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Abstract

Recent work has focused on the very common practice of prediction-based inference: that is,
(i) using a pre-trained machine learning model to predict an unobserved response variable,
and then (ii) conducting inference on the association between that predicted response and
some covariates. As pointed out by Wang et al. (2020), applying a standard inferential
approach in (ii) does not accurately quantify the association between the unobserved (as
opposed to the predicted) response and the covariates. In recent work, Wang et al. (2020)
and Angelopoulos et al. (2023) propose corrections to step (ii) in order to enable valid
inference on the association between the unobserved response and the covariates. Here,
we show that the method proposed by Angelopoulos et al. (2023) successfully controls the
type 1 error rate and provides confidence intervals with correct nominal coverage, regardless
of the quality of the pre-trained machine learning model used to predict the unobserved
response. However, the method proposed by Wang et al. (2020) provides valid inference
only under very strong conditions that rarely hold in practice: for instance, if the machine
learning model perfectly estimates the true regression function in the study population of
interest.

1. Introduction

Rapid recent progress in the field of machine learning has enabled the development of com-
plex and high-quality machine learning models to predict a response variable of interest.
This is particularly attractive in settings where future measurement of this response vari-
able is prohibitively expensive or impossible. For example, instead of performing expensive
experiments to determine a protein’s structure, it is possible to obtain high-quality struc-
tural predictions using AlphaFold (Jumper et al., 2021). Similarly, in developing countries,
determining the true cause of death may be impossible; instead, one might predict the cause
of death on the basis of a “verbal autopsy” (Clark et al., 2015; Khoury et al., 1999). In
the context of gene expression data, it is infeasible to conduct experiments in every pos-
sible tissue type, and so instead a machine learning model can be applied to predict gene
expression in a tissue type of interest (Ellis et al., 2018; Gamazon et al., 2015; Gusev et al.,
2019).
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In this paper, we will use the notation f̂ : Z → Y to denote a pre-trained machine learn-
ing model that maps from Z, the space of the predictors Z, to Y, the space of the response
variable Y . We assume that the operating characteristics of f̂(·) in the study population of
interest are unknown to the end-user, and the data used to fit f̂(·) are unavailable. Thus,
in what follows, we will treat f̂(·) as a “black box” function.

In important recent papers, Wang et al. (2020) and Angelopoulos et al. (2023) consider
the practice of prediction-based inference1: that is, of quantifying the association between
the response Y and some covariates X using realizations not of (Y,X), but rather, of
(f̂(Z), X). Such an approach is attractive in cases where the association between Y and X
is of interest, and both f̂(·) and a large sample of realizations of predictors Z and covariates
X are available, but realizations of Y are expensive or otherwise unavailable. Throughout,
we will use Z to denote the predictors in the machine learning model f̂(·), and X to denote
the covariates whose association with Y is of interest. In many settings, the covariate
variables X may be a subset of the predictor variables Z, or may be identical to Z, but this
is not necessarily the case.

Wang et al. (2020) point out that a naive approach to prediction-based inference that
simplistically interprets the association between (f̂(Z), X) as the association between (Y,X)
is problematic from a statistical perspective. For instance, regressing f̂(Z) onto X using
least squares does not lead to valid inference on the association between Y and X: e.g. it
leads to hypothesis tests that fail to control type 1 error, and confidence intervals that do
not achieve the nominal coverage. See Box 1.

Box 1: Naive approach to prediction-based inference. We are given a (pre-trained)
prediction function f̂(·) : Z → Y, and an unlabeled dataset zunlab representing
realizations from Z. As pointed out by Wang et al. (2020), the naive approach
displayed here does not allow for valid inference on the association between Y and
X.

Step 1: Compute ŷunlab = f̂(zunlab).

Step 2: Conduct inference on the association between Y and X, using ŷunlab and
xunlab as data, without accounting for the fact that (ŷunlab,xunlab) is not a
sample from the distribution of (Y,X).

Wang et al. (2020) and Angelopoulos et al. (2023) propose creative solutions to overcome
this issue. They assume that in addition to a large unlabeled dataset (zunlab,xunlab), they
also have access to a (relatively small) labeled dataset (ylab, zlab,xlab). We focus on the case
where the labeled and unlabeled data are independent and identically distributed samples
from the same study population of interest, though Angelopoulos et al. (2023) also extend
beyond this setting. See Box 2. We emphasize that the goal is to quantify association
between Y and X.

