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Abstract

Set-valued classification, a new classification paradigm that aims to identify all the plau-
sible classes that an observation belongs to, improves over the traditional classification
paradigms in multiple aspects. Existing set-valued classification methods do not consider
the possibility that the test set may contain out-of-distribution data, that is, the emergence
of a new class that never appeared in the training data. Moreover, they are computation-
ally expensive when the number of classes is large. We propose a Generalized Prediction
Set (GPS) approach to set-valued classification while considering the possibility of a new
class in the test data. The proposed classifier uses kernel learning and empirical risk mini-
mization to encourage a small expected size of the prediction set while guaranteeing that
the class-specific accuracy is at least some value specified by the user. For high-dimensional
data, further improvement is obtained through kernel feature selection. Unlike previous
methods, the proposed method achieves a good balance between accuracy, efficiency, and
out-of-distribution detection rate. Moreover, our method can be applied in parallel to all
the classes to alleviate the computational burden. Both theoretical analysis and numerical
experiments are conducted to illustrate the effectiveness of the proposed method.

Keywords: set-valued classification, out-of-distribution, kernel learning, empirical risk
minimization, statistical learning theory

1. Introduction

The traditional multicategory classification paradigms have limitations in several aspects:
1) They return a single class label as the prediction for each data point without a confidence
measure attached. This means that the user has no idea of the level of correctness for the
decision made. 2) They are forced to always return a class prediction for any point, even
when the chance of mistake is high, e.g., for data points near the classification boundary. In
some high-stake fields like medicine, the military, or autonomous vehicles, these incorrect
decisions caused by high uncertainty can lead to severe and irreversible consequences. In
such cases, it may be preferable to make a “partial” prediction (to be defined later) or even
abstain from making a prediction until there is more clarity or even human intervention. 3)
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Standard single-valued classifiers are obtained by minimizing the overall misclassification
rate, ignoring the varying importance of each class. This is problematic in such applications
as medical diagnosis and triage, where the cost of misclassifying someone who needs im-
mediate care into a non-urgent group is clearly much higher than the cost of misclassifying
someone who does not require immediate attention to the urgent class. Additionally, this
approach can be susceptible to imbalanced data, where the minor class may be misclassified
as the major class without significantly deteriorating overall accuracy. 4) The conventional
classification assumes that the future data points have the same distribution as the training
data, which may not be practical in the open world. If a new class emerges, it becomes
necessary to detect those out-of-distribution (OOD) or anomaly points. In public health, for
example, confidently identifying the strain of a prevailing virus in a community is essential,
but it is also important to detect new strains, such as a new COVID-19 variant.

To reach a certain confidence guarantee and reduce the risk of incorrect predictions, it
is hence desirable to extend single-valued prediction to assigning multiple possible labels for
an observation. Conformal Prediction (CP) (Vovk et al., 2005; Shafer and Vovk, 2008; Bal-
asubramanian et al., 2014) is an increasingly popular framework that outputs a prediction
set with a pre-specified confidence guarantee. Classification with Confidence (Lei, 2014;
Wang and Qiao, 2018; Sadinle et al., 2019), another approach, considered the set-valued
classification from an optimization perspective. In particular, the goal is to minimize the
expected size of the prediction set while controlling class-specific error rates. However, these
set-valued classification methods are not designed with the capacity of OOD detection.

As for whether to make predictions for those observations with high uncertainty, Her-
bei and Wegkamp (2006); Bartlett and Wegkamp (2008); Ramaswamy et al. (2015) and
Charoenphakdee et al. (2021) proposed and developed Classification with a Reject Option
(CRO) by training a classifier and a rejector at the same time. A rejector determines when
to refuse to make a classification for those difficult points, by assigning all labels to those
observations (this is coined “ambiguity rejection”). For multicategory classification with K
classes, Zhang et al. (2018) proposed Classification with Reject and Refine Option, which
allows less difficult, but still uncertain, observations to be assigned k labels (1 < k < K).
Although CRO is more prudent than single-valued classification due to the reject or/and
refine options, it lacks an explicit confidence guarantee and is not capable of OOD detection.

To improve on the practice of minimizing the overall misclassification rate that treats all
classes equally for imbalanced data, Qiao and Liu (2009); Qiao et al. (2010) up-weighted the
priority or minor classes, but these approaches still consider the overall, albeit weighted,
misclassification rate. The area under the ROC curve has been used as an alternative
performance metric to the overall misclassification rate; however, in some fields, an explicit
accuracy measure is still required. The Neyman-Pearson classification (Rigollet and Tong,
2011; Tong et al., 2016) aimed to control the type I error (incorrectly assigning the positive
label to a negative observation) while minimizing the type II error. However, this is still a
single-valued classification, and it cannot control the error rate for both classes concurrently.
Moreover, it is unclear how to control the error rates for multiple priority classes in the
multicategory classification setting.

The task to detect anomalies or new classes that do not exist in the training data is
related to out-of-distribution (OOD) detection (Yang et al., 2021) or open-set recognition
(OSR), but they typically fall under the umbrella of the single-valued classification and suffer

2



Set-valued Classification with Out-of-distribution Detection for Many Classes

the same issues mentioned above. Recent works on adapting set-valued classifiers to handle
OOD detection (Hechtlinger et al., 2018; Guan and Tibshirani, 2022) often focus on using
the conformal prediction framework: first, a score function is obtained; second, a cutoff is
determined using conformal splits; third, new observations are classified by thresholding
the score with the cutoff. Cautious Deep Learning (CDL) (Hechtlinger et al., 2018) used
the covariates’ density given class as the score. However, the acceptance region for each
class is learned with no regards to any other class; in the sense of minimizing the prediction
set size, this approach was shown to be suboptimal (Dümbgen et al., 2008). Balanced and
Conformal Optimized Prediction Sets (BCOPS) (Guan and Tibshirani, 2022) considered
the classification problem between a given class k and the entire test data and thresholded
the resulting estimates of P(Y = k | X = x). Both methods depend on probability or
density estimation, which is a challenging task when the dimension is large (Wu et al.,
2010; Zhang et al., 2013a). It is hence desirable to propose a method without estimating
probability. Most importantly, score functions in the aforementioned works were estimated
without the goal of ultimately minimizing the prediction set size in mind. For example,
though thresholding the true score P(Y = k | X = x) can guarantee the minimization of
the prediction set size, empirically a finite-sample estimate may not share this property.

In this article, we propose the Generalized Prediction Set (GPS) method to simultane-
ously solve the above limitations of single-valued classification, and overcome the difficul-
ties in current set-valued classification methods. We have made three contributions in this
article. First, we propose a new large-margin set-valued classification method with the ca-
pacity of OOD detection without involving probability estimation. Our model is estimated
by minimizing the empirical prediction set size penalized by a term that encourages OOD
detection, subject to a bounded misclassification rate for each class. Second, using weighted
kernel and regularization, we enable feature selection for our method in high-dimensional
settings. Finally, we conduct a thorough theoretical analysis of the proposed method, show-
ing the convergence rate of the gap between its true and empirical misclassification rates,
the convergence rate of the excess risk, and its variable selection consistency. It is worth
noting that, in contrast to methods that solve an optimization problem involving all the
classes simultaneously, our proposed method can be conducted for each class separately,
hence is well-positioned for parallel computing, allowing fast classification even when there
are many classes. The code is publicly available at https://github.com/Zhou198/GPS.

2. Preliminaries

We first review the background of the set-valued classification and the out-of-distribution
detection problems.

2.1 Set-valued Classification

Consider a multicategory classification setting with input space X = Rp and labels Y =
{1, · · · ,K}. Let (X, Y ) ∈ X × Y follow an unknown distribution P. One way to obtain
set-valued classifiers is to conduct a series of hypothesis tests that determine if the test
observation belongs to a given class k. The set of all observations that are not rejected as
being from class k is called the acceptance region for class k, denoted as Ck ⊂ X . Given all
the Ck, k ∈ [K], a set-valued classifier φ : X 7→ 2Y can be defined as φ(x) := {k : x ∈ Ck},
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that is, all the classes whose acceptance regions contain x. Note that set-valued classification
is different from multi-label classification (Zhang and Zhou, 2007; Sadinle et al., 2019), where
each observation in the former has only one true label while the observation in the latter
has multiple ground true labels.

Typically, there are two competing metrics for a set-valued classifier, namely, accuracy
and efficiency. The accuracy may be quantified by the (unconditional) misclassification rate
P (Y 6∈ φ (X)) or class-specific misclassification rate P (Y 6∈ φ (X) | Y = k), with the latter
being the type I error rate for the hypothesis test. The efficiency (See the definition in
Appendix B.4) is related to the size of the prediction set |φ(x)| :=

∑K
k=1 1{x ∈ Ck}. A set-

valued classifier with a small prediction set on average is more efficient and informative but
may be less accurate. On the other hand, a set-valued classifier with |φ(x)| ≡ K everywhere
is always correct, but contains no useful information, and hence is inefficient. In practice,
one may want to balance the two metrics and obtain a classifier with both high accuracy
and high efficiency. Classification with Confidence (Lei, 2014; Sadinle et al., 2019; Wang
and Qiao, 2018, 2022) obtained a prediction set by deliberately maximizing the expected
efficiency while controlling class-specific error rates. Denis and Hebiri (2015, 2017) worked
with its dual problem, minimizing error rates with the prediction set size controlled.

Conformal Prediction (CP) (Vovk et al., 2005; Shafer and Vovk, 2008; Lei et al., 2013),
under the assumption of exchangeable data distribution, is a framework for constructing pre-
diction sets with a controlled error rate γ. Specifically, given the training data {(Xi, Yi)}ni=1

and the queryXn+1 associated with an unknown label Yn+1, CP produces a prediction set φ̂
with P(Yn+1 6∈ φ̂(Xn+1)) ≤ γ. For example, in regression problems, a conformal prediction
set for the query Xn+1 can be defined as φ̂(Xn+1) := {y : 1

n+1

∑n+1
j=1 1{sj(y) ≤ sn+1(y)} ≥

γ}, where sj(y) := −|f̂y(Xj) − Yj | is the score function, and f̂y is the regression function
trained using {(Xi, Yi)}n+1

i=1 with Yn+1 = y. The computation is expensive in conformal
prediction since one must retrain the model for each observation with its possible labels.
Lei et al. (2013); Lei (2014); Lei et al. (2015) used the split-conformal method to produce
a prediction set with low computational cost. It is worth noting that conformal predic-
tions only guarantee accuracy, but their efficiency is not explicitly optimized; instead, the
efficiency depends on the choice of score functions.

The Classification with Reject Options (CRO) literature typically considers only rejec-
tions due to ambiguity. Herbei and Wegkamp (2006) and Ramaswamy et al. (2015) used
0-d-1 loss to quantify the loss for different prediction errors. For example, each misclassifi-
cation costs 1 and each rejection costs a pre-specified d ∈ [0, (K−1)/K]. The Bayes optimal
rule (Chow, 1970) under the 0-d-1 loss predicts label k to x if k = argmaxk′ P(Y = k′ | x)
and P(Y = k | x) > 1 − d, or rejects to predict x otherwise (in this case, we may think of
|φ(x)| = K). Bartlett and Wegkamp (2008) used the bent hinge loss as a surrogate to the
0-d-1 loss and proved the Fisher consistency. Zhang et al. (2018) introduced a refine option
to consider smaller prediction sets with 1 < |φ(x)| < K. The CRO framework does not
explicitly control the accuracy or the efficiency.

2.2 Out-of-distribution (OOD) Detection

Out-of-distribution (OOD) detection aims to identify anomaly observations that do not
belong to the same distributions as the existing observations. We use the terms OOD
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and anomaly interchangeably. Commonly used anomaly detection methods include one-
class SVM (OCSVM), deep one-class classification (Ruff et al., 2018), density level set
estimation (Breunig et al., 2000; Chen et al., 2017), and positive-unlabeled learning (PU
learning) (du Plessis et al., 2014).

