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Abstract

Scaling up training datasets and model parameters have benefited neural network-based
language models, but also present challenges like distributed compute, input data bot-
tlenecks and reproducibility of results. We introduce two simple and scalable software
libraries that simplify these issues: t5x enables training large language models at scale,
while seqio enables reproducible input and evaluation pipelines. These open-source li-
braries have been used to train models with hundreds of billions of parameters on multi-
terabyte datasets. Configurations and instructions for T5-like and GPT-like models are
also provided. The libraries can be found at https://github.com/google-research/t5x
and https://github.com/google/seqio.
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1. Introduction

Scaling transformers(Vaswani et al., 2017) to hundreds of billions of parameters has shown
significant improvement, but training at such scale and consistently finetuning and prompt-
ing these models for downstream usage and evaluation requires a research-friendly and
scalable software framework. In this paper, we introduce t5x, an open-source library to
build Transformer models at scale by leveraging Jax’s(Bradbury et al., 2018; Frostig et al.,
2018) user-friendly NumPy-like(Harris et al., 2020) user interface and its powerful jax.pjit
API for parallelism backed by XLA GSPMD(Xu et al., 2021).

Additionally, training at scale requires large datasets. We also introduce seqio, an
open-source library for managing data pipelines and model evaluations. seqio builds on
tensorflow.data, adds support for SPMD-based data parallelism and is compatible with
popular modeling frameworks including JAX, TensorFlow(Abadi et al., 2015), and Py-
Torch(Paszke et al., 2019).
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Figure 1: Overall structure of t5x, showing components used for principal functionalities.

Modular Design. Figure 1 illustrates the overall modular structure of t5x, highlight-
ing the use of open-source libraries to implement different functionalities. For datasets
and evaluation - t5x uses seqio to create reproducible “tasks”, which we cover in detail
in Section 3. For checkpointing, we built our own library utilizing TensorStore1 as a tool
for scalably reading and writing sliced tensors. This enables efficient management of check-
points when parameters are distributed across multiple host processes. For configuration,
we use Gin2 for dependency injection, allowing users to inject hyperparameters, model ob-
jects, and other components (for example, custom checkpointer) without modifying the core
library. This makes t5x easily configurable, supporting fast iteration over research ideas.
For model implementation, t5x leverages specialized features in the Flax (Heek et al., 2020)
library, built on JAX, which are described further below. For Partitioning, we use the
XLA GSPMD partitioner (Xu et al., 2021) to automatically shard the computation graph
and use jax.pjit as a frontend to interact with GSPMD, providing our own simplified API
to allow users to parallelize over data, parameters, and activations, described further below.
The modular structure allows users to replace these components with alternative standard
and custom components.

1. https://github.com/google/tensorstore
2. https://github.com/google/gin-config
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XLA GSPMD partitioning with jax.pjit. t5x supports both data parallelism
and model parallelism to scale large models by defining orthogonal axes of the physical
device mesh: model and data. Data parallelism involves splitting input data and inter-
mediate activations over along the global batch axis, either by replicating parameters and
optimizer state (“1D parameter partitioning”) or sharding them over data (“2D parameter
partitioning”). Model parallelism involves partitioning parameters and intermediate activa-
tions along axes other than the batch dimension. Replicating intermediate activations over
model is referred to as “1D activation partitioning”, while sharding them is “2D activation
partitioning”.

These options correspond to previously described parallelism techniques: 2D parameter
partitioning is also known as ZeRO-3 (Rajbhandari et al., 2020) or fully sharded data
parallelism; 1D activation partitioning is also known as Megatron (Shoeybi et al., 2019) and
is the default in the Mesh TensorFlow Transformer (Shazeer et al., 2018); and 2D activation
partitioning is the “fully sharded” case described in Xu et al. (2021). t5x supports flexible
partitioning configurations, including these built-in options, using the Flax APIs described
in the following section.

Model Implementation. t5x is compatible with Flax-based model implementations
with minor caveats. User-defined logical axis annotations via
flax.partitioning.param with axes are required for parameter and activation partition-
ing. These logical axes group tensor dimensions that must be partitioned in the same way,
for example, “batch” (across examples in a batch), “kv” (across dimensions of key-value
matrices in attention layers), and “head” (across heads in multi-headed attention). While
XLA GSPMD automatically selects matching partitions for intermediate activations, users
can override with flax.partitioning.with sharding constraint for better memory us-
age and inter-device communication. At runtime, users provide a map of logical axes to
hardware axes (model or data). Alternatively, logical axes can be mapped to None to
indicate replication across all devices.

