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Abstract

Statistical inference based on lossy or incomplete samples is often needed in research ar-
eas such as signal/image processing, medical image storage, remote sensing, signal trans-
mission. In this paper, we propose a nonparametric testing procedure based on samples
quantized to B bits through a computationally efficient algorithm. Under mild technical
conditions, we establish the asymptotic properties of the proposed test statistic and investi-
gate how the testing power changes as B increases. In particular, we show that if B exceeds
a certain threshold, the proposed nonparametric testing procedure achieves the classical
minimax rate of testing (Shang and Cheng, 2015) for spline models. We further extend our
theoretical investigations to a nonparametric linearity test and an adaptive nonparametric
test, expanding the applicability of the proposed methods. Extensive simulation studies
together with a real-data analysis are used to demonstrate the validity and effectiveness of
the proposed tests.

Keywords: B-bits Quantization, Minimax Rates of Testing, Nonparametric Inference,
Smoothing Splines

1. Introduction

Lossy or incomplete data are commonly encountered in research areas such as machine
learning, information theory, and signal processing. To store and process signals in digital
devices, quantization is a popular procedure that maps the original measurements from a
large (often uncountably infinite) set to a set of possible values. The resulting values are
referred to as the quantized samples. With the increasing availability of data, it is of great
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interest to quantify how the data analysis can be affected when the data are quantized due
to storage or communication budget constraint, and how to design quantization schemes to
minimize the efficiency loss. Statistical inference based on quantized samples is challenging
because, in addition to the measurement errors, one also needs to account for the information
loss due to the quantization errors. In particular, commonly used standard statistical
procedures may not be valid when applied to quantized samples if the quantization errors
are ignored.

The research on lossy data has attracted increasing attention recently. The first line of
works focuses on b-bit compressive sensing, which aims at reconstructing a sparse signal from
a sequence of b-bit quantized outcomes. A 1-bit compressive sensing model was proposed by
Boufounos and Baraniuk (2008), and several efficient and provable algorithms have been de-
veloped; see, e.g., Gupta et al. (2010); Gopi et al. (2013); Plan and Vershynin (2013); Zhang
et al. (2014); Zhu and Gu (2015). A signal recovery algorithm was proposed in Slawski and
Li (2015), which extended the 1-bit compressive sensing model to a b-bit compressive sens-
ing model. The second line of research related to the lossy data is to develop statistical
methods based on quantized observations. For example, Lee and Vardeman (2001) studied
the interval estimation of a normal mean process from rounded data, which was further
extended to more general likelihood-based statistical estimation problems (Vardeman and
Lee, 2005) and nonparametric regression problems (Benhenni and Rachdi, 2006). Recently,
an increasing number of works aim to quantify the impact of quantization on the statis-
tical properties of the resulting estimators. For example, Zhang et al. (2013) established
lower bounds on the minimax risks for distributed estimation of parametric models under
a communication budget constraint. Suresh et al. (2017) proposed communication efficient
algorithms for distributed mean estimation without probabilistic assumptions on the data.
A version of Pinsker’s theorem under some storage or communication constraints was de-
veloped in Zhu and Lafferty (2014), and it was further applied to analyze the convergence
rate of nonparametric estimation with a limited bits budget by Zhu and Lafferty (2017).
More recently, a series of works have emerged in investigating the high-dimensional and/or
nonparametric regression model estimation in the distributed learning framework with bits
constraints, e.g., see Zhu and Lafferty (2018); Han et al. (2018); Szabo and van Zanten
(2020); Cai and Wei (2021).

Despite the abundant existing literature on statistical modeling of quantized data, re-
search focusing on the nonparametric inference based on quantized data is still lacking. This
paper aims to fill this gap by proposing a new quantization scheme with a B-bits storage or
communication budget such that nonparametric estimation and testing based on quantized
samples are still valid. Specifically, we consider the following regression model

yi = g0(i/n) + σεi, i = 1, . . . , n, (1)

where g0(·) is a smooth function, εi’s are iid zero-mean errors with an unit variance, and
σ > 0 is an unknown constant. The goal is to (a) estimate g0(·), and (b) test the following
hypothesis

H0 : g0(x) = g∗(x) for all x ∈ [0, 1], (2)

where g∗(·) is a pre-specified deterministic function.
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The above model has been extensively studied in the literature, see, e.g., Shang and
Cheng (2017), and is closely related to the well-known Gaussian sequence model and Gaus-
sian white noise model (Tsybakov, 2008). However, unlike existing literature, we consider
the case in which the original data, denoted by y1, · · · , yn, are generated in machine M,
and are quantized as soon as they are generated. The quantized data are then stored in
a machine M or transmitted to another machine M∗ for future statistical inferences. We
assume that only B-bits budget are available for data storage or communication, rendering
the necessity for data quantization that may invalidate existing estimation and inference
methods. Such a research problem is important for applications where data generation and
analysis are carried out at different locations. For example, testing H0 : g0(x) = 0 reveals
whether the transmitted quantized signals through satellite are pure noises. If g∗(·) is the
signal-process from a normally functioning machine, testing (2) using only quantized sam-
ples enables us to remotely monitor whether the machine is working properly in real-time.

To meet the B-bits requirement, we propose a two-stage quantization procedure: in the
first stage we quantize an individual yi as Q(yi) with Q(·) being a quantizer, and in the
second stage we overwrite these quantized observations by their local averages. See Figure 1
and Algorithm 1 for details. As a result, we obtain a quantized sample of size c for some
c < n to be stored or transmitted. We demonstrate that with a carefully chosen c and a
well-designed quantizer, the proposed nonparametric estimation and testing procedures are
asymptotically valid and efficient even based only on the quantized data.

Our contributions can be summarized as follows. Firstly, we propose a computationally
efficient data quantization algorithm to reduce the size of the raw data to meet the B-
bits constraint, and at the same time reduce the computational complexity from O(n3)
to O(c3). Secondly, we establish sufficient conditions on the bits constraint, i.e., B, that
warrants the minimax convergence rate for the resulting spline estimators and the minimax
rates of testing for the proposed testing procedure. In particular, our results show how
the asymptotic power of the proposed testing procedure changes as the bits constraint B
increases. Thirdly, we further extend our theoretical investigations to (a) a nonparametric
linearity test of the underlying function; (b) an adaptive nonparametric test when the
smoothness of the underlying function is unknown. To the best of our knowledge, our
work is the first to provide a theoretical investigation on nonparametric inference based on
quantized samples.

The rest of the paper is organized as follows. Section 2 describes the general method-
ologies we proposed for data quantization, nonparametric estimation, and nonparametric
testing using splines. In Section 3, we investigate the theoretical properties of the spline
estimator and the nonparametric test statistic based on quantized samples. In Section 4, we
study asymptotic properties of the nonparametric linearity test statistic and the adaptive
nonparametric test statistic under B-bits constraint. Section 5 gives several simulation stud-
ies to evaluate finite sample performances of the proposed methods and Section 6 illustrates
an application of the proposed methods to the Combined Cycle Power Plant Data.

Notation: Let ‖ · ‖ represent the L2-norm, i.e., ‖f‖2 =
∫ 1

0 f
2(t)dt, and define ‖ · ‖2

as the Euclidean Norm of vectors. Let ‖ · ‖sup denote the supreme norm of a function,
i.e., ‖f‖sup = supt∈[0,1] |f(t)|. For two positive sequences an and bn, we denote an & bn
(an . bn) if there exists a constant C > 0 such that an ≥ Cbn (an ≤ Cbn) for all n ≥ 1;
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denote an � bn if an & bn and an . bn; denote an � bn if an/bn → 0 as n → ∞ and
an � bn if an/bn →∞ as n→∞.

2. Methodology

In this section, we first review some background of the classical smoothing spline regression
and then give details on the proposed quantization scheme, nonparametric estimation and
testing procedures.

2.1 Review of Classical Smoothing Spline Regression

Throughout this paper, we assume that the underlying true function g0(·) belongs to the
m-order (m ≥ 1) periodic Sobolev space on I := [0, 1] defined as

Sm(I) =

{ ∞∑
ν=1

βνϕν(·) :
∞∑
ν=1

β2
νγν <∞

}
,

where ϕ2k−1(x) =
√

2 cos(2πkx), ϕ2k(x) =
√

2 sin(2πkx) are the trigonometric basis func-
tions, and γ2k−1 = γ2k = (2πk)2m for x ∈ I and k ≥ 1. It follows from Wahba (1990) and
Gu (2013) that Sm(I) is a reproducing kernel Hilbert space (RKHS) endowed with an inner
product J(f, g) =

∫ 1
0 f

(m)(x)g(m)(x)dx and a reproducing kernel

K(x, y) =
(−1)m−1

(2m)!
B2m(|x− y|),

where B2m is the Bernoulli polynomial of order 2m.
Based on the above assumptions on g0(·), the classic smoothing spline (ss) estimator of

g0(·) is obtained through the following optimization problem:

ĝss ≡ arg min
g∈Sm

1

n

n∑
i=1

(yi − g(i/n))2 + λ

∫ 1

0
[g(m)(x)]2dx. (3)

For x ∈ I, we can define a function Kx(·) = K(x, ·), which belongs to Sm(I). By the
representer Theorem (Gu, 2013), the solution to (3) has the following closed-form

ĝss =
n∑
i=1

θiKi/n, (4)

where θ = (θ1, . . . , θn)T = n−1(Σn + λIn)−1y with Σn = [K(i/n, i′/n)/n]1≤i,i′≤n ∈ Rn×n,
y = (y1, . . . , yn)T ∈ Rn and In being the n× n identify matrix.