1. Wang et al. (2020) and Angelopoulos et al. (2023) refer to this practice as post-prediction inference and
prediction-powered inference, respectively; to unify terminology, here we refer to it as prediction-based
inference.
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Box 2: Setting of prediction-based inference.

• Given: A pre-trained machine learning model f̂ : Z → Y.

• Goal: To quantify the association between a response Y ∈ Y and covariates X ∈ X .

• Data: A (relatively small) labeled dataset (ylab, zlab,xlab) consisting of i.i.d. real-
izations of (Y,Z,X), and a (large) unlabeled dataset (zunlab,xunlab) consisting of
i.i.d. realizations of (Z,X). Both are drawn from the same study population.

One simple (and valid) option is to quantify association between Y and X using only
the labeled data (ylab,xlab). However, this approach entirely discards the vast amount of
unlabeled data (zunlab,xunlab). Intuitively, if the prediction function f̂(·) is nearly perfect
on our population of interest, then using (f̂(zunlab),xunlab) in addition to (ylab,xlab) will
aid our efforts to quantify the association between Y and X. By contrast, if f̂(Z) is a very
poor prediction of Y on our population of interest, then using (f̂(zunlab),xunlab) in addition
to (ylab,xlab) may hinder our efforts. Our goal is valid quantification of the association
between Y and X, regardless of the quality of f̂(·) on the population of interest.

To achieve this goal, Wang et al. (2020) propose to (Step 1’) model the association
between Y and f̂(Z) using the labeled dataset (ylab, f̂(zlab)), and then (Step 2’) incorporate
the model in Step 1’ to conduct inference between Y and X using the unlabeled data
(f̂(zunlab),xunlab). See Box 3.

Box 3: Wang et al. (2020)’s proposal to correct prediction-based inference.

Step 1’: Model the association between Y and f̂(Z) using the labeled data
(ylab, f̂(zlab)).

Step 2’: Incorporate the model from Step 2’ to conduct inference on the association
between Y and X using the unlabeled data (f̂(zunlab),xunlab). To do this,
bootstrap and analytical approaches are proposed.

By contrast, Angelopoulos et al. (2023) propose to de-bias the estimates obtained using
the unlabeled data using information from the labeled data. In the case of estimands that
are linear in Y , they (Step 1”) compute the difference between the estimate of the parameter
of interest obtained using (f̂(zlab),xlab) and the estimate obtained using (ylab,xlab). They
then (Step 2”) correct the estimate obtained using the unlabeled dataset (f̂(zunlab),xunlab)
by this amount. See Box 4. Angelopoulos et al. (2023) also propose a more general frame-
work for estimands that minimize the expectation of a general loss function, though we
focus on the linear case in this paper for simplicity.

In this paper, we investigate these two proposals. In Section 2, we ask a fundamen-
tal question: what parameter is each proposal targeting? We see that the proposal of
Angelopoulos et al. (2023) targets the parameter of interest, whereas that of Wang et al.
(2020) does not. In Sections 3 and 4, we investigate the empirical consequences of our
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Box 4: Angelopoulos et al. (2023)’s proposal to correct prediction-based inference (in
the special case of estimands that are linear in Y ).

Step 1”: Compute the difference between the estimate of the parameter of interest
obtained using (f̂(zlab),xlab) and the estimate obtained using (ylab,xlab).

Step 2”: Correct the parameter estimate obtained using the unlabeled dataset
(f̂(zunlab),xunlab) by the difference computed in Step 1”.

findings from Section 2. These empirical investigations paint a clear picture: namely, that
failure to target the correct parameter has substantial statistical consequences for the pro-
posal of Wang et al. (2020), in the form of hypothesis tests that fail to control the Type
1 error, and confidence intervals that fail to attain the nominal coverage. The proposal
of Angelopoulos et al. (2023) does not suffer these consequences, as it targets the correct
parameter. We close with a discussion in Section 5.

In this paper, we use capitals to represent a random variable and lower case to represent
its realization. Vectors of length equal to the number of observations, or matrices whose
rows correspond to the observations, are in bold.

