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Abstract

In this article, we focus on prediction of a target model by transferring the information of
source models. To be flexible, we use semiparametric additive frameworks for the target
and source models. Inheriting the spirit of parameter-transfer learning, we assume that
different models possibly share common knowledge across parametric components that is
helpful for the target predictive task. Unlike existing parameter-transfer approaches, which
need to construct auxiliary source models by parameter similarity with the target model
and then adopt a regularization procedure, we propose a frequentist model averaging strat-
egy with a J-fold cross-validation criterion so that auxiliary parameter information from
different models can be adaptively transferred through data-driven weight assignments.
The asymptotic optimality and weight convergence of our proposed method are built un-
der some regularity conditions. Extensive numerical results demonstrate the superiority of
the proposed method over competitive methods.

Keywords: asymptotic optimality, cross-validation, negative transfer, prediction, weight-
ing

1. Introduction

Numerous machine learning techniques have been successfully applied in many fields under
data-driven paradigms. As one of the most classical machine learning techniques, supervised
learning frameworks commonly use given training data with labels to fit a model and then
make predictions or inferences on unlabeled testing data based on the resulting model. The
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performance is generally satisfactory when we have sufficient training data. However, in
many real-world applications, it may be expensive or even unrealistic to collect such amount
of data. For example, in some medical and biological studies, it is challenging to obtain
a great deal of patient information from a medical institute due to ethical or cost issues,
while there are many institutes owning related data sources that form the concept of “data
islands”. Considering the risk of policy, organizational interests, and individual privacy, it is
difficult to cooperate by directly integrating all the data sets from multiple owners for unified
analysis. Modeling the data sets separately may suffer from deteriorative generalization in
cross-domain scenarios, and it also wastes resources and brings additional costs. Therefore,
taking advantage of multi-source data reasonably to deal with these challenges motivates
transfer learning, the aim of which is to improve the performance of a specific target task by
transferring common knowledge shared across similar source domains (Pan and Yang, 2009;
Blanchard et al., 2021). As a prevailing topic in computer science, transfer learning has been
displaying great potential in modern applications, such as medical and biological studies
(Shin et al., 2016), computer vision (Long et al., 2015), natural language processing (Raffel
et al., 2020), and recommendation systems (Pan et al., 2010). Among the existing research,
there are few studies on theoretical support for transfer learning frameworks prompting us
to explore in this work.

Prediction is an important task in economic and statistical analysis, and statistical re-
gression models are commonly adopted because of their convenience and interpretability.
Semiparametric models, as a traditional class of statistical regression models, provide a
flexible way to understand the complicated relationship between the response and the set of
covariates by simultaneously considering parametric and nonparametric components. Al-
though transfer learning has been widely studied for decades, little attention has been paid
to it in statistical research. Specifically, the impact of transfer learning under semipara-
metric frameworks remains unclear, which motivates our study to try to fill this gap. In
this article, we consider a partially linear model (PLM) with additive structures, which is
a common type of semiparametric model in the literature, such as Stone (1985, 1986), Ma
et al. (2006), Wang et al. (2011), and Ma and Zhu (2013). To accommodate the frame-
work of transfer learning, inheriting the spirits of parameter-transfer learning (Pan and
Yang, 2009), we further assume that different models on multiple data sets possibly share
common knowledge across parametric components, meanwhile allowing heterogeneity in
nonparametric components.

In recent years, a few studies on transfer learning under statistical models have sprung
up. Bastani (2021) studies the single-source parameter-transfer approach under high-
dimensional linear models and derives the estimation error bound, where the sample size of
the source domain is larger than the dimension. Li et al. (2021) extend Bastani’s work to the
multi-source transfer learning framework with high-dimensional target and source models
under some weaker assumptions, and the minimax optimality of the estimation error bound
under `q-regularization (q ∈ [0, 1]) is proven. Tian and Feng (2022) further study the
multi-source transfer learning framework in generalized linear model settings and develop
a consistent procedure to detect transferable sources. In addition, Li et al. (2022b) extend
the multi-source transfer learning framework to Gaussian graphical models and construct
a multiple testing procedure for edge detection with false discovery rate control. Different
from the current work, existing studies usually construct auxiliary source models based
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on parameter similarity between the target and source models and adopt a regularization
technique that requires properly selecting tuning parameters. These procedures also require
equal dimensions for all the models and integrate data sets in the estimation process, which
may bring limitations in practical application. Specifically, when heterogeneous data are
collected from different owners, it is often difficult to aggregate the complete data sets from
all parties without boundaries, and generally, only summary statistics can be obtained to
protect data privacy. In addition, these works mainly focus on parameter estimation while
rare attention is paid to out-of-sample prediction. There are some other topics closely re-
lated to our work, such as multi-task learning (Evgeniou and Pontil, 2004; Ando et al.,
2005) and integrative analysis (Ma et al., 2011; Liu et al., 2014). However, their goals are
mainly to simultaneously estimate parameters for all the models considering the similarity
and heterogeneity among model parameters. In addition, they generally assume that all the
models are correctly specified, whereas our framework does not require this assumption.

To make better predictions of the target model, model averaging is an effective strat-
egy combining information from multiple candidate models. There exists rich literature
on model averaging for several decades (Clarke, 2003), and we consider the asymptotically
optimal methods in the frequentist model averaging framework in this work. For model aver-
aging studies on PLM, Zhang and Wang (2019) study the optimal model averaging method
for PLM with heteroscedasticity and propose a Mallows-type weight choice criterion in
a kernel smoothing framework. Furthermore, frequentist model averaging estimators for
other variants of partially linear models have also been studied, such as varying-coefficient
partially linear models (Li et al., 2018; Zhu et al., 2019; Li et al., 2022a), partially linear func-
tional additive models (Liu and Zhang, 2021) and semi-functional partially linear models
(Jiang et al., 2021). In this article, we contribute to taking the model averaging methodol-
ogy as a bridge for knowledge transfer between the possibly shared parameter information
and the predictive task for the target model. Different from traditional model averaging
procedures, we combine parameter information from multiple semiparametric models us-
ing samples from heterogeneous populations. To estimate multiple semiparametric models,
a polynomial spline-based estimator is adopted to approximate nonparametric functions,
which can be implemented more cheaply than kernel-based smoothing approaches.

Our approach has some appealing advantages. First, when the target model is misspec-
ified, our procedure can asymptotically obtain optimal prediction in the sense of achieving
the lowest possible out-of-sample prediction risk. Second, when the target model is cor-
rectly specified, those models possibly sharing auxiliary information are automatically dis-
tinguished by weight assignments. In the studies of transfer learning, sometimes knowledge
transfer may even hurt the learning performance of the target task when source models
are not related to the target model, the phenomenon of which is referred to as “negative
transfer” in the literature (Pan and Yang, 2009). Some recent works also concern this prob-
lem, such as Li et al. (2021) and Tian and Feng (2022), where they introduce algorithms
to construct auxiliary source models based on parameter similarity. Further, theoretical
properties support that transferring knowledge among such auxiliary source models can im-
prove the performance of the target model under certain conditions. Our proposed method
does not require knowing auxiliary source models in advance and theoretically ensures that
the parameter transfer asymptotically occurs in potential auxiliary models, which attempts
to address the negative transfer problem from a new perspective. It can be seen that our
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method has theoretical guarantees in both correct and incorrect target model settings, which
is a desirable feature in applications. Finally, our procedure offers an alternative strategy
for massive data analysis. Specifically, we can split the full data set into many batches
and estimate each batch of data in parallel. We can then aggregate estimators through our
transfer learning mechanism to achieve predictions. This approach is similar to the divide
and conquer technique in the literature of distributed learning (Zhang et al., 2013; Battey
et al., 2018). By transmitting only summary statistics information instead of pooling multi-
ple data sets together, our framework provides a feasible strategy to effectively protect the
privacy of individual data. Relevant studies can be found in the literature of meta-analysis
(Xie et al., 2011; Kundu et al., 2019).

In conclusion, the primary contributions of this work can be summarized as follows.

• In contrast to traditional frequentist model averaging approaches for semiparametric
models, we adopt a spline-based estimator and propose a data-driven weight choice
criterion in the scenario of multiple populations, which provides more insights for
model averaging research.

• For transfer learning frameworks, we develop a parameter-transfer approach aimed at
the predictive task under statistical models. We contribute to taking a model averag-
ing strategy to adaptively transfer possibly shared parameter information instead of
auxiliary model selection. Some appealing properties for parameter-transfer learning
are established from a statistical view.

The rest of the paper is organized as follows. In Section 2, we introduce our model
framework and weight choice criterion. Section 3 provides the theoretical properties of our
approach, including asymptotic optimality and weight convergence under certain regularity
conditions. Extensive simulation studies and a real data example are conducted in Section
4 and Section 5, respectively. Concluding remarks are summarized in Section 6. All the
technical details and additional numerical results are presented in the Appendix.

2. Optimal Parameter-Transfer Approach

In this section, we first introduce our semiparametric model setting under transfer learning
framework and then propose a parameter-transfer approach based on frequentist model
averaging. We further provide a cross-validation based procedure to choose proper weights.

2.1 Model Framework

Assume that target data {y(0)
i ,x

(0)
i , z

(0)
i } for i = 1, . . . , n0 and source data {y(m)

i ,x
(m)
i , z

(m)
i }

for m = 1, . . . ,M , i = 1, . . . , nm are independent samples from M + 1 heterogeneous

populations. For the mth data set, m = 0, . . . ,M , y
(m)
i are continuous scalar responses,

x
(m)
i = (x

(m)
i1 , . . . , x

(m)
ip )T are p-dimensional i.i.d observations, and z

(m)
i = (z

(m)
i1 , . . . , z

(m)
iqm

)T

are qm-dimensional i.i.d observations. Here, different z
(m)
i are allowed in different data

sets. Suppose that the target and source samples follow M + 1 semiparametric additive
linear models, which are referred to as the target model and source models as follows. For
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m = 0, . . . ,M , i = 1, . . . , nm,

y
(m)
i = µ

(m)
i + ε

(m)
i = (x

(m)
i )Tβ(m) + g(m)(z

(m)
i ) + ε

(m)
i , (1)

where µ
(m)
i contains both a parametric component of (x

(m)
i )Tβ(m) with an unknown param-

eter β(m) ∈ Rp and nonparametric components of g(m)(z
(m)
i ) =

∑qm
l=1 g

(m)
l (z

(m)
il ) with a com-

monly adopted additive structure, g
(m)
l is a one-dimensional unknown smooth function, and

ε
(m)
i are independent random errors with E(ε

(m)
i |x

(m)
i , z

(m)
i ) = 0 and E{(ε(m)

i )2|x(m)
i , z

(m)
i } =

σ2
i,m. Note that β(m) in different source models are allowed to be identical or different from

the target model. Here, the dimension p of the parametric component for each model is
allowed to go to infinity, and qm is fixed for m = 0, . . . ,M .

In the context of transfer learning, we expect to improve the prediction of the new

response y
(0)
n0+1 given the corresponding set of covariates {x(0)

n0+1, z
(0)
n0+1} from the target

population through transferring common knowledge from source models. To accommodate
the transfer learning framework under semiparametric models, we specifically borrow the
idea of parameter-transfer approaches and further assume that source models possibly share
parameter information with the target model. Unlike some recent works on transfer learning
under linear models (Li et al., 2021) and generalized linear models (Tian and Feng, 2022),
it is not necessary for our proposed method to construct auxiliary source models based on
parameter similarity and integrate data sets by a regularization procedure.

To estimate our models (1), we consider a polynomial spline-based method to approxi-
mate nonparametric parts. The corresponding theoretical properties have been well estab-

lished in the literature (De Boor, 2001). Let Ψ
(m)
l be the polynomial spline space consisting

of functions of degree r
(m)
l ≥ 1 and S

(m)
l be the number of interior knots in the interval

[0, 1] for the mth model. Here, the number of interior knots can vary from different mod-
els and is allowed to be divergent as the sample size increases. Assume that there exists

a normalized B-spline basis B
(m)
l (z) = {bl1(z), . . . , b

lv
(m)
l

(z)}T of the spline space, where

v
(m)
l = r

(m)
l + S

(m)
l and v

(m)
l is allowed to increase as the sample size increases. As dis-

cussed in De Boor (2001), nonparametric functions can be well approximated by the linear
combination of B-spline basis functions under certain conditions. Therefore, the estimator
can be transformed into a least squares formula as follows.

θ̂(m) = arg min
θ(m)

nm∑
i=1

{
y

(m)
i − (d

(m)
i )Tθ(m)

}2
, m = 0, . . . ,M, (2)

where d
(m)
i = [(x

(m)
i )T , {B(m)

1 (z
(m)
i1 )}T , . . . , {B(m)

qm (z
(m)
iqm

)}T ]T , θ(m) = {(β(m))T , (γ
(m)
1 )T , . . . ,

(γ
(m)
qm )T }T , and γ

(m)
l = (γ

(m)
l1 , . . . , γ

(m)

lv
(m)
l

)T for m = 0, . . . ,M and l = 1, . . . , qm. Let the total

dimension of the mth model be pm =
∑qm

l=1 v
(m)
l + p.

2.2 Model Averaging Prediction Procedure

In this section, we introduce a frequentist model averaging strategy to transfer possibly
shared parameter information from multiple models for our prediction of the target model,
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which has the advantages of achieving asymptotically optimal prediction and adaptively
using potential auxiliary models by reasonable weight assignments. Since we have little
prior knowledge about auxiliary parameter information from source models in practice,
we simply put all the M source models into our transfer learning framework. To develop
our transfer learning framework, we first construct M + 1 models based on B-spline basis

approximations. Specifically, the estimators of µ
(0)
i corresponding to the M + 1 models,

including the target model (m = 0) and M source models (m = 1, . . . ,M) with possibly
shared parameters, are defined as

µ̂
(0)
i,m = (d

(0)
i )T θ̂(0)

m =


(x

(0)
i )T β̂(0) +

q0∑
l=1

{B(0)
l (z

(0)
il )}T γ̂(0)

l , m = 0,

(x
(0)
i )T β̂(m) +

q0∑
l=1

{B(0)
l (z

(0)
il )}T γ̂(0)

l , m = 1, . . . ,M,

(3)

where θ̂
(0)
m = {(β̂(m))T , (γ̂

(0)
1 )T , . . . , (γ̂

(0)
q0 )T }T . Slightly different from the construction of

candidate models in previous model averaging literature, there exists uncertainty about the
parameter information of which model can be transferred to the target model. In other
words, the informative level of different models is not clear, and only information of β̂(m)

is allowed to be transferred between models.

Algorithm 1: Trans-SMAP

Input: Training samples, including the target and source data,

{(x(m)
i , z

(m)
i , y

(m)
i ); i = 1, . . . , nm,m = 0, . . . ,M} from the target and source

models (1) and the new sample {x(0)
n0+1, z

(0)
n0+1} from the target model.

Output: Prediction of y
(0)
n0+1 associated with the new sample {x(0)

n0+1, z
(0)
n0+1}.

Step 1. Estimate parameter θ(m) for the target model using training samples by (2), and

denote the estimator by θ̂(m).
Step 2. Split training samples from the target model into J subgroups with 2 ≤ J ≤ n0.

Step 3. foreach j ∈ {1, . . . , J} do

Step 3.1. For m = 1, . . . ,M , estimate θ(m) separately by (2) with all the training

samples, and estimate θ(0) only with the training samples in subgroup Gcj .

Step 3.2. For i ∈ Gj ,m = 0, . . . ,M , perform the prediction of y
(0)
i based on (3) as

µ̂
(0)
i,m,[Gc

j ]
.

Step 3.3. Construct the weighted combination as µ̂
(0)
i,[Gc

j ]
(w) =

∑M
m=0 wmµ̂

(0)
i,m,[Gc

j ]
.

Step 4. Select the weight vector ŵ by minimizing the J-fold cross-validation criterion (5).

Step 5. Given the new sample {x(0)
n0+1, z

(0)
n0+1} from the target model, obtain the model

averaging prediction by plugging in ŵ and θ̂(m), that is µ̂
(0)
n0+1(ŵ) =

∑M
m=0 ŵmµ̂

(0)
n0+1,m.