To conduct hypothesis test for (2), a straightforward idea is to construct a testing
statistic based on the distance between ĝss(·) and g∗(·). Specifically, we use the L2 norm
distance defined as

T ss = ‖ĝss − g∗‖2.

With an appropriate normalization, it can be shown that T ss is asymptotically normally
distributed (Shang and Cheng, 2017; Yang et al., 2020; Liu et al., 2021).
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2.2 Two-Stage Quantization

The original observations yi’s in (1) are real-valued random variables, each of which literally
requires an infinite amount of bits to store or transmit. When there are only B available
bits, the original observations yi’s may not be directly accessible for estimation or testing,
and hence, the classical smoothing spline estimator given in (4) is not applicable. This
section aims to introduce a two-stage quantization scheme to transform yi’s into the ones
whose storage or transmission meets the B-bits constraint. The resulting samples will be
further used for optimal inferential purposes in the subsequent sections. The two-stage
quantization process is demonstrated in the following Figure 1.

Figure 1: Two-stage quantization process.

The first-stage quantization is to quantize the data yi’s as soon as they are generated
with at most k distinct values. For convenience, we use a uniform quantization scheme as
follows. We first choose an interval [t1, tk−1] and choose t2 < . . . < tk−2 as the equally
spaced grid points within [t1, tk−1]. Denote t = (t1, . . . , tk−1)T ∈ Rk−1 and the sub-interval
length Ck(t) := (tk−1 − t1)/(k − 2). For ease of presentation, we assume that l1 = t1/Ck(t)
is an integer. Define a quantizer Q(·) as follows:

First-stage quantization: Q(y) =

k∑
j=1

µjI[y ∈ Rj(t)], with µj = (l1 + j − 1)Ck(t),

for any y ∈ R, (5)

where µ = (µ1, . . . , µk)
T ∈ Rk consists of the quantized values andR1(t) = (−∞, t1], R2(t) =

(t1, t2], . . . , Rk−1(t) = (tk−2, tk−1], Rk(t) = (tk−1,∞) are the corresponding quantized inter-
vals. Clearly, the Rj(t)’s form a partition of the real line with assigned marks µj ’s and Q
maps each y ∈ R to one of the k marks. Applying Q to yi’s, we generate n quantized samples
Q(y1), · · · , Q(yn), each of which takes at most k distinct values. Storage or transmission
of Q(yi)’s thus requires n log2 k bits which might still go beyond the B-bits budget when
B = o(n). For this reason, we propose the following second-stage quantization to further
reduce the storage or transmission bits through locally averaging the Q(yi)’s.

The second-stage quantization is to further reduce the number of storage or transmission
bits via local average. Specifically, we divide the interval I = [0, 1] into c equally-spaced
sub-intervals for some c ≤ B/dlog2(k + 2)e. For simplicity, we assume that ñ := n/c is
an integer and each sub-interval contains ñ observations. The quantized data from the
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first-stage quantization, i.e., Q(yi)’s, are further quantized as zi = l̃iCk(t) such that

Second-stage quantization:

∣∣∣∣∣∣zi − 1

ñ

iñ∑
j=(i−1)ñ+1

Q(yj)

∣∣∣∣∣∣ ≤ Ck(t), for i = 1, . . . , c. (6)

Details of the two-stage quantization algorithm are provided in the following Algorithm 1.

Algorithm 1: Two-Stage Quantization

Initialization: set l̃1 = · · · = l̃c = 0;
Input: Data y1, · · · , yn that generated sequentially;
while 1 ≤ i ≤ c do

Set tmp = 0;

while (i− 1)ñ+ 1 ≤ j ≤ iñ do

(a) First-stage quantization (quantize on the spot): Q(yj) = ljCk(t);

(b) Second-stage quantization (averaging):

i. update l̃i = l̃i + Integer Part of lj/ñ;

ii. if tmp + sign(lj)(|lj | mod ñ) ≥ ñ then

update

{
l̃i := l̃i + 1

tmp := tmp + sign(lj)(|lj | mod ñ)− ñ;

else if tmp + sign(lj)(|lj | mod ñ) ≤ −ñ then

update

{
l̃i := l̃i − 1

tmp := tmp + sign(lj)(|lj | mod ñ) + ñ;

else
update tmp := tmp + sign(lj)(|lj | mod ñ);

end if

end while

end while
Output: quantized data: z1 = l̃1Ck(t), · · · , zc = l̃cCk(t).

Based on the definition of the quantizer Q(·) in (5), zi in (6) must belong to the interval
[µ1 −Ck(t), µk +Ck(t)] and must be of the form lCk(t) for some integer l. Therefore, there
are at most k+ 2 distinct values of zi’s, namely, lCk(t), for l = l1−1, l1, l1 + 1, · · · , (l1 +k−
1), l1 + k. As a result, each zi requires b = dlog2(k + 2)e bits to store or transmit, hence,
the entire zi’s require cdlog2(k + 2)e ≤ B bits, where dxe is the smallest integer greater
than x. In the subsequent sections, we will show that, with c, k being properly selected,
optimal inferences based on zi’s are possible even under B = o(n). For optimal inferences
in non-regression settings such as the Gaussian sequence model or Gaussian white-noise
model, similar findings were made by Cai and Wei (2021).

We wish to remark that although Algorithm 1 focuses on the case where each sub-
interval of [0, 1] has the same length and contains the same number of observations, it can
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be easily modified to the more general case without affecting the asymptotic properties.
In particular, the simple averaging strategy can be replaced by a certain type of kernel
smoothing technique.

2.3 B-bits Nonparametric Spline Estimation

Given B, let us choose k, c such that cdlog2(k + 2)e = B, i.e., our two-stage quantization
maximizes the use of the available bits. Based on the quantized samples z1, . . . , zc from
Algorithm 1, a B-bits constrained spline estimator is proposed as follows

ĝB
µ,t,c ≡ arg min

g∈Sm(I)

1

c

c∑
i=1

(zi − g(i/c))2 + λ

∫ 1

0
[g(m)(x)]2dx. (7)

Similar to (4), the resulting spline estimator ĝB
µ,t,c(·) has an explicit expression

ĝB
µ,t,c =

c∑
i=1

θ̂iKi/c,

where (θ̂1, . . . , θ̂c)
T = c−1(Σc + λIc)

−1z with Σc = [K(i/c, i′/c)/c]1≤i,i′≤c ∈ Rc×c, z =
(z1, . . . , zc)

T ∈ Rc, and Ic being the c× c identity matrix.
Notice that the optimization of (7) only requires on c quantized observations and the

solution only involves computing the inverse of a c× c matrix Σc + λIc, which is much less
computationally intensive compared to the classical smoothing spline estimator (4).

Finally, the selection of the tuning parameter λ is crucial, and can be obtained by
minimizing the generalized cross validation (GCV) score as follows

λ̂ = arg min
λ>0

c‖[Ic − Σc(Σc + λIc)
−1)]z‖22

[c− trace(Σc(Σc + λIc)−1)]2
, (8)

The GCV has been widely used in the literature and enjoys appealing theoretical properties
in various settings, see, e.g., Wahba (1990); Xu and Huang (2012); Gu (2013); Xu et al.
(2018, 2019).

2.4 B-bits Nonparametric Testing

In this section, we propose a test statistic for the null hypothesis (2) based on the B-
bits spline estimator ĝB

µ,t,c(·). Without loss of generality, we assume g∗(·) ≡ 0 in the null
hypothesis (2). For a nonzero g∗(·), the observed response variables yi’s from model (1) can
be centered as y∗i = yi − g∗(i/n), and the same testing procedure can be applied using y∗i ’s
instead. To test H0 : g0(x) = 0, we consider test statistic based on the L2 norm distance
between ĝB

µ,t,c(·) and g∗(·) ≡ 0 as following

Tµ,t,c = ‖ĝB
µ,t,c‖2. (9)

Intuitively, a large value of Tµ,t,c should lead to the rejection of H0. In Theorem 3, we shall
show that under H0 and mild conditions, it holds that

cTµ,t,c − trace(A)τ2
k

scτ2
k

d−→ N(0, 1) as n, c→∞,
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where τ2
k = Var(z1|H0), A = (Σc+λIc)

−1Ωc(Σc+λIc)
−1, Ωc = [K⊗2(i/c, i′/c)/c]1≤i,i′≤c with

K⊗2(x, x′) :=
∫ 1

0 K(x, y)K(y, x′)dy and s2
c = 2

∑
1≤i 6=i′≤c a

2
i,i′ with ai,i′ being the (i, i′)th

entry of A. In practice, τ2
k needs to be estimated based on the quantized data as well. We

proposed the following estimator

τ̂2
k =

τ̃2
n

2ñ(n− 1)
,

where τ̃n is given in the following Algorithm 2 through quantization. Intuitively, the above
estimator is a re-scaled (by a factor of ñ−1) version of the quantized sample error variance

1
2(n−1)

∑n
j=2 {Q(yj)−Q(yj−1)}2. It is straightforward to shown that τ̂2

k = τ2
k [1 + op(1)]

under mild conditions, see Lemma 11 of Appendix C for details. Consequently, the decision
rule for testing (2) at significance level α can be defined as follows

φc,k = I(|cTµ,t,c − trace(A)τ̂2
k | ≥ z1−α/2scτ̂

2
k ), (10)

where z1−α/2 is the (1−α/2)-percentile of the standard normal distribution. We reject the
null hypothesis (2) if and only if φc,k = 1.