Suppose we have a random sample {xi}mi=1 from X . Let Φ : X → H be a kernel map
from the input space to the feature space. OCSVM (Schölkopf et al., 2000) aims to separate
data features from the origin with a maximum margin. The OCSVM marks an observation
x as an anomaly if the decision function f(x) := w>Φ(x)−ρ yields f(x) < 0, wherew and ρ
are obtained by solving minw,ρ

1
2‖w‖

2 + 1
mν

∑m
i=1 ξi− ρ, subject to w>Φ(xi) ≥ ρ− ξi, ξi ≥

0, i ∈ [m]. Here the tuning parameter ν controls the number of observations treated as
anomalies. Ruff et al. (2018, 2021) achieved anomaly detection using deep learning.

Steinwart et al. (2005) showed that anomaly detection can be achieved by solving a
classification problem between all the normal, existing, classes combined and the new OOD
class, assuming that the proportion of the OOD class is known. Motivated by this observa-
tion, they proposed to train a cost-sensitive SVM between these two classes. To the same
token, by having prior information about the OOD class, Liu et al. (2018) proposed Open
Category Detection with a theoretical guarantee to achieve a pre-specified OOD detection
rate via estimating the corresponding distribution. However, in practice, labeled OOD class
data may be not observed. du Plessis et al. (2014, 2015) proposed PU learning to classify
between the entire training data and the entire test data.

OOD detection can also be done in conjunction with a standard classification task. For
example, Jumutc and Suykens (2013) and Hanczar and Sebag (2014) conducted two sepa-
rated one-class SVMs in order to achieve binary classification and OOD detection. Other
related works are open-set recognition (OSR) (Bendale and Boult, 2015) and generalized
out-of-distribution detection (Yang et al., 2021). However, the classification component
of their procedures, if any, still falls into the scope of the single-valued, as opposed to
set-valued, classification.

3. Methodology

We first formulate the proposed GPS method as an optimization problem, which is decou-
pled into several sub-problems. To solve each sub-problem, we use kernel learning to find a
decision function based on the training data from each of the K classes and the test data.
Finally, we extend the method to kernel feature selection, to improve its performance for
high-dimensional data.

3.1 Overview of Methodology

Suppose our training sample and test sample are two i.i.d. samples from distribution P
and distribution Q, respectively. There are K existing normal classes in both P and Q;
in addition, there are potentially OOD classes in Q. Except for the OOD classes, the two
distributions are only different in their prior probabilities for the K classes. The below
assumption indicates that we only allow label shifts between the training and test data.

Assumption 1 For each k ∈ [K], the conditional probability density of X given class k,
pk(x) = p(x | Y = k), is the same between distribution P and distribution Q.
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Remark 2 Assumption 1 in the OOD detection and open-set recognition literature is mo-
tivated by the emergence of a novel class (du Plessis et al., 2015; Yang et al., 2021; Guan
and Tibshirani, 2022; Katz-Samuels et al., 2022; Garg et al., 2022). For instance, in the
field of autonomous driving, the visual characteristics of known entities such as pedestrians,
vehicles, and traffic signs remain constant. However, the inclusion of novel elements like
electric scooters or unanticipated obstructions shifts the overall object distribution within
the environment. In cybersecurity, the prevailing network activity tied to current intrusion
types remains unaltered, yet the advent of a new attack transforms the frequency distribu-
tion across known attacks. In the context of natural language processing, e.g., analyzing
sentiment in Yelp reviews, the linguistic attributes conveying sentiment tones (positive or
negative) remain steadfast, but the emergence of new emotional tones reshapes the preva-
lence of sentiments.

There are some related works on domain adaption to relax the assumption of identical
class-conditional density pk(x) between training and test distribution. For instance, Ta-
chet des Combes et al. (2020) proposed a generalized label shift to enhance its scope. In par-
ticular, they assumed the identical class-conditional density holds in a feature space, namely,
there exists a representation mapping g̃ such that pP(g̃(X) | Y = k) = pQ(g̃(X) | Y = k).
However, it relies on an extra assumption of the partition in its feature space. Wu et al.
(2019); Kumar et al. (2020) focused on relaxed label shift setting by assuming there is a
minor divergence between class-conditional distributions, but the practicality of ascertain-
ing this divergence remains a challenge (Garg et al., 2023). Zhang et al. (2013b); Gong
et al. (2016) studied the location-scale generalized target shift (LS-GeTarS): by assuming
there exists an affine transformation for each dimension of X given Y between the source
and target domain, one can use the kernel embedding method to match the distribution of
transformed labeled data from the source domain and unlabeled data from the target domain.

To extend our future work under the scenario of location-scale generalized target shift
for normal classes, one potential strategy is to apply our method on the test data and trans-
formed training data returned from the LS-GeTarS method.

Let φ(·) be a set-valued classifier. Our goal is to maximize both efficiency and accuracy
of φ(·) for future test data drawn from Q. To this end, consider minimizing the prediction
set size with the class-specific misclassification rates bounded:

min
φ

EQ [|φ(X)|] , s.t. PQ (Y 6∈ φ(X) | Y = k) ≤ γk for k ∈ [K], (1)

where the upper bound γk of the class-specific misclassification rate defined in the context of
set-valued classification can be arbitrarily small. The inherent feasibility of the constraint in
Problem (1) remains intact regardless of the true Bayes error (in single-valued classification).
Even if the Bayes error is high, the stringent imposition of γk compels the method to produce
larger prediction sets encompassing the true class label. In particular, the trivial case is to
return a prediction set including all class labels, leading to a zero misclassification rate in the
set-valued paradigm. On the other hand, a higher Bayes error signifies that observations
face difficulty in being accurately differentiated from other classes due to intrinsic class
overlaps. This underscores the need for set-valued classification to report plausible class
labels, mitigating the risk caused by overly confident single-valued predictions.

6



Set-valued Classification with Out-of-distribution Detection for Many Classes

Mostly different from Classification with Confidence methods, we drop the common
restriction |φ(X)| ≥ 1 everywhere in this paper. This means that it is possible for φ(X)
to be empty for certain observations (i.e., |φ(X)| = 0), implying that X is unlike any
of the existing classes in the training data. Note that observations with |φ(X)| = 0 and
|φ(X)| = K correspond to OOD-rejected observations and ambiguity-rejected observations,
respectively. They are rejected for different reasons. Observations that are easy to classify
generally should have |φ(X)| = 1; the decision with 1 < |φ(X)| < K corresponds to the
refine option in Zhang et al. (2018).

Since EQ [|φ(X)|] does not depend on the class label Y , it may be assessed using the
unlabeled test data from Q. Moreover, since we assume that pk(x) is the same between
both distributions, we have that PQ (Y 6∈ φ(X) | Y = k) = PP (Y 6∈ φ(X) | Y = k). This
allows us to make use of the labeled training data from P to assess the misclassification
rate in the constraint.

Recall that the set-valued classifier φ(·) is defined using allK acceptance regions, φ(x) :=
{k : x ∈ Ck}. We use a decision function fk : X → R to define Ck, e.g., Ck := {x : fk(x) ≥ 0}.
Define the size (probability measure) of Ck as R(fk) := PQ(fk(X) ≥ 0). Under these
notations, EQ [|φ(X)|] =

∑K
k=1R(fk). Therefore, the optimization (1) can be decoupled to

K separate optimization problems: for each k ∈ [K], we solve

min
fk∈F

R(fk), s.t. R+(fk) ≤ γk, (2)

where R+(fk) := PQ(fk(X) < 0 | Y = k) and F is a function space for fk. Throughout
this article, we consider the case γk = γ for all k for simplicity without loss of generality.
Problem (2) is equivalent to the Neyman-Pearson classification (Scott and Nowak, 2005;
Rigollet and Tong, 2011) where class k is considered as the null class and the test data is
the alternative class. Guan and Tibshirani (2022) used the plug-in method to approximate
the Bayes optimal rule (see Theorem 9) of Problem (2).

In practice, one aims to estimate fk (and hence φ) based on labeled training data
{(xi, yi = k)}i∈Gk along with unlabeled test data {xj}j∈Gte , where Gk (with size nk := |Gk|)
and Gte (with size m := |Gte|) are index sets for observations in class k of the training
data and the unlabeled test data, respectively. The expectations R+(fk) and R(fk) can be
replaced by their empirical estimates from the training and test data respectively:

min
fk∈F

1

m

∑
j∈Gte

1(fk(xj) ≥ 0), s.t.
1

nk

∑
i∈Gk

1(fk(xi) < 0) ≤ γ, (3)

3.2 Surrogate Loss and Kernel Learning

It is challenging to solve Problem (3) due to the use of the indicator function in both the
objective and the constraint. A common practice is to replace it with a convex surrogate
loss function. Here we use hinge loss `(u) = [1−u]+ = max(0, 1−u) to replace 1{u < 0} in
the constraint of (3); likewise, 1{u ≥ 0} in the objective is replaced by `(−u). See Figure 1.
In addition, we use penalty function J(fk) to control the complexity of decision functions
so that Problem (3) becomes:

min
fk∈F

1

m

∑
j∈Gte

[1 + fk(xj)]+ + λJ(fk), s.t.
1

nk

∑
i∈Gk

[1− fk(xi)]+ ≤ γ. (4)
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Figure 1: 0-1 loss, hinge loss, and two Huberized loss functions.

Here the decision function takes the form of fk(x) := gk(x)− ρk, where gk belongs to a
Reproducing Kernel Hilbert Space (RKHS), HK , associated with a kernel function K(·, ·).
Throughout this article, we use the Gaussian kernel K(x,x′) = exp(−‖x − x′‖2/σ2) as
used in OCSVM (Schölkopf et al., 2000). Moreover, following the common practice in the
anomaly detection literature (Jumutc and Suykens, 2013; Schölkopf et al., 2018; Shilton
et al., 2020), the penalty J(fk) is taken as 1

2‖gk‖
2
HK
− ρk. Employing this penalty and

the formulation of fk in the optimization of (4) leads to an increased distance between the
origin and the hyperplane gk(x) = ρk (Schölkopf et al., 2000). The pursuit of this enlarged
spatial distance results in a narrower acceptance region Ck dedicated to the class k in the
feature space. This consequently helps to easily identify potential OOD points, leading to
an improved OOD detection performance.

After introducing some slack variables and using the KKT conditions (see details of the
derivations in Appendix A), Problem (4) yields

f̂k(x) =
∑
i∈Gk

α̂iK(x,xi)−
∑
j∈Gte

β̂jK(x,xj)− ρ̂k,

and hence the acceptance regions and the set-valued classifier can be obtained accordingly.
The α̂i, β̂j ’s are the solutions to the below quadratic programming:

min
α,β,θ

1

2

(
α>G1α+ β>G2β − 2α>G3β

)
− 1>nk

α− 1>mβ + nkθγ,

s.t. 0 � α � θ · 1nk
, 0 � β � C · 1m, 1>nk

α− 1>mβ = 1, θ ≥ 0,

(5)

where G1[i, i′] = K(xi,xi′), G2[j, j′] = K(xj ,xj′), G3[i, j] = K(xi,xj), α = (. . . , αi, . . .)
>,

β = (. . . , βj , . . .)
>, i, i′ ∈ Gk, j, j′ ∈ Gte, C = (λm)−1, and 1nk

denotes a vector with length

nk and all elements taking value 1. The offset ρ̂k can be obtained by plugging f̂k back to
the Problem (4) after solving for α̂i and β̂j ’s.

