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Abstract

Recent works have studied implicit biases in deep learning, especially the behavior of last-
layer features and classifier weights. However, they usually need to simplify the interme-
diate dynamics under gradient flow or gradient descent due to the intractability of loss
functions and model architectures. In this paper, we introduce the unhinged loss, a concise
loss function, that offers more mathematical opportunities to analyze the closed-form dy-
namics while requiring as few simplifications or assumptions as possible. The unhinged loss
allows for considering more practical techniques, such as time-vary learning rates and fea-
ture normalization. Based on the layer-peeled model that views last-layer features as free
optimization variables, we conduct a thorough analysis in the unconstrained, regularized,
and spherical constrained cases, as well as the case where the neural tangent kernel remains
invariant. To bridge the performance of the unhinged loss to that of Cross-Entropy (CE), we
investigate the scenario of fixing classifier weights with a specific structure, (e.g., a simplex
equiangular tight frame). Our analysis shows that these dynamics converge exponentially
fast to a solution depending on the initialization of features and classifier weights. These
theoretical results not only offer valuable insights, including explicit feature regularization
and rescaled learning rates for enhancing practical training with the unhinged loss, but
also extend their applicability to other loss functions. Finally, we empirically demonstrate
these theoretical results and insights through extensive experiments.

Keywords: implicit bias, neural collapse, gradient flow, gradient descent

1. Introduction

Deep learning with neural networks has achieved great success in a variety of tasks (LeCun
et al., 2015), which, however, is not entirely understood in the interpolation and general-
ization of the learned models (Zhang et al., 2017; Neyshabur et al., 2017; Nakkiran et al.,
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2019; Bubeck and Sellke, 2021; Mei and Montanari, 2021; Zhou et al., 2023; Langer et al.,
2021; Qi et al., 2021). Many modules, including loss functions (Lin et al., 2017; Hui and
Belkin, 2021) and optimization algorithms (Auer et al., 2002; Duchi et al., 2011; Zeiler, 2012;
Kingma and Ba, 2015), play a crucial role in the training of deep neural networks, but lack
convincing explanations due to the complexity of multilayered architectures. Recent works
are devoted to simplifying modeling to better understand the behavior of DNNs, (Papyan
et al., 2020; Mixon et al., 2022; Fang et al., 2021b; Tian et al., 2021; Han et al., 2022) and
then to gain insights for new algorithms, theoretical, and experimental investigations.

To better understand the implicit regularization that improves the generalization of
trained models in deep learning, many studies have investigated the implicit bias of gra-
dient descent (Hardt et al., 2016; Sekhari et al., 2021), with an emphasis on the behav-
ior of linear predictors (or called classifiers) over linearly separable data (Soudry et al.,
2018; Gunasekar et al., 2018; Nacson et al., 2019; Ji and Telgarsky, 2019; Ji et al., 2020;
Shamir, 2021). In particular, Soudry et al. (2018) demonstrated that gradient descent it-
erates under exponentially-tailed loss minimization on separable data are biased toward
`2-maximum-margin solutions and that continuing to optimize can still lead to performance
improvements, even if the validation loss increases. Further, Ji et al. (2020) showed that
the gradient descent path and the algorithm-independent regularization path converge to
the same direction for general losses. Shamir (2021) formally proved that standard gradient
methods never overfit on separable data. These works impressively expose the implicit reg-
ularization induced by optimization algorithms and help to understand the generalization
of the learned models, but they mainly focus on the behavior of linear classifiers that is only
the last layer of neural networks, while the classifier actually interacts strongly with the
features produced by many nonlinear layers and parameterized layers. Thus, the relevant
conclusions do not always apply to deep learning. For example, in (Soudry et al., 2018),
the convergence rate of gradient descent is rather slow, wherein for almost all datasets, the
distance to the maximum-margin solution decreases only as O(1/ log t), and in some degen-
erate datasets, the rate further slows down to O(log log t/ log t). However, the training of
DNNs typically takes only a few hundred epochs. In this paper, we show that exponential
convergence is more realistic.

This paper is closely related to another research line which emerged after the empirical
discovery of Neural Collapse by Papyan et al. (2020). This phenomenon precisely charac-
terizes a pervasive inductive bias of both features and linear classifiers at the terminal phase
of training, and has opened a rich area of exploring this area with simplified mathematical
frameworks (Mixon et al., 2022; Fang et al., 2021b; Lu and Steinerberger, 2022; Galanti
et al., 2021; Fang et al., 2021a; Zhu et al., 2021; Hui et al., 2022; Tirer and Bruna, 2022;
Lu and Steinerberger, 2022; Kothapalli et al., 2022; Zhou et al., 2022b). Neural collapse
provides a clear view of how the last-layer features and linear classifiers behave after inter-
polation and enables us to understand the benefit of achieving zero training error in terms
of generalization and robustness (Poggio and Liao, 2020; Wang et al., 2021; Kornblith et al.,
2021; Thrampoulidis et al., 2022; Gao et al., 2023), but the intermediate dynamics have
remained challenging to analyze due to the intractability of cross entropy (CE). To alleviate
this issue, some studies (Mixon et al., 2022; Han et al., 2022; Zhou et al., 2022a; Tirer and
Bruna, 2022; Kothapalli et al., 2022; Xu et al., 2023) have explored the more tractable mean
squared error (MSE) loss, which performs comparably to those trained with CE (Demirkaya
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Reference Contribution
Extra Simplification

or Assumption
Loss

Function

Papyan et al. (2020)
Empirical results and

theoretical formulation
% The CE loss

Fang et al. (2021b)
Global optimum in
regularized cases

% The CE loss

Zhu et al. (2021)
Landscape analysis in

regularized cases
% The CE loss

Ji et al. (2022)
Landscape analysis in
unconstrained cases

% The CE loss

Tirer and Bruna (2022)
Global optimum with

extended unconstrained
feature model

% The MSE loss

Mixon et al. (2022)
Intermediate dynamics in

unconstrained cases
! The MSE loss

Han et al. (2022)
Intermediate dynamics in
weight-regularized cases

! The MSE loss

Tirer et al. (2023)
Intermediate dynamics by
perturbation analysis in

regularized cases
! The MSE loss

This paper

Intermediate dynamics and
convergence analysis in

unconstrained, regularized,
spherical constrained cases

with time-varying
learning rates

% The unhinged loss

Table 1: Comparison of recent analysis for investigating the behavior of last-layer features
and prototypes. Compared with prior work, this paper considers the time-varying
learning rate, which is often used in practice, and provides intermediate dynamics
and convergence analysis in unconstrained, regularized and spherical constrained
cases while requiring fewer simplifications or assumptions.

et al., 2020; Hui and Belkin, 2021). However, these studies still need to make additional
simplifications or assumptions for intermediate dynamics. For instance, Mixon et al. (2022)
formulate the gradient flow of the unconstrained feature model as a nonlinear ordinary
differential equation and then linearize the equation by claiming that nonlinear terms are
negligible for models initialized near the origin. Han et al. (2022) assume that the gradient
flow is along the central path which requires the linear classifier to stay MSE-optimal for
features throughout the dynamics. Furthermore, Tirer et al. (2023) delve into a more prac-
tical model, demonstrating the exponential decay of within-class variability. They assume
that features remain in close proximity to predefined features under MSE loss function, but
note that the gradient flow is still essential along the “central path”. Therefore, MSE is still
not simple enough to derive exact dynamics in certain mathematical frameworks, making
it difficult to grasp and bridge the gap between the modeling and practical optimization.

In this paper, our objective is to analyze the closed-form dynamics under gradient de-
scent within the layer-peeled model (Fang et al., 2021b) (also known as the unconstrained
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features model (Mixon et al., 2022)) with minimal simplifications and assumptions. To
achieve this, we introduce the unhinged loss, which possesses a concise form and intuitively
expresses the classification objective. To further contextualize the performance of the un-
hinged loss in relation to the CE loss, we investigate scenarios involving fixing classifier
weights with specific structures. Compared to previous works (as depicted in Table 1), the
unhinged loss provides more mathematical opportunities for gaining insights into deep learn-
ing with closed-form dynamics, while demanding fewer simplifications or assumptions for
intermediate dynamics. This equips us for more practical considerations and more rational
designs. Our primary contributions are outlined as follows:

• We introduce the unhinged loss for analyzing closed-form dynamics in deep learning
with as few simplifications or assumptions as possible. The unhinged loss with some
auxiliary techniques can achieve comparative performance to the CE loss.

• We derive exact dynamics of last-layer features and prototypes in unconstrained, reg-
ularized, prototype-anchored and spherical constrained cases as well as the NTK-
invariant case. For spherical constrained cases that do not exhibit convexity, Lips-
chitzness, and β-smoothness, we also prove that gradient descent biases the normalized
features towards a global minimizer.

• We provide the corresponding convergence analysis, which shows that the features and
classifier weights converge to a solution depending on the initialization rather than
induce the neural collapse solution that forms a simplex equiangular tight frame,
suggesting that not all losses under gradient descent would lead to neural collapse (as
verified in Section 3).

• We prove that the rate of convergence is exponential as a function of ζ(t) =
∫ t

0 η(τ)dτ ,
where η(τ) denotes the learning rate over time. This exponential convergence rate
highlights the impact of the interaction of features and classifier weights.

• Moreover, we provide some insights and extensive verification for improvements in
practical training with the unhinged loss and other losses (cf. Section 4).

2. The Unhinged Loss

In this paper, we primarily investigate the behavior of last-layer features and classifier
weights in DNNs for classification tasks. We conduct our study to datasets comprising
inputs from C different classes, each with N examples. The last-layer features hi,c =
fΘ(xi,c) ∈ Rp 1 are obtained from the i-th example xi,c through a series of parameterized
layers fΘ : X → Rp, commonly treated as free optimization variables (Mixon et al., 2022;
Fang et al., 2021b; Han et al., 2022; Ji et al., 2022). The final layer of the network, known

1. For the closed-form solution of neural collapse, it is worth noting that Zhou et al. (2022d) assume
p ≥ C−1, while Han et al. (2022) assume p > C, as last-layer features typically have a higher dimension
than the number of classes. This work will explicitly address the relationship between p and C in some
scenarios, covering all potential choices of feature dimension in others.
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as the linear classifier, is equipped with a class prototype wc ∈ Rp and a bias bc ∈ R for
each class c ∈ [C]. It predicts a label using the rule arg maxc′(〈wc′ ,h〉+ bc′)

2.
To better understand the dynamics of last-layer features and prototypes based on gra-

dient flow or gradient descent, we consider a concise loss that offers more mathematical
opportunities than the hard-to-analyze CE loss and the MSE loss 3. Specifically, we inves-
tigate a generalized form of the unhinged loss (Van Rooyen et al., 2015) as follows:

Lγ(Wh+ b, y) = −w>y h− by + γ
∑
j 6=y

(w>j h+ bj), (1)

where γ > 0 is the trade-off parameter and y denotes the class label of the feature h. When
γ = 1

C−1 , the loss 1
C−1

∑
j 6=y[w

>
y h + by − (w>j h + bj)] can be regarded as the unhinged

version of the hinge loss4 that removes the maximum operator and the margin term. We
also note that the sample margin m(h, y) = w>y h + by −maxj 6=y(w

>
j h + bj) (Koltchinskii

and Panchenko, 2002; Cao et al., 2019; Zhou et al., 2022d) is defined to measure the dis-
criminativeness for a sample, which satisfies m(h, y) ≤ 1

C−1

∑
j 6=y[w

>
y h+ by − (w>j h+ bj)],

i.e., Lγ(Wh + b, y) with γ = 1
C−1 averaging the margins over all non-target classes is the

lower bound of −m(h, y). Here, we replace 1
C−1 with an additional parameter γ that bal-

ances positive and negative logits to draw general conclusions. More clarification about the
unhinged loss can be found in Appendix A.

Intuitively, the unhinged loss in Equation (1) promotes the learned feature h to increase
the logit of the target class while decreasing the logits of the other classes. If we follow up the
layer-peeled model (Fang et al., 2021b) to restrict the norms of both features and prototypes,
the global minimizer of 1

CN

∑N
i=1

∑C
c=1 Lγ(Whi,c, yi,c) (the bias term b is omitted) will lead

to Neural Collapse (Papyan et al., 2020; Han et al., 2022):

Lemma 1 (Neural Collapse under the Unhinged Loss). For norm-bounded prototypes
and features, i.e., ‖wc‖2 ≤ E1 and ‖hi,c‖2 ≤ E2, ∀i ∈ [N ],∀c ∈ [C], the global minimizer of

1
CN

∑N
i=1

∑C
c=1 Lγ(Whi,c, yi,c) implies neural collapse when p ≥ C − 1. More specifically,

the global minimizer is uniquely obtained at
w>i wj

‖wi‖2‖wj‖2 = − 1
C−1 , ∀i 6= j,

w>yi,chi,c
‖wyi,c‖2‖hi,c‖2

= 1,

‖wc‖2 = E1, and ‖hi,c‖2 = E2, ∀i ∈ [N ], ∀c ∈ [C].

This lemma shows that the Neural Collapse solution5. is the only global optimal solution
to minimize 1

CN

∑
i,c Lγ(Whk,c, yi,c) in the norm-bounded case. However, there exists an

2. Unless specified otherwise, we denote vectors using boldface italicized letters, and elements within the
vector are denoted with italicized letters and subscripts.

3. The CE loss is known to have non-analytical intermediate dynamics, which makes it difficult to investigate
the precise nature of the dynamics. In addition, the intermediate dynamics under MSE can be derived
into closed-form, which however is quadratic and cannot be easily analyzed. Therefore, some additional
simplifications or assumptions on CE and MSE are required to simplify the intermediate dynamics.

4. The multi-class hinge loss is formulated as Lhinge(s, y;m) =
∑
i 6=y max{0, si − sy +m}, where m is the

margin term.
5. The Neural Collapse solution exhibits three critical properties (Papyan et al., 2020): (i) Within-class

variability collapse, the within-class variation of features becomes negligible as these features collapse
to their class means; (ii) Convergence to self-duality, the class means and classifier weights converge
to each other, up to rescaling; (iii) Convergence to a simplex equiangular tight frame (ETF),
the vectors of class means converge to having equal length, forming equal-sized angles between any given
pair, and being the maximally pairwise-distanced configuration. For instance, prototypes W that forms
a simplex ETF satisfies W>W = C

C−1
I − 1

C−1
11> when C < p
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undesired direction to minimize the unhinged loss in unconstrained cases, since the norm of
features and prototypes tends to grow to infinity. For example, we can directly scale up W
and b to obtain a smaller loss if Lγ(Wh+ b, y) < 0, which will happen analogously to CE
(Liu et al., 2016; Wang et al., 2017; Zhou et al., 2022d). In this paper, we will analytically
characterize the direction in which features H and prototypes W diverge. Specifically,
we show that the gradient flow or gradient descent with the unhinged loss will exhibit
an implicit bias associated with the initialization of features and prototypes. We further
investigate the prototype-anchored case, wherein class prototypes are anchored with some
specific structures, and the unhinged loss can perform comparative to CE.

3. Main Theoretical Results

In this section, we begin with the commonly used assumption that treats last-layer features
as free optimization variables. We then conduct a comprehensive analysis of the closed-form
dynamics of last-layer features and prototypes under the unhinged loss in various scenarios,
including unconstrained, regularized, prototype-anchored, spherical constrained, and NTK-
invariant cases. Additionally, we provide convergence analyses for each case, revealing a
surprising result: all cases exhibit exponential convergence. All proofs can be found in
Appendix B.

3.1 The Unconstrained Case

We first consider the unconstrained case (Mixon et al., 2022; Ji et al., 2022) in which there is
no constraint or regularization on features and prototypes, i.e., learning with the following
objective

L =
1

CN

∑
i,c

[
−w>yi,chi,c − byi,c + γ

∑
j 6=yi,c

(w>j hi,c + bj)
]
, (2)

which can be reformulated as

L = Tr(Y >W>H) + γC−γ−1
C 1>Cb, (3)

where H = [h1,1, . . . ,h1,C ,h2,1, . . . ,hN,C ] ∈ Rp×CN is the matrix resulting from stacking
together the feature vectors as columns, Y = 1

CN (γ1C1>CN − (1 + γ)(IC ⊗ 1>N )), W =
[w1,w2, . . . ,wC ] ∈ Rp×C is the matrix resulting from stacking class prototypes as columns,
⊗ denotes the Kronecker product, IC is the identity matrix, 1C , 1N , and 1CN are the
length-C, -N , and -CN vectors of ones, respectively. For brevity, we represent the label set
{yi,c}1≤i≤N,1≤c≤C as the columns of the matrix IC ⊗ 1>N .

Remark We follow the unconstrained features modeling perspective (Mixon et al., 2022;
Ji et al., 2022) or the layer-peeled model (Fang et al., 2021b) that treats H as a free
optimization variable. Within this model, we analyze the continuous dynamics of features
H, prototypes W and biases b with gradient flow where time-of-training is denoted by the
variable t6.

