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Abstract

We present a theory of ensemble diversity, explaining the nature of diversity for a wide range
of supervised learning scenarios. This challenge has been referred to as the “holy grail” of
ensemble learning, an open research issue for over 30 years. Our framework reveals that
diversity is in fact a hidden dimension in the bias-variance decomposition of the ensemble
loss. We prove a family of exact bias-variance-diversity decompositions, for a wide range of
losses in both regression and classification, e.g., squared, cross-entropy, and Poisson losses.
For losses where an additive bias-variance decomposition is not available (e.g., 0/1 loss)
we present an alternative approach: quantifying the effects of diversity, which turn out to
be dependent on the label distribution. Overall, we argue that diversity is a measure of
model fit, in precisely the same sense as bias and variance, but accounting for statistical
dependencies between ensemble members. Thus, we should not be ‘maximising diversity’ as
so many works aim to do—instead, we have a bias/variance/diversity trade-off to manage.

Keywords: ensembles, diversity, bias, variance

1. Introduction

Ensemble methods have enabled state-of-the-art results for decades: from early industrial
computer vision (Viola and Jones, 2001) to the deep learning revolution (Krizhevsky
et al., 2012), and inter-disciplinary applications (Cao et al., 2020). An accepted mantra
is that ensembles work best when the individuals have a “diversity” of predictions—often
induced by classical methods such as Bagging (Breiman, 1996), but diversity-encouraging
heuristics are rife in the literature (Brown et al., 2005). Given this, we trust that the
ensemble will “average out” the errors of the individuals. One reason for the popularity
of such methods is clear: the very idea of ensembles is an appealing anthropomorphism,
invoking analogies to human committees, and “wisdom of the crowds”. However, such
analogies have limitations. More formal approaches have been pursued, in particular for
quantifying diversity. It is obvious that we do not want all predictions to be identical;
and, it is equally obvious we do not want them to be different just for the sake of it,
sacrificing overall performance. We want something in-between these two—the so-called
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accuracy/diversity trade-off. However, here we encounter the problem of formally defining
“diversity” and its relation to ensemble performance. In general, there is no agreement
on how to quantify diversity, except in the limited case of regression with an arithmetic
mean ensemble (Krogh and Vedelsby, 1994; Ueda and Nakano, 1996). For classification
and other scenarios, there are dozens of proposed diversity measures (Kuncheva, 2014).
A comprehensive theory of ensemble diversity has been an open problem for over 30 years.

Motivation: Our primary motivation is to fill this ‘gap’ in current ensemble theory,
providing a solid foundation to understand and study ensemble diversity. However, there are
also many practical reasons to pursue this. Diverse ensembles can be more computationally
efficient than single large models, with the same generalisation performance (Kondratyuk
et al., 2020). Diverse ensembles are robust against adversarial attacks (Biggio et al., 2011;
Pang et al., 2019), and can counteract covariate shift (Sinha et al., 2020). Advantages are
also found in important application areas (Cao et al., 2020) and well beyond supervised
learning (Carreira-Perpinán and Raziperchikolaei, 2016). It is important to note that
these use-cases do not follow a common approach: they either adopt some measurement
of diversity picked from historical literature, or propose their own novel metric. There is,
therefore, reason to pursue a unified theory, where diversity is derived from first principles.

This challenge has proven non-trivial: surveys of progress can be found in Dietterich
(2000); Brown et al. (2005); Zhou (2012), and Kuncheva (2014). Diversity is nowadays
referred to as a heuristic with no precise definition, and, it has been said:

“There is no doubt that understanding diversity is the holy grail in the field of
ensemble learning” (Zhou, 2012, Sec 5.1, page 100).

Summary of our Results: In contrast to previous efforts which define novel diversity
measures, we take loss functions and decompose them, exposing terms that naturally
account for diversity. We show that diversity is a hidden dimension in the bias-variance
decomposition of the ensemble loss. In particular, we prove exact bias-variance-diversity
decompositions, applying for a broad range of losses, taking a common form:

expected loss = (average bias) + (average variance) − (diversity),

where diversity is a measure of ensemble member disagreement, independent of the label.
For the special case of squared loss, this is an alternative to a decomposition proposed
by Ueda and Nakano (1996), but expanding the formal notion of diversity to many other
losses, e.g., the cross-entropy, and the Poisson loss. For losses where an additive bias-
variance decomposition does not exist (e.g., 0/1 loss) we present an approach to precisely
quantify the effects of diversity, with the caveat that the effects are conditional on the label
distribution.

Overall, we argue that diversity is best understood as a measure of model fit, in precisely
the same sense as bias and variance, but accounting for statistical dependencies between
ensemble members. Thus, we should not be ‘maximising’ diversity as so many works claim
to do—instead, we have a trade-off to manage. With single models, we have the well-
known bias/variance trade-off. With an ensemble we have a bias/variance/diversity trade-
off, varying both with individual model capacity, and similarities between model predictions.
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Notation

For quick reference, we summarise the majority of notational conventions used in the
paper. More detailed definitions are given in the main body as appropriate. Boldface font,
e.g., y, denotes a vector, whereas y is a scalar. Capital letters, e.g., Y , denote a random
variable, where y is a realisation of Y .

For brevity, in the majority of the paper we leave it implicit that a model, q, is a function
of an input x, and is dependent on a training set sampled from a random variable D.

Symbol Description

x ∈ X ⊆ Rd Input, in d dimensions

y ∈ Y ⊆ Rk Label, in k dimensions (or y for a scalar)

{(xj ,yj)}nj=1 Training set of n labelled examples

P (x, y) Unknown data distribution over (x, y)

EXY [· · · ] Expectation w/r P (x, y), i.e., over all possible test examples (x, y)

EXY

[
· · ·
] def

=
∫
PX(x)

∫
PY |X(y | x)

[
· · ·
]

dy dx

D Random variable D ∼ P (x, y)n, over i.i.d. training sets of size n

ED[· · · ] Expectation over all possible training sets {(xj ,yj)}nj=1 drawn from D

q(x) Predictive model q, mapping x→ y. If output is a vector then q(x)

`(y, q(x)) Loss function for label y and prediction q(x)

`0/1(y, q(x)) The 0/1 loss function: returns 1 if y 6= q(x), and 0 otherwise.

R(q) Risk of model q, defined R(q) := EXY [`(y, q(x))]

m Number of ensemble members

qi The ith member of an ensemble, {qi}mi=1

q Centroid combiner rule, defined q := arg minz∈Y
1
m

∑m
i=1[`(z, qi)]

◦
q Centroid of a model distribution w/r D, defined

◦
q := arg minz∈Y ED[`(z, q)]

φ(y) Strictly convex generator function for a Bregman divergence

∇φ(y) Gradient vector of generator φ w/r argument y

Bφ(y,q) Bregman divergence between points y,q ∈ Rk, using generator φ

Table 1: Notation used in the paper.
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2. Problem Statement: What is Ensemble Diversity?

Hansen and Salamon (1990) proposed a methodology to train multiple neural networks,
encouraging different models by providing each with a different training data subset. Many
subsequent papers followed this “parallel” strategy: an early work being Perrone and Cooper
(1992), but perhaps more well-known are Bagging (Breiman, 1996), and Random Forests
(Breiman, 2001). Boosting algorithms (Schapire et al., 1998) exploit a similar principle, but
construct models sequentially. These approaches, parallel and sequential (see Figure 1),
are the most common schemes to learn ensembles (Kuncheva, 2014), and there are many
variations, e.g., selecting members from a pre-constructed candidate pool, each built by
independent (parallel) teams working on the same task but with different data.

Sample 
1

Sample 
2

Sample 
M

Model 
1

Model 
2

Model 
M

Sample 
1

Sample 
2

Sample 
M

Model 
1

Model 
2

Model 
M

Data + Labels Data + Labels

Ensemble Ensemble

Figure 1: Parallel vs sequential ensemble construction. Both can be seen as creating
“diverse” models in some sense—either implicitly (independently re-sampling the
training data), or explicitly (re-sampling according to the errors of earlier models).

So why do these strategies work? Both can be understood heuristically in terms of
“diversity”, in the sense coined by Opitz and Shavlik (1996), referring to differences in
generalisation behavior among a group of models. In a review, Dietterich (2000) explains:

“An accurate classifier is one that has an error rate of better than random
guessing on new x values. Two classifiers are diverse if they make different
errors on new data points.” (Dietterich, 2000)

In this sense, both approaches foster diversity—either implicitly by randomly perturbing
the data for each model, or explicitly by constructing each data set to address the errors of
previous models (Brown et al., 2005). The implicit approach has been widely adopted in
deep learning: Goodfellow et al. (2016) note that sources of randomness in the initialisation
of deep networks are often enough to cause them to make partially independent errors.
Given the success of ensembles, there have been many attempts to explain why they work,
in terms of the diversity. Goodfellow et al. (2016) writes,

“The reason that model averaging works is that different models will usually not
make all the same errors on the test set”. (Goodfellow et al., 2016, p. 249)

Whilst this is true, we desire a more formal treatment.
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What are we looking for? A theory of diversity would ideally have three key ingredients:

1. a definition of diversity as a measure of disagreement between the ensemble members;

2. this measure should have a clear relation to the overall ensemble error; and,

3. the theory should have a clear relation to previously established results, and expand
our understanding to a wider range of learning scenarios.

The first point concerns the definition of diversity itself. An interesting question is whether
the measure is a function solely of the ensemble member outputs, or whether it can involve
the label distribution as well. Kuncheva (2014) refers to measures that rely on the true label
as ‘oracle’ diversity measures. Both outcomes would be an interesting scientific conclusion:
the label-independent case showing that diversity is solely a function of the ensemble itself,
and the label-dependent case showing that it is a class-conditional phenomenon.

The second point ensures we can interpret what effect diversity has on our ultimate
objective: reducing the ensemble error. The third point ensures that the new theory
contributes to knowledge, in the sense that it expands the depth/breadth of our
understanding. This also relates to the only known scenario where the challenge of defining
diversity might be considered a “solved” problem: regression using squared loss, with an
arithmetic mean ensemble. We now review this.

Known results for regression ensembles: Krogh and Vedelsby (1994) showed that,
for an arithmetic mean combiner, using squared loss, the ensemble loss is guaranteed to be
less than or equal to the average individual loss.

Theorem 1 (Ambiguity decomposition, Krogh & Vedelsby, 1994) Given a label
y ∈ R, a member prediction qi(x), and an ensemble q̄(x) = 1

m

∑m
i=1 qi(x), we have,

(
q̄(x)− y

)2
=

1

m

m∑
i=1

(
qi(x)− y

)2 − 1

m

m∑
i=1

(
qi(x)− q̄(x)

)2
. (1)

The left hand side is the ensemble loss at a single test point (x, y). The first term on
the right is the average individual loss. The second is known as the ambiguity—measuring
the disagreement of individuals, as a spread around the ensemble prediction. Since this is
non-negative, it guarantees the ensemble loss will be less than or equal to the average loss.

This result is often erroneously cited as the reason why all ensembles work. However,
the form above applies only if we use the squared loss with an arithmetic mean combiner.
If we use squared loss with a different combiner, the result no longer holds. A deeper
understanding came from Ueda and Nakano (1996)—though under the same loss/combiner
assumptions. They extended the classical bias-variance theory of Geman et al. (1992) to
show that the expected squared loss of the ensemble decomposes into three terms, involving
the bias, variance, and covariance of the models. Here, the covariance captures the notion
of ‘diversity’. More details on this will be provided later.

As mentioned, the expression above does not apply beyond squared loss with the
arithmetic mean combiner. A significant community effort has been directed to find
corresponding notions of diversity for classification problems. We review this next.
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Known results for classifier ensembles: For classification problems, we might
have estimates of the class probability distribution, or just labels—usually combined by
averaging probabilities, or majority voting. Tumer and Ghosh (1996) showed that the
correlation between pairs of averaged class probabilities had a simple relationship to the
overall ensemble classification error, at least in a region close to decision boundaries.
Brown (2009) and Zhou and Li (2010) proposed information theoretic analyses, showing
that diversity manifests as both low- and high-order interactions between ensemble
members. Buschjäger et al. (2020) used a Taylor approximation on twice-differentiable
losses, showing an exact decomposition only when higher derivatives are zero, e.g.,squared
loss, but not cross-entropy. Similarly, Ortega et al. (2022) decomposed upper bounds on
losses, again only obtaining an equality for squared loss. Kuncheva and Whitaker (2003)
considered diversity measures for their correlation to the ensemble error. They investigated
numerous discrepancy metrics in the form δ(qi(x), qj(x)) ∈ R, which are averaged over all
pairs of ensemble members at each test point x:

diversity(q1, .., qm,x) =
1

m(m− 1)

m∑
i=1

∑
j 6=i

δ(qi(x), qj(x)). (2)

The ensemble diversity is this quantity averaged over a validation dataset. The ensemble
diversity is evaluated on its empirical correlation to the ensemble performance, and seen as
more successful if it has high correlation, illustrated in Figure 2.

diversity measure A

ensemble improvement
relative to baseline

(0-1 loss)

diversity measure B

Figure 2: Accuracy/diversity for two (hypothetical) diversity measures. Measure B (right)
is more desirable, as it has stronger correlation to performance improvement.

