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Abstract

Continual learning is the problem of learning from a nonstationary stream of data, a fun-
damental issue for sustainable and efficient training of deep neural networks over time.
Unfortunately, deep learning libraries only provide primitives for offline training, assuming
that model’s architecture and data are fixed. Avalanche is an open source library main-
tained by the ContinualAI non-profit organization that extends PyTorch by providing first-
class support for dynamic architectures, streams of datasets, and incremental training and
evaluation methods. Avalanche provides a large set of predefined benchmarks and training
algorithms and it is easy to extend and modular while supporting a wide range of continual
learning scenarios. Documentation is available at https://avalanche.continualai.org.
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learning software

1. Introduction

Learning continually from non-stationary data streams is a long-sought goal in Artificial
Intelligence. While most deep learning methods are trained offline, there is a growing
interest in Deep Continual Learning (CL) (Lesort et al., 2020) to improve learning efficiency,
robustness and adaptability of deep networks. Deep learning libraries such as PyTorch
and Tensorflow are designed to support offline training, making it difficult to implement
continual learning methods. Avalanche1, initially proposed in Lomonaco et al. (2021),
provides a comprehensive library to support the development of research-oriented continual
learning methods. The library is maintained by the ContinualAI non-profit organization.
Compared to existing continual learning libraries (Douillard and Lesort, 2021; Wolczyk
et al., 2021; Normandin et al., 2022; Mirzadeh and Ghasemzadeh, 2021; Masana et al.,

1. Official Avalanche website: https://avalanche.continualai.org
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Figure 1: Avalanche main functionalities and modules.

2022), Avalanche supports a larger number of methods and scenarios. Avalanche is a
library with a growing user base2, an increasing set of features, and a strong focus on
reproducibility(link).

2. What can you do with Avalanche?

Avalanche is a library built on top of PyTorch (Paszke et al., 2019), designed to provide
simple and stable components with everything that you need to execute continual learning
experiments. The library is split into 5 modules: benchmarks, training, models, evaluation,
and loggers. Figure 1 shows a high-level overview of the library and its major components.

Benchmarks provides standard benchmark definitions (doc), high-level benchmark gen-
erators (doc), and low-level utilities to define new benchmarks by manipulating stream of
experiences and datasets (doc).

Training provides standard training algorithms. Training strategies can be easily ex-
tended and combined with each other. Many continual learning techniques are available to
be used out-of-the-box (doc). For replay methods, custom storage policies can be imple-
mented, and many options such as balancing methods and reservoir sampling are available
(doc). Most training methods can be combined together to create hybrid strategies.

Models provides CL architectures and first-class support for dynamic architectures, multi-
task models, and optimizer update (doc). DynamicModules implement growing architectures
such as multi-head classifiers and progressive networks (Rusu et al., 2016).

Evaluation provides CL metrics (doc). Metrics are defined with a declarative API and
computed automatically. Avalanche provides an extensive set of metrics to measure the
model’s performance and to keep track of system’s metrics such as memory occupation and
CPU usage. All the metrics can be computed at different granularities (e.g. minibatch,

2. https://github.com/ContinualAI/avalanche
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experience, stream). Custom metrics can be defined or they can be easily computed from
the results of the existing metrics.

Logging metrics are collected and serialized automatically by the logging system. The
EvaluationPlugin (doc) connects training strategies, metrics, and loggers, by collecting
all the metrics and dispatching them to all the registered loggers. TensorBoard, Weights
and Biases, CSV files, text files, and standard output loggers are available (doc), but the
logging interface can be easily extended with new loggers for custom needs.

Core Utilities Avalanche offers a checkpointing functionality, allowing to pause and re-
sume experiments. All Avalanche components are serializable.

3. API and Design

At the high level, Avalanche provides ready-to-use strategies, which can be instantiated and
trained with a minimal amount of code (example). Internally, the training and eval loops
implement a callback system that supports external plugins. Plugins allow to build on top
of existing strategies with minimal changes and to combine different strategies together,
a critical feature that other CL libraries do not support. Thanks to the plugin system,
many strategies can be easily reused in different scenarios or combined together without
any change to their code.

Benchmarks, Streams, Experiences Benchmarks in Avalanche provide the data needed
to train and evaluate CL models. Benchmarks are a collection of streams (e.g., a train and
test stream for SplitMNIST (Lomonaco et al., 2021)). Streams are sequences of Experi-
ences, where an experience stores all the information available at a certain point in time.
Experiences provide all the necessary information for training, evaluation and logging. For
example, in supervised CL experiences provide a dataset, while in reinforcement learning
they provide an environment. Streams and experiences have private unique identifiers for
logging purposes.

Dataset and Stream Manipulation AvalancheDataset extends PyTorch datasets with
the ability to add attributes values (such as task labels and other metadata) at the example
granularity, manage different groups of transformations, and define custom collate func-
tions. AvalancheDatasets can be subsampled and concatenated, providing a simple API
to define and manipulate streams and replay buffers. In addition, Avalanche offers flexible
data loaders that control balancing and joint sampling from multiple datasets.

Dynamic and Standalone Components Avalanche extends many PyTorch static com-
ponents into dynamical objects. For example, CL strategies may require changing the
model’s architecture, optimizer, losses, and datasets during training. In PyTorch, these
are static objects that are not easy to update during training (e.g., the architecture of
nn.Modules is fixed). Avalanche DynamicModules provide a simple API to update the
model’s architecture, ExemplarsBuffer manage replay buffers, regularization plugins up-
date the loss function after each experience, and optimizer are also updated before each
experience. Every component is automatically managed by Avalanche strategies, but they
can also be used standalone in a custom training loop (example).
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Figure 2: Block diagram of an SGD-based strategy. Replay plugin augments strategy’s
dataloader while EWC adds a reg. term to the strategy’s loss before each update.

Inside an Avalanche Strategy Figure 2 shows a high-level overview of an Avalanche
strategy. Templates define the structure of the training and evaluation loops, providing a set
of callbacks that can be used to execute code at any point of the loop. Strategies combine
templates to define a complex training loop (e.g., base, SGD, online, supervised, meta-
learning). Plugins use callbacks to access the strategy state and execute code at specific
moments of the loop. Finally, a Strategy is an implementation of a set of templates with a
list of plugins (e.g., Naive finetuning with ReplayPlugin, EWCPlugin, EvaluationPlugin).
Most features in Avalanche can be used as a plugin: training utilities, CL methods, the
evaluation and logging system. The advantage of this approach is that any plugin can be
used with any template that supports its required callbacks and attributes, making it easy
to write general components that can be reused across many experimental settings.

Testing Avalanche is thoroughly tested with a battery of unit tests. Each pull request
is tested on a subset of the unit tests by the continuous integration pipeline on Github. A
subset of continual-learning-baselines (link) is executed with a regular cadence to ensure
that Avalanche baselines are in line with expected results from the literature.

4. Conclusion

Currently, Avalanche v0.3.1 constitutes the largest software library for deep continual
learning. Its main focus on fast prototyping, re-producibility and portability makes it the
perfect candidate for research-oriented projects. The library is a result of more than two
years of development effort involving more than fourteen different research organizations
across the world. The MIT licensed software and the support of ContinualAI ensure conti-
nuity and alignment with the continual learning research community at large. In the future,
we plan to increase the number of available benchmarks and methods, keeping a strong fo-
cus on reproducibility and continual-learning-baselines(link). We also plan to provide better
support for emphreinforcement learning(link), distributed, and federated training support,
while bringing the toolkit to maturity and its first stable official release v1.0.0.
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