3.3 Kernel Feature Selection

For high-dimensional data, irrelevant or noisy features may degrade set-valued classifiers’
performance in terms of efficiency, accuracy, and OOD detection. Feature or variable se-
lection is necessary in these scenarios. For linear learning, sparse learning using sparsity
penalties (Tibshirani, 1996; Zou and Hastie, 2005; Zhang, 2010) has been effective for feature
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selection. For kernel learning, Allen (2013) and Chen et al. (2018) studied weighted kernel
feature selection methods. The main idea of these methods is to compute the kernel matrix
based on weighted features with a weight vector d, and then impose a sparsity-inducing reg-
ularization for weight d in the objective function. Adopting this idea, our decision function
fk can be solved using the below optimization problem that enables kernel feature selection:

min
d,α,ρk

1

m

∑
j∈Gte

` (−fk(d ◦ xj)) + λ1J(fk(d ◦ ·)) + λ2‖d‖1,

s.t.
1

nk

∑
i∈Gk

` (fk(d ◦ xi)) ≤ γ, 0 � d � 1,

(6)

where ◦ stands for the Hadamard product. Our decision function is defined as fk(d ◦x) :=
gk(d ◦x)− ρk. The first term gk(d ◦ ·) comes from a RKHS associated with kernel function
Kd(·, ·). Here we define Kd(xi,xj) := K(d ◦ xi,d ◦ xj). By the Representer theorem
(Kimeldorf and Wahba, 1971), for some αi and ρk, the minimizer to (6) satisfies

f̂k(d ◦ x) =

nk+m∑
i=1

αiKd(x, x̃i)− ρk,

where x̃i comes from the training data associated with label k when i = 1, . . . , nk and
from the unlabeled test data when i = nk + 1, . . . , nk +m. The model complexity function
is taken as J(fk(d ◦ ·)) := 1

2

∑nk+m
i,j=1 αiαjKd(x̃i, x̃j) − ρk. Define the kernel matrix Kd as

Kd[i, j] := Kd(x̃i, x̃j). Let C1 := (λ1m)−1 and C2 := λ2/λ1. Then we rewrite (6) as

min
d,α,ρk

1

2
α>Kdα− ρk + C1

∑
j∈Gte

` (ρk −Kd[j, :]α) + C2‖d‖1,

s.t.
1

nk

∑
i∈Gk

` (Kd[i, :]α− ρk) ≤ γ, 0 � d � 1.

(7)

Neither the objective nor the first constraint in (7) is convex with respect to (d,α, ρk)
despite the convex surrogate loss function (which we chose to be the hinge loss). To resolve
this issue, we use an iterative approach (the pseudocode is outlined in Appendix B.1) by
alternatively fixing d while optimizing with respect to (α, ρk), which amounts to convex
optimization, and fixing (α, ρk) while optimizing with respect to d. The latter optimization
is still not convex. But we can use a linear approximation of the kernel matrix with respect
to d to make it convex (Zou and Li, 2008; Lee et al., 2012). In particular, we approximate
the kernel matrix by expanding it at d′:

Kd[i, j] ≈ Kd′ [i, j] +∇Kd′ [i, j]
>(d− d′).

Define an (nk +m)× (nk +m) matrix Ad′ with Ad′ [i, j] := Kd′ [i, j]−∇Kd′ [i, j]
>d′ and a

p× (nk +m) matrix Bα with Bα[:, i] :=
∑nk+m

j=1 αj∇Kd′ [i, j], where p is the dimension of
the data. These allow to approximate (7) with (α, ρk) fixed:

min
d

1

2
d>Bαα+ C1

∑
j∈Gte

`
(
ρk −Ad′ [j, :]α−Bα[:, j]>d

)
+ C2‖d‖1,

s.t.
1

nk

∑
i∈Gk

`
(
Ad′ [i, :]α+ Bα[:, i]>d− ρk

)
≤ γ, 0 � d � 1.

(8)
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The above optimization is convex with respect to d. After we have obtained the decision
function f̂k(d◦ ·) for k ∈ [K], a set-valued classifier can be constructed as φ̂(x) = {k ∈ [K] :
f̂k(d ◦ x) ≥ 0}. If |φ̂(x)| = 0 for some x, then x is determined as an OOD point.

4. Statistical Learning Theory

In this section, we study the theoretical properties of our proposed classifier. We will focus
on the kernel learning setting. Without loss of generality, we consider the decision function
for class 1. For simplicity, we abuse the notation slightly by letting f(x) = f1(d ◦ x),
omitting the weight d.

Let f be an element from the hypothesis space defined as Fs,s′ = {f : f(x) = g(x)−ρ, g ∈
HKd

, J(f) ≤ s2, ‖d‖1 ≤ s′,0 � d � 1}. Denote a subspace of it that contains decision func-
tions with bounded class 1 error rate as F+

s,s′(γ) =
{
f ∈ Fs,s′ : EQ [`(f(X)) | Y = 1] ≤ γ

}
,

and denote its empirical counterpart as F̂+
s,s′(γ) = {f ∈ Fs,s′ : 1

n1

∑
i∈G1 `(f(xi)) ≤ γ}.

These allow us to consider an optimization problem by moving the penalties J(f) and ‖d‖1
to the constraints. Specifically, we consider

argmin
f∈F̂+

s,s′ (γ)

1

m

∑
j∈Gte

` (−f(xj)) . (9)

Denote P (f(X) ≥ 0 | Y = 1) and E [`(f(X)) | Y = 1] as risk functions of class 1 under
the 0-1 loss and the ` loss, respectively. Theorem 3 shows one can bound the former by
controlling the empirical counterpart of the latter.

Theorem 3 Assume κ = supx∈X
√
Kd(x,x), and the loss function ` in (9) has a sub-

derivative bounded by c := supu |`′(u)|. Let f̂ be a solution to (9). With probability at least
1− ζ over the training sample (incl. G1 and Gte), we have

EQ
[
`(f̂(X)) | Y = 1

]
≤ 1

n1

∑
i∈G1

`(f̂(xi)) + rn1(ζ, s, s′), (10)

where rn1(ζ, s, s′) = (
√

2s+2)cκ√
n1

(
2 + 3

√
2 log(2/ζ)

)
.

For the Gaussian kernel employed throughout this article, κ = 1. It is noteworthy to
highlight that the Gaussian kernel’s shift-invariant property allows the effect of s′ on d to
be absorbed into κ due to the fact of Kd(x,x) = exp(−‖d ◦x− d ◦x‖2/σ2) = 1 regardless
the restriction ‖d‖1 ≤ s′. The shift-invariant property of the Gaussian kernel also extends
to other potential kernels, such as the Laplace kernel and the Cauchy kernel.

Theorem 3 applies to any convex loss function ` bounded from below by the 0-1 loss
with a Lipschitz constant c satisfying |`(u1) − `(u2)| ≤ c|u1 − u2| for any u1 and u2. In
particular, c = 1 for the hinge loss, the Huberized squared hinge loss (see Appendix B.2),
and the logistic loss; the exponential loss has a Lipschitz constant only when the input space
is bounded.

Bounding the empirical `-risk 1
n1

∑n1
i=1 `(f̂(xi)) by γ may still lead to EQ

[
`(f̂(X)) | Y =

1
]

exceeding γ. Hence, to better control the true misclassification rate, one can strengthen

the constraint by bounding 1
n1

∑n1
i=1 `(f̂(xi)) by γ − ε with ε = rn1(ζ, s, s′).

10
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Let the `-ambiguity be R`(f) := EQ[`(−f(X))]. Theorem 4 shows how the sample size
and hypothesis space affect the convergence of the estimation errorR`(f̂)−inff∈F+

s,s′ (γ)R`(f).

Theorem 4 Under the assumption in Theorem 3 with Huberized squared hinge loss, let
ε = rn1(ζ, s, s′) and

f̂ = argmin
f∈F̂+

s,s′ (γ−ε)

1

m

∑
j∈Gte

` (−f(xj)) .

With probability at least 1− 2ζ, we have

(1) EQ
[
`(f̂(X)) |Y = 1

]
≤ γ; (2) R`(f̂)− inf

f∈F+
s,s′ (γ)

R`(f) ≤ 2rm(ζ, s, s′)+
(4 + δ)rn1(ζ, s, s′)

γ − 2rn1(ζ, s, s′)
,

where m is the size of the sample from the distribution Q.

In order to ensure an estimation f̂ ∈ F+
s,s′(γ), by Theorem 3, we restrict the hypothesis

space as F̂+
s,s′(γ−ε). In this setting, the estimation error converges at a rate of O( 1√

m
+ 1√

n1
).

This indicates it is possible for the empirical `-ambiguity to converge to its minimum in a
given hypothesis space using our method. Note that Theorem 4 also applies to the hinge
loss (where δ = 0).

Proposition 5 allows to bound the excess ambiguity by the excess `-ambiguity.

Proposition 5 (Rigollet and Tong, 2011) Let R(·) and R+(·) be defined using the 0-1 loss
as in (2). Given any function f̃ , the following inequality holds

R(f̃)− inf
R+(f)≤γ

R(f) ≤ R`(f̃)− inf
R+(f)≤γ

R`(f).

Proposition 5 shows that we can control the excess ambiguity by controlling the excess
`-ambiguity using a good estimate f̂ .

Let d∗ = (d∗t ) be the weight in f∗ ∈ arginff∈F+
∞,p(γ)R`(f). The important and unim-

portant features are referred as those x·,t with d∗t > 0 and d∗t = 0, respectively. Theorem 6

shows feature selection consistency in terms of the sign of weight d̂ under some conditions.

Theorem 6 Consider the hypothesis space as a Gaussian kernel RKHS and the input space
X is bounded. Let a Lipschitz continuous loss function `(u) be differentiable, and d̂ = (d̂t) be

the solution to (9). Assume f∗ comes from the RKHS and ∂EQ[`(−f∗(X))]
∂dt

∣∣∣
dt=0, dt′=d

∗
t′ , ∀t

′ 6=t
are negative and non-negative for those important and unimportant features x·,t, respec-
tively, then

P
[
sign(d̂t) = sign(d∗t )

]
−→ 1, t ∈ [p].

Under the assumption for the partial derivatives, the optimization procedure in (9) will
lead to a solution where the weight d̂t > 0 for important features and = 0 for unimportant
features, respectively, for a large enough sample. Similar assumptions were used in Fan and
Peng (2004) and Fan and Lv (2010).
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5. Numerical Studies

For the GPS methods, we use cvxopt and scipy in Python to solve the convex optimiza-
tion problems involved. For competing set-valued classification methods, e.g., one-class
SVM with split-conformal (Lei et al., 2013) (OCSVM), one-versus-rest SVM with split-
conformal, CDL (Hechtlinger et al., 2018), and BCOPS-RF (Guan and Tibshirani, 2022)
involving Random Forest, we use their implementations in the scikit-learn library. We
report the empirical class-specific accuracy, the efficiency, and the OOD detection rate.
Furthermore, we report AUC-Det (the area under the curve of OOD detection rate v.s.
accuracy) and AUC-Eff (the area under the curve of efficiency v.s. accuracy) to assess the
overall performance of set-valued classifiers across various accuracies. See their definitions in
Appendix B.4. We report the average of these metrics over 200 replications on a completely
new set of test data. The implementation details are in Appendix B.5.

It is difficult to conduct an apple-to-apple comparison based on the three metrics: ac-
curacy, efficiency and OOD detection rate, as a higher accuracy for normal classes is often
associated with a lower efficiency and a lower OOD detection rate. Following Wang and
Qiao (2018, 2022); Guan and Tibshirani (2022), we make use of the split-conformal method
(Lei et al., 2013; Lei, 2014; Lei et al., 2015) to make the accuracy of all methods roughly
the same, so that methods may be compared in terms of the efficiency and the detection
rate. Specifically, let the decision rule f̂k learned from each method be the conformal score
function. Given any class k, we randomly split the data into the estimation set and the cali-
bration set. We use the first set to train the classifier and the score function, and the second
part to conduct the calibration and parameter tuning. A threshold τ̂k is taken as (γ×100)-
th percentile of the scores among labeled data in the calibration set, given the pre-specified
significance level γ. Finally, the prediction set of a given x is {k ∈ [K] : f̂k(x) ≥ τ̂k}. More-
over, when f̂k(x) < τ̂k for all k ∈ [K], x is determined to be an OOD point. This decision
rule applied on the unlabeled data in the calibration set helps us to select an optimal tuning
parameter with the smallest prediction set size. The above split conformal calibration step
is applied to all methods, ensuring that class-specific accuracy is 1− γ on expectation.

5.1 Simulations

In this section, we conduct comparisons on two synthetic data sets.

Example 1: We generate data from four multivariate normal classes (k = 1, . . . , 4)
where X | Y = k ∼ N (µk,Σk), µk = rk(cos θk, sin θk)

>, rk ∼ Uniform(0, 6), θk ∼
Uniform(0, 2π) and Σ

1/2
k = diag(σk, σk) + εk, where σk ∼ Uniform(0.8, 1.2) and εk ∼

Uniform(−0.5, 0.5). The OOD class is a mixture of four uniform distributions (with equal
weights) on four rectangle regions as shown in the left panel of Figure 2. After generat-
ing the above two-dimensional data, we augment them with 8 independent noise variables
normally distributed with mean 0 and standard deviation 0.1.