2. What parameter is each method targeting?

For concreteness, suppose that we would have fit a linear regression model on realizations
of (Y,X) using least squares, had a large number of realizations of (Y,X) been available.
Therefore, our goal is to conduct inference on the population parameter

β∗ = arg min
β

E[(Y − β>X)2] = E[XX>]−1 E[XY ]. (1)

The naive method (Box 1) and the proposals of Wang et al. (2020) and Angelopoulos
et al. (2023) use a test statistic of the form

Tj =
β̂j − β∗j
ŜE(β̂j)

for testing or constructing confidence intervals for β∗j . They rely on it having a known
distribution, or converging in distribution to a known distribution with increasing sample
size.

However, if β̂j
p

6→β∗j and ŜE(β̂j) goes to 0 as nlab and nunlab increase, then Tj does
not converge in distribution (see Appendix A for a formal statement of this). Therefore,
consistency of β̂j for β∗j is a necessary condition for valid inference using this approach. We
now investigate whether this is the case.

2.1 The general case for an arbitrary prediction model f̂

We first consider the naive approach, as defined in Box 1. Fitting a linear model with least
squares would result in β̂naive = (x>unlabxunlab)−1x>unlabf̂(zunlab). We can see that β̂naive

p→
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Algorithm 1 Bootstrap correction of Wang et al. (2020). The goal is to conduct inference
on the association between Y and X.

X 1. Use (ylab, f̂(zlab)) to fit the “relationship model” Y |f̂(Z) ∼ K(f̂(Z), φ), yielding φ̂.

X 2. For b = 1, . . . , B:

XX 2.1. Sample unlabeled observations with replacement to obtain zbunlab and xbunlab.

XX 2.2. Sample outcomes ỹb|f̂(zbunlab) from the relationship model K(f̂(zbunlab), φ̂).

XX 2.3. Use (ỹb,xbunlab) to fit a “regression model” for the relationship between Y and X,

and record the coefficient estimate β̂b and model-based standard error ŝb.

X 3. Compute the point estimate β̂ = median{β̂1, . . . , β̂B}.
X 4. Compute the “nonparametric” standard error ŜE(β̂) = SD{β̂1, . . . , β̂B}.
X 5. Compute the “parametric” standard error ŜE(β̂) = median{ŝ1, . . . , ŝB}.

E[XX>]−1 E[Xf̂(Z)] as nunlab increases, which is not equal to β∗ = E[XX>]−1 E[XY ] in
general. In fact, viewing f̂(·) as a black-box function with unknown operating characteristics
in the study population, we see that the quantity E[XX>]−1 E[Xf̂(Z)] does not even involve
the response, Y ; therefore, the parameter targeted by the naive method is not of any
scientific interest.

Now, we consider the bootstrap variant of the proposal of Wang et al. (2020), which
is introduced in Box 3. A detailed description of these proposals are presented in Algo-
rithm 1. We take Step 2.3 to involve a least squares regression. Note that Step 2.2 of
Algorithm 1 involves sampling observations ỹb from K(f̂(Z), φ̂) for use in fitting a re-

gression model in Step 2.3, giving us an estimate β̂bootstrap,bWang = (x>unlabxunlab)−1x>unlabỹ
b.

Thus β̂bootstrap,bWang

p→ E[XX>]−1 E[XK(f̂(Z), φ̂)] as nunlab increases, where we slightly abuse

notation by letting K(f̂(Z), φ̂) denote a random variable with distribution K(f̂(Z), φ̂).
In general, E[XX>]−1 E[XK(f̂(Z), φ̂)] is not equal to the parameter of interest β∗ =
E[XX>]−1 E[XY ]. Note that both the “parametric” and “non-parametric” bootstrap cor-
rections suffer from this issue.

The analytic variant of the proposal of Wang et al. (2020) adjusts the naive estimate by
the coefficient of f̂(Z) in a regression of Y onto f̂(Z), with an intercept, using the labeled
data2; that is, the estimate takes the form

β̂analyticalWang =
Ĉov(ylab, f̂(zlab))

V̂ar(f̂(zlab))
β̂naive. (2)

Thus as nlab and nunlab increase,

β̂analyticalWang

p→ Cov(Y, f̂(Z))

Var(f̂(Z))
E[XX>]−1 E[Xf̂(Z)],

which is not again not equal to β∗ in general.

