition under which a known nuisance parameter (φ∗) will lead
to a bigger asymptotic variance of the estimator of the parameter of interest (λ∗1).

A.9 Comparison with a one-step estimator

Huang and Huo (2019), also under the same homogeneous setting, considered to utilize the second
order information of the M -function to allow for a larger K. They proposed a one-step estimator
which aggregates the local Hessian matrices and gradients and performs a single Newton-Raphson
updating. The estimator, denoted as θ̂(1), has a MSE upper bound

E
(
‖θ̂(1) − θ∗1‖22

)
≤

2E
(
‖∇θ1Ψθ(θ

∗
1)−1ψθ1(X1,1; θ∗1)‖22

)
nK

+
C1

N2
+
C2

n4
. (31)

Thus, this method allows for K = o(n3), while still preserves the O(N−1) convergence rate. The
price of this procedure is one extra round of transmission of the local Hessians and gradients. To
mitigate the communication burden, they considered to use only one local Hessian matrix instead
of the averaged one. Let θ̂(1)

LH be the estimator. They showed that

E
(
‖θ̂(1)
LH − θ

∗
1‖22
)
≤

2E
(
‖∇θ1Ψθ(θ

∗
1)−1ψθ1(X1,1; θ∗1)‖22

)
nK

+
C1

n2K
+
C2

n3
, (32)

which is similar to the MSE bound of the dSaC estimator in Corollary 8. However, both θ̂(1) and
θ̂

(1)
LH are not readily extended to the heterogeneous setting, as the one-step update procedure relies

crucially on the N1/2−consistency of the initial estimators of all the unknown parameters (van der
Vaart, 1999), but the convergence rate of the block-specific estimators λ̂k are only of orderOp(n

1/2
k ).

A.10 Bias correction for statistical optimization under logistic regression model

Given observations {(yi, Xi)}ni=1, we now construct B̂(β). Denote y = (y1, y2, · · · , yn)T , X =
(X1, X2, · · · , Xn)T and ŷ = (ŷ1, ŷ2, · · · , ŷn) with ŷi = logit(xTi β). Since

dj

daj
logit(a) = logit(a)

j∏
s=1

(1− logit(a)s),

then we have ∇Mn(β) = 1
nX

T (ŷ − y), ∇2Mn(β) = 1
nX

Tdiag{ŷ · (1 − ŷ)}X and ∇3Mn(β) =
1
n

∑n
i=1 ŷi(1 − ŷi)(1 − 2ŷi)xivec(xi ⊗ xi)

T , where · denotes the element-wise product of two
vectors and vec is the vectorization operator. Then, the bias-correction formula is a combination of
the gradients up to the third order.
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Appendix B. Proofs

Without loss of generality, we assume equal sample size n in each data block. Besides, unless
otherwise stated, we will use C, ci and Ci to denote positive constants independent of (nk,K,N),
and the same Ci can have different values from one context to another.

B.1 Lemmas

Before presenting the proofs of the theoretical results established in the main paper, we first establish
some technical lemmas in the following sub-section.

Lemma B.1 SupposeH andK are positive definite matrices of order p, andX and Y are arbitrary
p×m matrices. Then, Q = XTH−1X + Y TK−1Y − (X + Y )T (H +K)−1(X + Y ) � 0.

Proof Let A and B be defined as follows

A =

(
H X
XT XTH−1X

)
, B =

(
K Y
Y T Y TK−1Y

)
Since H,K are positive definite, we can directly check that A,B are positive semi-definite. Thus
A + B is also positive semi-definite, and the conclusion follows. See Haynsworth (1970); Ando
(1979) for more similar types of matrix inequalities.

Lemma B.2 Under Assumptions 1 - 4 and Assumptions 5 - 6 with min{v, v1} ≥ 1, if K = o(nv2),
then

sup
1≤k≤K

‖θ̂k − θ∗k‖2
P→ 0.

Besides, the following holds for all k = 1, 2, · · · ,K and 1 ≤ v2 ≤ v1

E
(
‖θ̂k − θk‖2v22

)
≤ C

(
R2v2

nv2
+

(
1 + L2v

nv
+
R2v1

nv1

))
. (33)

Proof Let Gn,k = 1
n

∑n
i=1Gk(Xk,i), Mn,k(θ) = 1

n

∑n
i=1M(Xk,i; θ) and δρ = min{ρ, ρρ−/4G}.

For k = 1, ...,K, define the following “good events”:

Ek = {Gn,k ≤ 2G, ‖∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k)‖2 ≤

ρρ−
2
, ‖∇θkMn,k(θ

∗
k)‖2 ≤

(1− ρ)ρ−δρ
2

},
(34)

then by Lemma 6 in Zhang et al. (2013), we obtain that under the event ∩Kk=1Ek,

‖θ̂k − θ∗k‖2 ≤
2‖∇θkMn,k(θ

∗
k)‖2

(1− ρ)ρ−
holds for all k = 1, 2, · · · ,K. (35)

Similar to the proof of Lemma C.1 in Jordan et al. (2019), we can show that there exist constants
C1, C2, C3 independent of (n,K, d, L,R) such that

P (∪Kk=1Eck) ≤ K
(
C1 + C2(log2d)2vL2v

nv
+
C3R

2v1

nv1

)
.

31



GU AND CHEN

Now For any ε > 0 and k ≤ K, we further define the events E ′k = {‖∇θkMn,k(θ
∗
k)‖2 ≤ (1 −

ρ)ρ−ε/2}. Then by Markov’s inequality and the union bound, there exist a positive constant C4

depending on ε such that

P (∪Kk=1E
′c
k ) ≤ C4(log2d)2vL2v

nv
.

Thus, sup
1≤k≤K

‖θ̂k − θ∗k‖2
P→ 0 as n → ∞ as long as K = o(nmin{v,v1}). Besides, the higher-order

estimation error bound follows from the following decomposition

E
(
‖θ̂k − θk‖2v22

)
= E

(
‖θ̂k − θk‖2v22 (I(Ek) + I(Eck))

)
≤ C

(
E
(
‖∇θkMn,k(θ

∗
k)‖

2v2
2

)
+ P ((Ek)c)

)
≤ C

(
R2v2

nv2
+

(
1 + L2v

nv
+
R2v1

nv1

))
.

Lemma B.3 Inv(A) : GL(Rp) → GL(Rp) : A 7→ A−1 is Lipschitz continuous at any A ∈
GL(Rp), where GL(Rp) consists of all p× p invertible matrices of real numbers.

Proof Let A0 ∈ GL(Rp) be given. Denote 1/‖A−1
0 ‖2 = δ > 0. It follows that for all x ∈ Rp we

have ‖x‖2 = ‖A−1
0 A0x‖2 ≤ (1/δ)‖A0x‖2, namely ‖A0x‖2 ≥ δ‖x‖2. Assume that ‖A− A0‖2 <

δ/2, then ‖Ax‖2 ≥ ‖A0x‖2 − ‖(A − A0)x‖2 ≥ δ
2‖x‖2, which means A−1 exists and ‖A−1‖2 ≤

2/δ. Since A−1 − A−1
0 = A−1(A0 − A)A−1

0 , ‖A−1 − A−1
0 ‖2 ≤ ‖A−1‖2‖A0 − A‖2‖A−1

0 ‖2 ≤
(2/δ2)‖A−A0‖2, which completes the proof.

Lemma B.4 Under Assumptions 1 - 4 and 7, and Assumptions 5 - 6 for v, v1 ≥ 1, if K = o(n),

{nk
K∑
k=1

Hk(θ
∗
k)
−1(φ̂k − φ∗)}T {

K∑
k=1

nkHk(θ
∗
k)
−1}−1{

K∑
k=1

nkHk(θ
∗
k)
−1(φ̂k − φ∗)}

d→ χ2
p1 .

Proof We prove for the case when K → ∞, and it is straightforward to derive the proof for the
fixed K case. Since we have assumed equal sample size n for simplicity, we can denote

T1 =
√
N{ 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−

1
2

1

K

K∑
k=1

Hk(θ
∗
k)
−1(φ̂k − φ∗),

and the problem is equivalent to show that ‖T1‖22 → χ2
p1 in distribution when K = o(n). Since all

the smoothness conditions in Assumptions 5 - 6 only holds locally, namely in the Uρ ball, so all the
Taylor expansions hold only under the event ∩Kk=1Ek, where the definition of the event Ek can be
found in the proof of Lemma B.2. Now, under the event ∩Kk=1Ek, by the integral form of Taylor’s
expansion of∇θkMn,k(θk) around the true parameter θ∗k, we have

θ̂k − θ∗k = −Jk(θ∗k)−1∇θkMn,k(θ
∗
k) +R(k)

n , (36)

32



DISTRIBUTED STATISTICAL INFERENCE UNDER HETEROGENEITY

where R(k)
n = R

(k)
n,1 +R

(k)
n,2,

R
(k)
n,1 = −Jk(θ∗k)−1{

∫ 1

0
∇2
θk
Mn,k(θ

∗
k + t(θ̂k − θ∗k))dt−∇2

θk
Mn,k(θ

∗
k)}(θ̂k − θ∗k) and

R
(k)
n,2 = −Jk(θ∗k)−1{∇2

θk
Mn,k(θ

∗
k)− Jk(θ∗k)}(θ̂k − θ∗k)

for each k. Recall the definition of Jφ|λ and Sφ, if we denote

Pk = Hk(θ
∗
k)
−1Jφ|λ(θ∗k)

−1
(
Ip1×p1 −Ψλ

φ(θ∗k)Ψ
λ
λ(θ∗k)

−1
)
, (37)

T1,0 = −{ 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−

1
2

1√
N

K∑
k=1

n∑
i=1

Pkψθk(Xk,i; θ
∗
k)

R1 = −(
1

K

K∑
k=1

Hk(θ
∗
k)
−1)−

1
2

√
n

K

K∑
k=1

Pk{
∫ 1

0
∇2
θk
Mn,k(θ

∗
k + t(θ̂k − θ∗k))dt−∇2

θk
Mn,k(θ

∗
k)}(θ̂k − θ∗k) and

R2 = −(
1

K

K∑
k=1

Hk(θ
∗
k)
−1)−

1
2

√
n

K

K∑
k=1

Pk{∇2
θk
Mn,k(θ

∗
k)− Jk(θ∗k)}(θ̂k − θ∗k),

then

T1 = (T1,0 +R1 +R2) I(∩Kk=1Ek) + T1

(
1− I(∩Kk=1Ek)

)
= T1,0 + (R1 +R2) I(∩Kk=1Ek) + (T1 + T1,0)

(
1− I(∩Kk=1Ek)

)
.

The proof of Lemma B.2 also shows that P (∩Kk=1Ek) = 1 − O(K/nv2), where v2 = min{v, v1}.
Thus, it suffices to establish the asymptotic normality for T1,0, show that the R1 and R2 terms are
both op(1) terms and then apply the Slutsky’s lemma.