In the left panel of Figure 2, the proposed GPS method is applied to only the first two
dimensions to return the colored acceptance regions. The contours display the boundaries
of acceptance regions for 4 classes. We can see that the OOD class is successfully ruled out
from those acceptance regions, and points falling into the intersections of acceptance regions
are observations difficult to be classified. For the right panel, we show the scatter plot of
all the test data points using the first two principal components. Here the prediction sets
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Figure 2: GPS classification on Example 1. Left panel: The scatter plot for the first two
dimensions. Colored contours are boundaries of acceptance regions for the four
normal classes with γ = 5%. Right Panel: The scatter plot of the first two
principal components for the test data, where the color of the circles indicates
the predicted class. The radius of the circles differs for different classes to allow
the visualization of those points which are classified into multiple classes. Points
whose true labels do not belong to the prediction sets are labeled as black crosses.
Points with empty prediction sets are marked as brown, indicating that they are
determined to be OOD points.

returned by GPS (trained on all dimensions) are visualized by circles with different radii.
Circles centering at the same observation but with different radii show that the prediction
set size for that observation is more than 1. This means this observation is in an overlap
area and is difficult to be confidently predicted using a single label. Brown circles denote
those observations with |φ̂(x)| = 0, and hence are deemed as OOD points. Those with black
crosses are those cases with y /∈ φ̂(x). From the right panel, we can see that this type of
decision is more likely to appear on the tail of class distributions.

We set the nominal error rate γ = 5% in this simulation. It is noteworthy that both
OCSVM and SVM were not initially designed for set-valued classification, but they were

OCSVM SVM CDL BCOPS-RF GPS GPSKFS

Class 1 96.5±0.085 96.2±0.089 96.3±0.116 96.1±0.097 95.5±0.113 95.5±0.12

Class 2 95.4±0.105 96.9±0.076 95.5±0.118 96.7±0.083 95.4±0.084 95.5±0.091

Class 3 96.4±0.079 95.7±0.086 95.4±0.108 95.6±0.112 95.3±0.097 95.5±0.103
Accuracy

Class 4 96.1±0.087 96.5±0.088 95.3±0.116 96.3±0.086 95.1±0.118 95.3±0.119

Detection Rate 99.9±0.025 0±0 97.7±0.141 76.4±0.86 99.9±0.029 99.4±0.244

Efficiency 81.3±0.117 68.6±0.596 79.4±0.118 88.6±0.086 90.8±0.074 90.6±0.113

AUC-Det 98.2±0.051 7.0±0.49 95.4±0.176 74.5±0.519 96.7±0.132 94.2±0.285

AUC-Eff 80.1±0.119 72.7±0.265 78.0±0.108 87.3±0.08 89.0±0.055 88.4±0.123

Table 1: Average performance metrics for Example 1
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adapted to it using the conformal prediction framework. Based on the results shown in
Table 1, OCSVM outperforms other methods in the OOD detection performance due to
its originally designed anomaly detection capability, but suffers in terms of the efficiency;
SVM has the worst detection rate and the worst efficiency at the current accuracy in this
example. CDL and BCOPS-RF, though designed to detect OOD data points, have a less
competitive performance than OCSVM. However, they are generally more efficient than
OCSVM and SVM. The proposed GPS methods discover more than 99% of the OOD
points, performing on par with OCSVM and outperforming all other methods. Unlike the
previous four methods, GPS and GPSKFS deliberately consider efficiency maximization,
yielding the most efficient/informative prediction sets. Regarding the performance across a
range of accuracy levels, GPS and GPSKFS have competitive AUCs on both detection and
efficiency, indicating a better balance between the two metrics.

Example 2: This example is similar to Example 3 in Wang and Qiao (2018). We first
generate radius-angle pairs (R, θ), where θ ∼ Uniform(0, 2π). R | Y = 1 ∼ Uniform(0, 5),
R | Y = 2 ∼ Uniform(4, 9) and R | Y = 3 ∼ Uniform(8, 13). For the OOD class in the
test data, its radius R ∼ Uniform(15, 20). Then we define a 2-dimensional data vector
(R · cos θ,R · sin θ). Finally, we add 98 independent standard normal noise variables.
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Figure 3: GPS classification on Example 2. The left panel shows the true class labels and
the right panel shows the predicted classes.

For this example, we set the nominal error rate γ = 1%. Similar to the data visualization
in Example 1, we display the boundaries of the acceptance regions for Example 2 in the
left panel of Figure 3. In this example, it is evident from Table 2 that OCSVM continues
to demonstrate an impressive OOD detection performance, at the cost of poor efficiency,
while SVM exhibits the lowest detection rate despite having higher efficiency. CDL and
BCOPS-RF display poor detection rates and unacceptable efficiencies. Contrastively, when
the performances are evaluated at the prescribed accuracy or across a range of accuracies,
both GPS and GPSKFS demonstrate significantly higher OOD detection rates and higher
efficiencies compared to all other methods (except that the efficiency of GPS is not as good
as SVM, which has zero detection rate.) The GPSKFS further improves the performance
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OCSVM SVM CDL BCOPS-RF GPS GPSKFS

Class 1 97.6±0.096 99±0.074 98.7±0.081 98.7±0.093 98.1±0.093 98±0.098

Class 2 99.3±0.035 98.9±0.071 99.1±0.057 99.4±0.045 99.2±0.047 99.3±0.061Accuracy
Class 3 98.9±0.055 98.7±0.069 98.9±0.066 99.4±0.054 98.4±0.071 99±0.059

Detection Rate 98.8±0.044 0±0 33.4±0.289 25.4±0.702 99.4±0.056 100±0

Efficiency 36.3±0.128 53.5±0.113 17.2±0.134 26±0.36 42±0.123 84.2±0.173

AUC-Det 93.0±0.083 0.0±0.0 31.3±0.306 31.6±0.598 93.6±0.11 95.1±0.0

AUC-Eff 33.4±0.13 50.6±0.1 16.4±0.148 25.7±0.323 39.0±0.113 79.9±0.125

Table 2: Average performance metrics for Example 2

of the regular GPS method by virtue of its kernel feature selection capability. Comparing
the performance of GPSKFS in Example 1 and Example 2, it appears that its performance
is more effective when there are more noise features—98 in the current example.

As mentioned earlier, in the current setting, three performance metrics (accuracy, effi-
ciency, and detection rate) are of interest. Here accuracy is controllable by the user, and a
higher accuracy is often associated with lower efficiency and detection rate. These trade-offs
are demonstrated in Figure 4, where the top row shows ROC-type curves of detection rate
against accuracy for all methods in different examples, and the bottom row shows those
curves of efficiency against accuracy. The first five rows of Tables 1 and 2 are corresponding
to a particular prescribed accuracy for each example respectively, while Figure 4 provides a
fuller picture across a range of accuracy levels. The AUC-Det and AUC-Eff are calculated
as integrals of the corresponding curve from 1−2γ to 1, which is a neighborhood near 1−γ
that is practically relevant.
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Figure 4: OOD detection rate and efficiency under varied accuracy.

5.2 Real Data Analysis

In this section, we conduct comparisons by considering three real data sets: Zipcode,
Phoneme, and Cifar10.
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Zipcode: This is a hand-written Zipcode data set consisting of 7291 training points
with 256 features as well as 2007 test points. We first merge them together and treat labels
0, 6, 8, and 9 as the normal classes and the remaining as the OOD class. To generate our
training data, we randomly sample from each of the normal classes with subsample sizes
550, 580, 495, and 574, respectively. The remaining data points from the normal classes,
and all points in the OOD class, will form the test data. We set the nominal error rate as
γ = 1% in this example.

Phoneme: This data set with 4509 points and 256 features is formed by selecting five
phonemes for classification based on digitized speech. The phonemes are transcribed as
follows: “sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel in “she”, “aa” as the vowel
in “dark”, and “ao” as the first vowel in “water”. We treat class “sh” as the OOD in test
data and sample the other four classes with sizes around 500 for training data. Here the
nominal error rate is also specified as 1% for each class.

Cifar10: This colored image data consists of 10 classes with 50000 training points and
10000 test points, where each image has dimension 32× 32× 3. In this data set, we choose
animals “bird”, “cat”, “deer”, “dog”, “frog”, “horse” as 6 normal classes and the remaining
4 transportations (“airplaine”, “automobile”, “ship”, and “truck”) as the OOD class. To
reduce the computation burden, we sample around 800 points from each normal class in
the training data. Here the nominal error rate is set as γ = 5% for each normal class.

OCSVM SVM CDL BCOPS-RF GPS GPSKFS

Digit 0 99.1±0.032 99.4±0.027 99.1±0.036 99.5±0.026 99.1±0.039 98.5±0.044

Digit 6 99±0.044 98.7±0.051 99.2±0.054 98.6±0.054 98.8±0.055 98.2±0.058

Digit 8 98.2±0.078 98.8±0.045 98.7±0.066 98.5±0.07 98.2±0.078 97.2±0.077
Accuracy

Digit 9 99.7±0.022 99.1±0.027 99.4±0.024 99.3±0.039 99±0.04 98.6±0.048

Detection Rate 8.2±0.254 5.6±0.329 3.3±0.074 46.9±0.524 66.2±0.706 73±0.468

Efficiency 52.5±0.473 99±0.036 43.5±0.348 84.2±0.336 90.9±0.329 94.1±0.229

AUC-Det 8.0±0.101 8.1±0.206 3.1±0.061 44.0±0.287 51.1±0.407 46.4±0.548

AUC-Eff 50.6±0.137 92.1±0.056 41.4±0.247 78.8±0.203 79.2±0.265 78.2±0.361

Table 3: Average performance metrics on Zipcode

Tables 3 to 5 provide an overview of the average performance of various methods on
Zipcode, Phoneme, and Cifar10, respectively. Here we omit the GPSKFS on Cifar10 from
Table 5 due to the limited computation resource. As these are all shallow models, their
performances on Cifar10 are unsatisfactory, with lower OOD detection rates and efficiencies.

In these three data sets, the OCSVM method does not perform as well in OOD detection
as it did in the previous simulations. SVM, in contrast, has a relatively competitive efficiency
(as well as AUC-Eff) but at the expense of poor OOD detection. According to Figure 4,
SVM has an inadequate balance on metrics, with the worst OOD detection rate when the
class-specific accuracy is close to 1, despite dominating efficiencies. CDL performs poorly on
both Zipcode and Cifar10 data sets, while BCOPS-RF is promising compared to other three
competing methods. For the proposed GPS methods, they consistently return competitive,
and most of the time, the best results. Figure 4, specifically columns 3 to 5, shows that
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OCSVM SVM CDL BCOPS-RF GPS GPSKFS

Class “aa” 97.6±0.053 99.6±0.04 98±0.073 99.2±0.041 97.5±0.088 98.1±0.087

Class “ao” 99.7±0.018 99.5±0.037 99.5±0.039 99.2±0.041 99±0.049 98.3±0.064

Class “dcl” 98.9±0.032 98.8±0.057 99.4±0.046 99.2±0.062 98.7±0.062 98.3±0.068
Accuracy

Class “iy” 99.5±0.034 99.4±0.042 99±0.05 99.4±0.035 99.4±0.04 98.5±0.064

Detection Rate 53±0.688 0±0.017 24.9±0.475 69.7±1.577 98.6±0.12 98.5±0.159

Efficiency 67.8±0.246 69.1±0.439 55.7±0.161 72±0.568 84±0.219 85.9±0.143

AUC-Det 55.1±0.402 1.0±0.099 22.3±0.349 75.3±0.755 92.7±0.118 89.6±0.437

AUC-Eff 62.8±0.153 72.9±0.233 51.5±0.173 73.1±0.256 78.6±0.135 78.4±0.187

Table 4: Average performance metrics on Phoneme

OCSVM SVM CDL BCOPS-RF GPS

Bird 95.3±0.111 94.1±0.126 94.5±0.162 94.9±0.117 95.3±0.119

Cat 95.9±0.071 96.4±0.115 95.4±0.1 96.6±0.098 96.2±0.118

Deer 96.5±0.057 95.9±0.114 95.9±0.095 94.1±0.107 94.2±0.133

Dog 94.1±0.105 96.1±0.098 94.6±0.134 96.9±0.092 96.4±0.077

Frog 95.3±0.118 96.4±0.092 94.6±0.118 94.6±0.113 93.1±0.13

Accuracy

Horse 95.7±0.086 95.4±0.098 95.8±0.101 94.4±0.129 94.1±0.121

Detection Rate 4±0.068 0±0 0.5±0.014 18.8±0.221 22.1±0.239

Efficiency 9.2±0.059 23.3±0.147 9.6±0.07 14.2±0.143 14.5±0.134

AUC-Det 4.7±0.031 0.0±0.0 0.5±0.008 17.9±0.172 20.3±0.12

AUC-Eff 9.7±0.014 24.2±0.054 9.5±0.025 14.0±0.08 13.4±0.054

Table 5: Average performance metrics on Cifar10

GPS and GPSKFS provide competitive OOD detection performance and higher efficiency
over the range of accuracy. In summary, while it is not expected for a single method to
outperform all others in all metrics and situations, the GPS methods exhibit satisfactory
balanced results.