6. Intuitively, we interpret t = 0 as the initial state, that is H(0) = H0, W (0) = W0, and b(0) = b0.
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Taking the partial derivative with respect to H, W , and b, respectively, we have the
following:

∇HL = WY ,

∇WL = HY >,

∇bL = γC−γ−1
C 1C ,

(4)

and the corresponding learning dynamics with respect to the gradient flow is

H ′(t) = η1(t)W (t)M ,

W ′(t) = η2(t)H(t)M>,

b′(t) = −η2(t)γC−γ−1
C 1C ,

(5)

where M = −Y = 1
CN ((1 + γ)(IC ⊗ 1>N )− γ1C1>CN ), η1(t) and η2(t) are the time-varying

part7 of the learning rate of the features H and weights (W , b), respectively. The reason for
introducing different learning rates is that the representation H is a result of the interaction
between a number of nonlinear layers rather than a completely free variable like network
parameters. This implies that even if we use the same learning rate to optimize all network
parameters, the feature H assumed to be a free optimization variable is almost impossible
to be optimized at this learning rate8. Moreover, we consider time-varying rates η1 = η1(t)
and η2 = η2(t) that are usually adopted in practical implementations, such as the cosine
annealing decay (Loshchilov and Hutter, 2017). As can be seen, the dynamics of features H
and prototypes W are independent of the bias term b, thus we can analyze the dynamics
of H and W jointly, and analyze b independently:

Theorem 2 (Dynamics of Features, Prototypes and Biases without Constraints).
Consider the continual gradient flow in Equation 5, let Z(t) = (H(t),W (t)), if η1(t1)η2(t2) =
η1(t2)η2(t1) for any t1, t2 ≥ 0, we have the following closed-form dynamics

Z(t) =Π+
1 Z0

(
α+

1 (t)C(t) + β+
1 (t)IC(N+1)

)
+Π−1 Z0

(
α−1 (t)C(t) + β−1 (t)IC(N+1)

)
+Π+

2 Z0

(
α+

2 (t)C(t) + β+
2 (t)IC(N+1)

)
+Π−2 Z0

(
α−2 (t)C(t) + β−2 (t)IC(N+1)

)
+ Π3Z0,

(6)

and

b(t) = b0 +
(1 + γ − γC)ζ2(t)

C
1C , (7)

where αε1, αε2, βε1 and βε2 for ε ∈ {±} are the scalars that only depend on C, N , γ, η1(0) and
η2(0) (where the detailed forms of these scalars can be seen in the appendix), Z0 = (H0,W0),

7. In this paper, we are interested in investigating the effect of changing the learning rate over time. Thus,
η(t) is not the complete rate, but rather the time varying part of the learning rate. Specifically, for the
example gradient flow x′t = dxt

dt
= η(t)∇f(xt) considered in this paper is a continuous-time approximation

of gradient descent in the limit of an infinitesimally small time step ∆t. Specifically, the corresponding
of gradient descent in discrete time can be formulated as xt+∆t = xt −∆t · η(t)∇f(xt), where ∆t · η(t)
denotes the complete learning rate, and ∆t is the time step.

8. In this paper, we mainly assume that η1(t1)η2(t2) = η1(t2)η2(t1) for any pair of values of t, t1 and t2.
This condition will be satisfied if and only if η1(t) is a scaled version of η2(t), i.e., η1(t) = s · η2(t)
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C(t) =
(
ζ1(t)ICN 0

0 ζ2(t)IC

)
, ζ1(t) =

∫ t
0 η1(τ)dτ , ζ2(t) =

∫ t
0 η2(τ)dτ , Πε

1, Πε
2 and Π3 for

ε ∈ {±} are orthogonal projection operators onto the following respective eigenspaces:

Eε1 := {(H,W ) : H = ε · 1√
N

(W ⊗ 1>N ),W1C = 0},

Eε2 := {(H,W ) : H = ε · 1√
N
h1>CN ,W = h1>C ,h ∈ Rp},

E3 := {(H,W ) : H(IC ⊗ 1N ) = 0,W = 0}.

(8)

Remark Note that Eε1, Eε2 and E3 are orthogonal to each other, E+
1 (or E−1 ) denotes the

subspace where all features are in the same (or opposite) direction of their corresponding
prototypes while the mean of prototypes is zero, Eε2 denotes the subspace where all features
and prototypes collapse respectively into two scaled versions of the same unit vector, and
E3 denotes the subspace where the mean of all features from the same class is zero with
all prototypes being zero. For classification tasks, we expect the features align to their
corresponding prototypes with a cosine similarity of 1, i.e., the solution in E = {(H,W ) :
H = kW ⊗ 1>N ,W ∈ Rp×C , k ∈ R+} that implies two manifestations of Neural Collapse:
within-class variability collapse and convergence to self-duality (Papyan et al., 2020). In

the following, we prove that the normalized dynamics Z(t)
‖Z(t)‖ under the unhinged loss will

converge to a solution in E :

Corollary 3 (Convergence in the Unconstrained Case). Under the conditions and

notation of Theorem 2, let s = η1(0)
η2(0) . If 0 < γ < 2

C−2 (where C > 2) or C = 2, and

limt→∞ ζ1(t) =∞, the gradient flow (as in Equation (5)) will behave as:

e
− (1+γ)

√
ζ1(t)ζ2(t)

C
√
N Z(t) = Z + ∆(t), (9)

where Z =
(

1+
√
s

2 H+
1 + 1−

√
s

2 H−1 ,
1+
√
s

2
√
s
W+

1 −
1−
√
s

2
√
s
W−

1

)
, (H+

1 ,W
+
1 ) = Π+

1 Z0, (H−1 ,W
−
1 ) =

Π−1 Z0, and the residual term ∆(t) decreases as ‖∆(t)‖ = O

(
e

√
ζ1(t)ζ2(t)

C
√
N

·max{−γC,(C−2)γ−2}
)

,

and so the normalized Z(t) converges to Z
‖Z‖ in∥∥∥∥ Z(t)

‖Z(t)‖
− Z

‖Z‖

∥∥∥∥ = O

(
e

√
ζ1(t)ζ2(t)

C
√
N

·max{−γC,(C−2)γ−2}
)
, (10)

which indicates limt→∞
Z(t)
‖Z(t)‖ = Z

‖Z‖ ∈ E. Moreover, if γ 6= 1
C−1 , limt→∞

maxi bi(t)
mini bi(t)

= 1.

The corollary above shows that even without any mandatory constraints, the gradient

flow under the unhinged loss will converge to a solution Z
‖Z‖ that belongs to E and can be

determined by the initialization of Z0 and the ratio s. It is worth noting, however, that this
solution does not conform to the geometric structure of Neural Collapse. Neural collapse
typically entails the formation of a simplex equiangular tight frame, as exemplified in the
case of CE (Papyan et al., 2020), MSE (Han et al., 2022), margin-based losses (Zhou et al.,
2022d), and other losses (Zhou et al., 2022b). This result suggests that not all losses will
lead to Neural Collapse solutions.
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‖Ẑ
(t

)
−
Ẑ
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Figure 1: Verification of the behavior of gradient descent iterates in Equation (5) with
γ ∈ {0, 0.05, 0.005, 0.001, 1

C−1}, where we set p = 512, C = 100, N = 10, η1(t) =

η2(t) = 0.1 (i.e., s = η1(0)
η2(0) = 1, thus Z = Π+

1 Z0 according to Corollary 3), and
then randomly initialize H0 and W0. The red box in the figures represents the
zoomed-in view of the last 2,000 epochs. (a) The training loss. (b) The training
accuracy with the prediction rule arg maxcw

>
c h. As expected, the features align

to their corresponding prototypes when γ < 2
C−2 . (c) The distance between

Ẑ(t) = Z(t)/‖Z(t)‖2 and Ẑ = Z/‖Z‖2. As expected in Equation (10), the
convergence rate is exponential when 0 < γ < 2

C−2 , and will be fastest if γ = 1
C−1 .

(d) The norm of Z(t), which increases exponentially. As can be noticed, Ẑ(t)

does not converge to Ẑ but tend to be orthogonal to Ẑ when γ = 0.05 > 2
C−2 ,

that is, limt→∞ ‖Ẑ(t) − Ẑ‖2 =
√

2. Moreover, the exponential curve of ‖Z(t)‖2
will be O(e3.95×

√
10×10−4t) when γ = 0.05, which is faster than those curves of the

rate roughly around O(e
√

10×10−4t) when γ = 0, 0.001, 0.005 and 1
C−1 = 1

99 . This
key distinction elucidates why the curves overlap when γ = 0, 0.001, 0.005, and

1
C−1 .
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In addition, the rate of convergence is exponential as a function of the cumulative

learning rates, i.e., O

(
e

√
ζ1(t)ζ2(t)

C
√
N

·max{−γC,(C−2)γ−2}
)

, which indicates that the convergence

of updating both features and prototypes by gradient descent is much faster than O(1/ log t)
that only updates prototypes (linear predictors) on linearly separable data (Soudry et al.,
2018). In a sense, this convergence rate may help explain why training deep neural networks
usually takes only several hundred or thousand epochs. Moreover, if γ = 1

C−1 , we can obtain

the fastest convergence of Equation (10), that is,
∥∥∥ Z(t)
‖Z(t)‖ −

Z
‖Z‖

∥∥∥ = O

(
e
−
√
ζ1(t)ζ2(t)

(C−1)
√
N

)
. As

shown in Figure 1, if we set η1(t) = η as a constant learning rate, then ζ1(t) = ηt → ∞ as
t → ∞, and the gradient flow in Equation (5) exhibits an exponential convergence rate of
Z(t)
‖Z(t)‖ to Z

‖Z‖ . However, this will lead to an exponential increase in the norm of features

and prototypes, with the rate e
(1+γ)

√
ζ1(t)ζ2(t)

C
√
N . Such growth is almost unbearable for the

practical training of DNNs. Therefore, in what follows, we consider to limit the excessive
growth of these norms.

3.2 The Regularized Case

In this subsection, we focus on a regularized optimization problem that introduces `2 reg-
ularization (also known as “weight decay”) on features, prototypes, and biases. This regu-
larization term helps to prevent the norms of these variables from growing too large during
training. The optimization problem is defined as follows:

min
W ,H,b

Tr(Y >W>H) + γC−γ−1
C 1>Cb+ λ1

2 ‖H‖
2
F + λ2

2 ‖W ‖
2
F + λ2

2 ‖b‖
2
2, (11)

where ‖ · ‖F denotes the Frobenius norm, λ1 and λ2 are trade-off parameters9 that control
the regularization strength.

Taking the partial derivative with respect to H, W , and b, we have

∇HL = WY + λ1H,

∇WL = HY > + λ2W ,

∇bL = γC−γ−1
C 1C + λ2b,

and the corresponding learning dynamics following the gradient flow with time-vary learning
rates, `2 regularization can be formulated as

H ′(t) = η1(t)W (t)M − λ1η1(t)H(t),

W ′(t) = η2(t)H(t)M> − λ2η2(t)W (t),

b′(t) = −η2(t)γC−γ−1
C 1C − λ2η2(t)b(t).

(12)

The dynamics of this regularized gradient flow can be proved as follows

9. To draw general conclusions, we consider a different regularization strength for each component.

10
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Theorem 4 (Dynamics of Features, Prototypes, and Biases under Weight De-
cay). Consider the continual gradient flow in Equation 12, let Z(t) = (H(t),W (t)). If
η1(t1)η2(t2) = η1(t2)η2(t1) for any t1, t2 ≥ 0, we have the following closed-form dynamics:

Z(t) =Π+
1 Z0

(
a+

1 (t)ICN 0
0 b+1 (t)IC

)
+ Π−1 Z0

(
a−1 (t)ICN 0

0 b−1 (t)IC

)
+ Π+

2 Z0

(
a+

2 (t)ICN 0
0 b+2 (t)IC

)
+ Π−2 Z0

(
a−2 (t)ICN 0

0 b−2 (t)IC

)
+ Π3Z0

(
a3(t)ICN 0

0 b3(t)IC

)
,

(13)

and
b(t) = φ(t)

(
b0 + 1+γ−γC

C ψ(t)1C

)
, (14)

where Π+
1 Z0, Π−1 Z0, Π+

1 Z0, Π−1 Z0, and Π3Z0 follow the definition in Theorem 2, aε1, aε2,
bε1, bε2, a3, and b3 for ε ∈ {±} are the scalars that depend only on C, N , γ, λ1, λ2,
η1, and η2 (where the detailed forms can be seen in B), φ(t) = exp(−λ2

∫ t
0 η2(τ)dτ), and

ψ(t) =
∫ t

0 ζ2(τ) exp(λ2

∫ τ
0 η2(s)ds)dτ .

The convergence under the regularized case can also be derived as:

Corollary 5 (Convergence in the `2 Regularized Case). Under the conditions and

notation of Theorem 4, let s = η1(0)
η2(0) . If 0 < γ < 2

C−2 (where C > 2) or C = 2, λ1 = λ2 = λ,

and limt→∞ ζ1(t) =∞, then there exist constants π+
h , π

−
h , π

+
w , π−w , and ω only depending on

λ, γ, s, C, and N , such that the gradient flow (as in Equation (12)) behaves as:∥∥∥∥ Z(t)

‖Z(t)‖
− Zπ
‖Zπ‖

∥∥∥∥ = O
(
e−ωζ2(t)

)
, (15)

where (H+
1 ,W

+
1 ) = Π+

1 Z0, (H−1 ,W
−
1 ) = Π−1 Z0, and Zπ = (π+

hH
+
1 + π−hH

−
1 , π

+
wW

+
1 +

π−wW
−
1 ).

Furthermore, we have the following convergence results for Z(t):

• If λ > 1+γ

C
√
N

, then limt→∞ ‖Z(t)‖ = 0;

• If λ = 1+γ

C
√
N

, then limt→∞Z(t) =
(
H+

1 + 1−s
1+sH

−
1 ,W

+
1 − 1−s

1+sW
−
1

)
;

• If λ < 1+γ

C
√
N

, then limt→∞ ‖Z(t)‖ =∞.

As can be seen, the features and classifier weights under the unhinged loss converge to the
solution depending on the initialization with the form Zπ(t) = (π+

hH
+
1 + π−hH

−
1 , π

+
wW

+
1 +

π−wW
−
1 ), where H+

1 = 1√
N

(W+ ⊗ 1>N ) and H−1 = − 1√
N

(W− ⊗ 1>N ). Thus, the solution

implies the property of within-class variability collapse. To full encompass all properties
of Neural Collapse (when the class number and the feature dimensionality p satisfies C ≤
p − 1), it is essential for π+

wW
+
1 + π−wW

−
1 to form a Simplex ETF, and for

π+
h

π+
w

= −π−h
π−w

to

hold, inducing the property of convergence to self-duality (i.e., the class means and linear

11
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classifiers converge to each other, up to rescaling). For example, when λ = 1+γ

C
√
N

, Corollary

demonstrates that the solution satisfies the property of convergence to self-duality.
Moreover, the results in Corollary 5 suggest that adding an appropriate weight decay on

both features and prototypes can avoid impractical effects, since the norm of Z(t) shrinking
to 0 or diverging toward infinity will significantly affect the training of DNNs. Several
recent works (Zhu et al., 2021; Zhou et al., 2022a) described that the features are implicitly
penalized, but this implicit penalization may be fragile when using the unhinged loss (as
depicted in Figure 19). Consequently, we emphasize the importance of adding explicit
regularization to features, rather than relying solely on the implicit penalization attached by
other components like batch normalization and weight decay . Explicit feature regularization
also plays a role in mitigating minority collapse (Fang et al., 2021b). Firstly, minority
collapse leads to features of the minority classes approaching 0, since the minimization
of the objective pays too much emphasis on enlarging the feature norms of the majority
classes. In this context, explicit feature regularization can effectively restrain the excessive
growth of feature norms of the majority classes. Secondly, explicit feature regularization
in some sense intuitively reduces the energy of features in the optimization program (Fang
et al., 2021b), thereby shrinking the feasible domain of features. This further mitigates the
imbalance of feature norms between majority and minority classes. In a nutshell, we need
to limit the growth of feature norms.

3.3 The Prototype-anchored Case

We further consider the prototype-anchored case in which the class prototypes W are
fixed10 into some specific structures (e.g., a simplex ETF) during the training process and
the features H are with `2 regularization. Then, the dynamics of H in Equation (11) will
be formulated as the first-order non-homogeneous linear difference equation:

H ′(t) = η(t)WM − λη(t)H(t), (16)

and the solution to the linear difference equation can be easily derived as follows

Theorem 6. Consider the continual gradient flow (Equation (16)) in which the prototypes
W are fixed, we have the closed-form dynamics:

H(t) = e−λ
∫ t
0 η(τ)dτH(0) +

1− e−λ
∫ t
0 η(τ)dτ

λ
WM , (17)

which further indicates that
∥∥H(t)− 1

λWM
∥∥ = O

(
e−λ

∫ t
0 η(τ)dτ

)
when limt→∞ e

−λ
∫ t
0 η(τ)dτ =

0.

When the time-varying learning rate satisfies that limt→∞ e
−λ
∫ t
0 η(τ)dτ = 0, then H(t)

converges to 1
λWM . That is, the unhinged loss in the prototype-anchored case coincides

with a feature alignment task such that each feature hi,c in class c aligns to 1
λCN (wc −

γ
∑

j 6=cwj). It’s worth noting that when λ = 0, the behavior of H(t) can be described as

H(t) = H(0)+
∫ t

0 η(τ)dτWM , which is predominantly influenced by the term WM when

the integral
∫ t

0 η(τ)dτ becomes significantly large.

10. That is, W is not updated, which can be done by simply setting W.require grad = False in PyTorch

12
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As depicted in Figure 2, prototype-anchored learning demonstrates its effectiveness in
mitigating training instability by transforming the classification problem into a feature
alignment task. In this context, the unhinged loss with PAL yields results that are not only
comparable but, in some cases, even superior to those achieved with the Cross-Entropy
(CE) loss. This underscores the practicality of the unhinged loss as a valuable loss function
for training classification models.

3.4 The Spherical Constrained Case

We consider another constrained case in which features are restricted on the p-sphere
Sp−1 = {x : ‖x‖2 = 1,x ∈ Rp} by explicitly performing `2 normalization11, and we fix
the prototypes12 to satisfy W1C = 013, then the optimization problem in Equation (2) can
be reformulated as

min
H
−1 + γ

CN
Tr((IC ⊗ 1N )W>Ĥ), (18)

where Ĥ = (ĥ1,1, ..., ĥc,N ) and ĥ = h
‖h‖2 denotes the `2-normalized vector.