Following the previous studies on model averaging, the final prediction can be defined as

a weighted average of µ̂
(0)
i,m expressed as µ̂

(0)
i (w) =

∑M
m=0wmµ̂

(0)
i,m, wherew = (w0, . . . , wM )T

is the weight vector in the space W = {w ∈ [0, 1]M+1 :
∑M

m=0wm = 1}. To determine a
proper choice of weights, we adopt a J-fold (J > 1) cross-validation criterion. Specifically,
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we randomly divide the target samples into J mutually exclusive subgroups G1, . . . ,GJ . For
simplicity, we assume that all subgroups have equal size n0/J , which is a positive integer.
For j = 1, . . . , J , let Gcj = {1, . . . , n0}\Gj denote the set {1, . . . , n0} excluding the elements
in Gj . Then the J-fold cross-validation based weight choice criterion is defined as

CV (w) =
1

n0

J∑
j=1

∑
i∈Gj

{
y

(0)
i − µ̂

(0)
i,[Gcj ](w)

}2
, (4)

where µ̂
(0)
i,[Gcj ](w) is the weighted average of µ̂

(0)
i,m,[Gcj ], and the definition of µ̂

(0)
i,m,[Gcj ] is similar to

µ̂
(0)
i,m except that the estimator is based on data corresponding to the subgroup Gcj . Note that

criterion (4) will reduce to the leave-one-out cross-validation criterion when J = n0. The
weight vector can be obtained by solving the following constrained optimization problem

ŵ = arg min
w∈W

CV (w). (5)

Then the resulting model averaging prediction of y
(0)
n0+1 associated with the new sample from

the target model is given by µ̂
(0)
n0+1(ŵ). We summarize our procedure in Algorithm 1, and we

term it Transfer learning for Semiparametric Model Averaging Prediction (Trans-SMAP).
As suggested by an anonymous referee, we provide a discussion about the computational
complexity of Algorithm 1 in Appendix B.2.
Remark 1 The rationale of the proposed criterion is to find a proper weighted averaging

estimator by minimizing the expected squared loss E[{y(0)
n0+1− µ̂

(0)
n0+1(w)}2], and we consider

a data-driven approach to approximate it through the J-fold cross-validation criterion (4).

Formally, we prove that CV (w) is an asymptotically unbiased estimator of E[{y(0)
n0+1 −

µ̂
(0)
n0+1(w)}2] that is expected to minimize. The details are provided in Appendix A.2.

Remark 2 The choice of J in criterion (4) is usually uncertain in practice. Since there is
no theoretically optimal value, we manually use the 5-fold CV criterion in terms of compu-
tational efficiency in this paper. To be more convincing, we design additional experiments
to compare different choices of J together with the leave-one-out procedure in terms of pre-
diction error and time consumption. In conclusion, we find that the prediction performance
is not sensitive to the choice of J , but the time consumption of the J-fold CV criteria can be
greatly reduced compared to the leave-one-out procedure as the sample size increases. More
details can be referred to Appendix C.5.

3. Theoretical Properties

In this section, we establish some statistical properties of our method. Specifically, we
derive the properties under the misspecified target model and correctly specified target
model, respectively. Note that a correctly specified target model in our setting means that
all the variables in the true target model (1) are included when fitting the model.

Define the risk function as R(w) = E[{µ(0)
n0+1 − µ̂

(0)
n0+1(w)}2] and the prediction risk

function as PR(w) = E[{y(0)
n0+1− µ̂

(0)
n0+1(w)}2]. It is easy to see the decomposition PR(w) =

E{(y(0)
n0+1 − µ

(0)
n0+1)2} + R(w), where the first term is unrelated to w. This decomposition
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implies that our objective is equivalent to minimizing R(w) based on Remark 1. Therefore,
we will first establish the asymptotic optimality of our model averaging procedure with
respect to minimizing R(w).

Note that all the limiting processes throughout this paper correspond to n→∞, where

n = min0≤m≤M nm. Let p = max0≤m≤M pm and v(0) = max1≤l≤q0 v
(0)
l . In addition, we

allow the number of source models M to go to infinity. Let a∨ b denote max{a, b} and a∧ b
denote min{a, b}.

3.1 Asymptotic Optimality under Misspecified Target Model

For convenience, before we provide the theoretical properties formally, some notations
need to be defined. Suppose that the pseudo-true values of parameters exist for each

model, and let θ̃
(0)
m = {(β̃(m))T , (γ̃

(0)
1 )T , . . . , (γ̃

(0)
q0 )T }T denote the corresponding values for

m = 1, . . . ,M . For j = 1, . . . , J , i ∈ Gj , denote the in-sample prediction of the mth

model using the subgroup samples in Gcj by µ̂
(0)
i,m,[Gcj ] = (d

(0)
i )T θ̂

(0)
m,[Gcj ], where θ̂

(0)
m,[Gcj ] =

{(β̂(0)
[Gcj ])

T , (γ̂
(0)
1,[Gcj ])

T , . . . , (γ̂
(0)
q0,[Gcj ])

T }T for m = 0 and θ̂
(0)
m,[Gcj ] = {(β̂(m))T , (γ̂

(0)
1,[Gcj ])

T , . . . ,

(γ̂
(0)
q0,[Gcj ])

T }T for m = 1, . . . ,M . Then the weighted averaging estimator can be written as

µ̂
(0)
i,[Gcj ](w) =

∑M
m=0wmµ̂

(0)
i,m,[Gcj ]. Note that θ̂

(0)
m,[Gcj ] and θ̂

(0)
m have identical limiting values

θ̃
(0)
m under large samples. In addition, the in-sample prediction of the mth model based on

the pseudo-true values is defined as µ̃
(0)
i,m = (d

(0)
i )T θ̃

(0)
m , and the corresponding averaging

prediction is µ̃
(0)
i (w) =

∑M
m=0wmµ̃

(0)
i,m.

Now, we introduce some notations for the prediction associated with the new sample.

Define the prediction of y
(0)
n0+1 under the mth model based on θ̃

(0)
m and θ̂

(0)
m as µ̃

(0)
n0+1,m =

(d
(0)
n0+1)T θ̃

(0)
m and µ̂

(0)
n0+1,m = (d

(0)
n0+1)T θ̂

(0)
m . Then the corresponding averaging predictions

are µ̃
(0)
n0+1(w) =

∑M
m=0wmµ̃

(0)
n0+1,m and µ̂

(0)
n0+1(w) =

∑M
m=0wmµ̂

(0)
n0+1,m.

Further, denote the risk function calculated based on the pseudo-true values by R̃(w) =

E[{µ(0)
n0+1 − µ̃

(0)
n0+1(w)}2]. Let ξn = infw∈W R̃(w) be the minimum risk over the class of

averaging estimators. Let O(θ̃
(0)
m , c) denote a neighborhood of θ̃

(0)
m for some constant c such

that ‖θ̃(0)
m − θ‖ ≤ c for any θ ∈ O(θ̃

(0)
m , c). To establish the asymptotic optimality for our

method, some regularity conditions are necessarily stated as follows.

Condition 1 Let s be a positive integer and t ∈ (0, 1] such that κ = s+ t > 1.5, and let F
denote the collection of functions f on [0, 1] whose sth derivative, f [s], exists and satisfies the
Lipschitz condition of order t; that is |f [s](x′)−f [s](x)| ≤ C0|x′−x|t, 0 ≤ x′, x ≤ 1, for some

positive C0. Then, (i) the nonparametric functions g
(m)
l for l = 1, . . . , qm,m = 0, . . . ,M in

model (1) belong to F ; (ii) the number of interior knots for each spline approximation S
(m)
l

satisfies n
1/2κ
m � S

(m)
l � n

1/3
m .

Condition 2 For m = 0, . . . ,M , the distribution of z
(m)
il for l = 1, . . . , qm is absolutely

continuous, and its density is bounded away from zero and infinity uniformly over l.
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Condition 3 Suppose that M ≤ n. Uniformly for m = 0, . . . ,M , there exist limiting values

θ̃(m) such that ‖θ̂(m) − θ̃(m)‖ = Op(p
1/2
m n

−1/2
m M1/2), where θ̂(m) = {(β̂(m))T , (γ̂

(m)
1 )T , . . . ,

(γ̂
(m)
qm )T }T and θ̃(m) = {(β̃(m))T , (γ̃

(m)
1 )T , . . . , (γ̃

(m)
qm )T }T .

Condition 4 For m = 0, . . . ,M , p = o(n
1/2
m ).

Condition 5 The expectations E{(µ(0)
i )4}, E{(µ̃(0)

i,m)4}, and E{(ε(0)
i )4} exist for m = 0, . . . ,M .

Condition 6 For i = 1, . . . , n0, j = 1, . . . , J , (i) µ̂
(0)
i,m,[Gcj ] is differentiable with respect to

θ̂
(0)
m,[Gcj ]; (ii) there exists a positive constant c such that

E

 sup
θ̄∈O(θ̃

(0)
m ,c)

∥∥∥∥∥∥
∂µ̂

(0)
i,m,[Gcj ]

∂θ̂
(0)
m,[Gcj ]

∣∣∣
θ̂
(0)

m,[Gc
j
]
=θ̄

∥∥∥∥∥∥
2
 = O(pm)

uniformly for m = 0, . . . ,M .

Condition 7 ξ−1
n sup

w∈W
|{µ(0)

n0+1−µ̂
(0)
n0+1(w)}2−{µ(0)

n0+1−µ̃
(0)
n0+1(w)}2| is uniformly integrable.

Condition 8 {(pn−1/2M1/2) ∨ (p2n−1M)}ξ−1
n = o(1).

Conditions 1 and 2 are mild and commonly assumed for nonparametric models with
spline-based approximation in the literature, such as Stone (1985), Stone (1986), Wang
et al. (2011) and Zhang and Liang (2011). Condition 3 ensures that the estimator θ̂(m) in
each model has the limiting value θ̃(m). This can be regarded as a variant of the common
condition to establish the asymptotic properties in literature; see, for example, Zhang et al.
(2016), Ando and Li (2017), and Zhang and Liu (2023). When the number of source models
M is fixed, the required convergence rates are slower than the rates for parametric models
established in White (1982) due to the semiparametric model settings. We further weaken
the convergence rates to accommodate uniform convergence under a possibly diverging M .
Note that the dimension of the parametric component in each model allows to be divergent
in our setting, and the extension to high-dimensional settings of p > nm is left for future
study.

Condition 4 restricts the divergence rates of dimensions of the target and source models
based on B-spline approximations as the sample size increases, which is commonly assumed
in the literature (Liao et al., 2021). Suppose that the polynomial degree of all spline basis
functions is fixed in our setting. Theorem 2 in Stone (1986) shows that the cubic spline
estimator of the nonparametric function achieves the optimal convergence rate if the number

of interior knots has the order of n
1/5
m . When the spline estimators for each model achieve

the optimal convergence rate in our framework, Condition 4 still holds.
Conditions 5-7 are some mild technical conditions. Specifically, Condition 5 includes

some general constraints of moments on the conditional expectation, prediction, and error,
which are commonly assumed in the literature (Wan et al., 2010; Ando and Li, 2017; Zhang
and Wang, 2019). Condition 6 concerns boundedness and differentiability; it is also adopted
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in Zhang and Liu (2023). Condition 7 is mainly imposed for technical needs to obtain
expectation in the proof.

Condition 8 plays an important role in the proof of our theorem. It restricts the diver-
gence rate of the number of source models and requires that the target model is sufficiently
misspecified. Similar conditions in the literature are Condition 7 in Ando and Li (2014),
Condition C.6 in Zhang et al. (2016), and Assumption 5 in Zhang and Liu (2023). A de-
tailed explanation of the misspecification of the target model under Condition 8 is given
in Appendix A.1. Note that Condition 8 also implies an upper bound on the number of
source models M . Specifically, if we assume that the target model is misspecified and
pn−1/2M1/2 = o(1), then we have M1/2 = o(p−1n1/2ξn) based on Condition 8. If we further
assume ξn = O(1) and p = O(n1/2−ζ) for 0 < ζ ≤ 1/2 based on Condition 4, then the order
of M is o(n2ζ).

Next, we formally present the theoretical property under the above conditions in The-
orem 1. The proof is provided in Appendix A.3.

Theorem 1 Under Conditions 1-8, we have

R(ŵ)

inf
w∈W

R(w)
→ 1

in probability.

Theorem 1 indicates that the proposed model averaging prediction has the asymptotic
optimality in the sense of achieving the lowest possible out-of-sample prediction risk, which
is a fundamental but important property in the frequentist model averaging literature.
Unlike most previous works, the proposed procedure is constructed using multiple data
sets, and the corresponding asymptotic optimality is established based on the out-of-sample
prediction risk, which is more practical for predictive task in our context. It is worth noting
that our result of asymptotic optimality always holds regardless of whether the source
models are correct, which is not surprising since the target model is our main concern and
naturally dominates the performance.

3.2 Weight Convergence under Correct Target Model

We now turn to the case of the correct target model. Since there are no requirements
for the model specification of source models, it may contain both correct and misspecified
models. Define the informative models as the models having the same pseudo-true values
of β̃(m) as the target model, and let I ⊆ {0, . . . ,M} be the corresponding set of indices.
Obviously, 0 ∈ I. Let Ic be the complement of I. Note that the informative models are
characterized by the parameter effects in the limit, which also reflects the similarity between
the estimators for the target model and source models in a sense. We further define the
sum of the weight estimators for the informative models as τ̂ =

∑
m∈I ŵm. To study the

theoretical property of the weights, we rely on an alternative for Condition 8 and some
other technical conditions. Let W = {w ∈ W :

∑
m∈I wm = 0} be the subset of W that

assigns all the weights to the models belonging to Ic. Then the conditions are presented as
follows.
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Condition 9 (v(0))1/2−κ = o{(pn−1/2M1/2)∧ (p2n−1M)}, where κ is defined in Condition
1.

Condition 10 E
(
µ

(0)
n0+1 − µ̃

(0)
n0+1,m

)
= O(1) uniformly for m ∈ Ic.

Condition 11 {(pn−1/2M1/2) ∨ (p2n−1M)}{infw∈W R̃(w)}−1 = o(1).

Condition 12 {infw∈W R̃(w)}−1 = O(1).

Condition 9 specifically constrains the divergence rate of dimension of the spline basis
in the target model. Condition 10 restricts the boundedness of approximation between

µ
(0)
n0+1 and µ̃

(0)
n0+1,m based on the models belonging to Ic; this restriction is common and

reasonable. Condition 11 imposes a restriction on the growth rate of the minimum risk
based on the averaging prediction over models in Ic, which is an extension to Assumption
6 in Zhang and Liu (2023) with semiparametric model settings. Note that Condition 11
implies that the risk of the target model is sufficiently large when the target model is
misspecified, so we do not need the constraint in Condition 8. Based on this condition, the
resulting risk will converge to zero when combining any informative source models with the
correct target model. On the contrary, the risk will be much larger than (pn−1/2M1/2) ∨
(p2n−1M) asymptotically when combining any source model belonging to Ic even with the
correct target model. Therefore, it is intuitively clear that none of the models in Ic will
be asymptotically assigned nonzero weights based on our criterion. Condition 12 restricts
the risk of the model averaging estimator under misspecified models. It can be seen that
Condition 11 is satisfied if we have p2M = o(n) combined with Condition 12. We summarize
the property of weight convergence in the following Theorem 2, and the proof is provided
in Appendix A.4.

Theorem 2 If Conditions 1-6 and 9-11 are satisfied, then τ̂ → 1 in probability.

Theorem 2 demonstrates that our procedure asymptotically assigns all the weights to
informative models when the target model is correctly specified, which can be regarded
as a type of consistency property in model selection. In other words, the proposed model
averaging criterion can consistently select informative models by weight assignments, which
is an important distinction compared to existing parameter-transfer learning frameworks.
From the definition of the informative models, both correct and incorrect source models may
contribute to the prediction if the parameter information is similar enough. In addition,
our method yields robust performance even when several models have strong dissimilarity
because those models are assigned small or zero weights asymptotically.

As discussed in previous sections, we hope to avoid the negative transfer problem in
practice. Next, we further discuss the difference between the upper bound of the risk of our
method and that of the least squares estimator on target data only, which is summarized
in the following corollary. Let R̄(ŵ) and R̄0 denote the upper bounds of the risk of our
Trans-SMAP and the least squares estimator on target data, respectively. The technical
details are provided in Appendix A.5.
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Corollary 3 Assume that the dimensions and sample sizes of the target and source data
satisfy p2n−1 = O(p2

0n
−1
0 ). If Conditions 1-8 hold or Conditions 1-7, Conditions 9-10 and

Condition 12 hold, then R̄(ŵ) = Op(R̄0).