Considering the T1,0 term, we apply the Cramer-Wold device to reduce the problem into a
scalar case. For any non-zero l ∈ Rp1 , let lTk = −lT { 1

K

∑K
s=1Hk(θ

∗
s)
−1}−1/2Pk, then lTT1,0 =

N−1/2
∑K

k=1

∑n
i=1 l

T
k ψθk(Xk,i; θ

∗
k). If we denote ZK,k = N−1/2

∑n
i=1 l

T
k ψθk(Xk,i; θ

∗
k), then

lTT1,0 =
∑K

k=1 ZK,k and E (ZK,k) = 0. Below we check the Lindeberg conditions. First,∑K
k=1E(Z2

K,k) = lT l = σ2
l > 0. Second, for any ε > 0,

K∑
k=1

E(|ZK,k|2; |ZK,k| > ε) =

K∑
k=1

E(|ZK,k|2I{|ZK,k|>ε})

=
K∑
k=1

(

∫ ε

0
+

∫ ∞
ε

)P (|ZK,kI{|ZK,k|>ε}| > t)dt

=
K∑
k=1

P (|ZK,k| > ε) +
K∑
k=1

∫ ∞
ε

P (|ZK,k| > t)dt,

where the second equality comes from the tail-sum formula for expectations of absolute moments.
Using Chebyshev’s inequality, Marcinkiewicz-Zygmund inequality with b3 being the corresponding
constant and Jensen’s inequality , we can show that

K∑
k=1

P (|ZK,k| > ε) ≤ b3

ε3K3/2

K∑
k=1

‖lk‖32E
(
‖ψθk(Xk,1; θ∗k)‖22

)
. (38)
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Recalling the definition of lk, we can use the boundedness of Hk(θ
∗
k) and ∇2

θk
Mk(θ

∗
k) to show that

‖lk‖2 ≤ C‖l‖2. Thus we have that

K∑
k=1

P (|ZK,k| > ε) ≤ b3C

ε3K3/2
‖l‖2K max

1≤k≤K
E
(
‖ψθk(Xk,1; θ∗k)‖32

)
.

max
1≤k≤K

E
(
‖ψθk(Xk,1; θ∗k)‖32

)
√
K

→ 0.

Now consider the
∑K

k=1

∫∞
ε P (|ZK,k| > t)dt term. By replacing the ε in (38) with t, we have

K∑
k=1

∫ ∞
ε

P (|ZK,k| > t)dt .
1√
K

∫ ∞
ε

1

t3
dt→ 0.

Thus we conclude that T1,0
d→ N (0, Ip1×p1). Now we consider the remainder term R2. Since

‖ 1
K

∑K
k=1Hk(θ

∗
k)
−1‖2 is bounded, we only need to show R2,1

∆
= { 1

K

∑K
k=1Hk(θ

∗
k)
−1}R2 is

op(1). Since ‖R2,1‖2 ≤
√

K
n

1
K

∑K
k=1 ‖Pk‖2‖

√
n{∇2

θk
Mn,k(θ

∗
k) − Jk(θ

∗
k)}‖2‖

√
n(θ̂k − θ∗k)‖2,

by Markov’s inequality and Hölder’s inequality, we will have

P (‖R2,1‖ ≥ ε) ≤ C1

√
K

n

1

K

K∑
k=1

√
E
(
‖
√
n{∇2

θk
Mn,k(θ

∗
k)− Jk(θ∗k)}‖22

)
E
(
‖
√
n(θ̂k − θ∗k)‖22

)
.

From Lemma 7 of Zhang et al. (2013) and Assumption 5 with v ≥ 1, we know that

E
(
‖
√
n{∇2

θk
Mn,k(θ

∗
k)− Jk(θ∗k)}‖22

)
≤ C.

On the other hand, by Lemma 6 of Zhang et al. (2013) and using the event Ek we can show that
E
(
‖
√
n(θ̂k − θ∗k)‖22

)
≤ C1. Since K = o(n), we conclude that R2 = op(1).

Considering the R1 term, we can similarly prove that ‖R1‖2 = op(1) by using the Lipschitz
condition ‖∇2

θk
M(x; θk)−∇2

θk
M(x; θ′k)‖2 ≤ G(x)‖θk − θ′k‖2 as assumed in Assumption 5. The

result follows via a direct application of the Slutsky’s lemma.

Lemma B.5 Under the same conditions required by Lemma B.4, the following term is asymptoti-
cally negligible (i.e. op(1)):

√
N
( K∑
k=1

{
K∑
s=1

nsĤs(θ̂s)
−1}−1nkĤk(θ̂k)

−1(φ̂k−φ∗)−
K∑
k=1

{
K∑
s=1

nsHs(θ
∗
s)
−1}−1nkHk(θ

∗
k)
−1(φ̂k−φ∗)

)
.

Proof Denote the above term as T2, then we have that

‖T2‖2 ≤
√
K

n

(
‖{ 1

K

K∑
s=1

Ĥs(θ̂s)
−1}−1‖2

1

K

K∑
k=1

‖
√
n(Ĥk(θ̂k)

−1 −Hk(θ
∗
k)
−1)‖2‖

√
n(φ̂k − φ∗)‖2

+
1

K

K∑
k=1

‖Hk(θ
∗
k)
−1‖2‖

√
n
(
{ 1

K

K∑
s=1

Ĥs(θ̂s)
−1}−1 − { 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−1

)
‖2‖
√
n(φ̂k − φ∗)‖2

)
:=

√
K

n
(T

(1)
2 + T

(2)
2 ).
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Since K = o(n), it suffices to show T
(1)
2 and T (2)

2 are both Op(1). Under the event AK defined

in Equation (61), we have T (2)
2 I(AK) ≤ C

K

∑K
k=1

(
√
n‖Σ̂S,k(θ

∗
k) − ΣS,k(θ

∗
k)‖2 +

√
n‖L̂k(θ∗k) −

Lk(θ
∗
k)‖2 + ‖

√
n(θ̂k − θ∗k)‖2

)
‖
√
n(θ̂k − θ∗k)‖2. Thus for v ≥ 1, v1 ≥ 2, by Markov’s inequality

and Cauchy’s inequality we have

P (T
(2)
2 > 1,AK) ≤ n max

1≤k≤K

(
C1

√
E
(
‖Σ̂S,k(θ

∗
k)− ΣS,k(θ

∗
k)‖22

)
E
(
‖θ̂k − θ∗k‖22

)
+C2

√
E
(
‖L̂k(θ∗k)− Lk(θ∗k)‖22

)
E
(
‖θ̂k − θ∗k‖22

)
+ C

′
3E
(
‖θ̂k − θ∗k‖22

))
= O(1).

Since we have shown P (AK)→ 1 if K = o(nv̄) with v̄ = min{v, v12 }, and we have assumed that

K = o(n) , we can conclude that T (2)
2 = Op(1). We can similarly show that T (1)

2 = Op(1). Now
we complete the proof.

Lemma B.6 Let A1, A2, · · · , An ∈ Sp×p, if

‖


vec(A1)T

vec(A2)T

...
vec(An)T

 (∆⊗∆)‖2 ≤ A‖∆‖22 holds for ∀∆ ∈ Rp,

then ‖Ã‖2 ≤
√
pnA, where Ã = (vec(A1), vec(A2), · · · , vec(An))T .

Proof Since Ã(∆ ⊗ ∆) = (∆TA1∆,∆TA2∆, · · · ,∆TAn∆)T , A2‖∆‖42 ≥
∑n

i=1(∆TAi∆)2

which implies max
i≤n
‖Ai‖2 ≤ A. On the other hand, for B = (A1, A2, · · · , An) ∈ Rp×np, we

have ‖B‖22 = λmax(
∑n

i=1AiA
T
i ) ≤

∑n
i=1 λmax(AiA

T
i ) =

∑n
i=1 ‖Ai‖2 ≤ nA2, which gives

‖Ã‖2 = ‖ÃT ‖2 ≤
√∑n

i=1 ‖vec(Ai)‖22 =
√∑n

i=1 ‖Ai‖2F ≤
√
pnA.

Lemma B.7 Under Assumptions 1 - 4 and 7 - 8, and Assumption 5 with v, v1 ≥ 4 ,

E
(
‖B̂k(θ̂k)IEk,bc −Bk(θ

∗
k)‖22

)
≤ C

n
.

Proof Denote ∆k = θ̂k − θ∗k. By the definition of the event Ek,bc given in Algorithm 2, we
immediately have that ‖B̂k(θ̂k)1Ek,bc − Bk(θ∗k)‖22 ≤ Cn2. Below we first control the ‖Qk(θ∗k) −
Q̂k(θ̂k)‖2 term. Note that Qk(θk) and Q̂k(θk) are exactly −L−1

k (θk) and L̂k(θk)
−1 defined in

the proof of Theorem 3, thus under the event {‖L̂k(θ̂k) − Lk(θ∗k)‖2 ≤
ρ−
2 }, we have ‖Qk(θ∗k) −

Q̂k(θ̂k)‖2 ≤ 2
ρ2−
‖L̂k(θ̂k)− Lk(θ∗k)‖2. Besides, when ‖∆k‖2 ≤ ρ, we have

‖L̂k(θ̂k)− Lk(θ∗k)‖2 ≤
1

n

n∑
i=1

G(Xk,i)‖∆k‖2 + ‖L̂k(θ∗k)− Lk(θ∗k)‖2. (39)
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Without loss of generality, we can assume ρ− ≤ 8Gρ, then if we define EQ,k = {‖∆k‖2 ≤
ρ−
8G , Gn,k ≤ 2G, ‖L̂k(θ∗k)− Lk(θ∗k)‖2 <

ρ−
4 }, then

‖Q̂k(θ̂k)‖21EQ,k ≤
(
‖Qk(θ∗k)− Q̂k(θ̂k)‖2 + ‖Qk(θ∗k)‖2

)
1EQ,k ≤

1

ρ−
+ ρ− and

‖Qk(θ∗k)− Q̂k(θ̂k)‖21EQ,k∩Ek ≤ C
(
G‖∇θkMn,k(θ

∗
k)‖2 + ‖L̂k(θ∗k)− Lk(θ∗k)‖2

)
.

Using union bound and Markov’s inequality, it is easy to show

P ((EQ,k)c) ≤ C
(

(1 + L2v)

nv
+
R2v1

nv1

)
.