2. The expression for β̂analytical
Wang given in (2) is implemented in Wang et al. (2020)’s code. Their publication

involves a slightly different expression for β̂analytical
Wang , which also does not converge to the parameter of

interest β∗ for a similar reason – we show this in Appendix B.
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This highlights a cause for concern about the proposals of Wang et al. (2020): namely,
that the wrong parameter is being targeted. This calls into question whether the inference
that they propose will achieve the desired statistical guarantees; we investigate this issue
further in the next two sections.

Finally, we turn to the proposal of Angelopoulos et al. (2023), which is introduced in
Box 4. In the case of linear regression, their estimate takes the form

β̂Angelopoulos = (x>unlabxunlab)−1x>unlabf̂(zunlab)+
{

(x>labxlab)−1x>labylab − (x>labxlab)−1x>labf̂(zlab)
}
.

As nlab and nunlab increase, we see that

β̂Angelopoulos
p→ E[XX>]−1 E[Xf̂(Z)] +

{
E[XX>]−1 E[XY ]− E[XX>]−1 E[Xf̂(Z)]

}
= β∗,

so the proposal of Angelopoulos et al. (2023) correctly targets the desired quantity.

2.2 An extreme setting where all methods target the correct quantity

We now consider an extreme setting where the prediction model exactly equals the true
regression function: that is, f̂(z) = E[Y |Z = z]. We also assume that X is contained within
Z: that is, Z = (X,Z(2)) for some Z(2). This is a reasonable assumption in practice, since
the covariate of interest is likely also a predictor in the machine learning model. In this
extreme setting, the naive method targets

E[XX>]−1 E[Xf̂(Z)] = E[XX>]−1 E [X E[Y |Z]]

= E[XX>]−1 E[XY ]

= β∗.

In other words, it targets the correct parameter of interest.
We will now show that the bootstrap methods of Wang et al. (2020) can similarly target

the correct parameter in this extreme setting, for example, if K(f̂(Z), φ̂) is defined by fitting
a generalized additive model (GAM) to (Y, f̂(Z)) and adding mean-zero noise, as in Wang
et al. (2020). That is,

K(f̂(Z), φ̂)
d
= ĝ(f̂(Z)) + ε, (3)

where ε is mean-zero noise and ĝ(·) is the fitted GAM.
The fitted GAM ĝ(·) takes the form

ĝ(·) ≈ arg min
g

E
[
(Y − g(f̂(Z)))2

]
(4)

= arg min
g

E
[
(Y − g(E[Y |Z]))2

]
(5)

= arg min
g

E
[
E
[
(Y − g(E[Y |Z]))2 |Z

]]
. (6)

The approximation in (4) holds if the labeled sample size is sufficiently large. Equation 5
is a consequence of the extreme assumption that f̂(z) = E[Y |Z = z]. Equation 6 follows
from iterated expectations.
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It is not hard to see that (6) is minimized when g(E[Y |Z]) = E[Y |Z], i.e., ĝ(·) is
approximately the identity function. Combining this with the extreme assumption that
f̂(z) = E[Y |Z = z], (3) leads to

K(f̂(Z), φ̂)
d
≈ E[Y |Z] + ε. (7)

Now, recall from Section 2.1 that the parameter targeted by Wang et al. (2020) is
E[XX>]−1 E[XK(f̂(Z), φ̂)]. We observe that

E[XX>]−1 E[XK(f̂(Z), φ̂)] = E[XX>]−1 E[X E[K(f̂(Z), φ̂)|Z]] (8)

≈ E[XX>]−1 E[X E[Y |Z]] (9)

= E[XX>]−1 E[XY ] (10)

= β∗.

Here, (8) and (10) follow from iterated expectations since Z = (X,Z(2)), and (9) follows
from (7). With a large enough labeled dataset, this approximation will hold almost exactly.

The analytical method of Wang et al. also targets the correct parameter in this setting,
since the naive method targets the correct parameter and

Cov(Y, f̂(Z))

Var(f̂(Z))
=

Cov(Y,E[Y |Z])

Var(E[Y |Z])
=

Var(E[Y |Z])

Var(E[Y |Z])
= 1.

