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Abstract

Kernel methods are built upon the mathematical theory of reproducing kernels and re-
producing kernel Hilbert spaces. They enjoy good interpretability thanks to the solid
mathematical foundation. Recently, motivated by deep neural networks in deep learning,
which construct learning functions by successive compositions of activation functions and
linear functions, a class of methods termed as deep kernel learning has appeared in the
literature. The core of deep kernel learning is hierarchical kernels that are constructed
from a base reproducing kernel by successive compositions. In this paper, we characterize
the corresponding reproducing kernel Hilbert spaces of hierarchical kernels, and study con-
ditions ensuring that the reproducing kernel Hilbert space will be expanding as the layer
of hierarchical kernels increases. The results will answer whether the expressive power
of hierarchical kernels will be improving as the layer increases, and give guidance to the
construction of hierarchical kernels for deep kernel learning.

Keywords: hierarchical kernels, reproducing kernels, deep learning, compositional ker-
nels, reproducing kernel Hilbert spaces

1. Introduction

Machine learning has played an important role in recent advances of artificial intelligence.
There are two major categories of learning methods: the classical kernel methods (Schölkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998) and deep learning
methods (Goodfellow et al., 2016; LeCun et al., 2015). In many applications, the target
of these two kinds of learning methods is the same, which is to learn a prediction function
from given training data. The target can be approached by minimizing a functional of the
form:

min
f∈F

1

n

n∑
j=1

L(f(xj), yj), (1)

subject to a constraint on the complexity of model f , where (xj , yj), 1 ≤ j ≤ n are prescribed
training data from X × Y with X being the input space and Y being the output space,
L is a chosen loss function, and F is a set of candidate prediction functions. An essential
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difference between kernel learning and deep learning lies in the choice of F . In the classical
kernel methods, F is generated via a reproducing kernel K (also called a Mercer kernel
(Mercer, 1909)) on X by

F =

{ n∑
j=1

cjK(xj , ·) : cj ∈ R, 1 ≤ j ≤ n
}
.

In other words, the candidate functions are linear combinations of the reproducing kernel
at the sampling points xj , 1 ≤ j ≤ n. In deep learning methods, F is generated from a deep
neural network by consecutive compositions of linear functions and an activation function.
Also, some other techniques such as pooling and batch normalization are adopted in deep
neural networks.

A great advantage of kernel learning is that it is built on the solid mathematical founda-
tion of reproducing kernels and reproducing kernel spaces. In fact, long before the emergence
of machine learning, renowned mathematicians including Aronszajn (Aronszajn, 1950),
Bochner (Bochner, 1959), and Schoenberg (Schoenberg, 1938, 1942) had been studying
positive-definite functions. These functions were latter found to be identical to reproducing
kernels. Reproducing kernels and reproducing kernel spaces have been extensively stud-
ied since then (see, for example, Berlinet and Thomas-Agnan (2004); Cucker and Smale
(2002); Cucker and Zhou (2007); Evgeniou et al. (2000); Fukumizu et al. (2004); FitzGerald
et al. (1995); Wendland (2005); Wu (1995); Zhang et al. (2009) and references therein).
Such a solid mathematical foundation endows good interpretability of kernel methods. For
instance, we are able to analyze the generalization ability of many kernel methods by es-
timating the learning rates from an approximation theory viewpoint (Cucker and Smale,
2002; Cucker and Zhou, 2007).

A disadvantage of kernel methods is that they cannot well handle many challenging
learning tasks. Recently, motivated by the success of deep learning, a class of learning
methods termed as deep kernel learning has appeared in the literature (Anselmi et al.,
2015; Bohn et al., 2019; Chen et al., 2017; Cho and Saul, 2009; Wilson et al., 2016). The
essence of deep kernel learning is the usage of hierarchical kernels (also known as compo-
sitional kernels) that are constructed from existing kernels by successive function compo-
sitions. Such constructions are mainly motivated by composition structure of deep neural
networks. Function compositions are able to generate high-dimensional complicated func-
tions from relatively low-dimensional simple functions. This can be explained by the well-
known Kolmogorov-Arnold representation theorem in mathematics (Morris, 2021). The
applications and implications of the Kolmogorov-Arnold representation theorem to neural
networks are discussed in Schmidt-Hieber (2021); Yarotsky (2017).

Deep kernel learning based on hierarchical kernels have shown comparable performances
in a few challenging learning problems (Chen et al., 2017; Cho and Saul, 2009; Wilson et
al., 2016) . However, two theoretical questions remain unanswered for these hierarchical
kernels. The first question concerns the understanding of the reproducing kernel Hilbert
spaces of hierarchical kernels. The second question is about what conditions ensure that
the expressive power of the hierarchical kernels increases as the number of layers of hierar-
chical kernels increases. In this paper, we aim to answer these two questions for a type of
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hierarchical kernels generated by

K0 = K, Kn = g(Kn−1), n ∈ N,

where the initial kernel K is a commonly-used kernel in machine learning (such as the
Gaussian kernel, the exponential kernels, or a polynomial kernel), and g is a chosen uni-
variate function such as the exponential function or a fixed polynomial. Our objective is
to characterize the reproducing kernel Hilbert space HKn of each Kn, and to investigate
conditions ensuring that HKn+1 is strictly larger than HKn . These results will contribute
to the mathematical foundation of deep kernel learning.

The rest of the paper is organized as follows. In Section 2, we introduce some basic
facts about reproducing kernels and reproducing kernel Hilbert spaces. Note that our study
will build upon the existing results on inclusion relation of the reproducing kernel Hilbert
spaces. In Section 3, we present some general results on compositional kernels. Sections
4-6 are devoted to hierarchical kernels generated from the compositions of the Gaussian
kernel, the exponential kernel, the polynomial kernel with the exponential function or a
fixed polynomial, respectively. Initial experiments on hierarchical kernels are conducted in
Section 7 and the paper is concluded in Section 8. We shall see that the main analysis of
hierarchical kernels is closely related to the high order Bell numbers. Moreover, the answer
to the second question is not always affirmative, as we shall see in the case of hierarchical
exponential kernels that the related reproducing kernel Hilbert spaces remain unchanged as
the number of layers increases, indicating that one should not use the exponential kernels
in deep kernel learning.

Before we enter the formal investigation, we would like to discuss the differences between
our mathematical study on hierarchical kernels and those studies aiming to give explanation
to deep neural networks by kernels. Such studies include understanding the training process
and mechanism of generalization of deep neural networks by neural tangent kernels (see, for
example, Cho and Saul (2009); Daniely et al. (2016); Huang and Yau (2020); Huang et al.
(2021); Lee et al. (2018); Jacot et al. (2018); Neal (1996)). Compositional kernels related
to neural networks and neural tangent kernels are investigated in Bietti and Bach (2021);
Chen and Xu (2021); Geifman et al. (2020). These kernels are dot-product kernels on the
sphere and are different from the hierarchical kernels on the Euclidean spaces in this paper.
There is another line of of recent work aiming to understand shallow neural networks by
reproducing kernel Banach spaces (Bach, 2017; Bartolucci et al., 2021; Ongie et al., 2019;
Parhi and Nowak, 2021; Spek et al., 2022). In particular, a function composition structure
in Banach spaces was proposed in Parhi and Nowak (2022) to understand the functions
learned by deep neural networks.

The main purpose of the above researches is to give explanation to neural networks
by neural tangent kernels or by reproducing kernel Banach spaces. Hierarchical kernels in
the current work are constructed from existing kernels by successive function compositions.
Such constructions are stimulated by the composition structure of deep neural networks.
Hierarchical kernels can then be used for feature extraction or used in classical kernel meth-
ods. Hierarchical kernels are not to compete with deep learning. Therefore, the theme of
the paper is different from those in the former paragraph. In the future, we plan to inves-
tigate compositional kernels on the sphere and hierarchical kernels involving compositions
with multiple kernels.
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2. Preliminaries

In this paper, we use R,C,N,Z,Z+ to denote the set of real numbers, the set of complex
numbers, the set of positive integers, the set of integers, and the set of nonnegative integers,
respectively.