Take the partial derivative with respect to H, then the discrete dynamical system based
on gradient descent is formulated as

H(t+ 1) = H(t) + (1+γ)η(t)
CN

(
∂Ĥ
∂H

∣∣
H=H(t)

)>
W (IC ⊗ 1>N ), (19)

where (∂Ĥ∂H )> is a vector-wise operator, and for any vector hi,c in H ′ ∈ Rp×CN , we have

(∂Ĥ∂H )>hi,c =
(

1
‖hi,c‖2 (Ip − ĥi,cĥ>i,c)h′i,c

)
.

Despite the fact that the optimization objective in Equation (18) does not show convex-
ity, Lipschitzness, and β-smoothness on H due to the `2 normalization operator, we prove
that the normalized features which obey the gradient descent iterates in Equation (19)
can still converge to their corresponding normalized prototypes, i.e., achieve the global
minimum of Equation (18):

Theorem 7 (Convergence in the Spherical Constrained Case). Considering the dis-
crete dynamics in Equation (19), if ŵ>c ĥi,c(0) > −1 for any i ∈ [N ] and c ∈ [C], the learning

rate η(t) satisfies that η(t)
‖hi,c(t)‖2 is non-increasing, η(0)(1+γ)

CN‖hi,c(0)‖2 ≤
1

‖wc‖2 , limt→∞
η(t+1)
η(t) = 1,

and there exists a constant ε > 0, s.t., η(t) > ε, then we have

lim
t→∞

∥∥∥Ĥ(t)− Ŵ (IC ⊗ 1>N )
∥∥∥ = 0, (20)

and further if limt→∞ ‖H(t)‖ <∞, then there exists a constant µ > 0, such that the error
above shows exponential decrease:∥∥∥Ĥ(t)− Ŵ (IC ⊗ 1>N )

∥∥∥ = O(e−µt). (21)

Moreover, if ŵ>c ĥi,c(0) = −1, then hi,c(t) = hi,c(0).

11. `2 normalization can also prevent arithmetic overflow or underflow occurring in the training of DNNs.
12. The relevant studies are still few and often require some strict assumptions since the learning dynamics

is very complicated when w participates the optimization process with both feature and prototypes
normalization. In this paper, we are going to try a more concise theoretical analysis with fixed prototypes.

13. This aims to simplify Equation (1) as the objective of feature alignment, that is, Lγ(Wĥ, y) = −w>y ĥ+

γ
∑
j 6=yw

>
j ĥ = (1+γ)‖w‖2

2
(‖ĥ− ŵy‖22 − 2), and the global minimum will be obtained at ĥ = ŵy.
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Remark As shown in the theorem above, we prove that gradient descent exerts a bias
that steers the normalized features toward the global minimizer Ŵ (IC ⊗ 1>N ), achieving
exponential convergence under certain favorable conditions. This global solution shows
two properties of Neural Collapse: within-class variability collapse and convergence to self-
duality. If Ŵ also forms a simplex ETF, the global solution will exhibit all properties
of Neural Collapse. Additionally, we establish that if the inner product between ŵc and
ĥi,c(0) (i.e., the cosine similarity between wc and hi,c(0)) is −1, then hi,c(t) = hi,c(0), as
the gradient induced by `2 normalization will be 0. More details can be found in the proof
of Theorem 7. Therefore, we just analyze the case where the inner product ŵc and ĥi,c(0)
is strictly greater than −1.

3.5 The NTK-Invariant Case

We further perform some analysis in the case where the neural tangent kernel ∇ΘH
>∇ΘH

(Jacot et al., 2018; Chizat et al., 2019; Yang and Hu, 2020, 2021) is assumed to be invari-
ant during training. We prove that the unhinged loss has more potential to derive exact
dynamics. Specifically, consider the last-layer feature hi,c = fΘ(xi,c) extracted from the
example xi,c. When DNNs are trained using gradient descent to minimize the composition
L ◦W ◦ fΘ, we have

Θ(t+ 1)−Θ(t) = −η∇ΘL
∣∣
Θ=Θ(t)

,

W (t+ 1)−W (t) = −η∇WL
∣∣
W=W (t)

.
(22)

According to the first-order Taylor expansion, we obtain

H(t+ 1)−H(t) ≈ ∇ΘH
>[Θ(t+ 1)−Θ(t)]. (23)

For the unhinged loss, we can obtain the following closed-form dynamics

Theorem 8. Assume that the neural tangent kernel ∇ΘH
>∇ΘH remains invariant during

iterations. Let z(t) denote the row-first vectorization of

(
H(t) 0

0 W (t)

)
, B =

(
0 M>

M 0

)
,

and A =

(
0 ∇ΘH

>∇ΘH
IC 0

)
. Considering the eigendecomposition A = UAΛAU

−1
A and

B = UBΛBU
−1
B , we have

Cz(t) = exp[(ΛA ⊗ΛB)t]Cz(0), (24)

where C = U−1
B U−1

A ⊗ I.

Though Theorem 8 does not imply properties of Neural Collapse, it reveals a specific
dynamics under the unhinged loss, which exhibits an exponential convergence rate, contin-
gent upon the assumption that the neural tangent kernel remains constant. To demonstrate
the mathematical simplicity of the unhinged loss, we consider the dynamics of the MSE loss
L = 1

CN ‖W
>H + b1>CN − I⊗ 1>N‖2F for comparison, and similarly derive that

H ′(t) = ∇ΘH
>∇ΘHW (t)C(t), W ′(t) = H(t)C(t)>, b′(t) = C(t)1CN , (25)
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where C(t) = 2η
CN (W (t)>H(t) + b(t)1>CN − IC ⊗ 1>N ). As can be seen, the above gradient

flow is nonlinear and then intractable to analyze the exact dynamics though ∇ΘH
>∇ΘH

stays constant.
Through the above analysis, it is clear to see that the unhinged loss offers more math-

ematical opportunities than the MSE loss to analyze the closed-form dynamics under the
assumption of an invariant neural tangent kernel.

4. Insights and Experiments

In this section, we provide some insights into better training DNNs according to the conclu-
sions in Section 3. We then corroborate our theoretical results and insights with extensive
experiments. More specifically, in Section 4.1, we propose to use prototype-anchored learn-
ing (PAL) as a means of resolving the instability issues that arise during training with the
unhinged loss. In Section 4.2, we conduct experiments to highlight the benefits of explicit
feature regularization on imbalanced learning and out-of-distribution (OOD) detection. In
these experiments, we employ the unhinged loss with PAL and the CE loss as training
objective. In Section 4.3, we propose the rescaling learning rates (RLR) with feature norms
for the spherical case to address the problem of slow convergence resulting from feature nor-
malization, which may also have implications for improving other methods of performing
feature normalization. More details and results can be found in Appendix C.

4.1 The Unhinged Loss with Prototype-Anchored Learning

Since directly using the unhinged loss will lead to volatile effects, which is mainly reflected
in the rapid increase of feature norms and the imbalance between class prototypes when
training DNNs with the stochastic gradient method, as shown in Figure 19. Inspired by
recent works (Zhou et al., 2022c; Kasarla et al., 2022; Yang et al., 2022) that use the Neural
Collapse structure as an inductive bias (also called prototyping-anchored learning, PAL),
we fix prototypes W as a simplex ETF during training, i.e., W>W = C

C−1I −
1

C−111>14.

Experimental Results We conduct experiments on widely-used classification datasets
including CIFAR-10, CIFAR-100, and ImageNet-100. To mitigate training instability un-
der the unhinged loss, we employ the Prototype-Anchored Learning (PAL) and Feature-
Normalized PAL (FNPAL). As depicted in Figure 2, the results obtained by the unhinged
loss with PAL and FNPAL variants demonstrate comparable or even better performance
in comparison to CE. This substantiates the feasibility of utilizing the unhinged loss as a
practical training objective for standard classification tasks.

4.2 Explicit Feature Regularization

In this paper, we directly consider explicit feature regularization to avoid excessive growth
of feature norms, i.e., adding the regularization term λ

∑
x∈B ‖fΘ(x)‖22 in the objective.

14. These prototypes W can be obtained using one of two methods: (i) By minimizing the objective∑C
i=1 log

exp(sm̂>
i ĥi)∑C

j=1 exp(sm̂>
j ĥi)

and setting W = M̂ , where s is a scale factor (Zhou et al., 2022d); or (ii) By

deriving them from the standard simplex ETF M =
√

C
C−1

(IC − 1
C
1C1

>
C), i.e., W = sUM ∈ Rp×C ,

where U ∈ Rp×C (p ≥ C) is a partial orthogonal matrix (Papyan et al., 2020).
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(a) CIFAR-10
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(b) CIFAR-100
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(c) ImageNet-100

Figure 2: Validation accuracy of different loss functions on CIFAR-10, CIFAR-100, and
ImageNet, where ∗ denotes training with explicit feature regularization. PAL
and FNPAL denote the model trained with prototype-anchored learning (PAL)
and feature-normalized and prototype-anchored learning (FNPAL) (Zhou et al.,
2022c). The curve in the red box represents the zoomed-in curve of the last
50 epochs. As can be seen, DNNs trained with the unhinged loss can achieve
comparative or even better performance than those of CE.

Table 2: Validation accuracies on long-tailed CIFAR-10/-100 with CE and different explicit
feature regularization under Cross-Entropy (CE) and the unhinged loss (UL) with
PAL. The imbalance ratio ρ = maxi ni

mini ni
is the ratio between sample sizes of the most

frequent and least frequent classes, and ρ = 1 denotes the original CIFAR-10/-
100. λ = 0 denotes the model training with CE. All values are percentages. Bold
numbers indicate the results that are better than the baseline vanilla CE or UL.
The best results are underlined.

Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100

Imbalance Ratio 100 50 20 10 1 100 50 20 10 1

Vanilla CE 67.81 72.93 83.97 88.37 95.28 33.37 39.40 42.96 56.38 75.42
CE (λ = 5e− 6) 67.84 72.85 83.17 89.06 95.27 36.00 41.92 50.75 60.13 76.48
CE (λ = 1e− 5) 67.74 76.14 84.17 89.19 95.23 36.61 42.36 49.21 58.91 77.34
CE (λ = 5e− 5) 69.74 77.29 84.92 88.64 95.39 34.88 42.74 54.72 60.84 76.19

Vanilla UL 72.60 77.20 85.46 89.29 95.23 39.20 45.81 54.66 59.92 75.37
UL (λ = 1e− 7) 71.85 78.80 85.76 89.68 95.33 41.39 46.13 55.25 61.15 75.18
UL (λ = 5e− 7) 73.47 79.54 86.28 89.36 95.14 41.85 47.58 54.00 61.31 75.51
UL (λ = 1e− 6) 73.71 79.40 86.12 89.43 95.50 40.85 47.07 55.71 61.47 75.84
UL (λ = 5e− 6) 71.13 78.90 85.33 89.20 95.10 41.87 45.83 55.92 60.87 77.20

Explicit regularization on features can significantly remedy over-confidence and even im-
prove generalization. Moreover, adding explicit feature regularization can speed up the
convergence of Ĥ(t) to ˆWM according to Theorem 6, as verified in Figure 15.

Experimental Results To validate the role of explicit feature regularization, we conduct
experiments on two tasks: (i) Long-tailed recognition on benchmarks CIFAR-10-LT and
CIFAR-100-LT with artificially created long-tailed settings; (ii) Out-of-distribution (OOD)
detection between SVHN and CIFAR-10/-100. For long-tailed classification, we follow the
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(a) FPR95: 43.04
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(b) FPR95: 27.87
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(c) FPR95: 89.84
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3 4 5 6 7

Feature Norm

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

e

in-distribution (CIFAR-10)
out-of-distribution (SVHN)

(e) FPR95: 52.10

0.5 1.0 1.5 2.0 2.5 3.0

Feature Norm

0

200

400

600

800
Fr

eq
ue

nc
e

in-distribution (CIFAR-10)
out-of-distribution (SVHN)

(f) FPR95: 24.94

6 8 10 12 14 16

Feature Norm

0

200

400

600

800

1000

Fr
eq

ue
nc

e

in-distribution (CIFAR-100)
out-of-distribution (SVHN)

(g) FPR95: 95.54

2 3 4 5 6 7

Feature Norm

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

e

in-distribution (CIFAR-100)
out-of-distribution (SVHN)

(h) FPR95: 87.83

Figure 3: Distribution of energy scores (a-d) (Liu et al., 2020) and feature norms (e-h)
from classification models trained without (a & c & e & g) or with (b & d & f
& h) explicit feature regularization (EFR) (λ = 1e − 5). (a & b & e & f) and
(c & d & g & h) are from ResNet-18 (He et al., 2016) trained on CIFAR-10 and
from ResNet-34 trained on CIFAR-100, respectively. As can be seen, EFR can
improve the performance of OOD detection by alleviating the over-confidence of
OOD samples and making the energy scores of ID samples more concentrated.
More intuitively, comparing (f) to (e) and (h) to (g), EFR effectively limits the
growth of feature norms and significantly improves the distinction between ID
samples and OOD samples in feature norm.

controllable class imbalance strategy in (Cao et al., 2019) by reducing the number of training
examples per class and keeping the validation set unchanged. As shown in Table 2, explicit
feature regularization effectively improves the performance on long-tailed classification in
most cases, even for normal classification. For ODD detection, we train ResNet-18 and
ResNet-34 on in-distribution datasets CIFAR-10 and CIFAR-100, respectively, and then
use SVHN as the OOD dataset to evaluate the performance.

4.3 Rescaled Learning Rate for the Spherical Case

In this subsection, we propose a strategy of rescaling the learning rate for the spherical case
in which the features are performed `2 normalization.

As shown in Theorem 7 and its proof, the convergence behavior in the spherical con-
strained case is characterized by the term η(t)

‖hi,c(t)‖2 , when ‖hi,c‖2 is monotonically increasing

and thus leads to a slower convergence rate. This result underscores the influence of the
feature norm on the gradient dynamics in spherical case. Also, we observe that the training
plots in the spherical case exhibit a slower rate in comparison to the CE loss in Figure
2. To bridge the performance of the unhinged loss to that of CE, we propose a straight-
forward approach—rescaling the learning rates based on feature norms, that is, scaling
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Table 3: OOD detection performance using softmax-based (Hendrycks and Gimpel, 2016),
energy-based (Liu et al., 2020), and feature norm-based approaches while model
training with explicit feature regularization (EFL) (where λ = 1e− 5 for CE and
λ = 5e− 7 for the unhinged loss (UL)). We use ResNet-18 and ResNet-34 to train
on the in-distribution datasets CIFAR-10 and CIFAR-100, respectively. We then
use SVHN (Netzer et al., 2011) as the OOD dataset to evaluate the performance
of OOD detection. All values are percentages. ↑ indicates large values are better,
and ↓ indicates smaller values are better. The best results are underlined.

Dataset Dtest
in Method FPR95 ↓ AUROC ↑ AUPR ↑

CIFAR-10

Softmax-based / Energy-based / Feature Norm-based
CE 52.09 / 43.04 / 52.10 91.67 / 91.94 / 89.54 84.11 / 82.80 / 77.06

CE + EFL 37.39 / 27.87 / 24.94 93.90 / 94.60 / 94.17 85.48 / 85.34 / 83.15
UL 53.29 / 53.33 / 52.34 87.72 / 87.73 / 89.45 74.86 / 74.83 / 79.05

UL+EFL 27.27 / 27.24 / 26.62 94.27 / 94.46 / 95.12 86.51 / 86.60 / 88.46

CIFAR-100

Softmax-based / Energy-based / Feature Norm-based
CE 87.75 / 89.84 / 95.54 71.01 / 71.94 / 59.54 55.42 / 56.69 / 43.21

CE+EFL 81.48 / 81.41 / 87.83 77.02 / 78.03 / 73.91 62.92 / 63.66 / 58.81
UL 80.43 / 76.86 / 76.23 66.97 / 74.83 / 76.19 37.83 / 45.07 / 47.51

UL+EFL 75.74 / 74.64 / 73.59 75.21 / 75.36 / 76.80 45.16 / 45.27 / 48.34

up the learning rate η(t) with the feature norm ‖hi,c‖2 for each example15. Though we
change the learning rates, we still guarantee the convergence analysis in Theorem 7 if η(t)

is non-increasing and satisfies η(0)(1+γ)
CN ≤ 1

‖wc‖2 .

Experimental Results To confirm the efficacy of the rescaled learning rate in acceler-
ating convergence for the spherical case, we experiment with the unhinged loss (FNPAL).
As illustrated in Figure 2, the utilization of the unhinged loss (FNPAL) with the rescaled
learning rate (RLR) clearly demonstrates accelerated convergence in comparison to its coun-
terpart without RLR.

5. Conclusion

In this paper, we introduced the unhinged loss as a surrogate to analyze the behavior of
last-layer features and prototypes. Due to the conciseness of the unhinged loss, we de-
rived exact dynamics under gradient descent in various scenarios, including unconstrained,
regularized, and spherical constrained cases, as well as the case with an invariant neural
tangent kernel. Furthermore, we demonstrated that these dynamics converge exponen-
tially to a specific solution depending on the initialization. Inspired by these results, we
proposed additional insights for improvements, such as using prototype-anchored learning
with the unhinged loss to bridge its performance to that of cross-entropy loss, employ-
ing explicit feature regularization to address over-confidence, and implementing a rescaled
learning rate to accelerate convergence in the spherical case. Finally, we validated these
theoretical results and insights through extensive experiments, covering numerical analysis,

15. We can also implement this strategy by rescaling the loss, but the multiplicative feature norm stops
gradients.

18



On the Dynamics Under the Unhinged Loss and Beyond

visual classification, imbalanced learning, and out-of-distribution detection. We anticipate
that the unhinged loss will serve as a valuable tool for the community to gain a deeper
understanding of the behavior of deep neural networks, extending beyond the scope of this
paper.
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Appendix for “On the Dynamics under the Unhinged Loss
and Beyond”

Appendix A. Clarification for the Unhinged Loss

In this section, we provide some clarification for the unhinged loss as follows.