Furthermore, we conducted an experiment to evaluate the stability of the proposed
method when the proportion of the OOD points among the test data increases (see results in
Appendix B.6). The experimental results show that the efficiency does not change too much,
and the OOD detection rate can be improved when there are increasing OOD observations
in the test data.

5.3 Comparison with OSR Methods

There are a group of open-set recognition (OSR) methods that are capable of both OOD
detection and normal class classification. Unlike CDL and BCOPS-RF compared in the
previous sections, OSR methods generally only consider single-valued predictions for normal
classes.
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In this section, we compare the proposed GPS with a selection of deep learning-based
OSR methods on the Cifar10 data set. Our results empirically demonstrate the inadequacy
of single-valued classification as previously highlighted in Section 1. Specifically, we use the
PyTorch library pytorch-ood (Kirchheim et al., 2022) to conduct open-set classification
based on the three approaches proposed in Dhamija et al. (2018) and Liu et al. (2020),
namely, EOS, Objectosphere, and EBL. We use the default values of parameters and employ
the same neural network architecture, WideResNet (Zagoruyko and Komodakis, 2016), for
these three methods. To ensure a fair comparison between the GPS methods and these
deep learning-based models, we adopt the hybrid approach outlined in Ruff et al. (2019) by
using the embeddings learned from the neural networks as input features for GPS. We refer
to this variant of GPS as Hybrid GPS.

Note that different OSR model learns different embeddings, which in turn lead to dif-
ferent GPS results. Once the embeddings are obtained, we sample around 500 images from
each normal class to train the GPS model for computational efficiency. For each of the
OSR approaches, there is an option to set the threshold to adjust the strength of detection.
We choose the threshold so that about 95% of the normal class observations are correctly
marked as non-OOD. For the GPS methods, we set the nominal error rate to be γ = 5%.
Additionally, we include results from the regular shallow GPS (in Table 5, without deep
representation learning) in Table 6 as a reference.

Shallow GPS EOS Hybrid GPS Objectosphere Hybrid GPS EBL Hybrid GPS

Bird 95.3±0.119 83.6±1.937 95.4±0.273 76.3±2.516 94.1±0.491 89.5±0.801 95.9±0.356

Cat 96.2±0.118 73.4±1.319 94.5±0.495 62.9±3.517 91.9±0.786 74.2±2.111 92.5±0.566

Deer 94.2±0.133 88.4±1.56 96±0.496 77.5±3.159 94.8±0.603 88.9±0.912 96.7±0.466

Dog 96.4±0.077 84.3±1.561 95.7±0.667 71.9±3.945 94.3±0.622 81.3±2.023 96±0.735

Frog 93.1±0.13 91±1.091 95.9±0.577 82.5±4.05 93.3±0.71 92.2±0.599 96.5±0.438

Accuracy

Horse 94.1±0.121 92.1±0.918 95.8±0.543 80.9±4.312 94.6±0.612 92.3±1.173 96.6±0.686

Detection Rate 22.1±0.239 98.3±0.194 95.3±0.344 94.8±1.573 93.7±1.787 48.1±1.107 52.7±4.973

Efficiency 14.5±0.134 100±0 85.9±3.684 100±0 75.8±5.992 100±0 77.8±6.161

AUC-Det 20.3±0.12 � 79.4±2.836 � 83.1±1.918 � 51.9±1.034

AUC-Eff 13.4±0.054 � 76.2±0.891 � 65.5±3.87 � 72.7±1.007

Table 6: Comparisons between OSR and (Hybrid) GPS on Cifar10

As shown in Table 6, the accuracy of each OSR method (EOS, Objectosphere, EBL) for
each class is lower than those of the Hybrid GPS methods, while the latters are almost close
to 95%. This is expected, as these OSR methods make single-label predictions (resulting in
100% efficiency), while the Hybrid GPS methods may yield more than one label for some
observations, and afford a better class-specific accuracy. In terms of OOD detection, both
OSR methods and their corresponding Hybrid GPS methods exhibit similar performance
to each other.

The performance of Hybrid GPS highly depends on the embedding learned from the
corresponding OSR model. It appears that the embeddings learned from EOS outperform
those from Objectosphere and EBL, and no embedding at all (leading to the shallow GPS),
due to the better performances from EOS-based Hybrid GPS method. Focusing on the EOS
method and the EOS-based Hybrid GPS, we see a clear trade-off. EOS has 100% efficiency,
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at the cost of suboptimal accuracy; Hybrid GPS improves the accuracy at the expense of
efficiency. Their detection rates are somewhat similar and both are fairly high.

The detection rate and efficiency of the Hybrid GPS are significantly improved over the
shallow GPS due to the representation learning. This suggests that exploring an end-to-end
GPS integrated with neural networks is a promising direction for future research.

6. Conclusion

Motivated by the potential issues in the conventional single-valued classification, where ab-
solute predictions are made without confidence guarantee, accuracy control for prioritized
classes is not possible, and there is reliance on the assumption of no distribution shift,
we proposed a set-valued classification method, i.e., GPS, to simultaneously address them.
This method provides accuracy guarantees on each normal class and has OOD detection
capability on label shift distribution data. In contrast to the existing set-valued classifier
with OOD detection that may return less informative decisions, we explicitly minimized
the prediction set size under a constraint of class-specific accuracy. Our experimental re-
sults demonstrate that GPS methods enjoy higher efficiency performance and higher OOD
detection rates.

The GPS methods have a feature selection property in the kernel learning context.
Additionally, we make use of the “divide-and-conquer” strategy to break down a large-scale
problem into many sub-problems, involving only two classes of data, namely an existing
class k and the test data which may include OOD classes. Because all sub-problems can
be solved in an embarrassingly parallel way, the computational time can be greatly reduced
compared to solving a large-scale optimization problem involving all classes (Zhang et al.,
2018; Wang and Qiao, 2018, 2022).

There are many works targeting anomaly detection with different techniques. For ex-
ample, one can use auxiliary data (Hendrycks et al., 2018; Neal et al., 2018), e.g., outlier
exposure data or generating synthetic data, instead of the semi-supervised data as in our
setting. However, unless the auxiliary data can mimic the unknown test data distribution,
it is hard to obtain any optimality guarantee on the ambiguity risk. Most importantly, those
works, including generalized OOD detection or OSR (Geng et al., 2020; Yang et al., 2021),
belong to the single-valued classification framework with no accuracy guarantee. We believe
that our proposed GPS methods enrich generalized OOD detection and OSR by introducing
different decisions, i.e., ambiguous observations (1 < |φ(x)| < K) and ambiguity-rejected
observations (|φ(x)| = K).

There are several areas of research that offer potential future investigation. One such
area pertains to the derivation of theoretical guarantees for OOD detection. This task
may rely on certain distribution assumptions regarding the OOD, as evidenced by prior
studies (Liu et al., 2018; Fang et al., 2021). However, obtaining access to OOD information
presents a significant challenge. Another direction is that, compared to network-based OSR,
generalizing the use of GPS requires the development of a more scalable classifier capable
of handling complex data.
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Appendix A. Detailed Derivation of the Dual Problem to Problem (4)

For the linear kernel, the decision function takes the form of fk(x) = w>k x− ρk and hence
the penalty J(fk) = 1

2‖wk‖22 − ρk. With slackness variables ηi := [1 − w>k xi + ρk]+ and
ξj := [1 +w>k xj − ρk]+, C := (λm)−1, problem (4) becomes

min
wk,ρk,{ηi},{ξj}

1

2
‖wk‖22 − ρk + C

∑
j∈Gte

ξj ,

s.t. ηi ≥ 1−w>k xi + ρk, ξj ≥ 1 +w>k xj − ρk,
∑
i∈Gk

ηi ≤ nkγ, ηi ≥ 0, ξj ≥ 0.
(11)

By using the Lagrange Multiplier method, Problem (11) becomes

L =
1

2
‖wk‖22 − ρk + C

∑
j∈Gte

ξj −
∑
i∈Gk

αi(ηi − 1 +w>k xi − ρk)−
∑
j∈Gte

βj(ξj − 1−w>k xj + ρk)

+ θ

∑
i∈Gk

ηi − nkγ

−∑
i∈Gk

aiηi −
∑
j∈Gte

bjξj

=
1

2
‖wk‖22 +

∑
j∈Gte

(C − bj − βj)ξj +
∑
i∈Gk

(θ − ai − αi)ηi +
∑
j∈Gte

βjw
>
k xj −

∑
i∈Gk

αiw
>
k xi

+
∑
j∈Gte

βj +
∑
i∈Gk

αi + ρk

∑
i∈Gk

αi −
∑
j∈Gte

βj − 1

− nkθγ.
Based on the stationary condition

∂L
∂wk

= wk +
∑
j∈Gte

βjxj −
∑
i∈Gk

αixi = 0

∂L
∂ρk

=
∑
i∈Gk

αi −
∑
j∈Gte

βj − 1 = 0

∂L
∂ξj

= C − bj − βj = 0
∂L
∂ηi

= θ − ai − αi = 0

=⇒



wk =
∑
i∈Gk

αixi −
∑
j∈Gte

βjxj∑
i∈Gk

αi −
∑
j∈Gte

βj = 1

C − bj − βj = 0
θ − ai − αi = 0

.

and the KKT conditions, the dual problem of (11) is:

min
α,β,θ

1

2

(
α>G1α+ β>G2β − 2α>G3β

)
− 1>nk

α− 1>mβ + nkθγ,

s.t. 0 � α � θ · 1nk
, 0 � β � C · 1m, 1>nk

α− 1>mβ = 1, θ ≥ 0,

where G1[i, i′] := x>i xi′ , G2[j, j′] := x>j xj′ , G3[i, j] := x>i xj , α := (. . . , αi, . . .)
>, β :=

(. . . , βj , . . .)
>, i, i′ ∈ Gk, j, j′ ∈ Gte. This is quadratic programming (QP) and can be solved

with many off-the-shelf packages. For the non-linear kernel, e.g., the Gaussian kernel used
in this article, we accordingly use G1[i, i′] := K(xi,xi′), G2[j, j′] := K(xj ,xj′), G3[i, j] :=
K(xi,xj).
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Appendix B. Details of the Algorithm and the Numerical Study

B.1 Outline of the Kernel Feature Selection Algorithm

Algorithm 1 Weighted Kernel Feature Selection

Initialization: (α(0), ρ
(0)
k ) = 0,d(0) = 1

while (α(t−1), ρ
(t−1)
k ),d(t−1) not convergent do

(α(t), ρ
(t)
k ) = minimizer of (7) when fixing d = d(t−1)

while dcv not convergent do

dcv = minimizer of (8) when fixing (α, ρk) = (α(t), ρ
(t)
k )

Compute a descent direction ∆d = dcv − d(t−1). Conduct a line search to find ι
such that d(t−1) + ι∆d decreases the objective function in (7) when fixing (α, ρk) =

(α(t), ρ
(t)
k )

d(t) = d(t−1) + ι∆d
end while
d(t) = dcv

end while

B.2 A Proposition about the Convergence of the Algorithm

Proposition 7 shows that we can obtain a local minimum of the objective in each iteration
using Algorithm 1 under a certain loss function.