Let X be a prescribed input space. A reproducing kernel (or kernel for short) K on
X is a function from X ×X to C such that for all finite pairwise distinct inputs xj ∈ X,
1 ≤ j ≤ n, the kernel matrix

[K(xj , xk) : 1 ≤ j, k ≤ n] ,

is hermitian and positive semi-definite. A reproducing kernel K on X corresponds to a
unique reproducing kernel Hilbert space (RKHS), denoted by HK , such that K(x, ·) ∈ HK
for all x ∈ X and

f(x) = 〈f,K(x, ·)〉HK for all f ∈ HK , x ∈ X, (2)

where 〈·, ·〉HK denotes the inner product on HK .
Let g be a chosen univariate function. We shall concentrate on characterizing Hg(K)

and examining the inclusion relationship between HK and Hg(K) in the paper. To this end,
we will recall some useful notations and related results in this section.

Given two kernels K,G on X, the inclusion relation HK ⊆ HG was first investigated by
Aronszajn in Aronszajn (1950) and then extensively studied in Xu and Zhang (2007, 2009);
Zhang and Zhao (2013). The following result is well-known. Denote K � G if G − K
remains a kernel on X.

Lemma 1 (Aronszajn, 1950) Let K,G be two kernels on X. Then HK ⊆ HG if and only
if there exists a non-negative constant λ such that K � λG.

When HK ⊆ HG, it was observed in Aronszajn (1950) by the closed graph theorem that
the identity operator from HK into HG is bounded. The operator norm of this embedding
is denoted by β(K,G), (Zhang and Zhao, 2013). We also denote

λ(K,G) = inf{λ ≥ 0|K � λG}.

The relation between these two important constants was discovered in Zhang and Zhao
(2013).

Lemma 2 (Zhang and Zhao, 2013) When HK ⊆ HG, it holds β(K,G) =
√
λ(K,G) and

K � λ(K,G)G.

The following result from Aronszajn (1950) will also be needed. Denote by ‖ · ‖B the
norm on a Banach space B.

Lemma 3 (Aronszajn, 1950) Let K1,K2 be two kernels on X and K = K1 +K2. Then

HK = {f1 + f2 : f1 ∈ HK1 , f2 ∈ HK2},

and
‖f‖2HK = inf{‖f1‖2HK1

+ ‖f2‖2HK2
: f = f1 + f2, f1 ∈ HK1 , f2 ∈ HK2}.

In particular, if additionally, HK1 ∩HK2 = {0}, then

‖f1 + f2‖2HK = ‖f1‖2HK1
+ ‖f2‖2HK2

, f1 ∈ HK1 , f2 ∈ HK2 .
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One of the most commonly-used classes of reproducing kernels on the Euclidean spaces
is the class of translation-invariant kernels. A kernel K on Rd is said to be translation-
invariant if

K(x− a, y − a) = K(x, y) for all x, y, a ∈ Rd.

It is clear that K on Rd × Rd is translation-invariant if and only if there exists a function
k on Rd such that

K(x, y) = k(x− y), x, y ∈ Rd.

A celebrated result due to Bochner states that continuous translation-invariant kernels on
Rd are exactly the Fourier transform of finite positive Borel measures on Rd. The Fourier
transform and its inverse are defined by

f̂(ξ) =

(
1√
2π

)d ∫
Rd
f(x)e−ix·ξdx, ξ ∈ Rd,

and

f̌(x) =

(
1√
2π

)d ∫
Rd
f(ξ)eix·ξdξ, x ∈ Rd,

where x · ξ is the standard inner product of x and ξ on Rd. We shall later use ‖x‖ =
√
x · x

to denote the Euclidean norm on Rd.
Denote by B(Rd) the set of finite positive Borel measures on Rd. By the Bochner theorem

(Bochner, 1959), a continuous function K on Rd × Rd is a translation-invariant kernel on
Rd if and only if there exists a µ ∈ B(Rd) such that

K(x, y) =

∫
Rd
e−i(x−y)·ξ dµ(ξ), x, y ∈ Rd. (3)

For two translation-invariant kernels K,G on Rd, the inclusion relation HK ⊆ HG was
extensively studied in Zhang and Zhao (2013). We shall need two of the results. By the
Jordan decomposition of measures, every measure µ ∈ B(Rd) can be factored into the sum
of two positive measures µc and µs, which are absolutely continuous and singular with
respect to the Lebesgue measure, respectively. For the absolutely continuous measure µc,
the Radon-Nikodym theorem ensures the existence of a nonnegative function u ∈ L1(Rd)
such that

µc(A) =

∫
A
u(ξ)dξ for every Lebegue measurable A ⊆ Rd.

Consequently, K defined by (3) can be factored as

K = Kc +Ks,

where

Kc(x, y) =

∫
Rd
e−i(x−y)·ξ dµc(ξ), Ks(x, y) =

∫
Rd
e−i(x−y)·ξdµs(ξ). (4)

The two required results are as follows.
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Lemma 4 (Zhang and Zhao, 2013) Let uc, us be two nonnegative Borel measures on Rd that
are absolutely continuous and singular with respect to the Lebesgue measure, respectively.
And let Kc,Ks be the associated translation-invariant kernels given by (4). Then HKc ∩
HKs = {0}.

Lemma 5 (Zhang and Zhao, 2013) Let u, v be nonnegative functions in L1(Rd) and let
K,G be defined by

K(x, y) =

∫
Rd
e−i(x−y)·ξu(ξ)dξ, G(x, y) =

∫
Rd
e−i(x−y)·ξv(ξ)dξ, x, y ∈ Rd. (5)

Then HK ⊆ HG if and only if there exists a nonnegative constant C such that u(ξ) ≤ Cv(ξ)
almost everywhere on Rd, in which case

λ(K,G) = ‖u/v‖L∞(Rd).

We next introduce a characterization of the RKHS of a translation-invariant kernel. For
a nonnegative function u ∈ L1(Rd), denote by L2

u(Rd) the Hilbert space of Borel measurable
functions f on Rd such that ∫

Rd
|f(t)|2u(t)dt < +∞.

The inner product and norm on L2
u(Rd) are given by

〈f, g〉L2
u(Rd) =

∫
Rd
f(t)g(t)u(t)dt, ‖f‖L2

u(Rd) =

(∫
Rd
|f(t)|2u(t)dt

)1/2

.

Lemma 6 (Wendland, 2005) Let u be a nonnegative functions in L1(Rd) and let K be
defined by

K(x, y) =

∫
Rd
e−i(x−y)·ξu(ξ)dξ, x, y ∈ Rd. (6)

Then

HK =

{
f(x) =

∫
Rd
fu(t)eix·ξu(ξ)dξ : fu ∈ L2

u(Rd)
}

=

{
f ∈ C(Rd) :

∫
Rd

|f̂(ξ)|2

u(ξ)
dξ < +∞

}
,

with inner product

〈f, g〉HK = 〈fu, gu〉L2
u(Rd) =

∫
Rd

f̂(ξ)ĝ(ξ)

u(ξ)
dξ.

Another important class of reproducing kernels in machine learning is the polynomial
kernel, which is a special form of the Hilbert-Schmidt kernel. By Mercer’s theorem (Mercer,
1909), any continuous kernel on a compact metric space is a Hilbert-Schmidt kernel. For
this sake, we shall first present the general form of Hilbert-Schmidt kernels.

Let a be a nonnegative function on N and set an := a(n), n ∈ N. Denote by `2a(N) the
Hilbert space of functions c on N such that

‖c‖`2a(N) :=

( ∞∑
n=1

an|cn|2
)1/2

< +∞.
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The inner product on `2a(N) is

〈c, d〉`2a(N) :=

∞∑
n=1

ancndn, c, d ∈ `2a(N).

