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Abstract

Expectation propagation (EP) is an approximate Bayesian inference (ABI) method which
has seen widespread use across machine learning and statistics, owing to its accuracy and
speed. However, it is often difficult to apply EP to models with complex likelihoods, where
the EP updates do not have a tractable form and need to be calculated using methods such
as multivariate numerical quadrature. These methods increase run time and reduce the
appeal of EP as a fast approximate method. In this paper, we demonstrate that EP can
still be made fast for certain models in this category. We focus on various types of linear
regression, for which fast Bayesian inference is becoming increasingly important in the
transition to big data. Fast EP updates are achieved through analytic integral reductions
in certain moment computations. EP is compared to other ABI methods across simulations
and benchmark datasets, and is shown to offer a good balance between accuracy and speed.

Keywords: Expectation propagation, approximate Bayesian inference, Laplace approxi-
mation, variational Bayes, linear regression

1. Introduction

The demand for scalable statistical inference is on the rise as datasets grow larger and
models become increasingly complex, especially in big data fields such as bioinformatics,
signal processing, and computer vision. In the Bayesian sphere, this has been seen through
growing interest in approximate Bayesian inference (ABI) methods as a faster alternative
to traditional Markov chain Monte Carlo (MCMC), which is exact in the limit but typically
does not scale well with the size of the data (Robert et al., 2018). Such methods include
the Laplace approximation, a whole family of variational approaches (Blei et al., 2017),
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expectation propagation (EP) (Minka, 2001), and integrated nested Laplace approximations
(INLA) (Rue et al., 2009).

We focus on the EP methodology. Originally introduced in Minka (2001) as a general-
ized message passing algorithm on factor graphs, EP extended and unified assumed density
filtering (Maybeck, 1982), and loopy belief propagation (Frey and MacKay, 1997). Since
then, theoretical properties have been developed regarding asymptotic theory and conver-
gence in special cases (Ribeiro and Opper, 2011; Dehaene and Barthelmé, 2017), and the
method has been successfully used in a wide range of applications. These include Gaussian
process modeling (Bui et al., 2016; Hernandez-Lobato and Hernandez-Lobato, 2016), sig-
nal processing (Wang et al., 2020), and microarray data classification (Hernández-Lobato
et al., 2010). More generally, EP has seen use in likelihood-free inference (Barthelmé and
Chopin, 2014), partitioned inference for big data (Vehtari et al., 2020), feature selection
(Hernández-Lobato et al., 2013, 2015), and frequentist inference (Hall et al., 2020).

The success of EP as a statistical inference paradigm can be attributed to its advantages
over other methods in accuracy and speed. EP is generally more accurate than competing
ABI methods for the clutter problem and mixture weight estimation (Minka, 2001), gener-
ally outperforms existing methods in various applications relating to the sparse linear model
estimation (Seeger et al., 2007), and produces negligible approximation error in certain bi-
nary regression models (Chopin and Ridgway, 2017), for instance. Furthermore, parallel
EP schemes can be derived which take advantage of the localized nature of EP updates;
this can lead to large run time savings (Hasenclever et al., 2017; Vehtari et al., 2020).

However, for models with complex likelihoods, EP is slowed down by tractability issues,
somewhat blunting one of its main advantages. The standard EP algorithm calculates the
moments of so-called tilted distributions, intermediate distributions formed by combining
the joint likelihood with the current EP approximation. When the likelihood is simple,
the tilted distributions are often one-dimensional (Rasmussen and Williams, 2005) or are
multi-dimensional but have a simplifying structure (Chopin and Ridgway, 2017) where it
is straightforward to compute their moments using univariate quadrature, after potentially
performing dimension reduction (Chen and Wand, 2020; Vehtari et al., 2020). When the
likelihood is complex, these techniques usually break down, necessitating alternate moment
computation approaches such as multivariate numerical quadrature (Seeger and Jordan,
2004) Monte Carlo (Li et al., 2018), or the Laplace approximation (Smola et al., 2003);
these come at the cost of increased run time (for a comparison of standard and Laplace-
based implementations, see Wang et al. 2020 for example), reducing the appeal of EP as a
fast approximate method.

We demonstrate that EP can still be made fast for certain models with complex likeli-
hoods where the standard moment computation techniques (dimension reduction and uni-
variate quadrature) are insufficient for fast EP updates. The Bayesian versions of het-
eroscedastic, scale-augmented lasso-penalized, and scale-augmented quantile linear regres-
sion is considered. Scale-augmented simply refers to the addition of a nuisance scale param-
eter into the model. An emphasis is placed on linear regression as it is the most ubiquitous
modeling technique in modern statistics; fast inference in such models is therefore an im-
portant goal when dealing with the massive datasets of the current day. This can be seen,
for example, in the development of sub-sampling procedures when the number of obser-
vations is large (Ma and Sun, 2015; Wang et al., 2019; Wang and Ma, 2021), along with
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fast inference schemes for specific linear regression variants (Clarkson et al., 2016; Fujiwara
et al., 2016; Fasiolo et al., 2021). Fast EP updates are accomplished through analytic in-
tegral reductions in the moment computations of the tilted distributions; this is the main
contribution of this paper.

The outline of this paper is as follows. In Section 2, EP is introduced in its classical
Gaussian implementation, along with the dimension reduction technique. Section 3 uses
analytic integral reductions within this framework to derive fast EP updates for the afore-
mentioned linear regression models. In Section 4, a set of experiments is conducted to
evaluate the performance of the proposed EP implementation on smaller datasets; this is
compared to that of other popular ABI methods, including a more conventional EP imple-
mentation. In Section 5, a similar set of experiments is conducted using a big data example.
In Section 6, the results are discussed, and future directions of study are given. Finally,
derivations, additional implementation details, and supplementary figures are provided in
the appendices.

2. Expectation propagation

This section provides a digestible summary of the basic EP methodology, including the
dimension reduction technique. While no original content is developed here, the notation
introduced will be used for the rest of the paper.

2.1 Standard EP

At a high level, EP introduces normalized approximations to the factors (commonly referred
to as sites) of a particular factorization of the joint likelihood. Each site approximation is
associated with its own site parameters, and the product of the site approximations forms
the EP approximation of the posterior distribution. Over the course of the EP algorithm,
the site parameters are iteratively refined until convergence is reached and their change
between iterations is negligible. This process may be illustrated more concretely as follows.
Let the data be coded as D, and θ ∈ Rd be the parameter of interest. Assume that the
joint likelihood admits the factorization

p(θ,D) =

K∏
k=1

fk(θ),

where K is the total number of sites and the sites fk(θ) are the components of either the like-
lihood (with their dependence on the data suppressed) or the prior(s). The corresponding
EP approximation has the form

q(θ) =
K∏
k=1

qk(θ).

Often it is convenient to set the site approximations qk to be multivariate Gaussian densi-
ties, with the resulting algorithm being called Gaussian EP; we will follow this convention
throughout this paper. Other densities are possible, provided they belong to the exponential
family of distributions since this family is closed under multiplication; see Seeger (2005) for
more details. Our strategy in dealing with parameters with a constrained domain will be
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to transform these to an unconstrained domain, as in Kucukelbir et al. (2015) for example.
Writing in terms of natural parameters,

qk(θ) = (2π)−d/2|Q|1/2 exp
(
−1

2θ
TQkθ + θTrk

)
,

so that each site approximation qk has associated site parameters Qk (a precision matrix)
and rk (a linear shift vector). Here, the EP approximation q is a multivariate Gaussian with
precision Q• =

∑
k Qk and linear shift r• =

∑
k rk. The EP algorithm aims to iteratively

refine the Qk and rk until convergence. For an update to qk, the k-th cavity distribution is
first defined as q−k(θ) =

∏
j 6=k qj(θ); let Σ−k, µ−k, Q−k, and r−k be its covariance, mean,

precision, and linear shift respectively. The k-th tilted distribution (sometimes called the
hybrid distribution) is then defined as

hk(θ) ∝ fk(θ)q−k(θ).

Let Σhk , µhk , Qhk , and rhk be the covariance, mean, precision, and linear shift respectively

of hk, and let h̃k(θ) = fk(θ)q−k(θ) be its kernel. The tilted distributions are combinations
of the joint likelihood and the current EP approximation, and are the mechanism by which
information is propagated from the former to the latter. The site parameters Qk and rk
are then updated such that the Kullback-Leibler divergence from the tilted distribution to
the EP approximation q is minimized. When using Gaussian site approximations, this is
equivalent to calculating the first two moments of the tilted distribution (Σhk and µhk)
to get the moment parameters of its Gaussian approximation, transforming into natural
parameters (Qhk and rhk), and subtracting off the corresponding natural parameters of the
cavity distribution. The EP update may be written compactly as

Qk ← Qhk −Q−k and rk ← rhk − r−k.

Näıvely, the update requires solutions to d-dimensional integrals. In particular, define

Ihk,0 =

∫
h̃k(θ) dθ, Ihk,1 =

∫
θh̃k(θ) dθ, and Ihk,2 =

∫
θθTh̃k(θ) dθ

to be the d-dimensional integrals corresponding to the 0th, 1st, and 2nd unnormalized raw
moments respectively of the tilted distribution. We have that

Σhk =
Ihk,2
Ihk,0

−
(

Ihk,1
Ihk,0

)(
Ihk,1
Ihk,0

)T

and µhk =
Ihk,1
Ihk,0

,

from which we can recover Qhk and rhk .

The EP updates are repeated across the sites (these can be performed in parallel) until
convergence, where the change in the site parameters is sufficiently small and the algorithm
is terminated. If a site has a Gaussian form, then its approximation is set to be itself
during initialization and is not refined. Additional details, especially those on algorithmic
considerations, can be found in Vehtari et al. (2020).
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2.2 Dimension reduction

Papers such as Chen and Wand (2020) and Vehtari et al. (2020) describe a general dimen-
sion reduction approach for the computation of the tilted distribution moments, which we
describe here. Suppose that we would like to update qk. It is sometimes the case that fk
can be rewritten as

fk(θ) = f∗k (ϑk(θ)), with ϑk(θ) = (ϑk,1(θ), . . . , ϑk,dk(θ)) and ϑk,j(θ) = aT
k,jθ,

where f∗k : Rdk → R, ϑk,j(θ) : Rd → R, and ak,j ∈ Rd being determined from the model and
data. The vector ϑ represents the low dimensional version of θ, and we say that the k-th
site has dk linear components, with coefficient vectors ak,j . When dk < d, the dimension of
the problem has been reduced.

For instance, consider the Bayesian logistic regression model. If we let θ be the p-vector
of regression coefficients, then the model may be specified as

yi|θ ∼ Bernoulli((1 + exp(−xT
i θ))−1)

for i = 1, . . . , n. If we assume a multivariate Gaussian prior on θ, that is, θ ∼ Nd(µθ,Σθ),
then the joint likelihood can be factored as the product of n likelihood sites and one Gaussian
prior site:

p(θ,D) = φp(θ;µθ,Σθ)
n∏
i=1

[1 + exp(−2(yi − 0.5)xT
k θ)]−1.

If we additionally let the indices k = 1, . . . , n correspond to the likelihood sites and k = n+1
correspond to the prior site, then for k = 1, . . . , n, we have dk = 1,

f∗k (ϑ) = [1 + exp(−ϑ)]−1, and ak,1 = 2(yk − 0.5)xk,

which is an example of univariate dimension reduction.
This alternate form allows for moment-based integrals involving the tilted distribution

to be reduced in dimension, improving the speed and tractability of the EP algorithm; the
details are given here, with the derivations deferred to Appendix A. Let Ak ∈ Rd×dk be the
matrix where the j-th column of Ak is ak,j for j = 1, . . . , dk. The k-th low-dimensional cavity
distribution q∗−k is first defined as the multivariate Gaussian distribution with covariance

Σ∗−k = AT
kΣ−kAk and mean µ∗−k = AT

kµ−k; let Q∗−k and r∗−k be its precision and linear
shift respectively. The k-th low-dimensional tilted distribution is then defined as

h∗k(ϑ) ∝ f∗k (ϑ)φdk(ϑ;µ∗−k,Σ
∗
−k).