Several measures (including also non-pairwise measures) were explored, with no single
measure proving more successful than any other. Almost 20 years on, novel diversity
heuristics/measures are still being proposed, e.g., Jan and Verma (2019); Wu et al. (2021).

Our approach to the problem: As above, diversity is often discussed in a dichotomy
of classification vs. regression. One of our primary observations is that this high-level
dichotomy is insufficient to fully describe the nature of diversity. Instead, we must consider
the loss function at hand. For regression, this might be squared loss, but also Poisson,
or others. For classification, this may be 0/1, or cross-entropy. We build on the strong
foundation of bias-variance theory (Geman et al., 1992; James and Hastie, 1997; Heskes,
1998; Pfau, 2013), and decompose the losses, naturally exposing notions of diversity.
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3. A Very Short Introduction to Bias-Variance Decompositions

We review literature on bias-variance decompositions: the statistical setting is a standard
supervised learning scenario. We assume a training set {(xj , yj)}nj=1 drawn from a random
variable D ∼ P (X, Y )n. From this, we learn a model, q. For brevity (see Table 1) in the
remainder of the paper we leave it implicit that q is a function of x, and is always dependent
on data sampled from D. We denote the risk as R(q)

def
= EXY [` (Y, q)], where the label Y is

a random variable, thus potentially noisy. If `(y, q) = (y − q)2, this is the squared risk, and

the Bayes-optimal prediction is the conditional mean Y ∗
def
= EY |X[Y ]. Geman et al. (1992)

considered the expected squared risk, over possible training sets drawn from D, showing the
following three term decomposition.

ED
[
EXY [(Y − q)2]

]
︸ ︷︷ ︸

expected squared risk

= EX

[
EY |X

[
(Y − Y ∗)2

]
︸ ︷︷ ︸

noise

+
(
ED [q]− Y ∗

)2

︸ ︷︷ ︸
bias

+ED
[(
q − ED [q]

)2
]

︸ ︷︷ ︸
variance

]
.

(3)
The first term is the irreducible noise in the problem, independent of any model parameters.
The second is the bias1, defined as the loss of the expected model against the Bayes-optimal
prediction. The third is the variance, capturing variation in q due to different training sets.
Note that we can use the term bias (correspondingly variance) to indicate the value at a
point (x, y), or averaged over a distribution—the intention will be clear from context. The
ideas are often explained with a dartboard diagram, as in Figure 3.

Figure 3: The classic dartboard analogy for explaining bias and variance.

The bullseye (yellow circle) is the target for a single test point, and each blue
dot is a prediction from a model given a different training set. A model with high
bias/low variance will be on average far from the target, and insensitive to small
data changes. A model with low bias/high variance will have an expected value close
to the target, but be very sensitive to data changes, meaning any given model is
likely to overfit. The random variable D does not have to be over data, but can be any
stochastic quantity involved in learning the model, e.g., random weights in a neural network.

1. Is it ‘squared bias’, or just ‘bias’? Geman et al’s bias term is often referred to as “squared bias”. However,
the square is in fact an artefact of using the squared loss, and is not present in the decompositions of
other losses. Thus, the term “squared bias” is a misnomer, and throughout the paper we use simply
“bias”. Further exposition on this point is provided in Appendix B.1.
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Bias-variance decompositions apply for more than just squared loss. Geman
et al. (1992) is a widely appreciated result. It is less well known that similar decompositions
hold for other losses, e.g., the KL-divergence of class probability estimates (Heskes, 1998).
Assume y is a one-hot vector of length k, and q ∈ Rk is our model’s predicted distribution
over the k labels. The expected risk decomposes2 in a similar three-part form:

ED
[
EXY [K (Y || q)]

]
︸ ︷︷ ︸

expected risk

= EX

[
EY|X

[
K
(
Y || Y∗

)]
︸ ︷︷ ︸

noise

+K
(
Y∗ || ◦q

)
︸ ︷︷ ︸

bias

+ED
[
K
(
◦
q || q

)]
︸ ︷︷ ︸

variance

]
,

(4)

where
◦
q

def
= arg minz∈Y ED

[
K(z || q)

]
= Z−1 exp(ED[ln q]) is a normalized geometric mean

at each input vector x. This can also be illustrated as a “dartboard” analogy, in Figure 4.

Figure 4: Dartboard diagram illustrating bias/variance for the KL-divergence.

Bias-variance decompositions do not apply for all losses. A commonality of the
decompositions above is that the variance is independent of the label. A further commonality

is that the bias is the loss of a predictor
◦
q

def
= arg minz∈Y ED

[
`(z, q)

]
, not dependent on any

particular training set. We refer to this form as an additive bias-variance decomposition. It
turns out that this does not hold for all losses, e.g., 0/1 loss—in this case

◦
q is the mode of

the random variable, but, we have an inequality:

ED
[
EXY [`0/1(Y, q)]

]
6= EX

[
EY |X[`0/1(Y, Y ∗)] + `0/1(Y ∗,

◦
q) + ED[`0/1(

◦
q, q)]

]
. (5)

Many authors have presented alternative 0/1 decompositions (Kohavi et al., 1996;
Tibshirani, 1996; James and Hastie, 1997; Heskes, 1998; Domingos, 2000). An excellent
review can be found in Geurts (2002). A common theme is to either sacrifice the simple
additive form, or have a formulation of variance that is dependent on the label distribution.
The necessary and sufficient conditions for an additive bias-variance decomposition of the
form mentioned above, are an open research question.

Together, the theories outlined above have been used to understand the nature of model
fitting—the so-called ‘bias-variance’ trade-off. In the following section we build upon all
these theories to understand the phenomenon of ensemble diversity.

2. Heskes (1998) presents a slight variation, though the expressions are equivalent. See Appendix B.3.
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4. A Unified Theory of Ensemble Diversity

Ensemble “diversity” is a popular, but variously defined idea. Bias and variance are clear-
cut, and precisely defined. It makes sense to build stronger bridges between the two. Our
approach is exactly this, revealing diversity as a hidden dimension in the bias-variance
decomposition of an ensemble. We argue that diversity can be considered in exactly the
same way as bias/variance—simply another quantifiable aspect of model fitting.

4.1 Diversity as a Hidden Dimension of the Bias-Variance Decomposition

Our approach yields a ‘unified theory’ in the sense that the same methodology applies for
many different losses, in classification/regression scenarios. We first define a generalised
(additive) bias-variance decomposition, in that it generalises Equations (3) and (4).

Definition 2 (Generalised Bias-Variance Decomposition) For a loss `, we define
◦
q

def
= arg minz∈Y ED

[
`(z,q)

]
as the ‘centroid’ of the model distribution. If the following

form holds, we refer to it as a generalised bias-variance decomposition.

ED
[
EXY[`(Y,q)]

]
︸ ︷︷ ︸

expected risk

= EX

[
EY|X[`(Y,Y∗)]︸ ︷︷ ︸

noise

+ `(Y∗,
◦
q)︸ ︷︷ ︸

bias

+ED
[
`(
◦
q,q)

]︸ ︷︷ ︸
variance

]
. (6)

When `(y, q) = (y− q)2, we have
◦
q = ED[q] and this reduces to Equation (3). Alternatively,

with `(y,q) = K(y || q), we have
◦
q = Z−1 exp(ED[ln q]), and it reduces to Equation (4).

Importantly, this same additive form also holds for the even broader family of Bregman
divergences (Bregman, 1967). This family, reviewed in the next section, provides us a
convenient analytical form, which we will use to derive several interesting properties.

We now take our first step toward ensembles. We highlight that the ambiguity
decomposition, Equation (1), can be proven by a very similar method to the bias-variance
decomposition. In fact: if one exists, then the other must also, outlined in Appendix B.2.
For a loss `, if Equation (6) holds, we can state the corresponding ambiguity decomposition.

Proposition 3 (Generalised Ambiguity Decomposition) Assuming loss ` admits a
bias-variance decomposition then, for an ensemble {qi}mi=1, the ambiguity decomposition is,

`(y,q)︸ ︷︷ ︸
ensemble loss

=
1

m

m∑
i=1

`(y,qi)︸ ︷︷ ︸
average loss

− 1

m

m∑
i=1

`(q,qi)︸ ︷︷ ︸
ambiguity

, (7)

where q
def
= arg minz∈Y

1
m

∑m
i=1 `(z,qi) is the ensemble combination.

We highlight that the ensemble combiner is defined as a property of the loss. For
squared loss, this results in q = 1

m

∑m
i=1 qi, the commonly used arithmetic mean combiner.

For KL-divergence, this results in q = Z−1
∏m
i=1 q

1/m
i , i.e., a normalised geometric mean,

also known as the ‘product rule’ (Kuncheva, 2014). Audhkhasi et al. (2013) and Jiang et al.
(2017) proposed ambiguity decompositions for classification losses, though both assumed
the combiner must be an arithmetic mean. In contrast, here the combiner is defined in
terms of the loss `. We refer to this as the centroid combiner rule, defined formally below.
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Definition 4 (Centroid Combiner rule) For a point (x,y), given a set of predictions
{qi}mi=1, the centroid combiner q is the minimizer of the averaged loss `(z,qi), over all
ensemble members.

q
def
= arg min

z∈Y

1

m

m∑
i=1

`(z,qi). (8)

For each given loss function, the centroid combiner could be derived separately. However,
in the next section we will meet the family of Bregman divergences (Bregman, 1967), which
provide us a common analytic form for the centroid combiner. We can now present our
main result, Theorem 5, a generalised bias-variance-diversity decomposition.

Theorem 5 (Generalized Bias-Variance-Diversity decomposition) Consider a set
of models {qi}mi=1, evaluated by a loss `. Assuming a bias-variance decomposition holds in
the form of Definition 2, the following decomposition also holds.

ED
[
EXY[`(Y,q)]

]
=

EX

[
EY|X[`(Y,Y∗)]

︸ ︷︷ ︸
noise

+
1

m

m∑
i=1

`(Y∗,
◦
qi)︸ ︷︷ ︸

average bias

+
1

m

m∑
i=1

ED
[
`(
◦
qi,qi)

]
︸ ︷︷ ︸

average variance

−ED

[
1

m

m∑
i=1

`(q,qi)

]
︸ ︷︷ ︸

diversity

]
, (9)

where
◦
q

def
= arg minz∈Y ED

[
`(z,q)

]
and the combiner is q

def
= arg minz∈Y

1
m

∑m
i=1 `(z,qi).

This has decomposed the expected ensemble risk into: the noise, the average bias, the
average variance, and the expected ambiguity. It is this expected ambiguity term that we
consider as the ensemble diversity, which we highlight has the opposite sign to other terms.
We can make two important observations.

The ensemble combiner q is a centroid. In a practical scenario, the loss of the
ensemble is chosen for whatever the task is: 0/1 loss, cross-entropy, or MSE, or many
others. The combiner rule can also be chosen as almost anything: voting, arithmetic mean,
weighted combinations, geometric mean, etc. The result above shows that, if we impose
a constraint between these choices (i.e., Definition 4) we enable a decomposition which
naturally exposes a diversity term. We emphasize that using this makes no claim on the
empirical behavior of the ensemble, but simply on their theoretical properties.

There is now a bias/variance/diversity trade-off. As individual models increase in
capacity, their average bias decreases. Without regularisation, their average variance would
increase. However, these terms determine only part of the ensemble behavior. The final part
is the diversity. A critical point here is diversity always subtracts from the expected risk. This
is not to say that greater diversity always reduces expected risk—it only reduces it given
a fixed bias and variance. Ultimately, the three-way trade-off of bias/variance/diversity is
what determines the overall ensemble performance. It is worth highlighting that diversity
is defined similarly to bias/variance, involving an expectation over D, as opposed to being
a property of a single training run. We also highlight the result applies for both dependent
and independent training (where D is a vector of m random variables, see Appendix C.1
for details) and also for schemes where D defines a pool of pre-constructed models.
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4.2 What if a bias-variance decomposition doesn’t hold?

Definition 2 does not apply for all losses, e.g., for 0/1 loss, or absolute loss. This creates an
obvious challenge for our framework. We relied on the existence of such a decomposition,
deriving diversity as a ‘hidden dimension’. However, there is still a way forward.

Quantifying the Effect of Bias/Variance/Diversity. James and Hastie (1997) present
a decomposition which applies for any loss, and retains the simple additive form. They
achieve this by distinguishing the measurement of variance (which is independent of the
label) from its effect on the expected risk (which is dependent on the label), with the
analogous pair of quantities for the bias. The measurement and the effect are not necessarily
the same quantity. They considered the measurement to be the ‘natural’ form in Definition 2.
They then defined the bias-effect3, and the variance-effect. For compact notation, we
average these over P (x,y). Using R(q)

def
= EXY [`(y,q)] as the risk of q, their terms are:

bias-effect
def
= R(

◦
q)−R(y∗), (10)

variance-effect
def
= ED

[
R(q)−R(

◦
q)
]
, (11)

where
◦
q

def
= arg minz∈Y ED

[
`(z,q)

]
, and y∗

def
= arg minz∈Y EY|X=x

[
`(y, z)

]
is the Bayes-

optimal predictor4 at each point x. These quantify the effect on the risk for using one
predictor instead of another. The bias-effect is the change in risk, for the centroid

◦
q versus

the Bayes-optimal predictor y∗. The variance-effect is the change in risk for a model q versus
the centroid, averaged over the distribution of D. For losses where Definition 2 holds, the
measurement and the effect are the same, i.e., variance-effect is equal to variance, and bias-
effect is equal to bias. For example, with squared loss and y ∈ R, Equation (10) is equal to
EXY [(ED[q]−y∗)2]. For general losses (e.g., 0/1 loss, absolute loss), this is not the case, and
the effect terms are different numerical quantities. With these definitions, James & Hastie
note the following decomposition.