Besides, under this event, we can decompose the estimation error using the event Ek and obtain

E
(

1EQ,k‖Qk(θ
∗
k)− Q̂k(θ̂k)‖22

)
≤ C

(
E
(
‖∇θkMn,k(θ

∗
k)‖22

)
+ E

(
‖L̂k(θ∗k)− Lk(θ∗k)‖22

)
+ P ((Ek)c)

)
≤ C

(
R2 + L2

n
+ P ((Ek)c)

)
. (40)

It is noted that

‖B̂k(θ̂k)−Bk(θ∗k)‖22

≤ 2‖Q̂k(θ̂k)
1

n

n∑
i=1

v̂i,k(θ̂k)d̂i,k(θ̂k)−Qk(θ∗k)E (v1,k(θ
∗
k)d1,k(θ

∗
k)) ‖22

+
1

2
‖Q̂k(θ̂k)Ĥ3,k(θ̂k)

1

n

n∑
i=1

d̂i,k(θ̂k)⊗ d̂i,k(θ̂k)−Qk(θ∗k)H3,k(θ
∗
k)E (d1,k(θ

∗
k)⊗ d1,k(θ

∗
k)) ‖22

:= 2Ωk,1 +
1

2
Ωk,2,

then we can bound those two terms respectively. For Ωk,1, under the event EQ,k we have

Ωk,11EQ,k

≤ 2

(
‖Q̂k(θ̂k){

1

n

n∑
i=1

v̂i,k(θ̂k)d̂i,k(θ̂k)− E (v1,k(θ
∗
k)d1,k(θ

∗
k))}‖221EQ,k

+1EQ,k‖Qk(θ
∗
k)− Q̂k(θ̂k)‖22‖E (v1,k(θ

∗
k)d1,k(θ

∗
k)) ‖22

)
≤ C

(
‖ 1

n

n∑
i=1

(v̂i,k(θ̂k)d̂i,k(θ̂k)− v̂i,k(θ∗k)di,k(θ∗k))‖221EQ,k︸ ︷︷ ︸
:=Ω

(1)
k,1

+‖ 1

n

n∑
i=1

v̂i,k(θ
∗
k)di,k(θ

∗
k)− E (v1,k(θ

∗
k)d1,k(θ

∗
k)) ‖22 + 1EQ,k‖Qk(θ

∗
k)− Q̂k(θ̂k)‖22

)
.(41)

By Lemma 7 in Zhang et al. (2013), we have

E

(
‖ 1

n

n∑
i=1

v̂i,k(θ
∗
k)di,k(θ

∗
k)− E (v1,k(θ

∗
k)d1,k(θ

∗
k)) ‖22

)
≤ CR

2L2

n
.
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Besides, given (40), it suffices to control E
(

Ω
(1)
k,1

)
. Note that

Ω
(1)
k,1 ≤ 2‖ 1

n

n∑
i=1

(v̂i,k(θ̂k)− v̂i,k(θ∗k))d̂i,k(θ̂k)‖221EQ,k + 2‖ 1

n

n∑
i=1

v̂i,k(θ
∗
k)(d̂i,k(θ̂k)− di,k(θ∗k))‖221EQ,k

:= 2(Ω
(2)
k,1 + Ω

(3)
k,1).

Under the event EQ,k ∩ Ek, we have ‖v̂i,k(θ̂k)− v̂i,k(θ∗k)‖2 ≤ CG(Xk,i)‖∇θkMn,k(θ
∗
k)‖2. Besides,

note that ‖∇θkMn,k(θ
∗
k)‖2 is bounded under Ek, then by Taylor’s expansion we can show that

‖∇θkM(Xk,i; θ̂k)−∇θkM(Xk,i; θ
∗
k)‖21Ek

≤ C
(
G(Xk,i)‖∇θkMn,k(θ

∗
k)‖22 + ‖∇2

θk
M(Xk,i; θ

∗
k)‖2‖∇θkMn,k(θ

∗
k)‖2

)
1Ek

≤ C
(
G(Xk,i) + ‖∇2

θk
M(Xk,i; θ

∗
k)‖2

)
‖∇θkMn,k(θ

∗
k)‖21Ek . (42)

Now by Hölder’s inequality, we can show that

E
(

Ω
(2)
k,11Ek

)
≤ CE

(
‖∇θkMn,k(θ

∗
k)‖22

1

n

n∑
i=1

G2(Xk,i)‖∇θkM(Xk,i; θ̂k)‖221Ek

)

≤ C
1

n

n∑
i=1

{E
(
‖∇θkMn,k(θ

∗
k)‖62

)
E
(
G6(Xk,i)

)
E
(
‖∇θkM(Xk,i; θ̂k)1Ek‖

6
2

)
}1/3

≤ C
G2R2(G2 + L2 +R2)

n
.

For E
(

Ω
(3)
k,11Ek

)
, first note that

‖d̂i,k(θ̂k)−di,k(θ∗k)‖2 ≤ ‖Q̂k(θ̂k)−Qk(θ∗k)‖2‖∇θkM(Xk,i; θ
∗
k)‖2+‖Q̂k(θ̂k)‖2‖∇θkM(Xk,i; θ̂k)−∇θkM(Xk,i; θ

∗
k)‖2,

(43)
then combined with (39) and (42), we have that

E
(

Ω
(3)
k,11Ek

)
≤ C

n

n∑
i=1

E

(
‖∇2

θk
M(Xk,i; θ

∗)‖22
( (
G2‖∇θkMn,k(θ

∗
k)‖22 + ‖∇2

θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k)‖22

)
‖∇θkM(Xk,i; θ

∗
k)‖22

+
(
G2(Xk,i) + ‖∇2

θk
M(Xk,i; θ

∗
k)‖22

)
‖∇2

θk
Mn,k(θ

∗
k)‖22

))
≤ C

L2R2(L2 +G2 +G2R2)

n
.

Now we consider Ωk,2. First, by Assumption 5 and Lemma B.6, we can show

‖∇3
θk
M(Xk,i; θ

∗
k)−H3,k(θ

∗
k)‖2 ≤ C(G(Xk,i) +G), (44)
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leading to E
(
‖Ĥ3,k(θ

∗
k)−H3,k(θ

∗
k)‖2v2

)
≤ CG2v

nv . Besides, using Assumption 8 and Lemma B.6,

‖Ĥ3,k(θ̂k)− Ĥ3,k(θ
∗
k)‖21Ek ≤

C

n

n∑
i=1

A(Xk,i)‖∇θkMn,k(θ
∗
k)‖21Ek .

Ωk,2

≤ C1‖Q̂k(θ̂k)Ĥ3,k(θ̂k)
1

n

n∑
i=1

d̂i,k(θ̂k)⊗ d̂i,k(θ̂k)−Qk(θ∗k)H3,k(θ
∗
k)

1

n

n∑
i=1

di,k(θ
∗
k)⊗ di,k(θ∗k)‖22

+C2G
2‖ 1

n

n∑
i=1

di,k(θ
∗
k)⊗ di,k(θ∗k)− E (d1,k(θ

∗
k)⊗ d1,k(θ

∗
k)) ‖22

≤ C1‖(Q̂k(θ̂k)Ĥ3,k(θ̂k)−Qk(θ∗k)H3,k(θ
∗
k))

1

n

n∑
i=1

d̂i,k(θ̂k)⊗ d̂i,k(θ̂k)‖22

+C2G
2‖ 1

n

n∑
i=1

d̂i,k(θ̂k)⊗ d̂i,k(θ̂k)−
1

n

n∑
i=1

di,k(θ
∗
k)⊗ di,k(θ∗k)‖22

+C3G
2‖ 1

n

n∑
i=1

di,k(θ
∗
k)⊗ di,k(θ∗k)− E (d1,k(θ

∗
k)⊗ d1,k(θ

∗
k)) ‖22

:= C
(

Ω
(1)
k,2 +G2Ω

(2)
k,2 +G2Ω

(3)
k,2

)
Using lemma 7 in Zhang et al. (2013), we have E

(
Ω

(3)
k,2

)
≤ C L4R4

n . Considering Ω
(1)
k,2,

Ω
(1)
k,21EQ,k∩Ek

≤ C(‖Ĥ3,k(θ̂k)−H3,k(θ
∗
k)‖22 +G2‖Q̂k(θ̂k)−Qk(θ∗k)‖22)(

1

n

n∑
i=1

‖∇θkM(Xk,i; θ̂k)‖22)21EQ,k∩Ek ,

then by Hölder’s inequality, we can show that

E
(

Ω
(1)
k,21EQ,k∩Ek

)
≤ C

(√
E
(
‖Ĥ3,k(θ̂k)−H3,k(θ

∗
k)‖421EQ,k∩Ek

)
+G2

√
E
(
‖Q̂k(θ̂k)−Qk(θ∗k)‖421EQ,k∩Ek

))
·√√√√E(

1

n

n∑
i=1

‖∇θkM(Xk,i; θ̂k)‖221Ek)4

≤ C

(
G2(1 + L2 +R2) +A2R2

)
(G4 +R4 + L4)

n
.

Considering Ω
(2)
k,2, note for any two p-dimensional vectors `1 and `2, we have

‖`1 ⊗ `1 − `2 ⊗ `2‖22 = ‖`1`T1 − `2`T2 ‖2F ≤ 2
(
‖`1 − `2‖22

(
‖`1‖22 + ‖`2‖22

))
, (45)

then using (42) and (43), we can show that

E
(

Ω
(2)
k,21EQ,k∩Ek

)
≤ CR

2(G2 +R2 + L2)2

n
.
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Finally, we consider Ek,bc and we can show that

P (Eck,bc) ≤ P (Eck,bc ∩ EQ,k ∩ Ek) + P ((EQ,k ∩ Ek)c)

≤ C

n2
E
(
‖B̂(θ̂k)−Bk(θ∗k)‖221EQ,k∩Ek

)
+ CP ((EQ,k ∩ Ek)c).

Collecting all the above results, we have the following upper-bound

E
(
‖B̂k(θ̂k)1Ek,bc −Bk(θ

∗
k)‖22

)
≤ E

(
‖B̂(θ̂k)−Bk(θ∗k)‖221EQ,k∩Ek

)
+ CP ((EQ,k ∩ Ek ∩ Ek,bc)c)

≤ C

n

(
R2 + L2 +R2L2 +G2R2(G2 +R2 + L2) + L2R2(L2 +G2 +G2R2) +R2(G2 +R2 + L2)2

+(G2(1 + L2 +R2) +A2R2)(G4 +R4 + L4)

)
+ CP ((EQ,k ∩ Ek)c). (46)

This concludes the proof.

Now let the pseudo debiased weighted distributed estimator be φ̂pdWD =
∑K

k=1Wk(θ
∗
k)(φ̂k −

1
nB

1
k(θ∗k)), we then give the following lemma on the MSE bound of this estimator.

Lemma B.8 Under Assumptions 1 - 4 and 7 - 8, and Assumption5 with v, v1 ≥ 4 ,

E
(
‖φ̂pdWD − φ∗‖22

)
≤ C1

nK
+

C2

n2K
+
C3

n3
. (47)

Proof Under the event Ek defined in the Lemma B.2, we have that

0 = ∇θkMn,k(θ
∗
k) +∇2

θk
Mn,k(θ

∗
k)∆k +

1

2
{
∫ 1

0
∇3
θk
Mn,k(θ

∗
k + t∆k)dt}(∆k ⊗∆k)

= ∇θkMn,k(θ
∗
k) +∇2

θk
Mk(θ

∗
k)∆k +

1

2
∇3
θk
Mk(θ

∗
k)(∆k ⊗∆k)

+(∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k))∆k +

1

2

(∫ 1

0
∇3
θk
Mn,k(θ

∗
k + t∆k)dt−∇3

θk
Mk(θ

∗
k)

)
(∆k ⊗∆k).