Algorithm 2: Quantization Estimation of Variance

Initialization: set τ̃2
n = tmp = 0;

Input: Data y1, · · · , yn that generated sequentially;
while 1 ≤ j ≤ n do

1. Quantize on the spot Q(yj);

2. if j = 1 then update tmp := Q(y1); else

(a) update τ̃2
n := τ̃2

n + (Q(yj)− tmp)2;

(b) update tmp := Q(yj);

end if

end while
Output: τ̃2

n.

By the design of the quantizer Q(·) in (5), we can see that there are at most k+1 distinct
possible values for each {Q(yj+1)−Q(yj)}2 ranging from 0Ck(t)

2 to k2Ck(t)
2, 1 ≤ j ≤ n−1,

yielding the range for τ̃2 as [0, (n − 1)k2Ck(t)
2]. Since τ̃2 can only take values as lCk(t)

2

for some integer l, there are at most (n− 1)k2 + 1 distinct values for τ̃2, which would cost
dlog2

{
(n− 1)k2 + 1

}
e bits to store or transmit. Compared to the bit costs for the two-stage

quantization cdlog2(k)e ≈ B, the cost to store or transmit τ̃2 is negligible when c → ∞,
hence is ignored in the calculation of the total bit costs for ease of presentation.

2.5 Practical Choice of c and k Given B

The implementations of Algorithms 1 and 2 require a practical choice of c and k for a
given bits budget B. Based on the discussion in Section 2.2, Algorithm 1 requires B =
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cb with b = dlog2 (k)e. Our theoretical investigations in Section 3.3 require that b �
log2

(√
(nh1/2 + n(ch)−1)Tn

)
for some h → 0, and ch → ∞ as c, n → ∞, where Tn is

defined in Condition (B). Furthermore, equations (16) and (17) in Section 3.3 reveal that
the optimal choice of b depends on the smoothness of the periodic Sobolev space (i.e., m) and
the tuning parameter λ. While the former is typically unknown in practice, the latter needs
to be chosen by some data-driven criterion such as GCV based on the quantized data, which
is not available until the quantization process is carried out. To simplify the calculation and

make the quantization algorithm more practical, we propose to use b = dlog2

(√
nTn/σ2

)
e,

which is a valid choice for any m and h, and therefore is easy to use in practice. Specifically,
given B, we find c and k as follows

c† = max
{
c ∈ Z : c log2

(√
nTn/σ2

)
≤ B

}
,

k† = max
{
k ∈ Z : c†dlog2(k)e ≤ B

}
.

(11)

By the definition in Condition (B),
√
Tn is the quantization range, and σ2 is used in

the choice of b so that Tn/σ2 is invariant if yi’s are multiplied by a constant. Under
Condition (B), the actual choice of Tn/σ2 depends on the distribution of εi’s in model (1). If
εi’s follow a standard Gaussian distribution, it suffices to take Tn/σ2 = 2.5 log(n). Therefore,
σ2 in (11) does not need to be estimated. See more discussion under Condition (B) regarding
the choice of Tn/σ2.

3. Asymptotic Theory

We now proceed to study asymptotic properties of the B-bits spline estimator and the
nonparametric test statistic. In this section, we restrict our investigation to the simple case
scenario when the order m of the periodic Sobolev space is known and fixed, and the exact
form of function g∗(·) in the null hypothesis (2) is also known. We shall defer theoretical
results on more general cases to Section 4.

3.1 Estimation Convergence Rate

We first quantify the convergence rate of ‖ĝB
µ,t,c− g0‖2. Even though the main focus of this

paper is conducting statistical inference based on quantized samples, it is still of interest to
study the asymptotic properties of the spline estimator ĝB

µ,t,c(·). Define the Sobolev constant

cs ≡ sup
g∈Sm(I)

‖g‖sup√
J(g, g)

. (12)

It is known that cs is positive finite see (Adams and Fournier, 2003).
For all our theoretical investigations, we assume that µj ’s and tj ’s satisfy the following

boundedness condition

Condition (B) : Assume that J(g0, g0) ≤ ρ2, and denote Tn = min{t21, t2k−1}, it holds that,

µ2
jP
(
|σε1|+ csρ >

√
Tn
)

= o

(
1

n

)
for j = 1, k.

9
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Condition (B) asserts that the values of µ1, µk can not be to large, and that t1, tk should
be sufficiently large. Recall that in this paper, we adopt the uniform quantization scheme for
which Condition (B) is rather mild. Since J(g0, g0) ≤ ρ2, by the definition of cs in (12), we
have that ‖g0‖sup ≤ csρ, and we shall assume that ρ is finite for our theoretical investigation.
Condition (B) essentially assumes that Tn is sufficiently large so that all observed yi’s fall
within the quantization range with a high probability. When εi’s follow a sub-Gaussian
distribution, it suffices to take Tn � log (n) for Condition (B) to hold. For distributions
with heavier tails, the required order for min{t21, t2k−1} will be larger, e.g., Tn � [log(n)]2

for sub-Exponential distributions. In particular, when εi’s follow a normal distribution, it
suffices to use Tn = 2.5σ2 log(n).

Based on Condition (B), the following theorem establishes an asymptotic upper bound
for the estimation error E‖ĝB

µ,t,c − g0‖2.

Theorem 1 If Condition (B) holds, then it follows that

E‖ĝBµ,t,c − g0‖2 . (nh)−1 + λ+ c−min{2m,3} +Gc,k(t),

where h = λ
1

2m , and Gc,k(t) = 4Ck(t)
2 +Gc,k,1(t) +Gc,k,2(t), with

Gc,k,1(t) =
2

n

n∑
i=1

∫ t1

−∞
(z − µ1)2p

(
z − g0(i/n)

σ

)
σ−1dz,

Gc,k,2(t) =
2

n

n∑
i=1

∫ ∞
tk−1

(z − µk)2p

(
z − g0(i/n)

σ

)
σ−1dz,

with p(·) being the distribution of ε.

The asymptotic error bound for ĝB
µ,t,c(·) given in Theorem 1 can be roughly categorized

into three parts: (1) the estimation error of the smoothing spline estimator based on fully
observed original data, i.e., (nh)−1 + λ (Wahba, 1990); (2) the estimation error attributed
to first-stage quantization, i.e., Gc,k(t); and (3) the estimation bias introduced by second-
stage quantization, i.e., c−min{2m,3}. An extreme case is when t1 → −∞, tk−1 → ∞ and
Ck(t)→ 0, i.e., the first-stage quantizer becomes dense enough, in which case Gc,k tends to
zero, reducing to the classical nonparametric estimation setting.

Intuitively, if a sufficiently large bits budget B, and consequently sufficiently large values
c and k can be used, term (nh)−1 +λ will dominate the upper bound of E‖ĝB

µ,t,c− g0‖2. As

a result, the convergence rate of ‖ĝB
µ,t,c− g0‖2 coincides with that of the classical smoothing

spline estimator based on original observations without quantization (Wahba, 1990). A
sufficient condition is given in the following corollary.

Corollary 2 Assume that Condition (B) holds, and that (1) Ck(t)
2 . n−2m/(2m+1); (2) as

T → ∞, p(z) satisfies
∫
|z|≥T z

2p(z)dz = O(exp(−T d)) where d ≥ 4m
2m+1 ; (3) Tn � log(n);

and that (4) c � n
max{1,2m/3}

2m+1 , λ � n−
2m

2m+1 . Then it follows that E‖ĝBµ,t,c−g0‖2 = O(n−
2m

2m+1 ),
which achieves the optimal convergence rate of smoothing splines without quantization.

10
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Recall the definition Ck(t) = (tk−1 − t1)/(k − 2), under conditions of Corollary 2, the
minimum order of k to achieve the optimal convergence rate is nm/(2m+1) log(n), leading
to a required b = dlog2(k)e � m

2m+1 log2(n). Therefore, the total bits budget B = cb �

n
max{1,2m/3}

2m+1 log(n). Recently, Zhu and Lafferty (2018) propose a quantization scheme for the
Gaussian sequence model that achieves the same optimal estimation rate with a bits budget

B � n
1

2m+1 . Although their bits budget is lower than our proposed method, Zhu and Lafferty

(2018) achieve this goal by essentially only quantizing the first n
1

2m+1 Fourier coefficients of
the function g0(·) and discarding the remaining Fourier coefficients as 0’s. It is unclear how
can this approach be extended to making valid nonparametric inferences for g0(·), which is
the main focus of our work. The proposed quantization scheme in Section 2.2 is in spirit
closer to the quantization algorithms proposed in Slawski and Li (2018) and references
therein, although these works are mainly focused on the estimation of the parametric linear
regression model. In the following subsections, we shall investigate the impacts of the bits
budget on the asymptotic properties of the proposed nonparametric testing procedure.