Corollary 1 demonstrates that the upper bound of the risk of our Trans-SMAP has no
larger order than that of the least squares estimator on target data regardless of whether
the target model is correct. Hence, in a sense, it also verifies that our procedure provides a
reasonable strategy to mitigate the potential negative transfer problem.

4. Simulation Studies

In this section, we evaluate the finite sample performance of our procedure in various numer-
ical experiments. For comparison, we consider the following seven competitive procedures:
transfer learning by the simple averaging procedure (termed as “Trans-SimpMA”), trans-
fer learning by the smoothed AIC and BIC (Buckland et al., 1997) based model averaging
procedures (termed as “Trans-SAIC” and “Trans-SBIC”), least squares estimator using the
target data only (termed as “LSE-Tar”), least squares estimator using all the data (termed
as “LSE-All”), Trans-Lasso (Li et al., 2021), and Trans-GLM (Tian and Feng, 2022). Specif-
ically, Trans-SimpMA, Trans-SAIC, and Trans-SBIC construct the corresponding weighted
averaging estimators with equal weight 1/(M+1), exp (−AICm/2)/

∑M
m=0 exp (−AICm/2),

and exp(−BICm/2)/
∑M

m=0 exp(−BICm/2), respectively, where AICm = log{n−1
m

∑nm
i=1(y

(m)
i

−µ̂(m)
i )2}+2pm/nm and BICm = log{n−1

m

∑nm
i=1(y

(m)
i −µ̂(m)

i )2}+pm log nm/nm. The purpose
of comparing these methods is to verify the superiority of our proposed method. LSE-Tar
performs the prediction with the least squares estimator (2) using the target data. LSE-All
performs the prediction with the least squares estimator based on all the target and source

data by minimizing the following integrative loss function L(β,γ
(0)
1 , ...,γ

(0)
q0 , . . . ,γ

(m)
qm ) =

(2
∑M

m=0 nm)−1
∑M

m=0

∑nm
i=1[y

(m)
i − (x

(m)
i )Tβ −

∑qm
l=1{B

(m)
l (z

(m)
il )}Tγ(m)

l ]2. The purpose of
considering LSE-Tar and LSE-All is to understand the effect of reasonable knowledge trans-
fer. To comprehensively demonstrate the superiority of our procedure, we also consider two
recent transfer learning approaches, Trans-Lasso and Trans-GLM, related to our framework.
All experiments are implemented in R software, and more details can be seen in Appendix
B.1.

4.1 Simulation Design

Set the target sample size n0 = 150, and source sample sizes (n1, n2, n3) = (200, 200, 150).

For the parametric components, x
(m)
i from the target and source models are generated

from a 6-dimensional multivariate normal distribution N(0,Σ) with Σ = [Σaa′ ]6×6, where
Σaa′ = 0.5|a−a

′|. Set the parametric coefficient vectors of the target and source models as
β(0) = (1.4,−1.2, 1,−0.8, 0.65, 0.3)T , β(1) = (1.4,−1.2, 1,−0.8, 0.65, 0.3, 1.8)T + δ1, β(2) =
(1.4,−1.2, 1,−0.8, 0.65, 0.3)T + δ2, and β(3) = (1.4,−1.2, 1,−0.8, 0.65, 0.3)T + δ3, where δ1,
δ2, δ3 are the parametric coefficient differences relative to the target model. Further, we
set δ1 = 0.02, δ2 = 0.3, and δ3 = 0, so the parameters of the first and second source models
are different from the target model, and the third source model is informative because its
coefficient is exactly same as that of the target model. Note that the parametric coefficient
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of the first source model is a 7-dimensional vector, whereas the others are 6-dimensional

vectors. Here, we always omit the last component of x
(1)
i when fitting the first source model,

so the model is misspecified. For the other models, we do not ignore any components, and
then they are all correctly specified. The above setting is the case of the correct target
model. When the target model is misspecified, we keep other settings unchanged except
setting β(0) = (1.4,−1.2, 1,−0.8, 0.65, 0.3, 0.1)T , and we similarly omit the last component

of x
(0)
i .

We set the dimensions of the nonparametric component for each model as qm = 3 for

m = 0, . . . ,M , and we generate z
(m)
il from a uniform distribution U(0, 1). The following non-

linear functions for different models are considered: g(0)(u) = 2(u1 − 0.5)3 + sin(πu2) + u3,
g(1)(u) = 2(u1 + 0.5)3 + cos(πu2) + u3, g(2)(u) = 2.5(u1 + 0.3)3 + sin(πu2) + 1.5u3, and
g(3)(u) = 1.8(u1 + 0.3)3 + cos(πu2) + u3. In order to accommodate the settings of Trans-
Lasso and Trans-GLM for convenient comparison, we consider the scenairo of multiple data
with equal dimensions, but our framework is not limited to this setting. Hence, we conduct
additional simulation studies in heterogeneous dimension settings in Appendix C.2. The

random error term ε
(m)
i for the M + 1 models follows a normal distribution N(0, 0.52) with

σi,m = 0.5 for m = 0, . . . ,M, i = 1, . . . , nm. Here, we mainly consider the homoscedas-
tic setting as an example. Since our framework is compatible with heteroscedasticity, we
further conduct the heteroscedastic design in Appendix C.4. To evaluate the prediction per-
formance, we generate new samples from the target model with sample size n∗ = 500. Fur-
thermore, we design alternative settings to increase the sample sizes to (300, 350, 350, 250)
and (500, 550, 500, 450), while keeping the other settings invariant. All the experiments are
replicated 500 times. Following a referee’s suggestion, we conduct an additional simulation
study in high-dimensional settings that matches the assumptions of competing methods
like Trans-Lasso to provide a relatively fair comparison. Further details regarding this
simulation study can be found in Appendix C.8.

Next, we consider increasing the number of source models. Let the sample sizes be
(n0, . . . , n6) = (150, 200, 150, 200, 150, 150, 200). The parametric coefficients of the target
and source models are set as β(0) = (1.4,−1.2, 1,−0.8, 0.65, 0.3)T , β(1) = (1.4,−1.2, 1,−0.8,
0.65, 0.3, 1.8)T +δ1, β(2) = (1.4,−1.2, 1,−0.8, 0.65, 0.3)T +δ2, β(3) = (1.4,−1.2, 1,−0.8, 0.65,
0.3)T+δ3, β(4) = (1.4,−1.2, 1,−0.8, 0.65, 0.3, 1.8)T+δ4, β(5) = (1.4,−1.2, 1,−0.8, 0.65, 0.3)T

+δ5, and β(6) = (1.4,−1.2, 1,−0.8, 0.65, 0.3)T + δ6, where δ1 = 0.02, δ2 = 0.02, δ3 =
0.3, δ4 = 0, δ5 = 0.02, δ6 = 0.3. Let the nonlinear functions for different models be
g(0)(u) = 2(u1 − 0.5)3 + sin(πu2) + u3, g(1)(u) = 2(u1 + 0.5)3 + cos(πu2) + u3, g(2)(u) =
2.5(u1 + 0.3)3 + sin(πu2) + 1.5u3, g(3)(u) = 1.8(u1 + 0.3)3 + cos(πu2) + u3, g(4)(u) =
1.5(u1 + 0.5)3 + cos(2πu2) + u2

3, g(5)(u) = (u1 + 0.6)2 + cos(πu2) + 1.3u2
3, and g(6)(u) =

1.3(u1 +0.5)2 +cos(2πu2)+1.6u3. Similarly, we design additional settings with large sample
sizes (300, 350, 300, 350, 300, 300, 350) and (500, 550, 500, 550, 500, 500, 550).

4.2 Simulation Results

We evaluate all the methods by the mean squared error (MSE) based on the new samples

with sample size n∗, which is expressed as MSE =
∑n∗

i=1(µ̂
(0)
i −µ

(0)
i )2/n∗. The results of the

averaged MSE based on 500 replications are reported in Table 1. The rows labeled “Uplift
Rate” in each table represent the percentage improvement of the averaged MSE for the
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Figure 1: Stacked area plots of the averaged weight assignments based on our method when
the target model is correctly specified with M = 3 (first line) and M = 6 (second
line).

proposed method relative to the smallest result among alternative methods. According to
the results in Table 1, we see that the proposed Trans-SMAP outperforms all the competitive
methods. The improvement is particularly significant as the number of models increases,
especially in the correct target model scenario. When the target model is misspecified, the
superiority is not surprising because Theorem 1 provides the theoretical guarantee for the
asymptotic optimality. The proposed method still has advantages when the target model
is correctly specified due to that our procedure asymptotically uses the informative models
based on Theorem 2, whereas LSE-Tar does not borrow any auxiliary information, and
other approaches may not use auxiliary information effectively. It is worth noting that the
recent transfer learning approaches, Trans-Lasso and Trans-GLM, are also not comparable
to our method. Except for the inherent limitations discussed in the introduction, the most
important reason is that these procedures are aimed at parametric models. To evaluate the
performance under various levels of noise, we let the variance of random error vary such

that R2 = var(µ
(0)
i )/var(y

(0)
i ) ranges from 0.1 to 0.9 with increments of 0.1, and the detailed

results are provided in Appendix C.1. Additionally, we design more general experiments
to further demonstrate the stability of our procedure under potential negative transfer
scenarios in Appendix C.3. The details are reported in Tables 4-7, and the corresponding
results still support our method.
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Correct Target Model Misspecified Target Model

Method n0 = 150 n0 = 300 n0 = 500 n0 = 150 n0 = 300 n0 = 500

M = 3 Trans-SMAP 0.027 0.013 0.008 0.034 0.021 0.015
(0.010) (0.005) (0.003) (0.010) (0.005) (0.003)

Trans-SimpMA 0.239 0.226 0.220 0.218 0.205 0.198
(0.038) (0.028) (0.023) (0.034) (0.024) (0.021)

Trans-SBIC 0.188 0.173 0.165 0.180 0.165 0.156
(0.028) (0.020) (0.016) (0.027) (0.019) (0.016)

Trans-SAIC 0.183 0.170 0.165 0.174 0.161 0.155
(0.027) (0.020) (0.016) (0.026) (0.019) (0.016)

LSE-Tar 0.030 0.015 0.009 0.038 0.022 0.016
(0.011) (0.005) (0.003) (0.011) (0.005) (0.004)

LSE-All 0.347 0.309 0.260 0.316 0.279 0.234
(0.065) (0.046) (0.032) (0.062) (0.040) (0.029)

Trans-Lasso 0.123 0.110 0.104 0.130 0.117 0.112
(0.013) (0.008) (0.006) (0.014) (0.009) (0.007)

Trans-GLM 0.124 0.109 0.103 0.131 0.116 0.112
(0.017) (0.007) (0.006) (0.017) (0.008) (0.007)

Uplift Rate 11.11% 15.38% 12.50% 11.76% 4.76% 6.67%

M = 6 Trans-SMAP 0.026 0.013 0.008 0.034 0.020 0.015
(0.010) (0.004) (0.003) (0.010) (0.005) (0.003)

Trans-SimpMA 0.211 0.199 0.197 0.194 0.181 0.178
(0.026) (0.020) (0.018) (0.024) (0.019) (0.016)

Trans-SBIC 0.195 0.176 0.173 0.182 0.166 0.161
(0.023) (0.017) (0.015) (0.021) (0.016) (0.014)

Trans-SAIC 0.189 0.174 0.172 0.177 0.164 0.160
(0.023) (0.017) (0.015) (0.021) (0.016) (0.014)

LSE-Tar 0.031 0.015 0.009 0.039 0.022 0.016
(0.012) (0.005) (0.003) (0.013) (0.006) (0.003)

LSE-All 0.336 0.278 0.259 0.311 0.256 0.238
(0.049) (0.031) (0.025) (0.043) (0.030) (0.024)

Trans-Lasso 0.124 0.109 0.104 0.133 0.117 0.111
(0.016) (0.008) (0.006) (0.015) (0.009) (0.007)

Trans-GLM 0.127 0.108 0.104 0.136 0.116 0.111
(0.019) (0.008) (0.006) (0.019) (0.008) (0.006)

Uplift Rate 19.23% 15.38% 12.50% 14.71% 10.00% 6.67%

Table 1: The averaged MSE of out-of-sample prediction for different methods. The standard
errors are given in parenthesis.
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Figure 2: The averaged sum of weights for informative models.

We further evaluate the performance of weight estimation. Figure 1 shows the results
of averaged weight assignments when the target model is correctly specified, where areas
with different colors denote averaging weights under various R2. It can be observed that
large weights tend to be assigned to the target model as well as source models with small
differences in parameter effects, and the trend becomes more significant as R2 grows. This
is not unexpected because the target model is of interest, and smaller differences indicate
possibly more informative models for knowledge transfer. Notice that the weight for the
informative source model is even larger than the weight for the target model, a possible
reason of which is that the informative source model has a larger sample size than the
target model. To exclude the influence of confounding factors on the weight estimation,
we simply adjust the settings to let the target and source sample sizes be equal but vary
from {100, 300, 600, 1000}, and we set only one source model as the misspecified model with
the remaining models being informative. The relationship between the sum of weights for
informative models and the sample size is illustrated in Figure 2, which clearly verifies the
property in Theorem 2 that the sum of weights for informative models will be close to 1 as
the sample size increases.

5. Empirical Data Analysis

In this section, we apply our approach to analyze housing rental information data in Bei-
jing, which is drawn from a publicly available data set on http://www.idatascience.cn/

dataset. Our primary goal is to predict the monthly rent that is conducive to better under-
standing and following up the housing rental market. Considering the similarity of geograph-
ical location, population structure, and rental demand, we choose five adjacent districts dis-
tributed in southwestern Beijing for our analysis, and the specific locations of rental houses
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are marked in Figure 7. Overall, the data set for our analysis contains 1409 observations
with 33 variables distributed in five districts (Daxing, Fangshan, Fengtai, Mentougou, and
Shijingshan). To accommodate the transfer learning framework, we take the data from dif-
ferent districts as multi-source data sets. The sample sizes for the source domains of Daxing,
Fangshan, Fengtai, Mentougou, and Shijingshan are (n1, ..., n5) = (291, 247, 339, 263, 269).
The response variable, denoted by Y (m) for m = 1, 2, 3, 4, 5, indicates the natural logarithm
of the monthly rent. After excluding irrelevant variables by the preliminary variable se-

lection, only ten covariates remain in our models, including the number of rooms (X
(m)
1 ),

the number of restrooms (X
(m)
2 ), the number of living rooms (X

(m)
3 ), total area (X

(m)
4 ),

have or not a bed (X
(m)
5 ), have or not a wardrobe (X

(m)
6 ), have or not a air conditioner

(X
(m)
7 ), have or not a fuel gas (X

(m)
8 ), total floor (Z

(m)
1 ), the number of schools within 3

km (Z
(m)
2 ). More details can be seen in Table 10 in Appendix C.6. All the covariates have

been properly transformed and scaled. Since we have little prior knowledge of whether the
relationship between the response and each predictor is linear or nonlinear, we further con-
duct the marginal visualization for each district to determine our model specification. The
marginal relationships between the natural logarithm of the monthly rent and ten predic-
tors are plotted in Figure 8-Figure 12 in Appendix C.6. Since our framework theoretically
allows transferring among parametric regression models, we construct an ordinary linear
regression model for Fengtai. Therefore, we adopt the following models in this analysis

Y(m) =

{
β

(m)
0 +

∑8
j=1 β

(m)
j X

(m)
j +

∑2
j′=1 g

(m)
j′ (Z

(m)
j′ ) + ε(m) (m = 1, 2, 4, 5),

β
(m)
0 +

∑8
j=1 β

(m)
j X

(m)
j +

∑2
j′=1 γ

(m)
j′ Z

(m)
j′ + ε(m) (m = 3).

To further demonstrate the replicability of our proposal, each data set will be regarded as
the target domain, and the others will serve as source domains. Then we consider multiple
combinations of the target model and source models and carry out our procedure one by
one.

Next, we fit semiparametric models introduced in Section 2.1. To evaluate the out-
of-sample prediction risk, we randomly split the target samples into two subgroups with
equal size as the training and testing data. Then we calculate the mean squared prediction

error MSPE = 2‖Y (m)
[k] − Ŷ

(m)
[k] ‖

2/nm,m = 1, . . . , 5, where subscript [k] denotes the kth
replication, and nm refers to the sample size of the mth data set. We repeat the above
process 500 times, and the corresponding results are illustrated in Figure 3. Following a
referee’s advice, we further conduct an additional simulation study similar to the real data
structure in Appendix C.7. The detailed results are summarized in Table 11.