Theorem 6 (Bias-Variance Effect decomposition, James & Hastie 1997) For a

loss ` : Y × Y → R, denoting the centroid as
◦
q

def
= arg minz∈Y ED [`(z,q)], the expected risk

decomposes as follows:

ED
[
R(q)

]
= R(y∗)︸ ︷︷ ︸

noise

+R(
◦
q)−R(y∗)︸ ︷︷ ︸
bias-effect

+ED[R(q)−R(
◦
q)]︸ ︷︷ ︸

variance-effect

(12)

This decomposition holds for any loss, since terms on the right always cancel to give the
left side. A notable point here is that the variance-effect is dependent on the label y, whilst
the variance itself is a label-independent quantity. Furthermore, whilst bias-effect is non-
negative, the variance-effect can be a negative quantity. From this, using the same relation
exploited for Proposition 3, we can state a corresponding ambiguity (effect) decomposition.

3. J&H called this the systematic effect. For consistency within our work, we prefer the term bias-effect.
4. We acknowledge a slight abuse of notation, denoting the Bayes predictor y∗ either as a function at each

point x, or a vector in Rk, as needed. The intention will be made clear from context.
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Proposition 7 (Ambiguity-Effect Decomposition) Given a loss ` : Y × Y → R, and

an ensemble {qi}mi=1 using the centroid combiner q
def
= arg minz∈Y

[
1
m

∑m
i=1 `(z,qi)

]
, we have

a decomposition:

R(q)

︸ ︷︷ ︸
ensemble risk

=
1

m

m∑
i=1

R(qi)︸ ︷︷ ︸
average risk

− 1

m

m∑
i=1

[
R(qi)−R(q)

]
︸ ︷︷ ︸

ambiguity-effect

. (13)

We re-emphasize that this applies for any loss. This is again quite obvious, as terms
on the right cancel to give the left hand side. For losses where Definition 2 holds, this
generalises ambiguity decompositions stated earlier. For example, when ` is the squared
loss, it reduces to Krogh and Vedelsby (1994). More generally, it reduces to Theorem 3, the
generalised ambiguity decomposition.

The powerful nature of this expression is that we can also consider losses where
Definition 2 does not hold, e.g., 0/1 or absolute loss. For the 0/1 loss, the centroid is the
mode of the random variable (Domingos, 2000). For a finite set of ensemble members, this
means q is a majority vote of the individuals in the ensemble. Or, with the absolute loss, q
is the median prediction of the ensemble members.

Given all of the above, we can now present a novel decomposition for the expected risk
of an ensemble using the centroid combiner, isolating the effect of diversity.

Theorem 8 (Bias-Variance-Diversity effect decomposition) Given an ensemble of

models {qi}mi=1 combined by the centroid combiner q
def
= arg minz∈Y

[
1
m

∑m
i=1 `(z,qi)

]
, using

any loss `, the expected risk of the ensemble decomposes,

ED
[
R(q)

]
=

R(y∗)︸ ︷︷ ︸
noise

+
1

m

m∑
i=1

[
R(
◦
qi)−R(y∗)

]
︸ ︷︷ ︸

average bias-effect

+
1

m

m∑
i=1

ED
[
R(qi)−R(

◦
qi)
]

︸ ︷︷ ︸
average variance-effect

−ED

[
1

m

m∑
i=1

[
R(qi)−R(q)

]]
︸ ︷︷ ︸

diversity-effect

We obtain four terms: the noise, and the effects of average bias, average variance,
and diversity. Note that here we are considering each term including the expectation over
P (x, y). For losses where Definition 2 holds, Theorem 8 reduces to Theorem 5, the bias-
variance-diversity decomposition.

Similarly to the diversity in Theorem 5, the diversity-effect here has the opposite sign
to the others. Thus, as diversity-effect grows larger, it reduces expected risk. However, the
diversity-effect can potentially take negative values. This may seem non-intuitive, but makes
more sense if we consider the term is simply the difference between the average risk and the
ensemble risk. So, when the ensemble performs worse than the average, this will be negative.

In summary, we have the same conclusion as in the previous sub-section: the effect of
diversity can be formulated as a hidden dimension in a decomposition of the ensemble risk.
All these terms can be estimated from data—we explore this next.

12
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4.3 Estimating Diversity from Data

We present illustrative experiments, estimating bias/variance/diversity terms from data.
We emphasize that we make no claims on the superiority of the centroid combiner over any
other, only using it obtain the decomposition. Further experiments in Appendix A.1.

Squared loss: A simple instance of Theorem 5 is squared loss, `(y, q) = (y − q)2, which
implies q = 1

m

∑m
i=1 qi, and

◦
q = ED[q]. The decomposition at each test point (x, y) is,

ED
[
(q − y)2

]
=

1

m

m∑
i=1

(
◦
qi − y)2

︸ ︷︷ ︸
average bias

+
1

m

m∑
i=1

ED
[
(qi −

◦
qi)

2
]

︸ ︷︷ ︸
average variance

−ED
[ 1

m

m∑
i=1

(qi − q)2
]

︸ ︷︷ ︸
diversity

.

Figure 5 shows an experiment with Bagged regression trees, varying ensemble size.
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Figure 5: Bagging depth 8 trees, increasing ensemble size (California Housing data).

Whilst expected risk decreases, the average bias and average variance are constant.
This is as we might anticipate, since the individual capacities are constant, it is only the
ensemble size, m, that we change. In contrast, diversity increases with m—subtracting
from the expected risk—and the improvement is determined entirely by diversity. This is
not so if we vary something other than m. Figure 6 fixes m = 10, varying tree depth—all
three components now change, and we have a bias-variance-diversity trade-off.

Figure 6: Bagging m = 10 regression trees, increasing maximum depth.
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Cross-entropy loss: We can also consider Theorem 5 for the KL-divergence between
probability vectors, where the centroid combiner q is a normalized geometric mean. For a
single (x,y), where y is a one-hot vector, this gives a decomposition of the cross-entropy,
since for any q, we can write K(y || q) = −y · ln q, where we use the convention y · ln y = 0.

Corollary 9 Take a test point (x,y), where y is a one-hot vector. Consider an ensemble

{q}mi=1 where each model predicts a distribution, combined as q := Z−1
∏
i q

1/m
i . We have,

−ED [y · ln q]︸ ︷︷ ︸
expected cross-entropy

= − 1

m

m∑
i=1

y · ln ◦qi︸ ︷︷ ︸
average bias

+
1

m

m∑
i=1

ED
[
K(

◦
qi || qi)

]
︸ ︷︷ ︸

average variance

−ED

[
1

m

m∑
i=1

K(q || qi)

]
︸ ︷︷ ︸

diversity

.

With ensembles of neural networks, a normalized geometric mean is equivalent to
averaging the network logits, a common practice (Hinton et al., 2015), with both pros
and cons (Tassi et al., 2022). It is also known as the ‘product rule’ (Kuncheva, 2014),
and has undergone much scrutiny, showing it can perform either better or worse than the
arithmetic mean, depending on various factors (Tax et al., 1997). Regardless of performance,
the normalized geometric mean is required to decompose the cross-entropy in this way. In
Section 5 we consider the changes in the decomposition if using the arithmetic mean.

In Figure 7 we compare Bagging MLPs on MNIST, using small networks each with a
single layer of 20 hidden nodes, versus larger networks each with 100 hidden nodes. We
observe very similar patterns as we saw with squared loss.
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Figure 7: Decomposing expected ensemble cross-entropy for Bagging small/larger MLPs.

Overall, the ensemble of larger networks have performed better: this can again be
explained by examining the expected risk components. We see in the middle panel
that the ensemble of smaller networks have a significantly higher diversity (green line).
However, in the far right hand panel, we see the the larger networks have a significantly
lower5 average bias/variance (blue/orange lines). This gives a significant advantage in the
bias/variance/diversity trade-off. Overall, the higher diversity among the small networks
is outweighed by the more powerful individuals in the ensemble of larger networks.

5. The lower variance is counter to the ML folklore that increasing model capacity should also increase
variance; but this is consistent with recent observations (Yang et al., 2020)
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The 0/1 loss and Majority Voting Ensembles: One of the most common ensemble
schemes is majority voting, assessed by 0/1 loss (Kuncheva, 2003; Didaci et al., 2013).
Here, Theorem 5 does not hold. So, we use the effect decomposition of Theorem 8, and the
centroid combiner q is the majority vote. Using P(q 6= y)

def
= ED[`0/1(y, q)] for the probability

of ensemble error across possible data sets drawn from D, at each test point (x, y) we have:

P(q 6= y) =

1

m

m∑
i=1

[
`0/1(

◦
qi, y)

]
︸ ︷︷ ︸

average bias-effect

+
1

m

m∑
i=1

[
P(qi 6= y)− `0/1(

◦
qi, y)

]
︸ ︷︷ ︸

average variance-effect

− 1

m

m∑
i=1

[
P(qi 6= y)− P(q 6= y)

]
.︸ ︷︷ ︸

diversity-effect

Note that the average bias-effect is simply the proportion of the ensemble members whose
centroid

◦
qi is incorrect. The diversity-effect is the difference between the average probability

of error, and the ensemble probability of error. One might be tempted to re-formulate the
diversity-effect, looking for a rearrangement that does not involve the label. In fact, for the
0/1 loss, this is impossible: not just with the majority vote, but with any combiner rule.

Theorem 10 (Non-existence of label-independent diversity-effect for 0/1 loss)
For the 0/1 loss, using any ensemble combiner rule, the difference between the average
individual risk and the ensemble risk is necessarily dependent on the label.

Therefore, the effect of diversity in majority voting ensembles is necessarily dependent
on the label: an unavoidable property of the 0/1 loss. We now compare Bagging and
Random Forests on MNIST (10 classes). In the leftmost panel below, we see the Random
Forest initially under-performing, but overtaking Bagging as we increase ensemble size.
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Figure 8: Bias/Variance/Diversity effect for Bagging vs Random Forests.

In the right hand panels, we decompose the expected risk, and see familiar patterns.
As we increase m, the bias/variance-effects are constant, but diversity-effect increases.
The variance-effect in Random Forests is much higher than that of Bagging, but this is
compensated by higher diversity-effect in larger ensembles. We can also see the average
bias-effect is very slightly lower in the Random Forest, which we attribute to the trees
being able to avoid noisy features.
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Theorem 8 can be extended relatively easily for weighted voting—as shown in
Appendix C.2. In Figure 9 we plot the ensemble 0/1 risk components for Bagging and two
different boosting algorithms, using decision stumps as base learners. Here we adopt a
synthetic dataset used by Mease and Wyner (2008) to analyse boosting algorithms.
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Figure 9: Mease data, ensembling decision stumps.

We note some interesting differences between the parallel model (Bagging) and the
sequential models (LogitBoost/AdaBoost). As before, the bias/variance are constant for
Bagging. However for boosting, they vary with m. This is due to the non-homogeneous
nature of the individuals, specialising to different parts of the data. With the 0/1 loss, the
diversity-effect can be greater than the variance-effect, as opposed to the diversity itself,
which is upper-bounded by the average variance (see Section 5). More generally, with
Bagging the performance comes from increasing diversity. But, the story for boosting is
more subtle, with performance determined by a complex trade-off between the components.

4.4 Summary

We presented a framework to understand diversity—explaining it as a measure of model
fit, in precisely the same sense as bias/variance, but with the opposite sign. The expected
ensemble risk is then determined by a three-way bias/variance/diversity trade-off. When an
additive bias-variance decomposition is not available, we showed how to instead isolate the
effects of bias/variance and diversity. In Section 5 we apply this framework with Bregman
divergences (Bregman, 1967). This will give us a convenient analytical form, and additional
insights: notably, a deeper understanding of the centroid combiner rule.
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5. Understanding Diversity with Bregman Divergences

We apply our framework to the family of Bregman divergences (Bregman, 1967), including
many losses as special cases, and enabling us to derive several interesting properties.