Therefore, we have seen that under a very extreme assumption that f̂(z) = E[Y |Z = z],
the methods of Wang et al. (2020) will target (nearly) the correct parameter. However, in
general, this assumption is not reasonable. And in fact, our goal is valid inference on the
parameter β∗ regardless of (the quality of) f̂(·).

3. An empirical investigation of the distribution of the test statistic

We consider a simple simulation setting, inspired by the “Simulated Data: Continuous
case” section of Wang et al. (2020). They generate three datasets: a training dataset
consisting of realizations of (Z,X, Y ) used to train a machine learning model f̂(·), a labeled
dataset consisting of realizations of (Z,X, Y ), and an unlabeled dataset consisting only of
realizations of (Z,X); both the labeled and unlabeled datasets are used for inference3.
They consider predictors Z ∈ R4 and response Y ∈ R, and define the covariate X ≡ Z1.
In Wang et al. (2020)’s paper, the training, labeled, and unlabeled datasets each consist of
300 observations. Throughout this section, we keep the training sample size fixed at 300
observations, but vary the size of the labeled and unlabeled datasets.

As in Wang et al. (2020), we generate the training, labeled, and unlabeled datasets from
the same partially linear additive model Y = β̃0 + β̃1Z1 +

∑4
j=2 β̃jgj(Zj) + ε. Their goal is

to conduct inference on the marginal association between X = Z1 and Y in a linear model.
That is, their parameter of interest is

β∗1 = arg min
β1

min
β0

E[(Y − β0 − β1Z1)
2]. (11)

3. Wang et al. (2020) refer to the labeled data set as “test” data, and to the unlabeled data as “validation”
data.
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Because the features are independent, we have that

β∗1 = arg min
β1

min
β0,β2,β3,β4

E[(Y − β0 − β1Z1 −
4∑
j=2

βjgj(Zj))
2] = β̃1. (12)

Thus, β∗1 is the marginal regression coefficient of Y onto X = Z1, as well as the coefficient
associated with X = Z1 in the partially linear additive model used to generate the data. We
consider two settings: one under the null (β∗1 = 0) and one under the alternative (β∗1 = 1).

We generate 3 training sets and fit a GAM to each training set, to obtain three fitted
models f̂1, f̂2, f̂3. In each replicate of the simulation study, we generate a new labeled and
unlabeled dataset as described above. Note that this differs from the simulation in Wang
et al. (2020), which generates a new training set (and thus a different f̂) in each replicate
of the simulation study. We do this to focus on the properties of estimation and inference
under a fixed f̂ , e.g. how AlphaFold would be used in practice. We perform a total of 1,000
simulation replicates.

To conduct prediction-based inference on β∗1 , both Wang et al. (2020) and Angelopoulos

et al. (2023) rely on the claim that (β̂1 − β∗1)/ŜE(β̂1)
d→ N(0, 1). We consider the following

versions of Wang et al. (2020):

1. Proposal of Wang et al. (2020), with an analytical correction. Apply Box 3 with the
“analytical correction” (2) using a linear model for the regression model and a linear
model for the relationship model.

2. Proposal of Wang et al. (2020), with a “parametric bootstrap” correction. Apply Box
3 with the “parametric bootstrap” correction presented in Algorithm 1 using a linear
model for the regression model and a GAM for the relationship model.

3. Proposal of Wang et al. (2020), with a “non-parametric bootstrap” correction. Apply
Box 3 with the “non-parametric bootstrap” correction presented in Algorithm 1 using
a linear model for the regression model and a GAM for the relationship model.

We additionally consider the proposal of Angelopoulos et al. (2023):

4. Proposal of Angelopoulos et al. (2023). Apply Box 4 using a linear model.

Finally, we consider the following two approaches.

