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Piersilvio De Bartolomeis∗ pdebartol@ethz.ch
ETH Zürich
Rämistrasse 101, 8092 Zürich, Switzerland
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Abstract

Convex Reinforcement Learning (RL) is a recently introduced framework that generalizes
the standard RL objective to any convex (or concave) function of the state distribution
induced by the agent’s policy. This framework subsumes several applications of practical
interest, such as pure exploration, imitation learning, and risk-averse RL, among others.
However, the previous convex RL literature implicitly evaluates the agent’s performance
over infinite realizations (or trials), while most of the applications require excellent perfor-
mance over a handful, or even just one, trials. To meet this practical demand, we formulate
convex RL in finite trials, where the objective is any convex function of the empirical state
distribution computed over a finite number of realizations. In this paper, we provide a
comprehensive theoretical study of the setting, which includes an analysis of the impor-
tance of non-Markovian policies to achieve optimality, as well as a characterization of the
computational and statistical complexity of the problem in various configurations.

Keywords: Reinforcement Learning, Convex Reinforcement Learning, General Utilities,
Finite Trials, Non-Markovian Policies

1. Introduction

Although Reinforcement Learning (RL, Sutton and Barto, 2018) provides a powerful and
flexible framework to model sequential decision-making problems, many relevant applica-
tions do not fit naturally into the standard RL framework (Abel et al., 2021). Especially,
the objective function of RL can be seen as a linear combination between a reward vector
and the state distribution induced by the agent’s policy. However, some applications cannot
be cast into a linear objective function. Several works have thus extended the standard RL
formulation to address non-linear objectives of practical interest.

∗ Riccardo and Piersilvio contributed to the works (Mutti et al., 2022b,a) that are extended by this paper.
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This family of objectives includes imitation learning (Hussein et al., 2017; Osa et al.,
2018), or the problem of finding a policy that minimizes the distance between the induced
state distribution and the state distribution provided by experts’ interactions (Abbeel and
Ng, 2004; Ho and Ermon, 2016; Kostrikov et al., 2019; Lee et al., 2019; Ghasemipour et al.,
2020; Dadashi et al., 2020; Kim et al., 2021; Freund et al., 2023), risk-averse RL (Garcıa
and Fernández, 2015), in which the objective is sensitive to the tail behavior of the agent’s
policy (Tamar and Mannor, 2013; Prashanth and Ghavamzadeh, 2013; Tamar et al., 2015;
Chow et al., 2015, 2017; Bisi et al., 2020; Zhang et al., 2021b; Greenberg et al., 2022;
Eldowa et al., 2022; Bonetti et al., 2023; Hau et al., 2023), pure exploration (Hazan et al.,
2019), where the goal is to find a policy that maximizes the entropy of the induced state
distribution (Lee et al., 2019; Mutti and Restelli, 2020; Mutti et al., 2021; Zhang et al.,
2021a; Guo et al., 2021; Liu and Abbeel, 2021b; Seo et al., 2021; Yarats et al., 2021; Mutti
et al., 2022d,b; Nedergaard and Cook, 2022; Yang and Spaan, 2023; Tiapkin et al., 2023;
Mutti, 2023), diverse skills discovery (Gregor et al., 2017; Eysenbach et al., 2018; Hansen
et al., 2019; Sharma et al., 2020; Campos et al., 2020; Liu and Abbeel, 2021a; He et al., 2022;
Zahavy et al., 2023; Mutti et al., 2022c), constrained RL (Altman, 1999; Achiam et al., 2017;
Brantley et al., 2020; Miryoosefi et al., 2019; Qin et al., 2021; Yu et al., 2021; Bai et al.,
2022; Germano et al., 2023), active learning in Markov decision processes (Tarbouriech and
Lazaric, 2019; Tarbouriech et al., 2020; Wagenmaker and Jamieson, 2022; Mutny et al.,
2023), and others.

All this large body of work has been recently unified into a unique broad framework,
called convex RL (Hazan et al., 2019; Zhang et al., 2020; Zahavy et al., 2021; Geist et al.,
2022), which generalizes the RL objective to any convex (or concave) function of the state
distribution induced by the agent’s policy. The convex RL problem has been shown to be
largely tractable either computationally, as it admits a dual formulation akin to standard
RL (Puterman, 2014), or statistically, as principled algorithms achieving sub-linear regret
rates that are slightly worse than standard RL have been developed (Zhang et al., 2020;
Zahavy et al., 2021).

However, the convex RL formulation presented in the previous literature implicitly eval-
uates the agent’s performance over infinite realizations (or trials), as the objective function
is computed on the (expected) state distribution. In practice, we can only draw a finite
number of realizations instead, inducing an empirical state distribution that can be signifi-
cantly far from its expectation (Weissman et al., 2003). In several applications, it is crucial
to achieve a good performance in those finite number of realizations rather than in expecta-
tion over infinite trials. A typical example is the problem of learning a risk-sensitive policy
for financial markets. Even if we have access to a simulator to train our policy on many re-
alizations, we get just one realization when deploying the policy to the market. It is crucial
that the deployed policy achieves a good performance in this single trial. Analogously, we
might train a robot to imitate human behavior over tons of simulated realizations. How-
ever, we want our robot to effectively imitate the demonstrated behavior once it is deployed
to the physical world, where we can typically get a few realizations. All of the previous
considerations are meaningless in standard RL, as a linear objective function implies that
the policy optimized over infinite realizations is also optimal when deployed over any finite
number of realizations. Instead, we argue that accounting for the number of available trials
is paramount in convex RL.
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In this paper, we formulate the convex RL problem in finite trials to close the gap
between the theoretical formulation of convex RL that is considered in the literature and
the objective that should be optimized in practice.

In Section 3, we formalize the finite-trials convex RL objective as any convex (or concave)
function of the empirical state distribution induced by the agent’s policy over n realizations.
Then, we compare the finite-trials formulation with its infinite-trials counterpart, demon-
strating a crucial mismatch between their objective functions (Section 3.1). Especially, we
show that a policy optimized for the infinite-trials objective can be significantly sub-optimal
when evaluated over n trials, where the sub-optimality scales with a factor of O(1/

√
n) (Sec-

tion 3.2). Supported by these results, we advocate for directly optimizing the finite-trials
objective.

In Section 4, we provide a comprehensive study of the latter problem in its most extreme
formulation, which is convex RL in a single trial. First, we demonstrate the importance of
non-Markovian policies when optimizing the single-trial objective (Section 4.1). Especially,
we show that the problem always admits a deterministic non-Markovian optimal policy,
whereas the best policy within the space of Markovian policies has to be randomized. We
prove that this randomization degrades the single-trial performance w.r.t. the optimal non-
Markovian policy. Then, we provide a negative result on the tractability of computing the
optimal non-Markovian policy when the environment is known, showing that the problem is
NP-hard in general (Section 4.2). Finally, we provide an analysis of the statistical complexity
of the corresponding learning problem, which demonstrates that O(

√
K) regret can be

achieved while interacting with an unknown environment over K rounds (Section 4.3). The
latter result gives some hope to the design of provably efficient algorithms that rely on
approximate solvers to overcome the computational intractability of the problem.

In Section 5, we complement the previous results with the study of the convex RL prob-
lem in a handful of trials, where the objective is computed over 1 < n�∞ realizations. For
the latter problem, we provide separate analyses for the settings in which the realizations
are sampled in a sequence (Section 5.1) or in parallel, where we further differentiate between
the perfect communication scenario (Section 5.2) and the scenario without communication
(Section 5.3). Our results show that the sequential and the parallel communicating set-
tings can be translated into an equivalent single-trial convex RL problem, thus inheriting
analogous optimality of deterministic non-Markovian policies, as well as computational and
statistical properties. Instead, the parallel non-communicating setting is crucially different
from the others, as it generally admits an optimal stochastic non-Markovian policy.

Finally, we report a brief numerical validation of the presented claims (Section 6), as
well as a discussion of the most relevant related work (Section 7) and interesting future
directions (Section 8). Some of the proofs have been (partially) omitted for the sake of
readability, and they are reported in Appendix A.

This paper unifies and extends the previous works (Mutti et al., 2022b,a). The former
demonstrates the importance of non-Markovian policies to optimize a specific convex RL
application, which is the state entropy maximization for pure exploration. The latter instead
formulates convex RL in finite trials, highlighting the crucial mismatch between the finite-
trials objective and the infinite-trials formulation that was previously considered in the
literature. Specifically, here we extend the contributions of (Mutti et al., 2022b,a) as follows:
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• We generalize the results in (Mutti et al., 2022b) from pure exploration to the broader
convex RL framework;

• We improve the result in Lemma 4.6 of (Mutti et al., 2022b) by deriving a more
informative version of the bounds (Lemma 5), which are now provided in a single
cumulative expression rather than in per-step contributions;

• We sharpen the preliminary regret analysis of (Mutti et al., 2022a, Section 5.3) to
derive the statistical complexity of convex RL in a single trial (Section 4.3);

• We report a novel study of convex RL in a handful of trials (Section 5), which was
not analyzed in (Mutti et al., 2022b,a).

With this paper, we aim to provide a useful guide to convex RL in finite trials, and we
hope to spark a research area that will bring convex RL closer to practical applications.

2. Background

In this section, we introduce the essential background notions for the remainder of the
paper. We will denote with [N ] a set of integers {0, . . . , N − 1}, and with N,R natural
and real numbers respectively. For two vectors v = (v1, . . . , vn), u = (u1, . . . , ud) of any
dimension, we denote with v ⊕ u = (v1, . . . , vn, u1, . . . , ud) their concatenation. When v, u
have the same length n = d, we define the inner product v · u =

∑n
i=1 viui.

For a measurable space X , we will denote with ∆X the probability simplex over X , and
with p ∈ ∆X a probability measure over X . For two probability measures p, q ∈ ∆X , we
define their `p-distance as

‖p− q‖p :=
(∑
x∈X

∣∣p(x)− q(x)
∣∣p)1/p

,

where ‖p − q‖∞ = supx∈X
∣∣p(x) − q(x)

∣∣. We further define the Kullback-Leibler (KL)
divergence between p and q as

KL(p||q) :=
∑
x∈X

p(x) log
(
p(x)/q(x)

)
.

Let X be a random variable having a cumulative density function FX(x) = Pr(X ≤ x).
We denote with E[X] its expected value, and its α-percentile is denoted as VaRα(X) =
inf

{
x | FX(x) ≥ α

}
= F−1

X (α), where α ∈ (0, 1) is a confidence level, and VaRα stands for
Value at Risk (VaR) at level α. We denote the expected value of X within its α-percentile
as CVaRα(X) = E

[
X | X ≤ VaRα(X)

]
, where CVaRα stands for Conditional Value at

Risk (CVaR) at level α.

2.1 Markov Decision Processes

A Markov Decision Process (MDP, Puterman, 2014) is a powerful framework to model
sequential decision problems. A finite-horizon MDP is defined through the tuple M :=
(S,A, P, T, µ, r), in which S is a discrete space of |S| = S states, A is a discrete space of
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|A| = A actions, P : S × A → ∆S is the transition model, such that P (s′|s, a) denotes the
probability of transitioning to state s′ by taking action a in state s, T is the horizon of an
episode, µ ∈ ∆S is the initial state distribution, and r : S ×A → [0, 1] is a reward function
that assigns a numeric reward r(s, a) for taking action a in state s.1

A decision-maker, which is usually called the agent, interacts with the MDP over several
episodes. In each episode, an initial state s0 is drawn from the initial state distribution s0 ∼
µ. The agent observes the state s0 and picks an action a0, therefore collecting the reward
r(s0, a0), while the MDP transitions to the next state s1 drawn from P (·|s0, a0). Then, the
agent observes s1 and takes action a1, collecting r(s1, a1) while the MDP transitions to s2 ∼
P (·|s1, a1). This interaction process is repeated for each step t ∈ [T ] until the last reward
r(sT−1, aT−1) is collected, and the episode ends. We call the sequence hT = (st, at)

T−1
t=0

of states and actions encountered during the episode the history of interactions,2 and we
denote as HT the set of all the histories of length T . We further denote as ht a sub-history
of length t and as Ht the set of all such sub-histories. Finally, we denote as H =

⋃T
t=1Ht

the set of all the histories up to length T .