5.1 The Basics of Bregman Divergences

A Bregman divergence is defined in terms of a generator function, φ. Let φ : Y → R be
a strictly convex function defined on a convex set Y ⊆ Rk, such that φ is differentiable on
ri(Y)—the relative interior of Y. The Bregman divergence Bφ : Y × ri(Y)→ R+ is defined,

Bφ (y,q)
def
= φ (y)− φ (q)− 〈∇φ (q) , (y − q)〉, (14)

where 〈·, ·〉 denotes an inner product, and ∇φ(q) denotes the gradient vector of φ at q. The
choice of φ leads to many different losses. With φ (q) = q2, the gradient vector ∇φ(q) is a
scalar derivative dφ(q)/dq = 2q, and we recover a squared loss, Bφ (y, q) = (y − q)2.

q = 0.3 y = 1.0

1.0

0.0

�(q)
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Bφ (y, q) = φ (y)− φ (q)− 〈∇φ (q) , (y − q)〉
= y2 − q2 − 〈2q, (y − q)〉
= y2 − q2 − 2yq + 2q2

= y2 + q2 − 2yq

= (y − q)2

Figure 10: Bregman divergence illustrated for the generator φ (q) = q2. For this example,
we have a divergence Bφ (y, q) = (y − q)2 = (1.0− 0.3)2 = 0.49.

Alternatively, we can take a vector q ∈ Rk−1, for a k-class problem. Note, this is not
a probability vector summing to one. It is, however, the minimal description of the
distribution, as the kth class probability is 1 −

∑
c q(c). With a particular generator (see

final row of Table 2) we recover the the KL-divergence between the distributions in Rk.

Loss function Bφ (y,q) Generator φ (q) Domain Y

Squared loss (y − q)2 q2 q ∈ R
Itakura-Saito y

q − ln y
q − 1 − ln q q ∈ R+

Poisson loss y ln y
q − (y − q) q ln q − q q ∈ R+

KL-divergence

∑
y(c) ln y(c)

q(c) +(
1−

∑
y(c)

)
ln 1−

∑
y(c)

1−
∑

q(c)

∑
q(c) ln q(c) +(

1−
∑

q(c)
)

ln
(
1−

∑
q(c)

) q ∈ [0, 1]k−1

s.t.
∑

c q(c) ≤ 1

Table 2: Common loss functions and their Bregman generators.

17



Wood, Mu, Webb, Reeve, Luján, Brown

5.2 Applying our Framework to the family of Bregman Divergences

As discussed in Section 4, we require the existence of a bias-variance decomposition in the
form of Definition 2. For Bregman divergences, Pfau (2013) proved the following:

ED
[
EXY[Bφ (Y,q)]

]
︸ ︷︷ ︸

expected ensemble risk

= EX

[
EY|X[Bφ (Y,Y∗)]︸ ︷︷ ︸

noise

+Bφ
(
Y∗,

◦
q
)

︸ ︷︷ ︸
bias

+ED
[
Bφ
( ◦
q,q

)]
︸ ︷︷ ︸

variance

]
, (15)

where the centroid
◦
q is conveniently available in closed-form,

◦
q

def
= arg min

z∈Y
ED
[
Bφ (z,q)

]
= [∇φ]−1

(
ED [∇φ (q)]

)
. (16)

This matches Definition 2. If φ(q) = q2, then Bφ(y, q) = (y − q)2, and
◦
q = ED [q], meaning

the overall expression is exactly that of Geman et al. (1992). With other generators/losses,
the expression corresponds to other bias-variance decompositions, e.g., Heskes (1998). From
this one result, using the framework presented in Section 4, we can derive Bregman versions
of the ambiguity decomposition, the centroid combiner, and the bias-variance-diversity
decomposition.

Theorem 11 (Bregman Ambiguity Decomposition) For a label y ∈ Y and a set of
predictions q1, . . . ,qm ∈ ri(Y), combined as q = [∇φ]−1

(
1
m

∑m
i=1∇φ(qi)

)
. Then we have:

Bφ (y,q) =
1

m

m∑
i=1

Bφ (y,qi)−
1

m

m∑
i=1

Bφ (q,qi) . (17)

Definition 12 (Bregman Centroid Combiner) The Bregman centroid combiner is the
minimizer of the average divergence from all members. For an ensemble {qi}mi=1, this is

q
def
= arg min

z∈Y

1

m

m∑
i=1

Bφ (z,qi) = [∇φ]−1
( 1

m

m∑
i=1

∇φ(qi)
)
. (18)

Theorem 13 (Bregman Bias-Variance-Diversity decomposition)
For an ensemble of models {qi}mi=1, let

◦
qi be the left Bregman centroid of model qi, i.e.,

◦
qi

def
= [∇φ]−1 (ED [∇φ(qi)]), and define the ensemble output q

def
= [∇φ]−1 ( 1

m

∑m
i=1∇φ (qi)

)
.

Then we have the decomposition

ED [EXY [Bφ (Y,q)]] =

EX

[
EY|XBφ (Y,Y∗)︸ ︷︷ ︸

noise

+
1

m

m∑
i=1

Bφ
(
Y∗,

◦
qi
)

︸ ︷︷ ︸
average bias

+
1

m

m∑
i=1

ED
[
Bφ
( ◦
qi,qi

)]
︸ ︷︷ ︸

average variance

−ED
[ 1

m

m∑
i=1

Bφ (q,qi)︸ ︷︷ ︸
diversity

]]
,

where Y∗ = EY|X [Y].

Examples for different losses (i.e., different Bregman generators) are shown in Table 3.
One point that this makes clear is that the mathematical formulation of diversity is specific
to the loss function.
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Expected Ensemble Loss Average Bias Average Variance Diversity

Squared

ED

[
(q − y)2

] 1

m

m∑
i=1

(
◦
qi − y)2

1

m

m∑
i=1

ED

[
(qi −

◦
qi)

2
]

ED

[ 1

m

m∑
i=1

(
qi − q

)2 ]
KL-divergence (Bernoulli)

ED

[
y ln y

q + (1−y) ln 1−y
1−q

]
1
m

m∑
i=1

y ln y
◦
qi

+ (1− y) ln 1−y
1−◦

qi

1
m

m∑
i=1

ED

[
◦
qi ln

◦
qi
qi

+ (1− ◦
qi) ln 1−◦

qi
1−qi

]
ED

[
1
m

m∑
i=1

q ln q
qi

+ (1− q) ln 1−q
1−qi

]

KL-divergence (Multinoulli)

ED [K(y || q)]
1

m

m∑
i=1

K(y || ◦
qi)

1

m

m∑
i=1

ED [K(
◦
qi || qi)] ED

[
1

m

m∑
i=1

K(q || qi)

]

Itakura-Saito

ED

[
y
q − ln y

q − 1
] 1

m

m∑
i=1

y
◦
qi
− ln

y
◦
qi
− 1

1

m

m∑
i=1

ED

[ ◦
qi
qi
− ln

◦
qi
qi
− 1

]
ED

[
1

m

m∑
i=1

(
q

qi
− ln

q

qi
− 1

)]

Poisson

ED

[
y ln y

q − (y − q)
] 1

m

m∑
i=1

[
y ln

y
◦
qi
− (y − ◦

qi)

]
1

m

m∑
i=1

[
ED [qi]−

◦
qi

]
ED

[
1

m

m∑
i=1

qi −
m∏
i=1

q
1/m
i

]

Table 3: Bias, variance, and diversity under different Bregman divergences. In all cases, the expectation over p(x) is omitted and
the expressions given are for a single point (x,y). See Table 4 for the definitions of the centroid combiners q.
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5.3 Properties of the Bregman Centroid Combiner

The centroid combiner is the result of a constraint, requiring the ensemble combination q to
take the same analytical form as the centroid

◦
q, as found in the bias-variance decomposition

for the relevant loss. For Bregman divergences, this form (Definition 12) is known in the
information geometry literature: as a left Bregman centroid (Nielsen and Nock, 2009).
In general these turn out to be quasi-arithmetic means, and include several well-known
ensemble combiner rules, some shown in Table 4.

Loss function Centroid Combiner Name

Squared loss 1
m

∑m
i=1 qi Arithmetic mean

Poisson regression loss
∏m
i=1 q

1
m
i Geometric mean

KL-divergence Z−1
∏m
i=1

(
q

(c)
i

) 1
m

Normalised geometric mean

Itakura-Saito loss 1
/(

1
m

∑m
i=1

1
qi

)
Harmonic mean

Table 4: Centroid combiners (i.e., left Bregman centroid of the ensemble) for various losses.

Ensemble averaging in a dual coordinate system: The centroid combiner can be
understood as an ensemble averaging operation, in a new coordinate system. The mapping
between coordinate systems is defined by the gradient of the Bregman generator with respect
to its argument, ∇φ(q). This is illustrated in Figure 11 for the KL-divergence.

q

∂
∂qi
φ(qi)

η ≈ 2.16

q ≈ 0.896

q1 = 0.7

η1 ≈ 0.8473

q2 = 0.97

η2 ≈ 3.476

Figure 11: Ensemble averaging in the geometry defined by the KL-divergence.
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We use notation q for the primal coordinate system, and η for the dual coordinate
system. In this simple illustration we are predicting a single probability p ∈ (0, 1). The
primal-dual mapping is the gradient ηi = ∂

∂qi
φ(qi) = ln qi

1−qi , plotted as the blue curve. Two
points in the primal {q1 = 0.7, q2 = 0.97} are mapped to the dual {η1 ≈ 0.8473, η2 ≈ 3.476},
then combined via arithmetic mean (η ≈ 2.16), and finally mapped back by the inverse
operation q = exp(η)/(1 + exp(η)) ≈ 0.896. The centroid combiner is therefore an
arithmetic mean ensemble in the dual coordinate system, which is equivalent to the left
Bregman centroid of the models in the primal coordinate system. An equivalent definition
was considered by Gupta et al. (2022) under the assumption of i.i.d. models. Our analysis
both complements and extends this by removing the i.i.d. assumption, and more fully
characterising the properties of ensembles using this combination rule.

Example for KL-divergence of probability estimates: In the case of KL divergence,
the centroid combiner is a normalised6 geometric mean in the primal coordinate system,
i.e., the probability simplex. Figure 12 shows this for the 3-class case.

class 3

class 1

class 2

Figure 12: Combining m = 4 predictions in the probability simplex.

The centroid combiner is shown as the blue star (also connected to the 4 individual
points) and the arithmetic mean as the pink star, which is the centre of mass for the
points. For squared loss the resulting Bregman geometry is Euclidean, meaning the centre
of mass and the centroid are the same. However, other divergences define a non-Euclidean
geometry, meaning the centroid and centre of mass are different. Note that points are
connected in the simplex not by straight lines, but by dual geodesics defined by the choice
of φ (Nielsen and Nock, 2009). A different φ (and therefore a different loss) would provide
a different geometry, and imply a different ensemble combination.

6. Note that the Bregman centroid is only a normalized distribution with φ as in Table 2—see Appendix B.4.
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5.4 Properties of the Decomposition

We explore further properties of the bias-variance-diversity decomposition.

5.4.1 Homogeneous vs Heterogeneous Ensembles

An ensemble comprises a set of models {qi}mi=1, but can also be considered as ‘one big model’
in its own right. Thus, we can discuss the bias/variance of q itself. These bias/variance
terms can be related to those of the individual models, using the theorem below.

Theorem 14 The ensemble bias and ensemble variance can be re-written as a function of
the individual models:

Bφ

(
y,
◦
q
)

︸ ︷︷ ︸
ensemble bias

=
1

m

m∑
i=1

Bφ
(
y,
◦
qi
)

︸ ︷︷ ︸
average bias

− ∆, (19)

ED
[
Bφ

( ◦
q,q

)]
︸ ︷︷ ︸
ensemble variance

= ∆ +
1

m

m∑
i=1

ED
[
Bφ
( ◦
qi,qi

)]
︸ ︷︷ ︸

average variance

−ED

[
1

m

m∑
i=1

Bφ (q,qi)

]
︸ ︷︷ ︸

diversity

, (20)

where the common term is ∆ = 1
m

∑m
i=1Bφ

( ◦
q,
◦
qi

)
.

The interesting term here is ∆, which we refer to as the model “disparity”. This
accounts for diversity among the model families in the ensemble. If the individual models
are all the same family, (e.g., all neural nets of a particular architecture), then the only
differences in their predictions will be due to the random variable D. In this case their
centroids will be the same

◦
qi =

◦
qj =

◦
q, and the disparity will be zero. If instead they have

different inductive biases, the centroids are not necessarily the same, and the disparity
may be non-zero. These are usually referred to as homogeneous vs. heterogeneous ensembles.

Bias reduction? In a homogeneous ensemble, ∆ = 0, and the ensemble bias is equal to
the average, i.e., no reduction in bias, relative to the individual models. In a heterogeneous
ensemble with sufficiently different model families, ∆ > 0, and the bias is always reduced.

Variance reduction? Ensembles are often referred to as ‘variance reduction’ methods.
We see in Equation (20) that for any Bregman divergence, for a homogeneous ensemble
(∆ = 0), the ensemble variance is guaranteed to be less than the average, i.e., we retain
the variance reduction property, provided that we use the centroid combiner rule. From
the same perspective, we see the diversity is upper-bounded by the average variance. The
amount by which the ensemble variance is reduced is exactly the diversity of the ensemble.
In a heterogeneous ensemble, the story is less simple, as it has both the addition of the
disparity, and the subtraction of the diversity.