Let Σ∗hk , µ∗hk , Q∗hk , and r∗hk be the covariance, mean, precision, and linear shift respectively

of h∗k, and let h̃∗k(ϑ) = f∗k (ϑ)φdk(ϑ;µ∗−k,Σ
∗
−k) be its kernel. The EP update can be shown

to be written as

Qk ← Ak

(
Q∗hk −Q∗−k

)
AT
k and rk ← Ak

(
r∗hk − r∗−k

)
. (1)

We see that the dimensionality of the moment-based integrals involving the tilted distribu-
tion has been reduced from d to dk. In particular, define

I∗hk,0 =

∫
h̃∗k(ϑ) dϑ, I∗hk,1 =

∫
ϑh̃∗k(ϑ) dϑ, and I∗hk,2 =

∫
ϑϑTh̃∗k(ϑ) dϑ (2)
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to be the dk-dimensional integrals corresponding to the 0th, 1st, and 2nd unnormalized raw
moments respectively of the low-dimensional tilted distribution. We have that

Σ∗hk =
I∗hk,2
I∗hk,0

−

(
I∗hk,1
I∗hk,0

)(
I∗hk,1
I∗hk,0

)T

and µ∗hk =
I∗hk,1
I∗hk,0

, (3)

from which we can recover Q∗hk and r∗hk . The updates given in (1) rely on not only Σ∗−k
being invertible, but also positive definite, so that Q∗−k exists, and that µ∗hk and Σ∗hk are
able to be evaluated. (The latter implies that Q∗hk exists, as Σ∗hk is a covariance matrix.) In

general, it is not true that Σ∗−k = AT
kΣ−kAk is positive definite, given that Σ−k is positive

definite. However, it is well-known that this is the case when Ak has full rank, which is
true for the models covered in the following sections.

Algorithm 1 summarizes the Gaussian EP algorithm when the dimension reduction
technique is used, assuming all sites can be reduced in dimension. The rank dk updates
in (1) are exploited to reduce memory usage, where we only store a dk × dk matrix and a
dk-vector at the k-th site rather than the full d× d matrix and d-vector; the Q∗k and r∗k can
be thought of as low-dimensional versions of the Qk and rk respectively. In the same spirit,
the Ak (used to recover the full parameters) are computed from D on demand.

A combination of power EP updates (Minka, 2004) and damped updates (e.g., Minka
2001 and Seeger et al. 2007) were also incorporated into Algorithm 1 to improve conver-
gence stability. Power EP with η ∈ (0, 1] (a power parameter) redefines the k-th cavity
distribution as q−k(θ) = qk(θ)1−η

∏
j 6=k qj(θ) and the corresponding tilted distribution as

hk(θ) ∝ fk(θ)ηq−k(θ). This has the effect of balancing out the variance of the two com-
ponents of the tilted distribution and can help with convergence in high-dimensional cases
(Seeger et al., 2007). The updates given in (1) now correspond to fractional sites, and need
to be scaled up by dividing by η. The derivations for the power EP downdate (calculation of
the cavity distribution) using the dimension reduction technique can be found in Appendix
B. Damped updates with α ∈ (0, 1] as the damping factor further modify the power EP
updates by multiplying the updated site parameters by α, adding on (1 − α) times the
previous site parameters, and assigning those instead. Damping reduces the likelihood of
improper site parameters (e.g., non-positive-definite covariance matrices for Gaussian EP),
and has been shown to decrease approximation error for parallel implementations of EP
and solve oscillation issues in the site approximations (Minka and Lafferty, 2012; Vehtari
et al., 2020).

For each update, the main operations to take into account are matrix multiplications
of the form AkMAT

k and AT
kMAk with complexity O(d2dk), inversions of (dk × dk)-

dimensional matrices with complexity O(d3k), and an O(d2k) number of dk-dimensional inte-
grals with combined complexity O(d2kG

dk), assuming dk-dimensional numerical quadrature
is used with G quadrature/grid points in each dimension. The overall time complexity is
therefore O(M(

∑
k d

2dk + d2kG
dk)), where M is the total number of passes through the

data. On the other hand, the data D with complexity O(Kd), the global parameters Q•
and r• with complexity O(d2), and the site parameters Q∗k and r∗k with combined com-
plexity O(

∑
k d

2
k) need to be stored in memory. The overall space complexity is there-

fore O
(
Kd+ d2 +

∑
k d

2
k

)
. When dk = 1 (a common case), the time complexity becomes

O(MK(d2 +G)) and the space complexity becomes O(Kd+ d2).
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Algorithm 1 Gaussian power EP with damping and dimension reduction, assuming all
sites can be reduced in dimension.

Require: D, K, η, α, [dk, f
∗
k ]Kk=1

1: Q∗k ← Idk and r∗k ← 0dk for k = 1, . . . ,K . Initialization
2: Q• ←

∑
k AkQ

∗
kA

T
k and r• ←

∑
k Akr

∗
k

3: while [Q∗k]
K
k=1 and [r∗k]

K
k=1 have not converged do

4: Σ• ← Q−1• and µ• ← Σ•r•
5: parallel for k = 1, . . . ,K do

Phase 1 – EP downdate

6: Σ∗•,k ← AT
kΣ•Ak and µ∗•,k ← AT

kµ•
7: Q∗•,k ← Σ∗•,k

−1 and r∗•,k ← Q∗•,kµ
∗
•,k

8: Q∗−k ← Q∗•,k − ηQ∗k and r∗−k ← r∗•,k − ηr∗k
9: Σ∗−k ← Q∗−k

−1 and µ∗−k ← Σ∗−kr
∗
−k

Phase 2 – Tilted distribution inference

10: h̃∗k(ϑ)← [f∗k (ϑ)]ηφdk(ϑ;µ∗−k,Σ
∗
−k)

11: Compute I∗hk,0, I∗hk,1, and I∗hk,2 using (2).

12: Compute Σ∗hk and µ∗hk using (3).

Phase 3 – EP update

13: Q∗hk ← Σ∗hk
−1 and r∗hk ← Q∗hkµ

∗
hk

14: Q̃∗k ← (1− α)Q∗k + α
η

(
Q∗hk −Q∗−k

)
and r̃∗k ← (1− α)r∗k + α

η

(
r∗hk − r∗−k

)
15: Q• ← Q• + Ak(Q̃

∗
k −Q∗k)A

T
k and r• ← r• + Ak(r̃

∗
k − r∗k)

16: Q∗k ← Q̃∗k and r∗k ← r̃∗k
17: end parallel for
18: end while
19: return Σ• and µ•
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3. Analytic integral reductions

For many models, 1 < dk < d such that dimension reduction can be performed but it is
insufficient to achieve fast EP updates. Either multivariate numerical quadrature or Monte
Carlo is required for the computation of I∗hk,0, I∗hk,1, and I∗hk,2, if the accuracy of the EP
approximation is to be preserved; this comes at the cost of increased run time, as indicated
by the time complexities in Section 2.2. In the following sections, we show that it is possible
to perform model-specific analytic reductions inside these integrals to allow for a fast EP
implementation. In particular, we consider linear regression models where dk = 2 and
analytic reductions result in only the evaluation of univariate integrals. This reduces the
overall time complexity from O(MK(d2+G2)) to O(MK(d2+G)), using the notation from
the previous section. For convenience, throughout this section define the functions

ãk(ϑ2) = Q∗−k,11, b̃k(ϑ2) = 2
[
Q∗−k,12(ϑ2 − µ∗−k,2)−Q∗−k,11µ∗−k,1

]
, and

c̃k(ϑ2) = Q∗−k,11(µ
∗
−k,1)

2 + 2Q∗−k,12µ
∗
−k,1(µ

∗
−k,2 − ϑ2) +Q∗−k,22(ϑ2 − µ∗−k,2)2.

3.1 Heteroscedastic linear regression

Assuming constant variance in linear regression models is occasionally questionable; see for
example Leedan and Meer (2000) and Rosopa et al. (2013). Consider the standard linear
regression model

yi|β1, σ
2 ind.∼ N(xT

i,1β1, σ
2) for i = 1, . . . , n,

where yi is the response, β1 is a p1-vector of coefficients, xi,1 is a p1-vector of predictors,
and σ2 is the residual variance. Replacing σ2 with

σ2i = exp(2 xT
i,2β2) for i = 1, . . . , n

is a natural approach to incorporating heteroscedasticity where xi,2 is a second p2-vector of
predictors and β2 is a second p2-vector of coefficients. The factor of two in the exponent
in the expression for σ2i leads to a model where the log standard deviation (SD) is a linear
function of predictors, and so assumes that each predictor has a multiplicative effect on
the residual SD. When xi,2 = 1, the fitted σ2i ≡ σ2 is a constant, the model becomes
homoscedastic and the Gaussian EP approximation for σ2 takes on a log-normal form. For
such a model, dk = 2, but it can be shown that analytic reduction is possible at each site.

We let θ = (βT
1 ,β

T
2 ) with d = p1 + p2, and assume a multivariate Gaussian prior on

θ such that θ ∼ Nd(µθ,Σθ). The joint likelihood can be factored as the product of n
likelihood sites and one Gaussian prior site:

p(θ,D) = φd(θ;µθ,Σθ)

n∏
i=1

exp

[
−xT

i,2β2 −
(yi − xT

i,1β1)
2

2 exp(2 xT
i,2β2)

]
.

Suppose that the likelihood sites are associated with the indices k = 1, . . . , n, with the
Gaussian prior site corresponding to k = n+ 1. For k = 1, . . . , n, we see that dk = 2, with

f∗k (ϑ) = exp

[
−ϑ2 −

(yk − ϑ1)2

2 exp(2ϑ2)

]
, ak,1 = (xT

k,1,0
T
p2), and ak,2 = (0T

p1 ,x
T
k,2).

8



Fast Expectation Propagation for Linear Regression

It is clear that ϑ1 can be integrated out analytically in I∗hk,0, I∗hk,1, and I∗hk,2. In particular,
we are only concerned with the evaluation of Gaussian integrals

Gk,r(ϑ2) =

∫
ϑr1 exp

[
−1

2

(
ak(ϑ2)ϑ

2
1 + bk(ϑ2)ϑ1 + ck(ϑ2)

)]
dϑ1,

with r = 0, 1, 2 and coefficients

ak(ϑ2) = ãk(ϑ2) +
1

exp(2ϑ2)
, bk(ϑ2) = b̃k(ϑ2)−

2yk
exp(2ϑ2)

, and

ck(ϑ2) = c̃k(ϑ2) + 2ϑ2 +
y2k

exp(2ϑ2)
,

from which we can recover the original integrals via

I∗hk,0 = Ck

∫
Gk,0(ϑ2) dϑ2, I∗hk,1 = Ck

∫ [
Gk,1(ϑ2)
ϑ2Gk,0(ϑ2)

]
dϑ2, and

I∗hk,2 = Ck

∫ [
Gk,2(ϑ2) ϑ2Gk,1(ϑ2)
ϑ2Gk,1(ϑ2) ϑ22Gk,0(ϑ2)

]
dϑ2,

where the constant Ck = |2πΣ∗−k|−1/2 cancels when evaluating Σ∗hk and µ∗hk . These final
integrals can be evaluated numerically using univariate quadrature. For numerical stability,
it is recommended that the log scale is used and that a minimum lower bound of integration
is set, as the coefficients blow up when ϑ2 � 0, leading to unstable calculations. Expressions
for Gk,r can be found in Appendix C.

3.2 Lasso-penalized linear regression

A lasso penalty can be interpreted as introducing independent Laplace priors on the re-
gression parameters, and generally leads to a fast EP implementation with dk = 1 if the
scale parameter and penalty coefficient are considered as hyperparameters; see Seeger et al.
(2007) for details. However, a more complete Bayesian treatment might be to view these
quantities as parameters themselves; this gives rise to a model with dk = 2, but fast EP
updates can still be derived using analytic reduction. Consider the simpler case where we
only treat the scale as an additional nuisance parameter.