Recall that we have denoted Jk(θk) = ∇2
θk
Mk(θk), solve for the above equation and we will have

∆k = −Jk(θ∗k)−1∇θkMn,k(θ
∗
k)− Jk(θ∗k)−1

(
∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k)
)

∆k

−1

2
Jk(θ

∗
k)
−1∇3

θk
Mk(θ

∗
k)(∆k ⊗∆k)

−1

2
Jk(θ

∗
k)
−1

(∫ 1

0
∇3
θk
Mn,k(θ

∗
k + t∆k)dt−∇3

θk
Mk(θ

∗
k)

)
(∆k ⊗∆k). (48)

Recalling the definition ofWk(θ
∗
k), we have that ‖φ̂pdWD−φ∗‖22 ≤ C‖ 1

K

∑K
k=1Hk(θ

∗
k)
−1(φ̂k−

φ∗− 1
nB

1
k(θ∗k))‖22 = C‖ 1

K

∑K
k=1 H̃k(θ

∗
k)(∆k− 1

nBk(θ
∗
k))‖22, where H̃k(θ

∗
k) =

(
Hk(θ

∗
k)
−1 0

)
and
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thus ‖H̃k(θ
∗
k)‖2 = ‖Hk(θ

∗
k)‖2. Denote

Ωk,1 = (∇2
θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k))∆k −

1

n
E (v1,k(θ

∗
k)d1,k(θ

∗
k)) ,

Ωk,2 = (∆k ⊗∆k)−
1

n
E (d1,k(θ

∗
k)⊗ d1,k(θ

∗
k)) and

Ωk,3 =

(∫ 1

0
∇3
θk
Mn,k(θ

∗
k + t∆k)dt−∇3

θk
Mk(θ

∗
k)

)
(∆k ⊗∆k), then (49)

∆k −
1

n
Bk(θ

∗
k) = −

(
1

n

n∑
i=1

di,k(θ
∗
k) +Qk(θ

∗
k)(Ωk,1 +

1

2
H3,k(θ

∗
k)Ωk,2 +

1

2
Ωk,3)

)
I(Ek)

+∆kI(ECk ). (50)

Considering Ωk,1, denote Ω
(1)
k,1 and Ω

(2)
k,1 as follows such that Ωk,1 = Ω

(1)
k,1 + Ω

(2)
k,1:

Ω
(1)
k,1 = (∇2

θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k))(∆k −

1

n

n∑
i=1

di,k(θ
∗
k)) and

Ω
(2)
k,1 = (∇2

θk
Mn,k(θ

∗
k)−∇2

θk
Mk(θ

∗
k))

1

n

n∑
i=1

di,k(θ
∗
k)−

1

n
E (v1,k(θ

∗
k)d1,k(θ

∗
k)) .

For Ω
(1)
k,1, we can show by Taylor’s expansion that(

∆k −
1

n

n∑
i=1

di,k(θ
∗
k)

)
1Ek = Qk(θ

∗
k)

(∫ 1

0
∇2
θk
Mn,k(θ

∗
k + t∆k)dt−∇2

θk
Mk(θ

∗
k)

)
∆k1Ek ,

then using Hölder’s inequality we can show that

E
(
‖Ω(1)

k,1‖
2
2IEk

)
≤ CG4R2(G2 + 1)

n3
. (51)

For Ω
(2)
k,1, by the independence among the observations, it is easy to first show that E

(
Ω

(2)
k,1

)
= 0.

Denote eij = E (vi,k(θ
∗
k)dj,k(θ

∗
k)), then we have

E
(
‖Ω(2)

k,1‖
2
2

)
=

1

n4

n∑
i=1

n∑
j=1

n∑
s=1

n∑
t=1

E
(
(vi,k(θ

∗
k)dj,k(θ

∗
k)− eij)T (vs,k(θ

∗
k)dt,k(θ

∗
k)− est)

)
. (52)

By a conditioning argument and independence among observations, it is straightforward to show that
if the set {i, j, s, t} has three or four unique elements, thenE(vi,k(θ

∗
k)di,k(θ

∗
k)−eij)T (vs,k(θ

∗
k)dt,k(θ

∗
k)−

eij) = 0. Thus the RHS of Equation (52) has at most O(n2) non-zero elements and each of those
non-zero elements can be bounded using Hölder’s inequality. SinceE

(
‖v1,k(θ

∗
k)d1,k(θ

∗
k)− e11‖22

)
≤

C(LR)2, we have E
(
‖Ω(2)

k,1‖
2
2

)
≤ C(LRn )2. By independence among different Ω

(2)
k,1, we can di-

rectly show that

E

(
‖ 1

K

K∑
k=1

H̃k(θ
∗
k)Qk(θ

∗
k)Ωk,1‖22

)
≤ C

(
L2R2

n2K
+
G4R2(G2 + 1)

n3

)
.
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For Ωk,2 appeared in (49), we define Ω
(1)
k,2 and Ω

(2)
k,2 as follows such that Ωk,2 = Ω

(1)
k,2 + Ω

(2)
k,2:

Ω
(1)
k,2 = (∆k ⊗∆k)− (

1

n

n∑
i=1

di,k(θ
∗
k))⊗ (

1

n

n∑
i=1

di,k(θ
∗
k)) and

Ω
(2)
k,2 = (

1

n

n∑
i=1

di,k(θ
∗
k))⊗ (

1

n

n∑
i=1

di,k(θ
∗
k))−

1

n
E (d1,k(θ

∗
k)⊗ d1,k(θ

∗
k)) .

Similar to (51), we can show that

E‖ 1

K

K∑
k=1

H̃k(θ
∗
k)Qk(θ

∗
k)H3,k(θ

∗
k)Ω

(2)
k,2‖

2
2 ≤

CR4

n2K
.

Besides, due to (45) and (51), we can show that E
(
‖Ω(1)

k,2‖
2
21Ek

)
≤ CG2R4

n3 . For Ωk,3 in (49),

combined with (44) and the Lipschitz continuity of ∇3
θk
M(Xk,1, θk) with respect to θk in Uk, we

can show that E
(
‖Ωk,3‖221Ek

)
≤ C(A2R6+G2R4)

n3 . For ∆kI(ECk ), E
(
‖∆kI(ECk )‖22

)
≤ CP (ECk ). In

summary, we have the following MSE bound of the pdWD estimator:

E
(
‖φ̂pdWD − φ∗‖22

)
≤ C1

R2

nK
+C2

R2(L2 +R2)

n2K
+C3

G2R2(G2 +R2 +G4) +A2R6

n3
+C4

K∑
k=1

P (Eck).

The asymptotic normality of the pdWD estimator is established in the following lemma.

Lemma B.9 Under Assumptions 1 - 4 and 7 - 8, and Assumption 5 with v, v1 ≥ 4 , if K = o(n2),

(φ̂pdWD − φ∗)T {
K∑
k=1

nkHk(θ
∗
k)
−1}(φ̂pdWD − φ∗) d→ χ2

p1 .

Proof Since

φ̂pdWD − φ∗ = { 1

K

K∑
k=1

Hk(θ
∗
k)
−1}−1 1

K

K∑
k=1

H̃k(θ
∗
k)

(
∆k −

1

n
Bk(θ

∗
k)

)
.

Using the expansion (50) and other results in the proof of Lemma B.8, when K = o(n2),

1

K

K∑
k=1

H̃k(θ
∗
k)(∆k −

1

n
Bk(θ

∗
k)) =

1

Kn

K∑
k=1

n∑
i=1

H̃k(θ
∗
k)di,k(θ

∗
k) + op(1). (53)

Then, the proof is completed with a direct application of the central limit theorem.
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B.2 Proof of Proposition 1

Proof The consistency of the local estimator θ̂k is implied by Lemma 6 of Zhang et al. (2013).
Below we show the consistency of the global estimator θ̂full. Define the global objective func-
tion M(X̃, θ) = (1/K)

∑K
k=1M(Xk, θk) and the global expected objective function M(θ) =

E
(
M(X̃, θ)

)
, where X̃ = (XT

1 , X
T
2 , ..., X

T
K)T and Xk is sampled from the disribution Fk. Then,

equivalently, we have

θ∗ = argminθ∈Θ E
(
M(X̃; θ)

)
and θ̂full = argminθ∈Θ

1

n

n∑
i=1

M(X̃i, θ),

where X̃i = (XT
1,i, X

T
2,i, ..., X

T
K,i)

T . Now we can show that

E
(
‖∇θM(X̃i, θ

∗)‖2v12

)
≤ R2v1 and E

(
‖∇2

θM(X̃i, θ
∗)−∇2

θM(θ∗)‖2v2
)
≤ L2v

hold by a direct application of Lemma 7 of Zhang et al. (2013). Besides, for all θ, θ
′ ∈ U with

U = {θ|‖θ − θ∗‖2 ≤ ρ}, we have

‖∇2
θM(X̃, θ)−∇2

θM(X̃, θ
′
)‖2 ≤

(
1

K

K∑
k=1

G(Xk)

)
‖θ−θ′‖2 and E

(
1

K

K∑
k=1

G(Xk)

)2v

≤ G2v.

Besides, we can also show that

∇2
θM(θ∗) �

(
ρ−Ip1×p1 0

0 ρ−
K IKp2×KP2

)
� ρ−
K
I(p1+Kp2)×(p1+Kp2).

It remains to apply Lemma 6 of Zhang et al. (2013) to obtain the consistency of θ̂full.

B.3 Proof of Theorem 2

Proof See the proof of Lemma B.4.

B.4 Proof of Theorem 3

Proof Note that

‖φ̂− φ∗‖2 ≤ ‖( 1

K

K∑
k=1

Ĥk(θ̂k)
−1)−1‖2‖

1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖2. (54)

Since Hk(θ
∗
k)
−1 � ρ2−

ρσ
Ip1×p1

∆
= ρhIp1×p1 , by Lemma B.3, the event IHK = {‖Ĥk(θ̂k)

−1 −
Hk(θ

∗
k)
−1‖2 ≤ c

2 , k = 1, ...,K} implies ‖{ 1
K

∑K
k=1 Ĥk(θ̂k)

−1}−1−{ 1
K

∑K
k=1Hk(θ

∗
k)
−1}−1‖2 ≤

2
c2
‖ 1
K

∑K
k=1 Ĥk(θ̂k)

−1 − 1
K

∑K
k=1Hk(θ

∗
k)
−1‖2. Using Lemma B.3 again with Hk(θ

∗
k) � cIp1×p1

as assumed in Assumption 7, the event HK = {‖Ĥk(θ̂k) −Hk(θ
∗
k)‖2 ≤

c
2 , k = 1, ...,K} implies

‖Ĥk(θ̂k)
−1−Hk(θ

∗
k)
−1‖2 ≤ 2

c2
‖Ĥk(θ̂k)−Hk(θ

∗
k)‖2, k = 1, 2, · · · ,K. Now for any ε > 0, define

εH = min{ε, c}/4, then under the event

HεK = {‖Ĥk(θ̂k)−Hk(θ
∗
k)‖2 ≤ εH , k = 1, ...,K} (55)
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we have ‖{ 1
K

∑K
k=1 Ĥk(θ̂k)

−1}−1 − { 1
K

∑K
k=1Hk(θ

∗
k)
−1}−1‖2 ≤ ε. Now using the boundedness

of ‖φ̂WD − φ∗‖, we have

E
(
‖φ̂WD − φ∗‖22

)
≤ C1E

(
‖ 1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖22I(HεK)

)
(56)

+C2E

(
‖ 1

K

K∑
k=1

(φ̂k − φ∗k)‖22I(φ̂ 6∈ Φ)

)
+ C3P ((HεK)c).

