
Journal of Machine Learning Research 24 (2023) 1-8 Submitted 6/23; Revised 10/23; Published 11/23

Scaling Up Models and Data with t5x and seqio

Lead Authors

Adam Roberts∗ adarob@google.com

Hyung Won Chung∗ hwchung@google.com

Gaurav Mishra∗ mishragaurav@google.com

Anselm Levskaya levskaya@google.com

James Bradbury jekbradbury@google.com

Technical Contributors, Advisors and Leadership

Daniel Andor †, Sharan Narang†, Brian Lester†, Colin Gaffney†,
Afroz Mohiuddin†, Curtis Hawthorne†, Aitor Lewkowycz†, Alex Salcianu†,
Marc van Zee†, Jacob Austin†, Sebastian Goodman†, Livio Baldini Soares†,
Haitang Hu†, Sasha Tsvyashchenko†, Aakanksha Chowdhery†, Jasmijn Bastings†,
Jannis Bulian†, Xavier Garcia†, Jianmo Ni†, Andrew Chen†, Kathleen Kenealy†,
Kehang Han†, Michelle Casbon†, Jonathan H. Clark†, Stephan Lee†, Dan Garrette†,
James Lee-Thorp†, Colin Raffel ‡, Noam Shazeer‡, Marvin Ritter‡, Maarten Bosma‡,
Alexandre Passos‡, Jeremy Maitin-Shepard‡, Noah Fiedel §, Mark Omernick§,
Brennan Saeta§, Ryan Sepassi§, Alexander Spiridonov§,
Joshua Newlan§, Andrea Gesmundo§¶

Editor: Zeyi Wen

Abstract

Scaling up training datasets and model parameters have benefited neural network-based
language models, but also present challenges like distributed compute, input data bot-
tlenecks and reproducibility of results. We introduce two simple and scalable software
libraries that simplify these issues: t5x enables training large language models at scale,
while seqio enables reproducible input and evaluation pipelines. These open-source li-
braries have been used to train models with hundreds of billions of parameters on multi-
terabyte datasets. Configurations and instructions for T5-like and GPT-like models are
also provided. The libraries can be found at https://github.com/google-research/t5x
and https://github.com/google/seqio.

Keywords: Large language models, data parallelism, model parallelism, data processing

∗. Equal Contributions
†. Technical Contributors
‡. Technical Advisors
§. Leadership
¶. Authors are ordered by impact within groups.

©2023 Adam Roberts, Hyung Won Chung, Gaurav Mishra, et al.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/23-0795.html.

https://github.com/google-research/t5x
https://github.com/google/seqio
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0795.html

Roberts, Chung, Mishra, et al

1. Introduction

Scaling transformers(Vaswani et al., 2017) to hundreds of billions of parameters has shown
significant improvement, but training at such scale and consistently finetuning and prompt-
ing these models for downstream usage and evaluation requires a research-friendly and
scalable software framework. In this paper, we introduce t5x, an open-source library to
build Transformer models at scale by leveraging Jax’s(Bradbury et al., 2018; Frostig et al.,
2018) user-friendly NumPy-like(Harris et al., 2020) user interface and its powerful jax.pjit
API for parallelism backed by XLA GSPMD(Xu et al., 2021).

Additionally, training at scale requires large datasets. We also introduce seqio, an
open-source library for managing data pipelines and model evaluations. seqio builds on
tensorflow.data, adds support for SPMD-based data parallelism and is compatible with
popular modeling frameworks including JAX, TensorFlow(Abadi et al., 2015), and Py-
Torch(Paszke et al., 2019).

2. t5x

T5X

Datasets & Eval

SeqIO

Checkpointing

TensorStore

Config

Gin

Models

Flaxformer Minimal

Flax

Partitioning

jax.pjit

XLA GSPMD

...

Figure 1: Overall structure of t5x, showing components used for principal functionalities.

Modular Design. Figure 1 illustrates the overall modular structure of t5x, highlight-
ing the use of open-source libraries to implement different functionalities. For datasets
and evaluation - t5x uses seqio to create reproducible “tasks”, which we cover in detail
in Section 3. For checkpointing, we built our own library utilizing TensorStore1 as a tool
for scalably reading and writing sliced tensors. This enables efficient management of check-
points when parameters are distributed across multiple host processes. For configuration,
we use Gin2 for dependency injection, allowing users to inject hyperparameters, model ob-
jects, and other components (for example, custom checkpointer) without modifying the core
library. This makes t5x easily configurable, supporting fast iteration over research ideas.
For model implementation, t5x leverages specialized features in the Flax (Heek et al., 2020)
library, built on JAX, which are described further below. For Partitioning, we use the
XLA GSPMD partitioner (Xu et al., 2021) to automatically shard the computation graph
and use jax.pjit as a frontend to interact with GSPMD, providing our own simplified API
to allow users to parallelize over data, parameters, and activations, described further below.
The modular structure allows users to replace these components with alternative standard
and custom components.