The properties above apply for any Bregman divergence. In practice, we will have
a particular choice for a learning problem—we now discuss specific properties of two
ubiquitous losses: the cross-entropy, and squared loss.
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5.4.2 Cross Entropy Loss: Averaging estimates of class probabilities

When combining class probability estimates, a very popular strategy is to take their
arithmetic mean, e.g., Lakshminarayanan et al. (2017), but, if we use the cross-entropy,
this is not the centroid combiner. We might wonder what effect this has. The proposition
below demonstrates that the cross-entropy loss of the ensemble is still guaranteed to be less
than the average loss of its members, but the ambiguity becomes dependent on the label.

Proposition 15 Assume a true probability vector, y ∈ Rk, and a set of models {qi}mi=1

combined by averaging, i.e., q† = 1
m

∑m
i=1 qi, then the cross-entropy loss is

−y · ln q†

︸ ︷︷ ︸
ensemble cross-entropy

= − 1

m

m∑
i=1

y · ln qi

︸ ︷︷ ︸
average cross-entropy

−
k∑
c=1

y(c) ln
1
m

∑m
j=1 q

(c)
j(∏m

i=1 q
(c)
i

) 1
m︸ ︷︷ ︸

ambiguity (label-dependent)

, (21)

where the second term is non-negative, thus the ensemble loss is guaranteed less than or
equal to the average individual loss.

This property can be observed without the framework we have presented thus far, by
taking the difference between the −y · ln q† and − 1

m

∑m
i=1 y · ln qi terms. In fact, for the

case of two classes, this was observed independently by Ivaşcu et al. (2021). Using the
general case above, we can combine it with the methodology from Section 4, to obtain a
result analogous to the bias-variance-diversity decomposition.

Proposition 16 (Diversity for Averaged Probabilities is label-dependent)
Let q† = 1

m

∑m
i=1 qi, with qi ∈ [0, 1]k. The expected cross-entropy admits the decomposition:

−ED
[
y · ln q†

]
=

− 1

m

m∑
i=1

y · ln ◦qi

︸ ︷︷ ︸
average bias

+
1

m

m∑
i=1

ED
[
K(

◦
qi || qi)

]
︸ ︷︷ ︸

average variance

−ED

 k∑
c=1

y(c) ln
1
m

∑m
j=1 q

(c)
j(∏m

i=1 q
(c)
i

) 1
m


︸ ︷︷ ︸

dependency

.

This is very similar to Theorem 9, except that the final term here is dependent on the
label y. To distinguish these, we avoid using the name “diversity”, and instead refer to it
as a “dependency” term.

Gupta et al. (2022) also studied properties of ensemble bias/variance with an arithmetic
mean combiner, showing that (under an i.i.d. model assumption), the ensemble variance
is always reduced. At the same time, they raised a concern, that this may potentially
increase the ensemble bias (above the average bias), dependent on the label distribution.
Our proposition adds insight: the overall expected loss will always be less than the average.
Thus, even if there is an increase in ensemble bias, it is always more than compensated by
the reduction in ensemble variance, leading to lower overall expected loss.

23



5.4.3 Relation to the Bias-Variance-Covariance Decomposition

For the case of squared loss, our decomposition can be contrasted with the bias-variance-
covariance decomposition of Ueda and Nakano (1996), which states, for a point (x, y):

ED
[

(q − y)2
]

= (22)

(ED [q]− y)2

︸ ︷︷ ︸
bias(q)

+
1

m

1

m

m∑
i=1

ED
[
(qi − ED [qi])

2
]

︸ ︷︷ ︸
1/m × variance

+
1

m2

∑
i,j

ED
[
(qi − ED [qi])(qj − ED [qj ])

]
︸ ︷︷ ︸

(1−1/m) × covariance

.

Comparing this to our Theorem 13, a difference can be seen in the bias components. Ours
is the average individual bias, whereas Ueda & Nakano’s is the ensemble bias:

bias =
1

m

m∑
i=1

(ED [qi]− y)2, (23)

bias(q) = (ED [q]− y)2. (24)

Ueda & Nakano observed a re-writing of their term: (ED [q]− y)2 = ( 1
m

∑m
i=1[ED [qi]− y])2,

and described this as “the square of the average biases”. However, we remind the reader
that the square is an artefact of using the squared loss function. This square is not present in
generalised forms of the bias-variance decomposition—see Appendix B.1. Thus, (ED [q]−y)2

should be referred to as simply the “bias of the ensemble”. The difference between bias
and bias(q) is itself an interesting quantity—if we instantiate (19) for squared loss, we see
bias(q) = bias − ∆. This shows that their term is in fact made up of two components:
the average of the individual biases, and the disparity term introduced above. Of course,
if the models are homogeneous, i.e., of the same family, then the disparity is zero, and
bias(q) = bias.

Ueda & Nakano’s decomposition relies on a property of linear combinations of random
variables: V ar(aX1 + bX2) = a2V ar(X1) + b2V ar(X2) + 2abCov(X1, X2), where X1, X2

represent two model outputs and aX1 + bX2 represents the ensemble combination. When
the ensemble combination rule is non-linear (i.e., not a simple arithmetic mean) then this
property (and hence this as a route to understand diversity) no longer applies.

It is notable that the covariance can be either positive or negative. Our diversity term,
however, is always non-negative, growing with more disagreement around the ensemble
decision. The covariance is a fundamentally pairwise computation—it is likely that this
form inspired the many published pairwise diversity measures (Kuncheva, 2014). Diversity
in the Bregman case is written in a non-pairwise manner—the expected average deviation
around the ensemble prediction. We conjecture that this term cannot be expressed as solely
pairwise operations, implying that pairwise measures may be fundamentally limited.

5.5 Summary

We applied the framework developed in Section 4 to the broad family of Bregman
divergences. These have a particularly convenient analytical form, which enabled us to
derive several interesting properties.
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6. Discussion of Related Work

We provide a discussion of related literature, and outline some possible future work.

6.1 A diversity of diversities

There are many proposed measures of ensemble diversity. Kuncheva (2014, Section 8.5)
categorises measures along three lines: (1) diversity as a characteristic of the classifiers, not
considering the combiner or the true label; (2) diversity as a characteristic of the classifiers
and the combiner, but not using the true label; and (3) diversity as a characteristic of the
classifiers, the combiner, and the true label. Our framework clearly supports the second
idea, for losses where Definition 2 holds (e.g., Bregman divergences), and the third, for
losses where it does not (e.g., 0/1 loss, absolute loss).

6.2 Good and Bad Diversity in Majority Voting Ensembles

With the 0/1 loss, Theorem 5 does not apply. As a consequence, we have to use the
effect decomposition, in Theorem 8. As a reminder, we still consider the measurement of
diversity in the same form as other losses: ED[ 1

m

∑m
i=1 `0/1(q, qi)]. However, the effect that

this quantity has on the ensemble risk is given by the diversity-effect term. This can be
related to the idea of ‘good’ and ‘bad’ diversity (Brown and Kuncheva, 2010).

“Good” vs “Bad” diversity. Brown and Kuncheva (2010) showed that, restricting the
label to y ∈ {−1,+1}, and q as a majority vote, the following holds:

`0/1(y, q)︸ ︷︷ ︸
ensemble loss

=
1

m

m∑
i=1

`0/1(y, qi)︸ ︷︷ ︸
average loss

− yq 1

m

m∑
i=1

`0/1(q, qi)︸ ︷︷ ︸
good/bad diversity

. (25)

The similarity to the ambiguity decompositions from earlier is self-evident. The difference is
the yq preceding the second term. The sign of yq mediates the effect of the diversity.
If yq = +1 (equivalent to saying q = y), the term is non-negative and therefore acts to
subtract from the average error. When this occurs, it is referred to as “good” diversity.
When yq = −1, the diversity adds to the error, referred to as “bad” diversity. Comparing
this to the Ambiguity-effect decomposition (Theorem 7) we can relate the two as follows.

Corollary 17 For 2-class problems, y ∈ {−1,+1}, the ambiguity-effect is Brown &
Kuncheva’s good/bad diversity term, averaged over the data distribution.

EXY

[
Y q

1

m

m∑
i=1

`0/1(q, qi)︸ ︷︷ ︸
good/bad diversity

]
=

1

m

m∑
i=1

[
R0/1(qi)−R0/1(q)

]
︸ ︷︷ ︸

ambiguity-effect

. (26)

The concepts of Good/Bad diversity were generalised to the multi-class case by
Didaci et al. (2013), and the same relation applies. The idea was used in Bian and Chen
(2019) to define diversity in weighted ensembles, giving the same form as Didaci et al. (2013).
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When the effect of diversity is negative. The definition of diversity-effect is simple
to state: the expected difference between the average individual risk and the ensemble risk.
If the ensemble risk performs worse than the individuals, this will be negative, and hence
the effect of diversity will be to increase the 0/1 risk. Assume a majority voting ensemble
of classifiers, making independent errors on a k-class problem, with each model predicting
the correct class with probability p. If p > 0.5, then the ensemble 0/1 risk is guaranteed to
be less than the individual 0/1 risk (Lam and Suen, 1997). In our context this means the
diversity-effect will be non-negative, and thus the effect of diversity is to reduce ensemble
risk. However, this idealised scenario will certainly not always be possible. Kuncheva (2014,
Section 8.3) details carefully constructed scenarios where more diversity is associated with
increasing ensemble risk, i.e., the bad diversity outweighs the good diversity.

6.3 The Correlation of Diversity and Classification Accuracy

Figure 2 is a toy “accuracy/diversity” scatter plot, in the style popularised by Kuncheva
and Whitaker (2003); it shows the correlation of a diversity measure to accuracy (0/1 loss).
The x-axis is some diversity measure, and the y-axis is 1

m

∑m
i=1R0/1(qi) − R0/1(q), i.e.,

the difference between the average individual error and the ensemble error. The higher
this value, the more the ensemble outperforms the average individual model. A higher
correlation to diversity is seen to be a more successful diversity measure, as it explains
the performance improvement. Figure 13 shows two such plots for real data, for the cross-
entropy diversity. We estimate diversity on validation data, and the 0/1 loss on a final test
set. The caveat here, is that we have assumed access to class probability estimates, for
computing the cross-entropy diversity term. This may not always be possible.
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Figure 13: Accuracy/Diversity plots. LEFT: Bagged MLPs (corresponds to experiment in
Figure 7). RIGHT: Decision tree ensembles, Bagging vs Random Forests.

We see a strong correlation for both ensembles. The smaller networks (blue triangles,
Pearson’s r2 = 0.998) have greater diversity than the larger networks (orange circles, r2 =
0.992). The plot must be read in the context that overall, the larger networks significantly
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outperformed the smaller networks—it simply shows that the performance came from more
powerful base models, as opposed to their diversity.

In the right hand figure, we compare Bagging decision trees (unlimited depth) and
Random Forests on MNIST. In both cases the trees are combined by obtaining probabilities
and combining via normalised geometric mean. Again we see strong correlation of diversity
and performance gain. Bagging has a correlation r2 ≈ 0.996, whilst Random Forests has
r2 ≈ 0.999. For a fixed m, we can compare corresponding points, where the only difference
is the additional split-point randomisation of the forest. At m = 20, RF provides a reduction
in generalisation error of ≈ 14.5%, versus only ≈ 9% for Bagging. It interesting to note this
is solely due to increased diversity generated by random feature splits.

One might wonder why there is such a strong correlation in both cases. If we remember
the alternative view of the same experiment, Figure 7, we see that bias/variance are
constant, and it is only the diversity that changes. When any change is observed in the
overall ensemble cross-entropy, we know it is caused by a change in diversity. Therefore,
if we can assume strong correlation between the ensemble cross-entropy and the 0/1 loss,
then there will be a similar strong correlation between diversity and 0/1 loss.

We might now wonder, with this diversity measure, will we always see a strong
correlation between diversity and reduction in 0/1 loss? The answer is no, for a very good
reason that highlights a critical point in our understanding of diversity. In Figure 14 we fix
at m = 10 bagged trees, and vary their depth. The expected loss reduces—however, now
it is not solely due to diversity. Now, the bias and variance also change rapidly, and the
correlation of 0/1 loss/diversity is much lower.
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y

Figure 14: Bagging m = 10 trees, varying depth, and correlation is now r2 ≈ 0.59.

When varying any other parameter than m, one should not expect to see a strong
correlation of performance improvement and diversity. This is because, if we vary any
parameter that alters individual capacities, then the average bias/variance also changes,
and diversity is not the only factor in play. The overall performance is decided by a
3-way trade-off, just as there is a 2-way trade-off of bias/variance in single models. It
would be interesting to explore this with ensembles of very deep neural networks, where the
bias/variance trade-off seems to not act as classical theory predicts (Belkin et al., 2018).
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6.4 Future work

Re-visiting previous work involving heuristic diversity measures. In the
introduction, we outlined several areas that had made use of heuristic diversity measures.
Examples were given for diversity helping defend adversarial attacks, or counteracting
covariate shift, or in forming more computationally efficient models. Any one of these
might be repeated, using diversity derived from the loss function, as in our framework.