2.2 Policies and Policy Spaces

The decision strategy of the agent, i.e., how the agent selects the action to take at each step,
is defined through a policy π. A policy consists of a sequence of decision rules π = (πt)t∈[T ],
one for each interaction step. In its most general formulation, a decision rule maps an
history of interactions at step t with a probability distribution over actions πt : Ht → ∆A.
The latter is called a non-Markovian decision rule. Instead, a Markovian decision rule maps
the state at step t with a probability distribution over actions πt : S → ∆A, neglecting the
previous history. A deterministic decision rule maps either the history or the state to a
unique action, πt : Ht → A or πt : S → A respectively. We then define some relevant policy
spaces as follows:

• A policy π = (πt)t∈[T ] composed of non-Markovian decision rules πt is called a non-
Markovian policy. ΠNM denotes the space of all the non-Markovian policies.

• A non-Markovian policy π ∈ ΠNM composed of deterministic decision rules is called a
deterministic non-Markovian policy. ΠD

NM ⊂ ΠNM denotes the space of deterministic
non-Markovian policies;

• A policy π = (πt)t∈[T ] composed of Markovian decision rules πt is called a Markovian
policy. ΠM denotes the space of all the Markovian policies;

• A Markovian policy π ∈ ΠM composed of deterministic decision rules is called a deter-
ministic Markovian policy. ΠD

M ⊂ ΠM denotes the space of deterministic Markovian
policies.

Finally, we will denote as Π a general policy space, such that it holds ΠM ⊂ ΠNM ≡ Π.

1In the following, we will sometimes define the reward as a per-state function r : S → [0, 1]. Note that this
is coherent with the previous definition by taking r(s, a) = r(s), ∀a ∈ A.

2The sequence of rewards (rt)
T−1
t=0 is omitted from the history definition, as it can be recovered from hT

through a deterministic mapping.
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2.3 State Distributions

An agent interacting with an MDP over n episodes induces a sequence of n histories
(hT,i)

n
i=1.3 From those histories, we can compute the empirical state distribution dn ∈ ∆S

as

dn(s) =
1

nT

n∑
i=1

T−1∑
t=0

1(st,i = s),

such that st,i is the state at the step t in the history hT,i. A policy π ∈ Π induces a
particular probability measure pπn over the sequence of n histories (hT,i)i∈[n], and thus over
the empirical state distribution dn. Especially, we have

pπn
(
(hT,i)i∈[n]

)
=

n∏
i=1

µ(s0,i)
T−1∏
t=0

π(at,i|st,i)P (st+1,i|st,i, at,i).

With a slight overload of notation, we denote as dn ∼ pπn an empirical state distribution
obtained from a sequence of histories (hT,i)i∈[n] ∼ pπn. We further denote with d1 ∼ pπ1 an
empirical state distribution obtained from a single history hT ∼ pπ1 , and with ht ∼ pπ1,t a
history of t < T steps drawn from pπ1 .

Finally, we denote the expectation of the empirical state distribution under the policy
π as dπ(s) = Edn∼pπn [dn(s)], such that dπ ∈ ∆S is called the state distribution induced by π.

2.4 Planning and Reinforcement Learning

The goal of an agent interacting with an MDPM is to find a decision policy that maximizes
the expected sum of the rewards collected during an episode. Thus, the objective function
of the agent can be written as4

max
π∈Π

E
π

[
T−1∑
t=1

r(st)

]
= max

π∈Π

(
r · dπ

)
=: J (π), (1)

and a policy π∗ ∈ arg maxπ∈Π J (π) is called an optimal policy. It is well-known (Puterman,
2014) that an MDP admits a deterministic Markovian optimal policy π∗ ∈ ΠD

M. Moreover,
solving (1) when the MDP is fully known, which is called the planning problem, is computa-
tionally efficient, as the optimal policy can be recovered from a linear program (Schweitzer
and Seidmann, 1985; De Farias and Van Roy, 2003).

Reinforcement Learning (RL, Sutton and Barto, 2018) deals with the problem of learning
a near-optimal policy from sampled interactions with an unknown MDP. Without having
access to the transition model P , the RL agent optimizes a sampled-based version of (1)
through running statistics computed on the collected episodes. This learning process is
statistically efficient in tabular MDPs, as we can learn a policy π̂ such that Pr(J (π∗) −
J (π̂) ≥ ε) ≤ δ for any ε > 0, δ ∈ (0, 1) by taking a polynomial number of episodes (Kearns
and Singh, 2002; Kakade, 2003; Strehl and Littman, 2008).

3For each hT,i, the first subscript denote the history length, the second subscript is the episode index. We
will omit the first subscript when it is clear from the context.

4With a slight abuse of notation, we can equivalently represent a reward function r : S → [0, 1] with a
S-dimensional vector r = (r(s))s∈S ∈ [0, 1]S , such that r · dπ =

∑
s∈S r(s)d

π(s) is a well-defined inner

product between the vectors r ∈ [0, 1]S and dπ ∈ ∆S which both lie in a subspace of RS .
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2.5 Partially Observable MDPs

A Partially Observable Markov Decision Process (POMDP, Astrom, 1965; Kaelbling et al.,
1998) generalizes the MDP model described in Section 2.1 to partially observable decision
problems. A POMDP is described by MΩ := (S,A, P, T, µ, r,Ω, O), where S,A, P, T, µ, r
are defined as in an MDP, Ω is a finite observation space, and O : S → ∆Ω is the observation
function, such that O(o|s) denotes the conditional probability of the observation o ∈ Ω when
the POMDP is in state s ∈ S. Crucially, while interacting with a POMDP the agent cannot
observe the state s ∈ S, but just the observation o ∈ Ω. The performance of a policy π is
defined as in an MDP (see (1)).

3. Convex Reinforcement Learning

Even though the RL formulation covers a wide range of sequential decision-making prob-
lems, several relevant applications cannot be expressed, as in (1), through the inner product
between a reward vector r and a state distribution dπ (Abel et al., 2021; Silver et al., 2021).
These include imitation learning, pure exploration, constrained problems, and risk-sensitive
objectives, among others. Recently, a convex RL formulation (Hazan et al., 2019; Zhang
et al., 2020; Zahavy et al., 2021; Geist et al., 2022) has been proposed to unify these ap-
plications in a unique general framework. In the latter framework, the agent interacts with
an unknown convex MDP MF := (S,A, P, T, µ,F), where S,A, P, T, µ are defined as in
the MDP model described in Section 2.1, and the utility function F replaces the reward
function r. For any F < ∞, the utility function F : ∆S → (−∞, F ] is a F -bounded con-
cave function5 of the state distribution6 dπ that allows for a generalization of the learning
objective, which becomes7

max
π∈Π

(
F(dπ)

)
=: ζ∞(π). (2)

To give a few examples, the utility F can be the entropy function in pure exploration
setting (Hazan et al., 2019), a KL divergence in imitation learning (Ghasemipour et al.,
2020), or some risk functional in risk-sensitive RL (Tamar et al., 2015). In Table 1, we
recap some of the most relevant problems that fall under the convex RL formulation, along
with their specific utility function F . Note that the convex RL objective ζ∞(π) (2) reduces
to the traditional RL objective (1) when F is a linear function.

Although convex RL is a generalization of the standard RL problem, previous works
have demonstrated that convex RL enjoys similar computational and statistical proper-
ties. Hazan et al. (2019) note that the objective ζ∞(π) (2), being concave (convex) w.r.t.
the state distribution dπ, can still be non-concave (non-convex) w.r.t. the policy param-
eters. However, they show that ζ∞(π) (2) admits a concave (convex) formulation that
is instead convenient for optimization. While there exists an optimal Markovian policy
π∗ ∈ arg maxπ∈ΠF(dπ) for any MF , the policy π∗ can be stochastic (Hazan et al., 2019),

5In this context, we use the term convex RL to distinguish it from the standard linear RL objective (1).
However, in practice, the function F can be either convex, concave, or even non-convex. In the following,
we will assume F is concave if not mentioned otherwise.

6The utility function can be alternatively defined over state-action distributions.
7In general, problem (2) takes the form of a max problem for concave utilities F : ∆S → (−∞, F ], or a min
problem for convex utilities F : ∆S → [F,+∞). The meaning of the infinity subscript of ζ∞ will be made
clear in the next section.
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Utility F Application Infinite ≡ Finite

r · d r ∈ RS , d ∈ ∆S RL 3

‖d− dE‖pp
KL(d||dE)

d, dE ∈ ∆S Imitation Learning 7

−d · log (d) d ∈ ∆S Pure Exploration 7

CVaRα[r · d]

r · d− Var[r · d]
r ∈ RS , d ∈ ∆S Risk-Averse RL 7

r · d, s.t. λ · d ≤ c r, λ ∈ RS , c ∈ R, d ∈ ∆S Linearly Constrained RL 3

−Ez KL (dz||Ek dk) z ∈ Rd, dz, dk ∈ ∆S Diverse Skill Discovery 7

Table 1: Relevant convex RL objectives and applications. The last column states the
equivalence between infinite-trials and finite-trials settings (more details below) as derived
in Proposition 6 (Appendix A).

differently from standard MDPs which always admit a deterministic optimal policy. Learn-
ing an optimal policy π∗ from sampled interactions withMF has been demonstrated to be
provably efficient, both in terms of sample complexity (Hazan et al., 2019) and regret (Za-
havy et al., 2021).

3.1 Convex Reinforcement Learning in Finite Trials

In the previous section, we have denoted the convex RL objective as ζ∞(π) (2), with an
infinity subscript, to underline that the state distribution dπ used to compute the objective
can be only obtained asymptotically over the number of episodes (trials). Instead, in any
practical simulated or real-world scenario, we can only draw a finite number of episodes
n ∈ N with a policy π. From these episodes, we obtain an empirical state distribution
dn ∼ pπn rather than the actual state distribution dπ. This can cause a mismatch from
the objective that is typically considered in convex RL (e.g., see Hazan et al., 2019; Zhang
et al., 2020; Zahavy et al., 2021) and what can be optimized in practice. To overcome this
mismatch, we generalize the convex RL problem to its finite-trials formulation.

Definition 1 (Finite-Trials Objective) Let MF be a convex MDP and let n ∈ N a
number of evaluation episodes. The corresponding n-trials convex RL objective is given by

max
π∈Π

(
E

dn∼pπn

[
F(dn)

])
=: ζn(π). (3)

In ζn(π) (3) the objective function is expressed in terms of the utility F associated to
the empirical state distribution dn obtained within n episodes, for which we then take the
expectation by considering the probability of drawing dn with the policy π.

In the following theorem, we show that the finite-trials convex RL objective is not
equivalent to the usual formulation in general.

Theorem 1 (Finite-Trials Mismatch) Let MF be a convex MDP and let n ∈ N the
number of evaluation episodes. The corresponding convex RL ζ∞(π) (2) and finite-trials
convex RL ζn(π) (3) objectives are not equivalent, i.e., ζ∞(π) 6= ζn(π) in general.
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Proof Let us recall that dπ = Edn∼pπn [dn]. Through Jensen’s inequality, we can write

ζ∞(π) = F(dπ) = F( E
dn∼pπn

[dn]) ≥ E
dn∼pπn

[F(dn)] = ζn(π).

When n <∞ and the utility function F is strictly concave (convex), the inequality is strict,
meaning there is a mismatch between the two objectives. Instead, when n → ∞, we have
that

lim
n→∞

ζn(π) = lim
n→∞

E
dn∼pπn

[F(dn)] = E
dπ∼pπ∞

[F(dπ)] = ζ∞(π).

For this reason, we alternatively call ζ∞(π) (2) the infinite-trials convex RL objective.
Finally, when F is a linear function, e.g., a reward function r, we can write

ζ∞(π) = r · dπ = r · E
dn∼pπn

[dn] = E
dn∼pπn

[r · dn] = ζn(π),

which means that the mismatch between infinite and finite trials vanishes for the standard
RL objective (1).

As a consequence of Theorem 1, optimizing the infinite-trials objective ζ∞(π) does not
necessarily guarantee an optimal policy for the finite-trials objective ζn(π). This is a crucial
difference between the standard RL problem, which does not suffer from this mismatch,
and its convex generalization. Whereas in standard RL we can always design our learning
algorithms in the well-founded, infinite-trials realm, in convex RL an algorithm designed
for the infinite-trials formulation can output a policy that results sub-optimal when it is
evaluated on a finite number of episodes. Specifically, in the next section, we characterize
the approximation error of using the infinite-trials convex RL objective ζ∞(π) as a proxy
of the finite-trials objective ζn(π).

3.2 Approximating the Finite-Trials Objective with Infinite Trials

Despite the evident mismatch between the finite trials and the infinite trials formulation of
the convex RL problem, most existing works consider ζ∞(π) (2) as the standard objective,
even if only a finite number of episodes can be drawn in practice. Thus, it is worth investi-
gating how much we can lose by approximating a finite-trials objective with an infinite-trials
one. First, we report a useful assumption on the structure of the function F .