3.2 Asymptotic Distribution of the Test Statistic under H0

In this section, we proceed to derive the asymptotic distribution of the test statistic Tµ,t,c
under H0. From now on, we will use h = λ1/(2m) without repeating its definition.

Theorem 3 Suppose that Condition (B) holds, and it holds that h → 0, ch → ∞, b �
log2

(√
(nh1/2 + n(ch)−1)Tn

)
and E([ñ−1

∑ñ
j=1Q(εj)]

4) = O(c2n−2) as n, c → ∞. Then

under H0, it follows that

cTµ,t,c − trace(A)τ̂2
k

scτ̂2
k

d−→ N(0, 1), as n, c→∞, (13)

where Tµ,t,c, A, τ̂2
k and sc are as defined in Section 2.4.

Theorem 3 states that under some regularity conditions, the null distribution of the
nonparametric test statistic Tµ,t,c for H0 in (2) is asymptotically normal. The proof relies
on Stein’s exchangeable pair method and is given in the Appendix.

We remark that the conditions in Theorem 3 are rather mild. Specifically, the first
condition h→ 0 requires the tuning parameter λ to shrink to zero and the second condition
ch→∞ implies the number of quantized data, ie., c, should be sufficiently large. The only
condition that needs more discussion is the last condition E([ñ−1

∑ñ
j=1Q(εj)]

4) = O(c2n−2),
which involves jointly controlling the moment of εi’s and the first-stage quantizer Q(·).
Proposition 4 below provides a sufficient condition to for this assumption.

Proposition 4 Suppose that Condition (B) holds. If E(ε41) = O(nc−1), Ck(t) = o(1) and

µ4
jP (σε1 ∈ Rj(t)) = O(nc−1) for j = 1 and k, then it follows that E([ñ−1

∑ñ
j=1Q(εj)]

4) =

O(c2n−2).

Using Theorem 3 and Proposition 4, the validity of the proposed nonparametric testing
procedure requires the quantized sample size c to be sufficiently large, in particular, ch =
cλ1/(2m) →∞. Recall that the proposed quantization scheme in Section 2.2 requires a total

11
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bits budget B = cb with b = dlog2(k)e. As a result, for Theorem 3 to hold, the required

bits budget B � c log2

(√
(nh1/2 + n(ch)−1)Tn

)
, for which the lower bound is determined

by the tuning parameter λ (or h). In the next subsection, we shall investigate the impacts
of λ on the asymptotic testing power against local alternatives, which can be used to study
optimal asymptotic power achievable with a given bits budget B. For example, we shall

show that to achieve the minimax rate of testing, one needs B & n
3

4m+1 log2

(
n

2m
4m+1
√
Tn
)

.

3.3 Asymptotic Power of the Nonparametric Test

We now proceed to examine the asymptotic power of the proposed nonparametric test. For
a fixed constant ρ > 0, let Smρ (I) = {f ∈ Sm(I) : J(f, f) ≤ ρ2} be the ρ-ball in the periodic
Sobolev space with a radius ρ. We consider the following alternative hypothesis

H1 : g0 ∈ Smρ (I)\{0}. (14)

Based on the definition of the quantized data zi in (7), its unquantized counterpart
can be defined as ỹi = 1

ñ

∑iñ
j=(i−1)ñ+1 yj for i = 1, · · · , c. Under H1, one has that Eỹi =

c
n

∑iñ
j=(i−1)ñ+1 g0(j/n) for i = 1, · · · , c. To facilitate our theoretical investigation, we intro-

duce the following function

f(x) =
1

2∆

∫ min(x+∆,1)

max(x−∆,0)
g0(s)ds, where x ∈ I, and ∆ =

1

c
. (15)

It is straightforward to show that max1≤i≤c |f(i/c) − Eỹi| = O(n−1) and that as ∆ → 0,
supx∈I |g0(x)− f(x)| → 0. Theorem 5 below states that, under some regularity conditions,
our proposed nonparametric test can achieve arbitrary high power provided that H0 and
H1 are sufficiently separated.

Theorem 5 Suppose that Condition (B) holds. If it holds that h → 0, ch → ∞, b �
log2

(√
(nh1/2 + n(ch)−1)Tn

)
, and E([ñ−1

∑ñ
j=1Q(εj)]

4) = O(c2n−2), then for any η > 0,

there exists positive constants Cη and Nη such that for any c ≥ Nη,

inf
g∈Smρ (I)

‖g‖c≥Cηδn,c,λ

P (reject H0|H1 is true) ≥ 1− η,

where δn,c,λ =
√

(nh1/2)−1 + λ+ (nch2)−1 and ‖g‖c =
√∑c

i=1 f
2(i/c)/c with function f(·)

as defined in (15).

The separation rate δn,c,λ represents the smallest rate of deviation from the H0 that can
be consistently detected by the proposed test statistic (9), given sufficiently large n and
c. The first part of δn,c,λ, namely, (nh1/2)−1 + λ, coincides with the separation rate of the
classical spline-based nonparametric test using original observations without quantization,
see, e.g., Shang and Cheng (2013); Cheng and Shang (2015); Shang and Cheng (2015,
2017). The remaining part of δn,c,λ, namely, (nch2)−1, is an additional term due to the two-
stage quantization errors. For a given n and c, the separation rate δn,c,λ can be minimized

12
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by choosing an appropriate value of the tuning parameter λ, subject to the constraint
cλ1/2m →∞. Specifically, by some straightforward algebra, one can show that

inf
λ�c−2m

δn,c,λ =


n−

2m
4m+1 , if c & n

3
4m+1 with λ � n−

4m
4m+1 ;

(nc)
− m

2(m+1) , if n
1

2m+1 � c . n
3

4m+1 with λ � (nc)−
m
m+1 ;

λ1/2, if c . n
1

2m+1 with λ� c−2m.

(16)

Recall that the total bits needed for the proposed quantization scheme in Section 2.2 is

B = cb, for which Theorem 5 requires that h → 0 and b � log2

(√
(nh1/2 + n(ch)−1)Tn

)
.

By plugging the optimal smoothing parameter back to the lower bound of b, we have the
following

inf
λ�c−2m

δn,c,λ =


n−

2m
4m+1 , if c & n

3
4m+1 , b� log2

(
n

2m
4m+1
√
Tn
)

;

(nc)
− m

2(m+1) , if n
1

2m+1 � c . n
3

4m+1 , b� log2

(
n

2m+3
4(m+1) c

− 2m+1
4(m+1)

√
Tn
)

;

λ1/2, if c . n
1

2m+1 , b� log2

(√
nTn

)
with λ� c−2m.

(17)

From (17), we can see that whenB is sufficiently large, i.e., B & n
3

4m+1 log2

(
n

2m
4m+1
√
Tn
)

,

the minimal separation rate n−
2m

4m+1 achieves the minimax rate of testing (Shang and Cheng,
2013, 2017; Liu et al., 2020), implying lossless asymptotic testing power using only quan-
tized samples. In this case, the minimal number of bits for each data point, i.e., b, does not
depend on c but is determined by the smoothness of the function and the tail bound Tn of

the error distribution. When B is between n
1

2m+1 log2

(√
nTn

)
and n

3
4m+1 log2

(
n

2m
4m+1
√
Tn
)

,

the minimax rate of testing is no longer achievable, but the minimal separation rate still de-
cays polynomially as the original sample size n increases. Furthermore, in this intermediate
phase of B, the lower bound of b decreases as c increases, implying that increasing c rather
than b when allocating the total bits budget B will more effectively improve the testing

power. Finally, when B is less than n
1

2m+1 log2

(√
nTn

)
, the asymptotic lower bound for

the minimal rate of separation is (roughly) of the order c−m with c = B/b, the number of
quantized measurements that can be transmitted or stored, provided that b� log2

(√
nTn

)
.

4. Extensions

Our prior investigations in Section 3 assume that the hypothesized function g∗(·) in (2) and
the order m of the periodic Sobolev space Sm(I) are both known. In reality, it might be
interesting to test other hypotheses, e.g., whether g0 has a parametric expression such as a
linear function. Meanwhile, the order m is often unknown. We will extend the prior works
to such settings.

4.1 Nonparametric Testing for Linearity of g0(·)

In some applications, we are interested in testing whether g0(·) resides in a parametric
family. In this section, as an illustrative example, we consider testing the linearity of g0(·):

13
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H linear
0 : g0 ∈ L(I) vs. H linear

1 : g0 ∈ Smρ (I)\{L(I)}, (18)

where L(I) denotes the class of liner functions over I := [0, 1]. Testing the hypothesis that
g0(·) belongs to other parametric families governed by a finite number of parameters can
be conducted in the same way with minor modifications.