1. https://github.com/google/tensorstore
2. https://github.com/google/gin-config

2

https://github.com/google/tensorstore
https://github.com/google/gin-config

Scaling Up Models and Data with t5x and seqio

XLA GSPMD partitioning with jax.pjit. t5x supports both data parallelism
and model parallelism to scale large models by defining orthogonal axes of the physical
device mesh: model and data. Data parallelism involves splitting input data and inter-
mediate activations over along the global batch axis, either by replicating parameters and
optimizer state (“1D parameter partitioning”) or sharding them over data (“2D parameter
partitioning”). Model parallelism involves partitioning parameters and intermediate activa-
tions along axes other than the batch dimension. Replicating intermediate activations over
model is referred to as “1D activation partitioning”, while sharding them is “2D activation
partitioning”.

These options correspond to previously described parallelism techniques: 2D parameter
partitioning is also known as ZeRO-3 (Rajbhandari et al., 2020) or fully sharded data
parallelism; 1D activation partitioning is also known as Megatron (Shoeybi et al., 2019) and
is the default in the Mesh TensorFlow Transformer (Shazeer et al., 2018); and 2D activation
partitioning is the “fully sharded” case described in Xu et al. (2021). t5x supports flexible
partitioning configurations, including these built-in options, using the Flax APIs described
in the following section.

Model Implementation. t5x is compatible with Flax-based model implementations
with minor caveats. User-defined logical axis annotations via
flax.partitioning.param with axes are required for parameter and activation partition-
ing. These logical axes group tensor dimensions that must be partitioned in the same way,
for example, “batch” (across examples in a batch), “kv” (across dimensions of key-value
matrices in attention layers), and “head” (across heads in multi-headed attention). While
XLA GSPMD automatically selects matching partitions for intermediate activations, users
can override with flax.partitioning.with sharding constraint for better memory us-
age and inter-device communication. At runtime, users provide a map of logical axes to
hardware axes (model or data). Alternatively, logical axes can be mapped to None to
indicate replication across all devices.

A flax.nn.module implemented with these annotations is wrapped in a t5x.BaseModel

subclass defining the loss, evaluation, and inference methods to make it compatible with the
core t5x interface. t5x model support is flexible–layers and modules can be written directly
with Flax or using higher-level libraries like Flaxformer3. Dependency injection with Gin
enables easy swapping of models. Checkpoints from other libraries can be made compatible,
including legacy T5 checkpoints4 based on Mesh TensorFlow, which can be read directly by
t5x or converted to the native t5x format for faster reading.

Example Models. We provide well-tested (validated by reproducing the T5 models
from Raffel et al. (2020) originally implemented in Mesh TensorFlow) “Minimal” model
implementations along with checkpoints for T5 (Raffel et al., 2020) and T5.1.1 (introduced
after the paper), mT5 (Xue et al., 2021), ByT5 (Xue et al., 2022), a model configuration
(without checkpoints) for a decoder-only architecture compatible with LaMDA (Thoppilan
et al., 2022), and Scalable T5 - an implementation of T5.1.1 using jax.scan to significantly
reduce compilation time and provide finer-grained control over activation memory. These
use Flax with limited abstractions, closely following pedagogical Flax examples5.

3. https://github.com/google/flaxformer
4. https://github.com/google-research/text-to-text-transfer-transformer
5. https://github.com/google/flax/tree/main/examples

3

https://github.com/google/flaxformer
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google/flax/tree/main/examples

Roberts, Chung, Mishra, et al

GPU Support. We provide examples and instructions6 to run t5x on GPUs in single-
node and multi-node configurations, with optimizations for better throughput. More ex-
amples can be found in the NVIDIA Rosetta repository7 which includes H100 FP8 support
and performance improvements.

3. seqio

seqio is a data processing library for training, inference, and evaluation. It uses
tensorflow.data for scalable pipelines, compatible with frameworks like JAX or PyTorch
by easily transforming datasets to NumPy iterators. A key differentiator is the Task-based
API illustrated in Figure 2, which associates data sources with preprocessing and evaluation.
Feature converters transform task features into values passed to the model, making Tasks
reusable across architectural variants such as encoder-decoder or decoder-only. Multiple
Tasks can also be combined into a Mixture for multi-task training.

Figure 2: Structure of a seqio Task, highlighting customizable use of APIs.

4. Related Work

Previous Google-released libraries for training sequence models based on TensorFlow in-
clude Tensor2Tensor (Vaswani et al., 2018), Lingvo (Shen et al., 2019), and the Mesh
TensorFlow (Shazeer et al., 2018)-based T5 (Raffel et al., 2020). Comparable projects from
other research groups include model libraries like fairseq (Ott et al., 2019), large-scale par-
allelism libraries like FairScale (Baines et al., 2021), and libraries that include both, like
DeepSpeed (Rasley et al., 2020) and Megatron (Smith et al., 2022).