Suppose that φn, n ∈ N is a sequence of functions on the input space X, such that for each
x ∈ X the function Φ(x) defined on N as

Φ(x)(n) := φn(x), n ∈ N, (7)

belongs to `2a(N). The Hilbert-Schmidt kernel Ka associated with a is given as

Ka(x, y) := (Φ(x),Φ(y))`2a(N) =

∞∑
n=1

anφn(x)φn(y), x, y ∈ X. (8)

Now suppose that there exists another nonnegative function b on N such that Φ(x) ∈ `2b(N)
for all x ∈ X. Set

Kb(x, y) := (Φ(x),Φ(y))`2b(N)
=
∞∑
n=1

bnφn(x)φn(y), x, y ∈ X. (9)

The inclusion relation HKa ⊆ HKb was characterized in Zhang and Zhao (2013).

Lemma 7 Suppose that b is nontrivial, and span{Φ(x) : x ∈ X} is dense in both `2a(N) and
`2b(N). Then HKa ⊆ HKb if and only if there is a constant λ > 0 such that an ≤ λbn for all
n ∈ N. In this case,

λ(Ka,Kb) = sup

{
an
bn

: n ∈ N, bn > 0

}
. (10)

We shall also need a characterization of the RKHS of a Hilbert-Schmidt kernel, which
is well-known (Cucker and Smale, 2002). Note that when span{Φ(x) : x ∈ X} is dense in
`2a(N), if c ∈ `2a(N) satisfies

∞∑
n=1

cnanφn(x) = 0 for all x ∈ X,

then (c,Φ(x))`2a(N) = 0 for all x ∈ X, which implies by the denseness condition that c = 0
in `2a(N).

Lemma 8 Let Ka be the kernel defined by (8) and suppose that span{Φ(x) : x ∈ X} is
dense in `2a(N). Then

HKa =

{
fc(x) := (c,Φ(x))`2a(N) =

∞∑
n=1

cnanφn(x), x ∈ X, c ∈ `2a(N)

}
,

with the inner product

〈fc, fd〉HKa = 〈c, d〉`2a(N), c, d ∈ `2a(N).
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3. General Characterizations

Let K be a kernel on an input space X. The hierarchical kernels constructed from K are
defined recursively via compositing with a function g on R by

Kn(x, y) = g(Kn−1(x, y)), x, y ∈ X, n ≥ 1,

where K0 := K. The first question is for what g, Kn would always remain a reproducing
kernel. This can be answered by a classical result on positive-definite functions (FitzGerald
et al., 1995).

Lemma 9 Let g be a function on C. Then for any reproducing kernel K, g(K) remains
a reproducing kernel if and only if g is holomorphic on C and all the coefficients in its
Maclaurin series are nonnegative.

By the above lemma, typical choices of g in deep kernel methods for machine learning
including g(x) = ex and g(x) = P (x), where P is a polynomial with nonnegative coefficients.
We first investigate such hierarchical kernels. A couple of simple observations are in order.
We shall need the well-known fact that the product of two reproducing kernels remains
a reproducing kernel. This follows directly from the Schur product theorem (Horn and
Johnson, 1991) that the component-wise product (Hadamard product) of two positive semi-
definite matrices is still a positive semi-definite matrix.

Proposition 10 Let g be a holomorphic function on C of the form

g(z) =
∞∑
n=0

anz
n, z ∈ C, an ≥ 0, n ∈ Z, (11)

where a1 > 0. Then HK ⊆ Hg(K). In particular, HK ⊆ HeK .

Proof By Lemma 9, g(K)− a1K is a kernel on X. Then by Lemma 1,

HK = Ha1K ⊆ Hg(K).

Clearly, the exponential function satisfies the requirements on g.

Theorem 11 Let K,G be two kernels on X such that HK ⊆ HG, and let g be given by
(11). Then Hg(K) ⊆ Hg(λG), where λ = λ(K,G). In particular, if λ(K,G) ≤ 1 then
Hg(K) ⊆ Hg(G).

Proof As HK ⊆ HG, by Lemma 2, K � λG where λ = λ(K,G). Then there exists a
kernel L such that λG = K + L. By (11),

g(λG) =

∞∑
n=0

an(K + L)n

=

∞∑
n=0

anK
n +

∞∑
n=1

an

n−1∑
j=0

(
n

j

)
KjLn−j

= g(K) +

∞∑
n=1

an

n−1∑
j=0

(
n

j

)
KjLn−j .
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Since the product of two kernels remains a kernel, each of the KjLn−j is a kernel. Therefore,
g(K) � g(λG). By Lemma 1, Hg(K) ⊆ Hg(λG). When λ(K,G) ≤ 1, one can choose λ = 1
and apply the above arguments to show that Hg(K) ⊆ Hg(G).

Corollary 12 If g given by (11) is a polynomial and HK ⊆ HG then Hg(K) ⊆ Hg(G).

Proof If λ(K,G) ≤ 1 then the result is true by Theorem 11. Now suppose

g(z) =
m∑
n=0

anz
n, an ≥ 0, 0 ≤ n ≤ m,

and λ = λ(K,G) ≥ 1. Then we have

g(K) =
m∑
n=0

anK
n �

m∑
n=0

an(λG)n �
m∑
n=0

anλ
mGn = λmg(G),

which implies that g(K)� λmg(G). By Lemma 1, Hg(K) ⊆ Hg(G).

We make two remarks about the above results. The first one is that when g is not
a polynomial then HK ⊆ HG may not imply Hg(K) ⊆ Hg(G). To see a counterexample,
we shall use Lemma 7 on the inclusion relation of RKHSs of Hilbert-Schmidt kernels. Let
K(x, y) = 2xy,G(x, y) = xy be two polynomial kernels on R. Then HK = HG. But

eK = e2xy =

∞∑
k=0

2k(xy)k

k!
, eG = exy =

∞∑
k=0

(xy)k

k!
.

Clearly,

sup

{ 2k

k!
1
k!

= 2k : k ∈ N
}

= +∞,

which implies by Lemma 7 that HeK * HeG .
The second remark is that λ(K,G) ≤ 1 is not necessary to imply Hg(K) ⊆ Hg(G) from

HK ⊆ HG even when g is not a polynomial. An example is given by the following two
kernels

K(x, y) = e−(x−y)
2

=

∫
R
u(ξ)e−i(x−y)ξdξ, G(x, y) = e−|x−y| =

∫
R
v(ξ)e−i(x−y)ξdξ, x, y ∈ R,

where

u(ξ) =
1

2
√
π
e−

ξ2

4 , v(ξ) =
1

π(1 + ξ2)
.

We compute that

λ(K,G) = sup
ξ∈R

u(ξ)

v(ξ)
=

√
π

2
sup
ξ∈R

ξ2 + 1

e
ξ2

4

= 2
√
πe−

3
4 > 1.

9
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By Lemma 5, HK ⊆ HG. Now consider

eK(x,y) = 1 +

∞∑
k=1

e−k(x−y)
2

k!
:= 1 +K1(x, y) := 1 +

∫
R
e−i(x−y)ξu1(ξ)dξ,

and

eG(x,y) = 1 +
∞∑
k=1

e−k|x−y|

k!
:= 1 +G1(x, y) := 1 +

∫
R
e−i(x−y)ξv1(ξ)dξ,

where

u1(ξ) =
1

2
√
π

∞∑
k=1

1

k!
√
k
e−

ξ2

4k , v1(ξ) =
1

π

∞∑
k=1

1

k!

k

ξ2 + k2
.

It holds

λ(K1, F1) = sup
ξ∈R

u1(ξ)

v1(ξ)
=

√
π

2
sup
ξ∈R

∑∞
k=1

1
k!
√
k
e−

ξ2

4k∑∞
k=1

1
k!

k
ξ2+k2

≤
√
π

2
sup
ξ∈R

∑∞
k=1

1
k!
√
k

1+ξ2

e
ξ2

4k∑∞
k=1

1
k!k

≤ 4
√
π

e

∑∞
k=1 e

1
4k

1
(k−1)!

√
k∑∞

k=1
1
k!k

< +∞.

By Lemma 5, HeK ⊆ HeG despite that λ(K,G) > 1.

4. Hierarchical Gaussian Kernels

The purpose of this section is to study the characterization and inclusion relation of RKHSs
corresponding to hierarchical kernels generated from composition of the Gaussian kernel and
a fixed function g. Popular choices of g including the exponential function and a polynomial.
We start with the exponential function.