Thus we only need to separately bound the three terms on the RHS of (56). Let us first consider
bounding P ((HεK)c). Denote

L̂k(θk) = ∇2
θk
Mn,k(θk), Lk(θk) = ∇2

θk
Mk(θk),

V̂k(θk) = L̂k(θk)
−1Σ̂S,k(θk)L̂k(θk)

−1 and Vk(θk) = Lk(θk)
−1ΣS,k(θk)Lk(θk)

−1.

By definition of Ĥk(θk) and the triangle’s inequality, we have

‖Ĥk(θ̂k)−Hk(θ
∗
k)‖2 ≤ ‖V̂k(θ̂k)− V̂k(θ∗k)‖2 + ‖V̂k(θ∗k)− Vk(θ∗k)‖2. (57)

Hence, we can bound those two terms on the RHS of (57) separately. Note that

‖V̂k(θk)− Vk(θk)‖2 = ‖L̂k(θk)−1Σ̂S,k(θk)L̂k(θk)
−1 − Lk(θk)−1ΣS,k(θk)Lk(θk)

−1‖2
≤ 2(‖L̂k(θk)−1 − Lk(θk)−1‖22 + ‖Lk(θk)−1‖22)‖Σ̂S,k(θk)− ΣS,k(θk)‖2 (58)

+(‖L̂k(θk)−1 − Lk(θk)−1‖2 + 2‖Lk(θk)−1‖2)‖ΣS,k(θk)‖2‖L̂k(θk)−1 − Lk(θk)−1‖2.

Then, under the event LεK = {‖L̂k(θ∗k) − Lk(θ∗k)‖2 ≤ min{ερ2
−/2, ρ−/2}, k = 1, ...,K} with ρ−

being the lower bound of the eigenvalues of Lk(θ∗k) as assumed in Assumption 4, we have

‖V̂k(θ∗k)− Vk(θ∗k)‖2 (59)

≤ 2(ε2 +
1

ρ2
−

)‖Σ̂S,k(θ
∗
k)− ΣS,k(θ

∗
k)‖2 + (ε+

2

ρ−
)
2ρσ
ρ2
−
‖L̂k(θ∗k)− Lk(θ∗k)‖2, k = 1, ...,K.

Similar to (58), we have

‖V̂k(θ̂k)− V̂k(θ∗k)‖2
≤ 2(‖L̂k(θ̂k)−1 − L̂k(θ∗k)−1‖22 + ‖L̂k(θ∗k)−1‖22)‖Σ̂S,k(θ̂k)− Σ̂S,k(θ

∗
k)‖2

+(‖L̂k(θ̂k)−1 − L̂k(θ∗k)−1‖2 + 2‖L̂k(θ∗k)−1‖2)‖Σ̂S,k(θ
∗
k)‖2‖L̂k(θ̂k)−1 − L̂k(θ∗k)−1‖2.

Define an event

MK =

{
‖L̂k(θ∗k)−1‖2 ≤

2

ρ−
, ‖Σ̂S,k(θ

∗
k)‖2 ≤ 2ρσ,

‖L̂k(θ̂k)− L̂k(θ∗k)‖2 ≤ min{ρ−
4
,
ερ2
−

8
}, k = 1, ...,K

}
.
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Under this event, we have for all k = 1, 2, · · · ,K,

‖V̂k(θ̂k)− V̂k(θ∗k)‖2

≤ 2(ε2 +
4

ρ2
−

)‖Σ̂S,k(θ̂k)− Σ̂S,k(θ
∗
k)‖2 + (ε+

4

ρ−
)
16ρσ
ρ2
−
‖L̂k(θ̂k)− L̂k(θ∗k)‖2

≤ (C1Bn,k + C2Gn,k)‖θ̂k − θ∗k‖2, (60)

where Bn,k = (1/n)
∑n

i=1B(Xk,i) and Gn,k = (1/n)
∑n

i=1G(Xk,i). Note that ‖L̂k(θ∗k)−1‖2 ≤
2
ρ−

and ‖Σ̂S,k(θ
∗
k)‖ ≤ 2ρσ are implied by ‖L̂k(θ∗k)−Lk(θ∗k)‖2 ≤

ρ−
2 and ‖Σ̂S,k(θ

∗
k)−ΣS,k(θ

∗
k)‖2 ≤

ρσ
2 , respectively. Thus, we define the event

UK =

{
Bn,k ≤ 2B,Gn,k ≤ 2G, ‖L̂k(θ∗k)− Lk(θ∗k)‖2 ≤ C1,

‖Σ̂S,k(θ
∗
k)− ΣS,k(θ

∗
k)‖2 ≤ C2, k = 1, ...,K

}
,

which satisfies UK ⊂MK ∩LεK . Under UK , we have ‖Ĥk(θ̂k)−Hk(θ
∗
k)‖2 ≤ C‖θ̂k − θ∗k‖2 + εH

2 .
Furthermore, we define the following event

AK = UK ∩ (∩Kk=1Ek) ∩ ({‖θ̂k − θ∗k‖2 ≤
εH
2C

, k = 1, ...,K}). (61)

By Lemma 6 in Zhang et al. (2013), under the event ∩Kk=1Ek, the event {‖θ̂k−θ∗k‖2 ≤ εH/(2C), k =
1, ...,K} is implied by the event {‖∇θkMn,k(θ

∗
k)‖2 ≤ (1− ρ)ρ−εH/(4C), k = 1, ...K}. Thus, the

event Ak can be equivalently expressed as

AK =

{
Bn,k ≤ 2B,Gn,k ≤ 2G, ‖L̂k(θ∗k)− Lk(θ∗k)‖2 ≤ C1,

‖Σ̂S,k(θ
∗
k)− ΣS,k(θ

∗
k)‖2 ≤ C2, ‖∇θkMn,k(θ

∗
k)‖2 ≤ C3, k = 1, ...,K

}
.

Now with the union bound and Lemma 7 in Zhang et al. (2013), we can obtain that

P ((HεK)c)

≤ P (AcK)

≤
K∑
k=1

(
P (Bn,k > 2B) + P (Gn,k > 2G) + P (‖L̂k(θ∗k)− Lk(θ∗k)‖2 > C1)

+P (‖Σ̂S,k(θ
∗
k)− ΣS,k(θ

∗
k)‖2 > C2) + P (‖∇θkMn,k(θ

∗
k)‖2 > C3)

)
≤ CK

(
1 + L2v

nv
+
R2v1

n
v1
2

+
R2v1

nv1

)
≤ CK

nv̄
, (62)

where v̄ = min{v, v12 }.
Next we consider bounding E

(
‖ 1
K

∑K
k=1 Ĥk(θ̂k)

−1(φ̂k − φ∗)‖22I(HεK)
)

in (56). Recall the

definition of HεK in (55), we can naturally decompose the event into HεK = ∩Kk=1H
ε,(k)
K , where
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Hε,(k)
K = {‖Ĥk(θ̂k)−Hk(θ

∗
k)‖2 ≤ εH}. It is noted that for each k, under the eventHε,(k)

K , we have

‖Ĥk(θ̂k)
−1‖2 ≤

2

c2
‖Ĥk(θ̂k)−Hk(θ

∗
k)‖2 + ‖Hk(θ

∗
k)
−1‖2 ≤ C.

Since elements of {Ĥk(θ̂k)
−1(φ̂k−φ∗)I(Hε,(k)

K )}Kk=1 are independent with one another, we decom-
pose the term as follows:

E

(
‖ 1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖22I(HεK)

)

≤ max
1≤k≤K

(
C

K
E
(
‖φ̂k − φ∗‖22

)
+ ‖E

(
Ĥk(θ̂k)

−1(φ̂k − φ∗)I(Hε,(k)
K )

)
‖22
)
. (63)

The first term in the RHS of (63) can be bounded using Lemma B.2. For the second term, we have

‖E
(
Ĥk(θ̂k)

−1(φ̂k − φ∗)I(Hε,(k)
K )

)
‖22

≤ 2‖E
(

(Ĥk(θ̂k)
−1 −Hk(θ

∗
k)
−1)(φ̂k − φ∗)I(Hε,(k)

K )
)
‖22 + 2‖E

(
Hk(θ

∗
k)
−1(φ̂k − φ∗)I(Hε,(k)

K )
)
‖22

≤ C1E
(
‖Ĥk(θ̂k)

−1 −Hk(θ
∗
k)
−1‖22I(Hε,(k)

K )‖φ̂k − φ∗‖22
)

+ C‖E
(

(θ̂k − θ∗k)I(Hε,(k)
K )

)
‖22.

Using (57), (59) and (60), and decomposingAK into ∩Kk=1A
(k)
K , we can show by Hölder’s inequal-

ity that

E
(
‖Ĥk(θ̂k)

−1 −Hk(θ
∗
k)
−1‖22I(Hε,(k)

K )‖φ̂k − φ∗‖22
)

≤ C1E
(
‖Σ̂S,k(θ

∗
k)− ΣS,k(θ

∗
k)‖42 + ‖L̂k(θ∗k)− Lk(θ∗k)‖42 + ‖∇θkMn,k(θ

∗
k)‖42

)
+ C2P

(
(A(k)

K )c
)
.

≤ C

(
R8 +R4 + L4

n2
+ P

(
(A(k)

K )c
))

.

Besides, we have that

‖E
(

(φ̂k − φ∗)I(Hε,(k)
K )

)
‖22 ≤ 2‖E(φ̂k − φ∗)‖22 + 2‖E

(
(φ̂k − φ∗)(1− I(Hε,(k)

K ))
)
‖22.

The second term can be bounded by also conditioning on the event A(k)
K , using the inequality (35)

and the Hölder’s inequality, and we will obtain

‖E
(

(φ̂k − φ∗)(1− I(Hε,(k)
K ))

)
‖22

≤ C
(
E
(
‖∇θkMn,k(θ

∗
k)‖22I((Hε,(k)

K )c)
)

+ P
(

(A(k)
K )c

))
≤ C

(
R2

n

√
P
(

(A(k)
K )c

)
+ P

(
(A(k)

K )c
))

≤ C

(
R4

n2
+ P

(
(A(k)

K )c
))

.
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And for the first term in the RHS, the following holds from the proof of Theorem 1 of Zhang et al.
(2013):

‖E
(
φ̂k − φ∗

)
‖22 ≤ C

(
L2 +R2G2

n2
+

1

n3

)
(64)

In summary, we have that

E

(
‖ 1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖22I(HεK)

)

≤ C

(
1 + L2 +R2

nK
+

(L2 + L4) +R2(R2 +R6 +G2)

n2
+

1

n3
+ P

(
(A(k)

K )c
))

. (65)

It remains to bound E
(
‖ 1
K

∑K
k=1(φ̂k − φ∗k)‖22I(φ̂ 6∈ Φ)

)
. First we have that

E

(
‖ 1

K

K∑
k=1

(φ̂k − φ∗k)‖22I(φ̂ 6∈ Φ)

)
≤ 1

K

K∑
k=1

E
(
‖φ̂k − φ∗k‖22I(φ̂ 6∈ Φ)

)
.