Assumption 1 (Lipschitz) A function F : X → R is Lipschitz-continuous for some con-
stant L <∞, or L-Lipschitz for short, if it holds∣∣F(x)−F(y)

∣∣ ≤ L∥∥x− y∥∥
1
, ∀(x, y) ∈ X 2.

Then, we provide an upper bound on the approximation error.

Theorem 2 (Approximation Error) Let MF be a convex MDP with L-Lipschitz utility
function F , let n ∈ N be a number of evaluation episodes, let δ ∈ (0, 1] be a confidence level,
let π† ∈ arg maxπ∈Π ζn(π) and π? ∈ arg maxπ∈Π ζ∞(π). Then, it holds with probability at
least 1− δ

err :=
∣∣ζn(π†)− ζn(π?)

∣∣ ≤ 4LT

√
2S log(4T/δ)

n
.
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Π

ζ∞

ζn π∗

π†

Π
ζ∞

ζn

π∗

π†

Figure 1: The two illustrations report an abstract visualization of ζn and ζ∞ for small values
of n (left) and large values of n (right) respectively. The green bar visualize the distance∥∥dn− dπ?∥∥1

, in which dn ∼ pπ†n . The blue bar visualize the distance
∣∣ζn(π†)− ζ∞(π?)

∣∣. The

orange bar visualize the approximation error, i.e., the distance
∣∣ζn(π†)− ζn(π?)

∣∣.
Proof Sketch Starting from the definition of the approximation error, we can write

err :=
∣∣ζn(π†)− ζn(π?)

∣∣ ≤ ∣∣ζn(π†)− ζ∞(π†)
∣∣+
∣∣ζ∞(π?)− ζn(π?)

∣∣ (4)

≤ E
dn∼pπ†n

[∣∣∣F(dn)−F(dπ
†
)
∣∣∣]+ E

dn∼pπ?n

[∣∣∣F(dn)−F(dπ
?
)
∣∣∣] (5)

≤ E
dn∼pπ†n

[
L
∥∥∥dn − dπ†∥∥∥

1

]
+ E
dn∼pπ?n

[
L
∥∥∥dn − dπ?∥∥∥

1

]
(6)

≤ 2L max
π∈{π†,π?}

E
dn∼pπn

[‖dn − dπ‖1] (7)

where we obtain (5) from (4) through algebraic manipulations, we apply Assumption 1 to
write (6), and we take the maximum over the policies in (7). Then, we apply an Höeffding-
type concentration inequality for empirical distributions (Weissman et al., 2003, Theorem
2.1) to bound (7) with high probability. See Appendix A for complete derivations.

The previous result establishes an approximation error rate err = O(LT
√
S/n) that is

polynomial in the number of evaluation episodes n. Unsurprisingly, the guarantees over the
approximation error scale with O(1/

√
n), as one can expect the empirical distribution dn

to concentrate around its expected value for large n (Weissman et al., 2003). This implies
that approximating the finite-trials objective ζn(π) with the infinite-trials ζ∞(π) can be
particularly harmful in those settings in which n is necessarily small.

For instance, consider training a robot through a simulator and deploying the obtained
policy in the real world, where the performance measure is often based on a single episode
(n = 1). The performance we experience from the deployment can be much lower than the
expected ζ∞(π), which might result in undesirable or unsafe behaviors.

However, Theorem 2 only reports an instance-agnostic upper bound, and it does not
necessarily imply that there would be a significant approximation error in a specific instance,
i.e., a specific convex MDPMF . Nevertheless, in this paper, we argue that the upper bound
of the approximation error is not vacuous in several relevant applications. We provide an
illustrative numerical corroboration of this claim in Section 6.
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Finally, in Figure 1, we report a visual representation8 of the approximation error defined
in Theorem 2. Notice that the finite-trials objective ζn converges uniformly to the infinite-
trials objective ζ∞ as a trivial consequence of Theorem 2. This is particularly interesting
as it results in π† converging to π? in the limit of large n as shown Figure 1.

Having established a significant approximation error in optimizing the infinite-trials
ζ∞(π) in place of the finite-trials ζn(π), in the following sections we will instead focus on
the optimization of the finite-trials objective. In Section 4, we study the most extreme
version of ζn(π) in which we have a single evaluation episode (n = 1). In Section 5, we
study the optimization of ζn(π) for n > 1.

4. Convex RL in a Single Trial

In most real-world applications, the autonomous agent, which has often been trained in
simulation, is deployed in the test environment over a single evaluation episode (or trial).
For instance, in a financial application, we evaluate our agent in a single realization, as we
cannot reset the market to understand the agent’s performance over a handful, or infinite,
trials. Similarly, an autonomous-driving vehicle has to maximize the utility in every trial,
to ensure the safety of the passengers. Those examples motivate the study of the single-trial
convex RL formulation, in which the convex utility is evaluated in expectation of a single
realization. The corresponding objective function is given by

max
π∈Π

(
E

d1∼pπ1

[
F(d1)

])
=: ζ1(π). (8)

Whereas the infinite-trials convex RL problem enjoys favorable computational and sta-
tistical properties, we proved (see Theorem 2) that the resulting policy can be significantly
sub-optimal w.r.t. the objective ζ1(π) (8). Instead, it is worth investigating whether directly
optimizing the single-trial objective ζ1(π), thus avoiding the approximation error, is also
suitable for optimization and statistically efficient.

First, in Section 4.1, we investigate the optimality of the common policy spaces, and
we show that non-Markovian policies ΠNM are in general necessary to optimize ζ1(π) (8).
Then, in Section 4.2, we show that the corresponding optimization problem is, unfortunately,
computationally intractable. Finally, in Section 4.3, we prove that the problem is at least
statistically tractable, giving hope to design provably efficient methodologies that rely on
approximate solvers to overcome the computational hardness of (8).

4.1 Optimality and The Importance of Non-Markovianity

First, we introduce a refined tool to evaluate the performance of a policy π beyond the
value of the objective function ζ1(π) (8), which will be convenient for our analysis.

Definition 2 (Value Gap) Consider a policy π ∈ Π interacting with a convex MDP MF
over an episode of T steps. We define the value gap VT (π) of the policy π as

VT (π) = F∗ − E
d1∼pπ1

[
F
(
d1

)]
,

8Note that it is not possible to represent the objective functions in two dimensions in general. Nevertheless,
we provide an abstract one-dimensional representation of the policy space to convey the intuition.
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where F∗ = maxπ∗∈Π Ed1∼pπ∗1

[
F
(
d1

)]
is the value achieved by an optimal policy π∗ ∈ Π over

T steps. We further denote with Vt(π, s) the value gap induced by π over t steps starting
from the state s, such that VT (π) = Es∼µ[VT (π, s)] and V0(π, s) = 0, ∀s ∈ S.

The value gap essentially evaluates the policy π in relation to the optimal value F∗ of
ζ1(π) (8) that can be achieved by any policy π ∈ Π in MF . It is interesting to assess
whether a zero value gap can be achieved within the space of Markovian policies ΠM or
non-Markovian policies ΠNM, and what is the corresponding minimal value gap otherwise.

Before formally stating the results, we introduce the following assumption to ease the
notation without losing generality.9

Assumption 2 (Unique Optimal Action) For every convex MDP MF and trajectory
ht ∈ H, there exists a unique optimal action a∗ ∈ A w.r.t. ζ1(π) (8).

First, we show that the class of deterministic non-Markovian policies is sufficient for the
minimization of the value gap, and thus for the maximization of ζ1(π) (8).

Lemma 1 For every convex MDP MF , there exists a deterministic non-Markovian policy
πNM ∈ ΠD

NM such that πNM ∈ arg maxπ∈ΠNM
Ed1∼pπ1

[
F(d1)

]
, which suffers zero value gap

VT (πNM) = 0.

Proof It is straightforward to note the existence of a non-Markovian policy π ∈ ΠNM such
that VT (π) = 0, as the set ΠNM is the most general policy space. We need to prove that
there exists one such policy that is deterministic. To this purpose, we reduce the convex
MDPMF to an equivalentM` = (S`,A`, P`, T`, µ`, r`) that we call the temporally-extended
MDP. We construct M` from MF as follows:

• We build S` by defining a state s` for each history ht that can be induced inMF , i.e.,
s` ∈ S` ⇐⇒ ht ∈ H;

• We keepA`, P`, T`, µ` equivalent toA, P, T, µ ofMF , where for the extended transition
model P`(s

′
`|s`, a) we solely consider the last state in the history (corresponding to)

s` to define the conditional probability to the next history (corresponding to) s′`;

• We define the reward function r` : S` → R such that r`(s`) = F(ds`) for all the
histories s` of length T and r`(s`) = 0 otherwise, where we denoted with ds` the
empirical state distribution induced by the history (corresponding to) s`.

From (Puterman, 2014), we know that there exists an optimal deterministic Markovian
policy π` = (πt : S` → A`)T−1

t=0 for M`. Since S` corresponds to the set of histories of the
original MDP MF , π` maps to a non-Markovian policy πNM ∈ ΠNM in MF . Finally, it is
straightforward to note that the optimality of π` for M` implies the optimality of πNM for
ζ1(π) (8), which concludes the proof.10

9Note that this assumption could be easily removed by partitioning the action space in ht as A(ht) =
Aopt(ht) ∪ Asub−opt(ht), such that Aopt(ht) are optimal actions and Asub−opt(ht) are sub-optimal, and
substituting any term π(a∗|ht) with

∑
a∈Aopt(ht) π(a|ht) in the results.

10Note that the construction of the extended MDP cannot be computed in polynomial time, as it requires
to enumerate all of the histories in MF , and it only serves as a theoretical tool.
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Then, in order to prove that the class of non-Markovian policies is also necessary for value
gap minimization, it is useful to prove, as an intermediate step, that Markovian policies
rely on randomization to optimize ζ1(π) (8) in general.

Lemma 2 Let πNM ∈ ΠD
NM be an optimal deterministic non-Markovian policy for ζ1(π) (8)

in the convex MDP MF . For a fixed history ht ∈ Ht ending in state s, the variance of
the event of an optimal Markovian policy πM ∈ arg maxπ∈ΠM

Ed1∼pπ1
[
F(d1)

]
taking a∗ =

πNM(ht) in s is given by

Var
[
B(πM(a∗|st))

]
= Var

hs∼pπNM
1,t

[
E
[
B(πNM(a∗|hs))

]]
,

where hs ∈ Ht is any history of length t such that the final state is s, i.e., hs := (ht−1 ∈
Ht−1)⊕ s, and B(x) is a Bernoulli with parameter x.

Proof Sketch We can prove the result through the Law of Total Variance (LoTV) (see
Bertsekas and Tsitsiklis, 2002) on the variance of the event in which the optimal Markovian
policy πM takes the optimal action a∗. The latter gives

Var
[
B(πM(a∗|st))

]
= E

hs∼pπNM
1,t

[
Var

[
B(πNM(a∗|hs))

]]
+ Var
hs∼pπNM

1,t

[
E
[
B(πNM(a∗|hs))

]]
.

Then, exploiting the determinism of πNM through Lemma 1, it is straightforward to see
that Ehs∼pπNM

1,t

[
Var

[
B(πNM(a∗|hs))

]]
= 0, which concludes the proof.11

Unsurprisingly, Lemma 2 shows that whenever the optimal strategy for ζ1(π) (8) inMF (i.e.,
the deterministic non-Markovian πNM) requires to adapt its decision in a state s according
to the history that led to it (hs), an optimal Markovian policy for the same objective (i.e.,
πM) must necessarily be a stochastic policy. We can show that this randomization is harmful
to the performance of the optimal Markovian policy, which incurs a positive value gap in
general, meaning that it cannot match the performance of the optimal non-Markovian policy
for ζ1(π) (8). In the following result, we make use of the Lemma 2 to characterize lower
and upper bounds to value gap of any Markovian policy that optimizes ζ1(π) (8).

Lemma 3 Let πM be an optimal Markovian policy for ζ1(π) (8) in the convex MDP MF .
It holds VT (πM) ≤ VT (πM) ≤ VT (πM) such that

VT (πM) = (F∗ −F∗2 )

T−1∑
t=0

E
ht∼pπNM

1,t

[∏t−1
j=0 πM(a∗j |sj)
πM(a∗t |st)

Var
hst∼pπNM

1,t

[
E
[
B(πNM(a∗t |hst))

]]]
,

VT (πM) = (F∗ −F∗)
T−1∑
t=0

E
ht∼pπNM

1,t

[∏t−1
j=0 πM(a∗j |sj)
πM(a∗t |st)

Var
hst∼pπNM

1,t

[
E
[
B(πNM(a∗t |hst))

]]]
,

where πNM ∈ arg maxπ∈ΠD
NM

Ed1∼pπ1
[
F(d1)

]
, and F∗2 ,F∗ are given by

F∗2 = max
π∈{Π\πNM}

E
d1∼pπ1

[
F(d1)

]
, F∗ = min

π∈Π
E

d1∼pπ1

[
F(d1)

]
.