To test (18), we first obtain the least-square estimator ĝ(x), x ∈ I based on Q(yj)’s,
i.e., ĝ(x) = arg ming∈L(I)

∑n
i=1 [g(xi)−Q(yi)]

2. Subsequently, we define the new data

as ylinear = (Q(y1) − ŷ1, . . . , Q(yn) − ŷn)T , where ŷi = ĝ(i/n). By applying the two-
stage quantization Algorithm 1 to ylinear, we can then obtain the quantized data zlinear =
(zlinear,1, . . . , zlinear,c)

T . Following the same estimation procedure in Section 2.3, we can
obtain a spline estimator ĝB

linear,µ,t,c based on the quantized data zlinear.

The resulting test statistic is then defined as Tlinear,µ,t,c = ‖ĝB
linear,µ,t,c‖2, whose limiting

distribution under H linear
0 is given by the following theorem.

Theorem 6 Suppose that Condition (B) holds. If as n, c → ∞, it holds that h → 0,

ch → ∞, b � log2

(√
(nh1/2 + n(ch)−1)Tn

)
, and E([ñ−1

∑ñ
j=1Q(εj)]

4) = O(c2n−2), then

under H linear
0 , one has that

cTlinear,µ,t,c − trace(A)τ̂2
k

scτ̂2
k

d−→ N(0, 1), as n, c→∞, (19)

where Tµ,t,c, A, τ̂2
k and sc are as defined in Section 2.4 but based on ylinear.

Theorem 6 is an immediate extension of Theorem 3 to testing the linearity of g0(·) using
only quantized samples, indicating that the proposed nonparametric linearity test is valid
under mild conditions. To investigate the power of the proposed linearity test against the
alternative H linear

1 , we define the distance between g0(·) and the linear function space L(I)
as ‖g0 − PL(I)(g0)‖, where PL(I)(g0) = arg minf∈L(I) ‖g0 − f‖2 is the projection of g0(·)
to L(I). The magnitude of ‖g0 − PL(I)(g0)‖ characterizes how far the true function g0(·)
deviates from any linear function in L(I). Note that under null hypothesis H linear

0 , one has
that ‖g0 − PL(I)(g0)‖ = 0.

The following theorem describes the asymptotic power of the proposed nonparametric
linearity test.

Theorem 7 Suppose that Condition (B) hold. If as n, c → ∞, it holds that h → 0,

ch → ∞, b � log2

(√
(nh1/2 + n(ch)−1)Tn

)
, and E([ñ−1

∑ñ
j=1Q(εj)]

4) = O(c2n−2), then

for any η > 0, there exists positive constants Cη and Nη such that for any c ≥ Nη,

inf
g∈Smρ (I)

‖g−PL(I)(g)‖c≥Cηδlinearn,c,λ

P (reject H linear
0 |H linear

1 is true) ≥ 1− η,

where δlinearn,c,λ =
√

(nh1/2)−1 + λ+ (nch2)−1 and ‖g‖c =
√∑c

i=1 f
2(i/c)/c with function f(·)

as defined in (15).
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Based on Theorem 7, we can see that for a given quantized sample of size c, the same
separation rate for testing can be achieved by the proposed nonparametric linearity test as
described in (16). Furthermore, the proofs of Theorems 6-7 are similar to those of Theorem 3
and Theorem 5 by recognizing the fact that the least square estimator ĝ(·) satisfies that
supx∈I |ĝ(x) − g0(x)| = Op(n

−1/2), whose impact is negligible for a nonparametric spline
estimator. It is therefore trivial to extend Theorems 6-7 to testing whether g0(·) resides in
other parametric families as long as an uniformly root-n consistent parametric estimator
ĝ(·) is available.

4.2 Adaptive Nonparametric Test When m is Unknown

From (16), we can see that the power of the proposed nonparametric test depends crucially
on the order m of the periodic Sobolev space where the underlying true function g0(·)
resides. However, the order m may be unknown in practice. One popular strategy is to set
m = 2 regardless of the underlying truth, which may lead to sub-optimal testing power. In
this section, we construct an optimal adaptive nonparametric testing procedure based on
quantized samples that doesn’t require m.

Let m∗ denote the unknown true order of the Sobolev space to which g0(·) belongs, and
assume that m∗ is an integer between two known integers ml and mu. For instance, one
can set ml = 1 and mu = poly(log n) so that, as n diverges, m∗ is guaranteed to belong
to [ml,mu]. For any given integer m, we can calculate the test statistics Tm := Tµ,t,c de-
fined in (9) with the tuning parameter λm = a2m

n n−4m/(4m+1) log(mu)2m/(4m+1) where an
may depend on n but is free of m. We remark that the upper bound mu may be slowly di-
verging as n→∞. Our adaptive nonparametric testing procedure is summarized as follows.

Step 1. For any ml ≤ m ≤ mu →∞, calculate the standardized testing statistic

ξm =
cTm − trace(Am)τ̂2

k

sc,mτ̂2
k

,

where Tm, Am, τ̂2
k and sc,m are as defined in Section 2.4.

Step 2. Calculate the maximum of ξm’s, i.e., ξmax = maxml≤m≤mu ξm.

Step 3. Standardize ξmax as following

ξ∗ = Cn(ξmax − Cn),

where Cn satisfies 2πC2
n exp(C2

n) = m2
u.

For the validity of the proposed adaptive nonparametric test, we assume that the fol-
lowing Condition (C) holds.

Condition (C) : (a) mu . logd0(n) for some d0 ∈ (0, 1/2), (b) ann
−2/(4mu+1)[log(n)]2 → 0,

and (c) n2/(4ml+1) log(n)/(can)→ 0, as n, c→∞.

Condition (C) requires that the searching range for m can not be too large by imposing a
slowly diverging uppper bound on mu. In addition, the total number of quantized samples,

15



Li, Liu, Xu and Shang

i.e., c, that need to be transmitted or stored can not be too small compared to n, and is
jointly determined by ml,mu and the tuning parameter an. These conditions are rather
mild and have been used in the literature, see, e.g., Liu et al. (2019, 2021). The following
theorem describes the asymptotic behavior of ξ∗ under H0.

Theorem 8 Suppose that both Conditions (B) and (C) hold, E([ñ−1
∑ñ

j=1Q(εj)]
4) =

O(c2n−2), and that

b� max

{
log2

(√
(nh

1/2
ml + n(chml)

−1)Tn
)
, log2

(√
(nh

1/2
mu + n(chmu)−1)Tn

)}
.

Then, under H0 given in (2), for any α ∈ (0, 1), it holds that

P (ξ∗ ≤ qα)→ 1− α, as n, c→∞, (20)

where qα = − log(− log(1− α)).

The intuition behind Theorem 8 is straightforward: under H0, the limiting distribution
of each ξm is normal, which suggests that the asymptotic distribution of the maxima ξ∗
should be close to the extreme value distribution. We use the techniques developed in Koike
(2019) to formalize the proof.

Next, we investigate the asymptotic power of the proposed adaptive nonparametric test
under the alternative H1 : g0 ∈ Sm

∗
ρ (I)\{L(I)}.

Theorem 9 Suppose that both Conditions (B) and (C) hold, E([ñ−1
∑ñ

j=1Q(εj)]
4) =

O(c2n−2), and that

b� max

{
log2

(√
(nh

1/2
ml + n(chml)

−1)Tn
)
, log2

(√
(nh

1/2
mu + n(chmu)−1)Tn

)}
.

Then, for any η > 0, there exists positive constants Cη and Nη such that for any c ≥ Nη,

inf
g∈Sm∗ρ (I)

‖g‖c≥Cηδn,c,an

P (reject H0|H1 is true) ≥ 1− η,

where δn,c,an = n−
2m∗

4m∗+1 [log(mu)]
m∗

4m∗+1

√
a
− 1

2
n + c−1a−2

n n
3

4m∗+1 [log(mu)]−
2(m∗+1)
4m∗+1 + a2m∗

n and

‖g‖c =
√∑c

i=1 f
2(i/c)/c with function f(·) as defined in (15).

Based on the form of separation rate δn,c,an obtained in Theorem 9, it is straightforward
to show that the minimal separation rate is obtained when an = a0 for some constant
a0 > 0, provided that

c� max{n2/(4ml+1) log(n), n3/(4m∗+1)}[log(mu)]−1/(4m∗+1)

so that Condition (C) is met and the second term inside the square-root part of δn,c,an is
negligible. Specifically, if c � max{n2/(4ml+1) log(n), n3/(4m∗+1)}[log(mu)]−1/(4m∗+1), one
has that

inf
an>0

δn,c,an � n
− 2m∗

4m∗+1 [log(mu)]
m∗

4m∗+1 . (21)
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The minimal separation rate (21) is the same as the one obtained in Liu et al. (2019,
2021) and is minimax for the adaptive nonparametric test. This suggests that with the
quantized samples, the proposed adaptive test can still achieve the optimal testing power if
the bits budget satisfies

B � max{n2/(4ml+1) log(n), n3/(4m∗+1)}[log(mu)]−1/(4m∗+1) log(n),

and we take b = log2

(√
nTn/σ2

)
� log(n) as suggested in Section 2.5. Compared to the

minimax rate of testing when m∗ is known, which is given in (16), the minimal separation
rate (21) is only inflated by a factor of [log(mu)]4m∗/(4m∗+1). This is the price to pay for
searching m over ml ≤ m ≤ mu. Furthermore, we wish to remark that the lower bound of
the bits budget B depends not only on the true order m∗ but also on the smallest guess of
the order, i.e., ml. This can be interpreted by the fact that ξml in Step 1 of the adaptive
test is constructed based on an under-smoothed spline estimator, which may have a larger
order of estimation bias. In practice, it is convenient to set ml = 1 as suggested by Liu
et al. (2021). However, a more accurate guess of ml may lead to a smaller bits budget B
required to achieve the minimax rate of testing.