Let θ = (βT, κ) with d = p+ 1, where β is a p-vector of regression coefficients and κ is
the logarithm of the scale parameter. The model may be specified as

yi|β, κ
ind.∼ N (xT

i β, exp(2κ)), βj |κ
ind.∼ Laplace(0, exp(κ)/λ), and κ

ind.∼ N (µκ, σ
2
κ),

where i = 1, . . . , n, j = 1, . . . , p, and λ is the standard lasso penalty parameter (assumed
fixed). The joint likelihood can be factored as the product of n likelihood sites, p Laplace
prior sites, and one Gaussian prior site:

p(θ,D) = φ(κ;µκ, σ
2
κ)

n∏
i=1

exp

[
−κ− (yi − xT

i β)2

2 exp(2κ)

] p∏
j=1

exp

[
−κ− λ|βj |

exp(κ)

]
.
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Suppose that the likelihood sites are associated with the indices k = 1, . . . , n, the Laplace
prior sites are associated with k = n+ 1, . . . , n+ p, and the Gaussian prior site corresponds
to k = n+ p+ 1. For k = 1, . . . , n, we have that dk = 2,

f∗k (ϑ) = exp

[
−ϑ2 −

(yk − ϑ1)2

2 exp(2ϑ2)

]
, ak,1 = (xT

k , 0), and ak,2 = (0T
p , 1).

Similar to the heteroscedastic linear regression model, ϑ1 is able to be integrated out an-
alytically in I∗hk,0, I∗hk,1, and I∗hk,2, and the same formulas from Section 3.1 apply. For
k = n+ 1, . . . , n+ p, we have dk = 2,

f∗k (ϑ) = exp

[
−ϑ2 −

λ|ϑ1|
exp(ϑ2)

]
, ak,1 = (eTk−n, 0), and ak,2 = (0T

p , 1).

Again, ϑ1 can be integrated out analytically in I∗hk,0, I∗hk,1, and I∗hk,2. In particular, we only
require solutions to the truncated Gaussian integrals

T −k,r(ϑ2) =

∫ 0

−∞
ϑr1 exp

[
−1

2

(
a−k (ϑ2)ϑ

2
1 + b−k (ϑ2)ϑ1 + c−k (ϑ2)

)]
dϑ1 and

T +
k,r(ϑ2) =

∫ ∞
0

ϑr1 exp
[
−1

2

(
a+k (ϑ2)ϑ

2
1 + b+k (ϑ2)ϑ1 + c+k (ϑ2)

)]
dϑ1,

with r = 0, 1, 2 and coefficients

a±k (ϑ2) = ãk(ϑ2), b±k (ϑ2) = b̃k(ϑ2)±
2λ

exp(ϑ2)
, and c±k (ϑ2) = c̃k(ϑ2) + 2ϑ2,

from which we can recover the original integrals via

I∗hk,0 = Ck

∫
T −k,0(ϑ2) + T +

k,0(ϑ2) dϑ2,

I∗hk,1 = Ck

∫ [ T −k,1(ϑ2) + T +
k,1(ϑ2)

ϑ2

{
T −k,0(ϑ2) + T +

k,0(ϑ2)
}] dϑ2, and

I∗hk,2 = Ck

∫  T −k,2(ϑ2) + T +
k,2(ϑ2) ϑ2

{
T −k,1(ϑ2) + T +

k,1(ϑ2)
}

ϑ2

{
T −k,1(ϑ2) + T +

k,1(ϑ2)
}

ϑ22

{
T −k,0(ϑ2) + T +

k,0(ϑ2)
} dϑ2,

where again Ck = |2πΣ∗−k|−1/2 cancels in the evaluation of Σ∗hk and µ∗hk . These final
integrals can be evaluated numerically using univariate quadrature, and the same stability
considerations from Section 3.1 are recommended. Expressions for T ±k,r can be found in
Appendix C.

It is straightforward to extend the work in this section to augmented versions of the
elastic net and potentially other penalties. If λ is to be treated as a parameter, care should
be taken in choosing its prior distribution so as to ensure the posterior distribution is proper.

10
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3.3 Quantile linear regression

EP for quantile linear regression shares many of the same implementation details as EP
for lasso-penalized linear regression. This is because quantile linear regression is equivalent
to modeling the data as coming from an asymmetric Laplace (AL) distribution. For this
section, we use the parameterization given by Yu and Moyeed (2001). Consider a Bayesian
τ -quantile regression model. For such a model, dk = 2, but again it can be shown that
analytic reduction is possible at each site.

Let θ = (βT, κ) with d = p+ 1, where β is a p-vector of quantile regression coefficients
and κ is the logarithm of the scale parameter. The model may be specified as

yi|β, κ
ind.∼ AL(ρ = τ, µ = xT

i β, σ = exp(κ)) and θ
ind.∼ Nd(µθ,Σθ),

where i = 1, . . . , n. The joint likelihood can be factored as the product of n likelihood sites
and one Gaussian prior site:

p(θ,D) = φd(θ;µθ,Σθ)

n∏
i=1

exp

[
−κ− ρτ (yi − xT

i β)

exp(κ)

]
,

where ρτ (x) = (|x|+ (2τ − 1)x) /2 is the quantile loss function. The quantity τ ∈ (0, 1) is a
fixed constant determining the quantile to be estimated. Suppose that the likelihood sites
are associated with the indices k = 1, . . . , n, with the Gaussian prior site corresponding to
k = n+ 1. For k = 1, . . . , n, we see that dk = 2,

f∗k (ϑ) = exp

[
−ϑ2 −

ρτ (yk − ϑ1)
exp(ϑ2)

]
, ak,1 = (xT

k , 0), and ak,2 = (0T
p , 1).

Similar to lasso-penalized linear regression, ϑ1 is able to be integrated out analytically when
calculating I∗hk,0, I∗hk,1, and I∗hk,2. The same formulas in Section 3.2 apply, using the modified
truncated Gaussian integrals

S−k,r(ϑ2) =

∫ yk

−∞
ϑr1 exp

[
−1

2

(
a−k (ϑ2)ϑ

2
1 + b−k (ϑ2)ϑ1 + c−k (ϑ2)

)]
dϑ1 and

S+k,r(ϑ2) =

∫ ∞
yk

ϑr1 exp
[
−1

2

(
a+k (ϑ2)ϑ

2
1 + b+k (ϑ2)ϑ1 + c+k (ϑ2)

)]
dϑ1,

with r = 0, 1, 2 and new coefficients

a±k (ϑ2) = ãk(ϑ2), b±k (ϑ2) = b̃k(ϑ2) +
1± 1− 2τ

exp(ϑ2)
, and

c±k (ϑ2) = c̃k(ϑ2) + 2ϑ2 +
(2τ − 1∓ 1)yk

exp(ϑ2)
.

Expressions for S±k,r can be found in Appendix C.

4. Experiments with smaller datasets

The speed and accuracy of the fast EP approximations proposed in Section 3 were evaluated
and compared to that of other methods in the context of smaller datasets. For each combi-
nation of model and method, evaluation was performed across three simulation settings and

11
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three benchmark datasets. For each simulation setting, methods were evaluated against five
simulated datasets and the average result was taken. Thirty repetitions were conducted for
each combination of model, method, and either simulation setting or benchmark dataset.
All experiments were executed across 10 computational cores running at 2.5 GHz each, with
a combined 32 gigabytes of random access memory. The code for these experiments can be
found at https://github.com/jackson-zhou-sydney/EP-multicomp.

The gold standard which all other methods were evaluated against was Markov Chain
Monte Carlo (MCMC) using the No-U-Turn Sampler from the R package rstan (Stan
Development Team, 2023). For each of 10 chains, we set 1000 warm-up iterations and
10,000 sampling iterations, for a total of 10,000 warm-up and 100,000 sampling iterations.
Convergence was verified by checking that R̂ < 1.1, as per the recommendation in Gelman
et al. (1995); this was always the case.

Four common methods were implemented across all three models in the experiments.
These were a long run of MCMC, a short run of MCMC, the proposed EP implementa-
tion, and an alternate EP implementation where bivariate numerical quadrature was used
to evaluate the moments of the low-dimensional tilted distributions. These are coded as
MCMC, MCMC-S, EP-1D, and EP-2D in the text, and as ML, MS, E1, and E2 in the
figures/tables respectively. The long run of MCMC used the same settings as the gold stan-
dard (but a different seed), and was used to provide a rough upper bound on performance.
Note that it is sometimes possible for other methods to outperform the gold standard, es-
pecially for sampling-based evaluation metrics which do not use the full sample. For the
short run of MCMC, the number of sampling iterations per chain was minimized within the
set {100, 200, 400, 1000, 2000, 4000, 6000, 8000, 10000}, such that R̂ < 1.1. For each chain,
the number of warm-up iterations was always one-tenth the number of sampling iterations.
Both versions of EP were implemented in C++ via the R package Rcpp (Eddelbuettel and
François, 2011) to facilitate fairer comparisons with other methods that also were imple-
mented in C++, and parallel computing was handled using OpenMP (Chandra et al., 2001).
We set η = 0.5 based on Seeger et al. (2007), α = 0.5 as a balanced damping value that is
unlikely to result in either improper site parameters (α too high) or slow convergence (α too
low), and choose 400 as the number of quadrature points in each dimension. Refinements
to the site approximations were grouped into different passes through the data, so as to
ensure that all site approximations are updated an equal number of times. In each pass,
all site approximations are refined exactly once, with the order of these refinements ran-
domized. For each refinement, the norms of the differences in natural parameters between
the old and updated site approximations were calculated, and maximums were taken across
sites for each combination of pass and natural parameter. Convergence was determined to
be satisfied after a given pass (with the algorithm terminated) if each of these “maximum
absolute deltas” was less than 0.05 times the corresponding values of the first pass. The
minimum and maximum number of passes was set to 6 and 200 respectively. It was always
the case that EP converged.

Alternate ABI methods were also implemented for each model. For heteroscedastic linear
regression, the derivatives of the joint likelihood are able to be evaluated and the Laplace
(coded as Laplace in the text and as LA in the figures/tables) and Pathfinder (Zhang et al.,
2022) approximations were considered; both have multivariate Gaussian forms. The Laplace
approximation was implemented using the L-BFGS algorithm with a maximum iteration
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count of 20,000. Convergence was determined to be satisfied if the difference between the
current and new function values was less than 10−6 times the current function value, or if the
norm of the current gradient was less than 10−5 times the maximum of one and the norm of
the current solution. It was always the case that the L-BFGS optimization converged. The
Pathfinder approximation was run with three different values for the number of samples
returned. These were 100 (the default number of samples returned), 1000, and 10,000, and
were coded as Pathfinder-A, Pathfinder-B, and Pathfinder-C in the text, and as PA, PB, and
PC in the figures/tables respectively. The remaining settings for Pathfinder, including those
related to optimization, were left as their suggested default values in the paper, where it is
noted that Pathfinder results are not sensitive to its settings. Note that the optimizations
need not converge for Pathfinder to give sensible results, and so convergence was not checked.
The derivatives of the joint likelihood are not always defined for lasso-penalized and quantile
linear regression, and so a mean-field variational Bayes (coded as MFVB in the text and
as MF in the figures/tables) approximation was implemented instead; the derivations can
be found in Appendix D and Appendix E respectively. Convergence was determined to
be satisfied after a given iteration of the while loop (with the algorithm terminated) if
the norms of the differences between the current and new values of all parameters were less
than 0.05 times the corresponding values of the first iteration. The minimum and maximum
number of iterations was set to 6 and 200 respectively, to match that of EP. It was always the
case that MFVB converged. The Laplace and MFVB approximations were implemented in
C++ via the R package Rcpp (Eddelbuettel and François, 2011) to facilitate fair comparisons,
and the Pathfinder R code was obtained from https://github.com/LuZhangstat/Pathfinder.
We expect Pathfinder run times to be comparable to a full C++ implementation since the
computationally intensive optimization stage is already performed in C++ via the R package
optimx (Nash and Varadhan, 2011).