• About the contribution. As stated in the body of this paper, the unhinged loss
serves as an alternative object of study, which has the advantage of being linear in
the outputs of the model. Thus, it can provide more opportunities to analyze more
concrete behaviors and explore the shortcomings of the existing modeling. The main
contribution of this work is to glimpse into deep learning through a concise form under
the unhinged loss, which enjoys the great advantage to simplify theoretical research
very much. Moreover, it is not just a tool for theoretical analysis. To make the un-
hinged loss practical, we further provide several insights theoretically and empirically,
including using prototype-anchored learning with the unhinged loss (Sec. 4.1), apply-
ing explicit regularization on features (Sec. 4.2), rescaling the learning rates for the
spherical constrained case (Sec. 4.3), and other potential insights (Sec. D).

• About the criterion of correct classification. The value of the unhinged loss in
Equation (1) cannot be directly used as the criterion to judge whether a sample is
classified correctly since the unhinged loss can be arbitrary negative in unconstrained
cases, since the gradient of the unhinged loss if

∂Lγ
∂h = −(wy − γ

∑
i 6=ywi) cannot

converge to zero unless wy − γ
∑

i 6=ywi = 0 for all y. This is also the main reason
why the unhinged loss cannot be used directly for practical training. To overcome this
drawback, we turn to limit the rapid growth of norms. For instance, in the spherical
constrained case, the features are constrained to the unit sphere, and class prototypes
are fixed as a simplex equiangular tight frame (ETF). Moreover, under this case, the
unhinged loss would be lower bounded by −(1 + γ), and thus can be used in practical

training (as shown in Figure 2). We can also derive that Lγ < −(1 + γ)
√

C−2
2(C−1 ⇒

w>y h > maxi 6=yw
>
i h when these prototypes are fixed as a simplex ETF, so the sample

can be correctly classified if the value of the unhinged loss is less than (1+γ)
√

C−2
2(C−1 .

• About other losses.

1) For the CE and multi-binary CE loss, we have the following inequality.

Lγ(Wh+ b, y)

≤min

{
log(1 + exp(−w>y h− by)) + γ

∑
j 6=y

log(1 + exp(w>j h+ bj)),

(γ(C − 1)− 1)(w>y + by)h− γ(C − 1) log
exp(w>y h+ by)∑C
i=1 exp(w>i h+ bi)

}
.

2) For the Wasserstein loss in Arjovsky et al. (2017), we can find that the empirical
form of the unhinged loss 1

N

∑N
i=1(w>y h + by − γ

∑
i 6=y(w

>
i h + bi)) resembles the
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Wasserstein loss Ex∼Pr [fw(x)] − Ex∼Pθ [fw(x)] if we regard positive logits w>y h + by
as scores from Pr and negative logits w>i h + bi (i 6= y) as scores from Pθ. The main
difference is that in the unhinged loss the two logits w>y h+ by and w>i h+ bi (i 6= y)
are computed from h (i.e., the same input), rather than being sampled separably from
two distributions as done in Wasserstein loss. Moreover, the unhinged loss does not
constrain the values of these scores, in contrast the Wasserstein loss requires fw to be
Lipschitz continuous.

Appendix B. Proofs for Lemmas, Theorems, Propositions and Corollaries

B.1 Proof of Lemma 1

Lemma 1 (Neural Collapse of The Unhinged Loss). For norm-bounded prototypes
and features, i.e., ‖wc‖2 ≤ E1 and ‖hi,c‖2 ≤ E2, ∀i ∈ [N ],∀c ∈ [C], the global minimizer of

1
CN

∑N
i=1

∑C
c=1 Lγ(Whi,c, yi,c) implies neural collapse when p ≥ C − 1. More specifically,

the global minimizer is uniquely obtained at
w>i wj

‖wi‖2‖wj‖2 = − 1
C−1 , ∀i 6= j,

w>yi,chi,c
‖wyi,c‖2‖hi,c‖2

= 1,

‖wc‖2 = E1, and ‖hi,c‖2 = E2, ∀i ∈ [N ], ∀c ∈ [C].

Proof The proof is based on lower bounding the objective 1
CN

∑N
i=1

∑C
c=1 Lγ(Whi,c, yi,c)

by a sequence of inequalities that holds if and only if the solution forms Neural Collapse
(Papyan et al., 2020). Let ŵ = 1

C

∑C
c=1wc, according to the definition of LSM , we have

1

CN

N∑
i=1

C∑
c=1

LSM (Whi,c, yi,c)

=
1

CN

N∑
i=1

C∑
c=1

(−w>yi,chi,c + γ
∑
j 6=yi,c

w>j hi,c)

≥ 1

CN

N∑
i=1

C∑
c=1

(−E1E2 + γ(Cŵ −wyi,c)
>hi,c)

≥− γE2

CN

N∑
i=1

C∑
c=1

‖Cŵ −wyi,c‖2 − E1E2

≥− γE2

√√√√ 1

CN

N∑
i=1

C∑
c=1

‖Cŵ −wyi,c‖22 − E1E2

=− γE2

√√√√ 1

C

C∑
c=1

‖wc‖22 − C2‖ŵ‖22 − E1E2

≥− (1 + γ)E1E2

,

where the first and second inequalities are based on the facts that w>yi,chi,c ≤ E1E2 and

(Cŵ − wyi,c)
>hi,c ≥ −E2‖Cŵ − wyi,c‖2, respectively. In the third equality, we used the

Cauchy-Schwarz inequality, and the last inequality we use the facts that ‖wc‖2 ≤ E1 and
‖ŵ‖2 ≥ 0.
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According the above derivation, the equality holds if and only if ∀i ∈ [N ], ∀c ∈ [C],
w>yi,chi,c = E1E2, (Cŵ −wyi,c)

>hi,c = −E2‖Cŵ −wyi,c‖2, ‖Cŵ −wc‖2 = ‖Cŵ −wC‖2,

‖wc‖2 = E1, and ‖ŵ‖2 = 0. These equations can be simplified as
w>i wj

‖wi|2‖wj‖2 = − 1
C−1 ,

∀i 6= j,
w>yi,chi,c

‖wyi,c‖2‖hi,c‖2
= 1, ‖wc‖2 = E1, and ‖hi,c‖2 = E2, ∀i ∈ [N ], ∀c ∈ [C], which also

implies neural collapse.

B.2 Proof of Theorem 2

In this section, we will provide the proof of Theorem 2. Our analysis will actually rely
on the eigenvalues and eigenspaces of five subspaces E+

1 , E−1 , E+
2 , E−2 and E3 in Theorem

2. Their concrete projection operator can be found in Appendix B.9. In the following, we
show that these five subspaces are orthogonal:

Lemma 9. The following five subspaces are orthogonal to each other and satisfy Rp×C(N+1) =
E+

1 ⊕ E
−
1 ⊕ E

+
2 ⊕ E

−
2 ⊕ E3:

Eε1 := {(H,W ) : H = ε · 1√
N

(W ⊗ 1>N ),W1C = 0,W ∈ Rp×C},

Eε2 := {(H,W ) : H = ε · 1√
N
h1>CN ,W = h1>C ,h ∈ Rp},

E3 := {(H,W ) : H(IC ⊗ 1N ) = 0,W = 0,H ∈ Rp×CN}.

(26)

where ε ∈ {±1}, and k 6= 0.
Proof For (H1,W1) = ( 1√

N
(W1⊗1>N ),W1) ∈ E+

1 and (H2,W2) = (− 1√
N

(W2⊗1>N ),W2) ∈
E−1 , we have

H1H
>
2 +W1W

>
2 = − 1

N
(W1 ⊗ 1>N )(W>

2 ⊗ 1N ) +W1W
>
2 = 0.

For (H1,W1) = ( 1√
N
h11

>
CN ,h11

>
C) ∈ E+

2 and (H2,W2) = (− 1√
N
h21

>
CN ,h21

>
C) ∈ E−2 ,

we have

H1H
>
2 +W1W

>
2 = − 1

N
h11

>
CN1CNh

>
2 + h11

>
C1Ch

>
2 = 0.

For (H1,W1) = (ε1
1√
N

(W1 ⊗ 1>N ),W1) ∈ Eε1 and (H2,W2) = (ε2
1√
N
h21

>
CN ,h21

>
C) ∈

Eε2, since W11C = 0 and (W1 ⊗ 1>N )1CN = NW11C = 0, we have

H1H
>
2 +W1W

>
2 =

ε1ε2
N

(W1 ⊗ 1>N )1CNh
>
2 +W11Ch

>
2 = 0.

For (H1,W1) = (ε 1√
N

(W1 ⊗ 1>N ),W1) ∈ Eε1 and (H2,W2) = (H2, 0) ∈ E3, we have

H1H
>
2 +W1W

>
2 =

ε√
N

(W1 ⊗ 1>N )H>2 =
ε√
N
W1(H2(IC ⊗ 1N ))> = 0.

For (H1,W1) = (ε 1√
N
h11

>
CN ,h11

>
C) ∈ Eε2 and (H2,W2) = (H2, 0) ∈ E3, since H2(IC⊗

1N ) = 0, we have

H1H
>
2 +W1W

>
2 =

ε√
N
h11

>
CNH

>
2 =

ε√
N
h1(H2(IC ⊗ 1N )1>C)> = 0
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To sum up, we prove that the five subspaces E+
1 , E

−
1 , E

+
2 , E

−
2 , E3 are orthogonal to each

other. Moreover, we have

dim E+
1 = dim E−1 = p(C − 1), dim E+

2 = dim E−2 = p, dim E3 = pC(N − 1).

Since these dimensions sum to pC(N + 1) = dim(Rp×CN ⊕ Rp×C), then Rp×C(N+1) =
E+

1 ⊕ E
−
1 ⊕ E

+
2 ⊕ E

−
2 ⊕ E3.

Theorem 2 (Dynamics of Features, Class Prototypes and Biases without Con-
straints). Consider the continual gradient flow in Equation 5, let Z(t) = (H(t),W (t)),
if η1(t1)η2(t2) = η1(t2)η2(t1) for any t1, t2 ≥ 0, we have the following closed-form dynamics

Z(t) =Π+
1 Z0

(
α+

1 (t)C(t) + β+
1 (t)IC(N+1)

)
+Π−1 Z0

(
α−1 (t)C(t) + β−1 (t)IC(N+1)

)
+Π+

2 Z0

(
α+

2 (t)C(t) + β+
2 (t)IC(N+1)

)
+Π−2 Z0

(
α−2 (t)C(t) + β−2 (t)IC(N+1)

)
+ Π3Z0,

(27)

and

b(t) = b0 +
(1 + γ − γC)ζ2(t)

C
1C , (28)

where αε1, αε2, βε1 and βε2 for ε ∈ {±} are the scalars that only depend on C, N , γ, η1 and
η2 (where the detailed forms of these scalars can be seen in the appendix), Z0 = (H0,W0),

C(t) =
(
ζ1(t)ICN 0

0 ζ2(t)IC

)
, ζ1(t) =

∫ t
0 η1(τ)dτ , ζ2(t) =

∫ t
0 η2(τ)dτ , Πε

1, Πε
2 and Π3 for

ε ∈ {±} are orthogonal projection operators onto the following respective eigenspaces:

Eε1 := {(H,W ) : H = ε · 1√
N

(W ⊗ 1>N ),W1C = 0},

Eε2 := {(H,W ) : H = ε · 1√
N
h1>CN ,W = h1>C ,h ∈ Rp},

E3 := {(H,W ) : H(IC ⊗ 1N ) = 0,W = 0}.

(29)

Proof Writing Z(t) = (H(t),W (t)), then the unsolved portion of the system is given by

Z ′(t) = Z(t)

(
0 M>

M 0

)(
η1(t)ICN 0

0 η2(t)IC

)
, (30)

where M = 1
CN ((1 + γ)(IC ⊗ 1>N )− γ1C1>CN ).

LetA(t) =

(
0 M>

M 0

)(
η1(t)ICN 0

0 η2(t)IC

)
=

(
0 η2(t)M>

η1(t)M 0

)
, then the equa-

tion above can be reformulated as the initial-value problem associated with the linear ordi-
nary differential equation:

Z ′(t) = Z(t)A(t), Z(0) = Z0. (31)
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For any t1, t2, we have the matrix commutator of A(t1) and A(t2)

[A(t1),A(t2)]

=A(t1)A(t2)−A(t2)A(t1)

=

(
0 η2(t1)M>

η1(t1)M 0

)(
0 η2(t2)M>

η1(t2)M 0

)
−A(t2)A(t1)

=

(
η2(t1)η1(t2)M>M 0

0 η1(t1)η2(t2)MM>

)
−A(t2)A(t1)

=

(
(η2(t1)η1(t2)− η2(t2)η1(t1))M>M 0

0 (η1(t1)η2(t2)− η2(t1)η1(t2))MM>

)
=0

where the last equality is based on the fact that η2(t1)η1(t2) = η2(t2)η1(t1). Therefore,
according to Magnus approach, we have

Z(t) = Z0 exp

(∫ t

0
A(τ)dτ

)
= Z0 exp

(
0

∫ t
0 η2(τ)dτM>∫ t

0 η1(τ)dτM 0

)
. (32)

Let ζ1(t) =
∫ t

0 η1(τ)dτ , ζ2(t) =
∫ t

0 η2(τ)dτ ,B =

(
0 M>

M 0

)
,C(t) =

(
ζ1(t)ICN 0

0 ζ2(t)IC

)
,

and L(t) = BC(t), we have

Z(t) = Z0 exp(L(t)) = Z0

∞∑
k=0

(L(t))k

k!
. (33)

Moreover, we have

(L(t))2 =

(
0 ζ2(t)M>

ζ1(t)M 0

)(
0 ζ2(t)M>

ζ1(t)M 0

)
=

(
ζ1(t)ζ2(t)M>M 0

0 ζ1(t)ζ2(t)MM>

)
= ζ1(t)ζ2(t)B2,

(34)

thus we obtain

Z(t) =Z0

( ∞∑
k=0

(L(t))2k+1

(2k + 1)!
+

∞∑
k=0

(L(t))2k

(2k)!

)

=Z0

( ∞∑
k=0

(ζ1(t)ζ2(t))kB2k+1C(t)

(2k + 1)!
+
∞∑
k=0

(ζ1(t)ζ2(t))kB2k

(2k)!

)

=Z0

∞∑
k=0

(ζ1(t)ζ2(t))kB2k+1C(t)

(2k + 1)!
+Z0

∞∑
k=0

(ζ1(t)ζ2(t))kB2k

(2k)!

(35)

Looking at the above equation, we just need to analyze the eigenspaces and eigenvalues of
B.
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Considering the following five subspaces:

Eε1 := {(H,W ) : H = ε · 1√
N

(W ⊗ 1>N ),W1C = 0},

Eε2 := {(H,W ) : H = ε · 1√
N
h1>CN ,W = h1>C ,h ∈ Rp},

E3 := {(H,W ) : H(IC ⊗ 1N ) = 0,W = 0}.

(36)

where ε ∈ {±}. According to Lemma 9, these five subspaces are orthogonal to each other
and satisfy Rp×C(N+1) = E+

1 ⊕ E
−
1 ⊕ E

+
2 ⊕ E

−
2 ⊕ E3.

In the following, we will prove that Eε1, Eε2 and E3 are five eigenspaces of B. More
specifically, each nonzero member of each claimed eigenspace is an eigenvector, and the
claimed eigenspaces have distinct eigenvalues.

Note that for (H,W ) ∈ Rp×CN ⊕ Rp×C , we have (H,W )B = (WM>,HW ).

For (H,W ) ∈ Eε1, we have H = ε√
N
W ⊗ 1>N and W1C = 0, thus

WM = 1
CNW ((1 + γ)(IC ⊗ 1>N )− γ1C1>CN )

= (1+γ)
CN W ⊗ 1>N

= ε(1+γ)

C
√
N
H,

HM> = 1
CN [ε · 1√

N
(W ⊗ 1>N )][(1 + γ)(IC ⊗ 1>N )− γ1C1>CN ]>

= ε
CN
√
N

[(W ⊗ 1>N )((1 + γ)(IC ⊗ 1N )− γ(1C ⊗ 1N )1>C)]

= ε(1+γ)

C
√
N
W ,

i.e., (H,W ) is an eigenvector of B with eigenvalue ε(1+γ)

C
√
N

.

For (H,W ) ∈ Eε2, we have H = ε√
N
h1>CN and W = h1>C , thus

WM = 1
CNh1>C((1 + γ)(IC ⊗ 1>N )− γ1C1>CN )

= 1
CNh((1 + γ)1C(IC ⊗ 1>N )− γC1>CN )

= (1+γ−γC)
CN h1>CN

= ε(1+γ−γC)

C
√
N

H,

HM> = 1
CN
√
N

(ε · h1>CN )((1 + γ)(IC ⊗ 1>N )− γ1C1>CN )>

= ε
CNh((1 + γ)1>CN (IC ⊗ 1N )− γ1>

CN
√
N

1CN1>C)

= ε
CN
√
N
h((1 + γ)N1>C − γCN1>C)

= ε(1+γ−γC)

C
√
N

h1>C

= ε(1+γ−γC)

C
√
N

W ,

i.e., (H,W ) is an eigenvector of B with eigenvalue ε(1+γ−γC)

C
√
N

.
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For (H,W ) ∈ E3, we have H(IC ⊗ 1N ) = 0 and W = 0, thus

WM = 1
CN · 0((1 + γ)(IC ⊗ 1>N )− γ1C1>CN ) = 0,

HM> = 1
CNH((1 + γ)(IC ⊗ 1>N )− γ1C1>CN )>

= 1
CNH((1 + γ)(IC ⊗ 1N )− γ1CN1>C)

= − γ
CNH(IC ⊗ 1N )1C1>C

= 0

i.e., (H,W ) is an eigenvector of B with eigenvalue 0.
Overall, letting Πε

i denote orthogonal projection onto Eεi , we have the spectral decom-
position

B = 1
C
√
N

[
(1 + γ)(Π+

1 −Π−1 ) + (1 + γ − γC)(Π+
2 −Π−2 )

]
. (37)

We then provide the concrete formulation of Z(t) = Z0 exp(L(t)) by the orthogonal pro-
jection of Z0 onto each eigenspace of B, i.e.,

Z0 = Π+
1 Z0 + Π−1 Z0 + Π+

2 Z0 + Π−2 Z0 + Π3Z0.

Decomposition along Πε
1Z0. First, Πε

1Z0B = ε(1+γ)

C
√
N

Πε
1Z0, so Πε

1Z0B
k =

(
ε(1+γ)

C
√
N

)k
Πε

1Z0

for k ≥ 0, then

Πε
1Z0

∞∑
k=0

(ζ1(t)ζ2(t))kB2k+1C(t)

(2k + 1)!