5. Classical approach using only the labeled data. Fit a linear model to (ylab,xlab).

6. Naive approach. Apply Box 1 using a linear model.

In Figure 1 we show the empirical distribution of (β̂1−β∗1)/ŜE(β̂1) under H0 : β∗1 = 0, for
increasing sample sizes. In the first three panels, we can see that the asymptotic distribution
of this test statistic for an arbitrary f̂ does not follow a N(0, 1) for the naive and Wang
et al. (2020) methods. This is in line with our findings in Section 2. This is also true under
the alternative H0 : β∗1 = 1, as shown in Figure 2. On the other hand, for the method of
Angelopoulos et al. (2023), this statistic converges in distribution to a N(0, 1) regardless of
the choice of f̂ .
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f̂ 3 f̂(z) = E(Y|Z = z)
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Angelopoulos et al.
Classical, using labeled data

Figure 1: An examination of the distribution of β̂1/ŜE(β̂1) under H0 : β∗1 = 0. For each of
four different prediction models f̂(·) (three trained GAMs and one true regression

function), we display the empirical distribution of β̂1/ŜE(β̂1) as the sample sizes
increase, with nlab = 0.1nunlab. The N(0, 1) distribution is shown in black. The
dashed black lines show the 0.025 and 0.975 quantiles of this distribution. The
distributions of Wang et al. (2020)’s test statistics increasingly diverge from the
N(0, 1) distribution as the sample sizes increase. The methods and simulation
setup are described in Section 3.

In the last panel of Figures 1 and 2, we consider the extreme setting considered in Section
2.2, in which f̂(z) = E[Y |Z = z]. Here, the empirical distribution of the test statistic is
approximately N(0, 1) for all methods.

We next performed testing and constructed confidence intervals under the assumption
made by Wang et al. (2020) and Angelopoulos et al. (2023) that the test statistic asymp-
totically follows N(0, 1). We examined how the violation of this distributional assumption
impacts type 1 error control and coverage in Figures 5 and 6 in the Appendix. We see
that the naive and Wang et al. (2020) methods do not control the type 1 error rate or have
nominal coverage for an arbitrary f̂ , and they become increasingly anti-conservative as the
sample sizes increase. This can be explained by the increasing discrepancy between the as-
sumed and true distributions of (β̂1−β∗1)/ŜE(β̂1) as the sample sizes increase, as previously
seen in Figures 1 and 2. In fact, we can directly read off the type 1 error rate at level 0.05
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f̂ 3 f̂(z) = E(Y|Z = z)
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1000 2000 4000 8000 16000 1000 2000 4000 8000 16000

−10

0

10

20

−10

0

10

20

nunlab

(β̂
1 

−
 β

1* )
S

Ê
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Figure 2: An examination of the distribution of (β̂1−β∗1)/ŜE(β̂1) when β∗1 = 1. For each of
four different prediction models f̂(·) (three trained GAMs and one true regression

function), we display the empirical distribution of (β̂1−β∗1)/ŜE(β̂1) as the sample
sizes increase, with nlab = 0.1nunlab. The N(0, 1) distribution is shown in black.
The dashed black lines show the 0.025 and 0.975 quantiles of this distribution.
The distributions of Wang et al. (2020)’s test statistics increasingly diverge from
the N(0, 1) distribution as the sample sizes increase. The methods and simulation
setup are described in Section 3.

as the proportion of points falling outside the dashed lines in Figure 1. Similarly, coverage
can be read as the proportion of points inside the dashed lines in Figure 2.

Because the true distribution of the test statistic matches the assumed one for the
method of Angelopoulos et al. (2023) for any f̂ , this method gives correct type 1 error
control and coverage in general. For the same reason, under the extreme setting, all methods
have correct type 1 error control and coverage.

4. A direct replication of the simulation study of Wang et al. (2020)

In the previous section, we considered a simulation setting that was very similar to that in
Wang et al. (2020), but differed in that we considered the same prediction models f̂ across
all simulation replicates. In this section, we instead directly replicate their simulation
setting (“Simulated data; continuous case”), by generating a new training dataset in each
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simulation replicate (resulting in a different f̂ in each replicate). They considered a sample
size of 300 for the training, labeled, and unlabeled datasets. In addition to replicating these
results, we explore increasing the labeled and unlabeled dataset sizes.

nlab = 400 nunlab = 4000 nlab = 800 nunlab = 8000 nlab = 1600 nunlab = 16000
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Figure 3: For data generated under H0 : β∗1 = 0, quantile-quantile plots of the p-values
across simulation replicates are displayed. The methods are described in Section
3 and the simulation setup is described in Section 4. Each panel corresponds to
a different sample sizes of the labeled and unlabeled datasets used for inference.
The bootstrap and analytical corrections considered by Wang et al. (2020) become
increasingly anticonservative as the sample sizes increase. The classical approach,
and that of Angelopoulos et al. (2023), are well-calibrated.