4.1 Composition with Exponential Function

The Gaussian kernel is given by

G0(x, y) = exp(−λ‖x− y‖2) =

∫
Rd
e−i(x−y)·ξg0(ξ)dξ, x, y ∈ Rd, λ > 0, (12)

where

g0(ξ) :=
1

(2
√
λπ)d

exp

(
− ‖ξ‖

2

4λ

)
, ξ ∈ Rd. (13)

The hierarchical Gaussian kernels from composition with the exponential function are given
by

Gn(x, y) = exp (Gn−1(x, y)) , n ∈ N. (14)

In particular,

G1(x, y) = exp(G0(x, y)) =
∞∑
k=0

G0(x, y)k

k!
:= 1 +K1(x, y), x, y ∈ Rd, (15)

10
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where

K1(x, y) :=

∞∑
k=1

exp(−λk‖x− y‖2)
k!

. (16)

One computes that

K1(x, y) =

∫
Rd
e−i(x−y)·ξg1(ξ)dξ, x, y ∈ Rd,

where

g1(ξ) :=
1

(2
√
λπ)d

∞∑
k=1

1

k!kd/2
exp

(
− ‖ξ‖

2

4λk

)
, ξ ∈ Rd. (17)

Theorem 13 It holds HG0 ⊆ HG1, but HG1 * HG0 .

Proof Firstly, by Lemmas 3 and 4

HG1 = {c+ f : c ∈ C, f ∈ HK1},

and

||c+ f ||2HG1
= |c|2 + ||f ||2HK1

.

Apparently, g0(ξ) 6 g1(ξ). It follows by Lemma 4 that HG0 ⊆ HK1 ⊆ HG1 .

On the other hand, one sees

g1(ξ)

g0(ξ)
=

∑∞
k=1

1
k!kd/2

exp
(
− ‖ξ‖

2

4λk

)
exp

(
− ‖ξ‖

2

4λ

)
= 1 +

∞∑
k=2

1

k!kd/2
exp

[
‖ξ‖2

4λ

(
1− 1

k

)]

> 1 + exp

(
‖ξ‖2

8λ

) ∞∑
k=2

1

k!kd/2
.

Therefore, g1(ξ)g0(ξ)
is unbounded on Rd. By Lemma 5, HK1 * HG0 . Consequently, HG1 * HG0 .

Next we want to study the inclusion relation between HGn and HGn+1 for general n.
By Lemma 5, the key problem is to estimate a dominating relation between the Fourier
transforms of Gn and Gn+1. A sequence of coefficients from the exponential generating
functions

e0(x) = x, en(x) = exp (en−1(x)) , n ∈ N, (18)

will play an important role. For this reason, we first define and study them (Asai et al.,
2001; Bell, 1938).

11
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Definition 14 The high order Bell numbers βn,k, n, k ∈ Z+, are the coefficients satis-
fying

en(x) = en(0)
∞∑
k=0

βn,k
k!

xk, x ∈ R. (19)

Note that β2,k, k ≥ 0 are refered as the Bell numbers.

We next look at the properties of the high order Bell numbers. For T ∈ Zd+, we shall
denote |T | = T1 + T2 + · · ·+ Td. Also, for latter use, we set for βn,k, x ∈ Rd and T ∈ Zd+,

(
k

T

)
=

k!∏d
i=1 Ti

, βn,T =
d∏
i=1

βn,Ti , x
T = xT11 · · ·x

Td
d . (20)

Proposition 15 The high order Bell numbers satisfy

β1,k = 1, k ≥ 0, βn,0 = 1, n ∈ N, (21)

and

βn+1,k =
k∑
j=1

ejn(0)

j!

∑
T∈Nj
|T |=k

(
k

T

)
βn,T , n, k ≥ 1. (22)

Proof Equation (21) is obvious. Since en+1(x) = en+1(0) exp (en(x)− en(0)), we could
expand en+1(x) as follows

en+1(x) = en+1(0) exp

(
en(x)− en(0)

)
= en+1(0) exp

(
en(0)

∞∑
l=1

βn,l
l!
xl
)

= en+1(0)

(
1 +

∞∑
j=1

ejn(0)

j!

( ∞∑
l=1

βn,l
l!
xl
)j)

.

(23)

The term (
∑∞

l=1
βn,l
l! x

l)j in the last equation above can be expanded into an infinite poly-
nomial by ( ∞∑

l=1

βn,l
l!
xl
)j

=

∞∑
k=j

akx
k.

Using the notations (20), one observes that

ak =
∑
T∈Nj
|T |=k

j∏
l=1

βn,Tl
Tl!

=
∑
T∈Nj
|T |=k

1

k!

k!∏j
l=1 Tl!

βn,T =
1

k!

∑
T∈Nj
|T |=k

(
k

T

)
βn,T .

12
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Combining the above equation with (23), we have

en+1(x) = en+1(0)

(
1 +

∞∑
j=1

ejn(0)

j!

( ∞∑
k≥j

1

k!

∑
T∈Nj
|T |=k

(
k

T

)
βn,Tx

k

))

= en+1(0)

(
1 +

∞∑
k=1

xk

k!

( k∑
j=1

ejn(0)

j!

∑
T∈Nj
|T |=k

(
k

T

)
βn,T

))
.

(24)

By comparing the coefficients in (19) and (24), we could see that (22) is true.

We next estimate the ratio βn+1,k/βn,k with the results in Asai et al. (2001).

Lemma 16 (Asai et al., 2001) The high order Bell numbers satisfy the inequality

2−k1−k2βn,k1+k2 ≤ βn,k1βn,k2 , k1, k2 ≥ 0. (25)

Lemma 17 It holds

βn+1,k ≥
β2,k
2k

βn,k, n ≥ 1, k ≥ 1, (26)

and for some positive constant C that

βn+1,k ≥ C
(

2k
3
2 + log(2k)

)
βn,k, n ≥ 1, k ≥ 1. (27)

Proof By Proposition 15 and Lemma 16, we have

βn+1,k =

k∑
j=1

ejn(0)

j!

∑
T∈Nj
|T |=k

(
k

T

)
βn,T ≥

( k∑
j=1

1

j!

∑
T∈Nj
|T |=k

(
k

T

))
2−kβn,k =

β2,k
2k

βn,k, (28)

where we have used the identity β1,k = 1 in equation (21). We then recall an asymptotic
formula for the Bell numbers given in Bruijin (1981)

log β2,k
k

= log k − log log k − 1 +
log log k

log k
+

1

log k
+

1

2

(
log log k

log k

)2

+O

[
log log k

(log k)2

]
.

Thus
log β2,k
k

= log k +O(log log k),

which implies that for k large enough,

log β2,k
k

≥ 1

2
log k.

Consequently, for k large enough,

β2,k ≥ kk/2 = k
k
2
−2k2 ≥ k

k
2
−2(2k

3
2 + log(2k)). (29)

13
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Notice that

lim
k→∞

2k

k
k
2
−2

= lim
k→∞

2kk2

k
k
2

= lim
k→∞

2kk2
√
k
k
≤ lim

k→∞

2kk2

3k
= lim

k→∞

k2

(32)k
= 0.

Thus, k
k
2
−2 ≥ 2k for k large enough. This inequality together with (29) implies that for k

large enough,

β2,k ≥ 2k(2k
3
2 + log(2k)).

Inequality (27) now follows from the above equation and equation (28).

With the preparations above, we are ready to characterize the reproducing kernel Hilbert
space HGn of the hierarchical Gaussian kernel Gn, and to show that HGn are strictly
expanding as n increases. Below we shall use A $ B to denote that A is a proper subset
of B. We shall also denote by dxe and bxc the least integer greater than or equal to x and
the largest integer small than or equal to x, respectively.

