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Abstract

We establish a general Bernstein–von Mises theorem for approximately linear semiparamet-
ric functionals of fractional posterior distributions based on nonparametric priors. This is
illustrated in a number of nonparametric settings and for different classes of prior distri-
butions, including Gaussian process priors. We show that fractional posterior credible sets
can provide reliable semiparametric uncertainty quantification, but have inflated size. To
remedy this, we further propose a shifted-and-rescaled fractional posterior set that is an ef-
ficient confidence set having optimal size under regularity conditions. As part of our proofs,
we also refine existing contraction rate results for fractional posteriors by sharpening the
dependence of the rate on the fractional exponent.

Keywords: fractional posteriors, Bernstein–von Mises theorem, uncertainty quantifica-
tion, Gaussian processes, histograms.

1. Introduction

In this work, we establish theoretical guarantees for the fractional or tempered or αn-
posterior, which is obtained in a similar way to the usual Bayesian posterior distribution,
but with the likelihood raised to a power αn ∈ (0, 1]. Suppose that we model data Y = Y n

with a log-likelihood `n(η;Y n) = `n(η), and that we assign a prior distribution Π = Πn to
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the parameter η ∈ S. The fractional posterior is then defined as

Παn(B|Y n) =

∫
B e

αn`n(η)dΠ(η)∫
S e

αn`n(η)dΠ(η)
, B measurable. (1)

One interpretation is that αn induces a tempering effect: for αn < 1 the contribution of the
data in Bayes’ formula is downweighted, thus lowering the importance of the data relative
to the prior. When αn = 1, this reduces to the usual posterior distribution. We study here
the frequentist behaviour of the fractional posterior for semiparametric inference, that is
when estimating a low-dimensional functional ψ(η) of the parameter η when the latter is
assigned a high- or infinite-dimensional prior. As reflected in our notation, we will allow
the power αn to possibly depend on n.

Fractional posteriors have been used in a wide variety of settings, including Bayesian
model selection (O’Hagan, 1995), marginal likelihood approximation (Friel and Pettitt,
2008), empirical Bayes methods (Martin and Tang, 2020) and more recently variational
inference (Alquier et al., 2016; Huang et al., 2018; Burgess et al., 2017; Alquier and Ridg-
way, 2020; Medina et al., 2022). One motivation for their use in statistical inference is
their greater robustness to possible model misspecification compared to the usual Bayesian
posterior. Grünwald and van Ommen (2017) empirically demonstrate that in a misspecified
linear regression setting, fractional posteriors can outperform traditional posteriors, moti-
vating their safe Bayesian approach (Grünwald, 2012; Grünwald, 2018), which consists of
a data-driven choice of αn. The C-posterior (Miller and Dunson, 2019) is another special
case of the fractional posterior, which has empirically been shown to be more robust to
model misspecification than the full posterior in specific examples. Bissiri et al. (2016)
argue that within a decision-theoretic framework, fractional posteriors can be viewed as
principled ways to update prior beliefs. In particular, under model misspecification, they
show that a choice αn 6= 1 may be necessary for good performance. Computationally, frac-
tionally downweighting parallel distributions can also improve sampling convergence and
yield faster mixing times (Geyer and Thompson, 1995).

In all cases, the choice of the fractional power αn, often termed the learning rate, plays a
key role. There are many proposals for picking this (see, e.g., Grünwald, 2012; Grünwald and
van Ommen, 2017; Holmes and Walker, 2017; Lyddon et al., 2019; Syring and Martin, 2019),
each aiming to achieve a different target. However, one common and major motivation for
using generalized Bayesian methods is to provide uncertainty quantification via the use of
generalized posterior credible sets, whose performance are sensitive to the choice of αn in
practice (Wu and Martin, 2023). This motivates our work, whose main contribution is to
obtain a precise theoretical characterization of the role of αn for some widely-used Bayesian
nonparametric priors, in particular Gaussian processes and histograms. More precisely, for
these common high- and infinite-dimensional priors, we obtain nonparametric convergence
rates and semiparametric Bernstein-von Mises theorems having the correct dependence on
both n and αn. We further use these insights to construct rescaled credible sets from
the αn-posterior that are optimal from an information-theoretic perspective for uncertainty
quantification.

To both gain some intuition for the results ahead and relate these to the existing litera-
ture, consider the simple parametric example where we observe Y1, . . . , Yn ∼iid N (θ, 1) with
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a conjugate prior Π = N (µ, σ2) for θ. A direct calculation yields the fractional posterior

Παn [· |Y1, . . . , Yn] = N
(
nαnȲn + µσ−2

nαn + σ−2
,

1

nαn + σ−2

)
≈ N

(
θ̂MLE,

1

nαn
I−1

0

)
, (2)

where in this model the MLE equals the sample mean θ̂MLE = Ȳn, the Fisher information
I0 = 1 and the last (Bernstein–von Mises) approximation holds as nαn → ∞. Observe
that (i) the αn-posterior above can be obtained from the original posterior by replacing n
by the effective sample size nαn, so that the tempering effect means one effectively only
uses n′ = nαn of the data – with the exception that Ȳn in the centering remains identical.
Second, (ii) the posterior variance scales as (nαn)−1 for large n and hence the diameter of a
credible set constructed from two-sided αn–posterior quantiles is enlarged by a multiplicative
factor of order 1/αn compared to the traditional posterior. Third, (iii) the choice of αn
does not asymptotically affect the location of the αn-posterior mean. Combined with (ii),
this implies that credible sets from the αn-posterior do not have the correct frequentist
coverage asymptotically, being conservative (too large). In view of these observations, our
main results can be heuristically summarized as implying that for αn-posteriors based on
common Bayesian nonparametric priors in the well-specified setting:

1. The αn-posterior contraction rate is of the same form as the full posterior contraction
rate, but with the sample size n replaced by the effective sample size n′ = nαn.

2. For semiparametric Bayesian inference involving sufficiently regular low-dimensional
functionals, a Bernstein–von Mises distributional approximation holds as in (2).

3. Under regularity conditions, suitably rescaled credible sets from the αn-posterior have
asymptotically correct frequentist coverage and information-theoretic optimal diame-
ter, and are thus efficient confidence sets (unlike the standard credible sets).

The Bernstein–von Mises (BvM) distributional approximation in (2) has been extended
for the αn-posterior to general regular low-dimensional parametric models (Miller, 2021;
Medina et al., 2022). However, such proof techniques do not extend to the present semipara-
metric setting, where one wishes to estimate a finite-dimensional functional in the presence
of a high- or infinite-dimensional prior, such as a Gaussian process. In Section 2, we derive
analogous semiparametric BvM results to (2) for the αn-posterior by building on the ideas
of Castillo and Rousseau (2015). We apply these results to the concrete examples of density
estimation and the nonparametric Gaussian white noise model, illustrating our results us-
ing histogram and Gaussian process priors, including for the standard Matérn and squared
exponential covariance kernels. Since the αn-posterior variance inflates the usual posterior
variance, the resulting credible sets can be much larger than needed leading to conserva-
tive uncertainty quantification in the well-specified setting. In Section 3, we further show
that suitably rescaled credible sets can correct for this, yielding optimal (efficient) uncer-
tainty quantification and potentially mitigating one of the downsides of fractional posterior
inference.

Unlike semiparametric BvM results, nonparametric contraction rates for αn-posteriors
have previously been studied in the literature. When the model is well-specified, these often
require weaker conditions for convergence and sometimes lead to simpler proofs compared
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to the usual posterior. A remarkable result is that when αn < 1, testing or metric entropy
conditions which are typically needed for deriving posterior convergence rates as in Ghosal
et al. (2000); Ghosal and van der Vaart (2017) are not needed for the fractional posterior,
at least when convergence is expressed in terms of certain information-theoretic distances
such as Réyni–divergences. This was established by Zhang (2006) (and was earlier obtained
for consistency by Walker and Hjort, 2001), see also Kruijer and van der Vaart (2013);
Bhattacharya et al. (2019); Grünwald and Mehta (2020) for related results and examples (we
refer to Ghosal and van der Vaart, 2017, Chapters 6 and 8, for further results and historical
notes). This means that using fractional posteriors often allows one to broaden the set of
priors or models for which desirable properties are obtained compared to usual posteriors, as
only a prior mass condition is needed, avoiding sometimes delicate constructions with sieve
sets in order to keep entropies under control. However, the works Zhang (2006); Kruijer
and van der Vaart (2013); Bhattacharya et al. (2019); Grünwald and Mehta (2020) do not
seek to obtain a sharp dependence of the rate on αn, and do not yield sharp results in the
norms we are interested in, see Section 4 for more discussion. In particular, we show that
one can recover the heuristic idea that the fractional posterior uses n′ = nαn fraction of the
data. Such sharp nonparametric contraction rates for the αn-posterior in terms of both n
and αn are needed to obtain precise semiparametric BvM results.

In this paper, we restrict to well-specified nonparametric models. Compared to para-
metric models, nonparametric models attempt to be sufficiently broad that model misspeci-
fication is unlikely, so that the well-specified case covers a far larger set of situations. There
are nonetheless important notions of nonparametric model misspecification (e.g. Ghosal
and van der Vaart, 2017, Chapter 8.5) that will be dealt with in future work. Note that the
choice αn > 1, which is not covered by our results, is also used in the literature, for instance
in variational inference (Alquier et al., 2016; Burgess et al., 2017) and distributed Bayesian
computation (Szabó and van Zanten, 2019). Finally, the fractional posterior is a special
case of a Gibbs posterior (Jiang and Tanner, 2008), where one replaces the log-likelihood
with (the negative of) a risk function, and with a multiplicative constant λ, also called
inverse-temperature parameter, playing the role of αn. Gibbs posteriors appear naturally
in the study of PAC-Bayesian bounds, see Catoni (2004, 2007) and the recent overview by
Alquier (2024). Although we focus here on the special case of the log-likelihood, it would
be interesting to also investigate similar questions as in the present paper for λ.

Outline. In this paper, we investigate the behaviour of fractional posteriors both for
functionals of infinite-dimensional models (the semiparametric problem, see Sections 2 and
3) and for contraction rates of the overall unknown parameter (the nonparametric problem,
see Section 4). We start each main section by a general result valid under fairly generic con-
ditions, which we then apply to specific models and priors. In particular, we will consider
three main example–cases: the nonparametric Gaussian white noise model, density estima-
tion with random histogram priors, and density estimation with exponentiated Gaussian
process priors.

In Section 2, we study the semiparametric problem and investigate the distribution
induced from the fractional posterior on a functional ψ(η), where η is an infinite-dimensional
parameter. We show that under certain conditions, the fractional posterior distribution of√
nαn(ψ(η) − ψ̂), with ψ̂ an efficient estimator of ψ, converges to a normal distribution

with variance equal to the efficient information bound for estimating the functional. In
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some cases, the conditions for this to hold differ slightly from those needed for the classical
posterior with αn = 1 studied in Castillo and Rousseau (2015). Although this posterior
asymptotic normality (which we shall call the αn–BvM result) is of interest in itself, it
also implies that credible sets from the αn–posterior are length–inflated by a factor 1/

√
αn

compared to the case αn = 1, giving them large (conservative) coverage but making them
inefficient. In Section 3, we study the frequentist coverage properties of a shifted–and–
dilated version of the αn–credible sets. Under an appropriate condition on the centering
of the αn–BvM result, which can always be verified if αn is bounded from below, the
transformed credible set is shown to be an asymptotically optimal credible set, thereby
remedying this issue. We show that when αn may go to zero, this is no longer necessarily
the case, and assessing coverage becomes more delicate.

Nonparametric contraction rates are studied in Section 4. We first obtain a generic result
for the contraction rate of the αn-posterior in terms of a Rényi divergence and under a prior
mass condition only, slightly sharpening the recent result by Bhattacharya et al. (2019). We
then show that under further entropy conditions (Ghosal and van der Vaart, 2017), one can
improve this rate in certain regimes of αn, in particular deriving the expected nonparametric
rate with n replaced by the effective sample size n′ = nαn, thereby generalising the very
specific one–dimensional Gaussian example above to the infinite–dimensional setting. We
also briefly discuss supremum–norm contraction rates, and show that the above message
still holds.

Our results are investigated in the three concrete example settings mentioned above.
Note that we restrict to these settings for simplicity of exposition, but that our results can
be applied much more broadly to settings where the semiparametric BvM tools discussed in
the next sections can be deployed, which includes contexts as different as inverse problems
(Nickl, 2022), survival analysis (Castillo and van der Pas, 2021), inference for diffusions
(Nickl and Ray, 2020), causal inference (Ray and van der Vaart, 2020), etc. We also perform
simulations which confirm that the derived asymptotic theoretical properties are empirically
relevant and observable at reasonable finite sample sizes: in particular, we illustrate that
the modified credible sets have close to optimal coverage already at moderate sample size.

Framework and notation. Throughout the paper, we consider the following general
setting. Let (Yn,An, Pnη : η ∈ S) be a sequence of statistical experiments indexed by a
parameter η, where Y = Y n are the observations, S is a metric measure space, and n is an
indexing parameter quantifying the available amount of information. For each n ∈ N and
η ∈ S, we assume that Pnη admits a density pnη relative to a σ-finite measure µn defined on
the measurable space (Yn,An).

Throughout the following, we make a number of notational simplifications, enumerated
here. We write Pnη0

=: P0 for the probability under the true parameter η0, Enη0
=: E0

for the corresponding expectation under P0, oPnη0
(1) =: oP (1) for a term which is o(1) in

P0−probability, Πn =: Π for a prior which may depend on n, Παn(·|Y n) for the αn−posterior
distribution, and Eαn(·|Y n) for the expectation with respect to the αn−posterior .

We study frequentist properties of the αn–posterior distribution as n → ∞, that is
assuming the observation Y is distributed according to Pnη0

for some true value of the
parameter η0. We consider the regime n → ∞ with αn ∈ (0, 1] such that n′ = nαn → ∞,
with further conditions on αn required for some results. The condition n′ →∞ is minimal
for asymptotic results given the interpretation of n′ as the effective sample size used by
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the fractional posterior, see (2). Of particular interest is the regime αn → 0, since several
existing results in the literature hold for “α small enough”, for instance robustness to
misspecification of both fractional posteriors (Grünwald and van Ommen, 2017) and their
variational approximations (Medina et al., 2022).

2. Semiparametric Bernstein-von Mises Theorems

Using a nonparametric statistical model provides generality and flexibility, and global non-
parametric rates for fractional posteriors will be discussed in Section 4. Even in this general
setting, it is often the case statisticians are interested in estimating a finite-dimensional pa-
rameter or aspect of the model, the so-called semiparametric problem. Perhaps the simplest
example is, say in density estimation to fix ideas, the problem of estimating a linear func-
tional

∫ 1
0 af of the unknown density f , where a is a given square-integrable function (e.g.

the indicator of an interval). We have seen that in the simple one-dimensional example
in the introduction, the αn–posterior gives a distribution that is inflated by a factor of
size roughly 1/

√
αn compared to the classical posterior. In this section, we will show that

this in fact corresponds to a general phenomenon which carries over to estimation of many
semiparametric functionals. As mentioned earlier, we allow αn ∈ (0, 1] to depend on n and
assume nαn →∞ as n→∞.

More precisely, given a functional ψ : S → R of interest, we wish to study the properties
of the marginal αn–posterior distribution of ψ(η), i.e the push-forward measure of the αn–
posterior defined by (1) through the map ψ. We first consider a fairly general setting and
introduce sufficient conditions for the posterior distribution to be asymptotically Gaussian
(in a sense given in the next paragraph) with an optimal (efficient) variance. Afterwards,
we apply this general result to the Gaussian white noise model and density estimation.

We say that a distribution QY on R, depending on the data Y , converges weakly in
P0-probability to a Gaussian distribution N (0, V ), denoted QY ; N (0, V ) if, as n→∞,

dBL (QY ,N (0, V ))→P0 0, (3)

where dBL is the bounded Lipschitz distance between probability distributions on R (the
latter distance metrises weak convergence, see Chapter 11 of Dudley, 2002). In the sequel,
we takeQY to be a re-centered and re-scaled version of the αn–posterior distribution induced
on the functional ψ(η). More precisely, given a rate vn and a centering µ = µ(Y ), consider
the map τψ : η → vn(ψ(η) − µ). Below we will say that the αn–posterior distribution of
vn(ψ(η)− µ) converges weakly in P0–probability to a N (0, V ) distribution if (3) holds for

QY = Παn [· |Y ] ◦ τ−1
ψ ,

that is, for the push-forward measure of the αn–posterior through τψ. To establish (3), one
can, for instance, verify that Laplace transforms converge in P0–probability, see Castillo
and Rousseau (2015) for details.

When vn =
√
nαn and µ = ψ̂ is an efficient estimator of ψ(η), writing Lαn(

√
nαn(ψ(η)−

ψ̂)|Y ) for the marginal αn-posterior distribution of
√
nαn(ψ(η)− ψ̂), the above says that

Lαn(
√
nαn(ψ(η)− ψ̂)|Y ) ≈ N (0, V )
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as n → ∞. Such a result, known as a semiparametric BvM theorem, says that the above
marginal αn-posterior distribution asymptotically converges to a Gaussian distribution, with
the precise form of convergence defined via (3). It is perhaps more intuitive to express this
distributional approximation as Lαn(ψ(η)|Y ) ≈ N (ψ̂, V/(nαn)), mirroring the conjugate
example (2). Recall that we assume there is a true P0 = Pnη0

generating the data and we
are taking the large-sample frequentist limit n→∞.

2.1 A generic LAN setting

Recall the log-likelihood is denoted by `n(η) = log pnη (Y n) and we write oP (1) as a shorthand
for oP0(1) = oPη0 (1). The following setting formalises a generic semiparametric framework
as in Castillo and Rousseau (2015) (see also Castillo, 2012b and Ghosal and van der Vaart,
2017, where similar settings are considered in order to derive BvM theorems). A main
difference is in the control of remainder terms, which here depend on αn (one recovers the
conditions of Castillo and Rousseau, 2015 when αn = 1).

Assumption 2.1 Let (H, 〈·, ·〉L) be a Hilbert space with associated norm ‖ · ‖L. In the
following, Rn and r are remainder terms which are controlled through the last part of the
assumption.

LAN expansion. Suppose the log-likelihood around η0 can be written, for suitable η’s to
be specified below, as

`n(η) = `n(η0)− n

2
‖η − η0‖2L +

√
nWn(η − η0) +Rn(η, η0),

where Wn : h 7→ Wn(h) is Pn0 −almost surely a linear map and Wn(h) converges weakly to
N (0, ‖h‖2L) as n→∞.

Functional expansion. Suppose that the functional ψ around η0 can be written, for some
ψ0 ∈ H, as

ψ(η)− ψ(η0) = 〈ψ0, η − η0〉L + r(η, η0).

Define, for any fixed t ∈ R, a path through η as

ηt = η − tψ0√
nαn

. (4)

Remainder terms control. Suppose that there exists a sequence of measurable sets An
satisfying

Παn [An|Y n] = 1 + oP (1),

such that η − η0 ∈ H for all η ∈ An and n sufficiently large, and for any fixed t ∈ R,

sup
η∈An

|t
√
nαnr(η, η0) + αn(Rn(η, η0)−Rn(ηt, η0))| = oP (1).

For ψ0 and Wn as in Assumption 2.1, further define,

ψ̂ = ψ(η0) +
Wn(ψ0)√

n
, V0 = ||ψ0||2L . (5)
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The term V0 is the efficiency bound for estimating ψ(η0); an estimator ψ̃ = ψ̃(Y ) is said to
be linear efficient for estimating ψ(η0) if it can be expanded as ψ̃ = ψ(η0) +Wn(ψ0)/

√
n+

oP (1/
√
n) or equivalently if

√
n(ψ̃ − ψ̂) = oP (1). For such an estimator,

√
n(ψ̃ − ψ(η0))

converges in distribution to a N (0, V0) variable. Note that ψ̂ is itself not an estimator
as it depends on unknown quantities. But in all the following limiting results at rate
1/
√
n or 1/

√
nαn, this quantity can be replaced by any linear efficient estimator ψ̃ since

ψ̃ = ψ̂ + oP (1/
√
n).

Interpretation of Assumption 2.1. The first condition requires that the log-likelihood ex-
pands around η0 as the sum of a negative quadratic term, a stochastic term and a remainder
term. This type of Local Asymptotic Normality assumption is reminiscent of the classical
LAN expansion in parametric models (see e.g. van der Vaart, 1998, Chapter 7); the main
difference is that here in the (more general) nonparametric setting, we require a control of
remainder terms on typically larger neighborhoods. While in smooth parametric models the
LAN expansion is formulated in a 1/

√
n–neighborhood of the truth, An in Assumption 2.1

will generally be chosen as a set on which the posterior for η concentrates; since the present
setting is nonparametric, the diameter of this set is typically a nonparametric convergence
rate that is slower than 1/

√
n. Finally, Assumption 2.1 involves the functional ψ(η) and

requires that it can be expanded around the true value ψ(η0) in a way that is ‘compatible’
with the LAN–inner product. These assumptions are later verified for several classes of
priors in white noise regression and density estimation for a broad range of αn values. More
generally, we expect Assumption 2.1 to hold in a wide variety of setting. For instance, in the
case αn = 1, since they were introduced in Castillo and Rousseau (2015), these assumptions
have been verified in diffusion models (Nickl and Ray, 2020); inverse problems (Nickl and
Söhl, 2019; Nickl, 2020, 2022); survival models (Castillo and van der Pas, 2021); the Cox
model (Castillo, 2012b; Ning and Castillo, 2024); and causal inference (Ray and van der
Vaart, 2020) amongst others.