=Πε
1Z0

∞∑
k=0

(ζ1(t)ζ2(t))k
(
ε(1+γ)

C
√
N

)2k+1
C(t)

(2k + 1)!

=
Πε

1Z0C(t)√
ζ1(t)ζ2(t)

∞∑
k=0

(
ε(1+γ)

√
ζ1(t)ζ2(t)

C
√
N

)2k+1

(2k + 1)!

=
Πε

1Z0C(t)

2
√
ζ1(t)ζ2(t)

(
e
ε(1+γ)

√
ζ1(t)ζ2(t)

C
√
N − e−

ε(1+γ)
√
ζ1(t)ζ2(t)

C
√
N

)
,

(38)

and

Πε
1Z0

∞∑
k=0

(ζ1(t)ζ2(t))kB2k

(2k)!

=Πε
1Z0

∞∑
k=0

(ζ1(t)ζ2(t))k
(
ε(1+γ)

C
√
N

)2k

(2k)!

=
Πε

1Z0

2

(
e
ε(1+γ)

√
ζ1(t)ζ2(t)

C
√
N + e

− ε(1+γ)
√
ζ1(t)ζ2(t)

C
√
N

)
,

(39)

which is based on the facts that ex−e−x
2 =

∑∞
k=0

x2k+1

(2k+1)! and ex+e−x
2 =

∑∞
k=0

x2k

(2k)! . Thus we
have

Πε
1Z0 exp(L(t)) = Πε

1Z0(αε1C(t) + βε1IC(N+1)), (40)
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with

αε1(t) =

exp

(
ε(1+γ)

√
ζ1(t)ζ2(t)

C
√
N

)
− exp

(
− ε(1+γ)

√
ζ1(t)ζ2(t)

C
√
N

)
2
√
ζ1(t)ζ2(t)

,

βε1(t) =

exp

(
ε(1+γ)

√
ζ1(t)ζ2(t)

C
√
N

)
+ exp

(
− ε(1+γ)

√
ζ1(t)ζ2(t)

C
√
N

)
2

.

(41)

Decomposition along Πε
2Z0. Similarly, for Πε

2Z0B = ε(1+γ−γC)

C
√
N

Πε
2, we have

Πε
2Z0

∞∑
k=0

(ζ1(t)ζ2(t))kB2k+1C(t)

(2k + 1)!
=

Πε
2Z0C(t)

2
√
ζ1(t)ζ2(t)

(
e
ε(1+γ−γC)

√
ζ1(t)ζ2(t)

C
√
N − e−

ε(1+γ−γC)
√
ζ1(t)ζ2(t)

C
√
N

)
,

and

Πε
2Z0

∞∑
k=0

(ζ1(t)ζ2(t))kB2k

(2k)!
=

Πε
2Z0

2

(
e
ε(1+γ−γC)

√
ζ1(t)ζ2(t)

C
√
N + e

− ε(1+γ−γC)
√
ζ1(t)ζ2(t)

C
√
N

)
.

Thus we have
Πε

2Z0 exp(L(t)) = Πε
2Z0(αε2C(t) + βε2IC(N+1)), (42)

with

αε2(t) =

exp

(
ε(1+γ−γC)

√
ζ1(t)ζ2(t)

C
√
N

)
− exp

(
− ε(1+γ−γC)

√
ζ1(t)ζ2(t)

C
√
N

)
2
√
ζ1(t)ζ2(t)

,

βε2(t) =

exp

(
ε(1+γ−γC)

√
ζ1(t)ζ2(t)

C
√
N

)
+ exp

(
− ε(1+γ−γC)

√
ζ1(t)ζ2(t)

C
√
N

)
2

.

(43)

Decomposition along Π3Z0. Since each vector in E3 is a eigenvector ofB with eigenvalue
0, then we have

Π3Z0

( ∞∑
k=0

(ζ1(t)ζ2(t))kB2k+1C(t)

(2k + 1)!
+
∞∑
k=0

(ζ1(t)ζ2(t))kB2k

(2k)!

)
= Π3Z0 (44)

Note that E+
1 , E−1 , E+

2 , E−2 and E3 are orthogonal subspace of Rp×CN ⊕ RC×p, thus

Z(t) =Z0

∞∑
k=0

(ζ1(t)ζ2(t))kB2k+1C(t)

(2k + 1)!
+Z0

∞∑
k=0

(ζ1(t)ζ2(t))kB2k

(2k)!

=(Π+
1 Z0 + Π−1 Z0 + Π+

2 Z0 + Π−2 Z0 + Π3Z0) exp(L(t))

=Π+
1 Z0

(
α+

1 (t)C(t) + β+
1 (t)IC(N+1)

)
+ Π−1 Z0

(
α−1 (t)C(t) + β−1 (t)IC(N+1)

)
+ Π3Z0

+ Π+
2 Z0

(
α+

2 (t)C(t) + β+
2 (t)IC(N+1)

)
+ Π−2 Z0

(
α−2 (t)C(t) + β−2 (t)IC(N+1)

)
(45)

Moreover, since b′(t) = −η2(t)γC−γ−1
C 1C , we obtain

b(t) = b(0) +

∫ t

0
−η2(τ)

γC − γ − 1

C
dτ1C = b0 +

(1 + γ − γC)ζ2(t)

C
1C , (46)
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with ζ2(t) =
∫ t

0 η2(τ)dτ .

B.3 Proof of Corollary 3

Corollary 3 Under the conditions and notation of Theorem 2, let s = η1(0)
η2(0) , if 0 < γ < 2

C−2

(where C > 2) or C = 2, and limt→∞ ζ1(t) =∞, then the gradient flow (as in Equation (5))
will behave as:

e
− (1+γ)

√
ζ1(t)ζ2(t)

C
√
N Z(t) = Z + ∆(t), (47)

where Z =
(

1+
√
s

2 H+
1 + 1−

√
s

2 H−1 ,
1+
√
s

2
√
s
W+

1 −
1−
√
s

2
√
s
W−

1

)
, (H+

1 ,W
+
1 ) = Π+

1 Z0, (H−1 ,W
−
1 ) =

Π−1 Z0, and the residual term ∆(t) decreases as ‖∆(t)‖ = O

(
e

√
ζ1(t)ζ2(t)

C
√
N

·max{−γC,(C−2)γ−2}
)

,

and so the normalized Z(t) converges to Z
‖Z‖ in

∥∥∥∥ Z(t)

‖Z(t)‖
− Z

‖Z‖

∥∥∥∥ = O

(
e

√
ζ1(t)ζ2(t)

C
√
N

·max{−γC,(C−2)γ−2}
)
, (48)

which further indicates limt→∞
Z(t)
‖Z(t)‖ ∈ E. Moreover, if γ 6= 1

C−1 , then limt→∞
maxi bi(t)
mini bi(t)

=
1.

Proof Let (Hε
1,W

ε
1 ) = Πε

1Z0, (Hε
2,W

ε
2 ) = Πε

2Z0 and (H3,W3) = Π3Z0 for ε ∈ {±1},
according to Theorem 2, we have

H(t) =
∑

i∈{1,2}
ε∈{±}

(αεi(t)ζ1(t) + βεi (t))H
ε
i +H3,

W (t) =
∑

i∈{1,2}
ε∈{±}

(αεi(t)ζ2(t) + βεi (t))W
ε
i +W3.

(49)

Since η1(t1)η2(t2) = η1(t2)η2(t1), then η1(t) = η1(0)
η2(0)η2(t). Let s = η1(0)

η2(0) , p(t) =
(1+γ)

√
ζ1(t)ζ2(t)

C
√
N

,

and q(t) =
(1+γ−γC)

√
ζ1(t)ζ2(t)

C
√
N

, we have ζ1(t) =
∫ t

0 η1(τ)dτ = s
∫ t

0 η2(τ)dτ = sζ2(t), and then

αε1(t)ζ1(t) + βε1(t) = 1+
√
s

2 eεp(t) + 1−
√
s

2 e−εp(t) = 1+ε
√
s

2 ep(t) +O(e−p(t)),

αε1(t)ζ2(t) + βε1(t) = 1+
√
s

2
√
s
eεp(t) − 1−

√
s

2
√
s
e−εp(t) = ε+

√
s

2
√
s
ep(t) +O(e−p(t)),

αε2(t)ζ1(t) + βε2(t) = 1+
√
s

2 eεq(t) + 1−
√
s

2 e−εq(t) = 1+ε
√
s

2 eq(t) +O(e−q(t)),

αε2(t)ζ2(t) + βε2(t) = 1+
√
s

2
√
s
eεq(t) − 1−

√
s

2
√
s
e−εq(t) = ε+

√
s

2
√
s
eq(t) +O(e−q(t)).

Since 0 < γ < 2
C−2 ( where C > 2) or C = 2, then we have p(t)− q(t) =

γC
√
ζ1(t)ζ2(t)

C
√
N

> 0,

p(t) + q(t) =
(2+2γ−γC)

√
ζ1(t)ζ2(t)

C
√
N

> 0, and substitute these results into Equation (49) to
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obtain

e−p(t)H(t) =
1 +
√
s

2
H+

1 +
1−
√
s

2
H−1 + ∆1(t),

e−p(t)W (t) =
1 +
√
s

2
√
s
W+

1 −
1−
√
s

2
√
s
W−

1 + ∆2(t),

(50)

where ‖∆1(t)‖ = O(emax{q(t)−p(t),−q(t)−p(t)} and ‖∆2(t)‖ = O(emax{q(t)−p(t),−q(t)−p(t)}. There-
fore, we have

e−p(t)Z(t) =
(

1+
√
s

2 H+
1 + 1−

√
s

2 H−1 ,
1+
√
s

2
√
s
W+

1 −
1−
√
s

2
√
s
W−

1

)
+ ∆(t), (51)

where ∆(t) = (∆1(t),∆2(t)) and ‖∆(t)‖ ≤ ‖∆1(t)‖+‖∆2(t)‖ = O(emax{q(t)−p(t),−q(t)−p(t)}.

Let Z =
(

1+
√
s

2 H+
1 + 1−

√
s

2 H−1 ,
1+
√
s

2
√
s
W+

1 −
1−
√
s

2
√
s
W−

1

)
, we have

∥∥∥∥ Z(t)

‖Z(t)‖
− Z

‖Z‖

∥∥∥∥ =

∥∥∥∥ Z + ∆(t)

‖Z + ∆(t)‖
− Z

‖Z‖

∥∥∥∥ ≤ 2‖Z‖‖∆(t)‖
‖Z + ∆(t)‖‖Z‖

=
2‖∆(t)‖
‖Z + ∆(t)‖

, (52)

thus
∥∥∥ Z(t)
‖Z(t)‖ −

Z
‖Z‖

∥∥∥ = O(emax{q(t)−p(t),−q(t)−p(t)}, and further limt→∞
Z(t)
‖Z(t)‖ = Z

‖Z‖ when

limt→∞ ζ1(t) =∞.
According to the definition of E1 and E2, we have

Z =
( √

s√
N

(
1+
√
s

2
√
s
W+

1 −
1−
√
s

2
√
s
W−

1

)
⊗ 1>N ,

1+
√
s

2
√
s
W+

1 −
1−
√
s

2
√
s
W−

1

)
, (53)

thus we have Z ∈ E , then limt→∞
Z(t)
‖Z(t)‖ = Z

‖Z‖ ∈ E .

Moreover, we have b(t) = b0 + (1+γ−γC)ζ2(t)
C 1C , then ∀i, j,

lim
t→∞

bi(t)

bj(t)
= lim

t→∞

bi(0) + 1+γ−γC
C ζ2(t)

bj(0) + 1+γ−γC
C ζ2(t)

= 1,

thus limt→∞
maxi bi(t)
maxi bi(t)

=1.

B.4 Proof of Theorem 4

Theorem 4 (Dynamics of Features and Prototypes Under Weight Decay) Con-
sider the continual gradient flow in Equation 12, let Z(t) = (H(t),W (t)). If η1(t1)η2(t2) =
η1(t2)η2(t1) for any t1, t2 ≥ 0, we have the following closed-form dynamics:

Z(t) =Π+
1 Z0

(
a+

1 (t)ICN 0
0 b+1 (t)IC

)
+ Π−1 Z0

(
a−1 (t)ICN 0

0 b−1 (t)IC

)
+

Π+
2 Z0

(
a+

2 (t)ICN 0
0 b+2 (t)IC

)
+ Π−2 Z0

(
a−2 (t)ICN 0

0 b−2 (t)IC

)
+

Π3Z0

(
a3(t)ICN 0

0 b3(t)IC

) (54)

29



Zhou, Liu, Wang, Zhai, Jiang, and Ji

and

b(t) = φ(t)
(
b0 + 1+γ−γC

C ψ(t)1C

)
, (55)

where Π+
1 Z0, Π−1 Z0, Π+

1 Z0, Π−1 Z0, and Π3Z0 follow the definition in Theorem 2, aε1, aε2,
bε1, bε2, a3, and b3 for ε ∈ {±} are the scalars that depend only on C, N , γ, λ1, λ2,
η1, and η2 (where the detailed forms can be seen in B), φ(t) = exp(−λ

∫ t
0 η2(τ)dτ), and

ψ(t) =
∫ t

0 ζ2(τ) exp(λ
∫ τ

0 η2(s)ds)dτ .

Proof According to the gradient flow in Equation (12) and the notations in the proof of
Theorem 2, we have:

Z ′(t) = Z(t)A(t)−Z(t)

(
λ1η1(t)ICN 0

0 λ2η2(t)IC

)
, (56)

i.e., Z ′(t) = Z(t)Aλ(t), where Aλ(t) = A(t)−Λ(t) and Λ(t) =
(
λ1η1(t)ICN 0

0 λ2η2(t)IC

)
.

For any t1, t2, we have the matrix commutator of Aλ(t1) and Aλ(t2)

[Aλ(t1),Aλ(t2)]

=Aλ(t1)Aλ(t2)−Aλ(t2)Aλ(t1)

=[A(t1)−Λ(t1)][A(t2)−Λ(t2)]− [A(t2)−Λ(t2)][A(t1)−Λ(t1)]

=Λ(t2)A(t1)−Λ(t1)A(t2) +A(t2)Λ(t1)−A(t1)Λ(t2)

=

(
0 λ1[η1(t2)η2(t1)− η1(t1)η2(t2)]M>

λ2[η2(t2)η1(t2)− η2(t1)η1(t2)]M 0

)
=0

(57)

where the last equality is based on the fact that η2(t1)η1(t2) = η2(t2)η1(t1). Therefore,
according to Magnus approach, we have

Z(t) = Z0 exp

(∫ t

0
Aλ(τ)dτ

)
= Z0 exp

(
−λ1ζ1(t)ICN ζ2(t)M>

ζ1(t)M −λ2ζ2(t)IC

)
, (58)

where ζ1(t) =
∫ t

0 η(τ)dτ and ζ2(t) =
∫ t

0 η(τ)dτ .

Let Bλ = B −
(
λ1ICN 0

0 λ2IC

)
, we have

Z(t) = Z0 exp(BλC(t)) = Z0

∞∑
k=0

(BλC(t))k

k!
. (59)

We again consider the orthogonal decomposition of Z0, i.e., Z0 = (Π+
1 + Π−1 + Π+

2 +
Π−2 + Π3)Z0. As mentioned in the proof of Theorem 2, we have

Πε
1Z0B = ε(1+γ)

C
√
N

Πε
1Z0,

Πε
2Z0B = ε(1+γ−γC)

C
√
N

Πε
2Z0, and

Π3Z0B = 0.

(60)
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Therefore, for any D = (H,W ) ∈ {Πε
1Z0,Π

ε
2Z0,Π3Z0} (where H ∈ Rp×CN and W ∈

Rp×C) and the corresponding eigenvalue σ ∈ { ε(1+γ)

C
√
N
, ε(1+γ−γC)

C
√
N

, 0}, we have

DB = σD, HM> = σW , and WM = σH. (61)

In the following, we will prove that there exist two scalars a(t) and b(t), such thatD exp(BλC(t)) =

D

(
a(t)ICN 0

0 b(t)IC

)
for any D = (H,W ) ∈ {Πε

1Z0,Π
ε
2Z0,Π3Z0}.

First, we prove thatD(BλC(t))k can be represented asD(BλC(t))k = (ak(t)H, bk(t)W )
by induction, where ak(t), bk(t) ∈ R.

For k = 0, we haveD(BλC(t))0 = (H,W ), i.e., a0 = b0 = 1. Assume thatD(BλC(t))n =
(an(t)H, bn(t)W ) for k = n. Then for k = n+ 1, we have

D(BλC(t))n+1

=D(BλC(t))n(BλC(t))

=(an(t)H, bn(t)W )(BλC(t))

=(an(t)H, bn(t)W )

(
−λ1ICN M>

M −λ2IC

)(
ζ1(t)ICN 0

0 ζ2(t)IC

)
=(bn(t)WM − λ1an(t)H, an(t)HM> − λ2bn(t)W )

(
ζ1(t)ICN 0

0 ζ2(t)IC

)
=(ζ1(t)(σbn(t)− λ1an(t))H, ζ2(t)(σan(t)− λ2bn(t))W )

, (62)

thus an+1(t) = ζ1(t)(σbn(t)− λ1an(t)) and bn+1(t) = ζ2(t)(σan(t)− λ2bn(t)).