Forcing diversity. A natural line of research might be to enforce diversity in some sense,
i.e., using our diversity measures as regularisers during the construction of an ensemble.
Negative Correlation (NC) Learning (Liu and Yao, 1999) encourages diversity in regression
ensembles. Brown et al. (2006) showed this is in fact exploiting the squared loss ambiguity
decomposition, Equation (1). The Bregman ambiguity decomposition, Equation (17),
implies that the NC algorithm is a special case of a wider family of diversity-encouraging
losses—the case for cross-entropy was explored in Webb et al. (2021).

Diversity for Margin losses. Margin losses (e.g., logistic or exponential loss) are an
important class of losses, best known in the context of Gradient Boosting algorithms.
Wood et al. (2022) analysed bias-variance decompositions for such losses. Using
these results, it would be possible to obtain bias-variance-diversity decompositions for
margin losses, and thus potentially gain insight into boosting algorithms. However,
Mease and Wyner (2008) showed strong evidence that the additive model form in
AdaBoost/LogitBoost results in a disconnect between the surrogate margin loss and
our true objective, the 0/1 loss. In particular, the surrogate loss can go up (sometimes
exponentially fast) whilst the 0/1 loss on a hold-out sample is going down. This
implies that any analysis of the surrogate (including loss decompositions) does not
necessarily give meaningful insights for the 0/1 loss. Furthermore, with boosting,
the individual models are more naturally interpreted as learning to correct the
errors of previous ensemble members rather than perform well in their own right,
making interpretation of the average bias term problematic. Extending our framework
for these cases could be an interesting new interpretation of this popular class of algorithms.

Diversity in Mixtures of Experts. As it stands, our framework does not apply for a
mixture of experts model, where the models are gated by an additional input-dependent
model, itself learnt from data. Future work might consider diversity for this scenario—
perhaps measuring diversity of predictions in small regions of the space, where the gated
weights of members are reasonably constant.

Understanding or Encoding Probabilistic Assumptions. The concept of diversity
is one way of measuring dependencies between predictions. An explicit probabilistic
assumption of conditional independence (sometimes known as the Dawid-Skene model)
would seemingly imply some degree of diversity. It is not clear how the loss function view
of diversity (which we present) relates to this probabilistic view. Given the duality between
losses/log-likelihood, and that Bregman divergences can be seen as KL-divergences of
probability densities, this should be possible and may yield interesting insights.
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7. Conclusion

We have presented a unified theory of ensemble diversity. A key insight is that it is not the
task (e.g., classification/regression) that matters, but the loss function. We demonstrated
that diversity can be seen as a hidden dimension in the bias-variance decomposition of an
ensemble loss. Diversity emerges naturally with this point of view—the exact functional
form is specific to the loss being used, but the decompositions have a common structure
applicable for a wide range of losses:

expected loss = (average bias) + (average variance) − (diversity).

This gives a clear relationship between the ensemble performance and its diversity. The
only other scenario where this was previously available is for squared loss with an arithmetic
mean combiner (Ueda and Nakano, 1996). Our framework is an alternative in this case,
but generalises the notion of diversity to a far wider range of losses, including the cross-
entropy, and Poisson regression losses, but more generally any Bregman divergence. The
decomposition requires the use of a particular combination rule, specific to the loss at hand,
which we call the centroid combiner. This combiner turns out to correspond to several
well-known combiners already in the literature—e.g., for cross-entropy, it is the normalized
geometric mean. This generalises the idea of ensemble “averaging” to many other scenarios,
explained as averaging in a dual coordinate system defined by a Bregman divergence.

For losses where an additive bias-variance decomposition does not exist, we adopted the
approach of James and Hastie (1997), to instead measure the effects of bias, variance, and
diversity. which turn out to be dependent on the label distribution. The case of 0/1 loss is
particularly interesting—we show that, not just for majority voting, but for any combiner,
the effect of diversity is necessarily a label-dependent quantity.

We therefore have a broad and precise formulation of diversity for a wide range of
supervised learning scenarios. This challenge has been referred to as the “holy grail” of
ensemble learning (Zhou, 2012, pg 100), an open question for over 30 years. The answer
we provide phrases diversity as a measure of model fit, in precisely the same sense as
bias/variance. Thus, we should not be aiming to “maximise diversity” as so many works
aim to do. Instead, just as bias and variance change with model characteristics, the same
applies to diversity, and we have to manage the three-way bias/variance/diversity trade-off.

Code for all experiments at: https://github.com/EchoStatements/Decompose
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Appendix A. Additional Experimental details

A.1 Additional results

We present additional results on several datasets. We emphasize that we make no claims
on empirical superiority of any one method over any other. We simply use these toy
datasets as illustrative examples of how the risk components can be estimated.

Squared loss: We use California housing data—Table 5 shows results from three ensembles
(each M = 30 regression trees), compared to a single tree. We use Bagging with constrained
trees (max depth 8) and compare against unlimited depth trees, and a Random Forest.

Single tree
(depth 8)

Bagging
(depth 8)

Bagging
(unconstrained)

Random Forest

0.47 0.35 0.30 0.28

Table 5: California housing data: MSE of a single tree versus ensembles of 30 trees.

We observe that the Random Forest is the best choice here, followed up closely by the
unconstrained Bagging. Figure 15 explains their performance by decomposing risk into bias,
variance, and diversity—also showing how the components change as we grow the ensemble.
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ensemble size

0.0

0.1

0.2

0.3

0.4

0.5 Bagging (max depth 8)

0 10 20 30
ensemble size

Bagging (unconstrained)

average bias + noise
average variance
diversity

0 10 20 30
ensemble size

Random Forest

Figure 15: Decomposing the expected risk of three decision tree ensembles.

We observe the same behaviour as in Figure 5. The diversity increases with m,
and is upper-bounded by the value of the average variance. A higher average variance
effectively raises the “ceiling” to which diversity can rise. The average variance is
higher as we move from depth-limited trees to unlimited depth, and higher again with
the random split-points in the Random Forest (here we use the square root of the
number of features). The higher average variance is compensated for by the diversity,
causing Random Forest to be the best option. It is notable that for large ensembles,
the expected risk of the ensemble is almost entirely due to the value of the average
bias (≈ 0.28 in the case of unconstrained trees), with diversity having essentially
cancelled out the average variance of the individual models. This behaviour is not just
a quirk of this data set, in fact it holds as long as the individuals are all from the same
model family, i.e., the ensemble is homogeneous—the general case is discussed in Section 5.4.
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Cross-entropy: In Figure 16, we have additional accuracy/diversity plots for neural
network ensembles on classification problems (n examples, d features, k outputs/classes).
Datasets: Phoneme (n = 5404, d = 4, k = 2), Landsat (n = 6435, d = 36, k = 6), Spambase
(n = 4601, d = 57, k = 2), South German Credit (2019 version: n = 1000, d = 20, k = 2).

In each case, the squared Pearson’s correlation coefficient is shown in the legend. The
following configuration was used in all MLP experiments:

• learning rate: 0.1 (Stochastic gradient descent)

• num epochs: 50 (MNIST), 200 (other data sets)

• hidden layer size (20 small/100 larger)

• number of trials: 100

where each trial uses a 90% sub-sample of the full training data, as outlined in Figure 17.
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Figure 16: Error/diversity plots across four data sets, comparing ensembles of small MLPs
(20 hidden nodes, blue dots) versus large (100 hidden nodes, orange dots).
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A.2 Methodology for Estimating Bias, Variance, and Diversity

We present our methodology for estimating the bias, variance and diversity from data.
Algorithm 1 shows the procedure for experiments where we estimate diversity of ensembles
of different sizes, such as in the experiments for Bagging and Random Forests. Notably, an
ensemble of size m + 1 is created by using the members of the ensemble of size m, rather
creating a new ensemble of size m+ 1 from scratch. We also present a visualisation of the
sub-sampling scheme used for Bagging in Figure 17.

m : number of ensemble members
n : number of test points
t : number of trials
Dk : the training set to use in trial k

Arguments: model, train data, test data
Output: test preds: an array of model predictions of size t×m× n.
for k ∈ {1, . . . , t} do

for j ∈ {1, . . . , n} do
Dk ← 90% of train data, sampled without replacement;
for i ∈ {1, . . . ,m} do

member data ← bootstrap from Dk;
ith ensemble member ← copy of model trained on member data;
test preds[k, i, j] ← prediction of test data from the ith ensemble
member, in the kth trial, jth test data point;

end

end

end
Algorithm 1: Algorithm for collecting data, later used to estimate diversity of a
Bagging ensemble, whilst varying ensemble size m.

Training Data Test Data

bootstraps

Trials

Dataset

90%
Sub-sample

90%
Sub-sample

90%
Sub-sample

90%
Sub-sample

Ensembles

Ensemble Members

bootstraps bootstraps bootstraps

Figure 17: Visualisation of the sub-sampling scheme used for Bagging ensembles.
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The result of Algorithm 1 is an array of size (t,m, n). For Bregman divergences, the
average bias and average variance are approximated by first estimating the left Bregman
centroid for each ensemble member, replacing the expectation over the random variable D
with an average over t trials. We use notation Dk as the full training data in the kth trial,
from which the Bagging algorithm can be applied. The centroid for model i on a single test
point x is therefore estimated as,

◦
qesti (x) = [∇φ]−1

(
1

t

t∑
k=1

∇φ(qi(x;Dk))

)
≈ ◦
qi(x)

With this estimate of
◦
qi(x), the average bias and average variance are computed as

average bias ≈ 1

m

1

n

m∑
i=1

n∑
j=1

Bφ
(
yj ,

◦
qesti (xj)

)
, (27)

average variance ≈ 1

t

1

m

1

n

t∑
k=1

m∑
i=1

n∑
j=1

Bφ
( ◦
qesti (xj), qi(xj ;Dk)

)
. (28)

Diversity is estimated similarly, with q defined as the centroid combiner rule applied to the
m ensemble members in a given trial:

diversity ≈ 1

t

1

m

1

n

t∑
k=1

m∑
i=1

n∑
j=1

Bφ (q(xj , Dk), qi(xj ;Dk)) . (29)
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Appendix B. Further explanations

We present further exposition on certain points within the paper. The material in this
appendix is not novel, but expands on selected aspects to support our argument.

B.1 Is it “squared bias”, or just “bias”?

Geman et al. (1992) presented a squared loss bias-variance decomposition, Equation (3).
One of the terms is (ED [q] − y∗)2. They, and many subsequent papers, refer to this as
“squared bias”, or “bias squared”. This is a misnomer, as we will now argue.

The root of the issue is that Geman et al. borrowed terminology from classical statistics.
For some population value θ, and an estimator θ̂, classical statistics refers to the quantity
E[θ̂]− θ as the bias of θ̂. Thus, by analogy, they refer to (ED [q]− y∗)2 as the squared bias
of estimator q, where y∗ is assumed to be the population value.

The reason this is a misnomer—is that similar decompositions are known for other
losses, and the square is not present, e.g. Heskes (1998); Pfau (2013); Wood et al. (2022).
Relevant to our paper, the ensemble bias-variance-covariance decomposition of Ueda and
Nakano (1996) unfortunately also inherited the “squared” misnomer, as we explained in
sub-section 5.4.3. These results were proven long after the publication of Geman et al.
(1992), thus we cannot blame the authors, especially since the term “bias” is overloaded in
science (e.g. inductive, sampling, selection, confirmation). So, in short, the term “squared
bias” is a misnomer, and throughout our paper we refer to just “bias”.

B.2 The Ambiguity Decomposition is equivalent to Bias-Variance

In the bias-variance decomposition, the random variable D is commonly assumed to be over
all possible training sets of a fixed size n. This is a convention introduced by Geman et al.
(1992). However this is not necessarily the case, and D can be over any stochastic quantity
involved in construction of the model (e.g. random initial weights for neural networks), or
indeed over a finite set of pre-constructed models. In this latter case, we see an equivalence
between the bias-variance decomposition and the ambiguity decomposition—in the sense
that if one exists, then the other must also. This can be seen most easily by considering a
simpler form of the bias-variance decomposition, with no noise:

ED [`(y, q)] = `(y,
◦
q) + ED [`(

◦
q, q)] . (30)

The relation still holds with noise, but is easier to explain with this assumption. Now,
define D as a discrete random variable with an event space consisting of m different pre-
constructed models, {qi}mi=1, and the probability assigned to each event is uniform, i.e., 1/m
for each event qi. This means the expectation ED becomes an average 1

m

∑m
i=1. The centroid

is still defined in the same way, but we use notation q to denote the fact that it concerns a
finite set of predictions: q

def
= arg minz∈Y

1
m

∑m
i=1 `(z, qi). This means the expression above

becomes:

1

m

m∑
i=1

`(y, qi) = `(y, q) +
1

m

m∑
i=1

`(q, q). (31)

A simple rearrangement of terms yields the ambiguity decomposition.
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B.3 Properties of Heskes’ Decomposition for the Cross-Entropy

Heskes (1998) presents a bias-variance decomposition for the KL-divergence between
probability densities, which he extends to expose a noise term, giving a noise-bias-variance
decomposition for the cross-entropy. For Multinoulli distributions, we claim this is
equivalent to that we present in Equation (4), which is important as it then matches our
unified bias-variance form. For clarity, we restate our KL decomposition here:

ED
[
EXY [K (Y || q)]

]
︸ ︷︷ ︸

expected risk

= EX

[
EY|X

[
K
(
Y || Y∗

)]
︸ ︷︷ ︸

noise

+K
(
Y∗ || ◦q

)
︸ ︷︷ ︸

bias

+ED
[
K
(
◦
q || q

)]
︸ ︷︷ ︸

variance

]
,

(32)
where Y is random variable, over one-hot encoded indicators of the true class for an
input point x. If we take Heskes’ expression (Heskes, 1998, Eq 6) and assume Multinoulli
distributions, we get a decomposition of the expected cross-entropy at a single point x,
between a true class distribution y∗ and a model q. In our notation this reads:

−ED
[
y∗ · ln q

]
= −y∗ · ln y∗︸ ︷︷ ︸

noise

+K(y∗ || ◦q)︸ ︷︷ ︸
bias

+ED
[
K(

◦
q || q)

]
︸ ︷︷ ︸

variance

, (33)

where
◦
q ∝ exp(ED[ln q]) is the normalized geometric mean of the model distribution.