5. Simulation Studies

In this section, we evaluate the finite sample performance of the proposed methods through
a set of simulation studies. For all simulation settings except for Section 5.4, the data are
generated from the following model

yi = rβ3,2(xi) + εi, with xi =
i

n
, i = 1, · · · , n, (22)

where β3,2(·) is the density function of the beta distribution with parameters 3 and 2, εi’s
are independent random errors. Two types of errors were considered: (1) ε ∼ N(0, 1); (2)
ε ∼ N(0, 1.52). We consider r from 0 to 1, and various sample sizes n. In particular, r = 0
is used to examine the empirical size of the proposed test under H0, and other values of r
are used to check the empirical powers against alternatives. The target significance level
was chosen as α = 0.1.

For all simulation studies, we consider the uniform quantization scheme outlined in
Section 2.2. Specifically, for the data quantization step, for a given bits budget B, we choose
c, k following the approach suggested in Section 2.5 with a Tn/σ2 = 2.5 log(n). For each
simulation, the quantization ranges t1, tk−1 are defined as t1 = µ0 −

√
2.5σ2 log(n), tk−1 =

µ0 +
√

2.5σ2 log(n), where µ0 =
∫ 1

0 g0(x)dx with g0(·) being the regression function in model
(1). The use of µ0 and σ is of limited importance and can be replaced with any reasonable
alternatives such as setting µ0 = 0 or using estimates based on historical data. Summary
statistics from each simulation setting were based on 1000 independent simulation runs.
Except for Section 5.3, we considered periodic Sobolev space of order m = 2 with kernel
function K(x, y) = −B4(|x− y|)/24, where B4 is the Bernoulli polynomial of order 4. The
tuning parameter λ was set as λ = λ̂GCV/ log(c) with λ̂GCV being picked by GCV.
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5.1 Estimation Performance of ĝBµ,t,c(·)

In this section, we first evaluate the estimation performance of the spline estimator ĝB
µ,t,c(·)

defined in (7) that is based on only quantized samples. We generated data from model (22)
with r = 0.5, 1 and sample sizes n = 1000, 2000, 3000, 5000, 10000. For each n, we gradually
increase the bits budget B from 30 to 1000. The estimation accuracy was evaluated by the
mean squared errors (RMSE) defined as ‖ĝB

µ,t,c − g0‖. The simulation results were summa-
rized in Figure 2, which suggests that the MSEs decrease as n increases in all considered
settings. Moreover, as B increases, the MSEs first decreases rapidly at the beginning and
then stabilize at some levels. This observation is consistent with our theoretical results
established in Section 3.1, which state that increasing B (or equivalently, c and b) will
diminish the impact of information loss due to the data averaging and data quantization,
and as a result ĝB

µ,t,c(·) becomes more accurate. Furthermore, we can also observe after

B exceeds a certain threshold, the MSEs of ĝB
µ,t,c(·) stabilize, which supports the findings

in Corollary 2. Specifically, when B is sufficiently large, the MSEs of ĝB
µ,t,c(·) reaches the

estimation error lower bound of the classical spline estimator based on the complete data.
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Figure 2: MSEs of spline estimators based on quantized data: r = 0.5 for left 2 panels and
r = 1 for right 2 panels; ε ∼ N(0, 1) for top 2 panels and ε ∼ N(0, 1.52) for
bottom 2 panels.
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5.2 Nonparametric Test with g∗(·) ≡ 0 and m = 2

In this section, we investigate the empirical sizes and powers of the nonparametric test
proposed in Section 2.4, when g∗(·) ≡ 0 in the null hypothesis (2) and m = 2 treated as
known. The data was generated from the model (22) with various r and sample sizes n.

Figure 3 reports the empirical sizes of the proposed nonparametric test when r = 0
and the empirical powers when r > 0, respectively. Specifically, in all case scenarios, the
empirical sizes of the proposed test are close to the target nominal level 0.1 as the sample
size n increases. When either r or n increases, we observe that the empirical powers of the
proposed test gradually approach one, which suggests that the proposed testing procedure
is consistent for the alternative hypothesis that has a sufficiently large deviation (relative
to the sample size n) from the H0. Furthermore, after the bits budget B exceeds a certain
threshold, the empirical powers of the proposed nonparametric test are rather close to each
other, which supports our theoretical findings in Section 3.3.
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Figure 3: Empirical rejection rates at 0.1 significance level: ε ∼ N(0, 1) for the top 4 panels;
N(0, 1.52) for the bottom 4 panels.
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5.3 Adaptive Nonparametric Test with an Unknown m

In this section, we investigate the validity and the empirical power of the adaptive non-
parametric test proposed in Section 4.2, for which the order parameter m is searched from
ml = 1 to mu =

√
log n. Figure 4 shows the empirical rejection rates of the proposed

nonparametric adaptive test at the 0.1 significance level. We can observe that when r = 0,
the empirical rejection rates are rather close to the nominal level 0.1. For any given r > 0,
we can see that the empirical rejection rates increase as the sample size n increases. For a
fixed n, as r increases, the empirical rejection rates increase steadily and eventually reach
the 100% when n = 600, n = 1000 and n = 10000. Finally, as long as the bits budget B
exceeds a certain threshold, the empirical rejection rates are rather similar in most settings.
All these observations are consistent with our theoretical findings in Theorem 9. Further-
more, the empirical rejection rates are smaller than the nonparametric test (non-adaptive)
in Section 5.2 under the same setting, which is the price paid for adaptivity in m.
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Figure 4: Empirical rejection rates of the nonparametric adaptive test at the 0.1 significance
level: ε ∼ N(0, 1) for the top 4 panels; N(0, 1.52) for the bottom 4 panels.
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5.4 Nonparametic Linearity Test with m = 2

In this section, we study the empirical performance of the proposed nonparametric linearity
test. The data is generated from the following model

yi = rβ3,2(xi) + 3xi + 2 + εi, with xi =
i

n
, i = 1, · · · , n,

where β3,2(·) is the density function of the beta distribution with parameters 3 and 2, and
εi’s are independent random errors. Two types of errors were considered: (1) ε ∼ N(0, 1);
(2) ε ∼ N(0, 1.52). When r = 0, the model satisfies the null hypothesis H linear

0 , and as r
increases, the departure from the linear model becomes increasingly larger.
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Figure 5: Empirical rejection rates of the nonparametric linearity test at 0.1 significance
level: ε ∼ N(0, 1) for the top 4 panels; N(0, 1.52) for the bottom 4 panels.

Figure 5 reports the empirical rejection rates of the nonparametric linearity test proposed
in Section (4.1) at the significance level 0.1 . It is straightforward to see that, when r = 0,
the empirical rejection rates are close to the nominal size, indicating the validity of the test
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asserted by Theorem 6. For any given r > 0, we can see that the empirical rejection rates
increase as the sample size n increases. For a fixed n, as r increases, the empirical rejection
rates increase steadily and eventually reach the 100%. Finally, as long as the bits budget B
exceeds a certain threshold, the empirical rejection rates are rather similar in most settings.
All these observations are consistent with our theoretical findings in Theorem 7.

6. Real Data Analysis

In this section, we apply the proposed methods to the Combined Cycle Power Plant Data
(Kaya et al., 2012; Tüfekci, 2014), which can be downloaded at http://https://archive.
ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant. The data set consists of n =
9568 observations from a Combined Cycle Power Plant over 6 years (2006-2011). The
purpose of our analysis is to explore the relationship between the net hourly electrical
energy output of the plant between three environmental factors: temperature, ambient
pressure, and relative humidity.

Figure 6 displays the estimated curve based onB-bits quantizations (B = 35, 70, 140, 175)
and full data, for which the periodic spline of order m = 2 was used. For the quantization
step, we choose Tn = 2.5× σ̂2 log(n), where σ̂2 is the standard deviation of the observated
data, and c, k are determined by Section 2.5. We can observe that the spline estimator
based on quantized data with B = 35, i.e., the green curve, is rather different from the
other curves in the two analyzes. When the bits budget B increases to more than 70,
such differences quickly diminish. This observation demonstrates the effectiveness of the
proposed B-bits quantization scheme.
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Figure 6: Spline estimators based on B-bits quantizations (B = 35,70,140,175) and full
data. Sample size is n = 9568.

Next, we conduct some hypothesis tests for the relationship between the net hourly
electrical energy output and other three environmental factors. The first test is to test
whether there is an association between the energy output and three environmental factors.
We consider both non-adaptive and adaptive nonparametric tests. For the non-adaptive
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nonparametric test, m = 2 is used. The p-values are all close to zero, implying strong
rejections of the null hypothesis. This is not surprising based on the shapes of the spline
estimators illustrated in Figure 6.

