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Abstract

skrl is an open-source modular library for reinforcement learning written in Python and
designed with a focus on readability, simplicity, and transparency of algorithm imple-
mentations. In addition to supporting environments that use the traditional interfaces
from OpenAI Gym / Farama Gymnasium, DeepMind and others, it provides the fa-
cility to load, configure, and operate NVIDIA Isaac Gym, Isaac Orbit, and Omniverse
Isaac Gym environments. Furthermore, it enables the simultaneous training of several
agents with customizable scopes (subsets of environments among all available ones), which
may or may not share resources, in the same run. The library’s documentation can be
found at https://skrl.readthedocs.io and its source code is available on GitHub at
https://github.com/Toni-SM/skrl.
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1. Introduction

As a Machine Learning subfield, Reinforcement Learning (RL) is a paradigm to learn, im-
prove and generalize the decision-making capabilities of autonomous agents through inter-
action with their environments. Its rise is marked by three fundamental milestones: 1) The
development of new learning algorithms, especially those that use artificial neural networks
as approximation functions (Deep RL). 2) The development of Gym by OpenAI. It exposes
a common interface for designing and standardizing environments (Brockman et al., 2016).
3) The development of benchmarking scenarios in areas such as video games and gaming,
autonomous navigation, and robotics.

Particularly in robotics and autonomous systems, physics-based simulators play an es-
sential role. Simulation enables better time management, cost reduction, and safety in
safety-critical and/or complex settings (Körber et al., 2021). MuJoCo (Todorov et al., 2012)
and PyBullet (Coumans and Bai, 2016–2021) are among the most widely used physics en-
gines in robotics. These are used by the OpenAI Gym and DeepMind environments (Muldal
et al., 2019; Tunyasuvunakool et al., 2020) for RL tasks.

©2023 Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh and Nestor Arana-Arexolaleiba.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/23-0112.html.

https://skrl.readthedocs.io
https://github.com/Toni-SM/skrl
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0112.html
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With the release of Isaac Gym Preview (Makoviychuk et al., 2021), and recently Om-
niverse Isaac Gym and Isaac Orbit (Mittal et al., 2023), a GPU-based physics simulation
platform from NVIDIA, a new generation of robotic simulation with tens of thousands of
simultaneous environments on a single GPU has emerged. They allow researchers to eas-
ily run massive experiments using an OpenAI Gym-like API by offloading both physics
simulation and neural network training onto the GPU. While Isaac Gym, Isaac Orbit and
Omniverse Isaac Gym provide some examples for modeling the environment, a streamlined
interface towards implementing RL algorithms in a flexible and modular way is needed.

In this work, we present skrl, an RL library designed with the following principles in
mind: 1) modularity, leaving room for each component to be interchangeable and making
it possible to create more complex systems. 2) readability, simplicity, and transparency
of the algorithm implementations, which reduces the learning curve with an educational
approach. 3) support for different environment interfaces and 4) simultaneous learning on
NVIDIA Isaac Gym, Isaac Orbit and Omniverse Isaac Gym environments.

2. Related Work

Modularity is a desirable feature for the scalability and flexibility of a system and the
reusability of its constituent components. ChainerRL (Fujita et al., 2021) and PyTorchRL
(Bou and De Fabritiis, 2020) are developed around the idea of agent composability. They
provide a set of building blocks for the development of new agents. rlpyt (Stooke and Abbeel,
2019), Tonic (Pardo, 2020), and MushroomRL (D’Eramo et al., 2021) also offer building
blocks as configurable modules, but their designs are based on a hierarchy of inheritances
involving many files and lack consistent naming in various implementations.

The code’s readability, simplicity and transparency are indispensable for understand-
ing implementations and using existing code or APIs to develop new RL methods; even
more when small implementation details can significantly affect the performance of the al-
gorithms (Engstrom et al., 2019). Many libraries encapsulate great features deep in their
coding, leading to difficulties in reproducibility such as RLlib (Liang et al., 2018) or RLzoo
(Ding et al., 2021). Nevertheless, there are efforts in favor of readability, simplicity and
transparency. Spinning Up (Achiam, 2018), from OpenAI, was implemented with an edu-
cational approach and detailed documentation. Stable Baselines3 (Raffin et al., 2021) offers
readability and simplicity over modularity, focusing on model-free, single-agent algorithms.
CleanRL (Huang et al., 2022) includes all the details of the algorithm and environment in
a single file, arguing that it helps researchers understand the implementation and proto-
type new features. Although such compact implementation facilitates the setup of simple
applications, library maintenance and addition of new features remain challenging.

Almost all RL libraries support the OpenAI Gym interface for learning environments.
However, the same cannot be said for DeepMind Environment, Isaac Gym, Isaac Orbit
and Omniverse Isaac Gym. The last three are recent and have a slightly different interface
with OpenAI Gym. In Isaac Gym’s latest releases (preview 3 and 4), Isaac Orbit and
Omniverse Isaac Gym, RL Games (Makoviichuk and Makoviychu, 2021) is presented as
the default library to run the example environments. ElegantRl (Liu et al., 2021) offers
support for Isaac Gym environments. However, it only allows working with the previous
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release (preview 2), since it explicitly includes, within its source code, the original files of
that preview.