According to Figure 3, it can be seen that all the CV criteria based Trans-SMAP per-
form similarly, and they outperform alternative methods for most of the target domains.
Specifically, Trans-SMAP (5-fold CV) yields a smaller median of the MSPE than Trans-
SimpMA, Trans-SBIC, and Trans-SAIC for Daxing, Fangshan, Fengtai, and Mentougou,
which demonstrates the superiority of our weight choice criterion with theoretical support.
LSE-Tar performs worse than Trans-SMAP (5-fold CV) for all target domains except Feng-
tai, but the advantage of LSE-Tar is relatively small. LSE-All performs much worse than our
method in all scenarios. The poor performance of LSE-Tar and LSE-All results from their
ineffective use of potential auxiliary information. Other parameter-transfer approaches,
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Daxing Fangshan Fengtai Mentougou Shijingshan

Daxing 0.366 0.114 0.163 0.010 0.347
Fangshan 0.189 0.297 0.002 0.397 0.116
Fengtai 0.125 0.003 0.656 0.000 0.216

Mentougou 0.000 0.199 0.000 0.780 0.020
Shijingshan 0.266 0.131 0.139 0.281 0.183

Table 2: The averaged weight assignments for different target domains. The rows represent
different target domains, and columns are the corresponding models.
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Figure 3: Boxplots of the MSPE for different target domains in the housing rental informa-
tion data analysis.

Trans-Lasso and Trans-GLM, also perform much or slightly worse than Trans-SMAP (5-
fold CV) for all of these target domains except Mentougou. This result shows that the
prediction performance of our method is not sensitive to the choice of J . This conclusion
is consistent with the results of our simulation studies, which are detailed in Figure 6 in
Appendix C.5. However, it is important to note that our analysis of the influence of J
is based on a numerical perspective, and a rigorous theoretical analysis is left for future
research.

We further examine the weight assignments for the different models achieved by our
criterion in Table 2. To be more intuitive, we plot a directed graph in Appendix C.6 to
visualize the transfer network. Some interesting findings can be observed from the results.
First, the weights are adaptively assigned to different models for different target domains
with distinctiveness. Specifically, the weights for some models are very small or even exactly
zero, which partly reflects the weak transferability. Second, from the weight assignments for
the target domains of Fengtai and Mentougou, the target model plays a more important role
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than the source models. This indicates that limited knowledge may be transferred to target
tasks. On the contrary, for the target domains of Fangshan and Shijingshan, we can observe
that the source models indeed improve the predictive job from the weight assignments and
MSPE, among which Mentougou is commonly informative for both target models. Third,
we find that Fangshan and Mentougou mutually serve as their most informative source
models, so they may help each other to improve their performance.

In summary, the empirical data example demonstrates the effectiveness of our proposed
Trans-SMAP in terms of the MSPE compared to competitive approaches and the proper
weight assignments for different models, which suggests a promising strategy for predictive
tasks in future applications.

6. Concluding Remarks

In the context of transfer learning, we propose an optimal parameter-transfer approach
for prediction under a flexible semiparametric additive framework. We develop a model
averaging approach to transfer possibly shared parameter information from source models
to the target model. The asymptotic optimality of the out-of-sample prediction risk under
the misspecified target model and weight convergence under the correct target model are
derived. Extensive numerical results demonstrate our effectiveness compared to alternative
methods and further support the theoretical findings. Note that our framework allows
adopting parametric frameworks in different models, which demonstrates its flexibility in
applications. Even though equal dimensions of parametric components are assumed in our
setting, the proposed method theoretically allows for a more general scenario with different
dimensions. In addition, our procedure provides a feasible strategy to deal with massive
data. Specifically, we can split the data first and carry out estimating processes for each
data set in parallel, after which we aggregate the corresponding estimators to construct the
prediction by our strategy. Since only parameter estimators are exposed across multiple
data sets in our procedure, in a sense, our approach can effectively protect the privacy of
original data.

Several promising future attempts are worth further research. First, it would be inter-
esting to further study the statistical inference for the resulting model averaging prediction.
In this regard, some asymptotic distribution theories for the frequentist model averaging es-
timator have been established in the literature; see related works from Hjort and Claeskens
(2003), Liu (2015), and Zhang and Liu (2019). Second, optimal parameter-transfer ap-
proaches under some variants of the semiparametric framework are also appealing, such as
varying-coefficient models, single-index models, and their generalized versions with exten-
sions to high-dimensional scenarios. Third, it is intuitive to combine multiple models by the
traditional model averaging approaches instead of using a single model for each data set.
Fourth, it is necessary to consider a data-driven procedure to select J in our criterion instead
of just using some given values, and the theoretical investigation warrants further research.
Last, transferring shared information of the nonparametric components is a very interesting
topic. One possible strategy is to directly transfer the estimates of nonparametric functions
in different models. Alternatively, we could consider transferring the hyperparameters in
the corresponding nonparametric estimation methods, such as the number of internal knots
or degree of the piecewise polynomial in spline-based approaches, and kernel function or
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bandwidth in kernel-based methods. The specific methodology needs in-depth research in
the future.
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Appendix A. Technical Details

In this section, we provide some technical details in Section 3 and proofs of Theorem 1,
Theorem 2, and Corollary 3.

A.1 Verification of Condition 8

Let ‖f‖2 = E{f2(X)} =
∫ 1

0 f
2(x)p(x)dx denote the L2 norm of the function f on [0, 1],

where p(x) is the density of X. Denote the additive function of the target model by g(0)

that can be represented in the form g(0)(z
(0)
n0+1) =

∑q0
l=1 g

(0)
l (z

(0)
n0+1,l), where the component

g
(0)
l belongs to the space F introduced in Condition 1. Let g̃(0) be the additive spline of the

target model with the form g̃(0)(z
(0)
n0+1) =

∑q0
l=1 g̃

(0)
l (z

(0)
n0+1,l) =

∑q0
l=1(B

(0)
l (z

(0)
n0+1,l))

T γ̃
(0)
l ,

where the component g̃
(0)
l belongs to the space Ψ(0) introduced in Section 2.1.

In order to better understand Condition 8, suppose that the target model is correctly
specified, according to Lemma 8 of Stone (1986), we have ‖g(0) − g̃(0)‖2 = O{(v(0))−2κ},
where v(0) = max1≤l≤q0 v

(0)
l = max1≤l≤q0{r

(0)
l + S

(0)
l } is the maximal dimension of the

B-spline basis for the target model, and κ is defined in Condition 1. Then

ξn = inf
w∈W

R̃(w)

= inf
w∈W

E

[{
µ

(0)
n0+1 − µ̃

(0)
n0+1(w)

}2
]

≤ E

[{
µ

(0)
n0+1 − µ̃

(0)
n0+1,0

}2
]

= E


[

(x
(0)
n0+1)T (β(0) − β̃(0)) +

{
q0∑
l=1

g
(0)
l (z

(0)
n0+1,l)−

q0∑
l=1

(B
(0)
l (z

(0)
n0+1,l))

T γ̃
(0)
l

}]2


= E

[{
g(0)(z

(0)
n0+1)− g̃(0)(z

(0)
n0+1)

}2
]

= O{(v(0))−2κ}. (6)

Hence, Condition 8 is violated based on Condition 1.

A.2 Proof of Asymptotic Unbiasedness

Proof Recall the previous notations as follows.

µ̂
(0)
i,[Gcj ](w) =

M∑
m=0

wmµ̂
(0)
i,m,[Gcj ], i ∈ Gj , j = 1, . . . , J,

µ̂
(0)
n0+1(w) =

M∑
m=0

wmµ̂
(0)
n0+1,m.

Based on the definition of CV (w), we have the following decompositions

E{CV (w)} = E

[{
y

(0)
i − µ̂

(0)
i,[Gcj ](w)

}2
]
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= E
[
{y(0)
i − µ

(0)
i }

2
]

+ E

[{
µ

(0)
i − µ̂

(0)
i,[Gcj ](w)

}2
]

and

PR(w) = E

[{
y

(0)
n0+1 − µ̂

(0)
n0+1(w)

}2
]

= E

[{
y

(0)
n0+1 − µ

(0)
n0+1

}2
]

+ E

[{
µ

(0)
n0+1 − µ̂

(0)
n0+1(w)

}2
]
.

Comparing the above formulas, since the samples from the target population are inde-

pendent with identical distribution, we have E[{y(0)
i − µ

(0)
i }2] = E[{y(0)

n0+1 − µ
(0)
n0+1}2] and

E[{µ(0)
i −µ̂

(0)
i,[Gcj ](w)}2] = E[{µ(0)

n0+1−µ̂
(0)
n0+1,[Gcj ](w)}2]. Note that µ̂

(0)
n0+1(w) and µ̂

(0)
n0+1,[Gcj ](w)

are weighted averaging predictions with the same definition except that the latter uses

n0 − n0/J observations to estimate parameters θ
(0)
m instead of all samples. Since n0 and

n0−n0/J have the same order for any J ∈ {2, . . . , n0} as n→∞, θ̂
(0)
m and θ̂

(0)
m,[Gcj ] have the

same limiting values. Therefore, we have µ̂
(0)
n0+1(w)− µ̂(0)

n0+1,[Gcj ](w)→ 0 in probability, and

then E(CV (w)) = PR(w) + o(1) for any w. This completes the proof.

A.3 Proof of Theorem 1

First we list the following lemma without proof, which is also provided in Lemma 1 in Zhang
(2010), Lemma 1 in Gao et al. (2019), and Lemma 1 in Zhang and Liu (2023), to derive the
asymptotic optimality theory for completeness.

Lemma 4 Let

ŵ = arg min
w∈W

{R(w) + an(w) + bn}.

If

sup
w∈W

|an(w)|
R̃(w)

= op(1)

and

sup
w∈W

|R(w)− R̃(w)|
R̃(w)

= op(1),

and there exists a positive constant c so that limn→∞ infw∈W R̃(w) ≥ c almost surely, then
we have

R(ŵ)

inf
w∈W

R(w)
→ 1

in probability.

Now, we formally prove the Theorem 1.
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Proof Let

CV ∗(w) = CV (w)− 1

n0

n0∑
i=1

(y
(0)
i − µ

(0)
i )(y

(0)
i + µ

(0)
i ).

Since n−1
0

∑n0
i=1(y

(0)
i − µ

(0)
i )(y

(0)
i + µ

(0)
i ) is unrelated to w, our weight choice criterion is

equivalent to
ŵ = arg min

w∈W
CV ∗(w).

According to Lemma 4, Theorem 1 is valid if the following equalities hold

sup
w∈W

|R(w)− R̃(w)|
R̃(w)

= op(1) (7)

and

sup
w∈W

|CV ∗(w)− R̃(w)|
R̃(w)

= op(1). (8)

We first consider (7). Observe that

ξ−1
n sup

w∈W

∣∣∣∣{µ(0)
n0+1 − µ̂

(0)
n0+1(w)

}2
−
{
µ

(0)
n0+1 − µ̃

(0)
n0+1(w)

}2
∣∣∣∣

= ξ−1
n sup

w∈W

∣∣∣{µ̂(0)
n0+1(w)− µ̃(0)

n0+1(w)
}{

µ̂
(0)
n0+1(w)− µ̃(0)

n0+1(w) + 2µ̃
(0)
n0+1(w) + 2µ

(0)
n0+1

}∣∣∣
= ξ−1

n sup
w∈W

∣∣∣∣∣
{

M∑
m=0

wm(θ̂(0)
m − θ̃(0)

m )T
∂µ̂

(0)
n0+1,m

θ̂
(0)
m

∣∣∣
θ̂
(0)
m =θ̄

}{
M∑
m=0

wm(θ̂(0)
m − θ̃(0)

m )T
∂µ̂

(0)
n0+1,m

θ̂
(0)
m

∣∣∣
θ̂
(0)
m =θ̄

+ 2
M∑
m=0

wmµ̃
(0)
n0+1,m + 2µ

(0)
n0+1

}∣∣∣∣∣
≤ ξ−1

n sup
w∈W

{
M∑
m=0

wm

∥∥∥θ̂(0)
m − θ̃(0)

m

∥∥∥∥∥∥∥∥∂µ̂
(0)
n0+1,m

θ̂
(0)
m

∣∣∣
θ̂
(0)
m =θ̄

∥∥∥∥∥
}{

M∑
m=0

wm

∥∥∥θ̂(0)
m − θ̃(0)

m

∥∥∥
×

∥∥∥∥∥∂µ̂
(0)
n0+1,m

θ̂
(0)
m

∣∣∣
θ̂
(0)
m =θ̄

∥∥∥∥∥+ 2
M∑
m=0

wm|µ̃(0)
n0+1,m|+ 2|µ(0)

n0+1|

}
= ξ−1

n Op(pn
−1/2M1/2 + p2n−1M)

= op(1), (9)

where the second equality uses Condition 6, the third equality uses Conditions 5 and 6, and
the last equality uses Condition 8. Therefore, we have

sup
w∈W

|R(w)− R̃(w)|
R̃(w)

≤ ξ−1
n sup

w∈W
|R(w)− R̃(w)|

= ξ−1
n sup

w∈W

∣∣∣∣E [{µ(0)
n0+1 − µ̂

(0)
n0+1(w)

}2
−
{
µ

(0)
n0+1 − µ̃

(0)
n0+1(w)

}2
]∣∣∣∣
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≤ E

[
ξ−1
n sup

w∈W

∣∣∣∣{µ(0)
n0+1 − µ̂

(0)
n0+1(w)

}2
−
{
µ

(0)
n0+1 − µ̃

(0)
n0+1(w)

}2
∣∣∣∣]

= o(1),

where the last equality is based on Condition 7 and (9). Hence, we obtain (7).

Next, we consider (8). Similar to the derivation of (9), we have

sup
w∈W

∣∣∣∣∣∣ 1

n0

J∑
j=1

∑
i∈Gj

[{
y

(0)
i − µ̂

(0)
i,[Gcj ](w)

}2
−
{
y

(0)
i − µ̃

(0)
i (w)

}2
]∣∣∣∣∣∣

= ξ−1
n sup

w∈W

∣∣∣∣∣∣ 1

n0

J∑
j=1

∑
i∈Gj

{
µ̂

(0)
i,[Gcj ](w)− µ̃(0)

i,[Gcj ](w)
}{

µ̂
(0)
i,[Gcj ](w)− µ̃(0)

i,[Gcj ](w) + 2µ̃
(0)
i,[Gcj ](w) + 2y

(0)
i

}∣∣∣∣∣∣
= ξ−1

n sup
w∈W

∣∣∣∣∣ 1

n0

J∑
j=1

∑
i∈Gj


M∑
m=0

wm(θ̂
(0)
m,[Gcj ] − θ̃

(0)
m )T

∂µ̂
(0)
i,m,[Gcj ]

θ̂
(0)
m,[Gcj ]

∣∣∣
θ̂
(0)

m,[Gc
j
]
=θ̄




M∑
m=0

wm

× (θ̂
(0)
m,[Gcj ] − θ̃

(0)
m )T

∂µ̂
(0)
i,m,[Gcj ]

θ̂
(0)
m,[Gcj ]

∣∣∣
θ̂
(0)

m,[Gc
j
]
=θ̄

+ 2
M∑
m=0

wmµ̃
(0)
i,m,[Gcj ] + 2µ

(0)
i + 2ε

(0)
i


∣∣∣∣∣

≤ ξ−1
n sup

w∈W

1

n0

J∑
j=1

∑
i∈Gj


M∑
m=0

wm

∥∥∥θ̂(0)
m,[Gcj ] − θ̃

(0)
m

∥∥∥
∥∥∥∥∥∥
∂µ̂

(0)
i,m,[Gcj ]

θ̂
(0)
m,[Gcj ]

∣∣∣
θ̂
(0)

m,[Gc
j
]
=θ̄

∥∥∥∥∥∥



M∑
m=0

wm

×
∥∥∥θ̂(0)

m,[Gcj ] − θ̃
(0)
m

∥∥∥
∥∥∥∥∥∥
∂µ̂

(0)
i,m,[Gcj ]

θ̂
(0)
m,[Gcj ]

∣∣∣
θ̂
(0)

m,[Gc
j
]
=θ̄

∥∥∥∥∥∥+ 2
M∑
m=0

wm|µ̃(0)
i,m,[Gcj ]|+ 2|µ(0)

i |+ 2|ε(0)
i |


= Op(pn

−1/2M1/2 + p2n−1M). (10)