To evaluate multivariate performance, we considered three different metrics. The first
was the maximum mean discrepancy (MMD) of Gretton et al. (2012). In particular, we
used M∗ = − log(MMD2

u + 10−5), where MMD2
u is the unbiased estimate of the squared

MMD, given by

MMD2
u =

1

m(m− 1)

m∑
i 6=j

[
k(x(i),x(j)) + k(y(i),y(j))− k(x(i),y(j))− k(x(j),y(i))

]
.

The quantity m is the total number of samples from each of the two distributions to be
evaluated; these samples are denoted as x(1), . . . ,x(m) and y(1), . . . ,y(m), and are required
to be independent from each other. The function k is the kernel function, and was chosen
to be the radial basis function. We evaluated M∗ with m = 500 samples from each of the
gold standard and method to be evaluated. If the number of samples from the latter was
less than 500, then that was used instead. When MMD2

u was calculated to be negative, it
was set to zero. Higher values of M∗ indicate better multivariate performance. The second
multivariate metric was the computed log pointwise predictive density (lppd) described in
Gelman et al. (1995); it is given by

computed lppd =

n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θ(s))

)
,
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where n is the total number of data points to be evaluated (these are denoted as y1, . . . , yn),
S is the total number of samples from the distribution to be evaluated (these are denoted
as θ(1), . . . ,θ(S)). For convenience, we will refer to the computed lppd as just the lppd.
The lppd metric was evaluated out-of-sample using a train-test split of 87.5-12.5, where
S = 500 samples from the method to be evaluated were taken (across many repetitions
this is comparable to cross-validation). If the number of samples was less than 500, then
that was used instead. Higher values of the lppd indicate better multivariate performance.
The third multivariate metric was the Frobenius norm of the difference in the estimated
covariance matrices of the gold standard and method to be evaluated. In particular, we
used F ∗ = − log(‖ΣGold −ΣMethod‖F + 10−5), where higher values of F ∗ indicate better
multivariate performance.

To evaluate marginal performance, we used the L1 accuracy of Faes et al. (2011). The
L1 accuracy for the j-th marginal component is given by

L1 accuracy = 100

(
1− 1

2

∫ ∞
−∞
|pGold(θj)− pMethod(θj)| dθj

)
%. (4)

In (4), kernel density estimates for the MCMC approaches were made using a solve-the-
equation version of the Sheather-Jones bandwidth selection method (Sheather and Jones,
1991) coupled with a Gaussian kernel (as implemented by the R function density) for its
general reliability and favorable asymptotics (Jones et al., 1996). Performance may slightly
deteriorate for the short MCMC runs (due to smaller sample sizes) as well as for the lasso-
penalized and quantile linear regression models (as the posterior distribution deviates from
the Gaussian reference density). In these cases, L1 accuracies should be supplemented with
the previous multivariate performance metrics. After the density estimation, the enclosing
integral was computed numerically, with the domain of integration centered at the j-th
marginal mean of the gold standard, and having a radius of five times the j-th marginal
SD of the gold standard. The domain of integration was uniformly split into 1024 intervals
for use with the composite trapezoidal rule. The L1 accuracy ranges from 0 to 100, with
higher values indicating better marginal performance. These accuracies were averaged over
appropriate blocks of the parameter vector θ (for example, β1 and β2 for heteroscedastic
regression).

Across the simulations, the numeric entries of the design matrices were sampled from
independent standard Gaussian distributions. For all datasets, the response vector and
numeric columns of the design matrix were centered at zero and scaled to have unit variance
(potentially after sampling) to standardize the effect of each predictor.

4.1 Heteroscedastic linear regression

Simulations were based on the settings

(n, p1, p2) ∈ {(200, 40, 10), (200, 20, 20), (200, 10, 40)}.

In each case, we set for l ∈ {1, 2}

βl = (2/pl,−2/pl, . . . ,−2/pl) ∈ Rpl .
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Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3

β1 L
1 accuracy β2 L

1 accuracy
ML 99.4 ± 0.0 99.4 ± 0.0 99.4 ± 0.0 99.4 ± 0.0 99.4 ± 0.0 99.4 ± 0.0
MS 99.3 ± 0.0 99.3 ± 0.0 99.3 ± 0.0 99.3 ± 0.0 99.3 ± 0.0 99.3 ± 0.0
E1 99.1 ± 0.0 99.2 ± 0.0 98.8 ± 0.0 96.9 ± 0.0 98.8 ± 0.0 99.0 ± 0.0
E2 99.1 ± 0.0 99.2 ± 0.0 98.8 ± 0.0 96.9 ± 0.0 98.8 ± 0.0 99.0 ± 0.0
LA 90.3 ± 0.0 95.1 ± 0.0 97.9 ± 0.0 72.4 ± 0.0 90.1 ± 0.0 96.0 ± 0.0
PA 71.7 ± 3.1 84.5 ± 1.3 77.2 ± 3.4 69.2 ± 2.6 84.0 ± 1.8 77.7 ± 3.1
PB 75.9 ± 3.3 89.6 ± 0.7 86.6 ± 1.4 73.5 ± 2.6 89.4 ± 0.9 86.6 ± 1.2
PC 81.8 ± 1.7 93.2 ± 0.7 91.0 ± 1.1 79.6 ± 1.5 92.8 ± 0.4 91.2 ± 0.7

M∗ lppd
ML 9.12 ± 0.66 8.47 ± 0.60 9.25 ± 0.67 -31.01 ± 1.55 -32.71 ± 1.47 -33.25 ± 1.26
MS 9.30 ± 0.71 8.41 ± 0.58 9.32 ± 0.69 -30.99 ± 1.55 -32.72 ± 1.46 -33.24 ± 1.24
E1 7.59 ± 0.50 8.68 ± 0.76 9.19 ± 0.59 -31.30 ± 1.43 -32.36 ± 1.78 -33.03 ± 1.58
E2 7.59 ± 0.50 8.68 ± 0.76 9.19 ± 0.59 -31.30 ± 1.43 -32.36 ± 1.78 -33.03 ± 1.58
LA 2.49 ± 0.02 3.54 ± 0.03 4.06 ± 0.03 -30.57 ± 1.85 -32.19 ± 2.01 -33.09 ± 1.76
PA 1.92 ± 0.19 2.92 ± 0.19 2.25 ± 0.27 -31.57 ± 2.02 -32.97 ± 1.81 -34.09 ± 1.68
PB 2.11 ± 0.24 3.62 ± 0.14 3.09 ± 0.22 -31.03 ± 1.89 -32.77 ± 1.68 -33.68 ± 1.56
PC 2.53 ± 0.22 4.48 ± 0.20 3.94 ± 0.21 -30.86 ± 1.57 -32.73 ± 1.62 -33.60 ± 1.52

F ∗ Run time (seconds)
ML 6.94 ± 0.02 7.19 ± 0.01 6.95 ± 0.01 64.98 ± 4.05 59.68 ± 3.82 64.57 ± 4.15
MS 6.88 ± 0.01 7.13 ± 0.02 6.88 ± 0.01 49.63 ± 6.51 45.36 ± 6.04 49.17 ± 6.39
E1 6.47 ± 0.01 7.00 ± 0.01 6.80 ± 0.02 0.02 ± 0.01 0.02 ± 0.00 0.02 ± 0.00
E2 6.47 ± 0.01 7.00 ± 0.01 6.80 ± 0.02 5.95 ± 0.03 5.61 ± 0.03 5.72 ± 0.03
LA 4.96 ± 0.00 5.94 ± 0.00 6.29 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
PA 3.29 ± 0.08 3.55 ± 0.07 3.16 ± 0.11 0.84 ± 0.10 0.79 ± 0.09 0.88 ± 0.12
PB 3.31 ± 0.07 3.89 ± 0.08 3.42 ± 0.08 0.92 ± 0.11 0.86 ± 0.10 0.98 ± 0.13
PC 3.40 ± 0.06 4.21 ± 0.09 3.71 ± 0.09 2.08 ± 0.22 1.73 ± 0.21 1.97 ± 0.24

Table 1: Results (mean ± SD) across heteroscedastic linear regression simulations. Each
cell is based on thirty repetitions. Settings are organized by order of appearance
in the main text. The best non-MCMC performances are highlighted in bold.
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Food Salary Sniffer Food Salary Sniffer

β1 L
1 accuracy β2 L

1 accuracy
ML 99.3 ± 0.1 99.4 ± 0.1 99.3 ± 0.1 99.4 ± 0.1 99.3 ± 0.1 99.3 ± 0.0
MS 99.3 ± 0.1 99.3 ± 0.1 97.1 ± 0.6 99.3 ± 0.1 99.3 ± 0.1 97.7 ± 0.3
E1 98.7 ± 0.1 99.5 ± 0.0 99.0 ± 0.1 98.4 ± 0.1 99.0 ± 0.1 99.0 ± 0.1
E2 98.7 ± 0.1 99.5 ± 0.0 99.0 ± 0.1 98.4 ± 0.1 99.0 ± 0.1 99.0 ± 0.1
LA 98.6 ± 0.1 99.3 ± 0.1 98.1 ± 0.1 93.8 ± 0.1 96.3 ± 0.1 94.3 ± 0.1
PA 95.4 ± 2.0 94.4 ± 1.3 89.1 ± 6.1 95.8 ± 1.6 93.7 ± 2.6 88.7 ± 5.2
PB 98.2 ± 0.5 98.2 ± 0.4 94.4 ± 2.0 98.5 ± 0.5 97.8 ± 0.8 93.7 ± 1.9
PC 99.1 ± 0.1 99.0 ± 0.2 97.1 ± 1.4 99.1 ± 0.3 98.8 ± 0.3 96.8 ± 0.9

M∗ lppd
ML 8.77 ± 2.40 8.52 ± 2.15 8.24 ± 2.61 -5.87 ± 0.73 -84.43 ± 6.93 -7.41 ± 1.57
MS 8.14 ± 2.10 8.58 ± 2.17 6.51 ± 1.39 -5.86 ± 0.73 -84.44 ± 6.92 -7.42 ± 1.56
E1 7.77 ± 2.02 9.72 ± 2.14 8.28 ± 2.16 -5.88 ± 0.72 -84.77 ± 7.85 -7.33 ± 1.01
E2 7.77 ± 2.02 9.71 ± 2.14 8.28 ± 2.16 -5.88 ± 0.72 -84.77 ± 7.85 -7.33 ± 1.01
LA 6.65 ± 1.49 8.04 ± 1.97 5.86 ± 0.52 -5.84 ± 0.74 -84.73 ± 7.96 -7.04 ± 1.06
PA 8.32 ± 3.10 6.12 ± 2.36 3.68 ± 1.19 -5.88 ± 0.73 -87.54 ± 11.03 -7.03 ± 1.22
PB 9.29 ± 2.45 8.95 ± 2.38 5.20 ± 1.03 -5.85 ± 0.72 -87.56 ± 11.12 -7.05 ± 1.20
PC 9.15 ± 1.99 9.24 ± 2.18 6.87 ± 2.06 -5.87 ± 0.72 -87.59 ± 11.23 -7.05 ± 1.22

F ∗ Run time (seconds)
ML 7.82 ± 0.28 9.31 ± 0.20 6.25 ± 0.51 41.47 ± 1.01 43.73 ± 0.61 44.32 ± 0.85
MS 7.85 ± 0.29 9.27 ± 0.18 4.58 ± 0.57 32.63 ± 0.74 34.43 ± 0.73 2.74 ± 0.12
E1 6.65 ± 0.11 9.39 ± 0.16 5.48 ± 0.31 0.02 ± 0.04 0.05 ± 0.03 0.02 ± 0.05
E2 6.64 ± 0.11 9.48 ± 0.18 5.46 ± 0.31 1.11 ± 0.07 18.45 ± 0.98 5.52 ± 0.08
LA 6.40 ± 0.08 9.23 ± 0.19 4.62 ± 0.14 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PA 5.18 ± 0.33 6.30 ± 0.18 2.90 ± 0.34 0.69 ± 0.03 3.46 ± 1.85 0.64 ± 0.02
PB 6.26 ± 0.27 7.41 ± 0.19 3.62 ± 0.23 0.66 ± 0.03 3.66 ± 1.90 0.67 ± 0.02
PC 7.29 ± 0.31 8.07 ± 0.21 3.94 ± 0.49 1.15 ± 0.03 4.49 ± 1.96 1.03 ± 0.03

Table 2: Results (mean ± SD) across heteroscedastic linear regression benchmarks. Each
cell is based on thirty repetitions. The best non-MCMC performances are high-
lighted in bold.