We first examine the type 1 error rate under the null hypothesis H0 : β∗1 = 0 using each
of the approaches described in Section 3. Quantile-quantile plots of the resulting 1, 000
p-values are shown in Figure 3. We see that in agreement with the findings in Wang et al.
(2020), the naive approach does not control the type 1 error rate regardless of sample size.
While it appears that when nlab = nunlab = 300 (first panel of Figure 3) the methods of
Wang et al. (2020) have uniform p-values under the null (as also reported in Wang et al.
(2020)), with other sample sizes this no longer holds and the methods of Wang et al. (2020)
fail to control the type 1 error rate. As expected based on the previous section, Angelopoulos
et al. (2023) controls type 1 error. This finding is in agreement with the theoretical results
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in Angelopoulos et al. (2023), which hold for an arbitrary prediction function f̂(·). Also as
expected, the classical method controls type 1 error.
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Figure 4: For data generated with β∗1 = 1, empirical coverage of 95% confidence intervals
for each method across each simulation replicate, as the labeled and unlabeled
sample sizes increase, with nlab = 0.1nunlab. The methods are described in Section
3 and the simulation setup is described in Section 4.

Next we examine coverage of 95% confidence intervals under β∗1 = 1. We see from Figure
4 that the naive approach has coverage well below the nominal level. Again, the “corrected”
proposals of Wang et al. (2020) also fail to achieve the nominal coverage. The problem
becomes increasingly pronounced as the sample sizes of the data used for inference increase.
By contrast, the classical method and the proposal of Angelopoulos et al. (2023) do achieve
the nominal coverage, supporting the theory of Angelopoulos et al. (2023).

As explained in Section 2, the lack of inferential guarantees for the naive approach and

the approach of Wang et al. (2020) is a direct consequence of the fact that β̂1
p

6→ β∗1 .

5. Discussion

In this paper, we found that the method of Angelopoulos et al. (2023) provides valid type
1 error control and coverage. By contrast, the methods proposed by Wang et al. (2020) do
not provide appropriate inferential guarantees in the absence of very strong assumptions:
for instance, under the extreme (and unrealistic) scenario where the prediction model is
the true regression function. Under this additional assumption, the naive approach also
provides valid inference. Furthermore, we see in our simulation study that simply assuming
that the prediction model f̂(·) was trained on data from the same population as the labeled
and unlabeled data — an assumption made by Wang et al. (2020) — is not sufficient to
achieve valid inference using their proposed methods.

Throughout, for simplicity we have assumed that we are conducting inference (i.e. Step
2 of Box 1) using a linear model. However, our conclusions — that the naive method and
methods of Wang et al. (2020) result in invalid inference, because they target the incorrect
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parameter — apply much more generally. The theory in Angelopoulos et al. (2023) shows
that their approach applies to a wide variety of settings beyond linear regression, and has
valid inferential properties.

Code Availability

Scripts to reproduce the results in this manuscript are available at https://github.com/

keshav-motwani/PredictionBasedInference/. Our code is based on the code from Wang
et al. (2020); we thank the authors for making it publicly accessible.
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Appendix A. Necessity of consistency for β∗

We formally state the necessity of targeting the correct parameter in order to use the test
statistic (β̂j − β∗j )/ŜE(β̂j) for inference.

Lemma 1 Suppose ŜE(β̂j) = op(1) and β̂j
p

6→ β∗j . Then (β̂j−β∗j )/ŜE(β̂j) does not converge
in distribution.

Proof Suppose, for the sake of contradiction, that (β̂j −β∗j )/ŜE(β̂j) converges in distribu-

tion. Then (β̂j − β∗j )/ŜE(β̂j) = Op(1). Thus

β̂j − β∗j =
β̂j − β∗j
ŜE(β̂j)

ŜE(β̂j) = Op(1)op(1) = op(1),

so β̂j
p→ β∗j , which is a contradiction.