Observe that

sup
w∈W

∣∣∣CV ∗(w)− R̃(w)
∣∣∣

R̃(w)

≤ ξ−1
n sup

w∈W

∣∣∣CV ∗(w)− R̃(w)
∣∣∣

= ξ−1
n sup

w∈W

∣∣∣∣∣∣ 1

n0

J∑
j=1

∑
i∈Gj

[{
y

(0)
i − µ̂

(0)
i,[Gcj ](w)

}2
− (y

(0)
i − µ

(0)
i )(y

(0)
i + µ

(0)
i )

]

− E
[{
µ

(0)
n0+1 − µ̃

(0)
n0+1(w)

}2
]∣∣∣∣∣∣

≤ ξ−1
n sup

w∈W

∣∣∣∣∣∣ 1

n0

n0∑
i=1

[{
y

(0)
i − µ̃

(0)
i (w)

}2
− (y

(0)
i − µ

(0)
i )(y

(0)
i + µ

(0)
i )

]
− E

[{
µ

(0)
n0+1

24



Optimal Parameter-Transfer Learning by Semiparametric Model Averaging

− µ̃(0)
n0+1(w)

}2
]∣∣∣∣∣∣+ ξ−1

n sup
w∈W

∣∣∣∣∣∣ 1

n0

J∑
j=1

∑
i∈Gj

[{
y

(0)
i − µ̂

(0)
i,[Gcj ](w)

}2
−
{
y

(0)
i − µ̃

(0)
i (w)

}2
]∣∣∣∣∣∣

= ξ−1
n sup

w∈W

∣∣∣∣∣∣ 1

n0

n0∑
i=1

[{
y

(0)
i − µ̃

(0)
i (w)

}2
− (y

(0)
i − µ

(0)
i )(y

(0)
i + µ

(0)
i )

]
− E

[{
µ

(0)
n0+1

− µ̃(0)
n0+1(w)

}2
]∣∣∣∣∣∣+ ξ−1

n Op(pn
−1/2M1/2 + p2n−1M)

≤ ξ−1
n sup

w∈W

∣∣∣∣∣ 1

n0

n0∑
i=1

[{
y

(0)
i − µ̃

(0)
i (w)

}2
− (y

(0)
i − µ

(0)
i )(y

(0)
i + µ

(0)
i )−

{
µ

(0)
i − µ̃

(0)
i (w)

}2
]∣∣∣∣∣

+ ξ−1
n sup

w∈W

∣∣∣∣∣ 1

n0

n0∑
i=1

{
µ

(0)
i − µ̃

(0)
i (w)

}2
− E

[{
µ

(0)
n0+1 − µ̃

(0)
n0+1(w)

}2
]∣∣∣∣∣

+ ξ−1
n Op(pn

−1/2M1/2 + p2n−1M)

= ξ−1
n sup

w∈W

∣∣∣∣∣ 1

n0

n0∑
i=1

{
µ

(0)
i − µ̃

(0)
i (w)

}2
− E

[{
µ

(0)
n0+1 − µ̃

(0)
n0+1(w)

}2
]∣∣∣∣∣

+ ξ−1
n sup

w∈W

∣∣∣∣∣ 1

n0

n0∑
i=1

{
2µ̃

(0)
i (w)(y

(0)
i − µ

(0)
i )
}∣∣∣∣∣

+ ξ−1
n Op(pn

−1/2M1/2 + p2n−1M), (11)

where the second equality is based on (10). Hence, to obtain (8), it suffices to prove

ξ−1
n sup

w∈W

∣∣∣∣∣ 1

n0

n0∑
i=1

{
µ

(0)
i − µ̃

(0)
i (w)

}2
− E

[{
µ

(0)
n0+1 − µ̃

(0)
n0+1(w)

}2
]∣∣∣∣∣ = op(1) (12)

and

ξ−1
n sup

w∈W

∣∣∣∣∣ 1

n0

n0∑
i=1

{
µ̃

(0)
i (w)(y

(0)
i − µ

(0)
i )
}∣∣∣∣∣ = op(1). (13)

To prove (12), observe that

sup
w∈W

∣∣∣∣∣ 1

n0

n0∑
i=1

{
µ

(0)
i − µ̃

(0)
i (w)

}2
− E
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∣∣∣∣∣∣

= sup
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∣∣∣∣∣∣ 1

n0

n0∑
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{
M∑
m=0

wm(µ
(0)
i − µ̃

(0)
i,m)

}2

− E

{ M∑
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wm(µ
(0)
n0+1 − µ̃

(0)
n0+1,m)

}2
∣∣∣∣∣∣

≤ sup
w∈W

M∑
m=0

M∑
m′=0

wmwm′

∣∣∣∣∣∣ 1

n0

n0∑
i=1

(µ
(0)
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i,m)(µ

(0)
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{
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× (µ
(0)
n0+1 − µ̃

(0)
n0+1,m′)

}∣∣∣∣∣∣
= n

−1/2
0 sup

w∈W

M∑
m=0

M∑
m′=0

wmwm′ η̂m,m′

≤ n
−1/2
0 sup

m,m′
η̂m,m′

= n
−1/2
0 op(ξnn

1/2
0 ), (14)

where

η̂m,m′ =

∣∣∣∣∣n−1/2
0

n0∑
i=1

[
(µ

(0)
i − µ̃

(0)
i,m)(µ

(0)
i − µ̃

(0)
i,m′)− E

{
(µ

(0)
n0+1 − µ̃

(0)
n0+1,m)(µ

(0)
n0+1 − µ̃

(0)
n0+1,m′)

}]∣∣∣∣∣ ,
and the last equality in (14) is due to the following (15) and (16).

From Condition 5, we have

var
{

(µ
(0)
i − µ̃

(0)
i,m)(µ

(0)
i − µ̃

(0)
i,m′)

}
= O(1) (15)

uniformly for m,m′ ∈ {0, . . . ,M}. By Chebyshev inequality, we derive that for any ν > 0,

Pr

{
ξ−1
n n

−1/2
0 sup

m,m′
η̂m,m′ > ν

}

≤
M∑
m=0

M∑
m′=0
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{
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≤ ξ−2
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(0)
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(0)
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(0)
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}
= O(ξ−2

n n−1
0 M2) = o(1). (16)

Together with Condition 8, we have supm,m′ η̂m,m′ = op(ξnn
1/2
0 ), and then obtain (12).

Similar to the derivation of (12), from Condition 5, we have

var
{
µ̃

(0)
i,m(y

(0)
i − µ

(0)
i )
}

= O(1) (17)

uniformly for m = 0, . . . ,M . Further, for any ν > 0,
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n sup

m

∣∣∣∣∣ 1
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(0)
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(0)
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}

≤
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m=0

Pr
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ξ−1
n

∣∣∣∣∣ 1
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n0∑
i=1

{
µ̃

(0)
i,m(y

(0)
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i )
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}
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{
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}
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= O(ξ−2
n n−1

0 M) = o(1). (18)

Therefore, we have
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∣∣∣∣∣ 1
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where the last equality is based on (17) and (18). Then (13) is obtained. This completes
the proof of Theorem 1.

A.4 Proof of Theorem 2

Proof Consider that Theorem 2 trivially holds if Ic is empty, thus we just need to discuss
the case that Ic is not empty. Similar to the derivation of (14), for any constant ν > 0,
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× (µ
(0)
n0+1 − µ̃

(0)
n0+1,m′)

}∣∣∣∣∣ > Mn
−1/2
0 ν

}

≤ M−2ν−2
M∑
m=0

M∑
m′=0

var
{

(µ
(0)
i − µ̃

(0)
i,m)(µ

(0)
i − µ̃

(0)
i,m′)

}
= O(ν−2),

where the second inequality uses Boole’s inequality, the third inequality uses Chebyshev’s
inequality, and the last equality is based on (15). Therefore, it follows that

sup
w∈W

∣∣∣∣∣ 1

n0

n0∑
i=1

{
µ

(0)
i − µ̃

(0)
i (w)

}2
− E

[{
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(0)
n0+1 − µ̃

(0)
n0+1(w)
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]∣∣∣∣∣ = Op(n
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0 M). (19)

Similarly,
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w∈W
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n0

n0∑
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(0)
i (w)(y

(0)
i − µ

(0)
i )
}∣∣∣∣∣ = Op(n

−1/2
0 M1/2). (20)

Hence, combining (19), (20), and (11), we have

CV ∗(w) = R̃(w) +Op(pn
−1/2M1/2 + p2n−1M). (21)

Let ϑ be a weight vector with ϑm = 0 for m ∈ I and ϑm = wm/(1 − τ) for m ∈ Ic,
where τ =

∑
m∈I wm. According to Lemma 7 and Lemma 8 in Stone (1986), we have

‖g(0)− g̃(0)‖∞ = O{(v(0))1/2−κ}, where ‖f‖∞ = sup0≤x≤1|f(x)| denotes the supnorm of the
function f on [0, 1]. Then using ϑ, we have
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{∑
m∈Ic
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+ E

(
2τ

{∑
m∈Ic

wm(µ
(0)
n0+1 − µ̃

(0)
n0+1,m)

}{
g(0)(z

(0)
n0+1)− g̃(0)(z

(0)
n0+1)

})

= (1− τ)2R̃(ϑ) +O{(v(0))−2κ}+O{(v(0))1/2−κ}E

{∑
m∈Ic

wm(µ
(0)
n0+1 − µ̃

(0)
n0+1,m)

}
= (1− τ)2R̃(ϑ) +O{(v(0))−2κ}+O{(v(0))1/2−κ}

= (1− τ)2R̃(ϑ) +O{(v(0))1/2−κ}, (22)

where the fifth equality is based on the definition of informative models that have the same
pseudo-true values with the target model, the sixth equality is similar to the derivation
of (6), and the last but one equality uses Condition 10. Here, the notation R̃ denotes the
function of ϑ with the same definition as previous. Then based on (21), (22), and Condition
9, replacing w with ŵ, we have

CV ∗(ŵ) = (1− τ̂)2R̃(ϑ̂) +Op(pn
−1/2M1/2 + p2n−1M). (23)

Note that in all the functions of w such as R̂(w), we calculate expectations firstly and then
plug in ŵ. Let w̆ be the weight vector with the first component one and the others zero.
Then we have

CV ∗(w̆) = R̃(w̆) +Op(pn
−1/2M1/2 + p2n−1M)

= O((v(0))−2κ) +Op(pn
−1/2M1/2 + p2n−1M)

= Op(pn
−1/2M1/2 + p2n−1M). (24)

Next, from (23), (24), and the fact that ŵ minimizes CV ∗(w), we have

(1− τ̂)2R̃(ϑ̂) +Op(pn
−1/2M1/2 + p2n−1M)

≤ CV ∗(w̆)

= Op(pn
−1/2M1/2 + p2n−1M).

Hence,
(1− τ̂)2 inf

w∈W
R̃(w) ≤ Op(pn−1/2M1/2 + p2n−1M), (25)

and it implies τ̂ → 1 in probability based on Condition 11. This completes the proof.

A.5 Proof of Corollary 3

Proof To prove the corollary, we require considering the cases of the correctly specified
target model and the misspecified target model. When the target model is misspecified,
the result of Theorem 1 ensures that our method yields the minimum risk, and it obviously
implies the conclusion.

Next, we mainly discuss the case of the correctly specified target model. When the
target model is correct, the prediction of least squares estimator on target data can be
written as

µ̂
(0)
n0+1 − µ

(0)
n0+1 = (µ̂

(0)
n0+1 − µ̃

(0)
n0+1) + (µ̃

(0)
n0+1 − µ

(0)
n0+1)
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= Op(p0n
−1/2
0 M1/2) +O((v(0))−κ)

= Op(p0n
−1/2
0 M1/2),

where the last equality is based on the definition of v(0) and Condition 1. Then the risk
of least squares estimator on target data is O(p2

0n
−1
0 M). In addition, the prediction of

Trans-SMAP satisfies
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(0)
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= µ
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+
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(0)
n0+1 +Op(pn

−1/2M1/2) +O{(v(0))1/2−κ}+Op(1− τ̂)

= µ
(0)
n0+1 +Op(pn

−1/2M1/2) +O{(v(0))1/2−κ}+Op(p
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×
{

inf
w∈W

R̃(w)

}−1/2

= µ
(0)
n0+1 +Op{pn−1/2M1/2},

where the last but one equality is based on (25) and the last equality is based on Conditions
1, 9 and 12. Therefore, the risk of Trans-SMAP is Op(p

2n−1M). Since it obviously has
p2n−1 > p2

0n
−1
0 , we have R̄(ŵ) = Op(R̄0) as long as p2n−1 = O(p2

0n
−1
0 ). This completes the

proof.

Appendix B. Implementation Details in Numerical Experiments

B.1 Implementation Details of Different Methods

In our simulation study, we implement all the numerical experiments with R software. To
implement our Trans-SMAP procedure, we apply the cubic B-splines to approximate ad-

ditive functions, set r
(m)
l = 3 for all spline estimators, and specify the number of knots

through the argument “df” in the R function “bs”. Here, we set df = 3 for each spline
estimator in M + 1 models for simplicity and efficiency. Note that the number of knots can
also be properly determined by criteria such as cross-validation. Since the estimation accu-
racy of nonparametric components is not our goal, to reduce the computational complexity,
we do not focus on selecting the number of knots and simply adopt a fixed setting in the
simulation study.
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The optimization of our weight criterion can be formulated as a constrained quadratic
programming problem, which can be efficiently solved by the existing function “solve.QP”

in the R software package “quadprog”. Specifically, let Q = n−1
0

∑J
j=1

∑
i∈Gj{(y

(0)
i 1 −

ŷi,[Gcj ])(y
(0)
i 1 − ŷi,[Gcj ])

T }, where ŷi,[Gcj ] = (µ̂
(0)
i,0,[Gcj ], . . . , µ̂

(0)
i,M,[Gcj ])

T and 1 is an (M + 1) × 1

column vector with ones. Further, with
∑M

m=0wm = 1, we have

CV (w) =
1

n0

J∑
j=1

∑
i∈Gj

{
y

(0)
i − µ̂

(0)
i,[Gcj ](w)

}2

=
1
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j=1

∑
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{
wT (y

(0)
i 1− ŷi,[Gcj ])

}2

= wT

 1
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J∑
j=1

∑
i∈Gj

{
(y

(0)
i 1− ŷi,[Gcj ])(y

(0)
i 1− ŷi,[Gcj ])

T
}w

= wTQw.

The recent transfer learning methods, Trans-Lasso and Trans-GLM, can be easily imple-
mented via open-source programs and the R package “glmtrans”. In addition, we have also
attempted to compare our method with the integrative analysis method for semiparametric
models (Li et al., 2019) in a small experiment. We find that the integrative analysis method
is less effective than any other method used in this article, which possibly due to the fol-
lowing reasons. First, it adopts a group lasso type penalization that needs a suitable tuning
parameter selection, and the resultant biased estimators may lead to an unsatisfactory pre-
diction. Second, the goal and framework of integrative analysis, which can be regarded as
multi-task learning, differ from transfer learning. It aims to identify important predictors
and estimate parameters in high-dimensional settings and has no theoretical guarantee for
out-of-sample prediction, meanwhile all the models are assumed to be correctly specified
and of equal concern.

B.2 Computational Complexity Analysis of the Trans-SMAP Procedure

The calculation of our algorithm is mainly concentrated in the following two stages: cross-
validation (Step 3.1) and the optimization of weight criterion (Step 4). In the cross-
validation step, we need to solve the parameter estimation of each model in each itera-
tion. The computational burden of this step mainly comes from the B-spline expansion of
nonparametric components and least squares estimation of equation (2). Specifically, the

B-splines of degree r
(m)
l for the lth covariate in function g

(m)
l (·) require O((r

(m)
l )2) computa-

tion using De Boor’s algorithm (De Boor, 2001; Toraichi et al., 1987). Assuming that J is a

positive constant, the computational complexity of Step 3.1 is
∑M

m=0O(qm(r
(m)
l )2 +p2

mnm).
Moreover, we can estimate the M + 1 models in this step in parallel.

In the optimization of weight criterion step, Appendix B.1 shows that CV (w) is a
quadratic function of weights. We can formulate the optimization problem as a constrained
quadratic programming problem. Under some weak conditions, we can use the ellipsoid
or interior point method to solve the quadratic programming problem in polynomial time
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Figure 4: The scaled averaged MSE of out-of-sample prediction in homogeneous dimension
settings with (a) M = 3 and (b) M = 6. Since the numerical experiments of
Trans-Lasso for n0 ∈ {300, 500} and R2 = 0.1 are infeasible, the corresponding
results are not plotted.