2.2 General BvM Theorems

With Assumption 2.1, we can prove a general BvM type result for the αn−posterior dis-
tribution of ψ(η). For the statement below, the conditional expectation in the display is
E[G(η) |An] =

∫
An
G(η)dP (η)/P (An), applied here with P = Παn [· |Y n] the αn–posterior

distribution and G the specific exponential function of η appearing in the display.

Theorem 2.2 (Semiparametric BvM for the αn−posterior ) Let Π = Πn be a prior
distribution on η and suppose that Assumption 2.1 holds with sets An. Then for any t ∈ R,

Eαn(et
√
nαn(ψ(η)−ψ̂)|Y n, An) = eoP (1)+t2V0/2 ·

∫
An
eαn`n(ηt)dΠ(η)∫
eαn`n(η)dΠ(η)

,

where Eαn denotes expectation with respect to the αn−posterior. Furthermore, if for any
t ∈ R, ∫

An
eαn`n(ηt)dΠ(η)∫
eαn`n(η)dΠ(η)

= 1 + oP (1),

then the αn−posterior distribution of
√
nαn(ψ(η) − ψ̂) converges weakly in P0−probability

to a Gaussian distribution with mean 0 and variance V0.
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The last display of Theorem 2.2 is a “change-of-measure”–type condition. It is satisfied
if a small additive perturbation of the prior (replacing η by ηt or vice-versa) has little effect
on computing the integrals in the display. It can often be checked by doing a change of
measure in the prior, see e.g. Castillo (2012b) and Castillo and Rousseau (2015).

We now apply this general result to the following two prototypical nonparametric mod-
els, which will serve as concrete examples for our main results here and in Section 4.

Model (GWN) (Gaussian white noise) For f ∈ L2[0, 1], one observes the trajectory
Y n = (Y n(t) : t ∈ [0, 1])

dY n(t) = f(t)dt+
1√
n
dB(t), t ∈ [0, 1],

where B(t) is a standard Brownian motion. For (φk)k≥1 any orthonormal basis of L2[0, 1],

it is statistically equivalent to observe the subprocess (Y n
k =

∫ 1
0 φk(t)dY

n(t) : k ≥ 1) acting
on this basis. In particular, the problem can be rewritten as observing Y n = (Y n

k )k with

Y n
k = fk +

1√
n
εk, k ≥ 1,

where fk =
∫ 1

0 f(t)φk(t)dt and εk ∼iid N (0, 1).

The Gaussian white noise model is the continuous analogue of nonparametric regression
with fixed or uniform random design (Reiß, 2008). It is a standard approach in statistical
theory to instead consider this model (Johnstone, 2019), which behaves asymptotically
identically to nonparametric regression, but simplifies certain technical arguments due to
the discretization. Commonly used priors for f are series priors and Gaussian process priors,
see below for specific examples.

Model (D) (Density estimation) For f a probability density with respect to Lebesgue
measure on the interval [0, 1], one observes Y = Y n = (Y1, . . . , Yn) with Y1, . . . , Yn ∼iid f .

Many different priors have been used for density functions; for example histograms,
Pólya trees, mixture models and logistically transformed priors, see the monograph by
Ghosal and van der Vaart (2017). Here we will focus on two large classes: random his-
tograms and exponentiated Gaussian processes.

Although for clarity of exposition we focus on these prototypical models, our techniques
extend to others. The results from this section require the form of local asymptotic nor-
mality (LAN) described in Assumption 2.1, which is expected in order to derive asymptotic
normality results, while the nonparametric results from Section 4 only require a prior mass
condition in the minimal case.

Gaussian White Noise. In Model (GWN), the likelihood admits a LAN expansion, with
η = f , ‖ · ‖L = ‖ · ‖2 and Rn = 0:

`n(f)− `n(f0) = −n
2
‖f − f0‖22 +

√
nWn(f − f0),
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where, for g =
∑∞

k=1 gkφk, we set Wn(g) =
∑∞

k=1 gkεk. For the functional, we assume that
it admits the following expansion

ψ(f)− ψ(f0) = 〈ψ0, f − f0〉2 + r(f, f0) (6)

for some ψ0 ∈ L2([0, 1]). This gives ψ̂ = ψ(f0) + Wn(ψ0)√
n

= ψ(f0) +
∑∞
k=1 ψ0,kεk√

n
, where

ψ0,k =
∫ 1

0 ψ0(t)φk(t)dt, and V0 = ‖ψ0‖22. Theorem 2.2 immediately implies the following
result.

Theorem 2.3 (Semiparametric BvM in Gaussian white noise) Let ψ : L2[0, 1] →
R be a functional of f satisfying (6). Suppose that An ⊂ L2[0, 1] and the remainder term r
in (6) satisfy Assumption 2.1, and that for ft = f − tψ0√

nαn
, it holds that∫

An
eαn`n(ft)dΠ(f)∫
eαn`n(f)dΠ(f)

= 1 + oP (1). (7)

Then for ψ̂ = ψ(f0) +
∑∞
k=1 ψ0,kεk√

n
, the αn−posterior distribution of

√
nαn(ψ(f) − ψ̂) con-

verges weakly in P0−probability to a Gaussian distribution with mean 0 and variance ‖ψ0‖22.

We emphasise that the form of ψ̂ and the limiting variance come from simply considering
the expansion of the log-likelihood and the functional as defined in Assumption 2.1.

Density Estimation. For f, g ∈ L2[0, 1], let F (g) =
∫
g(t)f(t)dt. For η = log f , we have

the LAN expansion:

`n(η)− `n(η0) =
n∑
i=1

{η(Yi)− η0(Yi)} = −n
2
‖η − η0‖2L +

√
nWn(η − η0) +Rn(η, η0),

where, for g ∈ L2(f0), ‖g‖2L =
∫

(g − F0(g))2f0, Wn(g) = 1√
n

∑n
i=1[g(Yi) − F0(g)], and

Rn(η, η0) =
√
nF0(h)+ 1

2‖h‖
2
L for h =

√
n(η−η0). For the functional expansion, we assume

there exists a bounded measurable function ψ̃f0 : [0, 1]→ R such that

ψ(f)− ψ(f0) =

∫
ψ̃f0f + r̃(f, f0) and

∫
ψ̃f0f0 = 0. (8)

In this case,

ψ(f)− ψ(f0) =

∫
(f − f0)ψ̃f0 + r̃(f, f0) =

〈
f − f0

f0
, ψ̃f0

〉
L

+ r̃(f, f0)

= 〈η − η0, ψ̃f0〉L + r(f, f0),

with r(f, f0) = B(f, f0) + r̃(f, f0) and

B(f, f0) = −
∫ [

η − η0 −
f − f0

f0

]
ψ̃f0f0.

Note that the last steps are required since the functional expansion should hold in terms
of the parameter η = log f rather than the density f itself. This gives ψ̂ = ψ(f0) +
Wn(ψ̃f0)/

√
n = ψ(f0)+

∑n
i=1 ψ̃f0(Yi)/n, and limiting variance ‖ψ̃f0‖2L =

∫
ψ̃2
f0
f0. With this

in mind, we obtain the following result.

10
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Theorem 2.4 (Semiparametric BvM in density estimation) Let f → ψ(f) be a func-
tional on probability densities on [0, 1] and assume there exists a bounded measurable func-
tion ψ̃f0 : [0, 1] → R such that (8) holds. Suppose that for some sequence εn → 0 and sets
An ⊂ {f : ‖f − f0‖1 ≤ εn}, for r̃ as in (8),

Παn(An|Y n) = 1 + oP (1), (9)

sup
f∈An

r̃(f, f0) = o

(
1

√
nαn

)
. (10)

Denote ft = fe−tψ̃f0/
√
nαn/F (e−tψ̃f0/

√
nαn) and for An as above, assume that∫

An
eαn`n(ft)dΠ(f)∫
eαn`n(f)dΠ(f)

= 1 + oP (1). (11)

Then for ψ̂ = ψ(f0) + 1
n

∑n
i=1 ψ̃f0(Yi), the αn−posterior distribution of

√
nαn(ψ(f) − ψ̂)

converges weakly in P0−probability to a Gaussian distribution with mean 0 and variance∫
ψ̃2
f0
f0.

We now proceed to apply these results to concrete priors.

2.3 Random Histogram Priors

We first illustrate our main theorem for density estimation using a class of histogram priors.
We will see that the αn–posterior, although leading to an enlarged variance in estimating
functionals, can sometimes lead to weaker conditions in terms of regularities. In particular,
although the αn–posterior rate may then be slower, it provides more robustness against
possible semiparametric bias that may occur for certain functionals. We provide an example
where uncertainty quantification is unreliable for the true posterior, because credible sets
will suffer from bias, whereas credible sets from the αn–posterior still cover the true unknown
function.

Random histogram prior. For any integer k, we define a distribution on H1
k , the

subset of regular histograms with k equally spaced bins which are densities on [0, 1]. Let
S1
k = {ω ∈ [0, 1]k,

∑k
i=1 ωi = 1} be the unit simplex in Rk. Denote by D(δ1, . . . , δk) the

Dirichlet distribution with real positive weights (δ1, . . . , δk) on S1
k and consider the induced

measure H(k, δ1, . . . , δk) on H1
k defined as

f(x) = k

k∑
j=1

ωj1Ij (x), ω = (ω1, . . . , ωk) ∼ D(δ1, . . . , δk), (12)

where Ij = [(j − 1)/k, j/k] for j = 1, . . . , k. We now define the random histogram prior
Π = Πn that we will use throughout this section. Let Kn → ∞ be a diverging sequence
to be chosen below and (δ1,n, . . . , δKn,n) a sequence of positive weights and set Π = Πn =
H(Kn, δ1,n, . . . , δKn,n). We assume the weights satisfy the technical condition

Kn∑
i=1

δi,n = o(
√
nαn) (13)

11
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as n→∞, which ensures that the prior is not too concentrated around its mean.
Linear functionals. Let us apply Theorem 2.4 to the case of linear functionals, i.e. those

of the form ψ(f) =
∫
ψ̃f0f . For k ≥ 1 and h in L2[0, 1], consider the L2-projection h[k] of h

onto the set of histograms with k bins:

h[k] = k
k∑
j=1

(∫
Ij

h

)
1Ij .

Writing ψ̃ = ψ̃f0 for short, define ψ̂[k] and the sequence Vk from the projection ψ̃[k] of ψ̃ as

ψ̂[k] = ψ(f0) +
1

n

n∑
i=1

ψ̃[k](Yi), Vk =

∫
f0ψ̃

2
[k] −

(∫
f0ψ̃[k]

)2

.

Recall that here, ψ̂ = ψ(f0) +
∑n

i=1 ψ̃(Yi)/n and V0 =
∫
f0ψ̃

2 (not to be confused with
setting k = 0 in the last display).

Proposition 2.5 Let Π be the random histogram prior (12) with k = Kn and weights
satisfying (13). Suppose f0 is bounded and

Παn(‖f − f0,[Kn]‖1 ≤ εn|Y n) = 1 + oP (1), (14)

for a sequence εn → 0. Suppose additionally that

√
nαn(ψ̂[Kn] − ψ̂) = oP (1). (15)

Then the αn–posterior distribution of
√
nαn(ψ(f)− ψ̂) converges weakly in P0−probability

to a Gaussian distribution with mean 0 and variance V0.

Assumption (15) ensures that, asymptotically, the posterior distribution is centered at an
efficient estimator. Arguments in Lemma B.5 give the expansion ψ̂[Kn] − ψ̂ = F0(ψ̃[Kn]) +

oP (1/
√
n), so that (15) can also be formulated as

√
nαnF0(ψ̃[Kn]) = o(1). Let us also note

that, without assuming (15), the proof of Proposition 2.5 still gives that the αn–posterior
distribution of

√
nαn(ψ(f)− ψ̂[Kn]) converges weakly to a N (0, V0) variable. The marginal

posterior is thus centered at ψ̂[Kn], whether this is an efficient estimator or not.
To gain a quantitative understanding of the minimal smoothness assumptions required

by the BvM and understand how these relate to those for the full posterior (Castillo and
Rousseau, 2015), we next consider Hölder smoothness scales.

Corollary 2.6 Consider estimating ψ(f0) =
∫ 1

0 af0 with a ∈ Cγ([0, 1]), f0 ∈ Cβ([0, 1])
bounded away from zero and β, γ ∈ (0, 1]. Let Π be the random histogram prior (12)
with weights satisfying (13) and (nαn)−b ≤ δi,n ≤ 1 for some b > 0, and with Kn =
o(nαn/ log(nαn)). If

√
nαnK

−γ−β
n = o(1), (16)

then the αn–posterior distribution of
√
nαn(ψ(f) − ψ̂) converges weakly in P0−probability

to a Gaussian distribution with mean 0 and variance V0.

12
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The assumption that Kn is of smaller order than nαn ensures that the αn-posterior for
f at least concentrates around f0 at a rate going to 0. Condition (16) is sufficient for (15)
under the assumed regularity conditions and, as in Proposition 2.5, without assuming (16),
the proof of Corollary 2.6 still gives that the αn–posterior distribution of

√
nαn(ψ(f)−ψ̂[Kn])

converges weakly to a N (0, V0) variable. Many choices of αn,Kn fulfill these conditions.
Note that the larger Kn, the weaker the regularity conditions, e.g. taking Kn slightly
smaller that nαn gives that a BvM type result, at rate

√
nαn, holds if the regularities

satisfy γ + β > 1/2.
It is interesting to compare the above result with ones for the standard posterior (αn = 1,

which was considered in Castillo and Rousseau, 2015, Theorem 4.2, albeit under a special
choice of Kn only). Since the conditions on Kn depend on αn, we underline that we compare
both under the same prior (i.e. with the same choice of Kn).

1. Case αn = α ∈ (0, 1): consider a sequence Kn = o(n/ log n), weights such that
n−b ≤ δi,n ≤ 1 and

∑Kn
i=1 δi,n = o(

√
n), and the corresponding random histogram

prior. Given this prior, the result obtained for the α–posterior is very similar to the
one obtained for the full posterior: the larger Kn, the smaller the regularities of the
representers of the functional a and f0 may be, and the choice Kn ≈ n leads to the
condition γ + β > 1/2 also for the α–posterior. However, a main difference lies in
the fact that the asymptotic variance for the α–posterior is then

∫
f0ψ̃

2
f0
/α, which is

larger than the optimal variance
∫
f0ψ̃

2
f0

obtained for the posterior.

2. Case αn → 0: to fix ideas consider αn = n−y with 0 < y < 1. Let us further choose
Kn = bnxc with x ∈ (0, 1 − y), so that the first condition on Kn holds. As before,
one chooses weights such that n−b ≤ δi,n ≤ 1 for b > 0 and

∑Kn
i=1 δi,n = o(n(1−y)/2).

Corollary 2.6 with αn = 1 implies that a BvM with optimal variance holds under the
condition

γ + β >
1

2x
.

On the other hand, applying Corollary 2.6 with αn = n−y gives the condition

γ + β >
1− y

2x
,

for the BvM with rescaling
√
nαn to hold. Thus we obtain a slower rate with the

n−y–posterior, but we have a weaker condition on the regularities of the functions a
and f0.

Since the above are only sufficient conditions, we next explicitly construct an example
where for the same prior, the semiparametric BvM holds for the αn–posterior but fails for
the standard posterior.

Semiparametric bias and possible lack of BvM. For the linear functional ψ(f) =
∫
af ,

Castillo and Rousseau (2015) give a specific counterexample in which the BvM theorem
is ruled out because of a nonnegligeable bias appearing in the centering of the posterior
distribution of

∫
af . We now investigate the behaviour of the αn–posterior distribution of∫

af in the same context.
In their counterexample, Castillo and Rousseau (2015) consider a random histogram

prior with a random number of bins. Here we adapt the counterexample of Castillo and

13
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Rousseau (2015) to our setting of a random histogram prior with a deterministic number
of bins and derive a result regarding the αn–posterior. In order to be able to explicitly
compute the bias term, we consider a functional with representer of the form

a(x) =

∞∑
l=−1

2l−1∑
k=0

2−l(
1
2

+γ)ψlk(x) (17)

for x in [0, 1], γ > 0 and (ψlk) the Haar wavelet basis.

Proposition 2.7 Let f0 be a continuously differentiable function with derivative f ′0 > ρ > 0
bounded away from zero, and let a be as in (17) with 0 < γ ≤ 1/2. Consider the random
histogram prior (12) with Kn = 2pn and pn = blog(n1/3)/ log(2)c and δi,n = n−b for all i
and some b > 1/6. Then:

1. The posterior distribution of
√
n(ψ(f)−ψ̂[Kn]) converges weakly in P0-probability to the

N (0, V0) distribution. Moreover the centering ψ̂[Kn] satisfies ψ̂[Kn] − ψ̂ = F0(ψ̃[Kn]) +

oP ( 1√
n

) with |
√
nF0(ψ̃[Kn])| ≥ c > 0 and even |

√
nF0(ψ̃[Kn])| → ∞ if γ < 1/2 . In

particular, the posterior distribution is biased and the BvM theorem does not hold.

2. Consider a sequence αn = n−x with (1 − 2γ)/3 < x < 2/3. Then the αn–posterior
distribution of

√
nαn(ψ(f) − ψ̂) converges weakly in P0-probability to the N (0, V0)

distribution.

This provides an example in which a non–negligible bias appears in the centering of the
posterior distribution of

∫
af (rescaled by

√
n), whereas the αn–posterior distribution of∫

af (rescaled by
√
nαn) is not biased. This has consequences for uncertainty quantification:

1−δ–quantile credible sets from the posterior have less than 1−δ coverage asymptotically, or
even 0 coverage, whereas those for the αn-posterior have coverage greater than 1−δ asymp-
totically. Uncertainty quantification using the αn-posterior is thus reliable, if conservative,
whereas that using the standard posterior is not. Of course, note that the αn–posterior has
a spread of order 1/

√
nαn (instead of the smaller 1/

√
n for the posterior), which makes it

easier to verify confidence statements. We refer to Section 3 for more details on the coverage
and size of credible sets for the αn–posterior.

Remark 2.8 (Approximately linear functionals) The above results extend to certain
well-behaved non-linear functionals, such as the square-root

∫ √
f , power

∫
f q, q ≥ 2, and

entropy
∫
f log f functionals. This is proved in Examples 4.2-4.4 of Castillo and Rousseau

(2015) by controlling the remainder of the functional expansion in Assumption 2.1, and the
extension to the αn−posterior is similar.

2.4 Gaussian Process Priors

In this section, we apply our general semiparametric BvM results to the widely used class of
Gaussian process priors. For general definitions and background material on Gaussian pro-
cesses and their associated reproducing kernel Hilbert spaces (RKHS), the reader is referred
to Chapter 11 of Ghosal and van der Vaart (2017) or the monograph by Rasmussen and
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Williams (2006). We will establish general results for Gaussian priors in density estimation
and Gaussian white noise, and then apply these to specific examples commonly used in
practice, such as the Matérn and squared exponential covariance kernels.

Let W = (W (x) : x ∈ [0, 1]) be a mean-zero Gaussian process with covariance function
K(x, y) = E[W (x)W (y)]. One can view W as a Borel-measurable map in some Banach
space (B, ‖ · ‖) (e.g. (C[0, 1], ‖ · ‖∞)) with associated RKHS (H, ‖ · ‖H). It is known that
nonparametric estimation properties of Gaussian process priors depend on their sample
smoothness, as measured through their small-ball probability (van der Vaart and van Zan-
ten, 2008, 2007, 2011). This can be quantified via the concentration function ϕη0 at a point
η0 ∈ B, defined as

ϕη0(ε) = − log Π(‖W‖ ≤ ε) +
1

2
inf

h∈H:‖h−η0‖<ε
‖h‖2H, (18)

where ‖ · ‖ refers to the norm on B. For the full posterior and standard statistical models,
the contraction rate for Gaussian processes is then connected to the solution to the equation
ϕη0(εn) ∼ nε2

n, see van der Vaart and van Zanten (2008). As the next theorem shows, a
similar result holds for the fractional posterior by instead considering the inequality

ϕη0(εn) ≤ nαnε2
n, (19)

i.e. using the effective sample size n′ = nαn on the right-hand side, see Section 4 below for
details.

Theorem 2.9 (Gaussian white noise) Consider the Gaussian white noise model and
assign to f a mean-zero Gaussian prior Π in L2[0, 1] with associated RKHS H. Suppose
that εn → 0 satisfies (19) with η0 = f0 ∈ L2[0, 1], and that Assumption 2.1 holds for
ψ(f) = ψ(f0) + 〈ψ0, f − f0〉2 + r(f, f0) and An ⊂ {f : ‖f − f0‖2 ≤ εn}. Further assume that
there exist sequences ψn ∈ H and ζn → 0 such that

‖ψn − ψ0‖2 ≤ ζn, ‖ψn‖H ≤
√
nαnζn,

√
nαnεnζn → 0. (20)

Then the αn−posterior distribution of
√
nαn(ψ(f)− ψ̂) converges weakly in P0−probability

to a Gaussian distribution with mean 0 and variance ‖ψ0‖22.