Proposition 7 (Proposition 1 in Allen (2013)) If the convex loss function in (7) and
(8) is continuously differentiable with respect to (α, ρk), the kernel function is convex or
concave and is continuously differentiable with respect to d, then the solution obtained from
Algorithm 1 converges to a local minimizer.

The hinge loss is not continuously differentiable, as required by Proposition 7. One may
substitute the hinge loss with a differentiable loss function such as the logistic loss, the
squared hinge loss, or the Huberized squared hinge loss (Rosset and Zhu, 2007):

`(u) =


1− u, u ≤ 1− δ
(1−u+δ)2

4δ , 1− δ < u ≤ 1 + δ
0, u > 1 + δ

The parameter δ here is specified by the user. From Figure 1 we see that the Huber-
ized squared hinge loss approximates the hinge loss with small δ. In practice, we directly
work with the hinge loss and without line search since it empirically works well, and the
optimization procedure is more efficient. Note that Problem (7) overall presents a broader
challenge within the realm of non-convex optimization, and a local minimizer attained by
Algorithm 1 might not be the global minimizer due to the complicated optimization land-
scape. To enhance the possibility of discovering an improved or even optimal solution, we
suggest that one employ multiple initializations for training and subsequently select the
model with the smallest objective function value.
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B.3 Connection between Problem (6) and Problem (9)

Proposition 8 Let f̌ parameterized by (ď, α̌, ρ̌) be a solution to Problem (6) for the given
(λ1, λ2). Thus, f̌ is also a solution to Problem (9) when setting s2 = J(f̌(ď ◦ ·)), s′ = ‖ď‖1.

Proposition 8 shows that a solution to Problem (6) (or its re-parameterized variant,
i.e., Problem (7)) can be obtained by solving Problem (9) under a certain set of values
for (s2, s′). This implies that the theoretical properties of Problem (6) may be obtained
through studying the theoretical properties, e.g., Theorems 3 and 4, of Problem (9).

B.4 Empirical Metrics of Evaluation

In the context of set-valued classifiers, the prescribed class-specific accuracy drives both the
OOD detection rate and the efficiency. Under a particular prescribed class-specific accuracy
(such as 1− γ), the sample accuracy for class k is∑

j∈Gte 1{Yj = k and Yj ∈ φ̂(Xj)}∑
j∈Gte 1{Yj = k}

, k ∈ [K],

which is an unbiased estimate of the true accuracy, and should be close to 1 − γ. We also
need to consider the OOD detection rate

Det(1− γ) :=

∑
j∈Gte 1{Yj = OOD and |φ̂(Xj)| = 0}∑

j∈Gte 1{Yj = OOD}
,

and the efficiency given non-OOD points

Eff(1− γ) := 1− 1

K − 1

[∑
j∈Gte 1{Yj 6= OOD} · |φ̂(Xj)|∑

j∈Gte 1{Yj 6= OOD}
− 1

]
+

.

The closer to 1 the metric is, the better the classifier’s corresponding performance is. Note
that for the single-valued prediction paradigm, its efficiency is always 1.

To better understand the overall performance of set-valued classifiers, we propose two
additional metrics called AUC-Det (the area under the curve of OOD detection rate v.s.
accuracy) and AUC-Eff (the area under the curve of efficiency v.s. accuracy). By exactly
aligning the class-specific accuracy on the test data at a grid of values from 0 to 1, we get
the curve of Det and the curve of Eff, and hence the area under the curves (AUCs). Since a
very low accuracy is rarely desirable in practice, we calculate the AUC in the neighborhood
of 1− γ, the prescribed accuracy, from 1− 2γ to 1. More concretely, we have the below two
metrics

AUC-Det :=
1

2γ

∫ 1

1−2γ
Det(t)dt, and AUC-Eff :=

1

2γ

∫ 1

1−2γ
Eff(t)dt.

The larger the AUC, the better the set-valued classifier on that corresponding performance.
Note that the metric AUCs are still limited to some extent since they measure the overall
OOD detection and efficiency by ignoring the specific requirement on accuracy.
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B.5 Details of Tuning Parameter Selection

To choose the tuning parameters, the candidate hyper-parameters C1, C2 in GPSKFS
is searched from grid {1, 2, 3} and 10∧{±2,±1.5,±1,±0.5, 0}, respectively. The hyper-
parameter C in GPS is searched from the grid 10∧{±2,±1.5,±1,±0.5, 0}. For the σ
parameter in the Gaussian kernel exp(−‖d ◦ x − d ◦ x′‖2/σ2), we choose it from the
{25, 37.5, 50, 62.5, 75}-th percentiles of all the pairwise Euclidean distances between the
weighted training sample ‖d◦ (x−x′)‖2, where d is 1 in GPS, or is the currently estimated
weight vector which can itself evolve in the iterations in GPSKFS.

For CDL, the bandwidth is searched from a grid {σ̂(1), σ̂(1) +
σ̂(p)−σ̂(1)
p−1 , . . . , σ̂(p)} ×

( 4
(p+2)n)1/(p+4) based on Silverman’s rule-of-thumb bandwidth estimator (Silverman, 2018),

where σ̂(1) and σ̂(p) are the minimum and maximum standard deviation among all columns
of data. We search parameter σ in the Gaussian kernel for both OCSVM and SVM in the
same way as in GPS. For SVM, the parameter C is searched from the same grid as the one
for C in GPS. The parameter ν in OCSVM is the upper bound of the overall proportion
of points outside of any acceptance region, and hence is set as γ, which is its class-specific
counterpart in our paper. For BCOPS-RF, the maximum depth of the tree is searched from
{10, 20, . . . , 90, 100}. Minimum samples to split an internal node, minimum samples at a
leaf node, and the number of trees are searched from {2, 5, 10}, {2, 4, 6}, and {50, 150, 200},
respectively. All parameters are determined such that the prediction set size is minimized
on the unlabeled data in the calibration set. We report involved metrics with their average
and standard error after 200 replications for all the above methods.

In the Hybrid GPS methods described in Section 5.3, we adopt certain strategies to
alleviate the computational burden. Specifically, we choose the 50-th percentile of pairwise
distances on the training sample as the parameter σ, and we set the grid to be 10∧{±1, 0}
for the parameter C. To ensure the robustness of our results, we conduct 10 replications
and report the metrics for the three OSR methods as well as their corresponding Hybrid
GPS methods.

B.6 Performances under Different Proportions of OOD Data

In this section, we study the stability of the proposed GPS on two real data sets for varied
proportions (20%, 40%, 60%, and 80%) of OOD points in the test data. The class-specific
accuracies are close to 99% in both real data sets and hence are omitted from Table 7.
The efficiency is quite stable with respect to different OOD proportions. In contrast, the

OOD
proportion

Zipcode Phoneme

Detection Rate Efficiency Detection Rate Efficiency

20% 33.8±0.928 95.1±0.183 96.8±0.331 84.3±0.22
40% 51.1±0.8 95.1±0.162 98.8±0.101 83.3±0.256
60% 62.1±0.68 93.9±0.195 99.7±0.033 82.3±0.317
80% 68.7±0.638 90.5±0.315 100±0.007 80.2±0.423

Table 7: Average performance metrics under increasing proportion of OOD points
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detection rate can be improved if there are more points coming from the OOD class in the
test data.

B.7 Simulations for Additional Label Shifts within Normal Classes

In the original Examples 1 and 2 presented in Section 5.1, the class priors for all K normal
classes remained consistent between the training and test data, albeit experiencing a shift
due to the presence of the OOD class in the test data. In this section, we introduce two
additional simulation scenarios by allowing for label shifts even within the K normal classes.
Specifically, the prior ratios for the normal classes in Table 8 are 0.226 : 0.258 : 0.255 :
0.262 ≈ 1 : 1.14 : 1.13 : 1.16 in the training data, but they are 0.130 : 0.261 : 0.130 : 0.217 ≈
1 : 2 : 1 : 1.5 in the test data. In Table 9, the prior ratios for the normal classes in the training
data are 0.272 : 0.345 : 0.383 ≈ 1 : 1.26 : 1.4, but they are 0.053 : 0.160 : 0.320 ≈ 1 : 3 : 6 in
the test data. Overall, the proposed GPS methods demonstrate competitive performances,
particularly in Example 2 (where many noise features are involved) shown in Table 9, even
though there is a severe class imbalance issue.

OCSVM SVM CDL BCOPS-RF GPS GPSKFS

Class 1 94.2±0.192 95.2±0.135 94.5±0.193 94.8±0.181 94.4±0.115 94.6±0.131

Class 2 95.5±0.155 95.8±0.134 95.3±0.179 96.1±0.144 95.3±0.148 95.2±0.143

Class 3 94.6±0.17 96±0.172 95.7±0.141 95.4±0.175 95.6±0.165 95.8±0.162
Accuracy

Class 4 96.2±0.091 95.6±0.124 95.8±0.11 96.4±0.136 95.2±0.153 95.1±0.164

Detection Rate 99.9±0.034 0±0 98.4±0.215 85.2±1.752 100±0.002 99.5±0.511

Efficiency 87±0.178 75.9±1.142 84.4±0.188 91.2±0.159 92.8±0.112 92.7±0.169

AUC-Det 98.3±0.066 2.1±0.45 96.2±0.275 76.5±0.654 94.9±0.337 91.5±0.612

AUC-Eff 84±0.189 72.9±0.426 82±0.172 88.4±0.101 89.4±0.106 88.4±0.185

Table 8: Example 1 with additional label shifts within normal classes

OCSVM SVM CDL BCOPS-RF GPS GPSKFS

Class 1 97.9±0.201 99.2±0.142 98.7±0.19 98.4±0.23 98.9±0.21 97.3±0.299

Class 2 98.9±0.114 98.8±0.187 98.9±0.132 99.3±0.112 99±0.113 99.6±0.103Accuracy
Class 3 98.6±0.115 99.3±0.068 98.7±0.133 99.2±0.101 98.3±0.182 98.8±0.129

Detection Rate 98.9±0.088 0±0 32.3±0.586 20.3±1.135 99.6±0.1 100±0

Efficiency 52.9±0.236 53.3±0.182 22.3±0.312 37.8±1 59±0.234 84.3±0.266

AUC-Det 93.4±0.106 0±0 28.9±0.547 22.7±0.937 94.3±0.129 95.1±0

AUC-Eff 46.4±0.467 51.2±0.206 20.5±0.405 37.2±1.046 55.6±0.288 80.6±0.178

Table 9: Example 2 with additional label shifts within normal classes
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Appendix C. Proofs of Theorems

Theorem 9 Let τk,γ be the γ×100% quantile of distribution pk(x)
q(x) , where q(x) is the density

function of Q. The Bayes optimal rule to Problem (2) is fk(x) = pk(x)
q(x) −τk,γ, and hence the

optimal set-valued classifier to Problem (1) with γk = γ is φ(x) = {k ∈ [K] : pk(x)
q(x) ≥ τk,γ}.

The above theorem can be derived from Lemma 2 in Sadinle et al. (2019). If we know
the true density function q(x) of target distribution Q and class-specific density functions

pk(x), k ∈ [K], we can set pk(x)
q(x) as the score function and γk,γ × 100% quantile as the

threshold to determine the acceptance region for class k.

Proof [Proof of Theorem 7] Denote the original objective function in Problem (7) as
Ψ(α, ρk,d). We first verify that Ψ(α, ρk,d) is bounded below. Under the Gaussian kernel,
the distance from the origin to the hyperplane in the feature space is ρk

‖gk|HKd

≤ 1, and

hence ρk ≤ ‖gk‖HKd
. Moreover, because the third and fourth terms in Ψ(α, ρk,d) are

non-negative, we have Ψ(α, ρk,d) ≥ 1
2‖gk‖

2
HKd
− ρk + 0 + 0 ≥ 1

2‖gk‖
2
HKd
− ‖gk‖HKd

≥ −1
2 .