(Kozlov et al., 1979). The computational complexity of solving weights in (5) is O((M +

1)n2
0). Hence, the total computational complexity of our algorithm is

∑M
m=0O(qm(r

(m)
l )2 +

p2
mnm) +O((M + 1)n2

0).

In summary, although our algorithm may seem complicated, the computational burden
is acceptable in theory. Moreover, the computational efficiency has been validated in our
numerical simulation studies. For instance, we compare several cross-validation procedures
with different choices of J in Appendix C.5. The results show that even the most time-
consuming procedure, leave-one-out cross-validation, takes only 3.865 seconds in a single
replicate under the settings of M = 3 and n0 = 500. Therefore, we believe that our proposed
algorithm is computationally feasible for practical applications.

Appendix C. Additional Numerical Results

C.1 Supplemental Results in Homogeneous Dimension Settings

Figure 4 presents the relationship between the R2 and the scaled MSE with respect to
Trans-SMAP. It can be seen from Figure 4 that Trans-SMAP yields the smallest MSE over
most of the range of R2. Specifically, the advantage of our method over Trans-SimpMA,
Trans-SBIC, Trans-SAIC, LSE-All, Trans-Lasso, and Trans-GLM becomes apparent as R2

increases gradually. For example, when the target model is correctly specified, the gain of
our method is possibly due to large weights being assigned to informative models, which
can also be validated from Figure 1 in Section 4.2. Note that Trans-SMAP always performs
slightly better than LSE-Tar in all of our scenarios. As the sample size increases, Trans-
SMAP still dominates alternative methods for a wide range of R2.
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Figure 5: The scaled averaged MSE of out-of-sample prediction in heterogeneous dimension
settings with (a) M = 3 and (b) M = 6. Since the numerical experiments of
Trans-Lasso for n0 ∈ {300, 500} and R2 = 0.1 are infeasible, the corresponding
results are not plotted.

C.2 Simulation Study in Heterogeneous Dimension Settings

In this section, we design additional settings similar to that in Section 4.1 except for gener-
ating multiple data sets with heterogeneous dimensions of nonparametric parts. For M = 3,
we set the dimensions of the nonparametric component for each model as (q0, q1, q2, q3) =
(3, 2, 2, 1), and the following nonlinear functions for different models are considered: g(0)(u) =
2(u1− 0.5)3 + sin(πu2) +u3, g(1)(u) = 2(u1− 0.5)3 + sin(πu1) +u2, g(2)(u) = 2(u1− 0.5)3 +
sin(πu2) + u1, and g(3)(u) = 2(u1 − 0.5)3 + sin(πu1) + u1. For M = 6, let the dimensions
of the nonparametric variables be (q0, ..., q6) = (3, 2, 2, 1, 3, 2, 2), and let the corresponding
nonlinear functions for different models be g(0)(u) = 2(u1− 0.5)3 + sin(πu2) +u3, g(1)(u) =
2(u1− 0.5)3 + sin(πu1) +u2, g(2)(u) = 2(u1− 0.5)3 + sin(πu2) +u1, g(3)(u) = 2(u1− 0.5)3 +
sin(πu1) +u1, g(4)(u) = 2(u1−0.5)3 + cos(πu2) +u3, g(5)(u) = 2(u1−0.5)3 + cos(πu1) +u2,
and g(6)(u) = 2(u1 − 0.5)3 + cos(πu2) + u1. All the other settings are consistent with the
design in Section 4.1.

Since the frameworks of Trans-Lasso and Trans-GLM require equal dimensions of co-
variates, we omit these two methods in this simulation study. The MSE of our proposed
Trans-SMAP and alternative methods are shown in Table 3 and Figure 5. The correspond-
ing results are similar to that in Figure 4 and Table 1 in Section 4.2. It can be seen that
our method still outperforms all the competitive methods under various simulation settings.
Therefore, it reflects the flexibility and effectiveness of our approach in more practical sce-
narios.

C.3 Stability Analysis under Various Dissimilarities of Parameter Effects

In Section 4.1, we only design the comparison studies under fixed differences of parametric
coefficients. To further demonstrate the stability of our procedure in potential negative
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Correct Target Model Misspecified Target Model

Method n0 = 150 n0 = 300 n0 = 500 n0 = 150 n0 = 300 n0 = 500

M = 3 Trans-SMAP 0.026 0.013 0.008 0.035 0.021 0.016
(0.009) (0.005) (0.003) (0.011) (0.005) (0.003)

Trans-SimpMA 0.238 0.224 0.219 0.218 0.206 0.199
(0.037) (0.029) (0.024) (0.034) (0.027) (0.021)

Trans-SBIC 0.182 0.169 0.166 0.173 0.163 0.156
(0.025) (0.021) (0.017) (0.026) (0.020) (0.016)

Trans-SAIC 0.180 0.167 0.165 0.171 0.162 0.156
(0.025) (0.021) (0.017) (0.026) (0.019) (0.016)

LSE-tar 0.029 0.014 0.009 0.039 0.022 0.016
(0.011) (0.005) (0.003) (0.013) (0.006) (0.003)

LSE-All 0.329 0.289 0.244 0.300 0.266 0.220
(0.060) (0.045) (0.032) (0.057) (0.040) (0.028)

Uplift Rate 11.54% 7.69% 12.50% 11.43% 4.76% 0.00%

M = 6 Trans-SMAP 0.025 0.013 0.007 0.033 0.021 0.015
(0.009) (0.005) (0.003) (0.010) (0.005) (0.003)

Trans-SimpMA 0.210 0.200 0.196 0.192 0.184 0.179
(0.024) (0.020) (0.016) (0.024) (0.017) (0.015)

Trans-SBIC 0.187 0.177 0.173 0.176 0.168 0.162
(0.021) (0.017) (0.015) (0.022) (0.015) (0.013)

Trans-SAIC 0.185 0.176 0.173 0.174 0.167 0.162
(0.021) (0.017) (0.015) (0.022) (0.015) (0.013)

LSE-tar 0.030 0.015 0.009 0.038 0.023 0.017
(0.011) (0.006) (0.003) (0.011) (0.006) (0.003)

LSE-All 0.301 0.249 0.227 0.276 0.228 0.208
(0.043) (0.030) (0.022) (0.041) (0.026) (0.020)

Uplift Rate 20.00% 15.38% 28.57% 15.15% 9.52% 13.33%

Table 3: The averaged MSE of out-of-sample prediction in heterogeneous dimension set-
tings. The standard errors are given in parenthesis.
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transfer scenarios, we conduct the following simulation by varying the difference of para-
metric coefficients for the target model. Specifically, let the values of δ2 for M = 3 and
δ3, δ6 for M = 6 in coefficient vectors vary from {0.1, 0.3, 0.5, 0.7, 0.9}, and all the other
settings are consistent with the settings in Section 4.1. Here, we display the results of
averaged MSE based on 500 replications in homoscedastic settings with the fixed level of
noise, where Tables 4-5 are corresponding results associated with heterogeneous dimension
settings and Tables 6-7 are for homogeneous dimension settings.

Similarly, it is clearly observed from all the tables that our proposed Trans-SMAP still
yields significant improvement compared to competitive methods. In addition, we can find
that the prediction accuracy of Trans-SMAP, LSE-Tar, Trans-Lasso, and Trans-GLM is in-
sensitive to the levels of dissimilarity, while the performance of other methods gets worse as
the difference increases. Specifically, the stable performance shown by Trans-SMAP, Trans-
Lasso, and Trans-GLM is due to their suitable strategies of knowledge transfer, among which
our method brings additional predictive benefits compared to LSE-Tar. Note that the infe-
rior performance of Trans-Lasso and Trans-GLM compared to LSE-Tar mainly results from
the semiparametric model settings. For the dissimilarity sensitive methods, such as Trans-
SimpMA, Trans-SBIC, Trans-SAIC, and LSE-All, the results demonstrate that transferring
information from certain sources even leads to unsatisfactory performance compared to
LSE-Tar. Therefore, in a sense, the proposed Trans-SMAP has ability to avoid the negative
transfer problem.

C.4 Simulation Study in Heteroscedastic Settings

In this section, we supplement additional simulation studies in heteroscedastic settings to
evaluate our method comprehensively. Based on the model settings in Section 2.1, our
method allows for heteroscedastic cases. For simplicity, we only consider generating data
following the homogeneous settings except that the random errors of the m-th model are

normally distributed with heteroscedasticity as ε
(m)
i ∼ N(0, 0.5(x

(m)
i1 )2) for m = 0, . . . ,M .

The corresponding results of MSE are presented in Tables 8 and 9. According to the
results, Trans-SMAP similarly performs the best in both the correct and misspecified target
model settings. It is worth noting that the improvement of Trans-SMAP is more significant
than those in homoscedastic settings based on the uplift rate in the tables.

C.5 Comparison of Various CV Criteria

To examine the impact of the choice of J in our cross-validation criterion, we analyze
the performance of the 2-fold CV, 5-fold CV, 10-fold CV, and leave-one-out CV based
Trans-SMAP in terms of the MSE and time consumption. For simplicity, we generate data
following the homogeneous settings for M = 3 as an example, and the corresponding results
are illustrated in Figure 6.

From Figure 6 (a) and (c), it can be seen that all the CV criteria based Trans-SMAP
perform similarly better than alternative methods. However, the leave-one-out procedure
takes a larger amount of time than alternative criteria as the sample size increases based
on Figure 6 (b). For instance, the 5-fold CV takes 0.039 seconds that is approximately
100 times faster than 3.865 seconds of the leave-one-out CV when the target sample size
n0 = 500. Hence, we advocate using the J-fold CV criterion in this article instead of the
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Correct Target Model Misspecified Target Model

δ2 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

n0 = 150 Trans-SMAP 0.026 0.027 0.027 0.026 0.026 0.035 0.035 0.034 0.034 0.035
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011) (0.010) (0.011)

Trans-SimpMA 0.115 0.237 0.431 0.693 1.030 0.106 0.221 0.405 0.654 0.976
(0.024) (0.038) (0.051) (0.074) (0.097) (0.023) (0.035) (0.052) (0.066) (0.086)

Trans-SBIC 0.054 0.183 0.414 0.744 1.191 0.054 0.175 0.398 0.731 1.152
(0.013) (0.028) (0.051) (0.089) (0.137) (0.013) (0.027) (0.052) (0.087) (0.129)

Trans-SAIC 0.054 0.181 0.409 0.735 1.176 0.054 0.173 0.393 0.722 1.138
(0.013) (0.028) (0.051) (0.088) (0.136) (0.013) (0.027) (0.051) (0.086) (0.128)

LSE-tar 0.029 0.031 0.030 0.031 0.030 0.039 0.039 0.038 0.039 0.039
(0.011) (0.012) (0.011) (0.012) (0.011) (0.012) (0.013) (0.012) (0.011) (0.012)

LSE-All 0.153 0.326 0.601 0.976 1.445 0.140 0.303 0.564 0.914 1.386
(0.037) (0.059) (0.099) (0.167) (0.242) (0.035) (0.054) (0.100) (0.153) (0.237)

Uplift Rate 11.54% 14.81% 11.11% 19.23% 15.38% 11.43% 11.43% 11.76% 14.71% 11.43%

n0 = 300 Trans-SMAP 0.013 0.013 0.013 0.013 0.013 0.021 0.021 0.021 0.020 0.021
(0.005) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Trans-SimpMA 0.102 0.226 0.416 0.680 1.009 0.091 0.206 0.394 0.648 0.971
(0.017) (0.028) (0.043) (0.062) (0.080) (0.016) (0.026) (0.041) (0.059) (0.076)

Trans-SBIC 0.043 0.171 0.399 0.731 1.168 0.042 0.162 0.388 0.715 1.149
(0.008) (0.021) (0.042) (0.072) (0.109) (0.008) (0.018) (0.041) (0.069) (0.103)

Trans-SAIC 0.042 0.170 0.396 0.725 1.159 0.042 0.161 0.385 0.709 1.140
(0.008) (0.021) (0.041) (0.071) (0.109) (0.008) (0.018) (0.041) (0.069) (0.103)

LSE-tar 0.014 0.014 0.014 0.015 0.014 0.022 0.022 0.022 0.022 0.022
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

LSE-All 0.129 0.292 0.542 0.889 1.324 0.115 0.267 0.517 0.858 1.265
(0.024) (0.042) (0.072) (0.119) (0.174) (0.022) (0.041) (0.072) (0.114) (0.169)

Uplift Rate 7.69% 7.69% 7.69% 15.38% 7.69% 4.76% 4.76% 4.76% 10.00% 4.76%

n0 = 500 Trans-SMAP 0.008 0.008 0.008 0.008 0.007 0.016 0.016 0.015 0.016 0.015
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Trans-SimpMA 0.099 0.219 0.412 0.675 1.003 0.086 0.200 0.385 0.641 0.963
(0.014) (0.024) (0.036) (0.053) (0.078) (0.013) (0.023) (0.035) (0.052) (0.067)

Trans-SBIC 0.039 0.165 0.394 0.727 1.156 0.038 0.157 0.380 0.709 1.136
(0.007) (0.018) (0.036) (0.064) (0.106) (0.006) (0.016) (0.037) (0.061) (0.090)

Trans-SAIC 0.039 0.165 0.394 0.726 1.155 0.038 0.157 0.380 0.708 1.135
(0.007) (0.018) (0.036) (0.064) (0.106) (0.006) (0.016) (0.036) (0.061) (0.090)

LSE-tar 0.009 0.009 0.009 0.009 0.008 0.017 0.017 0.016 0.016 0.016
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

LSE-All 0.116 0.244 0.446 0.723 1.055 0.101 0.224 0.417 0.684 1.024
(0.019) (0.032) (0.053) (0.083) (0.123) (0.017) (0.03) (0.052) (0.083) (0.121)

Uplift Rate 12.50% 12.50% 12.50% 12.50% 14.29% 6.25% 6.25% 6.67% 0.00% 6.67%

Table 4: The averaged MSE of out-of-sample prediction in heterogeneous dimension settings
for M = 3. The standard errors are given in parenthesis.
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Correct Target Model Misspecified Target Model

δ3, δ6 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

n0 = 150 Trans-SMAP 0.025 0.025 0.025 0.025 0.025 0.033 0.033 0.033 0.033 0.033
(0.010) (0.010) (0.010) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011)

Trans-SimpMA 0.076 0.209 0.439 0.757 1.171 0.069 0.195 0.410 0.721 1.126
(0.014) (0.026) (0.041) (0.063) (0.092) (0.014) (0.022) (0.040) (0.060) (0.084)

Trans-SBIC 0.050 0.186 0.440 0.808 1.278 0.050 0.177 0.415 0.775 1.247
(0.011) (0.022) (0.044) (0.078) (0.118) (0.011) (0.020) (0.042) (0.072) (0.112)

Trans-SAIC 0.050 0.184 0.434 0.797 1.261 0.050 0.175 0.410 0.765 1.231
(0.011) (0.022) (0.043) (0.077) (0.117) (0.011) (0.020) (0.042) (0.071) (0.111)

LSE-tar 0.030 0.030 0.030 0.030 0.029 0.038 0.038 0.038 0.039 0.038
(0.011) (0.012) (0.011) (0.011) (0.011) (0.012) (0.011) (0.012) (0.012) (0.012)

LSE-All 0.104 0.303 0.643 1.126 1.727 0.093 0.279 0.599 1.067 1.673
(0.020) (0.045) (0.083) (0.143) (0.227) (0.019) (0.040) (0.079) (0.146) (0.220)

Uplift Rate 20.00% 20.00% 20.00% 20.00% 16.00% 15.15% 15.15% 15.15% 18.18% 15.15%

n0 = 300 Trans-SMAP 0.012 0.012 0.012 0.012 0.013 0.020 0.020 0.020 0.021 0.020
(0.005) (0.004) (0.004) (0.005) (0.004) (0.005) (0.005) (0.005) (0.004) (0.005)

Trans-SimpMA 0.065 0.200 0.426 0.747 1.151 0.058 0.183 0.400 0.710 1.111
(0.009) (0.020) (0.034) (0.053) (0.081) (0.009) (0.018) (0.033) (0.054) (0.078)