3. Implementation and Features

skrl is an open-source modular library for RL written in Python (on PyTorch (Paszke
et al., 2019) and JAX (Bradbury et al., 2018)) and designed with a focus on readability,
simplicity, and transparency of algorithm implementation. In addition to supporting the
OpenAI Gym / Farama Gymnasium, DeepMind and other interfaces, it allows loading and
configuring NVIDIA Isaac Gym, Isaac Orbit and Omniverse Isaac Gym environments as
shown in Figure 1. Furthermore, it enables agents’ simultaneous training by scopes (subsets
of environments among all available environments), which may or may not share resources,
in the same run.

Figure 1: Wrapped environment interface based on the Gym/Gymnasium interface.

3.1 Structure and Design Concepts

The file system structure that conforms the library is designed to group the components,
according to their functionality, without mixing them. This design, focused on modularity,
allows a quick understanding and use of the components by the researchers. The current
implementation is built on PyTorch and JAX. However, the design of the file system allows
for future implementations using other deep learning libraries such as TensorFlow (Abadi
et al., 2016) or Chainer (Tokui et al., 2015) among others.

The library is organized into six components (and some utilities). Except for the envi-
ronments (envs), all other components inherit properties and methods from one (and only
one) base class implemented in a common file for each group. Apart from providing a uni-
form interface, the base classes implement common functionalities (which are not tied to
the implementation details of the algorithms), such as logging to TensorBoard (Abadi et al.,
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2016) or Weights & Biases (Biewald, 2020), or saving and loading files to and from per-
sistent storage. Focused on readability, simplicity, and transparency, each implementation
within the same component is done standalone, even when two or more implementations
may contain code in common.

The components that belong to skrl are:

• envs: Definition of Isaac Gym (preview 2, 3 and 4), Isaac Orbit and Omniverse Isaac
Gym environment loaders. Wrappers for each supported environment type: OpenAI
Gym / Farama Gymnasium, DeepMind, robosuite (Zhu et al., 2020), Isaac Gym, Isaac
Orbit and Omniverse Isaac Gym.

• memories: Definition of generic memories that are not bound to any agent. The im-
plementations can be used as rollout buffer or experience replay memory, for example.

• models: Definition of helpers for building tabular models and function approxima-
tors using artificial neural networks. In contrast to other libraries, and to put the
RL system’s control in the researchers’ hands, skrl does not provide policy defini-
tions (this practice typically hides and reduces the system’s flexibility, forcing devel-
opers to deeply inspect the code to make changes). Mixins are provided to create
discrete/continuous stochastic/deterministic policies within this component. In this
case, the researcher is only concerned with the definition of artificial neural networks.

• resources: Definition of noises used by deterministic agents during the exploration
stage, customized learning rate schedulers to adjust the learning rate of the optimizer
between gradient steps or training epochs and input preprocessors.

• agents: Definition of the RL methods that compute an optimal policy. The learn-
ing and optimization algorithm is implemented within a single function in all cases.
The following state-of-the-art methods are currently included as of this writing: A2C
(Mnih et al., 2016), AMP (Peng et al., 2021), CEM (Szita and Lörincz, 2006), DDPG
(Lillicrap et al., 2015), DQN (Mnih et al., 2015), DDQN (Van Hasselt et al., 2016),
PPO (Schulman et al., 2017), Q-learning (Watkins, 1989), RPO (Rahman and Xue,
2022), SAC (Haarnoja et al., 2018), SARSA (Rummery and Niranjan, 1994), TD3
(Fujimoto et al., 2018) and TRPO (Schulman et al., 2015).

• trainers: Definition of the classes responsible for managing the agent’s training and
interaction with the environment. These definitions also allow the execution of simul-
taneous synchronous learning in Isaac Gym, Isaac Orbit and Omniverse Isaac Gym.

As mentioned above, a set of utilities are offered to perform, among others, the following
operations: loading and post-processing of exported memory files and TensorBoard logs,
downloading of trained models from Hugging Face Hub, fast model instantiators, visualiza-
tion of the environment’s configuration and computation of inverse kinematics for robotic
manipulators in Isaac Gym and Omniverse Isaac Gym.
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3.2 Simultaneous Learning by Scopes in Vectorized Environments

Isaac Gym, Isaac Orbit and Omniverse Isaac Gym simulate thousands of environments
simultaneously by offering an API based on the vectorization of observations and actions.
This library takes advantage of such parallelization by enabling the training and evaluation
of simultaneous agents of the same or different classes. Each agent can define a working
scope: a set of sub-environments among all available environments. Then, at each time
step, the trainer collects the actions of each agent in their respective scopes and builds a
single vector that is passed to the simulation pipeline. After simulating, the current state
of observations, rewards and completed episodes are partitioned and passed back to each
agent, according to its scope, to execute the learning and optimization stage.

This setup makes it possible to compare, in a single run, the performance of several
agents, hyperparameters and other components. Nevertheless, given this library’s modular
and flexible design, it also enables sharing resources between the different agents (such as
the memory, for example) that can help improve the learning process.

3.3 Documentation

The documentation is written using reStructuredText and hosted online by Read the Docs
under the url https://skrl.readthedocs.io. Apart from the library installation steps and
API details (classes, functions, parameters and return values, etc.), snippets and diagrams
are also included to guide the development of new components or algorithms. In addition, a
detailed description (using mathematical notation) of the implementation of the RL agents
is provided. Examples, in simulation and in the real world, of use cases with their respective
scripts and description of functionalities are included as well as benchmarking results.
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