Then, it is noted by (54) that under the event HεK , the event {φ̂ 6∈ Φ} is equivalent to the event
{‖ 1

K

∑K
k=1 Ĥk(θ̂k)

−1(φ̂k − φ∗)‖2 > C}, namely we have that

{φ̂ 6∈ Φ} ⊂ {‖ 1

K

K∑
k=1

Ĥk(θ̂k)
−1(φ̂k − φ∗)‖2I(HεK) > C} ∪ (HεK)c,

then we can repeat the conditioning on A(k)
K argument to obtain

E
(
‖φ̂k − φ∗k‖22I(φ̂ 6∈ Φ)

)
≤ C

(
R4

n2
+ P (φ̂ 6∈ Φ) + P

(
(A(k)

K )c
))

.

Finally, gathering all the above results, we obtain that

E
(
‖φ̂WD − φ∗‖22

)
≤ C1

R2

nK
+ C2

(L2 + L4) +R2(R2 +R6 +G2)

n2
+
C3

n3
+ C4K

(
1 + L2v

nv
+
R2v1

n
v1
2

+
R2v1

nv1

)
.

The proof is now complete.

B.5 Proof of Theorem 4

Proof With the results in Lemma B.4 and Lemma B.5, the proof follows from a direct application
of the Slutsky’s lemma.

B.6 Proof of Theorem 5

Proof Recall the definition of the event HεK defined in (55) in the proof of Theorem 3, we can
similarly defineHεK,j to control the estimation error of {Ĥk,j(θ̂k,j)}Kk=1, j = 1, 2. Since

E
(
‖φ̂dWD − φ∗‖22

)
≤ 1

2

2∑
j=1

E
(
‖φ̂dWD

j − φ∗‖22
)

= E
(
‖φ̂dWD

1 − φ∗‖22
)
,
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it suffices to bound the last term. Under the eventHεK,1 and using boundedness of ‖φ̂dWD
1 − φ∗‖2,

E
(
‖φ̂dWD

1 − φ∗‖22
)

≤ C1E

(
‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖22I(HεK,1)

)
+ C2E

(
‖ 1

K

K∑
k=1

(φ̂bck,2 − φ∗)‖22I(φ̂1 6∈ Φ)

)
+C3P

(
(HεK,1)c

)
:= C1E (R1) + C2E (R2) + C3P

(
(HεK,1)c

)
, (66)

which is similar to (56). We have derived the upper bound for in C3P
(

(HεK,1)c
)

in (62), and it
remains to control R1 and R2. Considering R1, we have that

R1 ≤ C1 ‖
1

K

K∑
k=1

ˆ̃Hk,1(θ̂k,1)(θ̂k,2 − θ∗k −
1

n/2
Bk(θ

∗
k))‖22I(HεK,1)︸ ︷︷ ︸

:=R
(1)
1

+
1

n2

C2

K

K∑
k=1

‖B̂k,2(θ̂k,2)1Ek,bc,2 −Bk(θ
∗
k)‖22I(θ̂bck,2 ∈ Θk),

where ˆ̃Hk,1(θ̂k,1) =
(
Ĥk,1(θ̂k,1)−1 0

)
. Due to Lemma B.7 , it remains to control the R(1)

1

term. We can decompose the event HεK,1 as HεK,1 = ∩Kk=1H
(k),ε
K,1 where Hε,(k)

K,1 = {‖Ĥk,1(θ̂k,1) −
Hk(θ

∗
k)‖2 ≤ εH}. Then, we have

R
(1)
1 ≤ ‖ 1

K

K∑
k=1

ˆ̃Hk,1(θ̂k,1)I(H(k),ε
K,1 )(θ̂k,2 − θ∗k −

1

n/2
Bk(θ

∗
k))‖22.

Since { ˆ̃Hk,1(θ̂k,1)I(H(k),ε
K,1 )}Kk=1 are independent of {θ̂k,2}Kk=1 and bounded,E

(
R

(1)
1

)
has a similar

upper bound as that of Lemma B.8. The E (R2) term is of higher-order and its upper bound can be
easily derived. Collecting all the above results, we have the following upper bound

E
(
‖φ̂dWD − φ∗‖22

)
≤ C1

R2

nK
+ C2

R2(L2 +R2)

n2K
+ C3

G2R2(G2 +R2 +G4) +A2R6

n3
+ C4

CB
n3

+C5K

(
1 + L2v

nv
+
R2v1

n
v1
2

+
R2v1

nv1

)
,

where CB is the constant term over n appeared in (46). This completes the proof.

B.7 Proof of Theorem 6

Proof Similar to Lemma B.5, we first prove that the following term is of op(N−1/2):

RH := {
K∑
s=1

Ĥs,1(θ̂s,1)−1}−1
K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2−φ∗)−{
K∑
s=1

Hs(θ
∗
s)
−1}−1

K∑
k=1

Hk(θ
∗
k)
−1(φ̂bck,2−φ∗)
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for K = o(n2). Note
√
N‖RH‖2I(HεK,1)

≤
√
N‖{ 1

K

K∑
s=1

Ĥs,1(θ̂s,1)−1}−1 − { 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−1‖2I(HεK,1)‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖2

+C
√
N‖ 1

K

K∑
k=1

(Ĥk,1(θ̂k,1)−1 −Hk(θ
∗
k)
−1)(φ̂bck,2 − φ∗)‖2I(HεK,1)

:= RH,1 + CRH,2

For K = o(n2), we have shown in the proof of Theorem 5 that

I(HεK,1)‖ 1

K

K∑
k=1

Ĥk,1(θ̂k,1)−1(φ̂bck,2 − φ∗)‖2 = Op(
1√
N

).

Besides, we also have that

‖{ 1

K

K∑
s=1

Ĥs,1(θ̂s,1)−1}−1 − { 1

K

K∑
s=1

Hs(θ
∗
s)
−1}−1‖2I(HεK,1) = Op(

1√
n

).

Combining those two results we prove that RH,1 = Op(
1√
n

) = op(1). Considering RH,2, we have

RH,2 ≤
√
N‖ 1

K

K∑
k=1

( ˆ̃Hk,1(θ̂k,1)− H̃k,1(θ∗k))I(H(k),ε
K,1 )(θ̂bck,2 − θ∗k)‖2 := R

(1)
H,2.

From previous derivations, we know that when K = o(n2) the leading order term in R(1)
H,2 is

R
(2)
H,2 =

√
N‖ 1

K

K∑
k=1

( ˆ̃Hk,1(θ̂k,1)− H̃k,1(θ∗k))I(H(k),ε
K,1 )

1

n/2

n/2∑
i=1

d
(2)
i,k (θ∗k)‖2,

where di,k(θ∗k)
(j) = Qk(θ

∗
k)∇θkM(X

(j)
k,i ; θ

∗
k). So we only need to show that R(2)

H,2 = op(1). Denote

m = n/2, then using the independence between ˆ̃Hk,1(θ̂k,1) and d(2)
i,k (θ∗k), we have that

E(R
(2)
H,2)2 ≤ N

K2

K∑
k=1

E
(
‖( ˆ̃Hk,1(θ̂k,1)− H̃k,1(θ∗k))I(H(k),ε

K,1 )‖22
)
E

(
‖ 1

m

m∑
i=1

d
(2)
i,k (θ∗k)‖22

)
= O(

1

n
).

Then by Markov’s inequality it’s direct to show R
(2)
H,2 = op(1). Now with Slutsky’s lemma, it

remains to establish the asymptotic normality of

1

2

2∑
j=1

{
K∑
s=1

Hs(θ
∗
s)
−1}−1

K∑
k=1

Hk(θ
∗
k)
−1φ̂bck,j ,

and the proof directly follows from the proof of Lemmas B.7 and B.9.
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B.8 Proof of Theorem 7 and Corollary 8

Proof The proof can be easily derived based on previous derivations.

B.9 Proof of Theorem 9

Proof
To apply Theorem 1 in Yuan and Jennrich (2000), we need to check the uniform convergence of

1
n

∑n
i=1

(
ψλφ(Xk,i, θk)

T ψλλ(Xk,i; θk)
T
)T

. This is actually the last p2 columns of∇2
θk
Mn,k(θk) for

θk ∈ Uk, so we only need to show the uniform convergence of∇2
θk
Mn,k(θk) in Uk. By Assumption

5, ∇2
θk
M(x; θk) is Lipschitz continuous w.r.t. θk for θk ∈ Uk, then we can directly apply Corollary

3.1 of Newey (1991) to establish the required uniform convergence.
Now we are to show λ̂

(2)
k

P→ λ∗k. Following the proof of Lemma 6 in Zhang et al. (2013), we
can first show that under the event Ek, Mn,k(θk) is (1 − ρ)ρ−-strongly convex on the ball Ũk =

{‖θk−θ∗k‖2 ≤ ρk}, where ρk ≤ min{ρρ−4G , ρ}. Define the event EWD,k = {‖φ̂WD−φ∗‖2 < ρk/2},
then under this event, θ̃∗k = (φ̂WD, λ∗k) ∈ Ũk. For any θ

′
k = (φ̂WD, λk) ∈ Θk, if θ

′
k 6∈ Ũk, then

under EWD,k, there exists w0 ∈ [0, 1] such that θ
′
k,0 = w0θ

′
k + (1−w0)θ̃∗k lies on the surface of the

ball Ũk, and thus ‖θ′k,0 − θ̃∗k‖2 = w0‖θ
′
k − θ̃∗k‖2 ∈ (ρk2 ,

3ρk
2 ). Now under EWD,k we have that

Mn,k(θ
′
k) ≥ Mn,k(θ

′
k,0)+ < ∇θkMn,k(θ

′
k,0), θ

′
k − θ

′
k,0 >

≥ Mn,k(θ̃
∗
k)+ < ∇θkMn,k(θ̃

∗
k), θ

′
k − θ̃∗k > +

1

2
(1− ρ)ρ−

ρ2
k

4

+ < ∇θkMn,k(θ
′
k,0)−∇θkMn,k(θ̃

∗
k), θ

′
k − θ

′
k,0 >

≥ Mn,k(θ̃
∗
k)+ < ∇θkMn,k(θ̃

∗
k), θ

′
k − θ̃∗k > +

1

2
(1− ρ)ρ−

ρ2
k

4
, (67)

where the first inequality holds due to the convexity of Mn,k(θk) on Uk and the second holds due to
the strong convexity on Ũk. The last inequality holds due to θ

′
k− θ̃∗k = 1−w0

w0
(θ
′
k,0− θ̃∗k). When θ

′
k ∈

Ũk, with strong convexity Equation (67) still holds with ρ2k
4 changed to ‖θ′k − θ̃∗k‖22 = ‖λk − λ∗k‖22.

In any case the following relationship holds under the event EWD,k:

Mn,k(θ
′
k) ≥Mn,k(θ̃

∗
k)+ < ∇θkMn,k(θ̃

∗
k), θ

′
k − θ̃∗k > +

1

2
(1− ρ)ρ−min{

ρ2
k

4
, ‖λk − λ∗k‖22}.