A flax.nn.module implemented with these annotations is wrapped in a t5x.BaseModel

subclass defining the loss, evaluation, and inference methods to make it compatible with the
core t5x interface. t5x model support is flexible–layers and modules can be written directly
with Flax or using higher-level libraries like Flaxformer3. Dependency injection with Gin
enables easy swapping of models. Checkpoints from other libraries can be made compatible,
including legacy T5 checkpoints4 based on Mesh TensorFlow, which can be read directly by
t5x or converted to the native t5x format for faster reading.

Example Models. We provide well-tested (validated by reproducing the T5 models
from Raffel et al. (2020) originally implemented in Mesh TensorFlow) “Minimal” model
implementations along with checkpoints for T5 (Raffel et al., 2020) and T5.1.1 (introduced
after the paper), mT5 (Xue et al., 2021), ByT5 (Xue et al., 2022), a model configuration
(without checkpoints) for a decoder-only architecture compatible with LaMDA (Thoppilan
et al., 2022), and Scalable T5 - an implementation of T5.1.1 using jax.scan to significantly
reduce compilation time and provide finer-grained control over activation memory. These
use Flax with limited abstractions, closely following pedagogical Flax examples5.

3. https://github.com/google/flaxformer
4. https://github.com/google-research/text-to-text-transfer-transformer
5. https://github.com/google/flax/tree/main/examples
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GPU Support. We provide examples and instructions6 to run t5x on GPUs in single-
node and multi-node configurations, with optimizations for better throughput. More ex-
amples can be found in the NVIDIA Rosetta repository7 which includes H100 FP8 support
and performance improvements.

3. seqio

seqio is a data processing library for training, inference, and evaluation. It uses
tensorflow.data for scalable pipelines, compatible with frameworks like JAX or PyTorch
by easily transforming datasets to NumPy iterators. A key differentiator is the Task-based
API illustrated in Figure 2, which associates data sources with preprocessing and evaluation.
Feature converters transform task features into values passed to the model, making Tasks
reusable across architectural variants such as encoder-decoder or decoder-only. Multiple
Tasks can also be combined into a Mixture for multi-task training.

Figure 2: Structure of a seqio Task, highlighting customizable use of APIs.

4. Related Work

Previous Google-released libraries for training sequence models based on TensorFlow in-
clude Tensor2Tensor (Vaswani et al., 2018), Lingvo (Shen et al., 2019), and the Mesh
TensorFlow (Shazeer et al., 2018)-based T5 (Raffel et al., 2020). Comparable projects from
other research groups include model libraries like fairseq (Ott et al., 2019), large-scale par-
allelism libraries like FairScale (Baines et al., 2021), and libraries that include both, like
DeepSpeed (Rasley et al., 2020) and Megatron (Smith et al., 2022).

Major differentiators of t5x are its use of JAX and Flax for model expression, its support
for TPU (including TPU v4), and its Gin-based configuration system that allows users to
modify any aspect of the model and training procedure. t5x’s native support for multi-host
model parallelism allows reliably training models at massive scale. t5x doesn’t support
pipeline parallelism, a major component of systems like DeepSpeed, because the inter-chip
network of TPUs has performance similar to within-node GPU interconnects but scales to
thousands of chips, making model and data parallelism sufficient to train efficiently at scale.

6. https://github.com/google-research/t5x/blob/main/t5x/contrib/gpu/
7. https://github.com/NVIDIA/JAX-Toolbox/tree/main/rosetta/rosetta/projects/t5x
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5. Project Status and Adoption

We started the project in the fall of 2020 and open sourced the library code in October
2021. During that time, t5x and seqio achieved widespread adoption by teams across
Google: t5x has been launched on TPU hundreds of thousands of times at Google, and the
total number of internal t5x and seqio users exceeds 1,000. Teams are using these libraries
for research projects (from small-scale research to the largest language models trained at
Google) and user-facing products. External adopters include academic and commercial
users of Cloud TPUs, such as portions of the the Big Science project (Wang et al., 2022).

Users of t5x and seqio cite the usability and research-friendliness of the libraries as
reasons for adoption. We are continuing to actively develop both libraries, prioritizing
future work based on researcher needs and feedback.
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