The sequence ψn allows one to approximate the Riesz representer, ψ0, of the functional
by elements of the RKHS H. This is helpful since for elements of the RKHS, one can directly
deal with the change of measure condition (7) using the Cameron-Martin Theorem. Note
that if ψ0 ∈ H, one may immediately take ψn = ψ0 and ζn = 0. The main message from
Theorem 2.9 is that for semiparametric inference, the fractional posterior mirrors the main
heuristic properties of parametric models (e.g. Equation 2). In particular, all conditions
are driven by the usual conditions for semiparametric BvMs for Gaussian priors but with
effective sample size n′ = nαn reflecting the downweighting of the data (see Section 4 for
specific discussion on this regarding contraction rates). The resulting marginal posterior for
the functional ψ(f) is again centered at an efficient estimator ψ̂, but has variance inflated
by a 1/αn-factor.
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Turning now to density estimation, we use the standard approach of using the exponen-
tial link function (Ghosal and van der Vaart, 2017, Section 2.3.1) to ensure the Gaussian
process induces a prior on the set of probability densities:

f(x) = fW (x) =
eW (x)∫ 1

0 e
W (y)dy

. (21)

Theorem 2.10 (Density estimation) Consider density estimation on [0, 1] and suppose
f0 ∈ C[0, 1] is bounded away from zero. Let W be a mean-zero Gaussian process in
(C[0, 1], ‖ · ‖∞) with RKHS H, and consider the induced prior on densities f via (21).
Suppose that εn → 0 satisfies (19) with η0 = log f0. Let ψ(f) be a functional with expansion
(8) having continuous representer ψ̃f0 satisfying

sup
f∈An

r̃(f, f0) = oP

(
1

√
nαn

)
for some An ⊂ {f : ‖f − f0‖1 ≤ εn} with Παn(An|Y n) = 1 + oP (1). Further assume that
there exist sequences ψn ∈ H and ζn → 0 such that

‖ψn − ψ̃f0‖∞ ≤ ζn, ‖ψn‖H ≤
√
nαnζn,

√
nαnεnζn → 0.

Then the αn−posterior distribution of
√
nαn(ψ(η)− ψ̂) converges weakly in P0−probability

to a Gaussian distribution with mean 0 and variance ‖ψ̃f0‖2L =
∫ 1

0 ψ̃
2
f0
f0.

The implications of Theorem 2.10 are similar to those of Theorem 2.9. The use of the
slightly stronger ‖ · ‖∞-norm compared to the ‖ · ‖2-norm in Theorem 2.9 is required to deal
with the nonlinear link function (21) and has little effect on our main results.

We consider the following specific examples of Gaussian priors.

Example 1 (Infinite series) Let (φk)k≥1 be an orthonormal basis of L2[0, 1]. For γ > 0,
consider the random function

W (x) =
∞∑
k=1

k−γ−1/2Zkφk(x), Zk ∼iid N (0, 1). (22)

Define the Sobolev scales in terms of the (φk) basis:

Hβ(R) :=

{
f ∈ L2[0, 1] :

∞∑
k=1

k2β|〈f, φk〉2|2 ≤ R2

}
. (23)

If (φk) is the Fourier basis, then Hβ coincides with the usual notion of Sobolev smoothness
of periodic functions on (0, 1]. The infinite series prior (22) models an almost γ-smooth
function in the sense that it assigns probability one to Hs for any s < γ.

Example 2 (Matérn) The Matérn process on R with parameter γ > 0 is the mean-zero
stationary Gaussian process with covariance kernel (Example 11.8 in Ghosal and van der
Vaart, 2017)

K(s, t) = K(s− t) =

∫
R
e−i(s−t)λ(1 + |λ|2)−γ−1/2dλ.
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The covariance function can alternatively be represented in terms of special functions, see
e.g. p.84 of Rasmussen and Williams (2006).

Example 3 (Squared exponential) The rescaled squared exponential process on R with
parameter γ > 0 is the mean-zero stationary Gaussian process with covariance kernel

K(s, t) = K(s− t) = exp

(
− 1

k2
n

(s− t)2

)
,

where kn =
(

nαn
log2(nαn)

)− 1
1+2γ

is the length scale.

The Matérn and squared exponential are two of the most widely used covariance kernels
in statistics and machine learning (Rasmussen and Williams, 2006). The sample paths of
the squared exponential process are analytic, and so are typically too smooth to effectively
model a function of finite smoothness in the sense that they yield suboptimal contraction
rates. Rescaling the covariance kernel using the decaying lengthscale kn as in Example 3
allows one to overcome this and model a γ-smooth function (van der Vaart and van Zanten,
2007).

Example 4 (Riemann-Liouville) The Riemann-Liouville process released at zero of reg-
ularity γ > 0 is defined as

W γ(x) =

bγc+1∑
k=0

Zkx
k +

∫ x

0
(x− s)γ−1/2dBs, (24)

where Zk ∼iid N (0, 1) and B is an independent Brownian motion.

For γ = 1/2, the Riemann-Liouville process reduces to Brownian motion released at zero.
Each of the above Gaussian processes is suitable for modelling a γ-smooth function in a
suitable sense, which can differ between the processes. For simplicity, we state the following
result for linear functionals, but it can be extended to certain non-linear functionals following
Remark 2.8.

Corollary 2.11 Let W be a mean-zero Gaussian process. In Gaussian white noise, take
as prior f = W and set η0 = f0, while in density estimation take the prior on densities f
induced by (21) and set η0 = log f0. Let ψ(f) =

∫ 1
0 fa be a linear functional and consider

the two cases:

(i) W is an infinite Gaussian series (Example 1) with parameter γ, η0 ∈ Hβ and a ∈ Hµ,
where Hs is defined in (23);

(ii) W is a Matérn, rescaled squared exponential or Riemann-Liouville process (Examples
2-4) with parameter γ, η0 ∈ Cβ and a ∈ Cµ.

If

γ ∧ β > 1

2
+ (γ − µ) ∨ 0,

then the αn−posterior distribution of
√
nαn(ψ(η) − ψ̂) converges weakly in P0−probability

to a Gaussian distribution with
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(a) Gaussian white noise: mean 0 and variance ‖a‖22 in both cases (i) and (ii);

(b) density estimation: mean 0 and variance ‖ψ̃f0‖2L =
∫
ψ̃2
f0
f0, with ψ̃f0 = a −

∫
af0 in

case (ii).

Corollary 2.11 shows that for widely used Gaussian priors, parametric BvM results and
conclusions (e.g. Miller, 2021; Medina et al., 2022) extend to semiparametric problems.
In particular, for regular enough functionals, the heuristic ideas and intuition extend from
low-dimensional frameworks to our more complex setting involving an infinite-dimensional
nuisance parameter.

For the infinite series prior (Example 1) in Gaussian white noise, one can also directly
derive the last conclusion using the explicit form of the posterior coming from conjugacy. In
particular, this allows one to consider low regularity functionals where

√
n-estimation is not

possible, which falls outside the usual BvM setting. The following extends the computations
of Theorem 5.1 of Knapik et al. (2011) to the αn-posterior.

Lemma 2.12 Consider Gaussian white noise, let f have the infinite series prior (Example
1) of regularity γ > 0 and consider the linear function ψ(f) =

∫ 1
0 af . If f0 ∈ Hβ, a ∈ Hµ,

0 < αn ≤ 1 and µ ≥ −β, then

Ef0Παn(f : |ψ(f)− ψ(f0)| ≥Mn max{(nαn)
−β∧( 1

2 +γ)+µ

1+2γ , (nαn)−1/2}|Y )→ 0,

for every sequence Mn →∞ as n→∞.

Thus in the low regularity regime, the αn-posterior may inflate the posterior variance
of ψ(f) by a factor slower than 1/αn. This corresponds to a more ‘nonparametric’ regime
and the conclusions here are similar to those obtained for contraction rates for the full
parameter, see Section 4 for more discussion.

Empirical verification of the BvM for the rescaled squared exponential process. Consider
density estimation with n = 10, 000 observations drawn from the density on [0, 1] given by

f ∝ eg, with g having coefficients gk = k−
1
2
−β in the Fourier basis of [0, 1]. Consider estimat-

ing the linear functional given by ψ(f) =
∫ 1

0 a(t)f(t)dt with a defined by coefficients ak =

k−
1
2
−µ in the same basis. The estimator is ψ̂ = 1

n

∑n
i=1 a(Yi), the efficient influence function

is ψ̃f0(t) = a(t) − ψ(f0), and the information bound is ‖ψ̃f0‖2L =
∫ 1

0 a(t)2f0(t)dt − ψ(f0)2.
We take as prior the exponentiated Gaussian process prior (21) with W a rescaled squared

exponential process (Example 3) with length scale kn = n
− 1

1+2γ . Figure 1 displays his-
tograms of αn−posterior draws of

√
nαn(ψ(f)− ψ̂)/‖ψ̃f0‖L with αn = 1/4 for combinations

of β, γ; the blue distributions represent cases for which the condition γ ∧β > 1
2 + (γ−µ) in

Corollary 2.11 is satisfied, while the red distributions represent cases when the condition is
violated. Posterior draws were generated by MCMC using the sbde package (Tokdar et al.,
2022).

One can see that when the condition is verified, the marginal posterior appears to be
Gaussian with the correct variance, but when the condition is violated this does not seem
to be the case. This illustrates that the asymptotic results and conditions are applicable in
finite sample sizes.
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Figure 1: Draws from the fractional posterior distribution of
√
nαn(ψ(η) − ψ(f0))/‖ψ̃f0‖L

with αn = 1/4 for different combinations of β and γ. In all cases µ = 1, and on
the left γ = 1 for different values of β, while on the right β = 1 for different values
of γ. The red distributions correspond to cases where γ ∧ β < 1

2 + (γ − µ) (the
condition in Corollary 2.11 is violated), while the blue distributions correspond
to cases where γ ∧ β > 1

2 + (γ − µ) (the condition is verified). The black line is
the density of a N (0, 1) random variable.

3. Construction of Efficient Confidence Intervals from αn–Posteriors

In Section 2, we derived semiparametric BvM theorems for fractional posteriors. When
α = 1, it is well–known that the BvM theorem implies that certain credible sets (typically
built from posterior quantiles) are optimal–sized confidence sets. For 0 < αn < 1, this is no
longer true for αn–posteriors in that the length of the resulting credible sets will overshoot
the optimal length given by the semiparametric efficiency bound. We now investigate how
this can be remedied.

For simplicity, we focus on the case where ψ(η) is one dimensional. Suppose one has
obtained a BvM theorem for ψ(η), for instance using the results from Section 2, that is,

Παn [·|Y n] ◦ τ−1
n ; N (0, V ), (25)

where τn : η → √nαn(ψ(η) − ψ̂), the centering ψ̂ is linear efficient and V is the efficiency
bound for estimating ψ(η). In particular,

√
n(ψ̂ − ψ(η0))

L−→ N (0, V ). (26)
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For 0 < δ < 1, let aYn,δ denote the δ–quantile of the αn–posterior distribution of ψ(η) and
consider the quantile region

Iαn = I(δ, αn, Y ) := (aY
n, δ

2

, aY
n,1− δ

2

].

By definition, Παn [ψ(η) ∈ Iαn |Y ] = 1−δ, that is, Iαn is a (1−δ)–credible set (assuming the
αn–posterior CDF is continuous, otherwise one takes generalised quantiles). For δ ∈ (0, 1),
denote by qδ the quantile of theN (0, 1) distribution. From (25) and standard results recalled
in Lemma B.6, one deduces that Iαn admits the following expansion:

Iαn =
(
ψ̂ +

√
V q δ

2√
nαn

+ oP

(
1

√
nαn

)
, ψ̂ +

√
V q1− δ

2√
nαn

,+oP

(
1

√
nαn

)]
. (27)

When αn = 1 or αn → 1, it follows from (27) and the fact that ψ̂ is linear efficient that Iαn
is asymptotically an efficient confidence interval of level 1− δ for the parameter ψ(η0).

When αn → α ∈ [0, 1), Iαn has a diameter blown-up by a factor 1/
√
αn compared to

I1 for αn = 1, and its confidence level thus exceeds 1 − δ. Denoting by Φ the cumulative
distribution function of the N (0, 1) distribution, it follows from (27) that,

1. if αn → α ∈ (0, 1), then P0 [ψ(η0) ∈ Iαn ]→ 2Φ(q1−δ/2/
√
α)− 1 > 1− δ;

2. if αn → 0, then P0 [ψ(η0) ∈ Iαn ]→ 1.

An implication is that while Iαn is a valid confidence set, it is conservative, in that its
coverage is larger than the target 1− δ.

In order to construct an efficient confidence interval from the αn–posterior of ψ(η) when
αn → α ∈ [0, 1), we consider a modified quantile region. Let ψ̄ be an estimator of ψ(η0)
built from the αn–posterior distribution of ψ(η) (e.g. posterior median or mean) and set

Jαn :=
(√

αn(aY
n, δ

2

− ψ̄) + ψ̄ ,
√
αn(aY

n,1− δ
2

− ψ̄) + ψ̄
]
. (28)

We call this a shift–and–rescale version of the quantile set (or sometimes corrected set):
this new interval is obtained by recentering Iαn at ψ̄ and applying a shrinking factor

√
αn.

We now provide a condition under which the shift-and-rescale set presented in (28) has the
correct coverage.

Theorem 3.1 Suppose (25)–(26) hold for some 0 < αn < 1, and suppose the estimator ψ̄
satisfies

ψ̄ = ψ̂ + oP (1/
√
n). (29)

Then Jαn in (28) is an asymptotically efficient confidence interval of level 1 − δ for the
parameter ψ(η0), i.e.

P0 [ψ(η0) ∈ Jαn ]→ 1− δ

as n → ∞. If αn = α ∈ (0, 1] is fixed and ψ̄ is the α–posterior median, then (29) holds.
In particular, the region (28) is an asymptotically efficient confidence interval of level 1− δ
for ψ(η0).
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Theorem 3.1 states that if the re–centering is close enough to the efficient estimator ψ̂,
then the shift–and–rescale modification leads to a confidence set of optimal size (in terms
of efficiency) from an information-theoretic perspective, and this is always possible for fixed
α if one centers at the posterior median. When αn can possibly go to zero, the situation is
more delicate. Indeed, although by definition (25) is centered around an efficient estimator
at the scale 1/

√
nαn, it is not clear in general how to deduce from this a similar result

at the smaller scale 1/
√
n. We do not provide a general answer here, but to gain some

insight we consider two specific examples: the conjugate parametric setting (2), and the
nonparametric Gaussian white noise model with a conjugate prior, and investigate whether
the αn–posterior median aY

n, 1
2

satisfies (29) when αn → 0.

Theorem 3.1 applies to semiparametric models, but also to parametric models as a
special case. In particular, in the conjugate example (2), it is easy to check that (29) holds
if and only if

√
nαn →∞, which is a fairly mild condition. We now turn to a more complex

setting.
Modified credible sets in Gaussian white noise. Consider Model (GWN) and write

f0(t) =
∑∞

k=1 f0,kφk(t) for (φk)k>0 an orthonormal basis of L2[0, 1]. We assign a prior
to f by placing independent priors on the basis coefficients fk = 〈f, φk〉 ∼ N (0, λk), and
consider the problem of estimating the linear functional ψ(f) =

∫ 1
0 a(t)f(t)dt =

∑∞
k=1 akfk.

By conjugacy arguments, the αn−posterior distribution of ψ(f)|Y (n) is Gaussian (so its
median and mean coincide) N (aYn,1/2, σ̄

2), with

aYn,1/2 =
∞∑
k=1

nαnλk
1 + nαnλk

akYk, σ̄2 =
∞∑
k=1

λk
1 + nαnλk

a2
k.

Suppose the smoothness of the true function f0, the representer a and the prior are specified
through the magnitude of their basis coefficients as follows, for β, µ, γ > 0,

f0,k = k−
1
2
−β, ak = k−

1
2
−µ, λk = k−1−2γ . (30)

Setting ψ̄ = aYn,1/2 the posterior mean/median, the shift–and–rescale set is, with zδ the
standard Gaussian quantiles,

Jαn =
(
ψ̄ +
√
αnzδ/2σ̄ , ψ̄ +

√
αnz1−δ/2σ̄

]
.

By Theorem 3.1, for the set Jαn to have asymptotic coverage 1− δ it suffices that ψ̄− ψ̂ =
oP (1/

√
n). The following result describes the behaviour of the shift–and–rescale sets.

Proposition 3.2 Consider the Gaussian white noise model with Gaussian prior f =
∑∞

k=1 fkφk,
where fk ∼ind N(0, λk), and suppose that (30) holds. Let Jαn denote the set (28) with ψ̄
equal to the posterior mean/median. Then

1. If β + µ > 1 + 2γ, the sets Jαn are efficient confidence intervals of level 1− δ if and
only if

√
nαn →∞.

2. If β+µ = 1 + 2γ, then Jαn are efficient confidence intervals of level 1− δ if and only

if
√
n

log(n)αn →∞.
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3. If 1
2 + γ < β + µ < 1 + 2γ, then the sets Jαn are efficient confidence intervals of level

1− δ if and only if n
1− 1+2γ

2(β+µ)αn →∞.

This result assumes γ + 1/2 < β + µ, which corresponds to the case where a Bernstein-von
Mises result for the standard posterior (αn ≡ 1) holds, see Theorem 5.4 in Knapik et al.
(2011), cases (ii) and (iii). In agreement with these results, we see by setting αn = 1 in
Proposition 3.2 that in all three cases standard credible sets J1 are efficient confidence sets.
The point of Proposition 3.2 is to investigate to what extent shift–and–rescale sets Jαn
centered at the posterior median remain efficient confidence sets when αn goes to 0. In
Cases 1 and 2, the condition is very mild and any sequence (αn) essentially slower than
1/
√
n works (recall as noted above that in the basic parametric example (2), the shift–and–

rescale sets are efficient under the same condition
√
nαn → ∞). When β + µ approaches

1/2 + γ (Case 3), αn is only allowed to decrease quite slowly to 0 to preserve efficiency.
An interpretation is that the problem becomes more ‘nonparametric’ and the αn–posterior
median does not necessarily concentrate fast enough in order for (29) to be satisfied.

Simulation study. We now illustrate the applicability of the asymptotic result presented
in Proposition 3.2 to the finite sample setting. We simulated 10,000 observations of Y n from
the Gaussian white noise model (n = 10, 000) with 3 different parameter combinations of
(β, µ, γ) corresponding to the three different cases presented in Proposition 3.2. With each of
these observations, we produced credible sets from the full posterior, the αn−posterior, and
the shift–and–rescale sets from the αn−posterior, and computed their empirical coverage
(the proportion of the sets which contained the true parameter ψ(f0)), their length, and
the mean bias of their centering. This data is presented in Table 1. For the αn−posterior
and the corrected credible sets, we study two regimes in each case: one where αn breaches
the condition described in Proposition 3.2 by a

√
log n factor, and one where αn verifies the

condition by a
√

log n factor. This results in a large difference in the empirical coverage
of the shift–and–rescale sets; when the lower bound is breached, the corrected sets have
little or no coverage, but when the lower bound is respected they have approximately the
target coverage. In this example, the conditions provided by Proposition 3.2 seem to be
accurate (note that due here to the moderate sample size of n = 10, 000, the

√
log(n)

factor is still not completely negligible in comparison to the polynomial factor specified by
Proposition 3.2, which explains why the empirical behaviours clearly feature either coverage
or non-coverage).

We first comment on how the lengths of the corrected sets in each of the cases roughly
match the lengths of the credible sets from the full posterior, but that the bias of the
centering of the corrected sets is always larger than the bias of the centering of the full
posterior (even in the regimes where αn does not breach the lower bound). It is easy to see
why this is the case in this particular model; the bias is −

∑∞
k=1

1
1+nαnλk

, which is obviously
larger in magnitude for smaller αn. The fact that the corrected sets have a larger bias but
the same length as those from the full posterior results in a strictly lower coverage, which
can be seen in the empirical results.