To show the equivalence, we first note that (32) has an expectation over P (X). We can
restate this at a single x,

ED
[
EY|X=x [K (Y || q)]

]
︸ ︷︷ ︸

expected loss

= EY|X=x

[
K
(
Y || y∗

)]
︸ ︷︷ ︸

noise

+K
(
y∗ || ◦q

)
︸ ︷︷ ︸

bias

+ED
[
K
(
◦
q || q

)]
︸ ︷︷ ︸

variance

, (34)

where y∗ = EY|X=x[Y] is the true class distribution at x. The second and third terms on
the right are equal to those in Heskes’ decomposition. For the noise term we note,

EY|X=x

[
K
(
Y || y∗

)]
= EY|X=x

[
Y · ln Y

y∗

]
(35)

= EY|X=x [Y · ln Y]− EY|X=x [Y · ln y∗] (36)

= −EY|X=x [Y] · ln y∗ (37)

= −y∗ · ln y∗, (38)

where we used the convention 0 ln 0 = 0. Since the right hand sides are equal, therefore the
left hand sides are equivalent too.
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B.4 The Importance of Parameter Encoding in the KL-divergence

Consider the KL-divergence between two discrete probability vectors of length k,

K(p || q) =
k∑
c=1

p(c) ln
p(c)

q(c)
(39)

There are two ways in which this can be expressed as a Bregman divergence, either using
the full-length probability vectors, p ∈ Rk and using the generator

φfull(p) =

k∑
c=1

p(c) ln p(c) (40)

or using the minimally parameterised vectors, p̃ ∈ Rk−1, where the last entry is omitted:

φmin(p̃) =

k−1∑
c=1

p̃(c) ln p̃(c) + (1−
k−1∑
c′=1

p̃(c′)) ln(1−
k−1∑
c′=1

p̃(c′)). (41)

Given two probability vectors in the appropriate form, either formulation gives a
Bregman divergence is equivalent to the KL-divergence between the vectors of class
probability estimates (Nielsen and Nock, 2009), i.e.,

Bφfull (p,q) = Bφmin
(p̃, q̃) = K(p || q).

We use the minimal parameterisation, as it exhibits a desirable property. In particular,
it is necessary to use the second to ensure that the Bregman centroid is always a valid
distribution on the probability simplex. In this case, the centroid combiner is the
normalised geometric mean, as we now demonstrate.

Minimally parameterized vectors: To show this we considermminimally parameterised
vectors, qi ∈ Rk−1 (note that we have dropped tilde above q for simplicity). Our claim is
that the centroid combiner is the normalised geometric mean q = [∇φ]−1

(
1
m

∑m
i=1∇φ(qi)

)
,

is of the form

q(c) = [∇φmin]−1

(
1

m

m∑
i=1

∇φmin(qi)

)
=

∏m
i=1 q

(c)
i

1
m∑k

c′=1

∏m
i=1 q̂(c′) 1

m

, (42)

where q̂ denotes the extension of the k − 1 length vector into a full k length probability
vector. Plugging in the gradients from Table 6, we start with

q(c) =

exp

(
1
m

∑m
i=1 ln

q
(c)
i

1−
∑k−1
c′=1

q
(c′)
i

)
1 +

∑k−1
c′=1 exp

(
1
m

∑m
i=1 ln

q
(c′)
i

1−
∑k−1
c′′=1

q
(c′′)
i

) .
Note that the numerator here can be rearranged:

exp

(
1

m

m∑
i=1

ln
q

(c)
i

1−
∑k−1

c′=1 q
(c′)
i

)
=

m∏
i=1

(
1−

k−1∑
c′=1

q
(c′)
i

)− 1
m m∏
i=1

(
q

(c)
i

) 1
m
,
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and the denominator can be written

1 +

k−1∑
c′=1

exp

(
1

m

m∑
i=1

ln
q

(c′)
m

1−
∑k−1

c′′=1 q
(c′′)
m

)
= 1 +

k−1∑
c′=1

m∏
i=1

q
(c′)
i

1
m

(
1−

k−1∑
c′′=1

q
(c′′)
i

)− 1
m

= 1 +
m∏
i′=1

(
1−

k−1∑
c′′=1

q
(c′′)
i′

)− 1
m k−1∑
c′=1

m∏
i=1

q
(c′)
i

1
m

=
m∏
i′=1

(
1−

k−1∑
c′′=1

q
(c′′)
i′

)− 1
m

 m∏
i=1

(
1−

k−1∑
c′′=1

q
(c′′)
i

) 1
m

+
k−1∑
c′=1

m∏
i=1

q
(c′)
i

1
m

 .

Putting the numerator and denominator back into the second expression of Equation (42)
and using the definition of q̂, we find the first terms in both products cancel and we are left
with the required result.

Full length k Probability Vector: If we do not use the minimally parameterized
vectors, we would have the Bregman generator φ(p) =

∑k
c=1 p(c) ln p(c). This gives the

geometric mean, rather than the normalised version. To see this, we first note that

(∇φ(p))(c) = 1 + ln p(c) = η(c)(
[∇φ]−1 (η)

)(c)
= exp

(
η(c) − 1

)
,

and therefore the centroid combiner is(
[∇φ]−1

( 1

m

m∑
m=1

∇φ(qm)
))(c)

= exp

(
1

m

m∑
i=1

1 + ln q
(c)
i − 1

)

= exp

(
1

m

m∑
i=1

ln q
(c)
i

)
=

m∏
i=1

q
(c)
i

1
m .

Note that this means that q is not necessarily a valid probability vector. In fact, it is a
valid probability vector only if q1 = . . . = qm.
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B.5 List of Bregman Centroids

For quick reference purposes (see Nielsen and Nock (2009) for more details) we list centroids
for different losses of interest to the ML community. The left Bregman centroid is defined:

◦
q

def
= arg min

z∈Y
ED
[
Bφ (z,q)

]
= [∇φ]−1

(
ED [∇φ (q)]

)
. (43)

The centroid
◦
q takes different forms dependent on the generator used.

Loss
Gradient
η = ∇φ(q)

Inverse Grad.
q = [∇φ]−1 (η)

Left Bregman Centroid
◦
q := [∇φ]−1

(
ED [∇φ (q)]

)
Squared 2q 1

2η ED[q]

Itakura-Saito −1
q − 1

η 1
/(

ED [1/q]
)

Poisson loss ln q exp(η) exp
(
ED [ln q]

)
KL-divergence ln q(c)

1−
∑k−1
c′=1

q(c′)
exp(η(c))

1+
∑k−1
c′=1

exp(η(c′))
1
Z exp

(
ED [ln q]

)
Table 6: Common losses (see Table 2) and their Bregman centroids. In the case of KL-
divergence, Z is a normalizer to ensure a valid distribution.
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Appendix C. Proofs for Section 4

C.1 Proofs for Bias-Variance-Diversity and Effect Decompositions

Theorem 5 (Generalized Bias-Variance-Diversity decomposition) Consider a set
of models {qi}mi=1, evaluated by a loss `. Assuming a bias-variance decomposition holds in
the form of Definition 2, the following decomposition also holds.

ED
[
EXY[`(Y,q)]

]
=

EX

[
EY|X[`(Y,Y∗)]

︸ ︷︷ ︸
noise

+
1

m

m∑
i=1

`(Y∗,
◦
qi)︸ ︷︷ ︸

average bias

+
1

m

m∑
i=1

ED
[
`(
◦
qi,qi)

]
︸ ︷︷ ︸

average variance

−ED

[
1

m

m∑
i=1

`(q,qi)

]
︸ ︷︷ ︸

diversity

]
, (9)

where
◦
q

def
= arg minz∈Y ED

[
`(z,q)

]
and the combiner is q

def
= arg minz∈Y

1
m

∑m
i=1 `(z,qi).

Proof Take the expected risk of q, and apply Proposition 3, the generalized ambiguity
decomposition:

ED [EXY [`(Y,q)]] = ED

[
EXY

[
1

m

m∑
i=1

`(Y,qi)

]]
− ED

[
EXY

[
1

m

m∑
i=1

`(q,qi)

]]
. (44)

Now apply Definition 2, the generalised bias-variance decomposition, to the first term on
the right:

ED
[
EXY

[ 1

m

m∑
i=1

`(Y,qi)
]]

=

EX

[
EY|X [`(Y,Y∗)] +

1

m

m∑
i=1

`(Y∗,
◦
qi) +

1

m

m∑
i=1

ED
[
`(
◦
qi,qi)

] ]
. (45)

Plugging Equation (45) into (44) completes the proof.

Further explanation on dependent/independent training schemes: For the bias-
variance decomposition of a single model q, we defined a random variable D ∼ P (x, y)n,
i.e. over i.i.d. training sets of size n. When we have an ensemble of models, it is common
for each to have their own training set, e.g. the Bagging algorithm. In this case, D is
redefined to a vector [D0, D1, D2, . . . , Dm], where D0 ∼ P (x, y)n defines the overall training
set supplied to the ensemble. Each Di, for 1..m, is a random variable defining an i.i.d.
sample with replacement from the same fixed training set defined by D0. Thus each Di is
dependent on D0, but not on any other Dj . However, it can also be that Dt is dependent
on Dt−1, for example as in Boosting algorithms. In either case, if we consider any function
of (without loss of generality) the first model, q1, then by the law of total expectation,

EY
[
EX|Y [X]

]
= EX [X], we have:

ED0...m

[
q1(D1)

]
= ED0,D2...m

[
ED1|D0,D2...m

[q1(D1)]
]

= ED1

[
q1(D1)

]
. (46)

Thus, the function of the model is only dependent on the individual model’s training set.
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Theorem 8 (Bias-Variance-Diversity effect decomposition) Given an ensemble of

models {qi}mi=1 combined by the centroid combiner q
def
= arg minz∈Y

[
1
m

∑m
i=1 `(z,qi)

]
, using

any loss `, the expected risk of the ensemble decomposes,

ED
[
R(q)

]
=

R(y∗)︸ ︷︷ ︸
noise

+
1

m

m∑
i=1

[
R(
◦
qi)−R(y∗)

]
︸ ︷︷ ︸

average bias-effect

+
1

m

m∑
i=1

ED
[
R(qi)−R(

◦
qi)
]

︸ ︷︷ ︸
average variance-effect

−ED

[
1

m

m∑
i=1

[
R(qi)−R(q)

]]
︸ ︷︷ ︸

diversity-effect

Proof Note that several terms on the right cancel, reducing to the left-hand side.

Theorem 10 (Non-existence of label-independent diversity-effect for 0/1 loss)
For the 0/1 loss, using any ensemble combiner rule, the difference between the average
individual risk and the ensemble risk is necessarily dependent on the label.

Proof We show that 1
m

∑m
i=1 `0/1(y, q)− `0/1(y, q) is necessarily dependent on the value of

y at a point (x, y). Taking expectation over P (x, y) proves the result. We show a case,
where there is no ensemble combination rule such that the expression is independent of y.

The two-class case: Define Y = {1, 2}. For a fixed x, without loss of generality, let
p = 0.6 be the proportion of the m models predicting class 1. The combiner q, provides
a label ∈ Y. For both possible q, the quantity 1

m

∑m
i=1 `0/1(y, q)− `0/1(y, q) depends on y.

First, if we assume q = 1, we have:

1

m

m∑
i=1

`0/1(y, qi)− `0/1(y, q) =

{
0.4− 0 = 0.4 if y = 1

0.6− 1 = −0.4 if y = 2

Alternatively, when q = 2,

1

m

m∑
i=1

`0/1(y, qi)− `0/1(y, q) =

{
0.4− 1 = −0.6 if y = 1

0.6− 0 = 0.6 if y = 2

For both q, the value of 1
m

∑m
i=1 `0/1(y, qi)− `0/1(y, q) is dependent on the true label y.

The multiclass case: Define Y = {1, 2, . . . , k}, and the proportion of the m models
predicting each class as p1, . . . , pk. We set p1 = 0.6, p2 = 0.4, and zero for all other classes.
From the two-class case we know that when q ∈ {1, 2}, there is a dependency on y. This
persists for q ∈ {3, . . . , k}, where we have

1

m

m∑
i=1

`0/1(y, qi)− `0/1(y, q) =


0.4− 1 = −0.6 if y = 1

0.6− 1 = −0.4 if y = 2

1.0− 0 = 1 if y = q

1.0− 1 = 0 for all other classes.