11Note that the determinism of πNM does not also imply Varhs∼pπNM
t

[
E
[
B(πNM(a∗|hs))

]]
= 0, as the

optimal action a = πNM(hs) may vary for different histories, which results in the inner expectations
E
[
B(πNM(a∗|hs))

]
being either 1 (when a = a∗) or 0 (when a 6= a∗).
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Proof Sketch The derivation of VT (πM),VT (πM) is based on computing, for each step
t, the probability of the event in which πM takes the optimal action a∗ = πNM(ht), such
that the value gap does not increase, and to bound the cost of taking a sub-optimal action
optimistically and pessimistically for the lower and upper bounds respectively. Especially,
starting from the definition of the value gap (Definition 2), we can write

VT (πM) = F∗ − E
hT∼pπM

1

[
F(dhT )

]
≤ F∗ − E

s0∼µ

[
πM(a∗0|s0) E

s1∼P (·|s0,a∗0)

[
VT−1(πM, s1)

]
+
(
1− πM(a∗0|s0)

)
F∗
]
,

where the value gap associated with the optimal action, which is taken with probability
πM(a∗0|s0), only depends on the expected value gap of the next step VT−1(πM, s1), whereas
a sub-optimal action, which is taken with probability 1−πM(a∗0|s0), incurs in the pessimistic
value F∗. By repeatedly applying this decomposition for all the remaining T − 1 steps, we
get

VT (πM) ≤ (F∗ −F∗)
T−1∑
t=0

E
ht∼pπNM

1,t

[( t−1∏
j=0

πM(a∗j |sj)
)(

1− πM(a∗t |st)
)]
.

Finally, we note that πM(a∗t |st)(1− πM(a∗t |st)) = Var
[
B(πM(a∗t |st))

]
from the definition of

the Bernoulli distribution, and that Var
[
B(πM(a∗t |st))

]
= Varhst∼pπNM

1,t

[
E
[
B(πNM(a∗t |hst))

]]
through Lemma 2 to derive the upper bound VT (πM). The lower bound VT (πM) can be
derived following similar steps but considering the optimistic value F∗2 whenever πM takes
a sub-optimal action. Complete derivations can be found in Appendix A.

The lower and upper bounds on the value gap of an optimal Markovian policy provided
by Lemma 3 have a very similar structure. They are composed of an instance-dependent
constant factor, i.e., (F∗ − F∗2 ) and (F∗ − F∗) respectively, which accounts for the cost of
taking a sub-optimal action, and a second factor that measures the randomization of the
optimal Markovian policy across the time steps, and it relates this randomization to how
much the optimal non-Markovian policy adapts its strategy according to the history, which
is given by Varhst∼pπNM

1,t

[
E
[
B(πNM(a∗|hst))

]]
.

Finally, through the combination of Lemma 1 and Lemma 3, we can state the following
optimality result in single-trial convex RL.

Theorem 3 (Single-Trial Optimality) For every convex MDP MF , the space of deter-
ministic non-Markovian policies ΠD

NM is sufficient to optimize ζ1(π) (8), while the space of
Markovian policies ΠM incurs in a positive value gap VT (π) ≥ 0 in general.

The result of Theorem 3 highlights the importance of non-Markovianity for single-trial
convex RL, as the class of Markovian policies is dominated by the class of non-Markovian
policies. Most importantly, Lemma 3 shows that non-Markovian policies are strictly better
than Markovian policies in several convex MDPs of practical interest, i.e., those in which an
optimal Markovian policy has to be randomized to maximize ζ1(π) (8). The intuition behind
this result is that a Markovian policy would randomize to make up for the uncertainty over
the history, whereas a non-Markovian policy does not suffer from this partial observability,
and it can deterministically select an optimal action instead.

14



Convex Reinforcement Learning in Finite Trials

4.2 Computational Complexity

Having established the importance of non-Markovianity in dealing with convex RL in a
single-trial regime, it is worth considering how hard it is to optimize the objective ζ1(π) (8)
within the space of non-Markovian policies. Especially, for a given convex MDP MF , we
aim at characterizing the complexity of the problem

Ψ0 := max
π∈ΠNM

ζ1(π).

First, we provide a couple of useful definitions, whereas we leave to (Arora and Barak, 2009)
an extended review of complexity theory.

Definition 3 (Many-to-one Reductions) We denote as A ≤m B a many-to-one reduc-
tion from A to B.

Definition 4 (Polynomial Reductions) We denote as A ≤p B a polynomial-time (Tur-
ing) reduction from A to B.

Then, we recall that Ψ0 can be rewritten as the problem of finding an optimal Markovian
policy for a convenient extended MDP M` obtained from MF (see the proof of Lemma 1
for further details on how to build M`). We call this problem Ψ0` and we note that
Ψ0,` ∈ P, since a reward-maximizing policy can be computed in polynomial time for any
MDP (Papadimitriou and Tsitsiklis, 1987). However, the following lemma shows that it
does not exist a many-to-one reduction from Ψ0 to Ψ0`.

Lemma 4 A reduction Ψ0 ≤m Ψ0` does not exist.

Proof We can prove the result by showing that coding an instance of Ψ0 in the represen-
tation required by Ψ0`, which is an extended MDPM`, holds exponential complexity w.r.t.
the input of Ψ0, i.e., a convex MDPMF . Indeed, to build the extended MDPM` fromMF ,
we need to define the transition probabilities P`(s

′
`|s`, a`) for every s′` ∈ S`, a` ∈ A`, s` ∈ S`.

Whereas the extended action space is A` = A, we recall that the extended state space S`
is the set of all the histories ht ∈ H of the convex MDP MF . Thus, S` has cardinality
|S`| = (SA)T in general, which grows exponentially in T .

The latter result informally suggests that Ψ0 /∈ P. Indeed, we can now prove that Ψ0 is
NP-hard under the common assumption that P 6= NP.

Theorem 4 (Complexity of Single-Trial Convex MDPs) Ψ0 is NP-hard.

Proof Sketch To prove the result, it is sufficient to show that there exists a problem
Ψc ∈ NP-hard that is at least as hard as Ψ0. We obtain the latter through the chain of
reductions

Ψ0 ≥m specific class of POMDPs ≥p 3SAT

starting with the original problem Ψ0 of solving a single-trial convex MDP MF , which is
reduced to the problem of solving a particular class of POMDPs, which is then reduced to
3SAT, a notoriously NP-complete problem (Arora and Barak, 2009).

The first reduction Ψ0 ≥m POMDP is obtained from a construction similar to the
one of the extended MDP M` described in the proof of Lemma 1. Specifically, we define
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S`,A`, P`, T`, µ`, r` in the same way as in M`, and we further include an observation space
Ω and an observation function O to obtain the POMDP M`,Ω,O. The observation space is
defined as the original state space Ω = S, whereas the observation function O : S` → Ω takes
as input an extended state s` ∈ S` (a history of the originalMF ) and returns the observation
o ∈ Ω that corresponds to the last state in the history s`. With this construction, we can
map a reward-maximizing policy forM`,Ω,O to an optimal policy forMF , which means we
can solve the POMDP to solve Ψ0.

Then, we carry out the reduction POMDP ≥p 3SAT by first reducing the problem
of solving this specific class of POMDPs to the policy existence problem in the same
class (Lusena et al., 2001, Section 3), and we rework the proof from (Mundhenk et al.,
2000, Theorem 4.13) to reduce the latter policy existence problem to 3SAT. Finally, since
3SAT ∈ NP-complete and Ψ0 ≥p 3SAT, we can conclude that Ψ0 ∈ NP-hard.

Having established the computational hardness of solving convex MDPs in a single trial,
i.e., maximizing the objective ζ1(π) (8) within the set of non-Markovian policies, it is worth
considering whether the problem admits at least a favorable statistical complexity.

4.3 Statistical Complexity

Although we provided a negative result on the computational complexity of solving a single-
trial convex MDP exactly, reliable approximate solvers might be developed nonetheless.
Thus, it is interesting to assess whether the corresponding learning problem is at least
statistically efficient. For the purpose of this analysis, we assume to have access to a
planning oracle that can solve any given convex MDP efficiently, while we speculate some
potential directions for implementing approximate solutions in Section 8.

Assumption 3 (Planning Oracle) Given a convex MDP MF , the planning oracle re-
turns a policy π∗ ← Plan(MF ) such that π∗ ∈ arg maxπ∈Π ζ1(π).

With this assumption, we consider a learning setting in which the agent interacts with
an unknown convex MDP MF over K episodes. In each of them, the agent deploys a
policy π̂k to draw a history h(k) from MF , receiving a single feedback F(d(k)) at the end
of the episode, where d(k) is the empirical state distribution induced by h(k). Then, the
agent makes use of the collected information to compute the policy π̂k+1 to be deployed in
the subsequent episode. In this online learning setting, the goal of the agent is typically
to minimize the cumulative regret caused by deploying sub-optimal policies instead of an
optimal decision strategy. The regret is defined as follows.

Definition 5 (Regret) Let MF be an unknown convex MDP, and let Alg be a learning
algorithm interacting with MF . The K-episodes regret R(K) of Alg is given by

R(K) :=

K∑
k=1

(
ζ1(π∗)− ζ1(π̂k)

)
=

K∑
k=1

(
F∗ − E

d1∼pπ̂k1

[
F(d1)

])
,

where π∗ ∈ arg maxπ∈Π ζ1(π), and π̂k is the policy deployed by Alg in the episode k.

Having defined the performance measure, we look for a learning algorithm that achieves
a regret rate that is sub-linear in K, such as the O(

√
K) that can be achieved by online RL
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Algorithm 1 UCBVI with history labels (Chatterji et al., 2021)

1: Input: convex MDP components S, A, T , µ, basis functions φ
2: initialize visitation counts N0(·, ·) = 0 and N0(·, ·, ·) = 0
3: randomly initialize π̂0

4: for k = 0, . . . do
5: draw history h(k) ∼ pπ̂k1 , collect F(d(k)), and update Nk(·, ·), Nk(·, ·, ·)
6: compute the transition model P̂k(s

′|s, a) = Nk(s, a, s
′)/Nk(s, a)

7: solve a regression problem ŵk = arg minw∈Rdw Lk(w) with a cross-entropy loss Lk
8: compute F̂k(·) = ŵ>k φ(·) and build the optimistic convex MDP M̂F̂
9: call the planning oracle π̂k+1 ← Plan(M̂F̂ )

10: end for

algorithms. However, the learning problem is inherently harder than standard RL. On the
one hand, the feedback is sparse, as it only comes at the end of an episode. Previous works
considered episode feedback in RL (e.g., Efroni et al., 2021), but they usually assume that
the feedback is computed from an unknown reward function nonetheless. Instead, here we
consider the feedback that comes from an unknown convex function of the empirical state
distribution, which is akin to a non-Markovian reward, and indeed requires non-Markovian
policies to be maximized.

A viable strategy (see Chatterji et al., 2021) is to estimate the utility function F with
the feedback from the collected data, i.e., instantiating a regression problem to find the best
approximation of F within a pre-specified function class, and then computing the policy
that maximizes the approximated utility function. Here we assume that the true function
F lies in a particular class of linear models, specified as follows.

Assumption 4 (Linear Realizability) The function F is linearly-realizable if it holds

F(d1) = w>∗ φ(h),

where h ∈ HT is an history that induces the empirical state distribution d1, w∗ ∈ Rdw is a
vector of parameters such that ‖w∗‖2 ≤ B for some known B > 0, and φ(h) = (φj(h))dwj=1

is a known vector of basis functions such that ‖φ(h)‖2 ≤ 1, ∀h ∈ HT .

Note that the latter assumption does not reduce the problem to standard RL, as the
features φj(h) are (possibly non-linear) functions of the whole history h, and we cannot
decompose the utility in per-state rewards in general. Moreover, we do not lose generality
by assuming linear realizability, since we can perfectly encode any history h through a
sufficiently large features vector φ(h), while w∗ induces an ordering over histories. However,
as we shall see, the size dw of the features vector negatively impacts the regret rate. Finally,
as in several convex RL settings, the utility F is known, even assuming to have access to
the feature vector is arguably reasonable. We leave as future work the problem of learning
the features from data as well.