16



Fast Expectation Propagation for Linear Regression

The benchmark datasets used were Food (n = 40, p1 = 2, p2 = 2), Salary (n = 725,
p1 = 6, p2 = 2), and Sniffer (n = 125, p1 = 5, p2 = 5). Food (Hill et al., 2018)
records the food expenditure (the response) and income of various households. Salary

(DeMaris, 2007) contains salary data (the response) on a large number of university faculty
members, along with predictors such as prior experience and years worked. Both Food

and Salary are used as illustrative examples in the documentation for Stata’s hetregress
function. Sniffer (Weisberg, 2013) records the amount of hydrocarbon emitted from a
tank when gasoline is poured in (the response), along with the temperature and pressure
of the tank and gasoline as predictors. For all simulations and benchmarks, we set µθ = 0
and Σθ = diag((1p1 , 0.011p2)), where diag creates a diagonal matrix with its argument as
the diagonal and 1n is the n-vector containing only ones.

The results for the simulated and benchmark datasets are shown in Table 1 and Table
2 respectively. Supplementary L1 accuracy plots can be found in Appendix F. Across the
simulated datasets, the accuracy of EP-1D was generally higher compared to that of the
Laplace and various Pathfinder approximations, equal to that of EP-2D, and slightly lower
compared to that of the short MCMC runs. Across the benchmark datasets, the differences
in accuracy were mostly the same, with the exception that the performance of the Pathfinder
approximation has slightly improved, now occasionally beating EP in some metrics. Overall,
EP-1D tended to be slower than the Laplace approximation, but was much faster than all
other methods, including EP-2D.

One point of interest that is not clear from the tables is that the Laplace approximation
tended to consistently underestimate the intercept component of β2 compared to the other
methods. We believe that this is due multivariate skewness in the posterior distribution
towards higher values of this intercept. This underestimation may explain in part the poor
performance of the Laplace approximation for this model.

4.2 Lasso-penalized linear regression

Simulations were based on the settings

(n, p) ∈ {(200, 40), (40, 40), (10, 40)} .

In each case, we set

β = (0, . . . , 0, 2/p,−2/p, . . . ,−2/p) ∈ Rp, κ = −1, and λ = 0.5,

where the first p/2 entries of β are zero. The benchmark datasets used were Diabetes

(n = 442, p = 11), Prostate (n = 97, p = 9), and Eye (n = 120, p = 201). Diabetes (Efron
et al., 2004) stores data on diabetes progression (the response) for a large number of patients,
along with clinical predictors such as age, body mass index, and average blood pressure.
Prostate (Hodge et al., 1989) records the logged amount of a prostate-specific antigen (the
response) on a moderate number of patients, and also includes clinical predictors such as age
and logged prostate weight. Eye (Scheetz et al., 2006) contains TRIM32 gene expressions
(the response) for a moderate number of rats, with the predictors being the results of 200
gene probes. For all simulations and benchmarks, we set µκ = 0 and σ2κ = 0.01.

The results for the simulated and benchmark datasets are shown in Table 3 and Table
4 respectively. Supplementary L1 accuracy plots can be found in Appendix F. Across all
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Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3

β L1 accuracy κ L1 accuracy
ML 99.3 ± 0.0 99.3 ± 0.0 98.9 ± 0.0 99.4 ± 0.1 99.3 ± 0.1 99.3 ± 0.1
MS 96.9 ± 0.1 96.6 ± 0.2 95.5 ± 0.1 96.8 ± 0.4 96.8 ± 0.4 96.6 ± 0.6
E1 99.4 ± 0.0 97.5 ± 0.0 91.3 ± 0.0 94.9 ± 0.1 90.0 ± 0.1 87.4 ± 0.1
E2 99.4 ± 0.0 97.5 ± 0.0 91.3 ± 0.0 94.9 ± 0.1 90.0 ± 0.1 87.4 ± 0.1
MF 99.2 ± 0.0 95.1 ± 0.0 89.9 ± 0.0 95.7 ± 0.1 86.4 ± 0.1 85.6 ± 0.1

M∗ lppd
ML 8.25 ± 0.83 6.97 ± 0.76 7.43 ± 0.43 -34.22 ± 1.75 -10.61 ± 0.27 -3.11 ± 0.07
MS 8.42 ± 0.67 7.26 ± 0.86 7.38 ± 0.36 -34.21 ± 1.75 -10.63 ± 0.29 -3.11 ± 0.06
E1 8.77 ± 0.71 7.43 ± 0.91 5.07 ± 0.16 -34.21 ± 1.55 -10.72 ± 0.23 -3.08 ± 0.05
E2 8.77 ± 0.71 7.43 ± 0.91 5.07 ± 0.16 -34.21 ± 1.55 -10.72 ± 0.23 -3.08 ± 0.05
MF 8.93 ± 0.72 5.35 ± 0.16 3.53 ± 0.07 -34.24 ± 1.58 -10.20 ± 0.27 -2.93 ± 0.05

F ∗ Run time (seconds)
ML 6.96 ± 0.02 3.67 ± 0.07 0.01 ± 0.02 59.75 ± 2.79 58.91 ± 2.72 58.43 ± 2.67
MS 4.98 ± 0.02 1.71 ± 0.09 -1.94 ± 0.02 3.10 ± 0.69 3.02 ± 0.69 3.02 ± 0.72
E1 7.12 ± 0.01 3.38 ± 0.06 -1.91 ± 0.01 0.15 ± 0.06 0.06 ± 0.02 0.03 ± 0.01
E2 7.12 ± 0.01 3.38 ± 0.06 -1.91 ± 0.01 6.59 ± 0.46 2.70 ± 0.16 1.33 ± 0.09
MF 6.91 ± 0.02 0.90 ± 0.01 -2.49 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01

Table 3: Results (mean ± SD) across lasso-penalized linear regression simulations. Each
cell is based on thirty repetitions. Settings are organized by order of appearance
in the main text. The best non-MCMC performances are highlighted in bold.

Diabetes Prostate Eye Diabetes Prostate Eye

β L1 accuracy κ L1 accuracy
ML 99.3 ± 0.0 99.3 ± 0.0 99.1 ± 0.0 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.2
MS 96.9 ± 0.5 96.7 ± 0.4 97.1 ± 0.1 97.6 ± 0.8 97.0 ± 0.9 96.9 ± 1.2
E1 99.0 ± 0.1 99.3 ± 0.0 93.0 ± 0.0 98.5 ± 0.2 97.3 ± 0.2 61.8 ± 0.3
E2 99.0 ± 0.1 99.3 ± 0.0 93.0 ± 0.0 98.5 ± 0.2 97.3 ± 0.2 61.8 ± 0.3
MF 98.4 ± 0.1 98.8 ± 0.1 92.6 ± 0.0 98.9 ± 0.2 97.6 ± 0.2 11.5 ± 0.1

M∗ lppd
ML 8.41 ± 2.51 8.80 ± 2.20 8.27 ± 1.21 -58.78 ± 4.34 -12.48 ± 1.71 -30.38 ± 1.13
MS 6.79 ± 2.42 7.85 ± 1.90 7.88 ± 0.87 -58.77 ± 4.32 -12.47 ± 1.74 -30.17 ± 0.92
E1 8.88 ± 2.56 9.17 ± 2.14 6.54 ± 0.61 -58.78 ± 4.33 -12.47 ± 1.46 -31.70 ± 0.57
E2 8.90 ± 2.57 9.17 ± 2.15 6.54 ± 0.61 -58.78 ± 4.33 -12.47 ± 1.46 -31.70 ± 0.57
MF 8.42 ± 2.63 9.10 ± 2.15 5.99 ± 0.41 -58.78 ± 4.34 -12.46 ± 1.47 -28.51 ± 0.63

F ∗ Run time (seconds)
ML 7.09 ± 0.57 7.39 ± 0.16 1.69 ± 0.01 49.09 ± 2.66 46.31 ± 2.31 369.17 ± 8.55
MS 4.78 ± 0.69 5.46 ± 0.17 0.09 ± 0.03 3.40 ± 0.73 2.39 ± 0.33 10.12 ± 0.35
E1 7.19 ± 0.63 7.51 ± 0.09 0.98 ± 0.01 0.10 ± 0.03 0.05 ± 0.01 0.67 ± 0.05
E2 7.16 ± 0.66 7.50 ± 0.09 0.98 ± 0.01 12.59 ± 0.85 3.13 ± 0.16 27.97 ± 1.51
MF 4.31 ± 0.07 6.31 ± 0.06 0.91 ± 0.01 0.01 ± 0.03 0.00 ± 0.00 0.07 ± 0.00

Table 4: Results (mean ± SD) across lasso-penalized linear regression benchmarks. Each
cell is based on thirty repetitions. The best non-MCMC performances are high-
lighted in bold.
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Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3

β L1 accuracy κ L1 accuracy
ML 99.3 ± 0.0 99.3 ± 0.0 99.3 ± 0.0 99.3 ± 0.1 99.4 ± 0.0 99.3 ± 0.1
MS 96.6 ± 0.1 96.6 ± 0.1 96.6 ± 0.1 96.5 ± 0.5 96.8 ± 0.5 96.8 ± 0.6
E1 99.0 ± 0.0 99.0 ± 0.0 99.0 ± 0.0 96.7 ± 0.1 96.6 ± 0.1 96.8 ± 0.1
E2 99.0 ± 0.0 99.0 ± 0.0 99.0 ± 0.0 96.7 ± 0.1 96.6 ± 0.1 96.8 ± 0.1
MF 84.1 ± 0.0 82.4 ± 0.0 83.1 ± 0.0 81.6 ± 0.1 81.5 ± 0.1 81.4 ± 0.1

M∗ lppd
ML 7.35 ± 0.41 7.06 ± 0.39 7.14 ± 0.47 -29.37 ± 0.60 -39.84 ± 1.01 -36.07 ± 0.58
MS 6.66 ± 0.25 6.73 ± 0.29 6.73 ± 0.25 -29.36 ± 0.60 -39.83 ± 0.98 -36.06 ± 0.59
E1 7.98 ± 0.51 7.80 ± 0.51 7.96 ± 0.67 -29.36 ± 0.52 -39.67 ± 0.80 -35.98 ± 0.79
E2 7.97 ± 0.51 7.80 ± 0.51 7.96 ± 0.67 -29.36 ± 0.52 -39.67 ± 0.80 -35.98 ± 0.79
MF 3.20 ± 0.03 3.02 ± 0.04 3.09 ± 0.04 -29.00 ± 0.63 -39.56 ± 0.90 -35.82 ± 0.89

F ∗ Run time (seconds)
ML 6.90 ± 0.02 6.16 ± 0.02 6.43 ± 0.02 61.76 ± 2.80 61.19 ± 2.93 60.91 ± 2.86
MS 4.91 ± 0.02 4.18 ± 0.02 4.44 ± 0.02 2.95 ± 0.21 2.92 ± 0.22 2.92 ± 0.20
E1 6.58 ± 0.02 5.95 ± 0.02 6.16 ± 0.02 0.26 ± 0.09 0.16 ± 0.05 0.20 ± 0.05
E2 6.58 ± 0.02 5.95 ± 0.02 6.16 ± 0.02 11.46 ± 1.58 7.20 ± 0.90 9.26 ± 1.20
MF 4.26 ± 0.00 3.41 ± 0.00 3.72 ± 0.00 0.02 ± 0.01 0.02 ± 0.00 0.02 ± 0.00

Table 5: Results (mean ± SD) across quantile linear regression simulations. Each cell is
based on thirty repetitions. Settings are organized by order of appearance in the
main text. The best non-MCMC performances are highlighted in bold.

datasets, the accuracy of EP-1D was somewhat higher compared to that of the MFVB
approximation, equal to that of EP-2D, and similar to that of the short MCMC runs. In
general, EP performed similarly compared to MFVB when n > p, but performed much
better than MFVB when n < p. For the β L1 accuracy and F ∗ metrics, EP always had
an advantage over MFVB. The MFVB approximation was seen to have better predictive
performance (as measured by the lppd value) compared to other methods; this can po-
tentially be explained by underestimation of the posterior variance (a known issue with
mean-field methods), concentrating samples in regions of high density. Overall, EP-1D
tended to be slower than the MFVB approximation, but was much faster than all other
methods, including EP-2D.