For all q ∈ Y, the expression 1
m

∑m
i=1 `0/1(y, qi)− `0/1(y, q) is dependent on the label y.
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C.2 Bias/Variance/Diversity-Effect Decomposition: Weighted Voting

We now prove a bias-variance-diversity-effect decomposition for a weighted majority vote
combination. Given an ensemble of classification models q1, . . . , qm each outputting a label
prediction from {1, . . . , k}, and weights for those models α1(D), . . . , αm(D), we consider the
ambiguity-effect decomposition for weighted plurality vote. The weighted majority vote is

q(x;D) = arg min
c∈{1,...,k}

m∑
i=1

αi(D)∑m
j=1 αj(D)

`0/1(c, qi),

similarly, the centroid for an ensemble member is given by

◦
qi = arg min

c∈{1,...,k}
ED
[

αi(D)

ED [αi(D)]
`0/1(c, qi)

]
,

with ties broken randomly (the tie break procedure can be thought of as part of the random
variable D, since D implicitly contains all sources of stochasticity related to the model).

Theorem 18 (Ambiguity-Effect Decomposition for Weighted Majority Vote)
With this, we can define a weighted effect decomposition as

`0/1(y, q) =
m∑
i=1

ai(D)`0/1(y, qi)︸ ︷︷ ︸
weighted average loss

−


m∑
i=1

ai(D)`0/1(y, qi)− `0/1(y, q)︸ ︷︷ ︸
ambiguity-effect

 ,

where ai = αi∑m
j=1 αj

.

The validity of this theorem can be verified simply by cancelling terms on the right-
hand side. The theorem tells us that the loss of an ensemble can be decomposed into a
non-negative term (the weighted average loss of the ensemble members), and an ambiguity-
effect term, which quantifies how much better (or worse) the performance of the ensemble
is compared to the average member loss. Using the same principle, we can also construct a
bias/variance-effect decomposition which takes into account a weighting α(D).

Theorem 19 (Bias/variance-effect Decomposition for Weighted Majority Vote)

ED
[
α`0/1(y, q)

]
= ED [α] `0/1(y,

◦
q) +

[
ED
[
α`0/1(y, q)

]
− ED [α] `0/1(y,

◦
q)
]

Again, the proof of the result is immediate from considering which terms on the right cancel.
However, it is worth considering how the decomposition works and what the terms mean.
Consider the decomposition when we replace α with a normalised version α

ED [α] , we get:

ED
[

α

ED [α]
`0/1(y, q)

]
= `0/1(y,

◦
q) +

[
ED
[

α

ED [α]
`0/1(y, q)

]
− `0/1(y,

◦
q)

]
.
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This is exactly bias-variance-effect decomposition that we have seen previously, but re-
weighting the contributions of the different data sets. In fact, the two are equivalent, with
the weights defining a new probability density function. Taking PD(D) as the probability
density function over data sets, the decomposition above is exactly the bias-variance-effect
decomposition with the new probability density function QD(D) = PD(D) α(D)

ED [α(D)] . We

can also easily reintroduce label noise and expose a noise term, and turning the bias into a
bias-effect:

EY
[
ED
[

α

ED [α]
`0/1(Y, q)

]]
=EY

[
`0/1(Y, Y ∗)

]︸ ︷︷ ︸
noise

+EY
[
`0/1(Y,

◦
q)− `0/1(Y, Y ∗)

]︸ ︷︷ ︸
weighted bias-effect[

ED
[
EY
[

α

ED [α]
`0/1(Y, f)− `0/1(Y,

◦
q)

]]]
︸ ︷︷ ︸

weighted variance-effect

.

We can now apply similar proof methodology, and get the following bias-variance-
diversity effect decomposition for weighted majority vote.

Proposition 20 (Bias-Variance-Diversity-Effect for Weighted Voting) Given
m classifiers q1, . . . , qm, where the ensemble is a weighted majority vote, i.e.,
q = arg minz∈Y

∑m
i=1 αi`0/1(z, qi) for weights α1, . . . , αm ∈ R+, the ensemble loss admits

the following decomposition, where the normalised weight is ai = αi/
∑m

j=1 αj.

EY
[
ED
[
`0/1(Y, q)

]]
= EY

[
`0/1(Y, Y ∗)

]
︸ ︷︷ ︸

noise

+
m∑
i=1

ED
[
ai EY

[
`0/1(Y,

◦
qi)− `0/1(Y, Y ∗)

]]
︸ ︷︷ ︸

weighted average bias-effect

+
m∑
i=1

ED
[
ai EY

[
`0/1(Y, qi)− `0/1(Y,

◦
qi)
]]

︸ ︷︷ ︸
weighted average variance-effect

−ED

[
EY

[
m∑
i=1

ai `0/1(Y, qi)− `0/1(Y, q)

]]
︸ ︷︷ ︸

diversity-effect

]
,

where
◦
qi = arg minz∈Y ED

[
αi`0/1(z, qi)

]
, noting that αi and qi are both dependent on D.

As before, the veracity of this result can be seen by cancelling terms on the right-
hand side. AdaBoost produces a set of binary classifiers hi ∈ {−1,+1} and corresponding
weights αi(D) ∈ R, so setting qi = hi allows immediate application of the decomposition.
LogitBoost does not produce classifier/weight pairs, but instead a set of regression models
each gi ∈ R. We can apply the decomposition by separating these into sign/magnitude
components, giving a classification qi = sign(gi) and and weight: αi(D) = |gi|.
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Appendix D. Proofs for Section 5

D.1 Proof of Bregman Ambiguity / Bias-Variance-Diversity decompositions.

Technically, the first two theorems in this sub-section are a corollary to the existence
of a bias-variance decomposition for Bregman divergences (Pfau, 2013) combined with
Theorem 5. However, for completeness and didactic purposes, we present separate proofs
here. The first proof will use the Bregman three-point property (Banerjee et al., 2005):

Definition 21 (Bregman three-point property) Given a convex set S ⊆ Rk, a strictly
convex function φ : Y → R, and any x1 ∈ Y and x2,x3 ∈ ri(S), the following identity holds:

Bφ (x1,x3) = Bφ (x1,x2) +Bφ (x2,x3) + 〈x1 − x2 , ∇φ(x2)−∇φ(x3)〉. (47)

Theorem 11 (Bregman Ambiguity Decomposition) For a label y ∈ Y and a set of
predictions q1, . . . ,qm ∈ ri(Y), combined as q = [∇φ]−1

(
1
m

∑m
i=1∇φ(qi)

)
. Then we have:

Bφ (y,q) =
1

m

m∑
i=1

Bφ (y,qi)−
1

m

m∑
i=1

Bφ (q,qi) . (17)

Proof We instantiate the three-point property with x1 = y, x2 = q, and x3 = qi.

Bφ (y,qi) = Bφ (y,q) +Bφ (q,qi) + 〈y − q , ∇φ(q)−∇φ(qi)〉 (48)

Now average both sides of this expression over the m models:

1

m

m∑
i=1

Bφ (y,qi) = Bφ (y,q) +
1

m

m∑
i=1

Bφ (q,qi) +
1

m

m∑
i=1

[
〈y − q , ∇φ(q)−∇φ(qi)〉

]
= Bφ (y,q) +

1

m

m∑
i=1

Bφ (q,qi) + 〈y − q , ∇φ(q)− 1

m

m∑
i=1

∇φ(qi)〉

= Bφ (y,q) +
1

m

m∑
i=1

Bφ (q,qi) , (49)

where in the final step we have rearranged the definition of q to use that
∇φ(q) = 1

m

∑m
i=1∇φ(qi). Finally, rearranging the terms of (49) recovers the

desired result, Equation (17).
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Theorem 13 (Bregman Bias-Variance-Diversity decomposition)
For an ensemble of models {qi}mi=1, let

◦
qi be the left Bregman centroid of model qi, i.e.,

◦
qi

def
= [∇φ]−1 (ED [∇φ(qi)]), and define the ensemble output q

def
= [∇φ]−1 ( 1

m

∑m
i=1∇φ (qi)

)
.

Then we have the decomposition

ED [EXY [Bφ (Y,q)]] =

EX

[
EY|XBφ (Y,Y∗)︸ ︷︷ ︸

noise

+
1

m

m∑
i=1

Bφ
(
Y∗,

◦
qi
)

︸ ︷︷ ︸
average bias

+
1

m

m∑
i=1

ED
[
Bφ
( ◦
qi,qi

)]
︸ ︷︷ ︸

average variance

−ED
[ 1

m

m∑
i=1

Bφ (q,qi)︸ ︷︷ ︸
diversity

]]
,

where Y∗ = EY|X [Y].

Proof Take the expected risk of q, and apply the Bregman ambiguity decomposition:

ED [EXY [Bφ (Y,q)]] = ED

[
EXY

[
1

m

m∑
i=1

Bφ (Y,qi)

]]
− ED

[
EXY

[
1

m

m∑
i=1

Bφ (q,qi)

]]
.

(50)

Now apply Pfau’s decomposition, Equation (15), to the first term on the RHS, and we have

ED
[
EXY

[ 1

m

m∑
i=1

Bφ(Y,qi)
]]

=

EX

[
EY|X [Bφ (Y,Y∗)] +

1

m

m∑
i=1

Bφ
(
Y∗,

◦
qi
)

+
1

m

m∑
i=1

ED
[
Bφ
( ◦
qi,qi

)] ]
.

(51)

Plugging Equation (51) into (50) completes the proof.

Theorem 14 The ensemble bias and ensemble variance can be re-written as a function of
the individual models:

Bφ

(
y,
◦
q
)

︸ ︷︷ ︸
ensemble bias

=
1

m

m∑
i=1

Bφ
(
y,
◦
qi
)

︸ ︷︷ ︸
average bias

− ∆, (19)

ED
[
Bφ

( ◦
q,q

)]
︸ ︷︷ ︸
ensemble variance

= ∆ +
1

m

m∑
i=1

ED
[
Bφ
( ◦
qi,qi

)]
︸ ︷︷ ︸

average variance

−ED

[
1

m

m∑
i=1

Bφ (q,qi)

]
︸ ︷︷ ︸

diversity

, (20)

where the common term is ∆ = 1
m

∑m
i=1Bφ

( ◦
q,
◦
qi

)
.

Proof
Equation (19) can be proven by applying Theorem 11 to a set of centroid models, { ◦qi}mi=1.

Equation (20) can be proven by applying Theorem 13 but substituting y =
◦
q.
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D.2 Proofs for Section 5.4

Proposition 15 Assume a true probability vector, y ∈ Rk, and a set of models {qi}mi=1

combined by averaging, i.e., q† = 1
m

∑m
i=1 qi, then the cross-entropy loss is

−y · ln q†

︸ ︷︷ ︸
ensemble cross-entropy

= − 1

m

m∑
i=1

y · ln qi

︸ ︷︷ ︸
average cross-entropy

−
k∑
c=1

y(c) ln
1
m

∑m
j=1 q

(c)
j(∏m

i=1 q
(c)
i

) 1
m︸ ︷︷ ︸

ambiguity (label-dependent)

, (52)

where the second term is non-negative, thus the ensemble loss is guaranteed less than or
equal to the average individual loss.

Proof Take the average cross-entropy, and subtract the ensemble cross entropy:

− 1

m

m∑
i=1

y · ln qi −
[
− y · ln q†

]
=

k∑
c=1

y(c) ln q†
(c) − 1

m

m∑
i=1

k∑
c=1

y(c) ln q
(c)
i

=

k∑
c=1

y(c) ln q†
(c) −

k∑
c=1

y(c) ln
(∏

i

q
(c)
i

)1/m

=
k∑
c=1

y(c) ln

 q†
(c)

∏m
i=1

(
q

(c)
i

) 1
m


Using the definition of q† and rearranging completes the derivation. From the arithmetic-

geometric mean inequality, q†
(c) ≥

∏m
i=1

(
q

(c)
i

)1/m
, implying that the term inside the

logarithm is greater or equal to 1, and so the overall term is non-negative.

Proposition 16 Let q† = 1
m

∑m
i=1 qi, with qi ∈ [0, 1]k. The expected cross-entropy admits

the decomposition:

−ED
[
y · ln q†

]
=

− 1

m

m∑
i=1

y · ln ◦qi

︸ ︷︷ ︸
average bias

+
1

m

m∑
i=1

ED
[
K(

◦
qi || qi)

]
︸ ︷︷ ︸

average variance

−ED

 k∑
c=1

y(c) ln
1
m

∑m
j=1 q

(c)
j(∏m

i=1 q
(c)
i

) 1
m


︸ ︷︷ ︸

dependency

.

Proof Starting with Equation (52) and taking the expectation over D, we have

−ED
[
y · ln q†

]
= ED

[
− 1

m

m∑
i=1

y · ln qi

]
− ED

 k∑
c=1

y(c) ln
1
m

∑m
j=1 q

(c)
j(∏m

i=1 q
(c)
i

) 1
m

 .
Now, apply the KL bias-variance decomposition to the first term, and the result is proven.
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