Trans-SBIC 0.040 0.177 0.427 0.795 1.266 0.040 0.167 0.408 0.762 1.237
(0.006) (0.017) (0.035) (0.063) (0.101) (0.006) (0.016) (0.036) (0.064) (0.100)

Trans-SAIC 0.040 0.176 0.425 0.791 1.260 0.040 0.166 0.406 0.759 1.231
(0.006) (0.017) (0.035) (0.063) (0.101) (0.006) (0.016) (0.036) (0.063) (0.100)

LSE-tar 0.014 0.014 0.014 0.014 0.015 0.022 0.023 0.022 0.023 0.023
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.005) (0.005)

LSE-All 0.082 0.249 0.529 0.921 1.431 0.073 0.228 0.494 0.881 1.386
(0.013) (0.029) (0.057) (0.096) (0.155) (0.012) (0.026) (0.056) (0.091) (0.148)

Uplift Rate 16.67% 16.67% 16.67% 16.67% 15.38% 10.00% 15.00% 10.00% 9.52% 15.00%

n0 = 500 Trans-SMAP 0.008 0.007 0.008 0.007 0.008 0.015 0.015 0.015 0.015 0.015
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Trans-SimpMA 0.061 0.195 0.420 0.739 1.148 0.053 0.177 0.393 0.706 1.099
(0.008) (0.017) (0.031) (0.054) (0.075) (0.006) (0.016) (0.029) (0.051) (0.075)

Trans-SBIC 0.036 0.173 0.421 0.784 1.258 0.035 0.162 0.401 0.760 1.223
(0.005) (0.015) (0.032) (0.061) (0.090) (0.004) (0.014) (0.031) (0.058) (0.093)

Trans-SAIC 0.036 0.172 0.421 0.783 1.255 0.035 0.162 0.400 0.758 1.220
(0.005) (0.015) (0.032) (0.061) (0.090) (0.004) (0.014) (0.031) (0.058) (0.092)

LSE-tar 0.009 0.008 0.009 0.009 0.009 0.016 0.016 0.016 0.016 0.016
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

LSE-All 0.074 0.227 0.484 0.843 1.319 0.064 0.207 0.453 0.810 1.264
(0.010) (0.022) (0.043) (0.079) (0.123) (0.008) (0.021) (0.040) (0.073) (0.120)

Uplift Rate 12.50% 14.29% 12.50% 28.57% 12.50% 6.67% 6.67% 6.67% 6.67% 6.67%

Table 5: The averaged MSE of out-of-sample prediction in heterogeneous dimension settings
forM = 6. Set the values of δ3 and δ6 be equal but vary from {0.1, 0.3, 0.5, 0.7, 0.9}.
The standard errors are given in parenthesis.
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Correct Target Model Misspecified Target Model

δ2 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

n0 = 150 Trans-SMAP 0.026 0.026 0.026 0.027 0.026 0.034 0.034 0.034 0.035 0.035
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011)

Trans-SimpMA 0.116 0.238 0.427 0.694 1.026 0.104 0.218 0.404 0.660 0.976
(0.024) (0.037) (0.055) (0.073) (0.095) (0.022) (0.036) (0.051) (0.071) (0.094)

Trans-SBIC 0.056 0.188 0.424 0.777 1.228 0.055 0.179 0.414 0.758 1.202
(0.013) (0.028) (0.054) (0.090) (0.134) (0.013) (0.027) (0.051) (0.087) (0.138)

Trans-SAIC 0.055 0.183 0.411 0.752 1.188 0.054 0.173 0.401 0.733 1.162
(0.013) (0.028) (0.052) (0.087) (0.130) (0.012) (0.027) (0.050) (0.085) (0.134)

LSE-Tar 0.030 0.031 0.030 0.030 0.030 0.038 0.037 0.038 0.038 0.039
(0.011) (0.011) (0.012) (0.011) (0.011) (0.012) (0.011) (0.012) (0.012) (0.012)

LSE-All 0.172 0.347 0.616 0.997 1.456 0.153 0.317 0.579 0.958 1.408
(0.040) (0.066) (0.107) (0.164) (0.224) (0.036) (0.059) (0.101) (0.160) (0.218)

Trans-Lasso 0.123 0.124 0.123 0.125 0.123 0.130 0.130 0.131 0.132 0.134
(0.014) (0.015) (0.014) (0.016) (0.013) (0.014) (0.014) (0.015) (0.015) (0.016)

Trans-GLM 0.125 0.125 0.124 0.126 0.124 0.133 0.133 0.133 0.134 0.134
(0.018) (0.018) (0.017) (0.019) (0.016) (0.018) (0.019) (0.019) (0.018) (0.019)

Uplift Rate 15.38% 19.23% 15.38% 11.11% 15.38% 11.76% 8.82% 11.76% 8.57% 11.43%

n0 = 300 Trans-SMAP 0.013 0.013 0.013 0.013 0.013 0.021 0.021 0.020 0.021 0.021
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Trans-SimpMA 0.103 0.224 0.415 0.685 1.013 0.092 0.204 0.388 0.646 0.966
(0.018) (0.028) (0.041) (0.058) (0.085) (0.016) (0.025) (0.039) (0.057) (0.080)

Trans-SBIC 0.044 0.172 0.406 0.757 1.204 0.043 0.164 0.391 0.729 1.171
(0.009) (0.020) (0.042) (0.072) (0.116) (0.008) (0.020) (0.041) (0.075) (0.110)

Trans-SAIC 0.043 0.169 0.398 0.741 1.179 0.042 0.161 0.383 0.714 1.147
(0.008) (0.020) (0.042) (0.070) (0.114) (0.008) (0.020) (0.040) (0.074) (0.108)

LSE-Tar 0.014 0.015 0.014 0.014 0.014 0.022 0.022 0.022 0.023 0.022
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006)

LSE-All 0.146 0.305 0.555 0.908 1.336 0.132 0.279 0.521 0.861 1.296
(0.027) (0.044) (0.071) (0.116) (0.171) (0.026) (0.038) (0.068) (0.111) (0.178)

Trans-Lasso 0.109 0.110 0.109 0.109 0.110 0.117 0.117 0.117 0.118 0.117
(0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.008) (0.009) (0.009) (0.008)

Trans-GLM 0.109 0.109 0.109 0.108 0.109 0.117 0.116 0.116 0.117 0.116
(0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.008) (0.008) (0.009) (0.008)

Uplift Rate 7.69% 15.38% 7.69% 7.69% 7.69% 4.76% 4.76% 10.00% 9.52% 4.76%

n0 = 500 Trans-SMAP 0.008 0.008 0.008 0.008 0.008 0.016 0.015 0.015 0.015 0.015
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Trans-SimpMA 0.097 0.221 0.408 0.675 1.008 0.085 0.198 0.383 0.639 0.965
(0.014) (0.022) (0.038) (0.052) (0.078) (0.012) (0.021) (0.035) (0.052) (0.072)

Trans-SBIC 0.039 0.165 0.392 0.728 1.168 0.038 0.156 0.379 0.710 1.137
(0.006) (0.016) (0.036) (0.065) (0.104) (0.006) (0.016) (0.033) (0.062) (0.094)

Trans-SAIC 0.039 0.165 0.391 0.726 1.165 0.037 0.155 0.378 0.707 1.134
(0.006) (0.015) (0.036) (0.064) (0.103) (0.006) (0.016) (0.033) (0.061) (0.094)

LSE-Tar 0.009 0.009 0.009 0.008 0.009 0.017 0.016 0.016 0.016 0.016
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

LSE-All 0.129 0.261 0.458 0.739 1.087 0.114 0.235 0.430 0.696 1.030
(0.020) (0.031) (0.055) (0.084) (0.127) (0.018) (0.029) (0.052) (0.085) (0.118)

Trans-Lasso 0.104 0.104 0.104 0.104 0.104 0.112 0.112 0.112 0.111 0.112
(0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.006) (0.007)

Trans-GLM 0.103 0.103 0.103 0.103 0.104 0.111 0.111 0.111 0.110 0.111
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.006) (0.006) (0.006)

Uplift Rate 12.50% 12.50% 12.50% 0.00% 12.50% 6.25% 6.67% 6.67% 6.67% 6.67%

Table 6: The averaged MSE of out-of-sample prediction in homogeneous dimension settings
for M = 3. The standard errors are given in parenthesis.
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Correct Target Model Misspecified Target Model

δ3, δ6 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

n0 = 150 Trans-SMAP 0.026 0.025 0.025 0.025 0.025 0.034 0.034 0.034 0.032 0.034
(0.010) (0.009) (0.010) (0.010) (0.010) (0.011) (0.011) (0.010) (0.010) (0.010)

Trans-SimpMA 0.077 0.211 0.437 0.756 1.169 0.069 0.195 0.411 0.719 1.117
(0.015) (0.026) (0.039) (0.063) (0.089) (0.014) (0.024) (0.039) (0.061) (0.088)

Trans-SBIC 0.052 0.192 0.447 0.824 1.316 0.051 0.184 0.432 0.794 1.269
(0.011) (0.023) (0.043) (0.076) (0.126) (0.012) (0.022) (0.045) (0.079) (0.119)

Trans-SAIC 0.051 0.186 0.433 0.797 1.271 0.050 0.179 0.418 0.768 1.226
(0.011) (0.023) (0.042) (0.074) (0.122) (0.012) (0.022) (0.043) (0.077) (0.116)

LSE-Tar 0.031 0.029 0.030 0.030 0.030 0.039 0.039 0.039 0.037 0.038
(0.012) (0.011) (0.011) (0.011) (0.012) (0.013) (0.013) (0.012) (0.011) (0.012)

LSE-All 0.141 0.335 0.669 1.146 1.748 0.127 0.312 0.637 1.083 1.677
(0.025) (0.049) (0.081) (0.145) (0.233) (0.023) (0.043) (0.085) (0.138) (0.221)

Trans-Lasso 0.122 0.121 0.123 0.124 0.124 0.130 0.131 0.132 0.132 0.133
(0.013) (0.013) (0.014) (0.015) (0.015) (0.015) (0.014) (0.015) (0.014) (0.015)

Trans-GLM 0.125 0.122 0.125 0.126 0.125 0.134 0.133 0.133 0.133 0.133
(0.017) (0.015) (0.017) (0.018) (0.018) (0.019) (0.018) (0.018) (0.018) (0.017)

Uplift Rate 19.23% 16.00% 20.00% 20.00% 20.00% 14.71% 14.71% 14.71% 15.63% 11.76%

n0 = 300 Trans-SMAP 0.012 0.013 0.012 0.012 0.013 0.020 0.020 0.020 0.020 0.020
(0.005) (0.005) (0.004) (0.005) (0.005) (0.005) (0.004) (0.005) (0.005) (0.005)

Trans-SimpMA 0.066 0.200 0.427 0.748 1.156 0.058 0.184 0.397 0.705 1.110
(0.010) (0.020) (0.035) (0.056) (0.082) (0.009) (0.018) (0.033) (0.052) (0.077)

Trans-SBIC 0.040 0.177 0.427 0.791 1.265 0.040 0.168 0.404 0.753 1.231
(0.007) (0.017) (0.036) (0.063) (0.103) (0.006) (0.016) (0.035) (0.058) (0.096)

Trans-SAIC 0.040 0.175 0.422 0.781 1.249 0.039 0.166 0.399 0.744 1.215
(0.007) (0.017) (0.035) (0.063) (0.102) (0.006) (0.015) (0.035) (0.057) (0.095)

LSE-Tar 0.014 0.015 0.014 0.014 0.015 0.022 0.022 0.022 0.022 0.022
(0.005) (0.006) (0.005) (0.005) (0.005) (0.006) (0.005) (0.006) (0.005) (0.006)

LSE-All 0.116 0.279 0.557 0.953 1.451 0.105 0.260 0.525 0.902 1.396
(0.016) (0.033) (0.062) (0.106) (0.155) (0.015) (0.031) (0.057) (0.097) (0.142)

Trans-Lasso 0.109 0.109 0.109 0.109 0.110 0.116 0.117 0.117 0.117 0.117
(0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.008) (0.008) (0.009) (0.009)

Trans-GLM 0.108 0.109 0.108 0.109 0.109 0.116 0.116 0.116 0.116 0.116
(0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.008) (0.008) (0.009) (0.009)

Uplift Rate 16.67% 15.38% 16.67% 16.67% 15.38% 10.00% 10.00% 10.00% 10.00% 10.00%

n0 = 500 Trans-SMAP 0.008 0.008 0.008 0.008 0.007 0.016 0.015 0.015 0.015 0.015
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Trans-SimpMA 0.061 0.197 0.424 0.739 1.143 0.054 0.178 0.395 0.702 1.112
(0.008) (0.017) (0.032) (0.052) (0.071) (0.007) (0.015) (0.030) (0.049) (0.073)

Trans-SBIC 0.036 0.173 0.420 0.776 1.240 0.036 0.162 0.398 0.746 1.217
(0.005) (0.015) (0.032) (0.060) (0.085) (0.005) (0.014) (0.031) (0.054) (0.090)

Trans-SAIC 0.036 0.172 0.418 0.772 1.233 0.036 0.161 0.395 0.742 1.210
(0.005) (0.015) (0.031) (0.059) (0.085) (0.005) (0.014) (0.031) (0.053) (0.090)

LSE-Tar 0.009 0.009 0.009 0.009 0.009 0.017 0.016 0.016 0.016 0.016
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

LSE-All 0.106 0.260 0.518 0.873 1.334 0.097 0.239 0.485 0.835 1.299
(0.012) (0.027) (0.050) (0.079) (0.118) (0.011) (0.023) (0.044) (0.073) (0.112)

Trans-Lasso 0.103 0.104 0.104 0.104 0.104 0.111 0.112 0.111 0.112 0.112
(0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.006) (0.007)

Trans-GLM 0.103 0.103 0.103 0.103 0.103 0.111 0.111 0.111 0.111 0.111
(0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.007) (0.006) (0.006) (0.006)

Uplift Rate 12.50% 12.50% 12.50% 12.50% 28.57% 6.25% 6.67% 6.67% 6.67% 6.67%

Table 7: The averaged MSE of out-of-sample prediction in homogeneous dimension settings
forM = 6. Set the values of δ3 and δ6 be equal but vary from {0.1, 0.3, 0.5, 0.7, 0.9}.
The standard errors are given in parenthesis.
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Correct Target Model Misspecified Target Model

Method n0 = 150 n0 = 300 n0 = 500 n0 = 150 n0 = 300 n0 = 500

M = 3 Trans-SMAP 0.086 0.043 0.027 0.091 0.051 0.035
(0.051) (0.020) (0.014) (0.043) (0.021) (0.016)

Trans-SimpMA 0.282 0.246 0.234 0.261 0.228 0.212
(0.063) (0.038) (0.033) (0.059) (0.039) (0.030)

Trans-SBIC 0.243 0.205 0.195 0.228 0.195 0.180
(0.075) (0.050) (0.039) (0.073) (0.047) (0.038)

Trans-SAIC 0.239 0.202 0.194 0.224 0.192 0.179
(0.074) (0.050) (0.038) (0.072) (0.047) (0.038)

LSE-tar 0.104 0.049 0.031 0.113 0.058 0.040
(0.074) (0.026) (0.018) (0.063) (0.028) (0.021)

LSE-All 0.368 0.311 0.259 0.336 0.287 0.234
(0.083) (0.052) (0.040) (0.076) (0.052) (0.036)

Uplift Rate 20.93% 13.95% 14.81% 24.18% 13.73% 14.29%

M = 6 Trans-SMAP 0.039 0.025 0.076 0.088 0.047 0.032
(0.020) (0.012) (0.046) (0.046) (0.020) (0.013)

Trans-SimpMA 0.221 0.208 0.246 0.233 0.203 0.190
(0.032) (0.026) (0.047) (0.051) (0.032) (0.023)

Trans-SBIC 0.209 0.194 0.236 0.229 0.195 0.181
(0.041) (0.031) (0.059) (0.061) (0.041) (0.030)

Trans-SAIC 0.204 0.191 0.226 0.219 0.190 0.178
(0.040) (0.030) (0.058) (0.060) (0.040) (0.030)

LSE-tar 0.050 0.031 0.101 0.113 0.059 0.038
(0.028) (0.017) (0.069) (0.065) (0.027) (0.018)

LSE-All 0.267 0.239 0.335 0.313 0.247 0.218
(0.040) (0.031) (0.064) (0.063) (0.038) (0.028)

Uplift Rate 28.21% 24.00% 32.89% 28.41% 25.53% 18.75%

Table 8: The averaged MSE of out-of-sample prediction in heterogeneous dimension and
heteroscedastic settings. The standard errors are given in parenthesis.