Now we have all of the ingredients to provide a result on the regret rate that can
be achieved in single-trial convex RL. To this purpose, we reduce our problem setting to
the once-per-episode RL framework discussed in (Chatterji et al., 2021). Then, we apply
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their modified version of UCBVI (Azar et al., 2017) to work with history feedback. The
procedure, for which we report an abstract pseudocode in Algorithm 1,12 is a model-based
algorithm that repeatedly solves a regression problem to approximate F from data and
applies optimism to ensure the sufficient exploration. In the next theorem, we report its
regret rate.

Theorem 5 (Regret Upper Bound) LetMF be an unknown convex MDP with linearly-
realizable utility F . For any δ ∈ (0, 1], the K-episodes regret of UCBVI with history labels
is upper bounded as

R(K) ≤ O
([
d

7/2
w B

3/2
T 2SA

1/2
]√

K
)

with probability 1− δ.

Proof Sketch To prove the result, we show that the described online learning setting
can be translated into the once-per-episode framework (Chatterji et al., 2021). The main
difference between the setting in (Chatterji et al., 2021) and ours is that they assume a
binary feedback yk ∈ {0, 1} coming from a logistic model

yk|h(k) =

{
1 with prob. σ(w>∗ φ(h(k)))

0 with prob. 1− σ(w>∗ φ(h(k))),
σ(x) =

1

1 + exp(−x)
,∀x ∈ R,

instead of our richer F(d(k)). To transform the latter in the binary reward yk, we note that

F(d(k)) = w>∗ φ(h(k)) through linear realizability (Assumption 4), then we filter F(d(k))
through a logistic model to obtain yk = σ

(
F(d(k))

)
, which is then used as feedback for

UCBVI (Algorithm 1). In this way, we can call Theorem 3.2 of (Chatterji et al., 2021) to
obtain the same regret rate up to a constant factor13 C = F∗ −F∗, which is caused by the
different range of per-episode contributions in the regret (see Definition 5). For detailed
derivations and the complete regret upper bound see (Chatterji et al., 2021).

Theorem 5 demonstrates the existence of a principled algorithm achieving a O(
√
K)

regret rate for convex RL in a single trial. We can conclude that single-trial convex RL is
statistically efficient under the given assumptions. Since we are only providing an upper
bound on the regret, it is fair to wonder what is the statistical barrier in this problem setting.

Comparing our regret rate O(d
7/2
w B

3/2
T 2S
√
AK) with the minimax regret of standard RL

O(
√
TSAK), we notice that we are paying additional factors of T and S, while the rate

is tight in A,K. Moreover, the linear-realizability assumption impacts the regret with
additional dw, B factors. Finally, it is worth noticing that when F is known, we have
dw = 1, B = 1, and the regret rate reduces to O(T 2S

√
AK).

Future works might study a lower bound on the regret for single-trial convex RL with
linear realizability, to assess whether the additional factors w.r.t. standard RL are unavoid-
able. Other interesting directions include improving the procedure to exploit the richer
feedback of our setting w.r.t. the one in (Chatterji et al., 2021), as well as incorporating in
the analysis the error induced by approximate solvers in place of the planning oracle.

12See (Azar et al., 2017) and (Chatterji et al., 2021) for more detailed descriptions of the algorithm.
13Recall that F∗ = maxπ∈Π ζ1(π) and F∗ = minπ∈Π ζ1(π).
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5. Convex RL in a Handful of Trials

Whereas the real world is essentially single-trial, as we cannot truly reset a system to a
previous state, most of the empirical work in RL optimizes the decision policy by drawing a
batch of episodes from the environment, which is usually modeled through a simulator with
reset. This practice is theoretically grounded in the standard RL setting since the policy
that optimizes a linear utility over a batch of episodes maximizes the expected utility in
a single trial as well (see the proof of Theorem 1). Instead, we demonstrated that this
useful property does not hold when the utility is concave (or convex). Thus, it is worth
providing a separate analysis for this setting, which we call convex RL in a handful of
trials, to differentiate it from the single-trial formulation and to highlight that the number
of evaluation episodes is 1 < n � ∞ (typically dozens). We recall that the corresponding
objective function for this setting is ζn(π) (3).

On the one hand, convex RL in a handful of trials is closer to the infinite-trials setting,
as the empirical state distribution dn ∼ pπn computed over n histories concentrates around
its expected value dπ as n increases. However, the gap between the value ζn(π†) of an
optimal infinite-trials policy π† ∈ arg maxπ∈Π ζ∞(π) and the optimal value maxπ∈Π ζn(π)
can still be significant, as it scales with O(

√
S/n) (see Theorem 2).

Even if in most of the convex RL applications the feedback may be available at the
end of each episode, there might be good reasons to prefer a formulation with a handful of
trials. For example, averaging the feedback over a handful of trials reduces its variability
in general, to the benefit of the stability of the learning process. Moreover, optimizing the
policy with each new piece of information, i.e., at the end of any episode, might cause a
significant computational cost, which is usually called the switching cost. This is even more
true when a single sweep of optimization might require an exponential cost (see Theorem 4).
These considerations warrant the study of convex RL in a handful of trials.

In this section, we analyze three relevant modes to collect the batch of episodes in this
setting, for which we provide specific results in terms of optimality, computational and
statistical complexity. In Section 5.1, we consider the setting in which the histories hi in
the batch (hi)

n
i=1 are collected sequentially, such that the agent can possibly exploit the

information gathered in previous histories to adapt decisions. In Section 5.2, we consider
the setting in which the batch (hi)

n
i=1 is obtained through parallel sampling processes, but

the workers can still communicate their respective state to others. Finally, in Section 5.3,
we consider parallel sampling without communication between the workers, which means
the histories hi are sampled independently.

5.1 Sequential Sampling

In the setting with sequential sampling, the interaction process proceeds as follows. The
state s0,1 of the first history h1 is drawn from µ, the agent takes an action a0,1 ∼ π(·|s0,1)
and the environment transitions to s1,1 ∼ P (·|s0,1, a0,1). This sequence is repeated for T
steps until the episode 1 ends, and the initial state of the next history is sampled s0,2 ∼ µ.
This process goes on until the last state sT−1,n of the last history hn is reached, and the
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agent receives a feedback F(dn), where dn is the empirical state distribution computed on
the sampled batch of histories (hi)i∈[n].

14

Now we aim to characterize the computational and statistical complexity of the described
setting, as well as whether non-Markovian policies are necessary to optimize the utility in a
handful of trials. The following theorem shows that this setting can be actually translated
to single-trial convex RL.

Proposition 1 Let MF be a convex MDP, and let n be a number of episodes sampled
sequentially. Optimizing the problem maxπ∈Π ζn(π) in MF is equivalent to solving a single-

trial convex RL problem maxπ∈Π ζ1(π) in a conveniently constructed convex MDP M̃F .

Proof To prove the result, we start from the convex MDP MF = (S,A, P, T, µ,F) to

construct a convenient convex MDP M̃F , in which we see a sequence of histories inMF as
a single long history. To construct the convex MDP M̃F = (S,A, P̃ , T̃ , µ,F) we proceed
as follows:

• We keep the same S,A, µ,F of the original convex MDP MF ;

• We set the horizon T̃ = nT ;

• We construct a (time-inhomogeneous) transition model P̃ = (P̃t)
T̃−1
t=0 such that each

component is given by

P̃t(s
′|s, a) =

{
µ(s′) if tmodT = 0

P (s′|s, a) if tmodT 6= 0
∀(s, a, s′) ∈ S ×A× S.

With the latter construction, any sequence of histories (hi)i∈[n] such that hi ∈ H inMF can

be mapped to an history h̃ ∈ H̃, where H̃ is the space of all the T̃ steps histories in M̃F .
Thus, an optimal policy π̃∗ ∈ arg maxπ∈Π ζ1(π) in M̃F corresponds to an optimal policy
π∗ ∈ arg maxπ∈Π ζn(π) in MF . The last missing piece to prove the equivalence between

the two settings is that we need a time-inhomogeneous transition model to construct P̃ .
However, we can easily translate the latter in a time-homogeneous transition model defined
over an extended state space S̃, in which each state is replicated for the different stages,
such that |S̃| = nS.

The equivalence result of Theorem 1 implies that convex RL in a handful of trials with
sequential sampling also admits a non-Markovian deterministic optimal policy. Hence, this
setting also inherits the computational intractability of single-trial convex RL, as well as
its favorable statistical complexity. Specifically, the upper bound to the regret (Theorem 5)
deteriorates of a factor O(n5/2) by replacing T with nT , S with nS, and K with K/n.

14Note that the histories (hi)i∈[n] are not sampled independently, as the action taken at step t ∈ [T ] of the
history i ∈ [n] by the policy π depends on an all the previous steps of the previous histories.
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5.2 Parallel Sampling with Communication

When we have access to parallel sampling with communication, the interaction process pro-
ceeds as follows. We deploy n parallel workers, each of them interacting with a copy of
the environment, and we take the actions with a centralized policy. First, n initial states
(s0,1, . . . , s0,n) are sampled independently from µ. Then, a vector of n actions is drawn
from the centralized policy (a0,1, . . . , a0,n) ∼ π(·|(s0,1, . . . , s0,n)), and the copies of the envi-
ronment transitions to their respective next states (s1,1, . . . , s1,n) independently, i.e., s1,i ∼
P (·|s0,i, a0,i). This sequence is repeated until the last vector of states (sT−1,1, . . . , sT−1,n)
is reached, and the agent collects a feedback F(dn), where dn is the empirical distribution
induced by the parallel histories (hi)i∈[n].

15

As we shall see in the next theorem, the learning problem associated to this interaction
process also translates to single-trial convex RL.

Proposition 2 Let MF be a convex MDP, and let n be a number of episodes sampled in
parallel with perfect communication. Optimizing the problem maxπ∈Π ζn(π) inMF is equiv-
alent to solving a single-trial convex RL problem maxπ∈Π ζ1(π) in a conveniently constructed

convex MDP M̃F .

Proof We prove the result as in the previous section. We start from the convex MDP
MF = (S,A, P, T, µ,F) to construct a convenient convex MDP M̃F , in which a vector

of state in MF corresponds to a single state in M̃F , and a vector of actions in MF to a
single action in M̃F . Specifically, to construct the convex MDP M̃F = (S̃, Ã, P̃ , T, µ,F)
we proceed as follows:

• We keep the same T, µ,F of the original convex MDP MF ;

• We construct the state space S̃ such that each s̃ ∈ S̃ corresponds to (si)
n
i=1 ∈ Sn;

• We construct the action space Ã such that each ã ∈ Ã corresponds to (ai)
n
i=1 ∈ An;

• We construct the transition model P̃ as

P̃ (s̃ ′|s̃, a) =
n∏
i=1

P (s′i|si, ai), ∀(s̃, ã, s̃ ′) ∈ S̃ × Ã × S̃.

With this construction, any sequence of histories (hi)
n
i=1 such that hi ∈ H in MF can be

mapped to an history h̃ ∈ H̃, where H̃ is the space of all the T̃ steps histories in M̃F .
Thus, an optimal policy π̃∗ ∈ arg maxπ∈Π ζ1(π) in M̃F corresponds to an optimal policy
π∗ ∈ arg maxπ∈Π ζn(π) in MF , which proves the equivalence.

Exactly as for the sequential sampling, Theorem 2 demonstrates that convex RL in
a handful of trials with parallel sampling with communication is not crucially different
than convex RL in a single trial, hence displaying similar computational and statistical
properties, while it admits an optimal deterministic non-Markovian policy. However, it is
worth considering that the exponential growth of the state and action spaces S̃, Ã means
that the upper bound of the regret also scales with O((SA)n).

15Note that the histories (hi)i∈[n] are not sampled independently, as the vector of actions taken at step
t ∈ [T ] by the policy π depends on the previous steps of all the histories.
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5.3 Parallel Sampling without Communication

In the setting in which we have access to parallel sampling, but the workers cannot com-
municate their state to the others, the interaction process is as follows. As in the previous
section, we deploy n parallel workers, each of them equipped with their own copies of the
environment and the policy, which is thus decentralized. First, an initial state s0,i is sampled
independently for each episode i ∈ [n]. Then, each worker draws an action a0,i ∼ π(·|s0,i)
with their copy of the policy, so that the sampled actions (a0,i)i∈[n] only depends on the
history of their respective episode. Finally, each worker updates their state by drawing
s1,i ∼ P (·|s0,i, a0,i) with their copy of the environment. This sequence is repeated by each
worker until the episode ends, and the agent receives centralized feedback F(dn) where dn
is the empirical state distribution computed on the independent histories (hi)i∈[n].

It is worth wondering whether convex RL in a handful of trials with the described
sampling process can also be translated into an equivalent single-trial convex RL problem.
The following proposition demonstrates that this setting is crucially different from convex
RL in a single trial.