Since the loss function is always bounded below; to prove that it converges to a sta-
tionary point, it suffices to prove the Algorithm 1 decreases Ψ(α, ρk,d) in each step. It

is easy to conclude Ψ(α(t), ρ
(t)
k ,d

(t−1)) ≤ Ψ(α(t−1), ρ
(t−1)
k ,d(t−1)) because updating for

(α, ρk) when fixing d(t−1) is a convex optimization problem. Thus, it suffices to verify

Ψ(α(t−1), ρ
(t−1)
k ,d(t)) ≤ Ψ(α(t−1), ρ

(t−1)
k ,d(t−1)) when fixing (α(t−1), ρ

(t−1)
k ) and updating

for d. We only focus on the case where ∂Ψ
∂d 6= 0 at (α(t−1), ρ

(t−1)
k ,d(t−1)); otherwise we

already arrive at a stationary point.

First of all, define

G(d) = [gi,j(d)]i,j :=


Kd

e>1 d
. . .

e>p d

 and α̃ :=

[
1√
2
α√

C21p

]
,

where Kd is a (nk+m)×(nk+m) kernel matrix, el is a column vector with l-th element 1 but
0 elsewhere, and 1p is a p-dimensional column vector with all 1’s. Given the above notations,
the scalar Kd[j, :]α for some j can be written as

∑
i β̃igi,j(d) for some β̃i’s (α̃,α, β̃i later will

be replaced by the corresponding ones with a superscript of time t− 1 when involved with

the iterations). Then when fixing (α(t−1), ρ
(t−1)
k ), we write the original objective function

as a function of d only:

Ψ(d) =
∑
i

∑
j

α̃
(t−1)
i α̃

(t−1)
j gi,j(d)− ρ(t−1)

k + C1

∑
j

`(ρ
(t−1)
k −

∑
i

β̃
(t−1)
i gi,j(d)).

Since C1 > 0 and `(·) is convex, the objective function is still convex with respect to gi,j(d).
Without loss of generality and for the simplicity of notation, we can consider minimizing an
objective function Ψ(d) = h (g(d)), where h(·) is a continuously differentiable and convex
function, and g(d) is continuously differentiable and convex or concave with respect to d
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(because of the assumption for kernel functions and the property of e>l d). Moreover, denote

Ψ̃d(t−1)(d) = h(g(d(t−1)) +∇g(d(t−1))>(d−d(t−1))) as the approximated objective function
where we linearize the kernel function at d(t−1) to obtain a convex optimization Problem
(8). For this sub-optimization problem, we always have Ψ̃d(t−1)(d(t)) ≤ Ψ̃d(t−1)(d(t−1)).

Now we only need to verify Ψ(d(t)) ≤ Ψ(d(t−1)) for those cases (Allen, 2013): (1) h(·)
is deceasing or increasing when g(·) is convex, and (2) h(·) is deceasing or increasing when
g(·) is concave.

When g(·) is convex, we have g(d) ≥ g(d(t−1)) + ∇g(d(t−1))>(d − d(t−1)). If h(·) is
decreasing, then we have

h(g(d)) ≤ h(g(d(t−1)) +∇g(d(t−1))>(d− d(t−1)))

⇒ h(g(d(t))) ≤ h(g(d(t−1)) +∇g(d(t−1))>(d(t) − d(t−1)))

⇒ Ψ(d(t)) ≤ Ψ̃d(t−1)(d(t)) ≤ Ψ̃d(t−1)(d(t−1)) = Ψ(d(t−1)),

which implies the original objective function decreases at this step although the solution
d(t) is obtained by solving Problem (8).

On the other hand, for any 0 ≤ a ≤ 1, the convexity of g yields

g(ad+ (1− a)d(t−1)) ≤ ag(d) + (1− a)g(d(t−1)).

Note that h is convex. If h(·) is increasing, then we have

Ψ(ad+ (1− a)d(t−1)) = h(g(ad+ (1− a)d(t−1))) ≤ h(ag(d) + (1− a)g(d(t−1)))

≤ ah(g(d)) + (1− a)h(g(d(t−1)))

= aΨ(d) + (1− a)Ψ(d(t−1)),

which implies Ψ(d) is convex at the neighborhood of d(t−1), say N(d(t−1)).
Since Ψ(d) is locally convex in N(d(t−1)), we can decrease it by taking a proper direction.

So we take ∆d = dcv − d(t−1) as a descent direction with a proper step size ι by the line
search to decrease Ψ(d), where ι is to make sure Ψ(d) is decreased in the feasible region.

For the other two cases where g(·) is concave, similarly, we can verify Ψ(d) also decreases

when fixing (α(t−1), ρ
(t−1)
k ). Therefore, the solution obtained from the algorithm converges

to a local minimizer.

Proof [Proof of Proposition 8] Without loss of generality, we omit subscripts in f , ρ and
their estimations.

Define L(d,α, ρ) = 1
m

∑
j∈Gte `

(
−f(d ◦ xj)

)
as the objective function when f is param-

eterized by (d,α, ρ). Let f̌ parameterized by (ď, α̌, ρ̌) be a solution to Problem (6) for the
given (λ1, λ2). Let f̂ parameterized by (d̂, α̂, ρ̂) be a solution to Problem (9) when setting
s2 = J(f̌(ď ◦ ·)) and s′ = ‖ď‖1. Based on the minimum of Problem (6) and (9), we have

L(ď, α̌, ρ̌) + λ1J(f̌(ď ◦ ·)) + λ2‖ď‖1 ≤ L(d̂, α̂, ρ̂) + λ1J(f̂(d̂ ◦ ·)) + λ2‖d̂‖1 (12)

L(d̂, α̂, ρ̂) ≤ L(ď, α̌, ρ̌) (13)

(12) + (13) =⇒ λ1J(f̌(ď ◦ ·)) + λ2‖ď‖1 ≤ λ1J(f̂(d̂ ◦ ·)) + λ2‖d̂‖1
by the constraints for f̂ , d̂ ≤ λ1s

2 + λ2s
′, (14)
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which implies all the constraints in Problem (9) must be active, i.e., J(f̂) = s2, ‖d̂‖1 = s′.
This further implies L(ď, α̌, ρ̌) = L(d̂, α̂, ρ̂) and hence the a solution to Problem (6) is a
solution to (9) when setting s2 = J(f̌(ď ◦ ·)), s′ = ‖ď‖1.

We will prove Theorem 3. As mentioned in Section 4, we abuse the notation slightly for
the decision function by letting f(x) = f1(d ◦ x), omitting the subscript 1 and weight d.
Before that, we need to introduce the below lemma regarding the boundedness of ρ and g.

Lemma 10 Let f(·) = g(·) − ρ ∈ Fs,s′(s, s′ ≥ 0), where g belongs to the Gaussian kernel
RKHS, HKd

. We have, ρ ≤
√

2s+ 2 and ‖g‖HKd
≤
√

2s+ 2.

Proof Under the Gaussian kernel, the distance from the hyper-plane to the origin is
ρ

‖g‖HKd

≤ 1. Together with the hypothesis space complexity 1
2‖g‖

2
HKd

− ρ ≤ s2, we have

ρ ≤
√

2s2 + 1 + 1 ≤
√

2s+ 2 and hence ‖g‖HKd
≤
√

2(s2 +
√

2s+ 2) ≤
√

2s+ 2.

Proof [Proof of Theorem 3] For simplicity, denote EQ [`(f(X)) | Y = 1] = E+ [`(f(X))] and
hence PQ[f(X) < 0 | Y = 1] ≤ E+[`(f(X))]. Define ψ(S) = supf∈F+

s,s′ (γ)E+[`(f(X))] −
1
n1

∑
xi∈S `(f(xi)) and let S′ be another sample from PQ[· | Y = 1] but only different from

S on one observation (x′, 1). Thus we have

∣∣ψ(S)− ψ(S′)
∣∣

=

∣∣∣∣( sup
f∈F+

s,s′ (γ)

E+[`(f(X))]− 1

n1

∑
xi∈S

`(f(xi))

)
−
(

sup
f∈F+

s,s′ (γ)

E+[`(f(X))]− 1

n1

∑
x′i∈S′

`(f(x′i))

)∣∣∣∣
≤ 1

n1
sup

f∈F+
s,s′ (γ)

∣∣`(f(x))− `(f(x′))
∣∣

≤ c

n1
sup
F+

s,s′ (γ)

∣∣g(x)− g(x′)
∣∣ ≤ 2c

n1
sup
F+

s,s′ (γ)

|〈g,Kd(x, ·)〉| ≤ 2(
√

2s+ 2)cκ

n1
.

Together with McDiarmid inequality, with probability 1− ζ, we have

ψ(S) ≤ E+
S

[ψ(S)] + (
√

2s+ 2)cκ

√
2 log 1

ζ

n1
,

and hence

E+[`(f(X))] ≤ 1

n1

n1∑
i=1

`(f(xi)) + E+
S

[ψ(S)] + (
√

2s+ 2)cκ

√
2 log 1

ζ

n1
,
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where

E+
S

[ψ(S)] = E+
S

 sup
f∈F+

s,s′ (γ)

E+[`(f(X))]− 1

n1

∑
xi∈S

`(f(xi))


= E+

S

 sup
f∈F+

s,s′ (γ)

E+
S′

 1

n1

∑
x′i∈S′

`(f(x′i))

− 1

n1

∑
xi∈S

`(f(xi))


≤ E+

S
E+
S′

 sup
f∈F+

s,s′ (γ)

1

n1

∑
x′i∈S′

`(f(x′i))−
1

n1

∑
xi∈S

`(f(xi))


= E+

S
E+
S′
E
σ

sup
f∈F+

s,s′ (γ)

1

n1

n1∑
i=1

σi
[
`(f(x′i))− `(f(xi))

]
≤ E+

S
E+
S′
E
σ

sup
f∈F+

s,s′ (γ)

1

n1

n1∑
i=1

σi`(f(x′i)) + E+
S
E+
S′
E
σ

sup
f∈F+

s,s′ (γ)

1

n1

n1∑
i=1

−σi`(f(x′i))

= 2E+
S
E
σ

sup
f∈F+

s,s′ (γ)

1

n1

∑
xi∈S

σi`(f(xi))

= 2Rn1(` ◦ F+
s,s′(γ)),

with Rn1 defined as the Rademacher complexity. Applied again with McDiarmid inequality,
with probability 1− ζ, we have

Rn1(` ◦ F+
s,s′(γ)) ≤ R̂n1(` ◦ F+

s,s′(γ)) + (
√

2s+ 2)cκ

√
2 log 1

ζ

n1
.

According to Talagrand’s lemma,

R̂n1(` ◦ F+
s,s′(γ)) ≤ c · R̂n1(F+

s,s′(γ)).

Additionally, by the definition of empirical Rademacher complexity, we have

R̂n1(F+
s,s′(γ)) = E

σ
sup

f∈F+
s,s′ (γ)

1

n1

∑
xi∈S

σif(xi)

≤ E
σ

sup
F+

s,s′ (γ)

1

n1

∑
xi∈S

σi〈g,Kd(xi, ·)〉+ E
σ

sup
F+

s,s′ (γ)

1

n1

∑
xi∈S
−σiρ

≤ (
√

2s+ 2)

n1
E
σ

∣∣∣∣∣∣
∑
xi∈S

σi
√
Kd(xi,xi)

∣∣∣∣∣∣
≤ (
√

2s+ 2)

n1

E
σ

∑
xi∈S

σi
√
Kd(xi,xi)

2
1
2

≤ (
√

2s+ 2)

n1

(
n1κ

2
) 1

2 =
(
√

2s+ 2)κ
√
n1

,
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combining above results, with probability 1− 2ζ, we have

EQ [`(f(X)) | Y = 1] ≤ 1

n1

n1∑
i=1

`(f(xi)) +
2(
√

2s+ 2)cκ
√
n1

+ 3(
√

2s+ 2)cκ

√
2 log 1

ζ

n1︸ ︷︷ ︸
rn1 (ζ,s,s′)

.

The shift-invariant property of the Gaussian kernel leads the term rn1(ζ, s, s′) in Theo-
rem 3 to overlook the dependence between the convergence rate and the parameter s′. To
explicitly show the effect of s′ on the convergence rate, we resort to the covering number to
derive a new bound as shown in the below theorem.