40



Optimal Parameter-Transfer Learning by Semiparametric Model Averaging

Correct Target Model Misspecified Target Model

Method n0 = 150 n0 = 300 n0 = 500 n0 = 150 n0 = 300 n0 = 500

M = 3 Trans-SMAP 0.085 0.045 0.026 0.094 0.055 0.034
(0.050) (0.023) (0.013) (0.048) (0.027) (0.016)

Trans-SimpMA 0.280 0.247 0.233 0.258 0.228 0.212
(0.064) (0.042) (0.033) (0.059) (0.041) (0.031)

Trans-SBIC 0.242 0.210 0.193 0.228 0.199 0.180
(0.078) (0.052) (0.039) (0.072) (0.050) (0.038)

Trans-SAIC 0.236 0.207 0.192 0.222 0.196 0.179
(0.078) (0.052) (0.039) (0.071) (0.050) (0.038)

LSE-Tar 0.102 0.051 0.031 0.112 0.064 0.039
(0.068) (0.031) (0.016) (0.065) (0.034) (0.022)

LSE-All 0.386 0.324 0.271 0.354 0.301 0.251
(0.087) (0.055) (0.040) (0.076) (0.053) (0.038)

Trans-Lasso 0.175 0.136 0.121 0.185 0.147 0.129
(0.063) (0.029) (0.017) (0.062) (0.033) (0.019)

Trans-GLM 0.173 0.135 0.120 0.184 0.146 0.128
(0.057) (0.027) (0.017) (0.059) (0.032) (0.019)

Uplift Rate 20.00% 13.33% 19.23% 19.15% 16.36% 14.71%

M = 6 Trans-SMAP 0.082 0.040 0.025 0.091 0.047 0.032
(0.052) (0.021) (0.011) (0.053) (0.022) (0.012)

Trans-SimpMA 0.255 0.218 0.208 0.236 0.203 0.189
(0.057) (0.032) (0.025) (0.050) (0.029) (0.022)

Trans-SBIC 0.237 0.199 0.190 0.227 0.191 0.175
(0.066) (0.040) (0.030) (0.058) (0.036) (0.027)

Trans-SAIC 0.232 0.197 0.189 0.222 0.189 0.174
(0.065) (0.040) (0.030) (0.058) (0.036) (0.027)

LSE-Tar 0.107 0.051 0.033 0.117 0.060 0.039
(0.074) (0.029) (0.017) (0.074) (0.032) (0.017)

LSE-All 0.377 0.297 0.269 0.351 0.278 0.247
(0.075) (0.041) (0.031) (0.067) (0.040) (0.029)

Trans-Lasso 0.174 0.134 0.122 0.186 0.143 0.129
(0.058) (0.026) (0.018) (0.074) (0.029) (0.019)

Trans-GLM 0.180 0.137 0.122 0.191 0.144 0.129
(0.061) (0.029) (0.017) (0.065) (0.028) (0.018)

Uplift Rate 30.49% 27.50% 32.00% 28.57% 27.66% 21.88%

Table 9: The averaged MSE of out-of-sample prediction in homogeneous dimension and
heteroscedastic settings. The standard errors are given in parenthesis.
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Figure 6: Comparison of various CV criteria for M = 3. (a) MSE of out-of-sample predic-
tion for all the methods. (b) MSE of out-of-sample prediction for different CV
criteria. (c) Time consumption of our method based on different CV criteria.
The numerical computation executes on a regular PC with an intel core i7-10700
2.90 GHz CPU.
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Variable Description Data Range

Y (m) the natural logarithm of the monthly rent [700, 110000]

X
(m)
1 the number of rooms {1, 2, 3, 4, 5, 6, 7, 9}

X
(m)
2 the number of restrooms {0, 1, 2, 3, 4, 5, 9}

X
(m)
3 the number of living rooms {0, 1, 2, 3, 4}

X
(m)
4 total area [17, 600]

X
(m)
5 have or not a bed 0 = no, 1 = yes

X
(m)
6 have or not a wardrobe 0 = no, 1 = yes

X
(m)
7 have or not a air conditioner 0 = no, 1 = yes

X
(m)
8 have or not a fuel gas 0 = no, 1 = yes

Z
(m)
1 total floor [1, 39]

Z
(m)
2 the number of schools within 3 km [0, 132]

Table 10: Description of variables in the housing rental information data.

leave-one-out CV to reduce the computational burden. The more convictive procedure to
select J adaptively with theoretical guarantees deserves deeply study in the future.

C.6 More Details of Real Data Analysis

Table 10 provides more details of covariates in our data analysis. In Figure 7, we mark all
the specific locations of rental houses in the map to visualize our data source. We can see
that these areas are relatively far away from downtown with relatively low rental prices, so
these houses are more likely to be the first choice for young people who have just started
working.

Figures 8-12 visualize the marginal relationships between the natural logarithm of the
monthly rent and predictors for different target data. For the data sets of Daxing, Fang-
shan, Mentougou, and Shijingshan, eight covariates (the number of rooms, the number
of restrooms, the number of living rooms, total area, have or not a bed, have or not a
wardrobe, have or not a air conditioner, and have or not a fuel gas) are confirmed to have
linear effects on the dependent variable, and two covariates (total floor and the number of
schools within 3 km) have nonlinear effects. All the covariates have linear effects for the
data set of Fengtai.

To be more intuitive, we display the transfer network based on weight assignments for
different target domains in Figure 13 as a supplement of Table 2. In the transfer network,
the nodes correspond to different data sources, and the directed edges indicate knowledge
transfer from source domain to target domain.

C.7 Simulation Study in Real Data Settings

In this section, we conduct an additional simulation study to compare the performance of dif-
ferent methods. To mimic the real data structure, we consider M = 5 data sources denoted
as Domain 1, . . . , Domain 5, with ten covariates and sample sizes of (291, 247, 339, 263, 269),
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Figure 7: Visualization for the locations of rental houses in Daxing, Fangshan, Fengtai,
Mentougou, and Shijingshan in the empirical data anaysis.
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Figure 8: The marginal relationship between the natural logarithm of the monthly rent and
ten predictors for the data set of Daxing.
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Figure 9: The marginal relationship between the natural logarithm of the monthly rent and
ten predictors for the data set of Fangshan.

8

9

10

11

1 2 3 4 5 6 7 9
Number of rooms

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

1 2 3 5 9
Number of restrooms

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

0 1 2 3
Number of living rooms

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

12

0 100 200 300 400
Total area

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

0 20 40 60
Total floor

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

yes no
Bed

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

yes no
Wardrobe

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

yes no
Air conditioner

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

yes no
Fuel gas

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

8

9

10

11

0 50 100
Number of schools within 3km

T
he

 n
at

ur
al

 lo
ga

rit
hm

 o
f m

on
th

ly
 r

en
t

Figure 10: The marginal relationship between the natural logarithm of the monthly rent
and ten predictors for the data set of Fengtai.
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Figure 11: The marginal relationship between the natural logarithm of the monthly rent
and ten predictors for the data set of Mentougou.
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Figure 12: The marginal relationship between the natural logarithm of the monthly rent
and ten predictors for the data set of Shijingshan.
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Figure 13: Transfer network based on our weight assignments for different target domains.
The size of nodes is proportional to the weight of the target model, and the
thickness of edges is proportional to the weights of source models.

which are the same as our real data structure. We set Domain 3 to be the data set gener-
ated from a linear regression model, while the other domains are generated from additive
partial linear models. For Domain 3, the ten covariates are generated from a 10-dimensional
multivariate normal distribution N(0,Σ) with Σ = [0.5|a−a

′|]10×10, and the parametric co-
efficient vector is set to be β(3) = (1.42,−1.18, 1.02,−0.78, 0.67, 0.32,−0.48, 1.02, 0.8, 0.7)T .
For the other domains, we set the dimensions of parametric and nonparametric compo-
nents for each model are equally eight and two, respectively. The parametric compo-
nents for each model are generated from a same 8-dimensional multivariate normal dis-
tribution, and the parametric coefficient vectors of different models are set to be β(1) =
(1.4,−1.2, 1,−0.8, 0.65, 0.3,−0.5, 1)T , β(2) = (1.42,−1.18, 1.02,−0.78, 0.67, 0.32,−0.48, 1.02,
0.12)T , β(4) = (1.7,−0.9, 1.3,−0.5, 0.95, 0.6,−0.2, 1.3)T , and β(5) = (1.4,−1.2, 1,−0.8, 0.65,
0.3,−0.5, 1)T . Similarly, here we consider parametric coefficient vectors may have vary-
ing degrees of similarity among different domains. We further assume that the model
of Domain 2 is misspecified with the same form as that in Section 4.1. The nonpara-
metric variables u are generated from a uniform distribution U(0, 1), and we consider
the following nonlinear functions for different models: g(1)(u) = 2(u1 − 0.5)3 + sin(πu2),
g(2)(u) = 2(u1 + 0.5)3 + cos(πu2), g(4)(u) = (1.8u1 + 0.3)3 + cos(πu2), and g(5)(u) =
1.5(u1 + 0.5)3 + cos(2πu2). For simplicity, we only consider the homoscedastic setting and
let the random error follow a normal distribution N(0, σ2

ε) with σε ∈ {0.5, 1.5}. We let each
data source take turns as the target domain and the other data sources as source domains,
and then we evaluate different procedures in five scenarios.
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Method Domain 1 Domain 2 Domain 3 Domain 4 Domain 5

σε = 0.5 Trans-SMAP 0.011 0.021 0.006 0.017 0.051
(0.004) (0.006) (0.003) (0.007) (0.006)

Trans-SimpMA 0.104 0.058 0.052 1.081 0.143
(0.012) (0.009) (0.008) (0.075) (0.014)

Trans-SBIC 0.105 0.059 0.053 1.077 0.145
(0.014) (0.010) (0.009) (0.079) (0.016)

Trans-SAIC 0.107 0.060 0.054 1.072 0.146
(0.014) (0.010) (0.009) (0.079) (0.016)

LSE-Tar 0.014 0.025 0.009 0.017 0.056
(0.005) (0.007) (0.004) (0.007) (0.008)

LSE-All 0.102 0.099 0.052 1.168 0.225
(0.017) (0.013) (0.012) (0.097) (0.021)

Trans-Lasso 0.111 0.241 0.009 0.829 0.649
(0.009) (0.017) (0.004) (0.052) (0.034)

Trans-GLM 0.112 0.241 0.009 0.826 0.657
(0.009) (0.017) (0.004) (0.051) (0.038)

Uplift Rate 27.27% 19.05% 50.00% 0.00% 9.80%

σε = 1.5 Trans-SMAP 0.089 0.110 0.048 0.134 0.132
(0.036) (0.047) (0.027) (0.050) (0.041)

Trans-SimpMA 0.165 0.130 0.083 1.155 0.208
(0.041) (0.045) (0.031) (0.116) (0.045)

Trans-SBIC 0.163 0.130 0.082 1.161 0.206
(0.042) (0.045) (0.031) (0.117) (0.046)

Trans-SAIC 0.165 0.130 0.083 1.156 0.208
(0.042) (0.045) (0.032) (0.117) (0.046)

LSE-Tar 0.123 0.156 0.077 0.135 0.174
(0.045) (0.060) (0.036) (0.051) (0.052)

LSE-All 0.153 0.161 0.079 1.237 0.278
(0.042) (0.046) (0.030) (0.131) (0.048)

Trans-Lasso 0.186 0.334 0.075 0.916 0.736
(0.042) (0.057) (0.036) (0.076) (0.066)

Trans-GLM 0.213 0.351 0.095 0.920 0.771
(0.059) (0.065) (0.057) (0.080) (0.088)

Uplift Rate 38.20% 18.18% 56.25% 0.75% 31.82%

Table 11: The averaged MSE of out-of-sample prediction for different target domains in
real data settings. The standard errors are given in parenthesis.

To evaluate the prediction performance, we similarly generate 500 testing samples from
the target model and calculate the corresponding prediction MSE based on 500 replications.
The results are summarized in Table 11. From the results, we can observe that our Trans-
SMAP outperforms all competitive methods in most cases, especially for Domain 1 and
Domain 3. When Domain 4 is the target domain, our procedure has similar performance to
the best alternative method, LSE-Tar, which reflects the influence of parameter similarity
between different models on the improvement of parameter-transfer approach. Overall, the
proposed Trans-SMAP remains effective in the simulation experiments with the real data
structure.

48



Optimal Parameter-Transfer Learning by Semiparametric Model Averaging

C.8 Simulation Study in High-dimensional Settings

To consider a relatively fair comparison with Trans-Lasso, we conduct a high-dimensional
simulation study. Since our framework can not be directly applied to high-dimensional data,
we simply replace the least squares estimation (2) in the original step of Algorithm 1 with
the following Lasso estimation

β̂(m) = arg min
β(m)

{
1

2nm

nm∑
i=1

{y(m)
i − (x

(m)
i )Tβ(m)}2 + λ(m)‖β(m)‖1

}
, m = 0, . . . ,M, (26)

and the other steps remain unchanged. Specifically, we set p = 300 and (n0, . . . , nM ) =
(100, 100, 150, 100, 150, 100, 100, 100, 150, 150, 150) for M = 10. The covariates in each
model are generated from the same multivariate normal distribution with an identity co-
variance matrix followed by Li et al. (2021). For the coefficient vector of the target model,

we set β(0) = (β
(0)
1 , . . . , β

(0)
p )T = (0.5 · 1Ts ,0Tp−s)T for s = 5. For the coefficient vectors of

the source models, we set β
(m)
j = β

(0)
j + ψj · I(j ∈ {s+ 1, . . . , 5s}) for m ∈ {1, 2, 5, . . . , 10},

β
(3)
j = β

(0)
j , and β

(4)
j = β

(0)
j + 0.2 · I(j ∈ {1, . . . , 50}), where ψj is a binary variable with

values -1 and 1 following the binomial distribution with parameter 0.5. In addition, we also
consider the scenario where the target model and the second source model are misspecified.
In this case, the corresponding coefficient vectors are (p + 1)-dimensional, and we set the

(p+1)th coefficients of β
(0)
p+1 and β

(2)
p+1 to 0.5. Similarly, we exclude the (p+1)th components

of x
(0)
i and x

(2)
i when fitting the corresponding models. The random error for all M + 1

models follows a standard normal distribution. To differentiate between the two proposed
methods, we refer to the modified method as Transfer learning for High-dimensional Model
Averaging Prediction (Trans-HMAP). The tuning parameters λ(m) for m = 0, . . . ,M are
chosen by 8-fold cross-validation suggested by Li et al. (2021).

To evaluate the performance of our method and other competitive methods, we generate
n∗ = 100 testing samples from the target model and calculate the mean squared predic-
tion errors (MSPE). In addition, we report the sum of squared estimation errors (SSE),
‖β̂(0)−β(0)‖2, for different estimators. All results are based on 200 replications. To accom-
modate the high-dimensional settings, we use Lasso estimation for LSE-Tar and LSE-All,
denoted as Lasso-Tar and Lasso-All, instead of least squares estimation. The corresponding
results are reported in Table 12. The results show that our Trans-HMAP still outperforms
other methods in both estimation and prediction, demonstrating the effectiveness of our
framework in high-dimensional scenarios.
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Correct Specification Misspecification

SSE MSPE SSE MSPE

Trans-HMAP 0.277 0.295 0.308 0.572
(0.083) (0.101) (0.098) (0.120)

Trans-SimpMA 1.090 1.096 1.093 1.357
(0.236) (0.285) (0.236) (0.277)

Trans-SBIC 0.910 0.919 0.938 1.202
(0.192) (0.236) (0.202) (0.233)

Trans-SAIC 1.240 1.247 1.264 1.526
(0.264) (0.316) (0.287) (0.314)

Lasso-Tar 0.427 0.446 0.516 0.772
(0.172) (0.191) (0.203) (0.232)

Lasso-All 1.557 1.583 1.562 1.815
(0.379) (0.445) (0.356) (0.416)

Trans-Lasso 0.388 0.404 0.385 0.641
(0.264) (0.267) (0.251) (0.276)

Trans-GLM 0.326 0.340 0.401 0.655
(0.179) (0.185) (0.241) (0.249)

Uplift Rate 17.69% 15.25% 25.00% 12.06%

Table 12: The averaged SSE and MSPE for different methods in high-dimensional settings.
The standard errors are given in parenthesis.
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