Secondly, we observe that the lengths of the shift–and–rescale sets are roughly the same
for different choices of αn, so it is purely the bias of the centering which affects the coverage
for αn breaching the lower bound versus αn respecting the lower bound. This makes sense on
inspection of the assumptions of Proposition 3.1, which relies on the posterior mean being
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Gaussian White Noise

Case 1 β + µ > 1 + 2γ
β = 2, µ = 2, γ = 0.5 Cov. Len. Bias (SD)

Full Posterior 0.95 0.02 -0.00008 (0.005)

αn−Posterior (
√
nαn = 1/

√
log(n)→ 0) 1.00 0.86 -0.05331 (0.004)

αn−Posterior (
√
nαn =

√
log(n)→∞) 1.00 0.08 -0.00059 (0.005)

Shift–and–rescale Sets (
√
nαn = 1/

√
log(n)→ 0) 0.00 0.02 -0.05331 (0.004)

Shift–and–rescale Sets (
√
nαn =

√
log(n)→∞) 0.95 0.02 -0.00059 (0.005)

Case 2 β + µ = 1 + 2γ
β = 1, µ = 1, γ = 0.5

Full Posterior 0.95 0.02 -0.00006 (0.005)

αn−Posterior (
√
n

log(n)αn = 1/
√

log(n)→ 0) 1.00 0.29 -0.01462 (0.005)

αn−Posterior (
√
n

log(n)αn =
√

log(n)→∞) 0.99 0.03 -0.00021 (0.005)

Shift–and–rescale Sets (
√
n

log(n)αn = 1/
√

log(n)→ 0) 0.15 0.02 -0.01462 (0.005)

Shift–and–rescale Sets (
√
n

log(n)αn =
√

log(n)→∞) 0.95 0.02 -0.00021 (0.005)

Case 3 1
2 + γ < β + µ < 1 + 2γ
β = 0.75, µ = 0.75, γ = 0.5

Full Posterior 0.95 0.02 -0.00061 (0.005)

αn−Posterior ( n
1− 1+2γ

2(β+µ)αn = 1/
√

log(n)→ 0) 1.00 0.40 -0.04759 (0.005)

αn−Posterior ( n
1− 1+2γ

2(β+µ)αn =
√

log(n)→∞) 1.00 0.04 -0.00145 (0.005)

Shift–and–rescale Sets ( n
1− 1+2γ

2(β+µ)αn = 1/
√

log(n)→ 0) 0.00 0.02 -0.04759 (0.005)

Shift–and–rescale Sets ( n
1− 1+2γ

2(β+µ)αn =
√

log(n)→∞) 0.94 0.02 -0.00145 (0.005)

Density Estimation

Case 4 1
2 + γ < β + µ < 1 + 2γ
β = 1, µ = 1, γ = 1

Full Posterior 0.95 0.01 -0.00089 (0.004)

αn−Posterior ( n
1− 1+2γ

2(β+µ)αn = 1/
√

log(n)→ 0) 0.93 0.06 -0.01267 (0.005)

αn−Posterior ( n
1− 1+2γ

2(β+µ)αn =
√

log(n)→∞) 0.94 0.02 -0.00233 (0.005)

Shift–and–rescale Sets ( n
1− 1+2γ

2(β+µ)αn = 1/
√

log(n)→ 0) 0.31 0.01 -0.01267 (0.005)

Shift–and–rescale Sets ( n
1− 1+2γ

2(β+µ)αn =
√

log(n)→∞) 0.92 0.01 -0.00233 (0.005)

Table 1: Data pertaining to the credible sets obtained in the three different cases presented
in Proposition 3.2. Case 4 represents a similar experiment in density estimation.

within a factor oP (1/
√
n) of the efficient centering; when αn breaches the lower bound

implied by Proposition 3.2, the bias is orders of magnitude larger than when αn respects
the lower bound.
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Finally, note that the credible sets from the αn−posterior always have coverage close
to 1, but at the price of being considerably larger than those from the full posterior or the
corrected credible sets.

Density estimation. We empirically illustrate the behaviour of shift–and–rescale sets in
density estimation, where exact computations are not possible. We use the same prior, true
density and linear functional as the empirical study in Section 2.4, with β = γ = µ = 1.
We take n = 10, 000 observations and again generate posterior samples by MCMC using
the sbde R-package (Tokdar et al., 2022) with αn = n−1/4/

√
log(n), n−1/4

√
log(n) and 1.

We consider the (empirical) 95% credible intervals and the corresponding shift-and-rescale
credible intervals. Figure 2 shows the roughly Gaussian shape of each of the posterior
distributions; the comparatively large credible intervals from the αn−posterior (dashed
vertical lines); and the fact that the shift–and–rescale intervals (solid vertical lines) and
credible interval from the full posterior have approximately the same length, which shows
the correction also appears to work well in this more complex setting. For estimates of
the coverage of these shift-and-rescale credible sets, see Case 4 in Table 1. The condition

n
1− 1+2γ

2(β+µ)αn → ∞ derived for Gaussian white noise in Proposition 3.2 seems to be a good
guide in this setting as well, with the shift-and-rescale credible sets achieving very small
coverage when this condition is breached, but approximately the right coverage when the
condition is verified.

Remark 3.3 (Multi-dimensional functionals) Though we do not formally present any
multi-dimensional semiparametric BvM results in this paper, we briefly sketch the analogous
construction of a multidimensional shift–and–rescale set given a BvM theorem. Recall that
for a one-dimensional functional, one uses the αn–posterior quantiles to define the boundary
of the credible interval. In higher-dimensions, a simple possibility is to use a sample from
the αn–posterior to compute its empirical covariance VY , and use this as a ‘shape’ for
the boundary of the credible set. More precisely, for a d−dimensional functional, a (1 −
δ)−credible set from an approximately Gaussian Nd(ψ̄, V ) random variable is approximately

{ψ : (ψ − ψ̄)TV −1(ψ − ψ̄) ≤ χ2
d(1− δ)},

where χ2
d(1− δ) is the (1− δ)−quantile of the χ2

d distribution. The corresponding empirical
shift-and-rescale set from the fractional posterior would then be

{ψ : (ψ − ψ̄)TV −1
Y (ψ − ψ̄) ≤ αnχ2

d(1− δ)},

where VY is the empirical αn–posterior covariance. This provides an analogue in dimension
d ≥ 1 of the shift-and-rescale set presented in (26) when d = 1.

4. Contraction Rates for the Fractional Posterior

A first step in proving semiparametric BvM results in Section 2 is to localize the posterior
near the true parameter by establishing a contraction rate. We therefore study nonpara-
metric contraction rates for the αn-posterior distribution with a focus on obtaining the
precise dependence on both n and αn, results which are also of independent interest for full
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Figure 2: Histograms of αn−posterior distribution samples of ψ(f) in density estimation us-
ing a rescaled squared exponential prior, with empirical credible intervals (dashed
lines) and shift-and-rescale credible intervals (solid lines).

nonparametric Bayesian estimation. Given our primary focus is semiparametrics, we will
consider common statistical norms which are relevant to this topic, such as Lp-distances.

Recall that unlike for the full Bayesian posterior, testing or metric entropy conditions are
not needed to obtain contraction rates in the Rényi-divergence for the fractional posterior
when αn < 1 (as derived by Walker and Hjort, 2001 for consistency and Zhang, 2006 for
rates), see also Kruijer and van der Vaart (2013); Bhattacharya et al. (2019); Grünwald
and Mehta (2020). Given this result is more flexible than the classic test-based approach
for full posteriors, we first examine its implications for some common statistical norms. For
0 < α < 1, the Rényi divergence of order α between two densities f and g on a measurable
space (E,A, µ) is given by

Dα(f, g) = − 1

1− α
log

(∫
E
fαg1−αdµ

)
.

Further define the usual Kullback-Leibler divergence K(f, g) =
∫
f log(f/g)dµ and its 2nd-

variation V (f, g) =
∫
f (log(f/g)−K(f, g))2 dµ. It is well-known that posterior contraction
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rates are related to the prior mass assigned to a Kullback-Leibler type neighbourhood about
the true density pn0 = pnη0

:

Bn(pnη0
, ε) = Bn(η0, ε) = {η ∈ S : K(pnη0

, pnη ) ≤ nε2, V (pnη0
, pnη ) ≤ nε2},

see Chapter 8 of Ghosal and van der Vaart (2017). We first modify Theorem 3.1 of Bhat-
tacharya et al. (2019) by introducing an explicit dependence on αn in the ‘small-ball’ prob-
ability.

Theorem 4.1 For any nonnegative sequence εn and 0 < αn < 1 such that nαnε
2
n → ∞

and

Π(Bn(η0, εn)) ≥ e−nαnε2n , (31)

there exists C > 0 such that as n→∞,

Παn

(
η :

1

n
Dαn(pnη , p

n
η0

) ≥ C αnε
2
n

1− αn
|Y n

)
= oP (1).

The last result differs from Theorem 3.1 in Bhattacharya et al. (2019) on two points: first,
the required lower bound for the small-ball probability in (31) takes the form e−nαnε

2
n

rather than e−nε
2
n , which is a natural modification in view of the interpretation that the

αn-posterior uses effective sample size n′ = nαn; second, the obtained rate in terms of
Dαn(pnη , p

n
η0

)/n is Cαnε
2
n/(1 − αn) instead of Cε2

n/(1 − αn) (importantly, note that the
sequences εn in both rates may be different since the small-ball probability condition is
different, see below for more details). We illustrate the difference between these approaches
in the next examples. Note that in interpreting the rate in Theorem 4.1, one needs to take
care of the dependence of Dαn on the exponent αn. In typical examples for iid models, this
scales as nαn times squared individual distances between densities. In the Gaussian white
noise model for instance, one can directly compute Dαn(f, f0) = nαn

2 ‖f − f0‖22, so that the
conclusion of the last statement becomes

Παn

(
f : ‖f − f0‖2 ≥ C

εn√
1− αn

|Y n

)
= oP (1).

Consider for simplicity the case of a β-smooth Gaussian process with β-smooth truth f0, in

which case condition (31) above yields the choice εn = εn,αn = (nαn)
− β

2β+1 (see Section 4.1
below for precise statements). In this case, Theorem 4.1 gives L2-rate εn,αn(1− αn)−1/2 =

(nαn)
− β

2β+1 (1 − αn)−1/2, while Theorem 3.1 of Bhattacharya et al. (2019) implies rate

εn,1α
−1/2
n (1 − αn)−1/2 = n

− β
2β+1α

−1/2
n (1 − αn)−1/2. In particular, for all β > 0 and 0 <

αn < 1, the former gives a better dependence on αn, particularly in the small αn regime. A
similar conclusion holds in density estimation with L1-loss, where one has Dαn(fn, fn0 ) ≥
nαn‖f − f0‖21/2 (van Erven and Harremoes, 2014, Theorem 31) for fn(x) =

∏n
i=1 f(xi) the

n-fold product density of f , thereby giving the same rates as for L2-loss in Gaussian white
noise as just above. Thinking of αn’s that go to zero polynomially in n (e.g. αn = n−1/4),
one sees that the improvement is polynomial in n in these examples.
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Remark 4.2 One can also more generally compare the rates obtained by the two ap-
proaches. Denote f(ε) := fn(ε) = Π(Bn(η0, ε)) and g(ε) = e−nε

2
and suppose to fix ideas

that the equations f(εn) = e−nαnε
2
n and f(ε̄n) = e−nε̄

2
n have unique solutions εn, ε̄n. By

definition (f − g)(ε̄n) = 0 while f(εn) − g(εn) = e−nαnε
2
n − e−nε2n > 0, so that εn ≥ ε̄n

using that f − g is non-decreasing. In particular, f(εn) ≥ f(ε̄n) which leads to αnε
2
n ≤ ε̄2

n,
implying that the rate provided by Theorem 4.1 is in that case, up to constants, at least as
fast as that of Theorem 3.1 of Bhattacharya et al. (2019) (and, as the examples above show,
sometimes the improvement is polynomial).

Note that the above rates deteriorate as αn → 1, i.e. convergence to the full posterior. This
is not surprising since contraction rates for the full posterior typically require additional
conditions, such as testing or bounded entropy conditions. Indeed, Barron et al. (1999) pro-
vide a counterexample of a prior which satisfies the small ball condition (31) with αn = 1
but not a related entropy condition. They show the full posterior is inconsistent (Barron
et al., 1999, Section 3.5), whereas the fractional posterior converges to the truth at rate at
least (1 − α)−1n−1/3 when α ∈ (0, 1) is fixed (Bhattacharya et al., 2019). This counterex-
ample shows that one must exploit additional regularity properties of a prior beyond the
prior mass condition (31) to ensure good behaviour as αn → 1. Note that taking a sequence
αn → 1 is also relevant to certain practical Bayesian computational algorithms, for instance
fractionally weighting (tempering) parallel distributions can improve sampling convergence
and yield faster mixing times (Geyer and Thompson, 1995) or in some empirical Bayes
methods (Martin and Tang, 2020).

We therefore present a second αn-posterior convergence result following the testing ap-
proach of Ghosal and van der Vaart (2007), which removes the necessity that αn < 1 at the
expense of an extra testing condition needed to control the complexity of the prior support.
Theorem 1 of Ghosal and van der Vaart (2007) extends to the αn-posterior using the same
proof technique as for the full posterior.

Theorem 4.3 Let d be a metric on the parameter space S and η0 ∈ S. Suppose that
there exist universal constants K, a > 0 such that for all ε > 0 and all η1 ∈ S satisfying
d(η0, η1) > ε, there exist tests ϕn satisfying

Eη0ϕn ≤ e−Knε
2
, sup

η∈S:d(η,η1)<aε
Eη(1− ϕn) ≤ e−Knε2 . (32)

Let Π = Πn be a prior on S, and εn, ε̃n and 0 < αn ≤ 1 be nonnegative sequences such
that nαnε̃

2
n → ∞. Suppose further that there exist constants C,D > 0 and subsets Sn ⊂ S

satisfying

1. N(εn, Sn, d) ≤ eDnε2n,

2. Π(Scn) ≤ e−(C+3)nαnε̃2n,

3. Π(Bn(η0, ε̃n)) ≥ e−Cnαnε̃2n.

Then there exists M > 0 such that as n→∞,

Παn(η : d(η, η0) ≥M(εn ∨ ε̃n)|Y n)→P0 0.
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In the i.i.d. density estimation model, the testing condition (32) is satisfied for instance
by the Hellinger metric, L1-distance or, for a bounded set of densities, by the L2-distance
(Ghosal and van der Vaart, 2017, Proposition D.8). It similarly extends to Gaussian white
noise with the L2-distance (Ghosal and van der Vaart, 2017, Lemma D.16) and various
other non-i.i.d. models such as nonparametric regression, Markov chains and times series,
see Chapter 8.3 in Ghosal and van der Vaart (2017). Having two sequences εn and ε̃n adds
flexibility to the approach, which can prove useful in certain non-i.i.d. models.

Returning to the β-smooth Gaussian process example and assuming for simplicity that

εn ' ε̃n ' n
− β

2β+1 , Theorem 4.3 yields rate (nαn)
− β

2β+1 compared with the slower rate

(nαn)
− β

2β+1 (1 − αn)−1/2 from Theorem 4.1. In particular, the former rate gains signifi-
cantly when αn → 1 and fully matches the original parametric intuition that the fractional
posterior uses effective sample size n′ = nαn.

We now apply these general results to the concrete examples of histograms and Gaussian
process priors. In all cases we use the sharper rate from Theorem 4.3 since these priors
satisfy the required entropy conditions.

Proposition 4.4 (Histogram prior) Consider density estimation on [0,1] with true den-
sity f0 ∈ Cβ([0, 1]) for some β ∈ (0, 1], bounded away from 0. Let Π = Πn denote the his-
togram prior (12) satisfying Kn = o (nαn/ log(nαn)) and 1

(nαn)b
≤ δi,n ≤ 1 for i = 1, . . . ,Kn

for some b > 0. Then there exists C > 0 such that as n→∞,

Παn

(
f : ‖f − f0‖1 ≥ C

(
Kn log(nαnKn)

nαn
+

1

K2β
n

) 1
2
∣∣∣∣Y n

)
P0−→ 0.

As expected, the rate in the last proposition matches that for the full posterior but with
the role of the sample size n replaced by the effective sample size n′ = nαn (cf. Equation 4.8

in Castillo and Rousseau, 2015). Note that the optimal choice K∗n ' (log(nαn)/(nαn))
1

2β+1

that balances the two terms in the rate also depends on αn and hence will not match the
optimal truncation for the true posterior. This follows since the fractional posterior inflates
the variance without significantly affecting the bias in the well-specified setting considered
here. We further remark that the prior conditions required in Proposition 4.4 become more
stringent as αn → 0, though one may always take Kn →∞ since nαn →∞ by assumption.

4.1 Contraction rates for Gaussian process priors

As mentioned in Section 2.4 above, for a mean-zero Gaussian process W viewed as a Borel-
measurable map in a Banach space (B, ‖ · ‖) with corresponding RKHS (H, ‖ · ‖H), the
corresponding contraction rates are related to the behaviour of the concentration function,
ϕw. This connection is made explicit in Theorem 2.1 of van der Vaart and van Zanten
(2008), which characterizes rates such that a Gaussian prior places sufficient mass about
a given truth and concentrates on sets of bounded complexity. These conclusions are in
terms of the Banach-space norm ‖ · ‖, which must then be related to concrete distances in
standard statistical settings.

The following result extends Theorem 2.1 of van der Vaart and van Zanten (2008) to
the fractional posterior by considering the solution to the equation ϕη0(εn) ∼ nαnε

2
n, i.e.
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using the effective sample size on the right-hand side, see (19). Since it is well-established
that the support of a Gaussian process W equals the closure of its RKHS H under the
underlying Banach space norm ‖ · ‖, we require the true parameter η0 to lie in this space.

Lemma 4.5 Let W be a mean-zero Gaussian random element in a separable Banach space
(B, ‖ · ‖) with associated RKHS (H, ‖ · ‖H), and suppose η0 lies in H̄, the closure of H in B.
If εn > 0 and αn > 0 satisfy ϕη0(εn) ≤ nαnε

2
n, then for any C > 1 with Cnαnε

2
n > log 2,

there exist measurable sets Bn ⊂ B such that

logN(3εn, Bn, ‖ · ‖) ≤ 6Cnαnε
2
n,

P (W /∈ Bn) ≤ e−Cnαnε2n ,

P (‖W − η0‖ < 2εn) ≥ e−nαnε2n .

Lemma 4.5 involves the Banach space norm ‖ · ‖, which is related to statistically rele-
vant norms and divergences in both Gaussian white noise and density estimation in (van der
Vaart and van Zanten, 2008). We will shortly make this correspondence explicit in Propo-
sitions 4.7 and 4.8 below. However, given our interest in the precise role of the fractional
parameter αn, we first study corresponding lower bounds for the contraction rate. For
Gaussian process priors, this has been studied in Castillo (2008), where it is established
that a lower bound on the concentration function in turn implies a lower bound on the
contraction rate.

Lemma 4.6 (Lower bound for contraction rate) Let W be a mean-zero Gaussian ran-
dom element in a separable Banach space (B, ‖·‖) with associated RKHS (H, ‖·‖H), and sup-
pose η0 lies in H̄, the closure of H in B. Suppose εn → 0, 0 < αn ≤ 1 such that nαnε

2
n →∞

satisfy Π (Bn(η0, εn)) ≥ e−cnαnε2n for some c > 0. If δn → 0 satisfies ϕη0(δn) ≥ (2+c)nαnε
2
n,

then as n→∞,

Παn(η : ‖η − η0‖ ≤ δn|Y n)→P0 0.

Note that Lemma 4.6 yields a lower bound on the posterior contraction rate for the
parameter η to which the Gaussian process is assigned, and in the underlying Banach space
norm ‖ · ‖, which need not match the desired statistical distance. We now specialize the
above results to our two concrete models.

Proposition 4.7 (Contraction rates in Gaussian white noise) Consider the Gaussian
white noise model and let the prior on f be a mean-zero Gaussian random element W in
L2[0, 1] with associated RKHS H. If the true parameter f0 lies in the support of W and
εn → 0 satisfies ϕf0(εn) ≤ nαnε2

n, then for some M > 0 large enough,

Παn(f : ‖f − f0‖2 > Mεn|Y n)→P0 0,

as n → ∞. Moreover, if ϕf0(δn) ≥ 9
4nαnε

2
n, then for sufficiently small m > 0 and as

n→∞,

Παn(f : ‖f − f0‖2 ≤ mδn|Y n)→P0 0.
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In the white noise model, one can consider W as a random element of L2[0, 1], so that
the norms for the upper and lower bounds in Proposition 4.7 match. This is no longer the
case in density estimation.

Proposition 4.8 (Contraction rates in density estimation) Consider density estima-
tion on [0, 1] and assign to the density f a prior of the form (21), where W is a mean-zero
Gaussian random element in L∞[0, 1] with associated RKHS H. If the true parameter
η0 = log f0 lies in the support of W and εn → 0 satisfies ϕη0(εn) ≤ nαnε2

n, then for M > 0
large enough, as n→∞,

Παn(f : ‖f − f0‖1 > Mεn|Y n)→P0 0.

Moreover, there exists C1 > 0 a finite constant such that if ϕη0(δn) ≥ C1nαnε
2
n, then for

sufficiently small m > 0 and as n→∞,

Παn(f : ‖f − f0‖∞ ≤ mδn|Y n)→P0 0.

One typically expects the rates in L1 and L∞ to match up to a logarithmic factor in n,
so εn and δn in the last proposition should heuristically be of the same polynomial order.
However, a lower bound in L∞ does not strictly imply one in the weaker L1-norm and hence
there is a genuine mismatch here. We next apply the above results to the concrete examples
of Gaussian priors considered above.

Corollary 4.9 Let W be one of the mean-zero Gaussian process described in Examples 1-4
with regularity parameter γ > 0, considered as a random element in Lp[0, 1] with associated
concentration function ϕη0. Then εn → 0 satisfies ϕη0(εn) ≤ nαnε2

n in the following cases.

(i) Infinite series prior (Example 1) with p = 2, η0 ∈ Hβ and εn � (nαn)
− γ∧β

1+2γ .

(ii) Matérn process (Example 2) with p =∞, η0 ∈ Cβ and εn � (nαn)
− γ∧β

1+2γ .