Theorem 18 Given the hierarchical Gaussian kernels defined by (12) and (14), it holds

Gn(x, y) = en(0)

∞∑
k=0

βn,k
k!

exp(−kλ‖x− y‖2), n ∈ N, x, y ∈ Rd, (30)

and

Gn(x, y) = en(0) +Kn(x, y) with Kn(x, y) =

∫
Rd
e−i(x−y)·ξgn(ξ)dξ,

where

gn(ξ) =
en(0)

(2
√
λπ)d

∞∑
k=1

βn,k

k!kd/2
exp

(
−‖ξ‖

2

4λk

)
, ξ ∈ Rd. (31)

Consequently,

HGn =

{
c+ f : c ∈ R, f ∈ C(Rd) satisfying

∫
Rd

|f̂(ξ)|2

gn(ξ)
dξ < +∞

}
, (32)

and
HGn $ HGn+1 , n ∈ N. (33)

Proof Identity (31) is obtained by applying (19) and the Fourier transform (13) of Gaussian
kernels. Thus, equation (32) is a direct consequence of Lemmas 3 and 6. Clearly,

gn(ξ) =
en(0)

(2
√
λπ)d

∞∑
k=1

βn,k

k!kd/2
exp

(
−‖ξ‖

2

4λk

)
≤ en+1(0)

(2
√
λπ)d

∞∑
k=1

βn+1,k

k!kd/2
exp

(
−‖ξ‖

2

4λk

)
= gn+1(ξ).

Thus, HGn ⊆ HGn+1 . On the other hand, it holds

gn+1(ξ)

gn(ξ)
=
en+1(0)

∑∞
k=1

βn+1,k

k!kd/2
exp

(
−‖ξ‖

2

4λk

)
en(0)

∑∞
k=1

βn,k
k!kd/2

exp
(
−‖ξ‖

2

4λk

) .

14
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We shall show that gn+1(ξ)/gn(ξ) is unbounded by showing that there exists a positive
constant C such that for ‖ξ‖ = 8m

√
λ,

gn+1(ξ)

gn(ξ)
≥ C log(2m) for sufficiently large m. (34)

The above equation can be rewritten as

∞∑
k=1

1

k!kd/2
(en+1(0)βn+1,k − Cen(0)βn,k log(2m)) exp

(
−16m2

k

)
≥ 0. (35)

Let C be the constant in Lemma 17, by en+1(0) ≥ en(0), Lemma 17 and (35), it suffices to
show that for large enough m

∞∑
k=1

βn,k

k!kd/2

(
2k

3
2 + log(2k)− log(2m)

)
exp

(
−16m2

k

)
≥ 0.

First note that for all k ≥ blog(2m)c,

2k
3
2 + log(2k)− log(2m) ≥ 0.

Therefore, for sufficiently large m, using 2m
3
2 ≥ e and md/2 ≤ m!, we get

∞∑
k=1

βn,k

k!kd/2

(
2k

3
2 + log(2k)− log(2m)

)
exp

(
−16m2

k

)

≥ βn,m

m!md/2
2m

3
2 exp(−16m) +

blog(2m)c∑
k=1

βn,k

k!kd/2

(
2k

3
2 + log(2k)− log(2m)

)
exp

(
−16m2

k

)

≥ 2βn,mm

(m!)2
e−16m+1 −

blog(2m)c∑
k=1

βn,k

k!kd/2
log(2m)e−

16m2

k

≥ 2βn,mm

(m!)2
e−16m+1 −

blog(2m)c∑
k=1

βn,m
k!

log(2m)e
− 8m2

log(2m)

≥ βn,m log(2m)

(m!)2
e−16m+1 − βn,m log(2m)e

− 8m2

log(2m)

∞∑
k=0

1

k!

= eβn,m log(2m)

(
e−16m

(m!)2
− e−

8m2

log(2m)

)
= eβn,m log(2m)e

− 8m2

log(2m)

(exp
(
−16m+ 8m2

log(2m)

)
(m!)2

− 1

)
= eβn,m log(2m)e

− 8m2

log(2m)

((exp
(

4m2

log(2m) − 8m
)

m!

)2

− 1

)
.

Therefore, it suffices to show that for m large enough,

exp

(
4m2

log(2m)
− 8m

)
≥ m!.

15
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By m! ≤ mm, the above equation is true if

4m2

log(2m)
− 8m ≥ m logm,

which is clearly true for sufficiently large m. We conclude that inequality (34) holds, which
implies that gn+1(ξ)/gn(ξ) is unbounded. By Lemma 5, HGn+1 * HGn .

4.2 Composition with a Polynomial

We consider hierarchical kernels generated from the composition of the Gaussian kernel and
a fixed polynomial in this subsection. Let P be a given polynomial

P (x) =

N∑
k=1

akx
k, (36)

where ak ≥ 0, aN > 0, N ≥ 2. The hierarchical kernels under investigation are defined
recursively by

Gn(x, y) = P (Gn−1(x, y)), x, y ∈ Rd, n ∈ Z+, (37)

with G0 = exp(−λ‖x− y‖2). To characterize HGn and their inclusion relations, we shall
need a well-known result on the inclusion relation between RKHSs of Gaussian kernels
(Steinwart et al., 2006). It can also be viewed as a direct consequence of Lemma 5 and the
Fourier transform (13) of the Gaussian kernel.

Lemma 19 (Steinwart et al., 2006) Given Gaussian kernels

Gγ(x, y) = exp(−γ‖x− y‖2), x, y ∈ Rd,

it holds HGγ1 $ HGγ2 whenever γ1 < γ2.

Another result in need follows directly from Lemma 3.

Lemma 20 Given two kernels K and G, if HK ⊆ HG then HK+G = HG.

We are ready to present the main result on hierarchical Gaussian kernels from compo-
sition with a fixed polynomial.

Theorem 21 Let P be a fixed polynomial given by (36) and define the hierarchical Gaussian
kernels recursively by (37). Then, for every n ≥ 0,

HGn = HGNnλ , (38)

HGn $ HGn+1 , (39)

and

HGn =

{
f ∈ C(Rd) :

∫
Rd
|f̂(ξ)|2 exp

(
‖ξ‖2

4Nnλ

)
dξ < +∞

}
. (40)
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Proof Notice that each Gn is a linear combination of finitely many Gaussian kernels with
positive coefficients. Assume that

Gn =

m∑
k=1

ckGγk ,

where ck > 0 and γ1 < γ2 < · · · < γm. One observes from the definition of Gn that
γm = Nnλ. By Lemmas 19 and 20, for 0 < γ < γ′ and a, b > 0,

HaGγ+bGγ′ = HbGγ′ = HGγ′ .

Therefore,
HGn = HGγm = HGNnλ .

Equation (39) follows from the above equation and Lemma 19. And equation (40) follows
from (38) and Lemma 6.

5. Hierarchical Exponential Kernels

We investigate hierarchical kernels generated from the composition of the exponential kernel
with the exponential function or a polynomial in this section.

For x = (x1, x2, · · · , xd) ∈ Rd, denote ‖x‖1 =
∑d

i=1 |xi| and ‖x‖2 =
√∑d

i=1 x
2
i . Also let

Γ denote the Gamma function

Γ(s) =

∫ ∞
0

ts−1e−tdt, s > 0.