Appendix B. Lack of consistency of analytical method of Wang et al.
(2020)

In Sections 2.1 and 2.2, we analyzed the analytical correction as implemented in the code by
Wang et al. (2020). We now analyze the analytical correction as described in the publication,
which is also not consistent for the parameter of interest in general. In the publication, the
estimate obtained from the analytical correction is defined as

β̂analyticalWang = γ̂0(x
>
unlabxunlab)−1x>unlab1nunlab + γ̂1β̂naive

where

γ̂1 =
Ĉov(ylab, f̂(zlab))

V̂ar(f̂(zlab))

and
γ̂0 = Ê[ylab]− γ̂1Ê[f̂(zlab)].

Thus as nlab increases,

γ̂1
p→ Cov(Y, f̂(Z))

Var(f̂(Z))
≡ γ1

and
γ̂0

p→ E[Y ]− γ1 E[f̂(Z)] ≡ γ0.

Thus as nlab and nunlab increase,

β̂analyticalWang

p→ γ0 E[XX>]−1 E[X] + γ1 E[XX>]−1 E[Xf̂(Z)],

which is not equal to β∗ in general.
In the extreme setting (described in Section 2.2), in which f̂(z) = E[Y |Z = z], we have

that

γ1 =
Cov(Y, f̂(Z))

Var(f̂(Z))
=

Cov(Y,E[Y |Z])

Var(E[Y |Z])
=

Var(E[Y |Z])

Var(E[Y |Z])
= 1
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and
γ0 = E[Y ]− γ1 E[f̂(Z)] = E[Y ]− E[E[Y |Z]] = 0.

Thus using the same argument as for the naive estimator, this analytical correction is
consistent for β∗ in this extreme setting.

Appendix C. Inferential consequences of wrong distribution

In this section, we examine how violation of the distributional assumption impacts type
1 error control and coverage in the simulations in Section 3. In Figure 5, we see that
the methods proposed by Wang et al. (2020) do not control the type 1 error rate for
arbitrary f̂(·); the situation gets worse as the sample size increases. However, the method
proposed by Angelopoulos et al. (2023) does control the type 1 error rate. Wang et al. (2020)
controls the type 1 error rate if the machine learning model is the true regression function
f̂(z) = E[Y |Z = z]; of course, such a perfect machine learning model is unattainable in
practice.

In Figure 6, we see that the methods proposed by Wang et al. (2020) do not attain the
nominal coverage for an arbitrary f̂(·), whereas the proposal of Angelopoulos et al. (2023)
does attain the nominal coverage. The naive method and the proposals of Wang et al.
(2020) have appropriate coverage when f̂(z) = E[Y |Z = z]; again, this is unrealistic in
practice.
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Figure 5: For labeled and unlabeled datasets generated under H0 : β∗1 = 0, quantile-quantile
plots of the p-values across replicates of the modified simulation study are dis-
played for each of the four f̂(·)’s considered. The methods and simulation setup
are described in Section 3. Each panel corresponds to different sample sizes of
the labeled and unlabeled datasets used for inference. The naive method and the
bootstrap and analytical corrections considered by Wang et al. (2020) become
increasingly anticonservative as the sample sizes increases, unless the machine
learning model is perfect, i.e. f̂(z) = E[Y |Z = z].
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f̂ 1 f̂ 2 f̂ 3 f̂(z) = E(Y|Z = z)
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Figure 6: For labeled and unlabeled datasets generated with β∗1 = 1, empirical coverage
of 95% confidence intervals for each method across each simulation replicate,
for each of the four f̂(·)’s considered, as the labeled and unlabeled sample sizes
increase, with nlab = 0.1nunlab. The methods and simulation setup are described
in Section 3.

18


	Introduction
	What parameter is each method targeting?
	The general case for an arbitrary prediction model 
	An extreme setting where all methods target the correct quantity

	An empirical investigation of the distribution of the test statistic
	A direct replication of the simulation study of @tempd *@tempc wang2020methods
	Discussion
	Necessity of consistency for ^*
	Lack of consistency of analytical method of @tempd *@tempc wang2020methods
	Inferential consequences of wrong distribution