(iii) Rescaled square exponential process (Example 3) with p = ∞, η0 ∈ Cβ and εn �(
nαn

log2(nαn)

)− γ∧β
1+2γ

.

(iv) Riemann-Liouville process (Example 4) with p =∞, η0 ∈ Cβ and

εn �

(nαn)
− γ∧β

1+2γ if γ ≤ β or bγc = 1
2 or γ /∈ β + 1

2 + N(
nαn

log(nαn)

)− γ∧β
1+2γ

otherwise.

In particular, such εn give a contraction rate for the αn-posterior distribution in ‖·‖2-loss in
Gaussian white noise (cases (i)-(iv)) or in ‖ · ‖1-loss in density estimation (cases (ii)-(iv)).

In all cases, we recover the ‘usual’ contraction rate with the sample size n replaced by
the effective sample size nαn, mirroring the parametric situation. A natural question is
whether these rates are sharp, which can be investigated via Lemma 4.6 by lower bounding
the concentration function ϕη0(εn). This is a more delicate issue for which less is known,
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but we consider two representative examples which can be proved as in Castillo (2008). The
goal is to find δn as large as possible such that

Ef0Παn(f : ‖f − f0‖p ≤ mδn|Y n)→ 0,

and evaluate the gap between δn and the rate (nαn)
− γ∧β

1+2γ (possibly up to log(nαn)-factors)
from Corollary 4.9.

• Infinite series prior (Example 1) with regularity γ > 0 and p = 2 in Gaussian white
noise. If γ ≤ β (undersmoothing case), then for any f0 ∈ Hβ, we may take δn &

(nαn)
− γ

1+2γ . If γ > β (oversmoothing case), then there exists f0 ∈ Hβ such that for

t > 1 + β/2, we may take δn & (nαn)
− β

2γ+1 (log(nαn))−t.

• Brownian motion released at zero in density estimation with p =∞. Consider W (x) =
Z0 + Bx for B a standard Brownian motion, Z0 ∼ N (0, 1) independent and the
expontiated prior (21). This corresponds to the Riemann-Liouville process (Example
4) with γ = 1/2, but with a slight correction to the polynomial term. If f0 ∈ Cβ

for β ≥ 1/2 (undersmoothing case), then we may take δn & (nαn)−1/4, which equals

(nαn)
− γ

1+2γ with γ = 1/2.

In these two examples, the upper and lower bounds match, possibly up to logarithmic
factors, indicating that our results capture the correct dependence on αn in the nonpara-
metric contraction rate for the fractional posterior. This matches a similar conclusion in
the parametric setting (Miller, 2021; Medina et al., 2022).

4.2 Supremum norm contraction rates in Gaussian white noise

The two general approaches to posterior contraction used above are known to yield subop-
timal rates in losses such as L∞, which are incompatible with the intrinsic distance that
geometrizes the statistical model (e.g. the Hellinger distance in density estimation), see
Hoffmann et al. (2015). An alternative method is to express such a loss in terms of multiple
functionals, usually involving basis coefficients, and then apply tools from semiparametric
BvM results uniformly over these functionals (Castillo, 2014). We follow the program of
Castillo (2014) and show that this approach extends to the fractional posterior setting in
Gaussian white noise.

Let (ψlk) denote a boundary corrected S-regular orthonormal wavelet basis of L2[0, 1],
see Härdle et al. (1998) for full details and definitions. Consider the Besov ball

Bβ
∞∞(R) =

{
f ∈ L2[0, 1] : sup

l≥0
sup

0≤k≤2l−1

|〈f, ψlk〉2| ≤ R2−l(β+1/2)

}
.

The space Bβ
∞∞ is equivalent to the usual Hölder space Cβ for non-integer β, while for

integer β it is slightly larger, satisfying the continuous embedding Cβ ⊂ Bβ
∞∞. We consider

a wavelet series prior of the form

f(x) =
∑
l≥0

2l−1∑
k=0

σlζlkψlk(x), (33)
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where ζlk ∼iid ϕ from some density ϕ on R and σl > 0 is a scaling factor.

Proposition 4.10 Let f0 ∈ Bβ
∞∞(R) for some β,R > 0, and consider the wavelet series

prior (33) with (i) ϕ equal to the uniform Unif[−B,B] density for some B > R and σl =
2−l(β+1/2) or (ii) ϕ equal to a density that is positive on [−1, 1] and satisfies the tail condition

c1e
−b1|x|1+δ ≤ ϕ(x) ≤ c2e

−b2|x|1+δ
for all |x| ≥ 1, (34)

for some b1, b2, c1, c2, δ > 0 and σl = 2−l(β+1/2)(l + 1)−
1

1+δ . Then there exists M > 0 large
enough such that

E0

∫
‖f − f0‖∞dΠαn(f |Y n) ≤M

(
log(nαn)

nαn

) β
2β+1

.

The conclusion of the proposition is in E0-expectation, which is slightly stronger than
the usual notion of a posterior contraction rate and readily implies the latter via Markov’s
inequality. Proposition 4.10 thus shows that contraction rates in stronger norms, such as the
L∞-norm, satisfy the same heuristic messages derived above, namely that nonparametric
contraction rates use the effective sample size. Note that for g a N (0, 1) density, which
is covered by the last result, the prior (33) reduces to a mean-zero Gaussian process with
covariance kernel K(x, y) =

∑
l≤Ln,k 2−l(2β+1)ψlk(x)ψlk(y).

The uniform use of the semiparametric tools developed here can also be used to establish
full nonparametric BvM results in weaker topologies which permit estimation at rate

√
nαn

(Castillo and Nickl, 2014). We mention that such results can provide frequentist coverage
guarantees for certain Bayesian credible sets for the full infinite-dimensional parameter as
well, although we do not pursue such extensions here.
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Appendix A. Proofs of Main Results

A.1 Contraction Rates

Proof of Theorem 4.1 By Lemma B.1, on a subset Cn of P0-probability at least 1− 1
nε2n

,

for any measurable set A ⊂ S,

E0Παn(A|Y n) = E0

∫
A

pnη (Y n)αn

pnη0 (Y n)αn dΠ(η)∫ pnη (Y n)αn

pnη0 (Y n)αn dΠ(η)
≤ E0

∫
A

pnη (Y n)αn

pnη0 (Y n)αn dΠ(η)

Π(Bn(η0, εn))e−2αnnε2n
1Cn + P0(Ccn)

=

∫
A

∫
pnη (x)αnpnη0

(x)1−αndµ(x)dΠ(η)

Π(Bn(η0, εn))e−2αnnε2n
+ o(1),

(35)
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where the last equality follows from Fubini’s theorem. Set

An :=

{
η :

∫
pnη (x)αnpnη0

(x)1−αndµ(x) ≤ e−4nαnε2n

}
=

{
η : − 1

n(1− αn)
log

(∫
pnη (x)αnpnη0

(x)1−αndµ(x)

)
≥ 4

αnε
2
n

1− αn

}
=

{
η :

1

n
Dαn(pnη , p

n
η0

) ≥ 4
αnε

2
n

1− αn

}
.

Substituting An into the second-last display and using the small-ball assumption (31) yields

E0Παn(An|Y n) ≤
∫
An
e−4nαnε2ndΠ(η)

Π(Bn(η0, εn))e−2αnnε2n
+ o(1) ≤ e−nαnε2n + o(1) = o(1),

since nαnε
2
n →∞.

Proof of Theorem 4.3 Denote ε̄n = εn ∨ ε̃n and note that Assumption 1 of the theo-
rem is also satisfied for the sequence ε̄n. Then this assumption together with the testing
condition imply that there exists M > 0 and tests ψn such that Eη0(ψn(Y n)) = o(1) and

sup
η∈Sn,d(η,η0)≥Mε̄n

Eη(1− ψn(Y n)) ≤ e−(C+3)nε̄2n . Assumptions 2 and 3 and Lemma B.2 yield

that Παn(Scn|Y n)→P0 0 and consequently, setting An := {η, d(η, η0) ≥Mε̄n},

Παn(An|Y n) = Παn(An ∩ Sn|Y n)ψn(Y n) + Παn(An ∩ Sn|Y n)(1− ψn(Y n)) + Παn(An ∩ Scn|Y n)

≤ ψn(Y n) + Παn(An ∩ Sn|Y n)(1− ψn(Y n)) + oP (1)

= Παn(An ∩ Sn|Y n)(1− ψn(Y n)) + oP (1).

By Lemma B.1, for a subset Cn of P0-probability at least 1 − 1
nε̄2n

and arguing as in the

proof of Theorem 4.1 just above, we have

E0Παn(An ∩ Sn|Y n)(1− ψn(Y n)) ≤ E0

∫
An∩Sn

pnη (Y n)αn

pnη0 (Y n)αn dΠ(η)

Π(Bn(η0, ε̄n))e−2αnnε̄2n
(1− ψn(Y n))1Cn + P0(Ccn).

Using Fubini’s theorem and Hölder’s inequality, the last display is bounded by∫
An∩Sn

∫
pnη (x)αnpnη0

(x)1−αn(1− ψn(x))dµ(x)dΠ(η)

Π(Bn(η0, ε̄n))e−αn2nε̄2n
+ P0(Ccn)

≤
∫
An∩Sn

(∫
pnη (x)(1− ψn(x))dµ(x)

)αn (∫ pnη0
(x)dµ(x)

)1−αn dΠ(η)

e−Cnαnε̄2ne−2nαnε̄2n
+ o(1),

which is bounded by e(2+C)nαnε̄2n
∫
An
e−(C+3)nαnε̄2ndΠ(η) + o(1) ≤ e−nαnε̄2n + o(1) = o(1).

Proof of Proposition 4.4 The proof is a direct application of Theorem 4.3. First, the
testing condition (32) is satisfied in the density estimation model with d = ‖ · ‖1. Then, let
us verify the conditions 1, 2 and 3 for Sn = H1

Kn
. For Condition 1, set εn =

√
Kn log(n)/n
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that satisfies Kn log(3K
1/2
n /εn) . nε2

n and thus
(

3K
1/2
n /εn

)Kn
≤ eDnε

2
n for some D > 0.

By a standard result on the ε-covering number of the unit ball B‖·‖2(0RKn , 1), for n large
enough, it follows,

N(εn, H
1
Kn , ‖ · ‖1) ≤ N(εn, S

1
Kn , ‖ · ‖1) ≤ N(εn, B‖·‖2(0RKn , 1), ‖ · ‖1)

≤ N(εn/K
1/2
n , B‖·‖2(0RKn , 1), ‖ · ‖2) ≤

(
3K1/2

n /εn

)Kn
≤ eDnε2n ,

and therefore εn satisfies Condition 1. For the random histogram prior, we have Π((H1
Kn

)C) =
0 and so Condition 2 is clearly satisfied. Finally, by Lemma B.3, the sequence ε̃2

n =
Kn log(nαnKn)/nαn + K−2β

n satisfies Π(Bn(f0,Mε̃n)) ≥ e−nαn(Mε̃n)2
for some M > 0,

and thus the result follows from Theorem 4.3.

Proof of Lemma 4.5 The proof is a straightforward adaptation of the proof of The-
orem 11.20 in Ghosal and van der Vaart (2017) to the αn−posterior, and is hence omitted.

Proof of Lemma 4.6 By Lemma I.28 of Ghosal and van der Vaart (2017), the concen-
tration function satisfies

ϕη0(ε) ≤ − log Π(‖W − η0‖ ≤ ε) ≤ ϕη0(ε/2)

for any ε > 0. In particular, Π(‖W − η0‖ ≤ δn) ≤ e−ϕη0 (δn) ≤ e−(2+c)nαnε2n , so that under
the lemma hypotheses,

Π(‖W − η0‖ ≤ δn)

Π(BKL(η0, εn))
≤ e−(2+c)nαnε2n

e−cnαnε2n
≤ e−2nαnε2n → 0.

The result then follows from Lemma B.2.

Proof of Proposition 4.7 In Gaussian white noise, the testing condition (32) is satisfied
by the likelihood ratio test with the distance d = ‖ · ‖2 (Ghosal and van der Vaart, 2017,
Lemma D.16), and hence it suffices to verify conditions (1)-(3) of Theorem 4.3 in order to
apply that theorem. For εn satisfying ϕf0(εn) ≤ nαnε2

n, Lemma 4.5 gives sets Bn satisfying
conditions (1)-(2). By Lemma 8.30 of Ghosal and van der Vaart (2017), the Kullback-Leibler
neighbourhoods take the form Bn(f0, εn) = {f : ‖f − f0‖2 ≤ εn} (not to be confused with
the Bn from Lemma 4.5). But then Π(‖f − f0‖2 < 2εn) ≥ e−nαnε

2
n from the third part

of Lemma 4.5, which verifies (3) for εn possibly a multiple of itself. The contraction up-
per bound thus follows from Theorem 4.3. For the lower bound, we apply Lemma 4.6 with
c = 1/4, so that δn satisfying ϕf0(δn) ≥ 9

4nαnε
2
n is a lower bound for the contraction rate.

Proof of Proposition 4.8 In density estimation, the testing condition (32) is satisfied
for the Hellinger distance dH (Ghosal and van der Vaart, 2017, Proposition D.8), and hence
it again suffices to verify conditions (1)-(3) of Theorem 4.3. By Lemma 3.1 of van der Vaart
and van Zanten (2008), the squared Hellinger distance, Kullback-Leibler divergence and
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its 2nd-variation V between exponentiated densities fw and fv of the form (21) are each
bounded by a multiple of ‖v − w‖2∞ as soon as ‖v − w‖∞ ≤ D0 for some finite constant
D0 <∞. Conditions (1)-(2) can thus be verified with d = ‖ · ‖∞, while for (3) it suffices to
show Π(‖W − log f0‖∞ ≤ εn) ≥ e−Cnαnε2n . These three conditions each follow from Lemma
4.5 for εn satisfying ϕlog f0(εn) ≤ nαnε

2
n, so that we have contraction rate εn in Hellinger

distance. Since the L1-distance is bounded by a multiple of the Hellinger distance, we get
the same contraction rate in L1. For the lower bound, the proof is similar to the proof of
Theorem 3 of Castillo (2008).

Proof of Corollary 4.9 Case (i): infinite series. For ε > 0 small enough, the centered

small ball probability satisfies ϕ0(ε) � ε
− 1
γ (Lemma 11.47 in Ghosal and van der Vaart,

2017), while infh∈H:‖h−η0‖2<ε ‖h‖2H . ε
− 2γ−2β+1

β for β ≤ γ + 1/2 (the latter quantity is O(1)
if β > γ + 1/2 since then η0 is in the RKHS of W and one may take h = η0). We thus have

ϕη0(εn) . ε
−1/γ
n + ε

−(2γ−2β+1)/β
n , which can be checked is O(nαnε

2
n) for εn � (nαn)

− γ∧β
1+2γ .

Case (ii): Matérn. For ε > 0 small enough and η0 ∈ Cβ, we have ϕη0(ε) . ε−1/γ +
ε−(2γ−2β+1)/β by Lemmas 11.36 and 11.37 of Ghosal and van der Vaart (2017). As in case

(i), this is O(nαnε
2
n) for εn � (nαn)

− γ∧β
1+2γ .

Case (iii): squared exponential. Taking the length scale kn =
(

nαn
log2(nαn)

)− 1
1+2γ

, Lemma

2.2 and Theorem 2.4 of van der Vaart and van Zanten (2007) imply that for η0 ∈ Cβ,

ϕw0(εn) .
1

kn

(
log

1

knε2
n

)2

+
1

kn

if kβn . εn. Then ϕη0(εn) . nαnε
2
n is satisfied for εn & kβn ∨ log(nαn)√

nkn
, which has minimal

solution εn �
(

nαn
log2(nαn)

)− γ∧β
1+2γ

.

Case (iv) Riemann-Liouville. For η0 ∈ Cβ, the concentration function satisfies (Theorem
4 of Castillo, 2008)

ϕη0(ε) .


ε
− 1
γ 0 < γ ≤ β,

ε
− 2γ−2β+1

β γ > β and (bγc = 1/2 or γ /∈ β + 1/2 + N),

ε
− 2γ−2β+1

β log(1/ε) otherwise.

(36)

In the first two cases, ϕη0(εn) . nαnε
2
n is satisfied by εn = (nαn)

− γ∧β
1+2γ , while in the third

case, ϕη0(εn) . nαnε
2
n for εn =

(
nαn

log(nαn)

)− γ∧β
1+2γ

.

A.2 Bernstein–von Mises Results

Proof of Theorem 2.2 In this proof, to avoid any possible confusion, we use the explicit
notation oP0(1) for a term going to 0 in P0–probability (instead of the shorthand oP (1)).
To show that

√
n(ψ(η)− ψ̂) converges in distribution (in P0–probability) to a N (0, V0) law,
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it suffices to do so for
√
n(ψ(η)− ψ̂)1An(η). Indeed,

√
n(ψ(η)− ψ̂) =

√
n(ψ(η)− ψ̂)1An(η)+√

n(ψ(η)−ψ̂)1Acn(η), and since by assumption Παn [Acn |Y n] = oP0(1), for η ∼ Παn [· |Y n] the

variable 1Acn(η) goes to 0 in probability, and so does
√
n(ψ(η)− ψ̂)1Acn(η) (the probability

that it is non–zero is Παn [Acn |Y n]).

Since convergence in distribution is implied by convergence of Laplace transforms (this is
also true for convergence in distribution in P0–probability, see Lemma 1 of the supplement
of Castillo and Rousseau, 2015 for details on this), it is enough to show, for any real t,

that Eαn [e
√
n(ψ(η)−ψ̂)1An |Y n] goes to et

2V0/2 in P0–probability. Since e
√
n(ψ(η)−ψ̂)1An =

e
√
n(ψ(η)−ψ̂)1An + 1Acn , using again that Παn [Acn |Y n] = oP0(1), it is enough to show that

Eαn(et
√
nαn(ψ(η)−ψ̂)|Y n, An) :=

∫
An
et
√
nαn(ψ(η)−ψ̂)eαn`n(η)−αn`n(ηt)eαn`n(ηt)dΠ(η)∫

An
eαn`n(η)dΠ(η)

=

∫
An
et
√
nαn(ψ(η)−ψ̂)eαn`n(η)−αn`n(ηt)eαn`n(ηt)dΠ(η)∫

eαn`n(η)dΠ(η)
Παn(An |Y n)−1

goes to et
2V0/2 in P0–probability, where ηt = η − tψ0/

√
nαn the path as in (4).

Using the LAN expansion in Assumption 2.1 and the linearity of Wn,

`n(η)− `n(ηt) = −n
2
‖η − η0‖2L +

n

2
‖ηt − η0‖2L +

√
nWn(η − ηt) +Rn(η, η0)−Rn(ηt, η0)

= − t
√
n

√
αn
〈ψ0, η − η0〉L +

t2

2αn
‖ψ0‖2L +

t
√
αn
Wn(ψ0) +Rn(η, η0)−Rn(ηt, η0),

recalling that ‖ · ‖L is a norm induced by a Hilbert space. Using the definition (5) of ψ̂ and
the functional expansion in Assumption 2.1,

t
√
nαn(ψ(η)− ψ̂) = t

√
nαn〈ψ0, η − η0〉L − t

√
αnWn(ψ0) + t

√
nαnr(η, η0).

Combining the last two displays thus gives

t
√
nαn(ψ(η)− ψ̂) + αn`n(η)− αn`n(ηt)

= αn`n(ηt) +
t2‖ψ0‖2L

2
+ t
√
nαnr(η, η0) + αn(Rn(η, η0)−Rn(ηt, η0))︸ ︷︷ ︸

Rem(η,η0)

,

where supη∈An |Rem(η, η0)| = oP0(1) by assumption. Substituting this into the first display
of the proof gives

Eαn(et
√
nαn(ψ(η)−ψ̂)|Y n, An) = eoP0

(1)+t2||ψ0||2L/2 ·
∫
An
eαn`n(ηt)dΠ(η)∫
eαn`n(η)dΠ(η)

.

Since the last ratio equals 1 + oP0(1) by assumption, the last display goes to et
2V0/2 in

P0–probability, which concludes the proof.
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Proof of Theorem 2.4 We proceed by verifying the assumptions of Theorem 2.2 for the
parameter η = log f . We first need to verify Assumption 2.1. As in the discussion preceding
the statement of Theorem 2.4, we have the LAN and functional expansions given by:

`n(η)− `n(η0) = −n
2
‖η − η0‖2L +

√
nWn(η − η0) +Rn(η, η0)

ψ(f)− ψ(f0) = 〈η − η0, ψ̃f0〉L + B(f, f0) + r̃(f, f0),

where B(f, f0) = −
∫ [

η − η0 − f−f0

f0

]
ψ̃f0f0, so that r(f, f0) = B(f, f0) + r̃(f, f0). With ft

as in the statement of Theorem 2.4 and ηt = log ft,

Rn(η, η0)−Rn(ηt, η0) =
t
√
n

√
αn
〈η − η0, ψ̃f0〉L −

t2

2αn
‖ψ̃f0‖2L + n logF (e−tψ̃f0/

√
nαn).