To sum up, we have shown by induction that D(BλC(t))k can be represented as

D(BλC(t))k = (ak(t)H, bk(t)W ) = D

(
ak(t)ICN 0

0 bk(t)IC

)
, and

(
ak(t)
bk(t)

)
satisfies

(
ak(t)
bk(t)

)
=

(
−λ1ζ1(t) σζ1(t)
σζ2(t) −λ2ζ2(t)

)(
ak−1(t)
bk−1(t)

)
with

(
a0

b0

)
=

(
1
1

)
, (63)

i.e.,

(
ak(t)
bk(t)

)
= (S(σ, λ1, λ2, ζ1(t), ζ2(t)))k

(
1
1

)
, where S(σ, λ1, λ2, ζ1, ζ2) =

(
−λ1ζ1 σζ1

σζ2 −λ2ζ2

)
.

Therefore, we have

D exp(BλC(t)) = D
∞∑
k=0

(BλC(t))k

k!
= D

(
a(t)ICN 0

0 b(t)IC

)
, (64)

with a(t) =
∑∞

k=0
ak(t)
k! and b(t) =

∑∞
k=0

bk(t)
k! , i.e.,(

a(t)
b(t)

)
=

∞∑
k=0

1

k!

(
ak(t)
bk(t)

)
=

∞∑
k=0

(S(σ, λ1, λ2, ζ1(t), ζ2(t)))k

k!

(
1
1

)
= exp(S(σ, λ1, λ2, ζ1(t), ζ2(t)))

(
1
1

)
.

(65)
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Next, we are going to derive a concrete expression of exp(S(σ, λ1, λ2, ζ1(t), ζ2(t))). Let
the determinant |S(σ, λ1, λ2, ζ1(t), ζ2(t) − θI| = 0, we can derive that the eigenvalues of
S(σ, λ1, λ2, ζ1(t), ζ2(t)) are

θ1 =
−(λ1ζ1(t)+λ2ζ2(t))−

√
(λ1ζ1(t)−λ2ζ2(t))2+4σ2ζ1(t)ζ2(t)

2 < 0 and

θ2 =
−(λ1ζ1(t)+λ2ζ2(t))+

√
(λ1ζ1(t)−λ2ζ2(t))2+4σ2ζ1(t)ζ2(t)

2 ,

(66)

and the corresponding eigenvectors are

v1 =

(
1

λ1ζ1(t)+θ1
σζ1(t)

)
, and v2 =

(
1

λ1ζ1(t)+θ2
σζ1(t)

)
.

Let P = (v1,v2), we have

S(σ, λ1, λ2, ζ1(t), ζ2(t)) = P

(
θ1 0
0 θ2

)
P−1, P−1 = σζ1(t)

θ2−θ1

(
λ1ζ1(t)+θ2
σζ1(t) −1

−λ1ζ1(t)+θ1
σζ1(t) 1

)
, (67)

and

exp (S(σ, λ, ζ1(t), ζ2(t))) = P

(
eθ1 0
0 eθ2

)
P−1

=σζ1(t)
θ2−θ1

(
1 1

λ1ζ1(t)+θ1
σζ1(t)

λ1ζ1(t)+θ2
σζ1(t)

)(
eθ1 0
0 eθ2

)( λ1η1(t)+θ2
σζ1(t) −1

−λ1ζ1(t)+θ1
σζ1(t) 1

)

= 1
θ2−θ1

(
(λ1ζ1(t) + θ2)eθ1 − (λ1ζ1(t) + θ1)eθ2 σζ1(t)eθ2 − σζ1(t)eθ1

(λ1ζ1(t) + θ2)eθ2 − (λ1ζ1(t) + θ1)eθ1 σζ2(t)eθ2 − σθ2(t)eθ1

), (68)

thus

a(t) =
eθ2

θ2 − θ1

[
(σζ1(t)− λ1ζ1(t)− θ1)− (σζ1(t)− λ1ζ1(t)− θ2)eθ1−θ2

]
,

b(t) =
eθ2

θ2 − θ1

[
(λ1ζ1(t) + θ2 + σζ2(t)) + (λ1ζ1(t) + θ1 − σζ2(t))eθ1−θ2

]
.

(69)

Finally, since E+
1 , E−1 , E+

2 , E−2 and E3 are orthogonal subspace of Rp×CN ⊕RC×p, we obtain
that

Z(t) =(Π+
1 Z0 + Π−1 Z0 + Π+

2 Z0 + Π−2 Z0 + Π3Z0) exp(BλC(t))

=Π+
1 Z0

(
a+

1 (t)ICN 0
0 b+1 (t)IC

)
+ Π−1 Z0

(
a−1 (t)ICN 0

0 b−1 (t)IC

)
+

Π+
2 Z0

(
a+

2 (t)ICN 0
0 b+2 (t)IC

)
+ Π−2 Z0

(
a−2 (t)ICN 0

0 b−2 (t)IC

)
+

Π3Z0

(
a3(t)ICN 0

0 b3(t)IC

)
,

(70)
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where aε1(t), bε1(t), aε2(t), bε2(t), a3(t) and b3(t) satisfy(
aε1(t)
bε1(t)

)
= exp

(
S
(
ε(1+γ)

C
√
N
, λ1, λ2, ζ1(t), ζ2(t)

))(1
1

)
,(

aε2(t)
bε2(t)

)
= exp

(
S
(
ε(1+γ−γC)

C
√
N

, λ1, λ2, ζ1(t), ζ2(t)
))(1

1

)
,(

a3(t)
b3(t)

)
= exp (S (0, λ1, λ2, ζ1(t), ζ2(t)))

(
1
1

)
.

(71)

Moreover, since b′(t) = η2(t)1+γ−γC
C 1C −λ2η2(t)b(t) is a first-order linear differential equa-

tion, then we have

b(t) = φ(t)
(
b0 + 1+γ−γC

C ψ(t)1C

)
, (72)

where φ(t) = exp(−λ2

∫ t
0 η2(τ)dτ) and ψ(t) =

∫ t
0 ζ2(τ) exp(λ2

∫ τ
0 η2(s)ds)dτ .

B.5 Proof of Corollary 5

Corollary 5. Under the conditions and notation of Theorem 4, let s = η1(0)
η2(0) . If 0 <

γ < 2
C−2 (where C > 2) or C = 2, λ1 = λ2 = λ, and limt→∞ ζ1(t) = ∞, then there

exist constants π+
h , π

−
h , π

+
w , π−w , and ω only depending on λ, γ, s, C, and N , such that the

gradient flow (as in Equation (12)) behaves as:∥∥∥∥ H(t)

‖H(t)‖
−

π+
hH

+
1 + π−hH

−
1

‖π+
hH

+
1 + π−hH

−
1 ‖

∥∥∥∥+

∥∥∥∥ W (t)

‖W (t)‖
− π+

wW
+
1 + π−wW

−
1

‖π+
wH

+
1 + π−wH

−
1 ‖

∥∥∥∥ = O(e−ωζ2(t)), (73)

where (H+
1 ,W

+
1 ) = Π+

1 Z0, (H−1 ,W
−
1 ) = Π−1 Z0. Furthermore, we have the following

results:

• If λ > 1+γ

C
√
N

, then limt→∞ ‖Z(t)‖ = 0;

• If λ = 1+γ

C
√
N

, then limt→∞H(t) = H+
1 + 1−s

1+sH
−
1 , limt→∞W (t) = W+

1 − 1−s
1+sW

−
1 ;

• If λ < 1+γ

C
√
N

, then limt→∞ ‖Z(t)‖ =∞.

Proof Since ζ1(t) = sζ2(t), then the eigenvalues of S(σ, λ, ζ1(t), ζ2(t)) satisfy

θ1 = −
λ(s+ 1) +

√
λ2(s− 1)2 + 4sσ2

2
ζ2(t)→ −∞ as t→∞, and

θ2 =
(
√
λ2(s− 1)2 + 4sσ2 − λ(s+ 1))

2
ζ2(t).

(74)

Let ω1(σ, λ, s) = −λ(s+1)+
√
λ2(s−1)2+4sσ2

2 < 0 and ω2(σ, λ, s) =
(
√
λ2(s−1)2+4sσ2−λ(s+1))

2 .
For brevity, let ω1 and ω2 denote ω1(σ, λ, s) and ω2(σ, λ, s), respectively, and then we can
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reformulate a(t) and b(t) as

a(t) =
eω2ζ2(t)

ω2 − ω1

[
(sσ − sλ− ω1)− (sσ − sλ− ω2)e(ω1−ω2)ζ2(t)

]
= sσ−sλ−ω1

ω2−ω1
eω2ζ2(t) +O(e(ω1)ζ2(t)),

b(t) =
eω2ζ2(t)

ω2 − ω1

[
(sλ+ ω2 + σ) + (sλ+ ω1 − σ)e(ω1−ω2)ζ2(t)

]
= sλ+ω2+σ

ω2−ω1
eω2ζ2(t) +O(eω1ζ2(t)).

(75)

Moreover, according to Theorem 4, we have

H(t) =
∑
ε∈{±}
i∈{1,2}

aεi(t)H
ε
i + a3(t)H3, W (t) =

∑
ε∈{±}
i∈{1,2}

bεi(t)W
ε
i + b3(t)W3,

(76)

with

(
aε1(t)
bε1(t)

)
= exp

(
S
(
ε(1+γ)

C
√
N
, λ, ζ1(t), ζ2(t)

))(1
1

)
,(

aε2(t)
bε2(t)

)
= exp

(
S
(
ε(1+γ−γC)

C
√
N

, λ, ζ1(t), ζ2(t)
))(1

1

)
,(

a3(t)
b3(t)

)
= exp (S (0, λ, ζ1(t), ζ2(t)))

(
1
1

)
.

(77)

Since 0 < γ < 2
C−2 (where C > 2) or C = 2, thus we have 1+γ

C
√
N
> |1+γ−γC|

C
√
N

, and then

ω2

(
1+γ

C
√
N
, λ, s

)
> ω2

(
|1+γ−γC|
C
√
N

, λ, s
)

. When t→∞, the dominant terms in H(t) and W (t)

are the ones whose coefficient contains exp
(
ω2

(
1+γ

C
√
N
, λ, s

)
ζ2(t)

)
, i.e., a+

1 (t), a−1 (t), b+1 (t)

and b−1 (t). Let (Hε
1,W

ε
1 ) = Πε

1Z0, (Hε
2,W

ε
2 ) = Πε

2Z0 and (H3,W3) = Π3Z0 for ε ∈ {±1},
thus we have

e
−ω2

(
1+γ

C
√
N
,λ,s

)
ζ2(t)

H(t) = π+
h (λ, γ, s, C,N)H+

1 + π−h (λ, γ, s, C,N)H−1 + ∆1,

e
−ω2

(
1+γ

C
√
N
,λ,s

)
ζ2(t)

W (t) = π+
w (λ, γ, s, C,N)W+

1 + π−w (λ, γ, s, C,N)W−
1 + ∆2,

(78)
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where ∆1 and ∆2 decrease to zero as least as O

e
(
ω2

(
|1+γ−γC|
C
√
N

,λ,s

)
−ω2

(
1+γ

C
√
N
,λ,s

))
ζ2(t)

C
√
N

, and

π+
h (λ, γ, s, C,N) =

s 1+γ

C
√
N
− sλ− ω1

(
1+γ

C
√
N
, λ, s

)
ω2

(
1+γ

C
√
N
, λ, s

)
− ω1

(
1+γ

C
√
N
, λ, s

) ,
π−h (λ, γ, s, C,N) =

−s 1+γ

C
√
N
− sλ− ω1

(
1+γ

C
√
N
, λ, s

)
ω2

(
1+γ

C
√
N
, λ, s

)
− ω1

(
1+γ

C
√
N
, λ, s

) ,
π+
w (λ, γ, s, C,N) =

sλ+ ω2

(
1+γ

C
√
N
, λ, s

)
+ 1+γ

C
√
N

ω2

(
1+γ

C
√
N
, λ, s

)
− ω1

(
1+γ

C
√
N
, λ, s

) ,
π−w (λ, γ, s, C,N) =

sλ+ ω2

(
1+γ

C
√
N
, λ, s

)
− 1+γ

C
√
N

ω2

(
1+γ

C
√
N
, λ, s

)
− ω1

(
1+γ

C
√
N
, λ, s

) .

(79)

Therefore, we have

lim
t→∞

H(t)

‖H(t)‖
=

π+
h (λ, γ, s, C,N)H+

1 + π−h (λ, γ, s, C,N)H−1
‖π+

h (λ, γ, s, C,N)H+
1 + π−h (λ, γ, s, C,N)H−1 ‖

,

lim
t→∞

W (t)

‖W (t)‖
=

π+
w (λ, γ, s, C,N)W+

1 + π−w (λ, γ, s, C,N)W−
1

‖π+
w (λ, γ, s, C,N)W+

1 + π−w (λ, γ, s, C,N)W−
1 ‖

,

(80)

and the rate of convergence is O

e
(
ω2

(
|1+γ−γC|
C
√
N

,λ,s

)
−ω2

(
1+γ

C
√
N
,λ,s

))
ζ2(t)

C
√
N

.

Moreover, we have the following conclusions:

• If λ = 1+γ

C
√
N

, we have ω2 = 0, ω1 = −λ(s + 1), π+
h = 1, π−h = 1−s

1+s , π
+
w = 1 and

π−w = −1−s
1+s . Since limt→∞ ζ2(t) =∞, we have

lim
t→∞

H(t) = H+
1 +

1− s
1 + s

H−1 , lim
t→∞

W (t) = W+
1 −

1− s
1 + s

W−
1 . (81)

• If λ > 1+γ

C
√
N

, we have ω2 > 0, and then limt→∞ ‖Z(t)‖ = 0 since limt→∞ ζ2(t) =∞.

• If λ < 1+γ

C
√
N

, we have ω2 < 0, and then limt→∞ ‖Z(t)‖ =∞ since limt→∞ ζ2(t) =∞.

So far the proof has been completed.

B.6 Proof of Theorem 7

Lemma 10. For h(t),w ∈ Rp, η(t) > 0, let v̂ = v̂
‖v‖2 denote the `2-normalized vector of

v, considering the discrete dynamical system h(t+ 1) = h(t) + η(t)
‖h(t)‖2

(
Ip − ĥ(t)ĥ>(t)

)
w,
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if ŵ>ĥ(0) > −1, the learning rate η(t) satisfies that limt→∞
η(t+1)
η(t) = 1, η(t)

‖h(t)‖2 is non-

increasing with η(0)
‖h(0)‖2 < 1

‖w‖2 , and there exists a constant ε > 0, s.t., η(t) > ε, s.t.,

η(t) > ε, then we have

lim
t→∞

∥∥∥∥ h(t)

‖h(t)‖2
− w

‖w‖2

∥∥∥∥ = 0. (82)

Proof For brevity, let αt = η(t)‖w‖2
‖h(t)‖22

, ξt = η(t+1)
η(t) , and βt = ŵ>ĥ(t) denote the cosine

similarity between ŵ and ĥ(t), then we can easily derive that αt > 0 and βt > −1 for all
t ≥ 0.

We will show that αt is monotonically decreasing and βt is monotonically increasing.

Note that h(t) is orthogonal with
(
Ip − ĥ(t)ĥ>(t)

)
w, thus we have

‖h(t+ 1)‖22 = ‖h(t)‖22 +
η2(t)

‖h(t)‖22

∥∥∥(Ip − ĥ(t)ĥ>(t)
)
w
∥∥∥2

2
≥ ‖h(t)‖22,

which indicates ‖h(t)‖2 is monotonically increasing as a function of t, and then αt is mono-

tonically decreasing since η(t)‖w‖2
‖h(t)‖2 is non-increasing.

Moreover, we can rearrange the discrete dynamics and formulate h(t+ 1) as a positive
combination of h(t) and w:

h(t+ 1) =

(
1− η(t)w>ĥ(t)

‖h(t)‖2

)
h(t) +

η(t)

‖h(t)‖2
w, (83)

so ŵ>ĥ(t + 1) ≥ ŵ>ĥ(t), i.e., βt is monotonically increasing, which is based on the facts

that 1− η(t)w>ĥ(t)
‖h(t)‖2 ≥ 1− η(t)‖w‖2

‖h(t)‖2 ≥ 1− η(0)‖w‖2
‖h(0)‖2 > 0, η(t)

‖h(t)‖2 > 0, and y>(x+ky)
‖x+ky‖2 ≥

y>x
‖x‖2 holds

for all k > 0 and x,y 6= 0.
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We can formulate the discrete iterations of αt and βt from the Equation (83) as follows:

βt+1 =
w>h(t+ 1)

‖w‖2‖h(t+ 1)‖2

=
w>

(
h(t) + η(t)

‖h(t)‖2

(
Ip − ĥ(t)ĥ>(t)

)
w
)

‖w‖2
√
‖h(t)‖22 + η2(t)

‖h(t)‖22

∥∥∥(Ip − ĥ(t)ĥ>(t)
)
w
∥∥∥2

2

=
βt + η(t)‖w‖2

‖h(t)‖22
(1− β2

t )√
1 +

η2(t)‖w‖22
‖h(t)‖42

(1− β2
t )

=
βt + αt(1− β2

t )√
1 + α2

t (1− β2
t )
,

αt+1 =
η(t+ 1)‖w‖2
‖h(t+ 1)‖22

=
ξtη(t)‖w‖2

‖h(t)‖22 + η2(t)
‖h(t)‖22

∥∥∥(Ip − ĥ(t)ĥ>(t)
)
w
∥∥∥2

2

=
ξtαt

1 + α2
t (1− β2

t )
,

(84)

with β0 = ŵ>ĥ(0) > −1, α0 = η(0)‖w‖2
‖h(0)‖22

> 0, ξt ≤ 1 and limt→∞ ξt = 1.