Next, there appears to be a strong linear association between relative humidity and
the energy output in Figure 6. Based on this conjecture, we proceed to test whether the
associations between these three environmental factors and the energy output are linear
or nonlinear, using the nonparametric linearity test proposed in Section 4.1. The p-values
for the first two environmental factors, i.e., ambient pressure and temperature, are both
close to zero, indicating strong rejections of the null hypothesis. Figure 7 illustrates the
p-values of the nonparametric linearity test for the relationship between relative humidity
and energy output as a function of the bits budget B. We can see that the nonparametric
linearity test based on quantized data fails to reject the null hypothesis, which echos our
conjecture based on Figure 6.
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Figure 7: P -values of the nonparametric linearity test for the relationship between relative
humidity and energy output as a function of B.

7. Discussion

In this paper, we propose a set of non-parametric testing procedures based on quantized
observations, including the non-adaptive nonparametric test, the nonparametric linearity
test, and the adaptive nonparametric test. The proposed tests are easy-to-use based on
L2-metric between the quantization spline estimators and the hypothesized function. We
investigate the asymptotic validity and testing powers of the proposed tests and show how
the asymptotic testing powers changes as the bits budget B increases.

In the end, we discuss two additional extensions. First, the present paper only deals
with periodic splines. It is interesting to extend our results to more general splines or
even kernel ridge regression. The special periodic spline largely reduces the difficulty level
of the technical proofs. Indeed, the majority of the proofs can be accomplished by exact
calculations based on trigonometric series. For general RKHS, exact calculations may not be
possible, and more involved proofs are needed. Second, the nonparametric linearity test can
be easily extended to testing general composite null hypotheses such as Hgeneral

0 : g0(x) =
h0(x, θ) for some function h0 governed by parameters θ ∈ Rp with a fixed p. However,
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when p is diverging as n increases, it will be more challenging to investigate the asymptotic
behavior of the proposed test statistic and will be an interesting future research topic.
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Appendix A. Structure of the proofs

In this section, we outline the high-level structure of the proofs for the main theorems.

• The proof of Theorem 1 is mainly based on Lemma 10.

– In Lemma 10, we provide an upper bound for the difference between two smooth-
ing spline estimators.

• The proof of Theorem 3 relies on Stein’s exchangeable pair method. Specifically, we

first prove that the asymptotic normality of
cTµ?,t,c−trace(A)τ?2k

scτ?2k
based on z?i ’s, where z?i ’s

are the quantized samples corresponding to µj = µ?j for 1 ≤ j ≤ k, τ?2k = V ar(z?i |H0),
and

µ?j =

∑n
i=1E{yiI(yi ∈ Rj(t))}∑n

i=1 P (yi ∈ Rj(t))
. (23)

Next, we prove that

cTµ?,t,c − trace(A)τ?2k
scτ?2k

−
cTµ,t,c − trace(A)τ̂2

k

scτ̂2
k

= op(1).

– In Lemma 11 and Lemma 12, we prove the error rate introduced by quantization
of variance using Algorithm 2, which are needed for the proof of Theorem 3.

– In Lemma 13, we quantify the difference of quantized sample under H1 and H0.

• In the proof of Theorem 5, we first decompose the test statistic into two parts,

cTµ,t − trace(A)τ̂2
k

scτ̂2
k

=
zTAz − (z0)TAz0

scτ̂2
k

+
(z0)TAz0 − trace(A)τ̂2

k

scτ̂2
k

,

where z0 is the vector of quantized sample under H0 : g0 = 0. Under Theorem 3,
we know the second term is Op(1). In the first term, it is straightforward to see that
zTAz − (z0)TAz0 = (z − z0)TA(z − z0) + 2(z − z0)TAz0.

– In Lemma 14, we establish a lower bound for (z − z0)TAz0.

– In Lemma 15 and Lemma 16, we establish the lower bound for (z−z0)TA(z−z0).

• In the proof of Theorem 8, observe that the test statistic for each m

ξm =
cTm − trace(Am)τ̂2

k

sc,mτ̂2
k

=
(z0)TAmz

0 − trace(Am)τ̂2
k

sc,mτ̂2
k

is in a quadratic form.

– Lemma 17 proves that the maximum of the quadratic form follows an extreme
value distribution.

– Lemma 18 provides the rate conditions such that Lemma 17 holds.

• The idea of Theorem 9 is similar to the proof of Theorem 5 and Theorem 7.

Appendix B. Notation

In this section, we first summarize some notations which are frequently used through out
the paper for the reader’s convenience.
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Symbol Description
c number of groups.
ñ number of observations in each group which is defined as ñ = n/c.
(µ1, . . . , µk)

T quantized value.
(t1, . . . , tk−1)T cut-off points of quantized intervals.
y = (y1, . . . , yn)T vector of response .

ỹ = (ỹ1, . . . , ỹc)
T average of the response which is defined as ỹi = 1

ñ

∑iñ
j=(i−1)ñ+1 yj .

z = (z1, . . . , zc)
T vector of quantized sample.

z0 = (z0
1 , . . . , z

0
c )T vector of quantized sample under H0 : g0 = 0.

z̃ = (z̃1, . . . , z̃c)
T vector of truncated quantized sample,

where z̃i = zi1(csρ+ σ|εj | ≤
√
Tn) for all j = (i− 1)ñ+ 1, . . . iñ).

z̃0 = (z̃0
1 , . . . , z̃

0
c )T vector of truncated quantized response under H0 : g0 = 0,

where z̃0
i = z0

i 1(csρ+ σ|εj | ≤
√
Tn) for all j = (i− 1)ñ+ 1, . . . iñ).

ylinear = (ylinear
1 , . . . , ylinear

n )T new defined data for testing the linearity of g0, which is defined as
ylinear
i = Q(yi)− ĝ(i/n), and ĝ(i/n) is the least-square estimator of g.

zlinear = (zlinear
1 , . . . , zlinear

c )T vector of quantized value of ylinear
i .

zlinear
0 = (zlinear

i,0 , . . . , zlinear
i,c )T quantized value of ylinear

i under H linear
0 : g0 is linear.

λ smoothing parameter.
{ϕi(x)}∞i=1 trigonometric basis functions.
K(·, ·) kernel function.
Σc kernel matrix defined as Σc = [K(i/c, i′/c)/c]1≤i,i′≤c.
Ωc “tensor” of K(·, ·) defined as Ωc = [K⊗2(i/c, i′/c)/c]1≤i,i′≤c.
A A = (Σc + λIc)

−1Ωc(Σc + λIc)
−1.

ζ approximation error of Riemann sum and integral.

cs Sobolev constant defined as cs = supf∈Sm(I)
‖f‖sup√
J(f)

.

Ck(t) maximum length of quantization interval.

Table 1: Table that lists some of the useful notations that are frequently used throughout
the paper.

Appendix C. Useful Lemmas

The proofs of the theorems require some preliminary lemmas. In this section, we summarize
these useful lemmas. Throughout the proof, we let ỹi = 1

ñ

∑iñ
j=(i−1)ñ+1 yj , i = 1, . . . , c

and we denote ĝss as the canonical smoothing spline based on the full dataset; ĝss
c as the

smoothing spline based on the averaged responses {ỹ1, · · · , ỹc}, and ĝB
µ,t,c as the desired
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B-bits estimator, i.e.,

ĝss = arg min
g∈Sm(I)

1

n

n∑
i=1

(yi − g(i/n))2 + λ

∫ 1

0
[g(m)(x)]2dx,

ĝss
c = arg min

g∈Sm(I)

1

c

c∑
i=1

(ỹi − g(i/c))2 + λ

∫ 1

0
[g(m)(x)]2dx, ỹi =

1

ñ

iñ∑
j=(i−1)ñ+1

yj ,

ĝB
µ,t,c = arg min

g∈Sm(I)

1

c

c∑
i=1

(zi − g(i/c))2 + λ

∫ 1

0
[g(m)(x)]2dx.

The following lemma describes that the distance between ĝB
µ,t,c and ĝss

c can be well controlled
by carefully choosing quantization parameters µ, t and c.

Lemma 10 For any µ = (µ1, . . . , µk)
T ∈ Rk and t = (t1, . . . , tk−1)T ∈ Rk−1, it holds that

‖ĝBµ,t,c − ĝssc ‖2 ≤ c−1
c∑
i=1

(zi − ỹi)2. (24)

Proof Recall that ĝB
µ,t,c =

∑c
i=1 θ̂iKi/c, where (θ̂1, . . . , θ̂c)

T = c−1(Σc + λIc)
−1z with Σc =

[K(i/c, i′/c)/c]1≤i,i′≤c ∈ Rc×c, z = (z1, . . . , zc)
T ∈ Rc, and K(·, ·) is the kernel function.

Similarly, ĝss
c =

∑c
i=1 θ̃iKi/c, where (θ̃1, . . . , θ̃c)

T = c−1(Σc+λIc)
−1ỹ with ỹ = (ỹ1, . . . , ỹc)

T .