Theorem 11 Assume the input x ∈ Rp is bounded, i.e., ‖x‖2 ≤ c0, and the loss function
` has a sub-derivative bounded by c. For the Gaussian RKHS (i.e., κ = 1) and the same
ζ, s, s′ given in Theorem 3, the term rn1(ζ, s, s′) in (10) can be replaced by

3(
√

2s+ 2)c

√
2 log 2

ζ

n1
+

8
√

2s+ 16

epn1

+ 192

(
(s+

√
2)s′c0

√
log(2p2) + 2p+ 4p

√√
2s+ 2

)
log(4epn1)
√
n1

.

Proof Let L2(Pn) :=
√

1
n

∑n
i=1(f(xi)− f ′(xi))2 be a metric to measure the distance be-

tween two functions f, f ′ on the given data set with sample size n.

Define the hypothesis class F1 = {x 7→ Dx : D = Diag(d) ∈ Rp×p, ‖d‖1 ≤ s′,0 � d �
1}, under which we have Dx = d ◦x. Denote N (ε1,F1, L2(Pn)) as the covering number for
the hypothesis class F1 under the metric L2(Pn), where ε1 is the radius of each ball in the
covering. By Theorem 5.18 in Ma (2022), we have the metric entropy

logN (ε1,F1, L2(Pn)) ≤ (s′)2c2
0

ε2
1

log(2p2).

Define another hypothesis class F2 = {f : f(x) = g(x)− ρ, g ∈ HK , J(f) ≤ s2}, where
HK is the Gaussian RKHS as mentioned in Section 3.2. By Theorem 20 in Ying and Zhou
(2007), we have the metric entropy

logN (ε2,F2, L2(Pn)) ≤ p log 2 +

(
p+

(
16p

ε2
+ 2

)
p log

2epn

ε2

)
log

4p2n

ε2
≤ 128p2

ε2
log2 2epn

ε2
.

For the composite hypothesis class F2 ◦ F1, by Lemma 5.23 in Ma (2022), we have the
corresponding metric entropy

logN (ε2 + c2ε1,F2 ◦ F1, L2(Pn)) ≤ logN (ε2,F2, L2(Pn)) + logN (ε1,F1, L2(Pn)),
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where c2 is the Lipschitz constant of f ∈ F2. Particularly, for the Gaussian RKHS,

|f(x)− f(x′)| = |g(x)− g(x′)|
= |〈g,K(x, ·)〉 − 〈g,K(x′, ·)〉|
≤ ‖g‖HK

· ‖K(x, ·)−K(x′, ·)‖HK

≤ (
√

2s+ 2) · 2(1−K(x,x′))

≤ (2
√

2s+ 4)
d exp(− z2

σ2 )

dz

∣∣
z=c̃
·‖x− x′‖2, where c̃ ∈ (0, ‖x− x′‖2)

≤ (4s+ 4
√

2) · ‖x− x′‖2

implies c2 = 4s+ 4
√

2. By defining ε12 := ε2 + c2ε1 and setting ε2 = ε12
2 , ε1 = ε12

2c2
, we have

logN (ε12,F2 ◦ F1, L2(Pn)) ≤ logN
(
ε12

2
,F2, L2(Pn)

)
+ logN

(
ε12

2c2
,F1, L2(Pn)

)
. (15)

By Localized Dudley’s Theorem, together with (15), for any 0 < ε0 < 1, we have

R̂n1(F2 ◦ F1)

≤ 4ε0 + 12

∫ √2s+2

ε0

√
logN (ε12,F2 ◦ F1, L2(Pn1))

n1
dε12

≤ 4ε0 + 12

∫ √2s+2

ε0

√
logN

(
ε12/2,F2, L2(Pn1)

)
n1

dε12

+ 12

∫ √2s+2

ε0

√
logN

(
ε12/(2c2),F1, L2(Pn1)

)
n1

dε12

≤ 4ε0 +
(
96(s+

√
2)s′c0

√
log(2p2) + 192p

) log((
√

2s+ 2)/ε0)
√
n1

+ 384p

√√
2s+ 2

log(4epn1)
√
n1

=
4
√

2s+ 8

epn1
+

(
96(s+

√
2)s′c0

√
log(2p2) + 192p+ 384p

√√
2s+ 2

)
log(4epn1)
√
n1

,

where the last equality holds due to the choice ε0 :=
√

2s+2
4epn1

. Together with the Proof of

Theorem 3 and the fact of R̂n1(F+
s,s′(γ)) ≤ R̂n1(F2 ◦ F1), with probability at least 1 − ζ,

we have

EQ [`(f(X)) | Y = 1] ≤ 1

n1

n1∑
i=1

`(f(xi)) + 3(
√

2s+ 2)c

√
2 log 2

ζ

n1
+

8
√

2s+ 16

epn1

+ 192

(
(s+

√
2)s′c0

√
log(2p2) + 2p+ 4p

√√
2s+ 2

)
log(4epn1)
√
n1

.

Before proving Theorem 4, we prove the below proposition.
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Proposition 12 Let υ(γ) = inff∈F+
s,s′ (γ)R`(f), then υ is a non-increasing convex function

on [0, 1].

Proof υ is non-increasing because of the definition of infimum. We now focus on the
convexity. F+

s,s′(γ) is compact due to continuouity and boundedness of ` and f , therefore,

there exits a fγ ∈ F+
s,s′(γ) such that υ(γ) = R`(fγ).

Let υ(γ1) = R`(fγ1), υ(γ2) = R`(fγ2) and define γθ = θγ1 + (1− θ)γ2, fθ = θfγ1 + (1−
θ)fγ2 for any θ ∈ (0, 1), since ` is convex, then we have

E+[` ◦ fθ] ≤ θE+[` ◦ fγ1 ] + (1− θ)E+[` ◦ fγ2 ] ≤ θγ1 + (1− θ)γ2 = γθ

and hence

υ(θγ1 + (1− θ)γ2) = υ(γθ)

≤ R`(fθ)
≤ θR`(fγ1) + (1− θ)R`(fγ2)

= θυ(γ1) + (1− θ)υ(γ2).

Therefore, υ is convex.

Proof [Proof of Theorem 4] For any 0 ≤ γ− ε0 < γ− ε < 1, based on the properties of υ(·)
we have

υ(γ − ε0)− υ(γ − ε)
ε− ε0

≤ υ(γ − ε)− υ(γ)

−ε
υ(γ − ε)− υ(γ) ≤ ε

ε0 − ε
(υ(γ − ε0)− υ(γ − ε)) .

Now take ε0 = γ, we obtain

υ(γ − ε)− υ(γ) ≤ ε

γ − ε

(
2 +

δ

2

)
(16)

because we have f ≡ 1 + δ
2 satisfy the `-type I error and then R` ≡ 2 + δ

2 .

Let’s first define A =
{
EQ [`(f(X)) | Y = 1]− 1

n1

∑n1
i=1 `(f(xi)) < ε

}
, where

ε =
(
√

2s+ 2)cκ
(

2 + 3
√

2 log 2
ζ

)
√
n1

.
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Based on the proof for Theorem 3, we have P[A] ≥ 1− ζ.

R`(f̂)− inf
f∈F+

s,s′ (γ)
R`(f) = R`(f̂)− inf

f∈F̂+
s,s′ (γ−ε)

R`(f)

+ inf
f∈F̂+

s,s′ (γ−ε)
R`(f)− inf

f∈F+
s,s′ (γ−2ε)

R`(f)

+ inf
f∈F+

s,s′ (γ−2ε)
R`(f)− inf

f∈F+
s,s′ (γ)

R`(f)

≤ 2 sup
f∈F̂+

s,s′ (γ)

∣∣∣∣R`(f)− 1

m

m∑
j=1

`(−f(xj))

∣∣∣∣
+ 0

+
2ε

γ − 2ε

(
2 +

δ

2

)
by Inequality (16)

(17)

Note that empirical minimizer f̂ ∈ F̂+
s,s′(γ−ε) ⊂ F

+
s,s′(γ). Define f̄ := arginf

f∈F̂+
s,s′ (γ−ε)

R`(f),

then the first part in the first line on the right of the Inequality (17) bounded by twice of
supremum is due to

R`(f̂)−R`(f̄) = R`(f̂)− 1

m

m∑
j=1

`(−f̂(xj)) +
1

m

m∑
j=1

`(−f̂(xj))−
1

m

m∑
j=1

`(−f̄(xj))

+
1

m

m∑
j=1

`(−f̄(xj))−R`(f̄)

≤ R`(f̂)− 1

m

m∑
j=1

`(−f̂(xj)) + 0−

R`(f̄)− 1

m

m∑
j=1

`(−f̄(xj))


≤ 2 sup

f∈F̂+
s,s′ (γ−ε)

∣∣∣∣R`(f)− 1

m

m∑
j=1

`(−f(xj))

∣∣∣∣
≤ 2 sup

f∈F̂+
s,s′ (γ)

∣∣∣∣R`(f)− 1

m

m∑
j=1

`(−f(xj))

∣∣∣∣.
The second line on the right of the Inequality (17) can be bounded by 0 since F+

s,s′(γ−2ε) ⊂
F̂+
s,s′(γ − ε) with probability 1− δ based on the statement (1) in Theorem 4.

Therefore, with probability 1− 2ζ,

R`(f̂)− inf
f∈F+

s,s′ (γ)
R`(f) ≤

2(
√

2s+ 2)cκ(2 + 3
√

2 log 2
ζ )

√
m

+
(4 + δ)ε

γ − 2ε
.

Proof [Proof of Theorem 6] We mainly follow the proof of the Theorem in Chen et al.
(2018). Suppose ‖x‖∞ = κ0 < ∞, loss function ` is differentiable with Lipschitz constant
c.
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Let f̂ be the empirical risk minimizer. Based on Corollary 4.36 (RKHSs of differentiable

kernels) in Steinwart and Christmann (2008) we have ∂f(x)
∂dt
≤
√

2κ0
σ and hence ∂`(f)

∂dt
is still

Lipschitz with Lipschitz constant c′ =
√

2κ0c
σ . Then similarly to proofs of previous Theorem

1 and 2, with probability at least 1− 3ζ, we have∣∣∣∣∣∣ ∂∂dt
{
EQ[`(−f̂(X))]− 1

m

m∑
j=1

`(−f̂(xj))

}∣∣∣∣∣∣ ≤
(
√

2s+ 2)c′κ(2 + 3
√

2 log 2
ζ )

√
m

,

and

∣∣∣∣ ∂∂dt
{
EQ[`(−f∗(X))]− EQ[`(−f̂(X))]

}∣∣∣∣ ≤ 2(
√

2s+ 2)c′κ(2 + 3
√

2 log 2
ζ )

√
m

+
(4 + δ)ε

γ − 2ε
+Ds,

where the approximation errorDs,s′ := inff∈F+
s,s′ (γ)

∂
∂dt
EQ[`(−f(X))]− ∂

∂dt
EQ[`(−f∗(X))]→

0 as s→∞, s′ → p. Therefore, by the triangle inequality, with probability at least 1− 3ζ,
we have ∣∣∣∣∣∣ ∂∂dt

{
EQ[`(−f∗(X))]− 1

m

m∑
j=1

`(−f̂(xj))

}∣∣∣∣∣∣
dt=0,dt′=d∗

t′ ,t 6=t′

≤
3(
√

2s+ 2)c′κ(2 + 3
√

2 log 2
ζ )

√
m

+
(4 + δ)ε

γ − 2ε
+Ds,s′ .

Consequently, for those important features x·,t we have

∂

∂dt

1

m

m∑
j=1

`(−f̂(xj))

}∣∣∣∣∣∣
dt=0,dt′=d∗

t′ ,t6=t′

<
∂EQ[`(−f∗(X))]

∂dt

∣∣∣∣
dt=0,dt′=d∗

t′ ,t 6=t′
+O

(
max(

1
√
n1

+
1√
m
,Ds,s′)

)
,

and for those noise features x·,t we have

∂

∂dt

1

m

m∑
j=1

`(−f̂(xj))

}∣∣∣∣∣∣
dt=0,dt′=d∗

t′ ,t6=t′

≥ ∂EQ[`(−f∗(X))]

∂dt

∣∣∣∣
dt=0,dt′=d∗

t′ ,t 6=t′
−O

(
max(

1
√
n1

+
1√
m
,Ds,s′)

)
.

Finally, together with the assumption in Theorem 6 for important and unimportant

features, we have P
[
sign(d̂t) = sign(d∗t )

]
−→ 1, t ∈ [p].
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