Rewriting the inequality we obtain that

min{‖λk − λ∗k‖22,
ρ2
k

4
} ≤ 2

(1− ρ)ρ−

(
Mn,k(θ

′
k)−Mn,k(θ̃

∗
k)+ < ∇θkMn,k(θ̃

∗
k), θ

′
k − θ̃∗k >

)
≤ 2

(1− ρ)ρ−

(
Mn,k(θ

′
k)−Mn,k(θ̃

∗
k) + ‖∇θkMn,k(θ̃

∗
k)‖2‖θ

′
k − θ̃∗k‖2

)
. (68)

Now if we denote θ
′
k,1 = (φ̂WD, λ̂

(2)
k ) and set θ

′
k = κθ

′
k,1 + (1 − κ)θ̃∗k for any fixed κ ∈ [0, 1], we

will have

min{κ‖λ̂(2)
k −λ

∗
k‖2,

ρ2
k

4κ‖λ̂(2)
k − λ∗k‖2

} ≤
2(Mn,k(κθ

′
k,1 + (1− κ)θ̃∗k)−Mn,k(θ̃

∗
k))

κ(1− ρ)ρ−‖λ̂(2)
k − λ∗k‖2

+
2‖∇θkMn,k(θ̃

∗
k)‖2

(1− ρ)ρ−
.
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By definition we have Mn,k(θ
′
k,1) ≤Mn,k(θ̃

∗
k) and thus by convexity we have

min{κ‖λ̂(2)
k − λ

∗
k‖2,

ρ2
k

4κ‖λ̂(2)
k − λ∗k‖2

} ≤
2‖∇θkMn,k(θ̃

∗
k)‖2

(1− ρ)ρ−
.

Define the event Es,k = {2‖∇θkMn,k(θ̃∗k)‖2
(1−ρ)ρ−

≤ ρk
2 }, then under this event we have

min{κ‖λ̂(2)
k − λ

∗
k‖2,

ρ2
k

4κ‖λ̂(2)
k − λ∗k‖2

} ≤ ρk
2
.

If ‖λ̂(2)
k − λ

∗
k‖2 >

ρk
2 , we can set κ = ρk

2‖λ̂(2)k −λ
∗
k‖2

, which leads to a contradiction. Thus we have

‖λ̂(2)
k − λ

∗
k‖2 ≤

ρk
2 . Then using Equation (68) we have

‖λ̂(2)
k − λ

∗
k‖2 <

2‖∇θkMn,k(θ̃
∗
k)‖2

(1− ρ)ρ−
. (69)

Since φ̂WD is consistent, we have P (EWD,k)→ 1. Besides, we already know that P (Ek)→ 1. Due
to the form of the event Es,k and inequality (69), it remains to show ‖∇θkMn,k(θ̃

∗
k)‖2 = oP (1) to

establish the consistency of λ̂(2)
k . Note

‖∇θkMn,k(θ̃
∗
k)‖2 ≤ ‖∇θkMn,k(θ̃

∗
k)−∇θkMn,k(θ

∗
k)‖2 + ‖∇θkMn,k(θ

∗
k)‖2

and the latter term is of Op( 1
nv1 ). Using the consistency of φ̂WD we can show ‖∇θkMn,k(θ̃

∗
k) −

∇θkMn,k(θ
∗
k)‖2 = op(1). Besides, since φ̂WD is

√
N -consistent and K → ∞, then

√
n(φ̂WD −

φ∗) = op(1) and the asymptotic normality of
√
n
(

1
n

∑n
i=1 ψλ(Xk,i; θ

∗
k) + Ψφ

λ(θ∗k)(φ̂
WD − φ∗)

)
is

implied by the asymptotic normality of
√
n
(

1
n

∑n
i=1 ψλ(Xk,i; θ

∗
k)
)

and Slutsky’s lemma. Now we
apply Theorem 1 in Yuan and Jennrich (2000) and the result follows.

Appendix C. Additional numerical results

C.1 Simulation results based on the errors in variables model

In this simulation experiment, we simulated the errors-in-variables Model (6) with the objective
function (7) to compare the performance of the full sample, the split-and-conquer and the weighted
distributed estimators: φ̂full, φ̂SaC and φ̂WD. The simulation was carried out by first generating IID
{Zi,k} from N (µZ , σ

2
Z), and then upon given a Zi,k, (Xk,i, Yi,k)

T were independently drawn from
N
(
(Zi,k, φ

∗ + λ∗kZi,k)
T , σ2I2×2

)
. We chose φ∗ = 1,K = 2, σ2 = 1 and n1 = n2 = 5 × 104 =

N/2, and λ∗1, λ
∗
2, µZ and σ2

Z were those reported in Table 4 under four scenarios. As discussed in
Section 3, the relative efficiency of φ̂full to φ̂SaC depends on the ratio σ2(E(Z))2/(Var(Z)E(Z2))
as shown in (8). We designed four scenarios according to the above ratio under λ∗1 6= λ∗2 and
E (Z) 6= 0, respectively, which represented the settings where the full sample estimator φ̂full would
be less (Scenario 1) or more (Scenario 2) efficient than the split-and-conquer estimator as predicted
by the ratio but not as efficient as the weighted distributed estimator φ̂WD. Scenario 3 (λ∗1 6=
λ∗2, E (Z) = 0) was the case when φ̂full and φ̂WD would be asymptotically equivalent, and both
estimators would be more efficient than φ̂SaC. Scenario 4 was the homogeneous case with λ∗1 = λ∗2

50



DISTRIBUTED STATISTICAL INFERENCE UNDER HETEROGENEITY

in which all three estimators would have the same asymptotic efficiency. For all four scenarios, the
ARE column of Table 4 confirmed the relative efficiency as predicted by the asymptotic variances
in (8), and was well reflected in the comparison of the root mean squared errors, as the bias is of
smaller order as compared with that of the standard deviation and thus negligible.

Table 4: Average root mean squared error (RMSE) and the standard deviation (SD), multiplied by
102, of the full sample estimator φ̂full, the SaC estimator φ̂SaC and the WD estimator φ̂WD under
four scenarios for the errors-in-variables model (12) for N = 105,K = 2 and n1 = n2. AREs
(asymptotic relative efficiency) of φ̂full to φ̂SaC are calculated from (8)

φ̂full φ̂SaC φ̂WD

Scenario (λ∗1, λ
∗
2) ARE RMSE SD RMSE SD RMSE SD

Scenario 1 (0.25,3.25) 0.89 4.55 4.51 4.12 4.09 3.91 3.89
(µZ = 1, σ2

Z = 0.1) (0.5,3.5) 0.93 4.65 4.65 4.35 4.35 4.08 4.08
(0.75,3.75) 0.97 4.52 4.52 4.40 4.38 4.13 4.13

Scenario 2 (0.25,2.25) 1.18 2.95 2.95 3.24 3.24 2.89 2.89
(µZ = 3, σ2

Z = 0.5) (0.75,2.75) 1.28 3.28 3.26 3.65 3.64 3.17 3.16
(1.25,3.25) 1.31 3.71 3.71 4.16 4.07 3.64 3.61

Scenario 3 (0.25,2.25) 1.97 0.41 0.41 0.61 0.61 0.41 0.41
(µZ = 0, σ2

Z = 0.5) (0.75,2.75) 1.92 0.51 0.51 0.70 0.70 0.51 0.51
(1.25,3.25) 1.68 0.64 0.64 0.82 0.82 0.64 0.64

Scenario 4 (0.5,0.5) 1 3.25 3.24 3.31 3.28 3.30 3.26
(µZ = 4, σ2

Z = 0.5) (1.0,1.0) 1 3.53 3.53 3.59 3.59 3.59 3.59
(1.5,1.5) 1 4.06 4.03 4.08 4.07 4.06 4.06

C.2 Simulation results based on the logistic model

Figure 3 reports the absolute bias and root mean squared errors of the estimators when p2 = 4.
Table 5 reports the empirical coverage and the average width of the CIs when p2 = 4. Table 6
reports the average CPU time per simulation run based on 500 replications of the five estimators
for a range of K for the logistic regression model with p2 = 4. It is observed in Figure 3 that the
bias of the estimators were smaller with p2 = 4 compared to the results with p2 = 10 in Figure
1. As a consequence, the CIs based on the weighted distributed estimator had adequate coverage
probabilities even when K = 1000.

C.3 Pre-processing of the real data

The arrival delay of the previous flight that utilized the same plane was obtained by matching the
tail number of the plane. The three meteorological factors (rain rate, close surface air pressure,
and temperature) were obtained by matching this airline’s on-time performance data with the ERA5
hourly data (https://cds.climate.copernicus.eu/). This dataset includes reanalysis from 1959 onwards
whose temporal and spatial resolutions are one hour and 0.25◦ × 0.25◦, respectively. We applied
the f(x) = log(1 + x) transformation to the rain variable due to its serious skewness. We also
standardized each covariate in each of the data blocks before performing the logistic regression
analysis.
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(a) Absolute Bias (p2 = 4) (b) RMSE (p2 = 4)

Figure 3: Average simulated bias (a) and the root mean squared errors (RMSE) (b) of the weighted
distributed (WD) (red circle), the split-and-conquer(SaC) (blue triangle), the debiased split-and-
conquer (dSaC) (green square), the debiased weighted distributed (dWD) (purple cross), the sub-
sampled average mixture SAVGM (pink square cross) estimators, with respect to the number of data
blockK for the logistic regression model with the dimension p2 of the nuisance parameter λk being
4, and the full sample size N = 2× 106.

Table 5: Coverage probabilities and widths (in parentheses, multiplied by 100) of the 1 − α confi-
dence intervals for the common parameter φ in the logistic regression model based on the asymp-
totic normality of the split-and-conquer (SaC), the weighted distributed (WD), the debiased split-
and-conquer (dSaC) and the debiased weighted distributed (dWD) estimators with respect to the
number of data blocks K. The dimension p2 of the nuisance parameter λk is 4 and total sample size
N = 2× 106

K SaC WD dSaC dWD
1− α 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90 0.99 0.95 0.90

10 0.99 0.96 0.92 0.99 0.97 0.91 0.99 0.96 0.92 0.99 0.96 0.91
(2.45) (1.87) (1.57) (2.03) (1.55) (1.30) (2.45) (1.87) (1.57) (2.03) (1.55) (1.30)

50 0.99 0.95 0.91 0.98 0.93 0.89 0.99 0.95 0.91 0.99 0.93 0.88
(2.36) (1.80) (1.51) (1.97) (1.50) (1.26) (2.36) (1.80) (1.51) (1.97) (1.50) (1.26)

100 0.98 0.94 0.91 0.99 0.95 0.91 0.99 0.95 0.91 0.99 0.95 0.91
(2.36) (1.79) (1.51) (1.96) (1.49) (1.25) (2.36) (1.79) (1.51) (1.96) (1.49) (1.25)

250 0.99 0.93 0.85 0.99 0.95 0.90 0.99 0.96 0.91 0.99 0.95 0.90
(2.36) (1.79) (1.50) (1.96) (1.49) (1.25) (2.36) (1.79) (1.50) (1.96) (1.49) (1.25)

500 0.91 0.77 0.66 0.99 0.95 0.88 0.99 0.96 0.90 0.99 0.95 0.89
(2.36) (1.80) (1.51) (1.96) (1.49) (1.25) (2.36) (1.80) (1.51) (1.96) (1.49) (1.25)

1000 0.65 0.41 0.28 0.99 0.94 0.88 0.99 0.94 0.88 0.99 0.93 0.88
(2.38) (1.81) (1.52) (1.96) (1.49) (1.25) (2.38) (1.81) (1.52) (1.97) (1.50) (1.25)

2000 0.01 0.01 0.00 0.99 0.91 0.81 0.98 0.94 0.88 0.99 0.94 0.90
(2.42) (1.84) (1.55) (1.96) (1.50) (1.25) (2.42) (1.84) (1.55) (1.98) (1.50) (1.26)
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Table 6: Average CPU time for each replication based on B = 500 replications for the split-and-
conquer (SaC), Zhang’s SAVGM, the weighted distributed (WD), the debiased split-and-conquer
(dSaC) and the debiased weighted distributed (dWD) estimators for the logistic regression model
with respect to K. The dimension p2 of the nuisance parameter λk is 4 and total sample size
N = 2× 106

K SaC SAVGM WD dSaC dWD
10 15.65 15.97 18.50 20.00 21.95
50 9.63 9.95 10.66 12.37 14.59
100 8.09 8.63 8.76 10.50 12.05
250 8.49 9.69 9.07 10.84 12.82
500 9.68 11.58 10.25 11.97 14.84
1000 11.67 13.81 12.32 13.93 19.08
2000 15.78 19.68 16.57 18.11 28.55

We chose the parameter of the three meteorological factors as the common parameter based on
Figure 4, which shows that the local estimates of those three parameters are the most concentrated.