To prove limt→∞

∥∥∥ h(t)
‖h(t)‖2 −

w
‖w‖2

∥∥∥ = 0, we just need prove limt→∞ βt = 1. Note that

αt is monotonic decreasing and lower bounded by 0, then the sequence (αt) is convergent.
Similarly, the sequence (βt) is convergent. Let a = limt→ αt and b = limt→βt , we obtain

lim
t→∞

αt+1 = lim
t→∞

ξtαt
1 + α2

t (1− β2
t )

⇒ a =
a

1 + limt→∞ α2
t (1− β2

t )
, (85)

thus a = 0 or limt→∞ α
2
t (1 − β2

t ) = 0, i.e., a = 0 or b = 1. Therefore, the limits of αt and
βt exist if and only if limt→∞ αt = 0 or limt→∞ βt = 1. In the following, we will prove that
the limit of βt must be equal to 1.

Firstly, we prove a simpler result when β0 > 0:

Lemma 11. For the discrete dynamics in Equation (84), if β0 ≥ 0, then limt→∞ βt = 1.

Proof As aforementioned, due to the existence of the limit of αt, we have limt→∞ αt = 0
or limt→∞ βt = 1. Thus, we just need to prove that limt→∞ βt = 1 as limt→∞ αt = 0.

When limt→∞ αt = 0, then there exists τ , such that ∀t > τ , αt ≤ 1.

37



Zhou, Liu, Wang, Zhai, Jiang, and Ji

According to the iterations in Equation (84), we can derive that

1− β2
t+1

αt+1
=

1 + α2
t − α2

tβ
2
t − (αt + βt − αtβ2

t )2

ξtαt

=
1 + α2

t − α2
tβ

2
t − α2

t − β2
t − α2

tβ
4
t − 2αtβt + 2α2

tβ
2
t + 2αtβ

3
t

ξtαt

=
1− β2

t + α2
t (β

2
t − β4

t )− 2αt(βt − β3
t )

ξtαt

=
1− β2

t

ξtαt
· (1 + α2

tβ
2
t − 2αtβt)

=
1− β2

t

αt
· (1− αtβt)2

ξt
,

then ∀t > τ ,

1− β2
t+1 = αt+1 ·

1− β2
0

α0

t∏
i=0

(1− αiβi)2

ξi

= αt+1 ·
η(0)(1− β2

0)

α0η(t+ 1)
·
τ∏
i=0

(1− αiβi)2 ·
t∏

i=τ+1

(1− αiβi)2

≤ αt+1 ·
η(0)(1− β2

0)

εα0
·
τ∏
i=0

(1− αiβi)2,

(86)

where the inequality is based on the fact that 1 − αiβi ∈ (0, 1] when 0 ≤ β0 ≤ βi ≤ 1,

η(t+ 1) ≥ ε, and αi ≤ 1 for i > τ . Since
η(0)(1−β2

0)
εα0

·
∏τ
i=0(1−αiβi)2 is a constant, we obtain

lim
t→∞

1− β2
t+1 ≤ lim

t→∞
αt+1 ·

η(0)(1− β2
0)

εα0
·
τ∏
i=0

(1− αiβi)2 = 0,

as limt→∞ αt+1 = 0. This reveals limt→∞ β
2
t = 1. Furthermore, since βt ≥ 0, we then have

limt→∞ βt = 1.

Next, we are going to prove limt→∞ βt = 1 when −1 < β0 < 0. According to Lemma
11, we just need prove that ∃τ > 0, s.t., βτ ≥ 0.

For the sake of contradiction, suppose that βt < 0 for all t > 0, we then have limt→∞ αt =
0. As a consequence, we obtain

αt + βt − αtβ2
t < 0, ∀t ≥ 0, (87)

and we know that ∃t′ > 0, such that

αt <
ε

η(0)
α0(1− β2

0), ∀t ≥ t′. (88)
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According to the iterations in Equation (84), we can derive that

αt+1(1− β2
t+1) =

ξtαt
1 + α2

t − α2
tβ

2
t

(
1− (αt + βt − αtβ2

t )2

1 + α2
t − α2

tβ
2
t

)
= ξtαt

(
1 + α2

t − α2
tβ

2
t − (αt + βt − αtβ2

t )2

(1 + α2
t − α2

tβ
2
t )2

)
= ξtαt(1− β2

t )

(
1− αtβt

1 + α2
t − α2

tβ
2
t

)2

= ξtαt(1− β2
t )

(
1− αt(αt + βt − αtβ2

t )

1 + α2
t − α2

tβ
2
t

)2

,

Since 1− αt(αt+βt−αtβ2
t )

1+α2
t−α2

tβ
2
t
≥ 1, then for t ≥ t′,

αt ≥ αt(1− β2
t ) ≥ ξt−1αt−1(1− β2

t−1) ≥ . . . ≥ α0(1− β2
0)

t−1∏
i=0

ξi ≥
ε

η(0)
α0(1− β2

0), (89)

which contradicts the fact in Equation (88). Thus, ∃τ > 0, s.t. βτ ≥ 0. Consider the
dynamical system with an initial time τ , we have limt→∞ βt = 1 according to Lemma 11.

To sum up, we have proven that limt→∞ βt = 1 when β0 > −1 and α0 > 0.

Theorem 7 (Convergence in the Spherical Constrained Case) Considering the
discrete dynamics in Equation (19), if ∀i ∈ [N ], c ∈ [C], ŵ>c ĥi,c(0) > −1, the learning rate

η(t) satisfies that η(t)
‖hi,c(t)‖2 is non-increasing, η(0)(1+γ)

CN‖hi,c(0)‖2 ≤
1

‖wc‖2 , limt→∞
η(t+1)
η(t) = 1, and

there exists a constant ε > 0, s.t., η(t) > ε, then we have

lim
t→∞

∥∥∥Ĥ(t)− Ŵ (IC ⊗ 1>N )
∥∥∥ = 0, (90)

and further if limt→∞ ‖H(t)‖ <∞, then there exists a constant µ > 0, such that the error
above shows exponential convergence:∥∥∥Ĥ(t)− Ŵ (IC ⊗ 1>N )

∥∥∥ ≤ O(e−µt). (91)

Moreover, if ŵ>c ĥi,c(0) = −1, then hi,c(t) = hi,c(0).

Proof Since H(t+1) = H(t)+ (1+γ)η(t)
CN

(
∂Ĥ
∂H

∣∣
H=H(t)

)>
W (IC⊗1>N ), then for i ∈ [N ], c ∈

[C],

hi,c(t+ 1) = hi,c(t) +
(1 + γ)η(t)

CN‖hi,c(t)‖2

(
Ip − ĥi,c(t)ĥ>i,c(t)

)
wc. (92)

According to Lemma 10, when ŵ>c ĥi,c(0) > −1 and η(0)(1+γ)
CN <

‖hi,c(0)‖22
‖wc‖2 , we have limt→∞ ‖ĥi,c−

ŵc‖ = 0, then limt→∞

∥∥∥Ĥ(t)− Ŵ (IC ⊗ 1>N )
∥∥∥ = 0.

If further limt→∞ ‖H(t)‖2 < ∞, let L = supi,c,t ‖hi,c(t)‖. According to the proof of

Lemma 10, ∀i, c, we have limt→∞ ŵ
>
c ĥi,c(t) = 1, then for a given constant δ > 0, ∃τ > 0,
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s.t., ∀t > τ , ŵ>c ĥi,c(τ) ≥ δ. Consider t > τ , we have

1−
(
ŵ>c ĥi,c(t+ 1)

)2

=
‖hi,c(t)‖22
‖hi,c(t+1)‖22

(
1−

(
ŵ>c ĥi,c(t)

)2
)(

1− (1+γ)η(t)‖wc‖2
CN‖hi,c(t)‖22

· ŵ>c ĥi,c(t)
)2

≤
(

1−
(
ŵ>c ĥi,c(0)

)2
) t∏
j=0

(
1− (1+γ)η(j)‖wc‖2

CN‖hi,c(j)‖22
· ŵ>c ĥi,c(j)

)2

≤
(

1−
(
ŵ>c ĥi,c(0)

)2
) τ∏
j=0

(
1− (1+γ)η(j)‖wc‖2

CN‖hi,c(j)‖22
· ŵ>c ĥi,c(j)

)2
t∏

j=τ+1

(
1− (1+γ)εδ‖wc‖2

CN‖hi,c(j)‖22

)2

≤
(

1−
(
ŵ>c ĥi,c(0)

)2
) τ∏
j=0

(
1− (1+γ)η(j)‖wc‖2

CN‖hi,c(j)‖22
· ŵ>c ĥi,c(j)

)2 (
1− (1+γ)εδ‖wc‖2

CNL2

)2(t−τ)
.

where the first, the second, and the third inequalities are based on the facts that
‖hi,c(t)‖22
‖hi,c(t+1)‖22

≤

1, 1− (1+γ)η(j+1)‖wc‖2
CN‖hi,c(j)‖22

· ŵ>c ĥi,c(j) ≤ 1− (1+γ)εδ‖wc‖2
CN‖hi,c(j)‖22

for t > τ , and ‖hi,c(j)‖2 ≤ L, respec-

tively.

Let c1 = maxi,c(1−(ŵ>c ĥi,c(0))2)
∏τ
j=0

(
1− (1+γ)η(j)‖wc‖2

CN‖hi,c(j)‖22
· ŵ>c ĥi,c(j)

)2 (
1− (1+γ)εδ‖wc‖2

CNL2

)−2τ
,

and µ = minc−2 log
(

1− (1+γ)εδ‖wc‖2
CNL2

)
, then 1− ŵ>c ĥi,c(t+ 1) ≤ c1e−µt

1+δ .

Therefore, we have∥∥∥Ĥ(t)− Ŵ (IC ⊗ 1>N )
∥∥∥2

2
= 2

∑
i,c

(
1− ŵ>c ĥi,c(t+ 1)

)
≤ 2c1CNe

−µt

(1 + δ)
, (93)

i.e.,
∥∥∥Ĥ(t)− Ŵ (IC ⊗ 1>N )

∥∥∥ = O(e−µt).

Moreover, if ŵ>c ĥi,c(0) = −1, we have

hi,c(t+ 1) = hi,c(t) +
(1 + γ)η(t)

CN‖hi,c(t)‖2

(
Ip − ĥi,c(t)ĥ>i,c(t)

)
wc = hi,c(t), (94)

thus hi,c(t) = hi,c(0).

B.7 Proof of Theorem 8

Theorem 12. Let z(t) denote the row-first vectorization of

(
H(t) 0

0 W (t)

)
, B =

(
0 M>

M 0

)
,

and A =

(
0 ∇ΘH

>∇ΘH
IC 0

)
. Considering the eigendecomposition A = UAΛAU

−1
A and

B = UBΛBU
−1
B , we have

Cz(t) = exp[(ΛA ⊗ΛB)t]Cz(0), (95)

where C = U−1
B U−1

A ⊗ I.
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Proof Since z(t) denote the row-first vectorization of

(
H(t) 0

0 W (t)

)
,A =

(
0 ∇ΘH

>∇ΘH
I 0

)
,

and B =

(
0 M>

M 0

)
, we have

z′(t) = (A⊗B>)z(t) = (A⊗B)z(t),

and then z(t) = e(A⊗B)tz(0). Considering the eigendecomposition A = UAΛAU
−1
A and

B = UBΛBU
−1
B , where ΛA = diag(λA1 , ..., λ

A
n ) and ΛB = diag(λB1 , ..., λ

B
n ), thus

A⊗B = (UAΛAU
−1
A )⊗B = (UA ⊗ I)(ΛA ⊗B)(U−1

A ⊗ I),

where ⊗ denotes Kronecker product. Moreover, we have

exp[(A⊗B)t] = (UA ⊗ I) exp[(ΛA ⊗B)t](U−1
A ⊗ I)

= (UAUB ⊗ I) exp[(ΛA ⊗ΛB)t](U−1
B U−1

A ⊗ I).

We know that exp[(ΛA⊗ΛB)t] is a diagonal matrix. Therefore, we have (U−1
B U−1

A ⊗I)z(t) =
exp[(ΛA ⊗ ΛB)t](U−1

B U−1
A ⊗ I)z(0), which leads to a concise closed-form dynamics on

(U−1
B U−1

A ⊗ I)z(t).

B.8 Proof of Theorem 6

Theorem 6 Consider the continual gradient flow (Equation (16)) in which the prototypes
W is fixed, we have the closed-form dynamics:

H(t) = e−λ
∫ t
0 η(τ)dτH(0) +

1− e−λ
∫ t
0 η(τ)dτ

λ
WM , (96)

which further indicates that
∥∥H(t)− 1

λWM
∥∥ = O

(
e−λ

∫ t
0 η(τ)dτ

)
.

Proof For the first order non-homogeneous linear difference equation in Equation (16),
the solution is

H(t) =e−λ
∫ t
0 η(τ)dτ

(
H(0) +

∫ t

0
η(s)eλ

∫ s
0 η(τ)dτdsWM

)
=e−λ

∫ t
0 η(τ)dτH(0) + e−λ

∫ t
0 η(τ)dτ

∫ t

0

1

λ
deλ

∫ s
0 η(τ)dτWM

=e−λ
∫ t
0 η(τ)dτH(0) + e−λ

∫ t
0 η(τ)dτ e

λ
∫ s
0 η(τ)dτ

λ

∣∣∣∣t
0

WM

=e−λ
∫ t
0 η(τ)dτH(0) +

1− e−λ
∫ t
0 η(τ)dτ

λ
WM ,

(97)

and then ‖H(t)− 1
λWM‖ = ‖e−λ

∫ t
0 η(τ)dτ (H(0)− WM

λ )‖ = O(e−λ
∫ t
0 η(τ)dτ ).
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B.9 The Projections onto E+
1 , E−1 , E+

2 , E−2 and E3

Lemma 13. Let S denote the subspace S = {W : W1n = 0,W ∈ Rm×n}, then the
projection of a point A ∈ Rm×n onto S can be denoted as ΠSA = A

(
In − 1

n1n1
>
n

)
.

Proof Let W = (w1,w2, ...,wn) ∈ S and A = (a1,a2, ...,an) ∈ Rm×n, we have

‖W −A‖2F =

n∑
i=1

‖wi − ai‖22 ≥
1

n

∥∥∥∥∥
n∑
i=1

wi −
n∑
i=1

ai

∥∥∥∥∥
2

2

=
1

n
‖W1n −A1n‖22 =

1

n
‖A1n‖22

where we used the Cauchy-Schwarz inequality, and the equality holds if and only if wi−ai =
wn − an, ∀i ∈ [n], and

∑n
i=1wi = 0, i.e., W = A

(
In − 1

n1n1
>
n

)
. Therefore, the projection

of A onto S is ΠSA = arg minW∈S ‖W −A‖2F = A
(
In − 1

n1n1
>
n

)
.

Lemma 14. Let S denote the subspace {W : W (Ic ⊗ 1n) = 0,W ∈ Rm×cn}, then the
projection of a point A ∈ Rm×cn onto S can be denoted as ΠSA = A

(
Icn − 1

nIc ⊗ 1n1
>
n

)
.

Proof The proof is similar to Lemma 13. We can simply let W = (W1, ...,Wn) ∈ S and
A = (A1, ...,An) ∈ Rm×cn, where Wi,Ai ∈ Rm×c, then we have

‖W −A‖2F =

n∑
i=1

‖Wi −Ai‖2F ≥
1

n

∥∥∥∥∥
n∑
i=1

Wi −
n∑
i=1

Ai

∥∥∥∥∥
2

2

=
1

n
‖A(Ic ⊗ 1n)‖22

where the equality holds if and only if Wi −Ai = Wn −An, ∀i ∈ [n], and
∑n

i=1Wi = 0,
i.e., W = A(Icn − 1

nIc ⊗ 1n1
>
n ). Therefore, the projection of A onto S is ΠSA =

A
(
Icn − 1

nIc ⊗ 1n1
>
n

)
.

Lemma 15. For H ∈ Rp×CN , W ∈ Rp×C , the projection of (H,W ) onto Eε1 is

Πε
1(H,W ) = ( ε√

N
(P ⊗ 1>N ),P ), (98)

where P = 1
2( ε√

N
H(IC ⊗ 1N ) +W )(IC − 1

C1C1>C).
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Proof Let S = {Z : Z1C = 0,Z ∈ Rp×C} and H = {H1, ...,HN} (where Hi ∈ Rp×C),
the minimizer of Z ∈ S is

arg min
Z∈S

‖ ε√
N

(Z ⊗ 1>N )−H‖2F + ‖Z −W ‖2F

= arg min
Z∈S

N∑
i=1

‖ 1√
N
Z − εHi‖2F + ‖Z −W ‖2F

= arg min
Z∈S

‖Z‖2F − 2ε√
N

N∑
i=1

〈Z,Hi〉+ ‖H‖2F + ‖Z −W ‖2F

= arg min
Z∈S

‖Z − ε√
N

N∑
i=1

Hi‖2F − ‖
1√
N

N∑
i=1

Hi‖2F + ‖H‖2F + ‖Z −W ‖2F

= arg min
Z∈S

‖Z − ε√
N
H(IC ⊗ 1N )‖2F + ‖Z −W ‖2F + ‖H‖2F − ‖ ε√

N
H(IC ⊗ 1N )‖2F

= arg min
Z∈S

‖Z − 1
2( ε√

N
H(IC ⊗ 1N ) +W )‖2F

=1
2( ε√

N
H(IC ⊗ 1N ) +W )(IC − 1

C1C1>C).

(99)

Thus, Πε
1(H,W ) = ( ε√

N
(P ⊗1>N ),P ) with P = 1

2( ε√
N
H(IC ⊗1N ) +W )(IC − 1

C1C1>C).