4.3 Quantile linear regression

All three simulations were based on n = 200 and p = 40, with

β = (2/p,−2/p, . . . ,−2/p) ∈ Rp and τ = 0.5.

The responses were sampled as

yk ∼ N (xT
kβ, 0.2

2), yk ∼ Poisson(exp(xT
kβ)), and yk ∼ Binomial(10,Φ(xT

kβ))

for the first, second, and third sets of simulations respectively. The benchmark datasets used
were IgG (n = 298, p = 2), Engel (n = 235, p = 2), and Stack (n = 21, p = 4). IgG (Isaacs
et al., 1983) measures the serum concentration of immunoglobulin G (the response) for a
large number of children, along with their age as a predictor. Engel (Koenker and Bassett,
1982) is very similar to Food, and contains observations on food expenditure (the response)
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IgG Engel Stack IgG Engel Stack

β L1 accuracy κ L1 accuracy
ML 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.2
MS 96.7 ± 0.8 96.2 ± 0.9 96.3 ± 0.5 96.8 ± 1.0 96.1 ± 1.3 96.8 ± 1.0
E1 99.1 ± 0.1 97.8 ± 0.1 97.6 ± 0.1 99.2 ± 0.1 99.2 ± 0.2 99.1 ± 0.2
E2 99.0 ± 0.1 97.8 ± 0.1 97.6 ± 0.1 99.2 ± 0.1 99.2 ± 0.2 99.1 ± 0.2
MF 65.8 ± 0.1 71.9 ± 0.1 90.5 ± 0.1 87.1 ± 0.2 89.4 ± 0.2 97.4 ± 0.2

M∗ lppd
ML 9.08 ± 2.40 8.45 ± 2.44 8.23 ± 2.45 -51.08 ± 2.69 -19.42 ± 2.59 -3.00 ± 0.15
MS 9.03 ± 2.32 7.86 ± 2.63 6.99 ± 1.62 -51.10 ± 2.69 -19.42 ± 2.56 -3.00 ± 0.16
E1 9.08 ± 2.34 9.75 ± 2.34 8.39 ± 2.22 -51.08 ± 2.66 -19.42 ± 2.35 -3.03 ± 0.12
E2 9.07 ± 2.32 9.76 ± 2.34 8.39 ± 2.22 -51.08 ± 2.66 -19.42 ± 2.35 -3.03 ± 0.12
MF 2.38 ± 0.10 3.17 ± 0.17 4.69 ± 0.37 -51.12 ± 2.66 -19.42 ± 2.38 -2.97 ± 0.12

F ∗ Run time (seconds)
ML 9.32 ± 0.32 9.56 ± 0.36 5.69 ± 0.34 43.15 ± 2.92 42.01 ± 2.51 42.90 ± 3.01
MS 7.53 ± 0.45 7.74 ± 0.55 3.80 ± 0.28 2.79 ± 0.55 2.33 ± 0.11 2.34 ± 0.13
E1 9.46 ± 0.22 9.22 ± 0.22 4.64 ± 0.14 0.32 ± 0.11 0.32 ± 0.09 0.03 ± 0.01
E2 9.39 ± 0.22 9.17 ± 0.21 4.64 ± 0.14 13.05 ± 2.18 13.38 ± 1.32 0.79 ± 0.09
MF 5.30 ± 0.01 5.97 ± 0.01 2.41 ± 0.02 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table 6: Results (mean ± SD) across quantile linear regression benchmarks. Each cell is
based on thirty repetitions. The best non-MCMC performances are highlighted in
bold.

and income for various Belgian working class households. Stack (Brownlee, 1965) records
stack loss data (the response) at assorted time points during the operation of a factory,
along with the predictors of airflow, water temperature, and acid concentration. For all
simulations and benchmarks, we set µθ = 0 and Σθ = diag((1p, 0.01)).

The results for the simulated and benchmark datasets are shown in Table 5 and Table
6 respectively. Supplementary L1 accuracy plots can be found in Appendix F. Across all
datasets, the accuracy of EP-1D was generally higher compared to the MFVB approxima-
tion and short MCMC runs, and equal to that of EP-2D. Similar to lasso-penalized case,
the MFVB approximation was occasionally seen to have better predictive performance com-
pared to the other methods, which was possibly caused by underestimation of the posterior
variance. As with the previous section, EP-1D tended to be slower than the MFVB ap-
proximation, but was much faster than all other methods, including EP-2D.

5. Experiments with big data

As an approximate Bayesian inference technique, the main appeal of EP lies in fast yet
relatively accurate statistical inference for massive datasets, where savings in time are mag-
nified. To evaluate the performance of EP under this important regime for the chosen
linear regression models, the experiments in Section 4 were repeated for a big data exam-
ple. In this paper, we use the term big data to refer to datasets where exact methods
of inference such as MCMC require an inconvenient amount of computation time (say,
more than one day). As with Section 4, the code for these experiments can be found at
https://github.com/jackson-zhou-sydney/EP-multicomp. The settings and evaluation met-
rics are carried over from Section 4, with a few changes. Firstly, for the gold standard and
long run of MCMC, we now set 2000 warm-up iterations and 20,000 sampling iterations per
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chain in order to ensure convergence, for a total of 20,000 warm-up and 200,000 sampling it-
erations. Secondly, the set of iterations considered for the short run of MCMC now includes
{12000, 14000, 16000, 18000, 20000}. Finally, the total number of repetitions was reduced to
eight and the same training and test sets were used across repetitions in the computation
of the lppd (with all models fitted to this training set) to limit computation time. For
all three models, the benchmark dataset used was Energy (Candanedo 2017; n = 19735),
which records appliance energy usage (the response) across households, given tempera-
ture and humidity predictors. The fixed training and test sets contained n = 17, 268 and
n = 2467 observations respectively. For each model, the number of variables was adjusted
such that the run time for the gold standard was in the order of days. For heteroscedastic
linear regression, the pairwise interactions of all internal variables was considered for both
the mean and SD components (p1 = 172, p2 = 172). For lasso-penalized linear regression,
the pairwise interactions of all variables was considered (p = 301). Finally, for quantile lin-
ear regression, the pairwise interactions of all internal variables was considered (p = 172).
The results are shown in Table 7. As with Section 4, supplementary L1 accuracy plots can
be found in Appendix F.

For heteroscedastic linear regression, EP-1D generally surpassed all other methods
(apart from EP-2D) across all performance metrics. In particular, the Pathfinder approx-
imations broke down for the energy dataset, where in some cases only a small number of
unique samples was returned. This was most likely caused by the the posterior distribution
being markedly non-Gaussian, as is noted in Zhang et al. (2022). It is interesting that the
accuracy did not increase with more samples; we expect that this is caused by the erratic
behavior of the Pathfinder algorithm when approximating such distributions. EP-1D was
also much faster than all other methods, including the Laplace approximation (which was
not able to be parallelized).

For lasso-penalized linear regression, EP-1D performed slightly worse than the short
MCMC runs, equal to that of EP-2D, and similar to that of the MFVB approximation. In
particular, EP performed better than MFVB for the L1 accuracy of the β block and F ∗, but
worse for the L1 accuracy of the κ block, M∗, and the lppd. This agrees with the results of
the experiments using the smaller datasets, where EP performed similarly to MFVB in the
low-dimensional cases, but better than MFVB in the high-dimensional cases. We expect
to see better results for EP if we increase the value of p, but due to the computational
demands of MCMC for fitting such a dataset, this was not implemented. In terms of time,
EP-1D was faster than all other methods apart from MFVB.

Finally, for quantile linear regression, EP-1D generally surpassed all other methods
(apart from EP-2D) across all performance metrics, while generally taking much less time.
Note that the MFVB L1 accuracies presented here roughly agree with the results shown in
Wand et al. (2011).

To further emphasize the speed of our proposed EP implementation compared to one
using bivariate quadrature, an additional small experiment was conducted comparing the
run times of both EP implementations under a more conservative scenario. In particular,
the same datasets and settings from the main big data experiment were used, apart from
the following EP settings: the minimum number of passes, which was increased from 6 to
30; the convergence threshold, which was decreased from 0.05 to 0.01; and the number of
quadrature points in each dimension, which was increased from 400 to 800. In practice, a
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Hetero. Lasso Quantile Hetero. Lasso Quantile

β1 L
1 acc. β L1 acc. β L1 acc. β2 L

1 acc. κ L1 acc. κ L1 acc.
ML 98.7 ± 0.1 97.9 ± 0.1 96.6 ± 0.2 98.9 ± 0.0 98.9 ± 0.4 97.9 ± 0.9
MS 97.1 ± 0.1 96.9 ± 0.3 96.3 ± 0.2 97.6 ± 0.1 98.0 ± 0.8 97.5 ± 0.9
E1 99.1 ± 0.0 93.4 ± 0.1 97.5 ± 0.1 99.2 ± 0.0 77.7 ± 0.7 82.5 ± 0.8
E2 99.1 ± 0.0 93.4 ± 0.1 97.5 ± 0.1 99.2 ± 0.0 77.7 ± 0.7 82.4 ± 0.9
LA 81.9 ± 0.1 — — 97.4 ± 0.0 — —
PA 25.5 ± 26.2 — — 26.2 ± 25.5 — —
PB 0.7 ± 0.6 — — 3.1 ± 0.7 — —
PC 9.8 ± 18.0 — — 6.8 ± 12.0 — —
MF — 91.1 ± 0.1 78.6 ± 0.1 — 98.9 ± 0.4 81.9 ± 1.0

M∗ lppd
ML 2.86 ± 0.09 2.44 ± 0.09 2.28 ± 0.12 -2830.3 ± 5.1 -3208.4 ± 1.0 -1971.0 ± 0.7
MS 2.83 ± 0.12 2.43 ± 0.08 2.24 ± 0.05 -2831.7 ± 5.6 -3209.9 ± 2.0 -1970.7 ± 0.8
E1 3.48 ± 0.14 2.46 ± 0.17 2.98 ± 0.11 -2829.1 ± 3.6 -3209.6 ± 0.5 -1970.5 ± 0.1
E2 3.48 ± 0.14 2.46 ± 0.17 2.98 ± 0.11 -2829.1 ± 3.6 -3209.6 ± 0.5 -1970.5 ± 0.1
LA 1.82 ± 0.05 — — -2843.2 ± 3.7 — —
PA -0.29 ± 0.02 — — -2932.2 ± 4.6 — —
PB 0.01 ± 0.02 — — -2932.8 ± 5.0 — —
PC 0.09 ± 0.10 — — -2933.0 ± 5.8 — —
MF — 2.56 ± 0.11 2.19 ± 0.11 — -3209.4 ± 0.5 -1970.2 ± 0.1

F ∗ Run time (seconds)
ML 0.22 ± 0.02 -2.39 ± 0.02 -0.22 ± 0.01 (3.3 ± 0.2) × 105 (2.5 ± 0.5) × 105 (2.5 ± 0.5) × 105