Expanding the last term, we have for f ∈ An ⊂ {‖f − f0‖1 ≤ εn},

n logF (e−tψ̃f0/
√
nαn) = n log

(
1− t
√
nαn

∫
fψ̃f0 +

t2

2nαn

∫
fψ̃2

f0
+ o

(∫
f

(
t2ψ̃2

f0

nαn

)))
= n log

(
1− t
√
nαn
〈η − η0, ψ̃f0〉L −

t
√
nαn
B(f, f0)+

+
t2

2nαn
‖ψ̃f0‖2L +

t2

2nαn
(F − F0)(ψ̃2

f0
) +O((nαn)−3/2)

)
= −t

√
n

√
αn
〈η − η0, ψ̃f0〉L − t

√
n

√
αn
B(f, f0) +

t2

2αn
‖ψ̃f0‖2L + o(1),

since (F − F0)(ψ̃2
f0

) ≤ ‖ψ̃f0‖2∞‖f − f0‖1 . εn on An. Hence we have

Rn(η, η0)−Rn(ηt, η0) = −t
√
n

√
αn
B(f, f0) + o(1),

and the condition on remainder terms in Assumption 2.1 reduces to

sup
f∈An

|
√
nαnr(f, f0)| = oP (1),

which is satisfied by assumption. The result then follows from Theorem 2.2.

Proof of Proposition 2.5 To prove Proposition 2.5, we use Lemma A.1 and Lemma A.2
stated below. Lemma A.1 is proved in Section B and the proof is very similar to the one
of Theorem 2.4. The main differences with Theorem 2.4 are that the change of variables
condition is stated in term of the projection of ψ̃ and the posterior concentration is around
the projection of f0. For a random histogram prior, these two changes turn out to be useful
when one wants to give sufficient conditions for the change of variables condition to be
satisfied. Indeed, this is is done in Lemma A.2 which is also proved in Section B.

Lemma A.1 Recall that ψ̂[Kn] = ψ(f0) + 1
n

∑n
i=1 ψ̃[Kn](Yi). Suppose f0 is bounded and

Παn(An|Y n) := Παn({f ∈ H1
Kn , ‖f − f0,Kn‖1 ≤ εn}|Y n) = 1 + oP (1), (37)
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for a sequence εn = o(1). Set ft = fe
−
tψ̃[Kn]√
nαn /F (e

−
tψ̃[Kn]√
nαn ) and suppose∫

An
eαnln(ft)dΠ(f)∫
eαnln(f)dΠ(f)

= 1 + oP (1). (38)

Then the αn-posterior distribution of
√
nαn(ψ(f)− ψ̂[Kn]) converges weakly to a Gaussian

distribution with mean 0 and variance V =
∫
f0ψ̃

2
f0

.

Lemma A.2 Let Π be the random histogram prior (12) with k = Kn and weights satisfying
(13). Suppose

Παn(Ãn|Y n) := Παn({f ∈ H1
Kn , ‖f − f0,[Kn]‖1 ≤ ε̃n}|Y n) = 1 + oP (1), (39)

for a sequence ε̃n = o(1). Then there exists εn = o(1) a positive sequence (possibly bigger
than ε̃n), such that

Παn(An|Y n) := Παn({f ∈ H1
Kn , ‖f − f0,[Kn]‖1 ≤ εn}|Y n) = 1 + oP (1), (40)

and ∫
An
eαnln(ft)dΠ(f)∫
eαnln(f)dΠ(f)

= 1 + oP (1). (41)

We can combine these two results to prove Proposition 2.5. Indeed, from assumptions (13)
and (14), using Lemma A.2, we know that there exists a positive sequence ε̃n decreasing to
0 satisfying (40) and (41). Then we deduce from Lemma A.1 that the posterior distribution
of
√
nαn(ψ(f)− ψ̂[Kn]) converges weakly to a Gaussian distribution with mean 0 and vari-

ance V =
∫
f0ψ̃

2
f0

. Finally, assumption (15) implies that
√
nαn(ψ(f)− ψ̂) converges weakly

to a Gaussian distribution with mean 0 and variance V =
∫
f0ψ̃

2
f0

.

Proof of Corollary 2.6 This is a direct application of Proposition 2.5. Using the
assumptions made on Kn, the weights and f0, and Proposition 4.4, we deduce that there
exists εn → 0 satisfying (14). Let us now consider the bias term

√
nαn(ψ̂[Kn] − ψ̂). Recall

that from Lemma B.5,

√
nαn(ψ̂ − ψ̂[Kn]) =

√
nαn(−F0(ψ̃[Kn]) + oP (1/

√
n)) = −

√
nαnF0(ψ̃[Kn]) + oP (1).

Using the definition of ψ̃[Kn],

F0(ψ̃[Kn]) =

∫ 1

0
f0ψ̃[Kn] =

∫ 1

0
f0(a[Kn] − a) =

∫ 1

0
(f0,[Kn] − f0)(a[Kn] − a),

so that by the Hölder regularity of f0 and a,

√
nαn|F0(ψ̃[Kn])| ≤

√
nαn‖a[Kn] − a‖∞‖f0,[Kn] − f0‖∞ ≤

√
nαnK

−γ−β
n = o(1)
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by assumption (16). Hence the assumptions of Proposition 2.5 are satisfied, which yields
the result.

Proof of Proposition 2.7 Recall from Castillo and Rousseau (2015) p.2371, that the
assumptions made on a, Kn, and f0 allow us to bound the bias term F0(ψ̃[Kn]) as follows

n−
(γ+1)

3 . K−(γ+1)
n . −F0(ψ̃[Kn]) . K−(γ+1)

n . n−
(γ+1)

3 . (42)

We first prove the result regarding the full posterior. Since, f0 ∈ C1([0, 1]) and is bounded

away from 0, n1/3

2 ≤ Kn ≤ n1/3 and hence Kn = o(n/ log(n)), n−b ≤ δi,n = n−b ≤ 1, we
deduce from Proposition 4.4 that there exists εn → 0 satisfying (14). Combining this latter
result with the fact that

∑Kn
i=1 δi,n = Knn

−b ≤ n1/3−b = o(
√
n), we can use Proposition

2.5 to deduce that the posterior distribution of
√
n(ψ(f) − ψ̂[Kn]) converges weakly to the

N (0, V0) distribution in P0-probability. Moreover, (42) implies |
√
nF0(ψ̃[Kn])| ≥ c > 0 since

γ ≤ 1/2 and even |
√
nF0(ψ̃[Kn])| → ∞ if γ < 1/2 .

For the result regarding the αn-posterior, the proof is similar. Since, f0 ∈ C1([0, 1])
bounded away from 0, Kn ≤ n1/3 = o(n1−x/ log(n1−x)) since x < 2/3 hence Kn =
o(nαn/ log(nαn)), (nαn)−b

′ ≤ δi,n = n−b ≤ 1 for some b′ > 0, we deduce from Proposi-
tion 4.4 that there exists εn → 0 satisfying (14). Combining this latter result with the
fact that

∑Kn
i=1 δi,n = Knn

−b ≤ n1/3−b = o(
√
nαn) since b > 1/6, we can use Proposition

2.5 to deduce that the posterior distribution of
√
nαn(ψ(f) − ψ̂[Kn]) converges weakly to

the N (0, V0) distribution in P0-probability. Finally, by (42),
√
nαnF0(ψ̃[Kn]) = o(1) since

x > (1− 2γ)/3. Thus, by Lemma B.5, it follows that
√
nαn(ψ̂− ψ̂[Kn]) = oP (1). Therefore,

we deduce that the αn-posterior distribution of
√
nαn(ψ(f) − ψ̂) converges weakly to the

N (0, V0) distribution in P0-probability.

Proof of Theorem 2.9 We will verify the conditions of Theorem 2.3, for which we
need to construct suitable sets An satisfying Assumption 2.1 and the ‘change of measure’
condition (7). Under the theorem hypothesis that ϕf0(εn) ≤ nαnε2

n, Proposition 4.7 implies
that the posterior contracts about f0 at rate εn in ‖ · ‖2, i.e. Παn(Bn|Y ) →P0 1 for Bn =
{f : ‖f − f0‖2 ≤Mεn} with M > 0 large enough.

Turning to condition (7), we follow Castillo (2012a) and first approximate the pertur-
bation ft = f − tψ0√

nαn
by an element of the RKHS and then apply the Cameron-Martin

Theorem. To this end, let ψn ∈ H satisfy (20). Define the following isometry associated to
the Gaussian process W :

UW : Vect〈{t→ K(·, t) : t ∈ R}〉 → L2(Ω)

η :=

p∑
i=1

aiK(·, ti) 7→
p∑
i=1

aiWti =: UW (η),

and since any h ∈ H is the limit of a sequence
∑pn

i=1 ai,nK(·, ti,n), UW can be extended to
an isometry UW : H → L2(Ω). Then UW (h) is the L2-limit of the sequence

∑pn
i=1 ai,nWti ,

so that it is a Gaussian random variable with mean 0 and variance ‖h‖2H. Recalling that
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f = W is a Gaussian process under the prior, the usual Gaussian tail bound implies

Π(W : |UW (ψn)| ≥M0
√
nαnεn‖ψn‖H) ≤ 2e−M

2
0nαnε

2
n/2, (43)

so that the posterior probability of the set in the last display tends to zero in P0-probability
by Lemma B.2 for M0 > 0 large enough. Together with the contraction result, this shows
that the sets

An = {w : |Uw(ψn)| ≤M0
√
nαnεn‖ψn‖H} ∩Bn

satisfy Π(An|Y )→P0 1 as n→∞. Since An ⊂ Bn and using the assumptions of the present
theorem, the sets An satisfy Assumption 2.1.

It thus remains to establish the condition (7). Define the approximate perturbation
fn = f − tψn√

nαn
, which we will now show satisfies

sup
f∈Bn

|αn(`n(fn)− `n(ft))| = oP (1). (44)

Indeed, using the LAN expansion for the Gaussian white noise model, under P0,

αn(`n(fn)−`n(ft)) = t
√
nαn

∫ 1

0
(f−f0)(ψn−ψ0)− t

2

2
(‖ψn‖22−‖ψ0‖22)+

t
√
nαn

Wn(ψ0−ψn),

where we recall Wn(g) ∼ N (0, ‖g‖22) for any g ∈ L2. By Cauchy-Schwarz, the first term
is bounded by t

√
nαn‖f − f0‖2‖ψn − ψ0‖2 ≤ t

√
nαnζnεn = o(1) by assumption (20) for

f ∈ Bn. The absolute value of the second term equals

t2

2 |〈ψn − ψ0, ψn + ψ0〉2| ≤ t2

2 ‖ψn − ψ0‖2‖ψn + ψ0‖2 ≤ t2

2 ζn(2‖ψ0‖2 + ζn) = o(1),

again by assumption (20). The third term has distribution N
(
0, t2αn‖ψn − ψ0‖22/n

)
, which

is oP (1) since its variance tends to zero as n→∞. Together, these three bounds establish
(44).

A version of the Cameron-Martin theorem (Castillo, 2012b, Lemma 17) states that for
all Φ : B→ R measurable and for any g, h ∈ H and ρ > 0,

E(1{|UW (g)|≤ρ}Φ(W − h)) = E(1{|UW (g)+〈g,h〉H|≤ρ}Φ(W )eUW (−h)−‖h‖2H/2).

Using (44) and the last display with ht = tψn/
√
nαn and ρt = M0

√
nαnεn‖ψn‖H, the

quantity in (7) equals∫
An
eαn`n(ft)dΠ(f)∫
eαn`n(f)dΠ(f)

=

∫
Bn,t

1{|Uw(ψn)+〈ψn,ht〉H|≤ρt}e
αn`n(w)eUw(−ht)−‖ht‖2H/2dΠ(w)∫

eαn`n(f)dΠ(f)
eoP (1),

where Bn,t = Bn − ht = {w : ‖w + tψn/
√
nαn − f0‖2 ≤Mεn}. For w in the domain of the

top integral, using also (20),

|Uw(−ht)− ‖ht‖2H/2| =
t

√
nαn

∣∣Uw(ψn) + 1
2〈ψn, ht〉H

∣∣
≤ t
√
nαn

ρt +
t2

2nαn
‖ψn‖2H ≤ tM0

√
nαnεnζn +

t2

2
ζ2
n → 0.
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Setting An,t = {w : |Uw(ψn) + 〈ψn, ht〉H| ≤ ρt} ∩Bn,t, the ratio of integrals thus equals∫
An,t

eαn`n(w)dΠ(w)∫
eαn`n(f)dΠ(f)

eoP (1) = Παn(An,t|Y )eoP (1).

It thus remains to show Παn(An,t|Y ) = 1 + oP (1). Since

Acn,t = {w : |Uw(ψn)+〈ψn, ht〉H| > M0
√
nαnεn‖ψn‖H}∪{w : ‖w+tψn/

√
nαn−f0‖2 > Mεn},

it suffices to consider the posterior probability of each of the last sets. Since ‖w+tψn/
√
nαn−

w‖2 . ‖ψn‖2/
√
nαn . (1 + ζn)/

√
nαn, the second set is contained in {w : ‖w − f0‖2 >

Mεn − C/
√
nαn}, which has posterior probability oP (1) by Proposition 4.7, possibly after

replacing εn by a multiple of itself. For the first set, note that |〈ψn, ht〉H| = t‖ψn‖2H/
√
nαn

is of strictly smaller order than
√
nαnεn‖ψn‖H if and only if ‖ψn‖H = o(nαnεn). By (20), it

suffices that ζn = o(
√
nαnεn), which holds since ζn → 0 while nαnε

2
n → ∞. Thus the first

set is contained in {w : |Uw(ψn)| > (M0/2)
√
nαnεn‖ψn‖H} for n large enough. Arguing as

in (43) and using Lemma B.2, the posterior probability of this set is thus oP (1). This shows
that Π(Acn,t|Y ) = oP (1) as required.

Proof of Theorem 2.10 The proof is similar to the proof of Theorem 2.9, but with a
few minor differences. For the LAN expansion, we have under P0,

αn(`n(ηn)− `n(ηt)) = tGn(ψ̃f0 − ψn) + t
√
n

∫
(f0 − fη)(ψ̃f0 − ψn) + o(1),

where Gn(g) = 1√
n

∑n
i=1(g(Yi)−E0(g(Yi))), so that G(ψ̃f0 −ψn) = oP (1). We consider sets

Bn defined in terms of the ‖ · ‖1-norm rather than ‖ · ‖2-norm, so that we may use our con-
traction results for density estimation. In the last display, we thus use Hölder’s inequality
t
√
n‖f0− fη‖1‖ψ̃f0 −ψn‖∞ instead of Cauchy-Schwarz, which requires the slightly stronger

assumption involving the L∞-norm ‖ψ̃f0 − ψn‖∞ to show that this tends to 0.

Proof of Corollary 2.11 We apply Theorem 2.9 in Gaussian white noise and Theorem
2.10 in density estimation. In both cases, the required functional expansion holds by the
linearity of ψ(f), so that it remains to verify (19) and that one can suitably approximate
the representers ψ0 = a or ψ̃f0 = a−

∫ 1
0 f0a by elements of the RKHS.

By Corollary 4.9, in each case εn = (nαn)
− γ∧β

2γ+1 satisfies the condition (19) on the
concentration function, possibly up to a log(nαn)-factor that does not affect our results
here. Next, one can show that in Examples 2-4 (see the proof of Theorem 4 in Castillo,
2008 for the Riemann-Liouville process, the proof of Lemma 11.37 in Ghosal and van der
Vaart, 2017 for the Matérn process, and the proof of Lemma 2.2 in van der Vaart and
van Zanten, 2007 for the rescaled square exponential process), for an appropriate kernel
smoother φ and sequence σn,

ψn(x) =

[
1

σn
φ

(
·
σn

)
∗ a(·)

]
(x)
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satisfies ψn ∈ H, ‖ψn − a‖∞ ≤ σµn, and ‖ψn‖2H . σ−2γ−1+2µ
n . Setting σn = ζ

1/µ
n , we obtain

ζn = (nαn)
− µ

2γ+1 as a suitable choice to satisfy the bounds on ψn. It thus remains to show√
nαnεnζn → 0, for which a sufficient condition is γ ∧β > 1

2 + (γ−µ). The final part of the
condition comes from the fact that we need εn → 0, which is satisfied if γ ∧ β > 0.

For the infinite series prior in Gaussian white noise, one instead uses the truncated series
ψn =

∑Jn
k=1〈a, φk〉2φk ∈ H, for which ‖ψn − a‖22 =

∑
k>Jn

k2µ−2µ|〈a, φk〉2|2 . J−2µ
n ‖a‖2Hµ

and ‖ψn‖2H . J2γ+1−2µ
n . Taking Jn � (nαn)1/(2γ+1) and ζn � (nαn)−µ/(2γ) as above, we

recover the same conditions as in Examples 2-4.

Proof of Lemma 2.12 By conjugacy of the αn-posterior of f , the αn−posterior distri-
bution of ψ(f) is

N

( ∞∑
k=1

nαnλk
1 + nαnλk

ψkYk,

∞∑
k=1

λk
1 + nαnλk

ψ2
k

)
.

As in Knapik et al. (2011), it thus suffices to show that

∣∣∣∣∣
∞∑
k=1

(
nαnλk

1 + nαnλk
ψkf0,k − ψkf0,k

)∣∣∣∣∣
2

+
1

n

∞∑
k=1

(
nαnλk

1 + nαnλk
ψk

)2

+
∞∑
k=1

λk
1 + nαnλk

ψ2
k

is bounded by a multiple of ε2
n. We have,

∣∣∣∣∣
∞∑
k=1

(
nαnλk

1 + nαnλk
ψkf0,k − ψkf0,k

)∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=1

ψkf0,k

1 + nαnλk

∣∣∣∣∣
2

≤ ‖f0‖2β
∞∑
k=1

ψ2
kk
−2β

(1 + nαnk−1−2γ)2

. ‖f0‖2β · ‖(li)‖2µ · (nαn)
−
(

2β+2µ
1+2γ

∧2
)
. ε2

n,

where we have used Lemma 8.2 in Knapik et al. (2011) to deduce the second last inequality.
For the second term,

1

n

∞∑
k=1

(
nαnλk

1 + nαnλk
ψk

)2

=
∞∑
i=1

ψ2
knα

2
nλ

2
i

(1 + nαnλk)2
= nα2

n

∞∑
k=1

ψ2
kk
−2−4γ

(1 + nαnk−1−2γ)2

. ‖l‖2µ · nαn2(nαn)
−
(

2+4γ+2µ
1+2γ

∧2
)
. αn(nαn)

−
(

1+2γ+2µ
1+2γ

∧1
)
. ε2

n,

where we used Lemma 8.1 of Knapik et al. (2011) for the first inequality. Finally,

∞∑
k=1

λk
1 + nαnλk

ψ2
k =

∞∑
k=1

ψ2
kk
−1−2γ

1 + nαnk−1−2γ
. ‖l‖2µ(nαn)

−
(

1+2γ+2µ
1+2γ

∧1
)
. ε2

n

where we again invoke Lemma 8.1 of Knapik et al. (2011) for the first inequality.
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A.3 Credible Regions

Proof of Theorem 3.1 Using (25) and standard results recalled in Lemma B.6, it follows
that for all δ ∈ (0, 1),

√
nαn(aYn,δ − ψ̂) =

√
V qδ + oP (1) and hence we have the expansion of

the quantile

aYn,δ = ψ̂ +

√
V qδ√
nαn

+ oP (
1

√
nαn

). (45)

Combining this expansion and assumption (29), we obtain
√
αn(aYn,δ − ψ̄) =

√
V qδ/

√
n +

oP (1/
√
n). Hence we can expand the shift-and-rescale set as

Jαn =
(√

αn(aY
n, δ

2

− ψ̄) + ψ̄,
√
αn(aY

n,1− δ
2

− ψ̄) + ψ̄
]

=
(
ψ̂ +
√
V q δ

2
/
√
n+ oP (1/

√
n), ψ̂ +

√
V q1− δ

2
/
√
n+ oP (

1√
n

)
]
.

This last expansion together with assumption (26) yield the first conclusion of Theorem
3.1. Let us move to the case αn = α ∈ (0, 1] is fixed. By (45), the posterior median equals

aY
n, 1

2

= ψ̂ +

√
V q 1

2√
nαn

+ oP (1/
√
nαn) = ψ̂ + oP (

1
√
nαn

) = ψ̂ + oP (
1√
n

)

since q 1
2

= 0. Hence (29) is satisfied and the result follows.

Proof of Proposition 3.2 For ψ̄ the posterior mean/median, define Tn =
√
n(ψ̄ − ψ̂).

We need to show that |Tn| = oP (1) to satisfy the assumption (29) of Theorem 3.1. We have

Tn = −
√
n
∞∑
k=1

1

1 + nαnλk
akf0,k −

∞∑
k=1

1

1 + nαnλk
akεk =: −tn,1 − tn,2.