Lemma 16. For H ∈ Rp×CN , W ∈ Rp×C , the projection of (H,W ) onto Eε2 is

Πε
2(H,W ) = ( ε√

N
h1>CN ,h1>C), (100)

where h = 1
2C ( ε√

N
H1CN +W1C).

Proof We have

arg min
h∈Rp

‖ ε√
N
h1>CN −H‖2F + ‖h1>C −W ‖2F

= arg min
h∈Rp

CN‖ 1√
N
h− ε

CNH1CN‖22 + C‖h− 1
CW1C‖22

= arg min
h∈Rp

‖h− ε
C
√
N
H1CN‖22 + ‖h− 1

CW1C‖22

= arg min
h∈Rp

‖h− 1
2C ( ε√

N
H1CN +W1C)‖22

= 1
2C ( ε√

N
H1CN +W1C)

(101)

Lemma 17. For H ∈ Rp×CN , W ∈ Rp×C , the projection of (H,W ) onto E3 is

Π3(H,W ) = (H(ICN − 1
N IC ⊗ 1N1>N ), 0). (102)

Proof This can be easily derived by Lemma 14.
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Figure 4: Behavior of gradient descent iterates under the unhinged loss with different weight
decay coefficients and η1(t) = η2(t) = 0.1 (i.e., s = 1), where P denotes the com-
ponent W+

1 in the projection Π+
1 Z0 calculated according to Lemma 15. (a) The

logarithm of the norm of W (t). As expected, the norm increases exponentially
when λ < λ∗; (b) The difference between W (t) and P . As expected (Corollary
5), W (t) converges to P when λ = λ∗, while other differences are dominated by
‖W (t)‖2; (c) The difference in `2 norm betweenH(t) andW (t). The convergence
is the same even if the weight decay is different.

Table 4: Test accuracies on imbalanced CIFAR-10 under different explicit feature regular-
ization.

Dataset Imbalanced CIFAR-10

Imbalance Type long-tailed step

Imbalance Ratio 100 50 20 10 100 50 20 10

baseline 67.81 72.93 83.97 88.37 61.24 68.10 78.73 85.49
λ = 5e− 6 67.84 72.85 83.17 89.06 60.79 68.41 80.20 86.69
λ = 1e− 5 67.74 76.14 84.17 89.19 61.50 67.71 80.97 87.18
λ = 5e− 5 69.74 77.29 84.92 88.64 60.69 70.27 81.27 87.17

Table 5: Test accuracies on imbalanced CIFAR-100 under different explicit feature regular-
ization.

Dataset Imbalanced CIFAR-100

Imbalance Type long-tailed step

Imbalance Ratio 100 50 20 10 100 50 20 10

baseline 33.37 39.40 42.96 56.38 40.89 42.69 51.92 57.52
λ = 5e− 6 36.00 41.92 50.75 60.13 41.90 43.85 47.80 56.74
λ = 1e− 5 36.61 42.36 49.21 58.91 41.48 43.77 49.64 56.49
λ = 5e− 5 34.88 42.74 54.72 60.84 40.97 43.20 48.96 57.97
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Figure 5: Verification of the behavior of regularized gradient descent iterates in Equa-
tion (12) with γ ∈ {0, 0.1, 0.01, 0.001, 1

C−1}. We set p = 512, C = 100, N = 10,

λ = (1+γ)

C
√
N

, η1(t) = η2(t) = 0.1 (i.e., s = 1), thus we have limt→∞Z(t) = Π+
1 Z0,

according to Corollary 5, and then randomly initialize H0 and W0. (a) The
training accuracy with the prediction rule arg maxcw

>
c h. As expected, the fea-

tures align to their corresponding prototypes when γ < 2
C−2 . (b) The `2 distance

between H(t) and H+
1 . As expected Theorem 5, the distance will decrease as

exponential rate when 0 < γ < 2
C−2 . (c) The `2 distance between W (t) and W+

1 .
(d) and (e) denote the norm of features and prototypes, respectively. As can be
seen, ‖H‖2 and ‖W ‖2 do not grow exponentially as in the unconstrained case,
which confirms that weight decay can avoid excessive growth of feature norm and
prototype norm.

Appendix C. Experiments

In this section, we provide experimental details, including datasets, network architectures,
optimization methods, hyperparameter settings, and more results.

C.1 Numerical Experiments

For numerical experiments in Figures 1, 4, 5, 6, 7, 8, and 9, we set p = 512, C = 100,
N = 10, and then randomly initialize H0 and W0. We use the SGD optimizer to optimize
these free variables.
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Figure 6: Verification of the behavior of regularized gradient descent iterates in Equa-
tion (12) with different learning rates (η ∈ {0.001, 0.01, 0.1, 0.2, 0.5}). We set
p = 512, C = 100, N = 10, η1 = η2 = η (s = 1), γ = 1

C−1 , and λ = 1+γ

C
√
N

. As can

be seen, features and prototypes converge to (H,W ) exponentially, and larger
learning rates can accelerate convergence.

C.2 Visual Classification

For classification experiments in Figure 2, Figure 12, Figure 13, Figure 14, we experiment
with ResNet-18, ResNet-34, and ResNet-50 (He et al., 2016) trained on CIFAR-10, CIFAR-
100 (Krizhevsky and Hinton, 2009), and ImageNet-100 that takes the first 100 classes of
ImageNet (Deng et al., 2009) , respectively. The networks are trained for 200 epochs and 100
epochs for CIFAR-10/-100 and ImageNet-100, respectively. For all training, we use SGD
optimizer with momentum 0.9 and cosine learning rate annealing Loshchilov and Hutter
(2017) with Tmax being the corresponding epochs. The initial learning rate is set to 0.1,
weight decay is set to 5 × 10−4, and batch size is set to 256. Typical data augmentations
including random width/height shift and horizontal flip are applied. Moreover, to use
the PAL and FNPAL (Zhou et al., 2022c) that anchors prototypes with a neural collapse
solution, we remove the ReLU layer before the linear classifier in the last layer.

C.3 Imbalanced Classification

For the experiments of imbalanced learning in Table 2, Table 4, Table 5, Figure 10, and
Figure 11, we utilize the same network architectures, and optimization settings as visual
classification. We only use the imbalanced versions of CIFAR-10 and CIFAR-100 by follow-
ing the setting in (Zhou et al., 2022d). The number of training examples is reduced for per
class, and the test set keeps unchanged, where we use the imbalance ratio ρ = maxi ni

mini ni
to
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Figure 7: Verification of the behavior of regularized gradient descent iterates in Equa-
tion (15) with different weight decay coefficients (λ = {1e− 5, 1e− 4, 1e− 3, 5e−
3, 1+γ

C
√
N
}). We set p = 512, C = 100, N = 10, η1(t) = η2(t) = 0.1 (i.e., s = 1),

γ = 1
C−1 , where H = π+

hH
+
1 + π−hH

−
1 and W = π+

wW
+
1 + π−wW

−
1 in Corollary

5. (a) The logarithm of the norm of W (t). As expected, the norm increases
exponentially when λ < λ∗ = 1+γ

C
√
N

; (b) The difference between W (t) and P . As

expected in Corollary 5, W (t) converges to P when λ = λ∗, while other differ-
ences are dominated by ‖W (t)‖2; (c) The difference in `2 norm between H(t)
and W (t). The convergence is the same even if the weight decay is different.

denote the ratio between sample sizes of the most frequent and least frequent class. More-
over, long-tailed imbalance (Cui et al., 2019) that utilizes an exponential decay in samples
sizes and step imbalance (Buda et al., 2018)(that sets all minority classes to have the same
number of samples, as do all majority classes) are considered.

For imbalanced learning, we utilize expected calibration error (ECE) to measure cali-
bration of the models (Zhong et al., 2021), where all predictions are grouped into several
interval bins of equal size and then calculate the error between the accuracy and confidence
for each interval bin, i.e,

ECE =

B∑
b=1

|Sb|
N
|acc(Sb)− conf(Sb)| × 100%, (103)

where N denotes the number of predictions, B is the number of interval bins, Sb is the set
of samples whose prediction scores fall into Bin-b, acc(·) and conf(·) denote the accuracy
and predicted confidence of Sb, respectively.
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Figure 8: Verification of the behavior of regularized gradient descent iterates in Equa-
tion (15) with different scale parameters s = η1(0)

η2(0) ∈ {0.01, 0.05, 0.1, 0.5, 1.0}. We

set p = 512, C = 100, N = 10, η2 = 0.5, γ = 1
C−1 , where H = π+

hH
+
1 + π−hH

−
1

and W = π+
wW

+
1 +π−wW

−
1 in Corollary 5. As can be seen, larger scale parameter

s can achieve faster convergence speed.

As shown in Table 4 and Table 5, explicit feature regularization can improve imbalanced
learning on CIFAR-10/-100 in most cases.

C.4 Out-of-Distribution Detection

For the experiments of OOD detection in Figure 3, Table 6, Figure 16, Figure 17, and
Figure 18, we use a ResNet-18 on CIFAR-10 and a ResNet-34 on CIFAR-100 to train the
classification models, and use their test dataset as the in-distribution data Dtest

in . For the
OOD test dataset Dtest

out , we simply use a common benchmark: SVHN (Netzer et al., 2011).
We measure the performance with the following metrics: (1) the false positive rate (FPR95)
of OOD examples when true positive rate of in-distribution examples is at 95%; (2) the
area under the receiver operating characteristic curve (AUROC); and (3) the area under
the precision-recall curve (AUPR). We then consider the softmax-based score (Hendrycks
and Gimpel, 2016), energy-based score (Liu et al., 2020), and our proposed feature norm-
based score to assessing the improvement of explicit feature regularization over the normal
training.
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‖Ĥ
(t

)
−
Ŵ

(I
⊗

1
)‖

2

η = 0.1

η = 0.5

η = 1.0

η = 5.0

η = 10
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Figure 9: Verification of the behavior of discrete gradient descent iterates in Equation (18)
under anchored prototypes with different learning rates η ∈ {0.1, 0.5, 1.0, 5.0, 10}
and without (a-c) or with (d-f) rescaled learning rates. We set p = 512, C = 100,
and N = 10. As expected in Theorem 7, the feature norm ‖H(t)‖2 is non-
decreasing, and the error ‖Ĥ(t)− Ŵ (IC ⊗ 1>N )‖2 shows exponential decrease.

Appendix D. Other Potential Insights

D.1 A Good Initialization of Prototypes

As depicted in Section 3 and B.9, the dynamics under the unhinged loss is dependent on the
initialization of both features and prototypes, such as Π+

1 Z0 = ( 1√
N

(P ⊗ 1>N ),P ), where

P = 1
2

(
1√
N
H0(IC ⊗ 1N ) +W0

)
(IC− 1

C1C1>C). However, these featuresH0 extracted from

a dataset by some nonlinear layers and parameterized layers are practically intractable, but
we can elaborately initialize W0 and highlight its role in the whole. To do this, we consider
two ways: (1) Initializing the structure of W0. Inspired by the neural collapse solution that
maximizes class separation, we can initializeW0 as this structure, i.e., ŵ>i ŵj = −1

C−1 , ∀i 6= j;
(2) Increasing the importance of W0. A simple strategy is scaling up W0, thereby implicitly
weakening the importance of H0. However, it is difficult to handle the initialization of
features because they are obtained by a complex processing a large dataset, thus we seek
to initialize the prototypes in the last layer of the network.

D.2 Refined Decision-makings

Recalling the rule—arg maxc′〈wc′ ,h〉 + bc′ that makes decision by selecting the class with
the largest logit (where the inner product 〈wc′ ,h〉 is dominant), which may not be good
to directly use the learned features and prototypes, since learning with the unhinged loss
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Figure 10: Reliability diagrams of ResNet-34 (He et al., 2016) trained by CE on CIFAR-
10-LT with imbalance ratio ρ ∈ {100, 50, 20, 10} under different explicit feature
regularization (λ ∈ {0, 5e − 6, 1e − 5, 5e − 5}). As can be seen, an appropriate
larger weight decay can improve both accuracy and confidence
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Figure 11: Reliability diagrams of ResNet-34 (He et al., 2016) trained by CE on CIFAR-
100-LT with imbalance ratio ρ ∈ {100, 50, 20, 10} under different explicit feature
regularization (λ ∈ {0.0, 5e−6, 1e−5, 5e−5}), where ECE denotes the expected
calibration error (Zhong et al., 2021). As can be seen, an appropriate larger
weight decay can improve both accuracy and confidence calibration.
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Figure 12: Behavior of visual classification on CIFAR-10 with CE, the unhinged loss (PAL)
and the unhinged loss (FNPAL) under different weight decay coefficients.
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Figure 13: Behavior of visual classification on CIFAR-100 with CE, the unhinged loss (PAL)
and the unhinged loss (FNPAL) under different weight decay coefficients.
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Figure 14: Behavior of visual classification on ImageNet-100 with CE, the unhinged loss
(PAL) and the unhinged loss (FNPAL) under different weight decay coefficients.
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Figure 15: Behavior of gradient descent iterates of the unhinged (PAL) loss
in Theorem 6 with different explicit feature regularization (λ ∈
{0, 0.001, 0.005, 0.01, 0.05, 0.1}). We set p = 512, C = 100, N = 10, and
η = 0.1. We randomly initialize H0 and W , and then anchor prototypes W
during training. As expected in Theorem 6, the error ‖ ˆH(t)− ˆWM‖2 decreases
as an exponential rate O(e−ληt), and a larger λ can accelerate the convergence.
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Figure 16: Distribution of softmax scores (Hendrycks and Gimpel, 2016) from models
trained with different explicit feature regularization, where CE is the loss func-
tion.
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Figure 17: Distribution of energy scores (Liu et al., 2020) from models trained with different
explicit feature regularization, where CE is the loss function.
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Figure 18: Distribution of feature norms from models trained with different explicit feature
regularization, where CE is the loss function.
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Figure 19: The behavior of features and prototypes when directly training ResNet-18 with
the unhinged loss in Equation (1) on CIFAR-10. We set the weight decay co-
efficient as 5e − 4. (a) The train accuracy. (b) The feature norm. (c) the

ratio maxi ‖wi‖2
mini ‖wi‖2 . (d) mini ‖wi‖2. (e) The minimal angular between prototypes:

arccos maxi 6=j ŵ
>
i ŵj . In these figures, we only show the curves for the first 21

epochs, since “NaN” appears at the 22-th epoch. We can find that implicit pe-
nalization attached by other components (e.g., network architectures and weight
decays) does not limit the rapid growth of the feature norm and prototype norm,

indicating implicit penalization is fragile. Moreover, the ratio maxi ‖wi‖2
mini ‖wi‖2 starts

our very large and the minimal angular is very small, which indicates that there
are two prototypes that are particular imbalanced.

Table 6: OOD detection performance using softmax-based (Hendrycks and Gimpel, 2016),
energy-based (Liu et al., 2020), and feature norm-based approaches while model
training with feature regularization (λ = {0, 1e − 6, 5e − 6, 1e − 5}). We use
ResNet-18 and ResNet-34 to train on the in-distribution datasets CIFAR-10 and
CIFAR-100, respectively. We then use SVHN (Netzer et al., 2011) as the OOD
dataset to evaluate the performance of OOD detection. All values are percentages.
↑ indicates large values are better, and ↓ indicates smaller values are better. The
best results are underlined.

Dataset Dtest
in λ FPR95 ↓ AUROC ↑ AUPR ↑

CIFAR-10

Softmax-based / Energy-based / Feature Norm-based
0 52.09 / 43.04 / 52.10 91.67 / 91.94 / 89.54 84.11 / 82.80 / 77.06

1e-6 54.00 / 43.72 / 51.45 91.44 / 92.12 / 89.08 82.31 / 81.77 / 74.16
5e-6 45.37 / 33.92 / 26.93 93.08 / 93.78 / 94.03 84.31 / 83.73 / 82.79
1e-5 37.39 / 27.87 / 24.94 93.90 / 94.60 / 94.17 85.48 / 85.34 / 83.15

CIFAR-100

Softmax-based / Energy-based / Feature Norm-based
0 87.75 / 89.84 / 95.54 71.01 / 71.94 / 59.54 55.42 / 56.69 / 43.21

1e-6 82.08 / 82.57 / 88.77 75.36 / 76.28 / 68.83 61.40 / 61.90 / 51.58
5e-6 79.01 / 78.68 / 85.94 78.70 / 79.15 / 70.32 62.58 / 62.39 / 48.39
1e-5 81.48 / 81.41 / 87.83 77.02 / 78.03 / 73.91 62.92 / 63.66 / 58.81
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within limited iterations (that means ζ1(t) <∞) will introduce some residual ∆(t) caused
by gradient descent regardless of the unconstrained case or regularized case.

Example 1. If we add a perturbation ∆ for all features while adding s∆ for all prototypes,
then the perturbed decision-making will be arg maxc′〈wc′ + s∆,h+ ∆〉+ bc′, which may not
be equivalent to arg maxc′〈wc′ ,h〉+ bc′.

D.3 Adjusted Sample Margin Loss

As aforementioned in Section 3.4 and the proof of Theorem 7, we will encounter zero
gradients when the cosine similarity ŵ>y ĥ is −1 or 1, so we can adjust the loss to avoid the
issue by to wy and accelerate convergence:

L′γ(Wĥ, y) =

{
Lγ(Wĥ, y) if ŵ>y ĥ ≥ −1 + ε,

−(1 + γ)(wy + δ)>ĥ if ŵ>y ĥ < −1 + ε,
(104)

where ε ∈ (0, 1) is a hyperparameter and δ = −

(
1 +

ŵ>y ĥ
√

1−(1−ε)2

(1−ε)
√

1−(ŵ>y ĥ)2

)
(wy + ĥĥ>wy)

(performed with a stop-gradient) satisfying
(wy+δ)>ĥ
‖wy+δ‖2 = −1 + ε.
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