The exponential kernel is given by

Ep,0(x, y) = exp(−λ‖x− y‖p) =

∫
Rd
e−i(x−y)·ξφp,0(ξ)dξ, x, y ∈ Rd, λ > 0, p = 1, 2, (41)

where

φ1,0(ξ) =
1

πd

d∏
j=1

λ

ξ2j + λ2
, ξ ∈ Rd, (42)

and

φ2,0(ξ) =
Γ(d+1

2 )λ

π
d+1
2

(
λ2 + ‖ξ‖22

) d+1
2

, ξ ∈ Rd. (43)

5.1 Composition with the Exponential Function

Recall the exponential generating functions en defined in (18). The hierarchical exponential
kernels via consecutively compositing with the exponential function are defined by

Ep,n(x, y) = en(Ep,0(x, y)), n ∈ N, p = 1, 2. (44)

We present the RKHS of the hierarchical exponential kernels and a surprise result on
their inclusion relations.
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Theorem 22 Given the hierarchical exponential kernels defined by (41) and (44), it holds

HEp,n =

{
c+f : c ∈ C, f ∈ C(R) satisfying

∫
Rd

|f̂(ξ)|2

φp,n(ξ)
dξ < +∞

}
, n ∈ N, p = 1, 2, (45)

where

φ1,n(ξ) =
en(0)

πd

∞∑
k=1

βn,k
k!

d∏
j=1

kλ

ξ2j + k2λ2
, ξ ∈ Rd, (46)

and

φ2,n(ξ) =
en(0)Γ(d+1

2 )

π
d+1
2

∞∑
k=1

βn,kkλ

k!
(
k2λ2 + ‖ξ‖22

) d+1
2

, ξ ∈ Rd. (47)

Moreover,

HEp,n = HEp,n+1 , n ∈ N, p = 1, 2. (48)

Proof We first write

Ep,n(x, y) = ep,n(0) + Fp,n(x, y), n ∈ N, n ≥ 1, p = 1, 2,

where

Fp,n(x, y) =

∫
Rd
e−i(x−y)·ξφp,n(ξ)dξ, x, y ∈ Rd, p = 1, 2,

and by the expansion (19),

φp,n(ξ) = en(0)
∞∑
k=1

βn,k
k!kd

φp,0(
ξ

k
), ξ ∈ Rd, p = 1, 2. (49)

Combing the above equation and equations (42), (43), we obtain (46) and (47). The first
result (45) thus follows directly from Lemmas 3 and 6.

We now turn to the proof of identity (48). On one hand, since the high order Bell
numbers satisfy

βn,k ≤ βn+1,k, k ∈ N,

it implies HEp,n ⊆ HEp,n+1 for p = 1, 2. On the other hand, since

φ1,0(
ξ
k )

φ1,0(ξ)
=

d∏
j=1

λ2 + ξ2j
λ2 + ξ2j /k

2
≤

d∏
j=1

k2 = k2d, ξ ∈ Rd, k ∈ N+,

and

φ2,0(
ξ
k )

φ2,0(ξ)
=

(
λ2 + ‖ξ‖22

λ2 + ‖ξ‖22/k2

) d+1
2

≤ (k2)
d+1
2 ≤ k2d, ξ ∈ Rd, k ∈ N+,
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with (49) we get

φp,n+1(ξ)

φp,n(ξ)
=
en+1(0)

∑∞
k=1

βn+1,k

k!kd
φp,0(

ξ
k )

en(0)
∑∞

k=1
βn,k
k!kd

φp,0(
ξ
k )

≤
en+1(0)

∑∞
k=1

βn+1,k

k!kd
φp,0(

ξ
k )

en(0)βn,1φp,0(ξ)

≤ en+1(0)

∞∑
k=1

βn+1,k

k!kd
φp,0(

ξ
k )

φp,0(ξ)

≤ en+1(0)

∞∑
k=1

βn+1,k

k!kd
k2d

= en+1(0)

∞∑
k=1

βn+1,k

k!
kd

≤ en+1(0)

∞∑
k=0

βn+1,k

k!
ekd

= en+1(e
d) < +∞, p = 1, 2,

which implies by Lemma 5 that HEp,n+1 ⊆ HEp,n for p = 1, 2. We conclude that (48) holds.

The above theorem reveals that the hierarchical structure of reproducing kernels does
not necessarily yield RKHSs with increasing expressive power.

5.2 Composition with a Polynomial

We consider hierarchical exponential kernels generated from compositions with a fixed poly-
nomial in this subsection. Let P be a polynomial as described in (36). We generate the
hierarchical exponential kernels by

Ep,n(x, y) = P (Ep,n−1(x, y)), n ∈ N, x, y ∈ Rd, p = 1, 2. (50)

where Ep,0 is the exponential kernel Ep,0 given by (41).

The following result was proved in Zhang and Zhao (2013).

Lemma 23 Given exponential kernels

Ep,λ(x, y) = exp(−λ‖x− y‖p), x, y ∈ Rd, p = 1, 2,

it holds HEp,λ1 = HEp,λ2 for all λ1, λ2 > 0 and p = 1, 2.

We show that composition of the exponential kernel with a polynomial will not enlarge
the corresponding RKHS either.

Theorem 24 Let P be a fixed polynomial given by (36) and define the hierarchical expo-
nential kernels recursively by (50). Then for every n ≥ 0 and p = 1, 2, HEp,n = HEp,0.
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Proof Notice that each Ep,n is a linear combination of finitely many exponential kernels
with positive coefficients. Assume that

Ep,n =
m∑
k=1

ckEp,λk .

By Lemma 23
HEp,λ1 = HEp,λ2 = · · · = HEp,λk .

Then Lemma 20 implies that

HEp,n = HEp,λ1 = HEp,λ = HEp,0 = HEp,0 ,

which proves the result.

6. Hierarchical Polynomial Kernels

We study hierarchical kernels generated from the compositions of a given polynomial kernel
and the exponential function in this section. A polynomial kernel is a reproducing kernel
of the form

K(x, y) =
∞∑
k=0

ak(x · y)k, x, y ∈ Rd, (51)

where ak ≥ 0 for every k ∈ Z+. Let r be the radius of convergence of the associated
polynomial

P (z) =
∞∑
k=0

akz
k. (52)

Then the kernel K in (51) is well-defined on {x ∈ Rd : ‖x‖ <
√
r}. The hierarchical kernels

via compositions of K and the exponential function are generated by

Kn = en(K), n ∈ N, (53)

where en are the exponential generating functions given in (18). We first show that under
a mild condition, the RKHS HKn is indeed expanding as n increases.

Theorem 25 Suppose the radius of convergence of the polynomial P given in (52) is infinity
and that P is not a constant. Then for each n ∈ N, HKn−1 $ HKn.

Proof By Proposition 10, HKn−1 ⊆ HKn for each n ∈ N. Assume that HK1 ⊆ HK0 . By
Lemma 1, there exists a constant λ > 0 such that λK0 −K1 is a kernel. Consequently,

λK0(x, x)− exp(K0(x, x)) ≥ 0 for all x ∈ Rd, (54)

which implies that

K0(x, x) =
∞∑
k=0

ak(x · x)k,
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is bounded on Rd. As a result, P (z) is bounded on C. By Liouville’s theorem, P must be a
constant, a contradiction. Similarly, if for some n ∈ N, HKn ⊆ HKn−1 then Pn−1 must be
a constant. Here,

P0 = P, Pn = exp(Pn−1), n ≥ 1.

But Pn−1 is constant if and only if P is constant. Therefore, we conclude thatHKn−1 $ HKn
for every n ∈ N.

In the rest of this section, we focus on the most popular polynomial kernel in machine
learning, which is of the form

K(x, y) = (x · y)q, x, y ∈ Rd, (55)

where q ∈ N is fixed. Thus K corresponds to the polynomial

P (z) = zq.

Let Kn be the hierarchical kernels (53). Theorem 25 applies to this special case. Thus,
HKn are expanding as n increases. As the final theoretical task of this paper, we desire to
characterize HKn .

Theorem 26 Let n ∈ N and Kn be the hierarchical polynomial kernels defined by (53) with
K be given in (55). Then

Kn(x, y) = en(0)
∞∑
k=0

βn,k
k!

(x · y)qk, x, y ∈ Rd, (56)

and

HKn =

fa(x) =
∞∑
k=0

en(0)βn,k
k!

∑
α∈Zd+
|α|=qk

(
qk

α

)
ak,αx

α :
∞∑
k=0

en(0)βn,k
k!

∑
α∈Zd+
|α|=qk

(
qk

α

)
|ak,α|2 < +∞

 ,

(57)
with inner product

〈fa, fb〉HKn = en(0)
∞∑
k=0

βn,k
k!

∑
α∈Zd+,|α|=qk

(
qk

α

)
ak,αbk,α. (58)

Proof Recall the exponential generating functions en given in (18). Apparently,

Kn(x, y) = en(K(x, y)) = en((x · y)q), x, y ∈ Rd.
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Therefore, by (19),

Kn(x, y) = en(0)
∞∑
k=0

βn,k
k!

(x · y)qk

= en(0)

∞∑
k=0

βn,k
k!

(x1y1 + x2y2 + · · ·+ xdyd)
qk

= en(0)

∞∑
k=0

βn,k
k!