Figure 4: Histogram of the parameter estimates across the data blocks

Temperature Air Pressure Rain

Previous Delay Spring Summer Autumn

−1.0−0.5 0.0 0.5 1.0 −1.0−0.5 0.0 0.5 1.0 −1.0−0.5 0.0 0.5 1.0
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Estimates (K = 479)

co
un

t

53



GU AND CHEN

References

T. Ando. Concavity of certain maps on positive definite matrices and applications to hadamard prod-
ucts. Linear Algebra and its Applications, 26:203–241, 08 1979. doi: 10.1016/0024-3795(79)
90179-4.

M. Bartlett. Approximate confidence intervals. Biometrika, 40:12–19, 01 1953. doi: 10.2307/
2333091.

H. Battey, J. Fan, H. Liu, J. Lu, and Z. Zhu. Distributed testing and estimation under sparse high di-
mensional models. The Annals of Statistics, 46:1352–1382, 06 2018. doi: 10.1214/17-AOS1587.

R. J. Carroll and D. Ruppert. The use and misuse of orthogonal regression in linear errors-in-
variables models. The American Statistician, 50(1):1–6, 1996. ISSN 00031305. URL http:
//www.jstor.org/stable/2685035.

S. X. Chen and L. Peng. Distributed statistical inference for massive data. The Annals of Statistics,
49:2851–2869, 02 2021.

X. Chen and M. Xie. A split-and-conquer approach for analysis of extraordinarily large data. Sta-
tistica Sinica, 24:1655–1684, 10 2014. doi: 10.5705/ss.2013.088.

X. Chen, W. Liu, and Y. Zhang. Quantile regression under memory constraint. The Annals of
Statistics, 47:3244–3273, 12 2019. doi: 10.1214/18-AOS1777.

R. Duan, Y. Ning, and Y. Chen. Heterogeneity-aware and communication-efficient distributed sta-
tistical inference. Biometrika, 109(1):67–83, 02 2021. ISSN 1464-3510. doi: 10.1093/biomet/
asab007. URL https://doi.org/10.1093/biomet/asab007.

T. Evgeniou and M. Pontil. Regularized multi–task learning. ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 109–117, 08 2004. doi: 10.1145/
1014052.1014067.

W. Fuller. Measurement Error Models. Wiley, 01 1987. ISBN 9780471861874. doi: 10.2307/
1164709.

L. Hansen. Large sample properties generalized method of moments estimators. Econometrica, 50:
1029–1054, 02 1982. doi: 10.2307/1912775.

E. Haynsworth. Applications of an inequality for the schur complement. Proceedings of the Amer-
ican Mathematical Society, 24:512–516, 03 1970. doi: 10.1090/S0002-9939-1970-0255580-7.

M. Henmi and S. Eguchi. A paradox concerning nuisance parameters and projected estimating
functions. Biometrika, 91:929–941, 02 2004. doi: 10.1093/biomet/91.4.929.

C. Huang and X. Huo. A distributed one-step estimator. Mathematical Programming, 174:41–76,
11 2019. doi: 10.1007/s10107-019-01369-0.

M. Jordan, J. Lee, and Y. Yang. Communication-efficient distributed statistical learning. Journal
of the American Statistical Association, 114:668–681, 05 2019. doi: 10.1080/01621459.2018.
1429274.

54

http://www.jstor.org/stable/2685035
http://www.jstor.org/stable/2685035
https://doi.org/10.1093/biomet/asab007


DISTRIBUTED STATISTICAL INFERENCE UNDER HETEROGENEITY

P. Kairouz, H. McMahan, B. Avent, A. Bellet, M. Bennis, A. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, R. D’Oliveira, H. Eichner, S. El Rouayheb, D. Evans, J. Gardner,
Z. Garrett, A. Gascón, B. Ghazi, P. Gibbons, and S. Zhao. Advances and open problems in
federated learning. Foundations and Trends® in Machine Learning, 14:1–210, 01 2021. doi:
10.1561/9781680837896.

A. Kleiner, A. Talwalkar, P. Sarkar, and M. Jordan. A scalable bootstrap for massive data. Journal
of the Royal Statistical Society Series B (Statistical Methodology), 76:795–816, 12 2011. doi:
10.1111/rssb.12050.

T. Lai and J. Wang. Edgeworth expansions for symmetric statistics with applications to bootstrap
methods. Statistica Sinica, 3:517–542, 01 1993.

H. Li, B. Lindsay, and R. Waterman. Efficiency of projected score methods in rectangular array
asymptotics. Journal of the Royal Statistical Society Series B, 65:191–208, 02 2003. doi: 10.
1111/1467-9868.00380.

T. Li, A. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 37:50–60, 05 2020. doi: 10.1109/MSP.2020.
2975749.

T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning through person-
alization. In International Conference on Machine Learning (ICML), pages 6357–6368, 2021.
URL http://proceedings.mlr.press/v139/li21h.html.

N. Lin and R. Xi. Fast surrogates of U-statistics. Computational Statistics & Data Analysis, 54:
16–24, 01 2010. doi: 10.1016/j.csda.2009.08.009.

T.-T. Lu and S.-H. Shiou. Inverses of 2 × 2 block matrices. Computers & Mathematics With
Applications - COMPUT MATH APPL, 43:119–129, 01 2002. doi: 10.1016/S0898-1221(01)
00278-4.

O. Marfoq, G. Neglia, A. Bellet, L. Kameni, and R. Vidal. Federated multi-task learning under
a mixture of distributions. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, pages 15434–15447, 2021.

P. McCullagh. Quasi-likelihood functions. The Annals of Statistics, 11:59–67, 03 1983. doi:
10.1214/aos/1176346056.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas. Communication-Efficient
Learning of Deep Networks from Decentralized Data. International Conference on Artificial
Intelligence and Statistics (AISTATS), 54:1273–1282, 2017.

W. Newey. Uniform convergence in probability and stochastic equicontinuity. Econometrica, 59:
1161–1167, 02 1991. doi: 10.2307/2938179.

O. Reiersol. Identifiability of a linear relation between variables which are subject to error. Econo-
metrica, 18:375–389, 10 1950. doi: 10.2307/1907835.

55

http://proceedings.mlr.press/v139/li21h.html


GU AND CHEN

P. Rilstone, V. Srivastava, and A. Ullah. The second-order bias and mean squared error of nonlin-
ear estimators. Journal of Econometrics, 124:369–395, 12 1996. doi: 10.1016/0304-4076(96)
89457-7.

S. Sengupta, S. Volgushev, and X. Shao. A subsampled double bootstrap for massive data. Journal
of the American Statistical Association, 111:1222–1232, 08 2015. doi: 10.1080/01621459.2015.
1080709.

V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar. Federated Multi-Task Learning. Advances
in Neural Information Processing Systems(NeurIPS), 05 2017.

L. Stefanski and D. Boos. The Calculus of M-Estimation. The American Statistician, 56:29–38, 02
2002. doi: 10.1198/000313002753631330.

C. T. Dinh, N. Tran, and J. Nguyen. Personalized federated learning with moreau envelopes. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 21394–21405,
2020.

A. van der Vaart. Asymptotic Statistics, chapter 5. Cambridge University Press, 01 1999. doi:
10.1017/CBO9780511802256.

S. Volgushev, S.-K. Chao, and G. Cheng. Distributed inference for quantile regression processes.
Annals of Statistics, 47, 01 2017. doi: 10.1214/18-AOS1730.

Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology, 10:1–19, 01 2019. doi: 10.1145/3298981.

A. Yaron, L. Hansen, and J. Heaton. Finite-Sample Properties of Some Alternative GMM Estima-
tors. Journal of Business & Economic Statistics, 14:262–80, 02 1996. doi: 10.1080/07350015.
1996.10524656.

K.-H. Yuan and R. Jennrich. Estimating equations with nuisance parameters: Theory and ap-
plications. Annals of the Institute of Statistical Mathematics, 52:343–350, 02 2000. doi:
10.1023/A:1004122007440.

Y. Zhang, J. Duchi, and M. Wainwright. Comunication-efficient algorithms for statistical optimiza-
tion. Journal of Machine Learning Research, 14:3321–3363, 2013. doi: 10.1109/CDC.2012.
6426691.

T. Zhao, G. Cheng, and H. Liu. A partially linear framework for massive heterogeneous data. The
Annals of Statistics, 44:1400–1437, 10 2014. doi: 10.1214/15-AOS1410.

56


	Introduction
	Preliminaries
	Full Sample versus split-and-conquer Estimation
	Weighted Distributed Estimator
	Formulation and Results
	Likelihood and Quasi-likelihood
	Relation to Generalized Method of Moment Estimation
	Estimation of weights with one round communication

	Debiased Estimator for Diverging K
	Numerical Results
	Simulation study
	Real data analysis

	Discussion
	Derivation of formulas
	Expansion of the full sample estimator full
	Errors-in-variables model
	Equivalent variance minimization formulations of the weighted estimators
	Second-order Bartlett's indentity under QMLE
	Generalized second-order Bartlett's identity for parametric regression
	GMM formulation of the full sample statistical optimization under heterogeneity
	Lipschitz continuity of the outer product of the gradient in logistic regression model
	Asymptotic efficiency comparison of k and k(2)
	Comparison with a one-step estimator
	Bias correction for statistical optimization under logistic regression model

	Proofs
	Lemmas
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Theorem 3
	 Proof of Theorem 4
	Proof of Theorem 5
	 Proof of Theorem 6
	Proof of Theorem 7 and Corollary 8
	Proof of Theorem 9

	Additional numerical results
	Simulation results based on the errors in variables model
	Simulation results based on the logistic model
	Pre-processing of the real data