The second term is Gaussian with mean 0 and variance
∑∞

k=1
1

(1+nαnλk)2a
2
k � (nαn)

−( 2µ
1+2γ

∧2)

by Lemma 8.1 of Knapik et al. (2011). Thus, |tn,2| = oP (1) since µ, γ > 0. Turning to tn,1,

set k∗ = (nαn)
1

1+2γ . For k ≤ k∗, we have (nαn)k−1−2γ < 1 + (nαn)k−1−2γ ≤ 2(nαn)k−1−2γ ,
and for k > k∗, we have 1 < 1 + (nαn)k−1−2γ < 2. Hence, we can write

|tn,1| =
√
n

∞∑
k=1

k−1−(β+µ)

1 + nαnk−1−2γ
�
√
n

nαn

k∗∑
k=1

k−1−(β+µ)

k−1−2γ
+
√
n

∞∑
k=k∗+1

k−1−(β+µ)

� 1√
nαn

k∗∑
k=1

k−(β+µ−2γ) +
√
n(nαn)

− β+µ
1+2γ .

(46)

It thus suffices to study when this quantity is o(1). The second term in the last display is

o(1) if and only if αn � n
1+2γ

2β+2µ
−1

=: ωn, while the first term has three cases.
(1) β + µ > 1 + 2γ: the first sum in (46) is summable even for k∗ = ∞, and hence

|tn,1| � 1√
nαn

+ +
√
n(nαn)

− β+µ
1+2γ , which is o(1) if and only if αn � max(n−1/2, ωn) = n−1/2,

i.e.
√
nαn →∞.
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(2) β + µ = 1 + 2γ: note that ωn = n−1/2, while the first term in (46) equals
1√
nαn

∑k∗

k=1 k
−1 � 1√

nαn
log k∗ � 1√

nαn
log(nαn). This is o(1) if and only if αn � n−1/2 log n,

i.e.
√
nαn

logn →∞.

(3) β+µ < 1 + 2γ: the first term in (46) is of size 1√
nαn

(k∗)1+2γ−β−µ �
√
n(nαn)

− β+µ
1+2γ ,

which is exactly the same order as the second term in (46). Thus |tn,1| = o(1) if and only
if αn � ωn. But our results are restricted to the regime 0 < αn ≤ 1 and hence we require
that ωn → 0 to have a valid choice satisfying 0 < ωn � αn ≤ 1. One can then check that
ωn → 0 if and only if 1

2 + γ < β + µ, which determines the lower bound in this range. For

such a choice, |tn,1| = o(1) if and only if ω−1
n αn = n

1− 1+2δ
2(β+µ)αn →∞.

A.4 Supremum norm contraction rates

Proof of Proposition 4.10 We focus on the case (ii) for brevity, the case (i) being
similar (though easier, see also Castillo, 2014). Set Ln := b nαn

log(nαn) log(2)(2β+1c. For all

sequences (flk), denote fLn :=
∑Ln

l=0

∑
k flkψlk and fL

C
n :=

∑
l>Ln

∑
k flkψlk. Also denote

f̂Ln :=
∑Ln

l=0

∑
k Ylkψlk. We have

E0(

∫
‖f − f0‖∞dΠαn(f |Y n)) ≤ E0(

∫
‖fLn − f̂Ln‖∞dΠαn(f |Y n))︸ ︷︷ ︸

(a)

+E0(‖f̂Ln − fLn0 ‖∞)︸ ︷︷ ︸
(b)

+E0(

∫
‖fLcn‖∞dΠαn(f |Y n))︸ ︷︷ ︸

(c)

+ ‖fL
c
n

0 ‖∞︸ ︷︷ ︸
(d)

.

(47)

Term (d) Using the assumptions made on the coefficients (f0,lk) and the localisation prop-
erty of the wavelet basis (ψlk) that

∑
k |ψlk(x)| . 2l/2 for all x ∈ [0, 1],

‖fL
c
n

0 ‖∞ ≤
∑
l>Ln

max
k
|f0,lk| ‖

∑
k

|ψlk|‖∞ .
∑
l>Ln

2−l(
1
2

+β)2l/2 . 2−βLn . (48)

Term (b) Using the localisation property of the basis (ψlk)lk, it follows

‖f̂Ln − fLn0 ‖∞ = ‖
Ln∑
l=0

∑
k

εlk√
n
ψlk‖∞ ≤

Ln∑
l=0

max
k

∣∣∣∣ εlk√n
∣∣∣∣ ‖∑

k

|ψlk|‖∞ .
1√
n

Ln∑
l=0

max
k
|εlk| 2l/2.

Then a standard result about the maximum of n gaussian variables gives that

E0(‖f̂Ln − fLn0 ‖∞) .
1√
n

Ln∑
l=0

E0( max
2l−1≥k≥0

|εlk|)2l/2 .
1√
n

Ln∑
l=0

√
log(2l+1)2l/2 .

√
Ln√
n

2
Ln
2 .

(49)
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Term (a) Let t > 0. Using the localisation property of the basis (ψlk)lk and Jensen’s
inequality, we have∫
‖fLn − f̂Ln‖∞dΠαn(f |Y n) =

1
√
nαn

Ln∑
l=0

2l/2
∫

max
k
|
√
nαn(flk − Ylk)|dΠαn(f |Y n)

≤ 1
√
nαn

Ln∑
l=0

2l/2
1

t
log

2l−1∑
k=0

∫
et|
√
nαn(flk−Ylk)|dΠαn(f |Y n)

 .

(50)

Let t ∈ R, we want to bound
∫
et
√
nαn(flk−Ylk)dΠαn(f |Y n) uniformly over l ≤ Ln and

k = 0, . . . , 2l − 1. By definition of the αn-posterior distribution∫
et
√
nαn(flk−Ylk)dΠαn(f |Y n) =

∫
R e

t
√
nαn(u−Ylk)e−

nαn
2

(u−Ylk)2 1
σl
ϕ( uσl )du∫

R e
−nαn

2
(u−Ylk)2 1

σl
ϕ( uσl )du

=

∫
R e

t(u−√αnεlk)e−
1
2

(u−√αnεlk)2
ϕ( 1

σl
( u√

nαn
+ f0,lk))du∫

R e
− 1

2
(u−√αnεlk)2

ϕ( 1
σl

( u√
nαn

+ f0,lk))du
. (51)

Then let us notice that forB > R, if x ∈ [−B(l+1)µ;B(l+1)µ], then ϕ(x) ≥ c1e
−b1B(1+δ)(l+1) ≥

Ce−cl and 1[−B(l+1)µ;B(l+1)µ](
1
σl

( u√
nαn

+ f0,lk)) ≥ 1
[−
√

log(nαn)(B−R);
√

log(nαn)(B−R)]
(u) ≥

1[−1;1](u). Combining this remark with (51), it follows,

∫
et
√
nαn(flk−Ylk)dΠαn(f |Y n) .

e
t2

2 ecl∫ 1
−1 e

− 1
2

(u−√αnεlk)2
du

.
e
t2

2 ecl∫ 1
−1 e

− 1
2

(u−εlk)2
du
. (52)

Combining (50) and (52), we obtain

∫
‖fLn − f̂Ln‖∞dΠαn(f |Y n) ≤ 1

√
nαn

Ln∑
l=0

2l/2
1

t
log

2l−1∑
k=0

2e
t2

2 ecl∫ 1
−1 e

− 1
2

(u−εlk)2
du

 .

Taking the E0-expectation and using Jensen’s inequality, we get

E0

∫
‖fLn − f̂Ln‖∞dΠαn(f |Y n) ≤ 1

√
nαn

Ln∑
l=0

2l/2
1

t
log

2l−1∑
k=0

2e
t2

2 eclC


=

1
√
nαn

Ln∑
l=0

2l/2(
log(2l+1eclC)

t
+
t

2
).

Setting t =
√

2 log(2l+1eclC), we obtain

E0

∫
‖fLn − f̂Ln‖∞dΠαn(f |Y n) ≤ 1

√
nαn

Ln∑
l=0

2l/2
√

2 log(2l+1eclC) .

√
Ln√
nαn

2
Ln
2 . (53)
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Term (c) Using the localisation property of the basis and Jensen’s inequality, we have

E0

∫
‖fLcn‖∞dΠαn(f |Y n) ≤

∑
l>Ln

2l/2
1

t
log(

2l−1∑
k=0

E0

∫
et|flk|dΠαn(f |Y n)). (54)

Let t ∈ R, we have

∫
etflkdΠαn(f |Y n) =

∫
etue−

nαn
2

(u−Ylk)2 1
σl
ϕ( uσl )du∫

e−
nαn

2
(u−Ylk)2 1

σl
ϕ( uσl )du

=

∫
e
t( u√

nαn
+f0,lk)

e−
u2

2
+u
√
αnεlk 1√

nαnσl
ϕ( 1

σl
( u√

nαn
+ f0,lk))du∫

e−
u2

2
+u
√
αnεlk 1√

nαnσl
ϕ( 1

σl
( u√

nαn
+ f0,lk))du

.

First, we bound from below the denominator. Denote A := {u :
∣∣∣ 1
σl

( u√
nαn

+ f0,lk)
∣∣∣ ≤ 1}

and
µ(A) :=

∫
A

1√
nαnσl

ϕ( 1
σl

( u√
nαn

+ f0,lk))du =
∫ 1
−1 ϕ(u)du. Using Jensen’s inequality with the

exponential function, we obtain

Dlk :=

∫
e−

u2

2
+u
√
αnεlk

1
√
nαnσl

ϕ(
1

σl
(

u
√
nαn

+ f0,lk))du

≥ µ(A)

∫
A
e−

u2

2
+u
√
αnεlk

1
√
nαnσlµ(A)

ϕ(
1

σl
(
u√
n

+ f0,lk))du

≥ µ(A)e
∫
A

(
−u

2

2
+u
√
αnεlk

)
1√

nαnσlµ(A)
ϕ( 1

σl
( u√

nαn
+f0,lk))du

.

Denote ζl =
∫
A u

1√
nαnσlµ(A)ϕ( 1

σl
( u√

nαn
+ f0,lk))du.

Dlk ≥ µ(A)e−
1
2

supu∈A u
2+
√
αnεlkζl ≥ µ(A)e−Cnαn(σ2

l +f2
0,lk)+

√
αnεlkζl , (55)

for some constant C > 0. Now split the integral of the numerator as follows

∫
e
t( u√

nαn
+f0,lk)

e−
u2

2
+u
√
αnεlk

1
√
nαnσl

ϕ(
1

σl
(

u
√
nαn

+ f0,lk))du

=

∫
A
e
t( u√

nαn
+f0,lk)

e−
u2

2
+u
√
αnεlk

1
√
nαnσl

ϕ(
1

σl
(

u
√
nαn

+ f0,lk))du︸ ︷︷ ︸
:=N1

lk(t)

+

∫
AC

e
t( u√

nαn
+f0,lk)

e−
u2

2
+u
√
αnεlk

1
√
nαnσl

ϕ(
1

σl
(

u
√
nαn

+ f0,lk))du︸ ︷︷ ︸
:=N2

lk(t)

.
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Using (55) and Fubini’s theorem, it follows

E0
N1
lk(t)

Dlk
. eCnαn(σ2

l +f2
0,lk)

∫
A
e
t( u√

nαn
+f0,lk)

e−
u2

2 E0(e
√
αnεlk(u−ζl))︸ ︷︷ ︸

=e
αn(u−ζl)2

2

1
√
nαnσl

ϕ(
1

σl
(

u
√
nαn

+ f0,lk))du

. eCnαn(σ2
l +f2

0,lk)+
αnζ

2
l

2

∫
A
e
t( u√

nαn
+f0,lk)

e−(1−αn)u
2

2 e−uαnζl
1

√
nαnσl

ϕ(
1

σl
(

u
√
nαn

+ f0,lk))du

. eCnαn(σ2
l +f2

0,lk)+
ζ2l
2

∫
A
e

∣∣∣t( u√
nαn

+f0,lk)
∣∣∣
e|uζl|

1
√
nαnσl

ϕ(
1

σl
(

u
√
nαn

+ f0,lk))du

. eCnαn(σ2
l +f2

0,lk)+
ζ2l
2 e|t|σl+|ζl|

√
nαn(σl+|f0,lk|).

Since |ζl| ≤ supu∈A |u| ≤
√
nαn(σl + |f0,lk|), we have

E0
N1
lk(t)

Dlk
. eCnαn(σ2

l +f2
0,lk)+|t|σl , (56)

for some constant C > 0. On the other hand, the change of variables u =
√
nαn(σly+f0,lk)

and (55) give

N2
lk(t)

Dlk
. eCnαn(σ2

l +f2
0,lk)

∫
[−1;1]C

etuσle−
nαn

2
(σlu−f0,lk)2+

√
αnεlk(

√
nαn(σlu−f0,lk)−ζl)ϕ(u)du.

Therefore, using Fubini’s theorem, we get

E0
N2
lk(t)

Dlk
. eCnαn(σ2

l +f2
0,lk)

∫
[−1;1]C

etuσle−
nαn

2
(σlu−f0,lk)2

E0(eεlk
√
αn(
√
nαn(σlu−f0,lk)−ζl))︸ ︷︷ ︸

e
αn(
√
nαn(σlu−f0,lk)−ζl)2

2

ϕ(u)du

. eCnαn(σ2
l +f2

0,lk)+
αnζ

2
l

2

∫
[−1;1]C

etuσle−(1−αn)(nαn2
(σlu−f0,lk)2)e−αn

√
nαnζl(σlu−f0,lk)du

. eCnαn(σ2
l +f2

0,lk)+
ζ2l
2

∫
[−1;1]C

etuσle−αn
√
nαnζl(σlu−f0,lk)ϕ(u)du

. eCnαn(σ2
l +f2

0,lk)+
ζ2l
2

+αn
√
nαn|ζlf0,lk|

∫
[−1;1]C

eu(tσl−αn
√
nαnζlσl)ϕ(u)du

. eCnαn(σ2
l +f2

0,lk)
∫

[−1;1]C
eu(tσl−αn

√
nαnζlσl)ϕ(u)du,

where the constant C may change for line to line. Using the tail behavior of ϕ, one can
bound its Laplace tranform and we get

E0
N2
lk(t)

Dlk
. eCnαn(σ2

l +f2
0,lk)eC(|t|σl+αn

√
nαn|ζl|σl)

δ+1
δ . eCnαn(σ2

l +f2
0,lk)+C(|t|σl+

√
nαn|ζl|σl)

δ+1
δ
.

(57)

Combining (56) and (57), we obtain

E0

∫
etflkdΠαn(f |Y n) . eC(nαn(σ2

l +f2
0,lk)+|t|σl+(|t|σl+

√
nαn|ζl|σl)

δ+1
δ ). (58)
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Combining (54) and (58), and denoting φl = R2−l(
1
2

+β), ∀t > 0 we have

E0

∫
‖fLcn‖∞dΠαn(f |Y n) ≤

∑
l>Ln

2l/2
1

t
log(2l+1eC(nαn(σ2

l +φ2
l )+|t|σl+(|t|σl+nαn|σl+φl|σl)

δ+1
δ )).

(59)

Using the fact that for l > Ln, nαnφl ≤ nαnφLn ≤
√

log(nαn ≤ Ln ≤ l and nαnφLnσLn ≤

log(nαn)(Ln + 1)µ ≤ log(nαn)
δ

1+δ . L
δ

1+δ
n . l

δ
1+δ , we deduce that for any t > 0,

E0

∫
‖fLcn‖∞dΠαn(f |Y n) ≤

∑
l>Ln

2l/2
1

t
log(2l+1eC(l+tσl+(tσl+l

δ
δ+1 )

δ+1
δ ))

.
∑
l>Ln

2l/2
1

t
(l + tσl + (tσl + l

δ
1+δ )

δ+1
δ ).

Choosing t = l
δ
δ+1σ−1

l , we obtain

E0

∫
‖fLcn‖∞dΠαn(f |Y n) .

∑
l>Ln

2l/2σll
− δ
δ+1 (l + l

δ
δ+1 + (l

δ
δ+1 + l

δ
1+δ )

δ+1
δ )

.
∑
l>Ln

2l/2σll
− δ
δ+1 (l + l

δ
δ+1 ) .

∑
l>Ln

2l/2σll
− δ
δ+1 l

.
∑
l>Ln

2l/2σll
1
δ+1 .

∑
l>Ln

2l/22−l(
1
2

+β) . 2−βLn . (60)

Conclusion. Combining (49), (48), (53) and (60), one gets, as desired,

E0(

∫
‖f − f0‖∞dΠαn(f |Y n)) .

1
√
nαn

√
Ln2

Ln
2 + 2−βLn .

log(nαn)

nαn

β
2β+1

.

Appendix B. Ancillary Results

B.1 Contraction Rates

Lemma B.1 For any distribution Π on S, any C, ε > 0 and 0 < α ≤ 1, with P0-probability
at least 1− 1

C2nε2
, we have∫

S

pnη (Y n)α

pnη0
(Y n)α

dΠ(η) ≥ Π(Bn(η0, ε))e
−α(C+1)nε2 .

Proof Suppose Π(Bn(η0, ε)) > 0 (otherwise the result is immediate), and denote by

Π̄ = Π(·∩Bn(η0,ε))
Π(Bn(η0,ε))

the normalized prior to Bn(η0, ε). Now let us bound from below∫
S

pnη (Y n)α

pnη0
(Y n)α

dΠ(η) ≥
∫
Bn(η0,ε)

pnη (Y n)α

pnη0
(Y n)α

dΠ(η) = Π(Bn(η0, ε))

∫
pnη (Y n)α

pnη0
(Y n)α

dΠ̄(η). (61)
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Since Π̄ is a probability measure on S, Jensen’s inequality applied to the logarithm gives,

log

(∫
pnη (Y n)α

pnη0
(Y n)α

dΠ̄(η)

)
≥ α

∫
log

(
pnη (Y n)

pnη0
(Y n)

)
dΠ̄(η).

Consider now the random variable Z :=
∫

log
(
pnη (Y n)

pnη0 (Y n)

)
dΠ̄(η). Then

E0|Z| ≤
∫
Bn(η0,ε)

E0

log

(
pnη (Y n)

pnη0
(Y n)

) dΠ̄(η)

=

∫
Bn(η0,ε)

∫ log

(
pnη (x)

pnη0
(x)

) pnη0
(x)dµn(x)dΠ̄(η))

≤ nε2 + 1.

Thus Z is integrable and using Fubini’s theorem,

E0Z =

∫
Bn(η0,ε)

∫
log

(
pnη (x)

pnη0
(x)

)
pnη0

(x)dµn(x)dΠ̄(η) =

∫
Bn(η0,ε)

−K(pnη0
, pnη )dΠ̄(η) ≥ −nε2.

Turning to the variance,

Var0(Z) = Var0(−Z) = E0

(∫
log

(
pnη0

(Y n)

pnη (Y n)

)
dΠ̄(η)−

∫
Bn(η0,ε)

K(pnη0
, pnη )dΠ̄(η)

)2

= E0

(∫
log

(
pnη0

(Y n)

pnη (Y n)

)
−K(pnη0

, pnη )dΠ̄(η)

)2

≤
∫
Bn(η0,ε)

E0

(
log

(
pnη0

(Y n)

pnη (Y n)

)
−K(pnη0

, pnη )

)2

dΠ̄(η) ≤ nε2,

using that Π̄ is supported on Bn(η0, ε). By Chebychev’s inequality, P0(|Z − E(Z)| ≥
Cnε2) ≤ 1

Cnε2
. Thus, on the event {|Z − E(Z)| ≤ Cnε2}, which has a probability at least

1− 1
Cnε2

,

log

(∫
pnη (Y n)α

pnη0
(Y n)α

dΠ̄(η)

)
≥ α(Z − EZ + EZ) ≥ −α(C + 1)nε2.

Substituting this bound into (61) then gives the result.

Lemma B.2 Let An be measurable sets, 0 < αn ≤ 1 and εn be a non-negative sequence
such that nαnε

2
n →∞. If

Π(An)

Π(Bn(η0, εn))e−2nαnε2n
= o(1),

then Παn(An|Y n)→P0 0.
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Proof Applying Hölder’s inequality to the right-hand side of (35) implies

E0Παn(An|Y n) ≤
∫
An

(∫
pnη (x)dµn(x)

)αn (∫ pnη0
(x)dµn(x)

)1−αn dΠ(η)

Π(Bn(η0, εn))e−2αnnε2n
+ o(1)

=
Π(An)

Π(Bn(η0, εn))e−2αnnε2n
+ o(1) = o(1).

Lemma B.3 Consider density estimation on [0,1] with true density f0 ∈ Cβ([0, 1]) for some
β ∈ (0, 1], bounded away from 0. Let Π = Πn denote the histogram prior (12) satisfying
Kn = o (nαn/ log(nαn)) and for all i ∈ {1, . . . ,Kn}, 1

(nαn)b
≤ δi,n ≤ 1 for some b > 0. Then

the sequence ε2
n = Kn log(nαnKn)/(nαn) + K−2β

n satisfies Π(Bn(f0,Mεn)) ≥ e−nαn(Mεn)2

for some M > 0.