Major differentiators of t5x are its use of JAX and Flax for model expression, its support
for TPU (including TPU v4), and its Gin-based configuration system that allows users to
modify any aspect of the model and training procedure. t5x’s native support for multi-host
model parallelism allows reliably training models at massive scale. t5x doesn’t support
pipeline parallelism, a major component of systems like DeepSpeed, because the inter-chip
network of TPUs has performance similar to within-node GPU interconnects but scales to
thousands of chips, making model and data parallelism sufficient to train efficiently at scale.

6. https://github.com/google-research/t5x/blob/main/t5x/contrib/gpu/
7. https://github.com/NVIDIA/JAX-Toolbox/tree/main/rosetta/rosetta/projects/t5x

4

https://github.com/google-research/t5x/blob/main/t5x/contrib/gpu/
https://github.com/NVIDIA/JAX-Toolbox/tree/main/rosetta/rosetta/projects/t5x

Scaling Up Models and Data with t5x and seqio

5. Project Status and Adoption

We started the project in the fall of 2020 and open sourced the library code in October
2021. During that time, t5x and seqio achieved widespread adoption by teams across
Google: t5x has been launched on TPU hundreds of thousands of times at Google, and the
total number of internal t5x and seqio users exceeds 1,000. Teams are using these libraries
for research projects (from small-scale research to the largest language models trained at
Google) and user-facing products. External adopters include academic and commercial
users of Cloud TPUs, such as portions of the the Big Science project (Wang et al., 2022).

Users of t5x and seqio cite the usability and research-friendliness of the libraries as
reasons for adoption. We are continuing to actively develop both libraries, prioritizing
future work based on researcher needs and feedback.

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal, Siddharth Goyal, Myle
Ott, Benjamin Lefaudeux, Vitaliy Liptchinsky, Mike Rabbat, Sam Sheiffer, Anjali Srid-
har, and Min Xu. Fairscale: A general purpose modular pytorch library for high perfor-
mance and large scale training. https://github.com/facebookresearch/fairscale,
2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Roy Frostig, Matthew Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing. 2018. URL https://mlsys.org/Conferences/doc/2018/146.pdf.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Na-

5

https://www.tensorflow.org/
https://github.com/facebookresearch/fairscale
http://github.com/google/jax
https://mlsys.org/Conferences/doc/2018/146.pdf

Roberts, Chung, Mishra, et al

ture, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:

//doi.org/10.1038/s41586-020-2649-2.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre,
Andreas Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for
JAX, 2020. URL http://github.com/google/flax.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics (Demonstrations), pages 48–53, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-4009. URL
https://aclanthology.org/N19-4009.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):
1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mizations toward training trillion parameter models. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’20.
IEEE Press, 2020. ISBN 9781728199986.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’20, page 3505–3506, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406703.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn
Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan
Sepassi, and Blake Hechtman. Mesh-tensorflow: Deep learning for supercomputers.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran

6

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://github.com/google/flax
https://aclanthology.org/N19-4009
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/3394486.3406703

Scaling Up Models and Data with t5x and seqio

Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf.

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X Chen, Ye Jia, Anjuli
Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, et al. Lingvo: a modular and
scalable framework for sequence-to-sequence modeling. arXiv preprint arXiv:1902.08295,
2019.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models
Using Model Parallelism. arXiv e-prints, art. arXiv:1909.08053, September 2019.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton
Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad
Shoeybi, Yuxiong He, Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using
DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Genera-
tive Language Model. arXiv e-prints, art. arXiv:2201.11990, January 2022.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha,
Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae
Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim
Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam
Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Kri-
vokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man, Kathleen Meier-
Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke,
Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchin-
son, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi
Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron
Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak,
Ed Chi, and Quoc Le. LaMDA: Language Models for Dialog Applications. arXiv e-prints,
art. arXiv:2201.08239, January 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N Gomez, Stephan
Gouws, Llion Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki Parmar, et al. Tensor2tensor
for neural machine translation. arXiv preprint arXiv:1803.07416, 2018.

Thomas Wang, Adam Roberts, David Hesslow, Teven Le Scao, Hyung Won Chung, Iz Belt-
agy, Julien Launay, and Colin Raffel. What language model architecture and pretraining
objective work best for zero-shot generalization? arXiv e-prints, 2022.

Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang, Rahul
Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni, Ruoming Pang,
Noam Shazeer, Shibo Wang, Tao Wang, Yonghui Wu, and Zhifeng Chen. GSPMD:

7

https://proceedings.neurips.cc/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf

Roberts, Chung, Mishra, et al

General and Scalable Parallelization for ML Computation Graphs. arXiv e-prints, art.
arXiv:2105.04663, May 2021.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text
transformer. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 483–
498, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.naacl-main.41. URL https://aclanthology.org/2021.naacl-main.41.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel. ByT5: Towards a Token-Free Future with Pre-trained
Byte-to-Byte Models. Transactions of the Association for Computational Linguistics, 10:
291–306, 03 2022. ISSN 2307-387X. doi: 10.1162/tacl a 00461. URL https://doi.org/

10.1162/tacl_a_00461.

8

https://aclanthology.org/2021.naacl-main.41
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461

	Introduction
	t5x
	seqio
	Related Work
	Project Status and Adoption