MS -0.63 ± 0.04 -2.82 ± 0.07 -0.28 ± 0.07 (3.4 ± 0.3) × 104 (6.5 ± 1.1) × 104 (1.9 ± 0.5) × 105

E1 0.58 ± 0.03 -2.71 ± 0.03 0.14 ± 0.02 11.1 ± 0.3 7.2 ± 0.6 35.2 ± 5.1
E2 0.58 ± 0.03 -2.71 ± 0.03 0.14 ± 0.02 630.3 ± 15.6 390.4 ± 23.6 1234.5 ± 52.1
LA 0.58 ± 0.03 — — 99.9 ± 73.0 — —
PA -1.68 ± 0.00 — — 1438.6 ± 121.5 — —
PB -1.68 ± 0.00 — — 1478.8 ± 107.5 — —
PC -2.18 ± 0.92 — — 1450.5 ± 102.0 — —
MF — -3.16 ± 0.02 -0.65 ± 0.01 — 1.1 ± 0.1 750.0 ± 22.1

Table 7: Results (mean± SD) for the energy dataset. Each cell is based on eight repetitions.
The best non-MCMC performances are highlighted in bold.
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Hetero. Lasso Quantile

E1 28.7 ± 0.3 33.3 ± 0.5 78.1 ± 0.8
E2 6994.1 ± 327.2 6923.2 ± 65.6 6861.8 ± 100.8

Table 8: EP times in seconds (mean ± SD) under conservative settings for the energy
dataset. Each cell is based on eight repetitions.

researcher might use these more conservative parameters if they did not want to compromise
on accuracy for an important regression task. The timing results are shown in Table 8. We
see that in this case, EP-2D takes hours (a potentially impractical amount of time) to run,
while EP-1D only takes around a minute.

Recall that for the models we considered where dk = 2, using analytic integral reductions
reduces the overall time complexity of Gaussian EP with the dimension reduction technique
from O(MK(d2 +G2)) to O(MK(d2 +G)) , where M is the total number of passes through
the data, K is the total number of sites, d is the dimension of the parameter, and G
is the number of quadrature points in each dimension. Therefore, the reduction in run
time for EP when using analytic integral reductions is magnified for datasets with more
observations (sites), or for ill-conditioned datasets/site approximation initializations, such
that more passes through the data are required before EP converges. In general, we expect
that this approach is much more scalable compared to EP using bivariate quadrature.

6. Closing discussion

In this paper, we showed that fast Gaussian EP updates are possible for models with seem-
ingly complex likelihoods, by combining the multivariate version of the standard dimension
reduction technique with analytic integral reductions. Experiments were conducted to com-
pare the performance of such an EP implementation to that of standard methods, including
a version of EP which used bivariate quadrature in the evaluation of the tilted distribution
moments. The models of interest were the Bayesian variants of heteroscedastic, lasso-
penalized, and quantile linear regression. For all three models, EP generally performed as
well or better than competing ABI methods, for a moderate increase in run time. One no-
table exception was that MFVB seemed to have better predictive performance than EP, as
measured by the lppd metric, in the lasso-penalized and quantile linear regression models.
However, this was most likely caused by underestimation of the posterior variance in MFVB,
as indicated by the poor performance of MFVB relative to EP in the other inference-based
accuracy metrics. Thus, EP should still be preferred over MFVB for these models if accurate
parameter inference is more important than good predictions for the proposed application.
Even in terms of predictive power, we expect MFVB to perform worse than EP for extreme
data points/outliers, as a result of its underestimation of the posterior variance. On the
other hand, EP tended to perform similarly well (sometimes worse and sometimes better)
compared to the short MCMC runs, while taking less time. Additionally, the proposed EP
implementation was always faster than its counterpart using bivariate quadrature, which
was often much slower than the alternate approaches. Overall, EP with analytic integral
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reductions offered a good balance of accuracy and speed, and is much more appealing than
using bivariate quadrature instead.

In practice, the majority of the run time for EP was taken up by univariate numerical
quadrature; this is costly and the process needs to be repeated an O(d2k) amount of times for
an update to the k-th site. Significant computational savings may be achieved by employing
cheaper quadrature schemes; we found in our numerical study that in some cases, EP stably
converged even when using the trapezoidal rule with only 50 intervals. We also noticed that
the scale of the data was a potential issue for EP in practice. For example, the coefficients
ak, bk, and ck from Section 3.1 can get very large when yk is large (as was the case for the
Salary dataset), leading to numerical instability in the evaluation of the required Gaussian
integrals. This was easily solved, however, by limiting the domains of integration sensibly
and/or normalizing the data.

As EP approximates each site individually and is modular in nature, the work presented
in this paper offers high potential for generalizability. In particular, it is simple to mix
and match the derivations in Section 3 to allow for multi-component Gaussian EP to be
applied to more complicated models. For example, heteroscedastic linear regression may be
combined with a lasso penalty. Here, it may be more appropriate to work with a message
passing framework to modularize the calculations for the updates (Kim and Wand, 2018).

Other potential avenues of future work include: investigating models where more sub-
stantial analytic integral reductions can be made; exploiting sparsity in the site parameters
from structured design matrices; and combining with approximate tilted distribution infer-
ence schemes to further speed up the algorithm. A more comprehensive numerical study
may also be conducted, comparing the proposed implementation of EP with faster (but less
accurate) EP variants such as that found in Heess et al. (2013).
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Appendix A. Dimension reduction derivations

We prove the dimension reduction result for Gaussian EP. To start, write down the moment
generating function of the tilted distribution kernel h̃k as

M
h̃k

(t) =

∫
exp(tTθ)f∗k (ϑk(θ))φd(θ;µ−k,Σ−k) dθ

= exp
(
tTµ−k + 1

2tTΣ−kt
)∫

f∗k (ϑ)φdk

(
ϑ; AT

k

(
µ−k + Σ−kt

)
,AT

kΣ−kAk

)
dϑ,
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where we have used the Gaussian linear subspace property. If we define

gk(t) = exp
(
tTµ−k + 1

2tTΣ−kt
)
,

nk(t) =

∫
f∗k (ϑ)φdk

(
ϑ; AT

k

(
µ−k + Σ−kt

)
,AT

kΣ−kAk

)
dϑ,

and let Ihk,0 ∈ R, Ihk,1 ∈ Rd, and Ihk,2 ∈ Rd×d be the 0th, 1st, and 2nd unnormalized raw
moments of hk, then using the product rule for the gradient and Hessian, we have that

Ihk,0 = gk(0d)nk(0d),

Ihk,1 = [gk(0d)∇nk(0d) +∇gk(0d)nk(0d)] , and

Ihk,2 =
[
∇2gk(0d)nk(0d) +∇gk(0d)∇nk(0d)T +∇nk(0d)∇gk(0d)T + gk(0d)∇2nk(0d)

]
.

Routine calculations lead to gk(0d) = 1, ∇gk(0d) = µ−k, and ∇2gk(0d) = µ−kµ
T
−k + Σ−k,

while differentiation under the integral sign yields

nk(0d) = I∗hk,0,

∇nk(0d) = Uk

(
I∗hk,1 − µ

∗
−kI

∗
hk,0

)
, and

∇2nk(0d) = Uk

(
I∗hk,2 + µ∗−kµ

∗
−k

TI∗hk,0 − I∗hk,1µ
∗
−k

T − µ∗−kI∗hk,1
T − I∗hk,0Σ

∗
−k

)
UT
k ,

with Uk = Σ−kAkQ
∗
−k ∈ Rd×dk . Let µhk and Σhk be the mean and covariance respectively

of hk. Combining everything, we see after some algebra that

Σhk =
Ihk,2
Ihk,0

−
(

Ihk,1
Ihk,0

)(
Ihk,1
Ihk,0

)T

= Σ−k + Uk

(
Σ∗hk −Σ∗−k

)
UT
k and

µhk =
Ihk,1
Ihk,0

= µ−k + Uk

(
µ∗hk − µ

∗
−k
)
.

For standard EP, the update to Qk then has the form

Qk ← Qhk −Q−k = −AkQ
∗
−k
(
(Σ∗hk −Σ∗−k)

−1 + Q∗−k
)−1

Q∗−kA
T
k

= Ak

(
Q∗hk −Q∗−k

)
AT
k ,

as required, where we have applied the Woodbury matrix identity twice. Similarly, after
some algebra, the update to rk can be written as

rk ← rhk − r−k =
[
Q−k + Ak

(
Q∗hk −Q∗−k

)
AT
k

] [
µ−k + Uk

(
µ∗hk − µ

∗
−k
)]
− r−k

= Ak

(
r∗hk − r∗−k

)
,

as required. Refer to the main body for the modified updates corresponding to damped
power EP.
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Appendix B. EP downdate derivations

We justify the EP downdate equations from Algorithm 1. For power EP with η as the
power, using the definitions from the main text we have that

Σ∗−k = AT
k

(
Q• − ηAkQ

∗
kA

T
k

)−1
Ak

= (AT
kQ−1• Ak) + η(AT

kQ−1• Ak)
[
Q∗k
−1 − η(AT

kQ−1• Ak)
]−1

(AT
kQ−1• Ak)

=
[
(AT

kQ−1• Ak)
−1 − ηQ∗k

]−1
,

as required, where we have applied the Woodbury matrix identity twice. We also see that

µ∗−k = AT
k

(
Q• − ηAkQ

∗
kA

T
k

)−1
(r• − ηAkr

∗
k)

= AT
k

(
Q• − ηAkQ

∗
kA

T
k

)−1
r• −

[
(AT

kQ−1• Ak)
−1 − ηQ∗k

]−1
ηr∗k

=
[
Idk + η(AT

kQ−1• Ak)
{

Q∗k
−1 − η(AT

kQ−1• Ak)
}]

AT
k (Q−1• r•)

−
[
(AT

kQ−1• Ak)
−1 − ηQ∗k

]−1
ηr∗k

=
[
(AT

kQ−1• Ak)
−1 − ηQ∗k

]−1 [
(AT

kQ−1• Ak)
−1AT

k (Q−1• r•)− ηr∗k
]
,

as required, where we again have used the Woodbury matrix identity, along with the result
from the previous set of equations. It may be possible to simplify these identities further
(and only work in the low dimensional space) if Q• =

∑
k AT

kQ∗kAk and r• =
∑

k AT
k r∗k,

but this is generally infeasible as the prior sites need to be accounted for.

Appendix C. Gaussian integral results

We provide expressions corresponding to the Gaussian integrals Gk,r, T ±k,r and S±k,r mentioned
in the main section. For conciseness, the dependence on ϑ2 for the integral and coefficient
functions is suppressed throughout this section, in addition to the dependence on ± and k
for the coefficient functions. It can be shown that

Gk,0 =

√
2π

a
exp

[
−1

2

(
c− b2

4a

)]
, Gk,1 = Gk,0

(
− b

2a

)
, and Gk,2 = Gk,0

(
1

a
+

b2

4a2

)
.

For the truncated Gaussian integrals, start by defining ỹk =
√
ayk + b/(2

√
a). We have

S−k,0 = Gk,0Φ (ỹk) , S+k,0 = Gk,0 − S−k,0,

S−k,1 =
Gk,0√
a

[
− b

2
√
a

Φ (ỹk)− φ (ỹk)

]
, S+k,1 = Gk,1 − S−k,1,

S−k,2 =
Gk,0
a

[(
b2

4a
+ 1

)
Φ (ỹk)−

(
ỹk −

b√
a

)
φ (ỹk)

]
, and S+k,2 = Gk,2 − S−k,2.