Proposition 3 Let MF be a convex MDP, and let n be a number of episodes sampled
independently. The optimization problem maxπ∈Π ζn(π) in MF cannot be translated to an
equivalent single-trial convex RL problem in general.

Proof We prove the result by providing an instance of convex RL in a handful of trials
with parallel non-communicating sampling that can only be optimized within the space
of stochastic non-Markovian policies. Since we know that a convex MDP MF in a single
trial always admits an optimal deterministic non-Markovian policy (see Lemma 1), the two
problem settings cannot be equivalent.

Let us consider the following instance

0 1

2

3

4

5

6

with S = 7 states, A ≤ 3 actions (one to go right and one to go left in 0, 2, 3, 5, 6,
one to go right/left, up, down in 1, 4), a deterministic transition model, horizon T = 7,
initial state distribution µ(0) = 1, utility function F(d) = −d · log d given by the en-
tropy of the empirical state distribution d. It is easy to see that, for every n > 1,
maxπ∈Π ζn(π) = Edn∼pπn [−dn · log dn] is attained by a policy π ∈ ΠNM that randomizes
between actions up and down when reaching states 1, 4 from 0.

The latter result shows that, when the histories (hi)i∈[n] are sampled independently,
then the policy that optimizes the utility in a handful of trials is stochastic in general. This
is in stark contrast with the single-trial formulation, as well as the handful of trials with
sequential sampling or parallel sampling with perfect communication, which all admit a
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deterministic non-Markovian optimal policy. In the following, we provide a better charac-
terization of the importance of randomization in convex RL in a handful of (independent)
trials, first considering the simpler setting with deterministic transitions and then the more
general setting with stochastic transitions.

5.3.1 Deterministic Transitions

Let us consider convex MDPs MF with a deterministic transition model P : S × A → S.
For this class of instances, we can show that the optimal deterministic policy in a handful of
(independent) trials is the same deterministic policy that optimizes the single-trial utility.

Lemma 5 Let MF be a convex MDP with deterministic transitions. Then, the policy
π‡ ∈ arg maxπ∈ΠNM

ζ1(π) in MF is also π‡ ∈ arg maxπ∈ΠD
NM

ζn(π) in MF .

Proof To prove the result, we note that deterministic transitions imply that the history h
induced by a deterministic policy π is also deterministic, and thus the corresponding utility
F(d) is deterministic as well. Hence, we have

ζ1(π) = E
d1∼pπ1

[F(d1)] = F(d1) = E
dn∼pπn

[F(dn)] = ζn(π), ∀π ∈ ΠD
NM.

Since equality holds for any deterministic non-Markovian policy, it also holds for the policy
π‡, which proves the result.

Having demonstrated that the optimal single-trial policy π‡ is also the optimal deter-
ministic policy in a handful of (independent) trials, we now provide a characterization of
the value gap between π‡ and the optimal (stochastic) policy in a handful of (independent)
trials.

Proposition 4 Let MF be a convex MDP with deterministic transitions and L-Lipschitz
utility F , let n be a number of independent trials, let δ ∈ (0, 1] be a confidence level, let
π† ∈ arg maxπ∈Π ζn(π) and π‡ ∈ arg maxπ∈ΠD

NM
ζn(π). Then it holds with probability at least

1− δ
|ζn(π†)− ζn(π‡)| ≤ O

(
LT
√
S
)
.

Proof To prove the result, we write

|ζn(π†)− ζn(π‡)| = |ζn(π†)− ζ1(π‡)| (9)

≤ |ζn(π†)− ζ1(π†)| (10)

≤ |ζn(π†)− ζ∞(π†)|+ |ζ∞(π†)− ζ1(π†)| (11)

where we obtained (9) from Lemma 5, (10) from the definition of π‡ that implies ζ1(π‡) ≥
ζ1(π),∀π ∈ Π, and we got (11) by adding ±ζ∞(π†) then applying the triangle inequality.
Finally, we can bound the two terms on the right-hand side of (11) with high probability
as in the proof of Theorem 2, such that it holds

|ζn(π†)− ζn(π‡)| ≤ 4LT

√
2S log(4T/δ)

n
+ 4LT

√
2S log(4T/δ)

with probability 1− δ. The result follows by noting that the second term is dominating.
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5.3.2 Stochastic Transitions

Let us consider convex MDPs MF with a stochastic transition model P : S × A → ∆S .
We can show that for this class of instances, which generalizes the one with deterministic
transitions of the previous section, the result in Lemma 5 does not hold anymore. In the
following result, we show that the optimal deterministic policy for a handful of trials is not
necessarily the optimal single-trial policy.

Proposition 5 Let MF be a convex MDP with stochastic transitions. Then, the policy
π‡ ∈ arg maxπ∈ΠNM

ζ1(π) in MF does not maximize ζn(π) for π ∈ ΠD
NM in general.

Proof We prove the result by providing an instance in which the optimal deterministic
policy π† ∈ arg maxπ∈ΠD

NM
ζn(π) for n independent trials is different than the optimal single-

trial policy π‡ ∈ arg maxπ∈ΠNM
ζ1(π) (that is also deterministic, as stated in Lemma 1).

Let us consider the following instance

0 1

2

3

4

α/2

α/21− α

with S = 5 states, A ≤ 2 actions, a stochastic transition model for action down in state
1, horizon T = 2, initial state distribution µ(0) = 1, utility function F(d) = −d · log d given
by the entropy of the empirical state distribution d. It is easy to see that the single-trial
policy π‡ takes action up in 1 to generate the history of states (0, 1, 2) with probability
one. Instead, for every n > 1 and α → 1, the deterministic policy π† takes action down to
produce even visits at the states 3, 4.

The latter result is a further testament of the essential difference between convex RL
in a handful of (independent) trials and the settings that we have analyzed in previous
sections, which we can all trace back to a single-trial problem. Future works might focus on
a better understanding of this setting, including computational and statistical complexity,
as well as extending Proposition 4 to stochastic transitions.

6. Numerical Validation

In this section, we provide a numerical validation on the single-trial convex RL problem.16

We compare the performance (computed with the single-trial objective ζ1(π)) achieved
by a policy π† ∈ arg maxπ∈Π ζ1(π) that maximizes the single-trial utility ζ1(π) with the

16For the sake of clarity, here we restrict our empirical validation to the single-trial setting (i.e., n = 1), but
similar results can be easily extended to finite-trials settings (n > 1) with sequential sampling, as described
in Section 5.1, or parallel sampling with perfect communication, as described in Section 5.2. We leave
as future work an empirical study of the n-trials setting with parallel sampling without communication
(Section 5.3).
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(b) Risk-averse RL
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(c) Imitation learning

Figure 2: Visualization of the convex MDP instances MF . In (b), state 0 is a low-reward
(r = 1) low-risk state, state 2 is a high-reward (R = 10) high-risk state, and state 1 is a
penalty state with zero reward.

performance of a policy π? ∈ arg maxπ∈Π ζ∞(π) that maximizes the infinite-trials utility
ζ∞(π) instead.

The latter infinite-trials π? is obtained by first solving a dual optimization of the convex
MDP MF (see Sec. 6.2 in (Mutti and Restelli, 2020)),

max
ω∈∆S×A

F(ω), subject to
∑
a∈A

ω(s, a) =
∑

s′∈S,a′∈A
P (s|s′, a′)ω(s′, a′), ∀s ∈ S,

and then constructing π? as π?(a|s) = ω∗(s, a)/
∑

a∈A ω
∗(s, a), ∀(s, a) ∈ S × A, where ω∗

are the optimal dual variables. To get the finite-trials π†, we first recover the extended
MDP M` as explained in the proof of Theorem 1, and then we apply standard dynamic
programming (Bellman, 1957) on M` to get π†. Note that π† is a deterministic non-
Markovian policy π† ∈ ΠD

NM, while π? is a stochastic Markovian policy π? ∈ ΠM.

In the experiments, we show that optimizing the infinite-trials objective can lead to
sub-optimal policies across a wide range of applications. In particular, we cover examples
from imitation learning, risk-averse RL, and pure exploration. We carefully selected convex
MDPs that are as simple as possible in order to stress the generality of our results (see
Figure 2 for the instances).

6.1 Pure Exploration

For the pure exploration setting, we consider the state entropy utility (Hazan et al., 2019),
i.e.,

F(d) = H(d) = −d · log d,

and the convex MDP in Figure 2a. In this example, the agent aims to maximize the state
entropy over a finite-length episode of T steps. Notice that this happens when a policy
induces an empirical state distribution that is close to a uniform distribution.

In Figure 3a, we compare the utility H(d) induced by the optimal single-trial policy π†

and the optimal infinite-trials policy π?. An agent following the policy π† always achieves a
uniform empirical state distribution, which leads to the maximum utility with probability 1,
as π† is a deterministic policy. In contrast, the policy π∗ is randomized in all three states. As
a result, this policy induces sub-optimal empirical state distributions with strictly positive
probability, as shown in Figure 3d.
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(a) Entropy average (b) CVaR average (c) KL average

(d) Entropy distribution (e) CVaR distribution (f) KL distribution

Figure 3: π† denotes an optimal single-trial policy, π? denotes an optimal infinite-trials
policy. In (a, d) we report the average and the empirical distribution of the single-trial
utility H(d) achieved in the pure exploration convex MDP (T = 6) of Figure 2a. In (b, e)
we report the average and the empirical distribution of the single-trial utility CVaRα[r · d]
(with α = 0.4) achieved in the risk-averse convex MDP (T = 5) of Figure 2b. In (c, f)
we report the average and the empirical distribution of the single-trial utility KL(d||dE)
(with expert distribution dE = (1/3, 2/3)) achieved in the imitation learning convex MDP
(T = 12) of Figure 2c. For all the results, we provide 95 % c.i. over 1000 runs.

6.2 Risk-Averse RL

For the risk-averse RL setting, we consider a Conditional Value-at-Risk (CVaR) utility (Rock-
afellar and Uryasev, 2000) given by

F(d) = CVaRα[r · d],

where r ∈ [0, 1]S is a reward vector, and the convex MDP in Figure 2b, in which the agent
aims to maximize the CVaR over a finite-length episode of T steps.

First, notice that financial semantics can be attributed to the given MDP. An agent,
starting in state 2, can decide whether to invest in risky assets, e.g., crypto-currencies, or
in safe assets, e.g., treasury bills. Because the transitions are stochastic, a policy needs
to be reactive to the realization in order to maximize the single-trial utility. This kind of
behavior is achieved by an optimal single-trial policy π†. Indeed, π† is a non-Markovian
deterministic policy, which can take decisions as a function of history, and thus takes into
account the current realization. On the other hand, an optimal infinite-trials policy π∗ is
a Markovian policy, and it cannot take into account the current history. As a result, the
policy π∗ induces sub-optimal trajectories with strictly positive probability (see Figure 3e).
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Finally, in Figure 3b we compare the single-trial utility induced by the optimal single-
trial policy π† and the optimal infinite-trials policy π?. Overall, π† performs significantly
better than π?.

6.3 Imitation Learning

For the imitation learning setting, we consider the distribution matching utility (Kostrikov
et al., 2019), i.e.,

F(d) = KL (d||dE) ,

and the convex MDP in Figure 2c. The agent aims to learn a policy π inducing an empirical
state distribution d close to the empirical state distribution dE demonstrated by an expert.

In Figure 3c, we compare the single-trial utility induced by the optimal single-trial policy
π† and the optimal infinite-trials policy π?. An agent following π† induces an empirical state
distribution that perfectly matches the expert. In contrast, an agent following π∗ induces
sub-optimal realizations with strictly positive probability (see Figure 3f).

7. Related Work

In this section, we revise the relevant literature and how it relates with our findings.

To the best of our knowledge, Hazan et al. (2019) were the first to introduce the convex
RL problem, as a generalization of the standard RL formulation to non-linear utilities,
especially the entropy of the state distribution. They show that the convex RL objective,
while being concave (convex) in the state distribution, can be non-concave (non-convex) in
the policy parameters. Anyway, they provide a provably efficient algorithm that overcomes
the non-convexity through a Frank-Wolfe approach. Zhang et al. (2020) study the convex
RL problem under the name of RL with general utilities. Especially, they investigated
a hidden convexity of the convex RL objective that allows for statistically efficient policy
optimization in the infinite-trials setting. Recently, the infinite-trials convex RL formulation
has been reinterpreted from game-theoretic perspectives (Zahavy et al., 2021; Geist et al.,
2022). The former (Zahavy et al., 2021) notes that the convex RL problem can be seen as a
min-max game between the policy player and a cost player. The latter (Geist et al., 2022)
shows that the convex RL problem is a subclass of mean-field games.