∑
α∈Zd+
|α|=qk

(
qk

α

)
xαyα.

Equations (57), (58) now follow directly from the above equation and Lemma 8.

7. Experiments

To verify the theoretical results in the paper, we shall conduct initial experiments with hi-
erarchical Gaussian kernels and hierarchical exponential kernels in this section. Specifically,
we shall evaluate the hierarchical Gaussian kernels from consecutive composition with the
exponential function on various tasks, including classification on the Scikit-learn (Pedregosa
et al., 2011) moon scattering dataset, classification on CIFAR-10, and regression on UCI
datasets. Considering the numerical stability, we shall only evaluate hierarchical kernels
with at most three layers, and shall slightly modify the hierarchical Gaussian kernels as

Gk+1(x, y) = exp (ek(1) (Gk(x, y)− 1)) , G0(x, y) = exp(−λ‖x− y‖2), x, y ∈ Rd. (59)

To further confirm the theoretical results of the paper, we shall also evaluate the `1 norm
hierarchical exponential kernels on three regression tasks from LIBSVM (Chang and Lin,
2011). These `1 norm hierarchical exponential kernels are also slightly modified as

Hk+1(x, y) = exp (ek(1) (Hk(x, y)− 1)) , H0(x, y) = exp(−λ‖x− y‖1), x, y ∈ Rd. (60)

For classification tasks, we shall use the C-support vector classification (Boser et al.,
1992; Cortes and Vapnik, 1995) method

min
w,b,ξ

1
2wTw + C

n∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, · · · , n,

where xi, 1 ≤ i ≤ n are the given training data in two classes, yi ∈ {−1, 1}, 1 ≤ i ≤ n are the
corresponding labels, φ(xi) maps xi into a feature space, and C > 0 is the regularization
parameter. For multi-class classification, we adapt the “one-against-one” strategy that
trains N(N−1)

2 classifiers, where N is the number of classes, and predict the label of a new
input through majority voting.
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For regression tasks, we shall use the ε-support vector regression method

min
w,b,ξ,ξ∗

1
2wTw + C

n∑
i=1

(ξi + ξ∗i )

subject to wTφ(xi) + b− yi ≤ ε+ ξi
yi −wTφ(xi)− b ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, · · · , n,

where xi and yi, 1 ≤ i ≤ n are the input and output data, respectively, and C > 0, ε > 0
are given regularization parameters. Note that we shall use the Root Mean Square Error
(RMSE) to measure the performance of regression tasks.

Both the classification and regression tasks will be solved with the Sequential Mini-
mal Optimization (SMO) solver. The computational cost of this method is analyzed in
(Platt, 1998). According to (Platt, 1998), this algorithm does not involve matrix computa-
tions with the kernel matrices. This together with existence of regularization in C-support
vector classification and ε-support vector regression ensure the stability of the numerical
experiments in this section. As our focus is on the hierarchical kernels, we shall fix C = 1
and ε = 10−3 in all the tasks for fair comparison. For each task and each hierarchical kernel,
the hyperparameter λ in the hierarchical kernels (59) and (60) will be optimally chosen.

For evaluations with hierarchical Gaussian kernels, we implement with the thunder-
svm (Wen et al., 2018) to accelerate the training process. And for evaluations with hi-
erarchical exponential kernels, we directly implement the SVM module in Scikit-learn
since the datasets are relatively small. Notice that thundersvm only supports precom-
puted mode for custom kernels, which is inefficient and memory consuming for large scale
data. Thus, we directly modify their source codes for hierarchical kernels. More de-
tails about the implementation of thundersvm could be found in (Wen et al., 2017), and
our codes could be accessed via the github repository https://github.com/SaebaHuang/

Hierarchical-Kernel-in-Deep-Kernel-Learning.

For hierarchical Gaussian kernels, we will see that in all tasks, the best results are
obtained with G3 as the layer increases from 0 to 3. While for hierarchical exponential
kernels, we will see that the result is not improving as the number of layers increases. These
confirm our results in previous sections that as the number of layers increases, the RKHS
of hierarchical Gaussian kernels is expanding while the RKHS of hierarchical exponential
kernels remains the same. We present detailed results of the experiments as follows.

7.1 Scikit-learn moon scattering dataset with hierarchical Gaussian kernels

We generate a set of points representing moon scattering using Scikit-learn, and perform
evaluations with different hierarchical Gaussian kernels. We randomly choose 500 points as
the training set which is equally divided into two classes. For each hierarchal Guassian kernel
Gk, 0 ≤ k ≤ 3, the hyperparameter λ will be optimally chosen from [2−5, 2−4, · · · , 29, 210].
The results are tabulated in Table 1. We also plot the decision boundaries of corresponding
to the best λ in Figure 1. One could see that the decision boundary becomes tighter as the
number of layers increases.
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Kernel
log2(λ)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

G0 86.3% 87.2% 89.8% 98.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9% 99.8% 99.0%

G1 86.4% 88.6% 95.7% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9% 99.7% 99.3%

G2 90.4% 98.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.8% 99.5% 98.8%

G3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.8% 99.3% 99.4% 96.1% 90.1% 85.4% 83.2%

Table 1: Accuracy on randomly generated set of moon scattering points with different λ.
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Figure 1: Decision boundaries of different hierarchical Gaussian kernels with their own
optimal λ.
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7.2 CIFAR-10 dataset with hierarchical Gaussian kernels

For evaluations on CIFAR-10 dataset with hierarchical Gaussian kernels, the λ of each
layer is optimally chosen from [2−19, , 2−18, · · · , 2−8]. As shown in Table 2, the best result
is obtained with G3.

Kernel
log2(λ)

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8

G0 36.48% 38.03% 40.38% 43.01% 45.28% 48.13% 50.55% 53.73% 55.16% 54.30% 45.43% 29.84%

G1 36.48% 38.19% 40.88% 43.59% 46.00% 48.96% 51.16% 52.97% 53.29% 50.32% 35.68% 16.45%

G2 39.17% 42.04% 44.65% 46.91% 49.56% 52.15% 53.66% 54.13% 52.85% 48.45% 34.83% 16.81%

G3 49.09% 51.77% 54.41% 55.55% 53.97% 47.63% 38.05% 32.45% 31.93% 31.96% 20.76% 11.19%

Table 2: Accuracy of hierarchical Gaussian kernels on CIFAR-10 with different λ.

7.3 UCI Regression tasks with hierarchical Gaussian kernels

We also evaluate the hierarchical Gaussian kernels on the UCI regression datasets elevators,
kin40k, and servo. To read these datasets, we utilize code from the repository https:

//github.com/treforevans/uci_datasets. For each evaluation, we normalize the data
to be between −1 and 1, and perform 5-fold cross-validation. The results are presented in
Tables 3-5. One sees that the best test RMSE are obtained with G3 for each dataset.

Kernel
log2(λ)

-8 -7 -6 -5 -4 -3 -2 -1 0 1

G0 0.1320±0.0030 0.1227±0.0028 0.1165±0.0029 0.1119±0.0028 0.1077±0.0025 0.1051±0.0024 0.1032±0.0023 0.1021±0.0022 0.1021±0.0024 0.1068±0.0025

G1 0.1296±0.0030 0.1205±0.0029 0.1148±0.0029 0.1098±0.0027 0.1062±0.0025 0.1039±0.0024 0.1024±0.0023 0.1019±0.0024 0.1038±0.0025 0.1092±0.0026

G2 0.1181±0.0029 0.1130±0.0029 0.1081±0.0026 0.1052±0.0025 0.1032±0.0023 0.1020±0.0023 0.1017±0.0025 0.1037±0.0025 0.1077±0.0024 0.1163±0.0019

G3 0.1041±0.0023 0.1025±0.0023 0.1017±0.0023 0.1030±0.0024 0.1084±0.0026 0.1204±0.0021 0.1441±0.0023 0.1835±0.0025 0.2273±0.0028 0.2548±0.0035

Table 3: RMSE of hierarchical Gaussian kernels on elevators dataset with different λ.