Note that T ±k,r can be recovered by setting yk = 0 in the previous set of equations.
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Appendix D. MFVB for lasso-penalized linear regression

We implement a mean-field variational Bayes algorithm for the lasso-penalized linear re-
gression model from Section 3.2. Introduce auxiliary variables aj for j = 1, . . . , p; the new
parameter vector is θ = (βT,aT, κ) and the model can be rewritten as

yi|β, κ
ind.∼ N (xT

i β, exp(2κ)), βj |aj , κ
ind.∼ N

(
0,

exp(2κ)

ajλ2

)
,

aj
ind.∼ Inverse-Gamma

(
1, 1

2

)
, and κ

ind.∼ N (µκ, σ
2
κ).

This alternate representation of the (asymmetric) Laplace distribution was originally intro-
duced in the context of mean-field approximations by Wand et al. (2011). Here, the log
joint likelihood is

f(θ) =− 1

2 exp(2κ)

(
‖y −Xβ‖2 + λ2βTdiag(a)β

)
− 3

2

p∑
j=1

log(aj)−
1

2

p∑
j=1

1

aj

− (n+ p)κ− (κ− µκ)2

2σ2κ
+ constants in θ.

Impose the product restriction q(θ) = q(β)q(a)q(κ). For the regression parameters, the
optimal form of the density is given by

q(β) ∝ exp
[
E−q(β) {f(θ)}

]
∝ exp

[
E−q(β)

{
−1

2β
T
(

exp(−2κ)
(
XTX + λ2diag(a)

))
β + yTXβ

}]
= exp

[
−1

2β
T
{
Eq (exp(−2κ))

(
XTX + λ2diag(Eq(a))

)}
β + yTXβ

]
,

which after completing the square is Gaussian with mean and covariance parameters

µ̃ = Σ̃XTy and Σ̃ = [Eq (exp(−2κ))]−1
(
XTX + λ2diag(Eq(a))

)−1
.

For the auxiliary variables, the optimal density is given by

q(a) ∝ exp
[
E−q(a) {f(θ)}

]
∝ exp

E−q(a)
−λ2 βTdiag(a)β

2 exp(2κ)
− 3

2

p∑
j=1

log(aj)−
1

2

p∑
j=1

1

aj


 .

We see that the q(aj)’s are independent, with density

q(aj) ∝ exp

[
−λ

2

2
Eq

(
β2j

exp(2κ)

)
aj −

3

2
log(aj)−

1

2aj

]
,

which is inverse Gaussian with mean d̃j and shape λ̃j given by

d̃j =
1

λ

[
Eq

(
β2j

exp(2κ)

)]−1/2
and λ̃j = 1.
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Finally, the optimal density for the scale parameter is

q(κ) ∝ exp
[
E−q(κ) {f(θ)}

]
∝ exp

[
E−q(κ)

{
−‖y −Xβ‖2 + λ2βTdiag(a)β

2 exp(2κ)
− (n+ p)κ− (κ− µκ)2

2σ2κ

}]

= exp

−Eq
{
‖y −Xβ‖2 + λ2βTdiag(a)β

}
2 exp(2κ)

− (n+ p)κ− (κ− µκ)2

2σ2κ

 ,
which is not a standard distribution for κ. If we define the integral ratio

F(p, q, r, s) =

∫ ∞
−∞

exp
[
−p exp(−2x)− (q − 2)x− (x−r)2

2s

]
dx∫ ∞

−∞
exp

[
−p exp(−2x)− qx− (x−r)2

2s

]
dx

,

then the MFVB procedure for lasso-penalized linear regression can be written as in Algo-
rithm 2. We evaluate the integrals appearing in F numerically.

Algorithm 2 MFVB for lasso-penalized linear regression.

Require: µ̃, Σ̃, d̃, and Eq [exp(−2κ)]
1: while change in parameters do is non-negligible
2: Q← XTX + λ2 diag(d̃)
3: Σ̃← [Eq (exp(−2κ))]−1 Q−1

4: µ̃← Σ̃XTy

5: Eq [exp(−2κ)]← F
(
1
2 ‖y −Xµ̃‖2 + λ2

2 µ̃
T diag(d̃)µ̃+ 1

2tr(QΣ̃), n+ p, µκ, σ
2
κ

)
6: d̃← 1

λ [Eq (exp(−2κ))]−1/2
(
µ̃�2 + dg(Σ̃)

)�−1/2
7: end while

Appendix E. MFVB for quantile linear regression

We implement a mean-field variational Bayes algorithm for the quantile linear regression
(asymmetric Laplace) model from Section 3.3. For convenience, consider a slightly simplified
version of the model presented, where the dependence between β and κ is removed from
the prior distribution. This can be written as

yi|β, κ
ind.∼ AL(ρ = τ, µ = xT

i β, σ = exp(κ)), β
ind.∼ Np(µβ,Σβ), and κ

ind.∼ N (µκ, σ
2
κ).

Using the same representation by Wand et al. (2011) mentioned in Appendix D, introduce
auxiliary variables ai for i = 1, . . . , n. The new parameter vector is θ = (βT,aT, κ) and the
model can be rewritten as

yi|β, ai, κ
ind.∼ N

(
xT
i β +

(12 − τ) exp(κ)

τ(1− τ)ai
,

exp(2κ)

τ(1− τ)ai

)
,

ai
ind.∼ Inverse-Gamma

(
1, 1

2

)
, β

ind.∼ Np(µβ,Σβ), and κ
ind.∼ N (µκ, σ

2
κ).
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The log joint likelihood may be expressed as

f(θ) = −τ(1− τ)

2

[
(y −Xβ)T

diag(a)

exp(2κ)
(y −Xβ)− (1− 2τ)1T

n(y −Xβ)

τ(1− τ) exp(κ)

+

(
1/2− τ
τ(1− τ)

)2 n∑
i=1

1

ai

]
− 1

2
(β − µβ)TΣ−1β (β − µβ)

−3

2

n∑
i=1

log(ai)−
1

2

n∑
i=1

1

ai
− nκ− (κ− µκ)2

2σ2κ
+ constants in θ.

Similar to Appendix D, impose the product restriction q(θ) = q(β)q(a)q(κ). For the re-
gression parameters, the optimal form of the density is given by

q(β) ∝ exp
[
E−q(β){f(θ)}

]
∝ exp

[
E−q(β)

{
−1

2

(
βT

(
τ(1− τ)XT diag(a)

exp(2κ)
X + Σ−1β

)
β

−2

(
τ(1− τ)yT diag(a)

exp(2κ)
X−

(12 − τ)1T
nX

exp(κ)
+ µT

βΣ−1β

)
β

)}]

= exp

[
−1

2

{
βT

(
τ(1− τ)XTEq

(
diag(a)

exp(2κ)

)
X + Σ−1β

)
β

−2

(
τ(1− τ)yTEq

(
diag(a)

exp(2κ)

)
X−

(
1

2
− τ
)
Eq
(

1

exp(κ)

)
1T
nX + µT

βΣ−1β

)
β

}]
,

which is Gaussian with parameters

µ̃ = Σ̃

[
τ(1− τ)XTEq

(
diag(a)

exp(2κ)

)
y −

(
1

2
− τ
)
Eq
(

1

exp(κ)

)
XT1n + Σ−1β µβ

]
, and

Σ̃ =

[
τ(1− τ)XTEq

(
diag(a)

exp(2κ)

)
X + Σ−1β

]−1
.

For the auxiliary variables, the optimal density is given by

q(a) ∝ exp
[
E−q(a) {f(θ)}

]
∝ exp

[
E−q(a)

{
−τ(1− τ)

2

(
(y −Xβ)T

diag(a)

exp(2κ)
(y −Xβ) +

(
1/2− τ
τ(1− τ)

)2 n∑
i=1

1

ai

)

−3

2

n∑
i=1

log(ai)−
1

2

n∑
i=1

1

ai

}]
.

We see that the q(ai)’s are independent, with density

q(ai) ∝ exp

[
−τ(1− τ)

2
Eq
(

(yk − xT
kβ)2

exp(2κ)

)
ai −

3

2
log(ai)−

(
(1/2− τ)2

2τ(1− τ)
+

1

2

)
1

ai

]
,

which is inverse Gaussian with mean d̃k and shape λ̃k given by

d̃k =
1

2τ(1− τ)

[
Eq
(

(yk − xT
kβ)2

exp(2κ)

)]−1/2
and λ̃k =

1

4τ(1− τ)
.
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Finally, the optimal density for the scale parameter is

q(κ) ∝ exp
[
E−q(κ) {f(θ)}

]
∝ exp

[
E−q(κ)

{
−τ(1− τ)

2

(
(y −Xβ)T

diag(a)

exp(2κ)
(y −Xβ)

−(1− 2τ)1T
n(y −Xβ)

τ(1− τ) exp(κ)

)
− nκ− (κ− µκ)2

2σ2κ

}]
= exp

[
−τ(1− τ)

2

{
Eq
(
(y −Xβ)Tdiag(a)(y −Xβ)

)
exp(2κ)

−
(1− 2τ)Eq

(
1T
n(y −Xβ)

)
τ(1− τ) exp(κ)

}
− nκ− (κ− µκ)2

2σ2κ

]
,

which is not a standard distribution. If we define the integral ratio

H(p, q, r1, r2, s, t) =

∫ ∞
−∞

exp

[
−p exp(−2x) + q exp(−x)− r1x+

(x− s)2

2t

]
dx∫ ∞

−∞
exp

[
−p exp(−2x) + q exp(−x)− r2x+

(x− s)2

2t

]
dx

,

then the MFVB procedure for quantile linear regression can be written as in Algorithm 3.
We evaluate the integrals appearing in H numerically.

Algorithm 3 MFVB for quantile linear regression.

Require: µ̃, Σ̃, d̃, Eq [exp(−κ)] , Eq [exp(−2κ)]
1: while change in parameters is non-negligible do

2: Σ̃←
[
τ(1− τ)XTdiag(d̃)Eq (exp(−2κ)) X + Σ−1β

]−1
3: µ̃← Σ̃

[
τ(1− τ)XTdiag(d̃)Eq (exp(−2κ)) y

−(12 − τ)Eq (exp(−κ)) XT1n + Σ−1β µβ

]
4: y∗ ← (y −Xµ̃)�2 + dg(XΣ̃XT)

5: Eq [exp(−κ)]← H
(
τ(1−τ)

2 d̃Ty∗, 1−2τ
2 1T

n(y −Xµ̃), n+ 1, n, µκ, σ
2
κ

)
6: Eq [exp(−2κ)]← H

(
τ(1−τ)

2 d̃Ty∗, 1−2τ
2 1T

n(y −Xµ̃), n+ 2, n, µκ, σ
2
κ

)
7: d̃← 1

2τ(1−τ) [y∗Eq (exp(−2κ))]�−1/2

8: end while

Appendix F. Supplementary figures

This section contains figures which complement the tables in Section 4 and Section 5. For
all three models, we plot the mean L1 accuracies across the benchmarks (including the big
data example), and also plot the relationship between L1 accuracies and run time.
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Figure 1: Mean L1 accuracies across marginals for heteroscedastic linear regression bench-
mark datasets. Each point is based on a single repetition.

Figure 2: β1 L
1 accuracies vs. run times for heteroscedastic linear regression using the

energy dataset. Each point represents an average over eight repetitions.
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Figure 3: β2 L
1 accuracies vs. run times for heteroscedastic linear regression using the

energy dataset. Each point represents an average over eight repetitions.

Figure 4: Mean L1 accuracies across marginals for lasso-penalized linear regression bench-
mark datasets. Each point is based on a single repetition.
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Figure 5: β L1 accuracies vs. run times for lasso-penalized linear regression using the energy
dataset. Each point represents an average over eight repetitions.

Figure 6: κ L1 accuracies vs. run times for lasso-penalized linear regression using the energy
dataset. Each point represents an average over eight repetitions.
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Figure 7: Mean L1 accuracies across marginals for quantile linear regression benchmark
datasets. Each point represents a single repetition.

Figure 8: β L1 accuracies vs. run times for quantile linear regression using the energy
dataset. Each point represents an average over eight repetitions.
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Figure 9: κ L1 accuracies vs. run times for quantile linear regression using the energy
dataset. Each point represents an average over eight repetitions.
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