Another relevant branch of literature is the one investigating the expressivity of (Marko-
vian) rewards (Abel et al., 2021; Silver et al., 2021; Abel et al., 2022; Bowling et al., 2022).
Especially, Abel et al. (2021) show that not all the notions of tasks, such as inducing a set
of admissible policies, a (partial) policy ordering, or a trajectory ordering, can be naturally
encoded with a scalar reward function. Whereas the convex RL formulation extends the
expressivity of traditional RL w.r.t. all these three notions of tasks, it is still not sufficient to
cover every instance. Convex RL is powerful in terms of the policy order it can induce, but
it is inherently limited on the trajectory ordering, as it only accounts for the infinite-trials
state distribution. Instead, the finite-trials convex RL setting that we presented in this pa-
per is naturally expressive in terms of trajectory orderings, at the expense of a diminished
expressivity on the policy orderings w.r.t. infinite-trials convex RL.

Previous works concerning RL in the presence of history feedback are also related to this
work. Most of this literature assumes an underlying scalar reward model (e.g., Efroni et al.,
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2021) which only delays the feedback at the end of the episode. One notable exception is the
once-per-episode formulation in (Chatterji et al., 2021). In their setting, the agent receives
binary feedback at the end of an episode, where the feedback is obtained from a logistic
model whose input is a function of the history. This problem formulation is close to ours,
and we relied on their regret analysis to give our statistical complexity results (Theorem 5).
Our paper generalizes the once-per-episode framework beyond the single-trial setting and
the binary feedback, and it provides complementing results in terms of optimality and
computational complexity. Another interesting form of history feedback is considered in
RL with preference feedback, where the agent draws two independent histories and receives
a binary preference between them. The work by (Novoseller et al., 2020; Xu et al., 2020;
Pacchiano et al., 2021) study the sample complexity of preference-based RL.

Finally, the work in (Cheung, 2019a,b) considers infinite-horizon MDPs with vectorial
rewards as a mean to encode convex objectives in RL with a multi-objective flavor. They
show that stationary policies are in general sub-optimal for the introduced online learning
setting, where non-stationarity becomes essential. In this setting, they provide principled
procedures to learn an optimal policy with sub-linear regret. Their work essentially comple-
ments our analysis in the infinite-horizon problem formulation, where the difference between
finite trials and infinite trials fades away.

8. Conclusion and Future Directions

In this paper, we provided a comprehensive study of convex RL in finite trials.
First, we formally defined the finite-trials convex RL objective. We demonstrated a

crucial mismatch between the latter and the infinite-trials formulation that is usually con-
sidered in the literature but seldom contemplated in practice. In addition, we characterized
the approximation error when optimizing the infinite-trials objective in place of the finite-
trials one, showing that the error can be significant when the number of trials is small.

Especially, we reported an in-depth analysis of the extreme single-trial setting, which
demonstrates the importance of non-Markovianity when optimizing the single-trial objec-
tive, but provides a negative result over the computational tractability of the problem.
Nonetheless, we showed that the problem is at least statistically tractable, giving some
hope to develop provably efficient algorithms that rely on approximate solvers.

Then, we complemented our analysis with the study of convex RL in a handful of trials,
which is the standard in the empirical RL literature. We identified three relevant settings,
in which the trials are drawn sequentially or in parallel, with or without communication
between the processes in the latter case. We demonstrated that the sequential setting
and the parallel setting with communication reduce to the single-trial setting, inheriting
analogous computational and statistical properties. We showed that the parallel setting
without communication is instead essentially different, as it requires randomized policies to
achieve optimal performance.

Improving the analysis Whereas we believe to have answered some of the main ques-
tions over convex RL in finite trials, our analysis can be improved in many directions.

On the one hand, our results make little use of the properties of the specific instance
MF and the utility function F . An instance-dependent analysis could provide additional
insights, especially as it is known that some of the utility functions F allow for efficient
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computation even in a single-trial formulation. Characterizing a minimal set of assumptions
over F and/or the transition model P for which finite-trials convex RL is computationally
tractable would be extremely valuable.

On the statistical side, our analysis solely guarantees the existence of a provably efficient
algorithm for the single-trial setting (and the n-trials setting with sequential sampling or
parallel sampling with communication). However, we still do not know whether we can
further improve over the provided rate. Proper statistical barriers, such as a minimax lower
bound on the regret and a matching algorithm, are yet to be established. An instance-
dependent statistical characterization of the problem is also uncharted.

Finally, our understanding of convex RL in a handful of trials with parallel sampling and
without communication is still fairly limited. Our results showed that the optimal policy
is stochastic in general, which hints that the problem is crucially different from the other
finite-trials settings we considered. This warrants further studies to see whether this setting
enjoys better computational or statistical properties.

Developing practical methodologies While our analysis provides a generally negative
result over the computational tractability of convex RL in finite trials, we believe it is not
hopeless to learn near-optimal finite-trials policies in practice.

In the paper, we considered non-Markovian policies that condition their decisions on
histories of arbitrary length, which causes an exponential blowup in the number of policy
parameters. One can instead condition the decisions on a finite-length history, obtained
from a sliding window over past interactions. This restricted policy space can still provide
significant benefits over the space of Markovian policies while keeping the computational
tractability of the latter. Similarly, one can consider compact representations of the full
history, such as implementing the non-Markovian policies through deep recurrent architec-
tures (e.g., Hochreiter and Schmidhuber, 1997) or transformers (Chen et al., 2021).

Another option to sidestep the exponential blowup on the policy parameters is to draw
actions from the optimal non-Markovian policy without ever computing it, e.g., by employ-
ing a Monte-Carlo Tree Search (MCTS) approach (e.g., Kocsis and Szepesvári, 2006) to
select the next action to take. Given the current state as a root, we can build the tree of
future histories from the root through repeated simulations of potential action sequences.
With a sufficient number of simulations and a sufficiently deep tree, we are guaranteed to
select the optimal action at the root. If the episode horizon is too long, we can still cut
the tree at any depth and approximately evaluate a leaf node with the utility induced by
the partial history, i.e., the path from the root to the leaf. The drawback of this procedure
is that we require to access a simulator with reset (or a reliable estimate of the transition
model) to actually build the tree.

To conclude, we hope to have shed some light on the convex RL problem in finite trials,
which was previously neglected by the literature but is paramount for properly implementing
convex RL in both simulated and real-world domains. This work aims to inspire future
theoretical and empirical contributions toward fully mastering convex RL.

29



Mutti, De Santi, De Bartolomeis, and Restelli

Appendix A. Missing Proofs

In this section, we report the proofs and derivations that were previously omitted.

A.1 Proofs of Section 3

Theorem 2 (Approximation Error) Let MF be a convex MDP with L-Lipschitz utility
function F , let n ∈ N be a number of evaluation episodes, let δ ∈ (0, 1] be a confidence level,
let π† ∈ arg maxπ∈Π ζn(π) and π? ∈ arg maxπ∈Π ζ∞(π). Then, it holds with probability at
least 1− δ

err :=
∣∣ζn(π†)− ζn(π?)

∣∣ ≤ 4LT

√
2S log(4T/δ)

n
.

Proof Let us first upper bound the approximation error as

err :=
∣∣ζn(π†)− ζn(π?)

∣∣ ≤ ∣∣ζn(π†)− ζ∞(π†)
∣∣+
∣∣ζ∞(π†)− ζn(π?)

∣∣ (12)

≤
∣∣ζn(π†)− ζ∞(π†)

∣∣+
∣∣ζ∞(π?)− ζn(π?)

∣∣ (13)

≤
∣∣∣ E
dn∼pπ†n

[F(dn)]−F(dπ
†
)
∣∣∣+
∣∣∣ E
dn∼pπ?n

[F(dn)]−F(dπ
?
)
∣∣∣ (14)

≤ E
dn∼pπ†n

[∣∣∣F(dn)−F(dπ
†
)
∣∣∣]+ E

dn∼pπ?n

[∣∣∣F(dn)−F(dπ
?
)
∣∣∣] (15)

≤ E
dn∼pπ†n

[
L
∥∥∥dn − dπ†∥∥∥

1

]
+ E
dn∼pπ?n

[
L
∥∥∥dn − dπ?∥∥∥

1

]
(16)

≤ 2L max
π∈{π†,π?}

E
dn∼pπn

[‖dn − dπ‖1] (17)

≤ 2L max
π∈{π†,π?}

E
dn∼pπn

[
max
t∈[T ]
‖dn,t − dπt ‖1

]
, (18)

where (12) is obtained by adding ±ζ∞(π†) and then applying the triangle inequality, (13)
follows by noting that ζ∞(π?) ≥ ζ∞(π†), we derive (14) by plugging the definitions of ζn, ζ∞
in (13), then we obtain (15) from |E[X]| ≤ E[|X|], we apply the Lipschitz assumption
on F to write (16) from (15), we maximize over the policies to write (17), and we finally
obtain (18) through a maximization over the episode’s step by noting that dn = 1

T

∑
t∈[T ] dn,t

and dπ = 1
T

∑
t∈[T ] d

π
t , where dn,t and dπt are the empirical distribution and the expected

distribution over st respectively. Then, we seek to bound with high probability

Pr
(

max
π∈{π†,π?}

max
t∈[T ]
‖dn,t − dπt ‖1 ≥ ε

)
≤ Pr

(⋃
π,t

‖dn,t − dπt ‖1 ≥ ε
)

(19)

≤
∑
π,t

Pr
(
‖dn,t − dπt ‖1 ≥ ε

)
(20)

≤ 2T Pr
(
‖dn,t − dπt ‖1 ≥ ε

)
, (21)

where ε > 0 is a positive constant, and we applied a union bound to get (20) from (19).
From concentration inequalities for empirical distributions (see Theorem 2.1 in (Weissman
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et al., 2003) and Lemma 16 in (Efroni et al., 2021)) we have

Pr

(
‖dn,t − dπt ‖1 ≥

√
2S log(2/δ′)

n

)
≤ δ′. (22)

By setting δ′ = δ/2T in (22), and then plugging (22) in (21), and again (21) in (18), we
have that with probability at least 1− δ

∣∣ζn(π†)− ζn(π?)
∣∣ ≤ 4LT

√
2S log(4T/δ)

n
,

which concludes the proof.

Proposition 6 (Finite Trials vs Infinite Trials) Here we provide equivalence results be-
tween the finite-trials and the infinite-trials formulations of the objectives reported in Ta-
ble 1.

(i) Let F(d) = r · d then min
π∈Π

ζ∞(π) = min
π∈Π

ζn(π), ∀n ∈ N

(ii) Let F(d) = r · d s.t. λ · d ≤ c then min
π∈Π

ζ∞(π) = min
π∈Π

ζn(π), ∀n ∈ N

(iii) Let F(d) = ‖d− dE‖22 then min
π∈Π

ζ∞(π) < min
π∈Π

ζn(π), ∀n ∈ N

(iv) Let F(d) = −d · log(d) = H(d) then min
π∈Π

ζ∞(π) < min
π∈Π

ζn(π), ∀n ∈ N

(v) Let F(d) = KL(d||dE) then min
π∈Π

ζ∞(π) < min
π∈Π

ζn(π), ∀n ∈ N

Proof We report below the corresponding derivations.

(i) min
π∈Π

ζ∞(π) = min
π∈Π

r · dπ = min
π∈Π

r · E
dn∼pπn

[dn] = min
π∈Π

E
dn∼pπn

[r · dn] = min
π∈Π

ζn(π)

(ii) min
π∈Π

ζ∞(π) = min
π∈Π,λ·dπ≤c

r · dπ = min
π∈Π,λ·dπ≤c

r · E
dn∼pπn

[dn] = min
π∈Π,r·dπ≤c

E
dn∼pπn

[r · dn] =

min
π∈Π

ζn(π)

(iii) min
π∈Π

ζ∞(π) = min
π∈Π
‖ E
dn∼pπn

[dn]− dE‖22 < min
π∈Π

E
dn∼pπn

[‖dn − dE‖22] = min
π∈Π

ζn(π)

(iv) min
π∈Π

ζ∞(π) = min
π∈Π

E
dn∼pπn

[dn] · log E
dn∼pπn

[dn] < min
π∈Π

E
dn∼pπn

[dn · log dn] = min
π∈Π

ζn(π)

(v) min
π∈Π

ζ∞(π) = min
π∈Π

KL( E
dn∼pπn

[dn]||dE) < min
π∈Π

E
dn∼pπn

[KL(dn || dE)] = min
π∈Π

ζn(π)
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A.2 Proofs of Section 4

Lemma 2 Let πNM ∈ ΠD
NM be an optimal deterministic non-Markovian policy for ζ1(π) (8)

in the convex MDP MF . For a fixed history ht ∈ Ht ending in state s, the variance of
the event of an optimal Markovian policy πM ∈ arg maxπ∈ΠM

Ed1∼pπ1
[
F(d1)

]
taking a∗ =

πNM(ht) in s is given by

Var
[
B(πM(a∗|st))

]
= Var

hs∼pπNM
1,t

[
E
[
B(πNM(a∗|hs))

]]
,

where hs ∈ Ht is any history of length t such that the final state is s, i.e., hs := (ht−1 ∈
Ht−1)⊕ s, and B(x) is a Bernoulli with parameter x.