Kernel
log2(λ)

-8 -7 -6 -5 -4 -3 -2 -1 0 1

G0 0.2540±0.0024 0.2409±0.0030 0.2397±0.0036 0.2148±0.0036 0.1738±0.0062 0.1102±0.0031 0.0715±0.0013 0.0460±0.0006 0.0310±0.0005 0.0340±0.0007

G1 0.2450±0.0026 0.2378±0.0033 0.2208±0.0033 0.1739±0.0024 0.1096±0.0019 0.0672±0.0012 0.0430±0.0007 0.0300±0.0007 0.0285±0.0006 0.0436±0.0009

G2 0.2357±0.0034 0.2074±0.0028 0.1576±0.0025 0.0922±0.0014 0.0578±0.0014 0.0384±0.0007 0.0282±0.0007 0.0292±0.0006 0.0400±0.0008 0.0668±0.0014

G3 0.0829±0.0011 0.0515±0.0012 0.0361±0.0007 0.0279±0.0005 0.0386±0.0008 0.0755±0.0016 0.1580±0.0023 0.2472±0.0022 0.2734±0.0022 0.2770±0.0022

Table 4: RMSE of hierarchical Gaussian kernels on kin40k dataset with different λ.

Kernel
log2(λ)

-7 -6 -5 -4 -3 -2 -1 0 1 2

G0 0.3481±0.0347 0.3258±0.0299 0.2813±0.0283 0.2364±0.0269 0.1851±0.0340 0.1632±0.0422 0.1561±0.0461 0.1440±0.0456 0.1568±0.0436 0.2007±0.0462

G1 0.3479±0.0332 0.3187±0.0304 0.2728±0.0284 0.2276±0.0305 0.1795±0.0372 0.1630±0.0454 0.1500±0.0465 0.1475±0.0489 0.1726±0.0477 0.2419±0.0465

G2 0.2991±0.0297 0.2571±0.0293 0.2027±0.0311 0.1732±0.0395 0.1581±0.0455 0.1430±0.0454 0.1457±0.0464 0.1717±0.0476 0.2255±0.0483 0.3212±0.0404

G3 0.1588±0.0437 0.1470±0.0434 0.1424±0.0461 0.1670±0.0439 0.2198±0.0483 0.3378±0.0396 0.4288±0.0337 0.4512±0.0329 0.4534±0.0329 0.4536±0.0329

Table 5: RMSE of hierarchical Gaussian kernels on servo dataset with different λ.
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7.4 LIBSVM regression datasets with hierarchical exponential kernels

Finally, we shall evaluate the hierarchical exponential kernels on the datasets bodyfat, mpg,
and triazines from LIBSVM. Similarly, we normalize the data to be between −1 and 1, and
perform 5-fold cross-validation for each evaluation. The results are presented in Tables 6-8.
One sees that the best test RMSE is not improving as the number of layers increases, which
justifies our results about hierarchical exponential kernels in Section 5.

Kernel
log2(λ)

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3

H0 0.3199±0.0201 0.3063±0.0200 0.2842±0.0205 0.2503±0.0214 0.2062±0.0244 0.1564±0.0285 0.1082±0.0331 0.0800±0.0354 0.0686±0.0361 0.0658±0.0360 0.0708±0.0362

H1 0.3199±0.0201 0.3063±0.0199 0.2843±0.0205 0.2504±0.0213 0.2064±0.0245 0.1582±0.0283 0.1110±0.0331 0.0816±0.0353 0.0721±0.0367 0.0718±0.0367 0.0792±0.0383

H2 0.2973±0.0202 0.2712±0.0208 0.2333±0.0222 0.1873±0.0261 0.1332±0.0304 0.0955±0.0346 0.0746±0.0356 0.0690±0.0359 0.0713±0.0373 0.0809±0.0375 0.0956±0.0397

H3 0.1360±0.0300 0.0953±0.0347 0.0743±0.0357 0.0669±0.0361 0.0676±0.0355 0.0753±0.0374 0.0914±0.0394 0.1184±0.0397 0.1714±0.0345 0.2605±0.0259 0.3228±0.0211

Table 6: RMSE of hierarchical exponential kernels on bodyfat dataset with different λ.

Kernel
log2(λ)

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3

H0 0.3115±0.0723 0.3050±0.0749 0.2922±0.0797 0.2755±0.0859 0.2474±0.0977 0.2281±0.1044 0.2053±0.1120 0.1949±0.1174 0.1936±0.1179 0.1934±0.1173 0.1988±0.1177

H1 0.3115±0.0723 0.3051±0.0749 0.2923±0.0796 0.2758±0.0857 0.2483±0.0974 0.2294±0.1037 0.2070±0.1117 0.1962±0.1169 0.1946±0.1182 0.1941±0.1191 0.1992±0.1213

H2 0.3002±0.0766 0.2865±0.0816 0.2649±0.0906 0.2380±0.1014 0.2197±0.1106 0.1989±0.1127 0.1946±0.1180 0.1932±0.1184 0.1951±0.1198 0.2006±0.1211 0.2170±0.1187

H3 0.2205±0.1105 0.1987±0.1127 0.1942±0.1181 0.1934±0.1176 0.1951±0.1181 0.2007±0.1185 0.2172±0.1190 0.2454±0.1121 0.2728±0.1017 0.2931±0.0935 0.3036±0.0883

Table 7: RMSE of hierarchical exponential kernels on pyrim dataset with different λ.

Kernel
log2(λ)

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3

H0 0.3969±0.0470 0.3924±0.0473 0.3866±0.0482 0.3758±0.0487 0.3668±0.0466 0.3577±0.0482 0.3495±0.0510 0.3429±0.0499 0.3370±0.0524 0.3382±0.0519 0.3365±0.0521

H1 0.3969±0.0470 0.3924±0.0473 0.3867±0.0482 0.3760±0.0488 0.3671±0.0466 0.3582±0.0486 0.3501±0.0513 0.3455±0.0507 0.3377±0.0528 0.3351±0.0515 0.3394±0.0542

H2 0.3903±0.0478 0.3824±0.0485 0.3716±0.0475 0.3628±0.0472 0.3545±0.0505 0.3478±0.0509 0.3398±0.0519 0.3376±0.0534 0.3339±0.0514 0.3358±0.0530 0.3401±0.0513

H3 0.3550±0.0500 0.3472±0.0513 0.3382±0.0505 0.3365±0.0526 0.3387±0.0513 0.3365±0.0511 0.3370±0.0495 0.3496±0.0453 0.3671±0.0481 0.3832±0.0489 0.3891±0.0465

Table 8: RMSE of hierarchical exponential kernels on triazines dataset with different λ.

8. Conclusion

Kernel methods constitute an important category of machine learning methodologies. They
enjoy solid mathematical foundations and good interpretability consequently. Motivated by
deep neural networks, which generate learning functions through successive composition of
activation functions and linear functions, a class of hierarchical kernels has appeared in the
literature recently. Such kernels are generated by successive composition of a base kernel and
a chosen univariate function. An important theoretical question about hierarchical kernels
is whether the expressive power of the kernel will be improving as the number of layer
increases. We investigate this question by studying the reproducing kernel Hilbert spaces
of hierarchical kernels. It is shown in the paper that the RKHS of hierarchical Gaussian
kernels and polynomial kernels is indeed expanding as the number of layer increases, while
the RKHS of hierarchical exponential kernels always remains the same. The results reveal
that we should not use the exponential kernels as bases kernels in deep kernel learning. In
contrast, Gaussian kernels and polynomial kernels are good choices.

Numerical experiments on the Scikit-learn demo datasets, the CIFAR-10, and UCI
datasets confirm that the learning ability of the hierarchical Gaussian kernel is improving
as the number of layer increases. And experiments on datasets from LIBSVM indicate that
the learning ability of the hierarchical exponential kernel is not improving as the number
of layer increases. These numerical findings justify the theorems in the paper.

26



Hierarchical Kernels in Deep Kernel Learning

Finally, we remark that the hierarchical kernels considered in the paper has a simple
structure. For applications to complicated learning problems, hierarchical kernels with more
sophisticated structures should be investigated in the future.
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