Proof Using that the Kullback-Leiber and its 2nd-variation tensorizes in density estima-
tion, we may write

Bn(f0, ε) = B1(f0, ε) = {f ∈ F : K(f0, f) ≤ ε2, V (f0, f) ≤ ε2}. (62)

Let ρ2
n = log(nαnKn)/(nαnKn). Since Kn = o( nαn

log(nαn)), it holds that (ρnKn)2 =

Kn log(nαnKn)/(nαn) = o(1) and thus ρn ≤ K−1
n for n large enough. This bound, the

assumption δi,n ≤ 1 together with Lemma B.4 give that there exist positive constants C
and c such that for all integer n,

Π(f ∈ H1
Kn , ‖f − f0,Kn‖1 ≤ 2ρn) ≥ Ce−cKn log( 1

ρn
)
Kn∏
i=1

δi,n. (63)

Using basic properties of histograms, we also have

Π(f ∈ H1
Kn , ‖f − f0,Kn‖∞ ≤ 2Knρn) ≥ Π(f ∈ H1

Kn , ‖f − f0,Kn‖1 ≤ 2ρn). (64)

Since f0 satisfies m ≤ f0 ≤ M for some M > m > 0, we also have m ≤ f0,Kn ≤ M for
all n. Now let f ∈ H1

Kn
such that ‖f − f0,Kn‖∞ ≤ 2Knρn. Since Knρn → 0, for n large

enough, m
2 < f < 2M . Since f and f0 are bounded away from zero and infinity, using that

log(1 + x) ≤ x,

K(f0, f) =

∫ 1

0
log

(
1 +

f0 − f
f

)
f0 ≤

∫ 1

0

f0 − f
f

(f0 − f + f) =

∫ 1

0

(f0 − f)2

f
≤ 2

m
‖f − f0‖2∞.

Also, since x 7→ log x is 1
r -Lipschitz on [r,∞),

V (f0, f) ≤
∫ 1

0

(
log

f0

f

)2

f0 ≤
4

m2

∫ 1

0
|f0 − f |2f0 ≤

4

m2
‖f − f0‖2∞.
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Moreover, for f0 ∈ Cβ([0, 1]) and any f ∈ H1
Kn

such that ‖f − f0,Kn‖∞ ≤ 2Knρn,

‖f − f0‖2∞ ≤ 2‖f − f0,Kn‖2∞ + 2‖f0 − f0,Kn‖2∞ ≤ 8(Knρn)2 + 2K−2β
n . ε2

n.

Combining the last three displays thus implies that K(f0, f) ≤ Dε2
n and V (f0, f) ≤ Dε2

n

for some constant D = D(m) = D(f0) > 0. Together with (62)-(64), we obtain

Π(Bn(f0,
√
Dεn)) = Π({f, K(f0, f) ≤ Dε2

n, V (f0, f) ≤ Dε2
n})

≥ Π(f ∈ H1
Kn , ‖f − f0,Kn‖1 ≤ 2ρn) ≥ Ce−cKn log( 1

ρn
)
Kn∏
i=1

δi,n. (65)

Using the assumption on the weights (δi,n) and the definition of ρn yields that

Π(Bn(f0,
√
Dεn)) ≥ Ce−cKn log( 1

ρn
)
e−bKn log(nαn) ≥ Ce−cKn log( 1

ρn
)
,

where the constants C and c may change from line to line. Finally, since the sequence ρ2
n

satisfies 1
ρ2
n

log( 1
ρn

) ≤ nαnKn and thus Kn log( 1
ρn

) ≤ nαn(Knρn)2, it follows

Π(Bn(f0,
√
Dεn)) ≥ Ce−cKn log( 1

ρn
) ≥ Ce−cnαn(Knρn)2 ≥ Ce−cnαnε2n = Ce−nαn(

√
cεn)2

.

Denoting D′ := max(
√
D,
√
c) + 1, for n large enough we have

Π(Bn(f0, D
′εn)) ≥ e−nαn(D′εn)2

.

Lemma B.4 Let X1, . . . , XK be distributed according to the Dirichlet distribution on the
K-simplex with parameters δ = (δ1, . . . , δK), where 0 < δi ≤ 1 for all i . Let x0 =
(x10, . . . , xK0) be any point on the K-simplex. There exist positive constants c, C, inde-
pendent of K, δ and x0 such that, for ε ≤ K−1

P

(
K∑
i=1

|Xi − xi0| ≤ 2ε

)
≥ Ce−cK log( 1

ε
)
K∏
i=1

δi

Proof The proof is the same as that of Lemma 6.1 in Ghosal et al. (2000), except one
keeps track of the dependence on the Dirichlet parameters.

B.2 Bernstein–von Mises Results

Proof of Lemma A.1 Let f ∈ An. First we have

αn`n(ft) = αn

n∑
i=1

(
log f(Yi)−

tψ̃[Kn](Yi)√
nαn

− log(F (e
−
tψ̃[Kn]√
nαn ))

)
= αnln(f)− t

√
nαn

1

n

n∑
i=1

ψ̃[Kn](Yi)− nαn log(F (e
−
tψ̃[Kn]√
nαn )). (66)
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Let us expand the term log(F (e
−
tψ̃[Kn]√
nαn )). Throughout the calculations below, one can keep

track of the uniformity of the remainder terms and check that the remainder in the final
expansion is uniform over An. The fact that ψ̃ is bounded (and so is ψ̃[Kn]) ensures this
uniformity. By expanding the logarithm around 1,

log(F (e
−
tψ̃[Kn]√
nαn )) = log

∫
fe
−
tψ̃[Kn]√
nαn = log

∫ 1

0
f(1−

tψ̃[Kn]√
nαn

+
t2ψ̃2

[Kn]

2nαn
+ o(

1

nαn
))

= log
(

1− t
√
nαn

∫ 1

0
fψ̃[Kn] +

t2

2nαn

∫ 1

0
fψ̃2

[Kn] + o(
1

nαn
))

= − t
√
nαn

∫ 1

0
fψ̃[Kn] +

t2

2nαn

(∫ 1

0
fψ̃2

[Kn] −
(∫ 1

0
fψ̃[Kn]

)2
)

+ o(
1

nαn
).

Since over An, f is an histogram of size Kn, we deduce

log(F (e
−
tψ̃[Kn]√
nαn )) = − t

√
nαn

∫ 1

0
fψ̃f0 +

t2

2nαn

(∫ 1

0
fψ̃2

[Kn] −
(∫ 1

0
fψ̃f0

)2
)

+ o(
1

nαn
).

Then, the facts that ‖f − f0,Kn‖1 ≤ εn over An and ψ̃[Kn] is bounded imply

log(F (e
−

tψ̃f0√
nαn ))

= − t
√
nαn

∫ 1

0
fψ̃f0 +

t2

2nαn

(∫ 1

0
f0,Knψ̃

2
[Kn] −

(∫ 1

0
f0,Knψ̃f0

)2
)

+ o(
1

nαn
)

= − t
√
nαn

∫ 1

0
fψ̃f0 +

t2

2nαn
VKn + o(

1

nαn
). (67)

Thus, combining (66) and (67), we have

αnln(ft) = αnln(f)− t
√
nαn

1

n

n∑
i=1

ψ̃[Kn](Yi) + t
√
nαn

∫ 1

0
fψ̃f0 −

t2

2
VKn + o(1)

= αnln(f) + t
√
nαn(− 1

n

n∑
i=1

ψ̃[Kn](Yi) + ψ(f)− ψ(f0))− t2

2
VKn + o(1).

By rearranging and using the definition of ψ̂[Kn],

αnln(f) + t
√
nαn(ψ(f)− ψ̂[Kn]) = αnln(ft) +

t2

2
VKn + o(1). (68)

Let us show that VKn →
∫
f0ψ̃

2. Since Kn → ∞,
∫

(ψ̃[Kn] − ψ̃)2 = o(1) and since

f0 is bounded it follows
∫
f0(ψ̃[Kn] − ψ̃)2 = o(1). Hence

∣∣∣∫ f0ψ̃
2
[Kn] −

∫
f0ψ̃

2
∣∣∣ = o(1)

and thus
∣∣∣∫ f0,Knψ̃

2
[Kn] −

∫
f0ψ̃

2
∣∣∣ = o(1). Moreover, |

∫
f0ψ̃[Kn]| = |

∫
f0(ψ̃[Kn] − ψ̃)| ≤
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‖f0‖∞‖ψ̃[Kn] − ψ̃‖2 = o(1). Finally VKn =
∫
f0ψ̃

2 + o(1). Using this result together with
(68) and Assumption (38) it follows

Eαn(et
√
nαn(ψ(f)−ψ̂[Kn])|Y n, An) =

∫
An
et
√
nαn(ψ(f)−ψ̂[Kn])eαnln(f)dΠ(f)∫

eαnln(f)dΠ(f)

=

∫
An
eαnln(ft)+

t2

2
VKn+o(1)dΠ(f)∫

eαnln(f)dΠ(f)
= e

t2

2
VKn (1 + o(1))

∫
An
eαnln(ft)dΠ(f)∫
eαnln(f)dΠ(f)

= e
t2

2
F0(ψ̃2

f0
)
(1 + oP (1)).

The last estimate is for the restricted distribution Παn(·|Y n, An) but Assumption (37) im-
plies that the unrestricted version also follows and this proves Lemma A.1.

Proof of Lemma A.2 Set εn = ε̃n + (e
2
|t|√
nαn
‖ψ̃‖∞ − 1). First, εn → 0 and since εn ≥ ε̃n,

we have Παn(An|Y n) = 1 + oP (1). Now let us show the convergence (41). For k ≥ 1, let us
set

Uk =

{
(ω1, . . . , ωk−1) ∈ (0, 1)k−1,

k−1∑
i=1

ωi < 1

}
.

Throughout the proof, we will use the notation ωk = 1−
∑k−1

j=1 ωj . Let us denote by H the
map

H : Uk → H1
k

(ω1, . . . , ωk−1) x→ k
∑k

j=1 ωj1Ij (x).

By definition of the prior distribution, we have∫
An

eαnln(ft)dΠ(f) =

∫
H1
Kn

1f∈Ane
αnln(ft)dΠ(f) (69)

=

∫
UKn−1

1H(ω1,...,ωKn−1)∈Ane
αnln(H(ω1,...,ωKn−1)e

−
tψ̄[Kn]√
nαn )/

∫
H(ω1,...,ωKn−1)e

−
tψ̄[Kn]√
nαn )) (70)

× 1

B(δ)

Kn∏
i=1

ω
δi,n−1
i dω1 . . . dωKn−1.

For an integer n and j ∈ {1, . . . ,Kn}, denote γj = etψ̃j/
√
nαn with ψ̃j = Kn

∫
Ij
ψ̃. For k an

integer and x ∈]0,+∞[k, let us denote by Sx the map

Sx : Uk → ]0,+∞[

(ω1, . . . , ωk−1)
∑k

j=1 ωjxj .

For an integer k and vector x ∈]0,+∞[k, denote

φx : Uk → Uk
(ω1, . . . , ωk−1) ( ω1x1

Sx(ω) , . . . ,
ωk−1xk−1

Sx(ω) ).
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This mapping is well defined and note that

H(ω1, . . . , ωKn−1)e
−
tψ̄[Kn]√
nαn∫

H(ω1, . . . , ωKn−1)e
−
tψ̄[Kn]√
nαn

= H(φγ−1(ω1, . . . , ωKn−1)). (71)

Moreover, one can show that for all integer k and for all x ∈]0,+∞[k, φx is bijective and its
inverse is φx−1 . From Lemma 5 in the supplemental article of Castillo and Rousseau (2015),
the mappings φx and φx−1 are C1, and the determinant of the jacobian matrix of the map
φx is given by

det(Dφx(ω1, . . . , ωk−1)) =
1

Sx(ω)k

k∏
i=1

xi. (72)

Let us combine (69) and (71) and then make the change of variables (ξ1, . . . , ξKn−1) →
φγ(ξ1, . . . , ξKn−1) in (69) and using 1−

∑Kn−1
i=1

γiξi
Sγ(ξ) =

γKnξKn
Sγ(ξ) , it follows∫

An

eαnln(ft)dΠ(f)

=

∫
UKn−1

1H(φγ(ξ1,...,ξKn−1))∈Ane
αnln(H(ξ1,...,ξKn−1)) 1

B(δ)

Kn∏
i=1

(
γiξi
Sγ(ξ)

)δi,n−1 1

Sγ(ξ)Kn

Kn∏
i=1

γidξi

=

∫
UKn−1

1H(φγ(ξ1,...,ξKn−1))∈Ane
αnln(H(ξ1,...,ξKn−1))

Kn∏
i=1

γ
δi,n
i︸ ︷︷ ︸

(∗)

1

Sγ(ξ)
∑Kn
i=1 δi,n︸ ︷︷ ︸

(∗∗)

1

B(δ)

Kn∏
i=1

ξ
δi,n−1
i dξi.

(73)

For the term (∗), which does not depend on ξ, we have

Kn∏
j=1

γ
δj,n
j =

Kn∏
j=1

etψ̃jδj,n/
√
nαn = et

∑Kn
j=1 ψ̃jδj,n/

√
nαn

e
− |t|√

nαn
‖ψ̃‖∞

∑Kn
j=1 δj,n ≤

Kn∏
j=1

γ
δj,n
j ≤ e

|t|√
nαn
‖ψ̃‖∞

∑Kn
j=1 δj,n ,

so that
∏Kn
j=1 γ

δj,n
j = 1 + o(1) using the condition (13). As for the term (∗∗), for ξ ∈ UKn−1

we have Sγ(ξ) =
∑Kn

j=1 γjξj =
∑Kn

j=1 e
t√
nαn

ψ̃jξj , and thus

e
− t√

nαn
‖ψ̃‖∞

Kn∑
j=1

ξj ≤ Sγ(ξ) ≤ e
t√
nαn
‖ψ̃‖∞

Kn∑
j=1

ξj (74)

e
− |t|√

nαn
‖ψ̃‖∞

∑Kn
i=1 δi,n ≤ Sγ(ξ)−

∑Kn
i=1 δi,n ≤ e

|t|√
nαn
‖ψ̃‖∞

∑Kn
i=1 δi,n . (75)
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Using Assumption (13) gives that term (∗∗) is 1+o(1) uniformly over UKn−1. By combining
(73) and the results on term (∗) and term (∗∗), we obtain∫
An

eαnln(ft)dΠ(f) (76)

= (1 + o(1))

∫
UKn−1

1H(φγ(ξ1,...,ξKn−1))∈Ane
αnln(H(ξ1,...,ξKn−1)) 1

B(δ)

Kn∏
i=1

ξ
δi,n−1
i dξ1 . . . dξKn−1.

Next, let us show that we have the inclusion

{(ξ1, . . . , ξKn−1) ∈ UKn−1, ‖H(ξ1, . . . , ξKn−1)− f0,Kn‖1 ≤ ε̃n}
⊂{(ξ1, . . . , ξKn−1) ∈ UKn−1, ‖H(φγ(ξ1, . . . , ξKn−1))− f0,Kn‖1 ≤ εn}. (77)

For all integer n, denote (ξ0
1 , . . . , ξ

0
Kn−1) the element of UKn−1 such that H(ξ0

1 , . . . , ξ
0
Kn−1) =

f0,Kn . Let (ξ1, . . . , ξKn−1) ∈ UKn−1 such that ‖H(ξ1, . . . , ξKn−1) − f0,Kn‖1 ≤ ε̃n ⇐⇒∑Kn
i=1 |ξi − ξ0

i | ≤ ε̃n. Then we have

‖H(φγ(ξ1, . . . , ξKn−1))− f0,Kn‖1 =

Kn∑
i=1

| ξiγi
Sγ(ξ)

− ξ0
i | ≤

Kn∑
i=1

|ξi − ξ0
i |+

Kn∑
i=1

| ξiγi
Sγ(ξ)

− ξi|

≤ ε̃n +

Kn∑
i=1

ξi|
γi

Sγ(ξ)
− 1|.

By (74), it follows that for all i ∈ {1, . . . ,Kn}

e
− |t|√

nαn
‖ψ̃‖∞

e
|t|√
nαn
‖ψ̃‖∞

≤ γi
Sγ(ξ)

≤ e
|t|√
nαn
‖ψ̃‖∞

e
− |t|√

nαn
‖ψ̃‖∞

| γi
Sγ(ξ)

− 1| ≤ e2
|t|√
nαn
‖ψ̃‖∞ − 1.

Hence ‖H(φγ(ξ1, . . . , ξKn−1)) − f0,Kn‖1 ≤ ε̃n + (e
2
|t|√
nαn
‖ψ̃‖∞ − 1) = εn. Thus we have the

inclusion (77). Finally, combining (76) and (77), we obtain

(1 + oP (1))

∫
UKn−1

1H(ξ1,...,ξKn−1)∈Ãne
αnln(H(ξ1,...,ξKn−1)) 1

B(δ)

Kn∏
i=1

ξδi−1
i dξ1 . . . dξKn−1

≤
∫
An

eαnln(ft)dΠ(f) ≤ (1 + oP (1))

∫
eαnln(f)dΠ(f),

hence

(1 + oP (1))Παn(Ãn|Y n) ≤
∫
An
eαnln(ft)dΠ(f)∫
eαnln(f)dΠ(f)

≤ (1 + oP (1)).

By assumption 39 Παn(Ãn|Y n) = 1 + oP (1) and the result follows.
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Lemma B.5 The following expansion holds for ψ̂,

ψ̂ − ψ̂[Kn] = −F0(ψ̃[Kn]) + oP (1/
√
n).

Proof By definition,

ψ̂ − ψ̂[Kn] = ψ(f0) +
1

n

n∑
i=1

ψ̃(Yi)− ψ(f0)− 1

n

n∑
i=1

ψ̃[Kn](Yi) =
1

n

n∑
i=1

(ψ̃(Yi)− ψ̃[Kn](Yi))

=
1

n

n∑
i=1

(
ψ̃(Yi)− ψ̃[Kn](Yi) + F0(ψ̃[Kn])

)
− F0(ψ̃[Kn]). (78)

Moreover, using that E0(ψ̃(Y1)− ψ̃[Kn](Y1)) = −F0(ψ̃[Kn]),

E0(

(
1

n

n∑
i=1

(
ψ̃(Yi)− ψ̃[Kn](Yi) + F0(ψ̃[Kn])

))2

)

=
1

n2
E0(

(
n∑
i=1

(
ψ̃(Yi)− ψ̃[Kn](Yi) + F0(ψ̃[Kn]

))2

)

=
1

n
E0(
(
ψ̃(Y1)− ψ̃[Kn](Y1) + F0(ψ̃[Kn]

)2
) ≤ 1

n
E0(
(
ψ̃(Y1)− ψ̃[Kn](Y1)

)2
)

=
1

n

∫ (
ψ̃ − ψ̃[Kn]

)2
f0 ≤

‖f0‖∞
n

∫ (
ψ̃ − ψ̃[Kn]

)2
=
‖f0‖∞
n

o(1) = o(
1

n
), (79)

where we used the assumptionKn →∞ in the last calculation. Hence, we obtain 1
n

∑n
i=1

(
ψ̃(Yi)−

ψ̃[Kn](Yi) + F0(ψ̃[Kn])
)

= oP (1/
√
n). Combining this with (78) yields the result.

B.3 Credible regions

Lemma B.6 Let (QYn ) be a sequence of random real distributions, (un) a positive sequence,
(Yn) a sequence of real random variables and V a positive constant. Let δ ∈ (0, 1) and denote
aYn,δ the random δ-quantile of QYn . If

Q̃Yn := un(QYn − Yn)
L→ N (0, V ), (80)

then un(aYn,δ − Yn)
P−→
√
V qδ.

Proof By Lemma 2 in the supplement of Castillo and Rousseau (2015), (80) implies that

sup
s∈R
|Q̃Yn ((−∞, s])−N (0, V )((−∞, s])| P−→ 0.

Using Lemma B.7 and that un(aYn,δ −Yn) is the δ-quantile of Q̃Yn , we deduce that un(aYn,δ −
Yn)

P−→
√
V qδ.
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Lemma B.7 Let p ∈ (0, 1). Let (Fn) be a sequence of random cumulative distribution
functions and (qnp ) the (random) sequence of its p-quantiles. Let F be a fixed continuous
increasing cumulative distribution function and qp be its p-quantile. If sups∈R |Fn(s) −
F (s)| →P 0 as n→∞, then |qnp − qp| →P 0 as n→∞.

Proof For ρ > 0 arbitrary, we show that P (|qp − qnp | ≤ ρ)→ 1. Since F is increasing and
continuous, we have F (qp − ρ) < F (qp) = p < F (qp + ρ). Set ε = min(F (qp + ρ) − p, p −
F (qp − ρ))/2. On the event {sups∈R |Fn(s)− F (s)| ≤ ε} it follows

Fn(qp + ρ) ≥ F (qp + ρ)− ε ≥ F (qp + ρ)− F (qp + ρ)− p
2

= p+
F (qp + ρ)− p

2
> p.

By definition of the quantile qpn, this implies qpn ≤ qp + ρ. Similarly,

Fn(qp − ρ) ≤ F (qp − ρ) + ε ≤ F (qp − ρ) +
p− F (qp − ρ)

2
= p− p− F (qp − ρ)

2
< p.

Hence qp − ρ < qpn, and thus it follows {sups∈R |Fn(s) − F (s)| ≤ ε} ⊂ {|qnp − qp| ≤
ρ}. Let δ > 0. Since sups∈R |Fn(s) − F (s)| = oP (1), there exists N0 such that for all
n ≥ N0,P (sups∈R |Fn(s) − F (s)| ≤ ε) ≥ 1 − δ. Hence one deduces that for all n ≥ N0,
1− δ ≤ P (sups∈R |Fn(s)− F (s)| ≤ ε) ≤ P (|qnp − qp| ≤ ρ).
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