Proof Let us consider the random variable A ∼ P denoting the event “the agent takes
action a∗ ∈ A”. Through the law of total variance (Bertsekas and Tsitsiklis, 2002), we can
write the variance of A given s ∈ S and t ≥ 0 as

Var
[
A|s, t

]
= E

[
A2|s, t

]
− E

[
A|s, t

]2
= E

h

[
E
[
A2|s, t, h

]]
− E

h

[
E
[
A|s, t, h

]]2

= E
h

[
Var

[
A|s, t, h

]
+ E

[
A|s, t, h

]2]− E
h

[
E
π

[
A|s, t, h

]]2

= E
h

[
Var

[
A|s, t, h

]]
+ E

h

[
E
[
A|s, t, h

]2]− E
h

[
E
[
A|s, t, h

]]2

= E
h

[
Var

[
A|s, t, h

]]
+ Var

h

[
E
[
A|s, t, h

]]
. (23)

Now let the conditioning event h be distributed as h ∼ pπNM
t−1 , so that the condition

s, t, h becomes hs where hs = (s0, a0, s1, . . . , st = s) ∈ Ht, and let the variable A be
distributed according to the distribution P maximizing the objective ζ1(π) (8) given the
conditioning. Hence, we have that the variable A on the left hand side of (23) is dis-
tributed as a Bernoulli B(πM(a∗|s, t)), where πM ∈ arg maxπ∈ΠM

Ed1∼pπ1 [F(d1)], and the
variable A on the right hand side of (24) is distributed as a Bernoulli B(πNM(a∗|hs)), where
πNM ∈ arg maxπ∈ΠNM

Ed1∼pπ1 [F(d1)].17 Thus, we obtain

Var
[
B(πM(a∗|s, t))

]
= E

hs∼pπNM
t

[
Var

[
B(πNM(a∗|hs))

]]
+ Var
hs∼pπNM

t

[
E
[
B(πNM(a∗|hs))

]]
. (24)

Under Assumption 2, we know from Lemma 1 that the policy πNM is deterministic, i.e.,
πNM ∈ ΠD

NM, so that Var
[
B(πNM(a∗|hs))

]
= 0 for every hs, which concludes the proof.

Lemma 3 Let πM be an optimal Markovian policy for ζ1(π) (8) in the convex MDP MF .
It holds VT (πM) ≤ VT (πM) ≤ VT (πM) such that

VT (πM) = (F∗ −F∗2 )
T−1∑
t=0

E
ht∼pπNM

1,t

[∏t−1
j=0 πM(a∗j |sj)
πM(a∗t |st)

Var
hst∼pπNM

1,t

[
E
[
B(πNM(a∗t |hst))

]]]
,

17Note that the random variable A has the same distribution on both sides of (23) but different conditioning,
which makes them result in two distinct Bernoulli.
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VT (πM) = (F∗ −F∗)
T−1∑
t=0

E
ht∼pπNM

1,t

[∏t−1
j=0 πM(a∗j |sj)
πM(a∗t |st)

Var
hst∼pπNM

1,t

[
E
[
B(πNM(a∗t |hst))

]]]
,

where πNM ∈ arg maxπ∈ΠD
NM

Ed1∼pπ1
[
F(d1)

]
, and F∗2 ,F∗ are given by

F∗2 = max
π∈{Π\πNM}

E
d1∼pπ1

[
F(d1)

]
, F∗ = min

π∈Π
E

d1∼pπ1

[
F(d1)

]
.

Proof We first derive the upper bound VT (πM). From the definition of the value gap
(Definition 2), we can write

VT (πM) = F∗ − E
h∼pπM

1,T

[
F(dh)

]
(25)

≤ F∗ − E
s0∼µ

[
πM(a∗0|s0) E

s1∼P (·|s0,a∗0)

[
VT−1(πM, s1)

]
+
(
1− πM(a∗0|s0)

)
F∗
]

(26)

= E
s0∼µ

[
F∗ − πM(a∗0|s0)F∗ −

(
1− πM(a∗0|s0)

)
F∗
]

+ E
s0∼µ

[
E

s1∼P (·|s0,a∗0)

[
πM(a∗0|s0) E

h∼pπM

1,T−2

[
F(d(s0,s1)⊕h)

]]]
(27)

= (F∗ −F∗) E
s0∼µ

[(
1− πM(a∗0|s0)

)]
+ E
ht∼pπNM

1,1

[
πM(a∗0|s0) E

h∼pπM

1,T−2

[
F(dht⊕h)

]]
(28)

≤ (F∗ −F∗) E
ht∼pπNM

1,1

[(
1− πM(a∗0|s0)

)
+ πM(a∗0|s0)

(
1− πM(a∗1|s1)

)]
+ E
ht∼pπNM

1,2

[
πM(a∗0|s0)πM(a∗1|s1) E

h∼pπM

1,T−3

[
F(dht⊕h)

]]
(29)

≤ (F∗ −F∗)
T−1∑
t=0

E
ht∼pπNM

1,t

[( t−1∏
j=0

πM(a∗j |sj)
)(

1− πM(a∗t |st)
)]

(30)

where we obtain (26) from (25) by separating the events in which the policy πM takes the
optimal action a∗ or a sub-optimal action, and weighting the probabilities for the value
gap at the next step VT−1(πM, s1) and the pessimistic value gap F∗ respectively, we apply
Definition 2 to write (27), we note that µ(s0)P (s1|s0, a

∗
0) = µ(s0)P (s1|s0, a

∗
0)πNM(a∗|s0) =

pπNM

1,1 (s0, a
∗
0, s1) to derive (28), and we repeatedly apply the previous steps to get (29) and

then (30). Finally, we note that πM(a∗t |st)(1 − πM(a∗t |st)) = Var
[
B(πM(a∗t |st))

]
from the

definition of the Bernoulli distribution, and we apply Lemma 2 on the right-hand side
Var

[
B(πM(a∗t |st))

]
= Varhst∼pπNM

1,t

[
E
[
B(πNM(a∗t |hst))

]]
to derive the upper bound VT (πM).

Following similar steps, we can derive the lower bound VT (πM). We write

VT (πM) = F∗ − E
h∼pπM

1,T

[
F(dh)

]
(31)

≥ F∗ − E
s0∼µ

[
πM(a∗0|s0) E

s1∼P (·|s0,a∗0)

[
VT−1(πM, s1)

]
+
(
1− πM(a∗0|s0)

)
F∗2
]

(32)

= E
s0∼µ

[
F∗ − πM(a∗0|s0)F∗ −

(
1− πM(a∗0|s0)

)
F∗2
]
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+ E
s0∼µ

[
E

s1∼P (·|s0,a∗0)

[
πM(a∗0|s0) E

h∼pπM

1,T−2

[
F(d(s0,s1)⊕h)

]]]
(33)

= (F∗ −F∗2 ) E
s0∼µ

[(
1− πM(a∗0|s0)

)]
+ E
ht∼pπNM

1,1

[
πM(a∗0|s0) E

h∼pπM

1,T−2

[
F(dht⊕h)

]]
(34)

≥ (F∗ −F∗2 ) E
ht∼pπNM

1,1

[(
1− πM(a∗0|s0)

)
+ πM(a∗0|s0)

(
1− πM(a∗1|s1)

)]
+ E
ht∼pπNM

1,2

[
πM(a∗0|s0)πM(a∗1|s1) E

h∼pπM

1,T−3

[
F(dht⊕h)

]]
(35)

≥ (F∗ −F∗2 )
T−1∑
t=0

E
ht∼pπNM

1,t

[( t−1∏
j=0

πM(a∗j |sj)
)(

1− πM(a∗t |st)
)]

(36)

and then we apply the definition of the variance of a Bernoulli distribution and the Lemma 2
as before to obtain VT (πM).

Theorem 4 (Complexity of Single-Trial Convex MDPs) Ψ0 is NP-hard.

Proof To prove the result, it is sufficient to show that there exists a problem Ψc ∈ NP-hard
such that Ψc ≤p Ψ0. We show this by reducing 3SAT, a well-known NP-complete problem,
to Ψ0. To derive the reduction, we consider two intermediate problems, namely Ψ1 and Ψ2.
Especially, we aim to show that the following chain of reductions hold

Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT.

First, we define Ψ1 as the problem of solving a conveniently constructed POMDP
M`,Ω,O = (S`,A`, P`, T`, µ`, r`,Ω, O) within the space of Markovian policies ΠM. The latter
is obtained as follows:

• We construct S`,A`, P`, T`, µ`, r` in the same way as in the extended MDP M` con-
struction described in the proof of Lemma 1;

• We define the observation space Ω = S, which means that each observation o ∈ Ω
corresponds to a state s ∈ S of the original convex MDP MF ;

• We define a deterministic observation function O : S` → Ω, such that the observation
o = O(s`) corresponds to the last state of the history s` ∈ S`.

Then, the reduction Ψ0 ≥m Ψ1 works as follows. We denote as IΨi the set of possible
instances of problem Ψi. We show that Ψ0 is harder than Ψ1 by defining the polynomial-
time functions ψ and φ such that any instance of Ψ1 can be converted through ψ as an
instance of Ψ0, and a solution π∗0 ∈ ΠNM for Ψ0 can be converted through φ into a solution
π∗1 ∈ ΠM for Ψ1. The chain of conversions can be visualized as

IΨ1 IΨ0

π∗M π∗NM

ψ

φ
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The function ψ constructs MF fromM`,Ω,O by setting S = Ω,A = A`, T = T`, µ = µ` and
recovering F , P from r`, P`. The function φ converts a solution π∗0 of Ψ0 by computing

π∗1(a|o) =
∑
ho∈Ho

p
π∗0
1 (ho)π∗0(a|ho)

where Ho stands for the set of histories h ∈ H ending in the observation o ∈ Ω. Since π∗1 is
a solution for Ψ1, we have that Ψ0 ≥m Ψ1.

We now define Ψ2 as the policy existence problem (see Lusena et al., 2001) in the same
class of POMDPs of Ψ1. The policy existence is the problem of determining whether there
exists a policy π ∈ ΠM having a value greater than 0 inM`,Ω,O. Since computing an optimal
policy in POMDPs is in general harder than the relative policy existence problem (Lusena
et al., 2001, Section 3), we have that Ψ1 ≥p Ψ2.18

For the last reduction, i.e., Ψ2 ≥p 3SAT, we extend the proof of Theorem 4.13 in
(Mundhenk et al., 2000), which states that the policy existence problem for POMDPs is
NP-complete. In particular, we show that this holds for the restricted class of POMDPs
that we defined earlier. The restrictions on the POMDPs class are the following:

1. The reward function can be different than zero only in the subset of states C ⊂ S`
that correspond to histories of T steps;

2. It holds the relation |S`| = |Ω|T between the cardinality of state and observation
spaces.

The latter restrictions can be overcome as follows:

1. It suffices to add states with deterministic transitions so that T = m ·n can be defined
a priori, where T is the number of steps needed to reach a state with positive reward
through every possible path. Here m is the number of clauses, and n is the number
of variables in the 3SAT instance, as defined in (Mundhenk et al., 2000);

2. Noticing that the set of observations corresponds with the set of variables and that
T = m · n from the previous point, we have that |Ω|T = nm·n, while the class of
POMDPs defined earlier has |S`| = m · n2. Notice that n ≥ 2 and m ≥ 1 implies that
nm·n ≥ m · n2. Moreover, notice that every instance of 3SAT has m ≥ 1 and n ≥ 3.
Hence, to extend the proof to the class of POMDPs of interest, it is sufficient to add
a set of states D such that r`(s`) = 0, ∀s` ∈ D.

Since the chain Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT holds, we have that Ψ0 ≥p 3SAT. Moreover,
since 3SAT ∈ NP-complete, we can conclude that Ψ0 is NP-hard.

18The latter statement can be trivially verified as follows: If we solve Ψ1 to obtain the policy π∗1 , then we
can easily solve the policy existence problem by testing whether the value of π∗1 is greater than zero. The
latter is a necessary and sufficient condition for the policy existence since π∗1 is the policy attaining the
maximum value in the corresponding POMDP.
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