Let θ̂ = (θ̂1, . . . , θ̂c)
T , θ̃ = (θ̃1, . . . , θ̃c)

T . By direct calculations, we have

ĝB
µ,t,c − ĝss

c =
∞∑
ν=1

c∑
i=1

(θ̂i − θ̃i)
ϕν(i/c)

γν
ϕν =

∞∑
ν=1

ΦT
ν (θ̂ − θ̃)
γν

ϕν ,

where ϕ2k−1(x) =
√

2 cos(2πkx), ϕ2k(x) =
√

2 sin(2πkx) are the trigonometric basis func-
tions, γ2k−1 = γ2k = (2πk)2m, and Φν = (ϕν(1/c), ϕν(2/c), . . . , ϕν(c/c))T . So

‖ĝB
µ,t,c − ĝss

c ‖2 =
∞∑
ν=1

|ΦT
ν (θ̂ − θ̃)|2

γ2
ν

= (θ̂ − θ̃)T
∞∑
ν=1

ΦνΦT
ν

γ2
ν

(θ̂ − θ̃)

= c−1(z − ỹ)T (Σc + λIc)
−1Ωc(Σc + λIc)

−1(z − ỹ). (25)

We now look at Σc and Ωc. To ease our calculations, for 0 ≤ l ≤ c − 1, we first define the
following two notations,

d′l =
2

c

∞∑
k=1

cos(2πkl/c)

(2πk)2m
, dl =

2

c

∞∑
k=1

cos(2πkl/c)

(2πk)4m
.

Since d′l = d′c−l, dl = dc−l for l = 1, 2, . . . , c−1, we know Σc,Ωc are both symmetric circulant
of order c. Furthermore, Σc and Ωc share the same normalized eigenvectors as

xr =
1√
c
(1, εr, ε2r, . . . , ε(c−1)r)T , r = 0, 1, . . . , c− 1,
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where ε = exp(2π
√
−1/c). Let M = (x0, x1, . . . , xc−1), and M∗ be the conjugate transpose

of M . Clearly, MM∗ = Ic and Σc,Ωc admit the following decomposition

Σc = MΛd′M
∗, Ωc = MΛdM

∗, (26)

where Λd′ = diag(λd′,0, λd′,1, . . . , λd′,c−1) and Λd = diag(λd,0, λd,1, . . . , λd,c−1) with λd′,l =
d′0 + d′1ε

l + . . .+ d′c−1ε
(c−1)l and λd,l = d0 + d1ε

l + . . .+ dc−1ε
(c−1)l.

Direct calculations show that

λd′,l =

{
2
∑∞

k=1
1

(2πkc)2m
, l = 0,∑∞

k=1
1

[2π(kc−l)]2m +
∑∞

k=0
1

[2π(kc+l)]2m
, 1 ≤ l ≤ c− 1

λd,l =

{
2
∑∞

k=1
1

(2πkc)4m
, l = 0,∑∞

k=1
1

[2π(kc−l)]4m +
∑∞

k=0
1

[2π(kc+l)]4m
, 1 ≤ l ≤ c− 1.

It is easy to examine that

λd′,l =

{
2d̄′m(2πc)−2m, l = 0,

1
[2π(c−l)]2m + 1

(2πl)2m
+
∑∞

k=2
1

[2π(kc−l)]2m +
∑∞

k=1
1

[2π(kc+l)]2m
, 1 ≤ l ≤ c− 1,

(27)

λd,l =

{
2d̄m(2πc)−4m, l = 0,

1
[2π(c−l)]4m + 1

(2πl)4m
+
∑∞

k=2
1

[2π(kc−l)]4m +
∑∞

k=1
1

[2π(kc+l)]4m
, 1 ≤ l ≤ c− 1,

(28)

d′m(2πc)−2m ≤
∞∑
k=2

1

[2π(kc− l)]2m
≤ d̄′m(2πc)−2m,

d′m(2πc)−2m ≤
∞∑
k=1

1

[2π(kc+ l)]2m
≤ d̄′m(2πc)−2m,

dm(2πc)−4m ≤
∞∑
k=2

1

[2π(kc− l)]4m
≤ d̄m(2πc)−4m,

dm(2πc)−4m ≤
∞∑
k=1

1

[2π(kc+ l)]4m
≤ d̄m(2πc)−4m,

where

d̄′m :=

∞∑
k=1

k−2m, d′m :=

∞∑
k=2

k−2m, d̄m :=

∞∑
k=1

k−4m, dm :=

∞∑
k=2

k−4m. (29)

It follows from (27) and (28) that λd,l ≤ λ2
d′,l for 0 ≤ l ≤ c− 1. Therefore,

(z − ỹ)T (Σc + λIc)
−1Ωc(Σc + λIc)

−1(z − ỹ)

= (z − ỹ)TMdiag

(
λd,0

(λ+ λd′,0)2
, . . . ,

λd,c−1

(λ+ λd′,c−1)2

)
M∗(z − ỹ)

≤ (z − ỹ)TMM∗(z − ỹ) = (z − ỹ)T (z − ỹ).
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Therefore, it follows by (25) that

‖ĝB
µ,t,c − ĝss

c ‖2 ≤ c−1(z − ỹ)T (z − ỹ) = c−1
c∑
i=1

(zi − ỹi)2. (30)

This completes the proof.

Lemma 11 Suppose Condition (B) holds true, and it holds that Ck(t)→ 0, then we have

τ2
k = V ar(z1|H0) = O(ñ−1 + Ck(t)

2) and τ̂2
k = τ̃2n

2ñ(n−1) = τ2
k

[
1 +Op(n

−1/2 + Ck(t))
]

=

τ2
k [1 + op(1)].

Proof By the definition of τ2
k and (6) we have

τ2
k = V ar(z1|H0) =

1

ñ2
V ar(

ñ∑
i=1

Q(yi)|H0) +O(Ck(t)
2) =

1

ñ
V ar(Q(σε1)) +O(Ck(t)

2)

=
1

ñ

k∑
j=1

µ2
jP (Q(σε1) = µj)−

1

ñ

 k∑
j=1

µjP (Q(σε1) = µj)

2

+O(Ck(t)
2)

=
1

ñ

k∑
j=1

µ2
jP (σε1 ∈ Rj(t))−

1

ñ

 k∑
j=1

µjP (σε1 ∈ Rj(t))

2

+O(Ck(t)
2)

= R1 +R2 +O(Ck(t)
2). (31)

Assume that for 2 ≤ s ≤ k − 1, t1 < t2 < · · · < ts−1 ≤ 0 < ts < · · · < tk−1 and let p(ε)
be the density function of ε1. Then we have

s−1∑
j=2

µ2
jP (σε1 ∈ Rj(t)) ≤

s−1∑
j=2

∫ tj/σ

tj−1/σ
p(ε)dεt2j−1

≤ 2

s−1∑
j=2

∫ tj/σ

tj−1/σ
p(ε)dε

(
t2j + Ck (t)2

)

≤ 2σ2
s−1∑
j=2

∫ tj/σ

tj−1/σ
ε2p(ε)dε+ 2Ck(t)

2
s−1∑
j=2

∫ tj/σ

tj−1/σ
p(ε)dε

and

k−1∑
j=s+1

µ2
jP (σε1 ∈ Rj(t)) ≤

k−1∑
j=s+1

∫ tj/σ

tj−1/σ
p(ε)dεt2j

≤ 2
k−1∑
j=s+1

∫ tj/σ

tj−1/σ
p(ε)dε

(
t2j−1 + Ck(t)

2
)

≤ 2σ2
k−1∑
j=s+1

∫ tj/σ

tj−1/σ
ε2p(ε)dε+ 2Ck(t)

2
k−1∑
j=s+1

∫ tj/σ

tj−1/σ
p(ε)dε.
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The fact that |µs| ≤ Ck(t) and the above inequalities lead

R1 =
1

ñ

{
s−1∑
j=2

µ2
jP (σε1 ∈ Rj(t)) +

k−1∑
j=s+1

µ2
jP (σε1 ∈ Rj(t))

+ µ2
1P (σε1 ∈ R1(t)) + µ2

kP (σε1 ∈ Rk(t)) + µ2
sP (σε1 ∈ Rs(t))

}

≤ 1

ñ

{
2σ2

∫
R
ε2p(ε)dε+ 3Ck(t)

2 +O(1)

}
.

This proves R1 . 1
ñ . On the other hand, by t21 > σ2 and ts−1 = O (Ck(t)) = o(1), we have

R1 ≥
1

ñ

s−1∑
j=2

µ2
jP (σε1 ∈ Rj(t))

≥ 1

ñ

s−1∑
j=2

t2j

∫ tj/σ

tj−1/σ
p(ε)dε

≥ 1

ñ

s−1∑
j=2

(
t2j−1/2− Ck(t)2

) ∫ tj/σ

tj−1/σ
p(ε)dε

≥ 1

ñ

σ2

2

s−1∑
j=2

∫ tj/σ

tj−1/σ
ε2p(ε)dε− Ck(t)2

s−1∑
j=2

∫ tj/σ

tj−1/σ
p(ε)dε


≥ 1

ñ

{
σ2

2

∫ ts−1/σ

t1/σ
ε2p(ε)dε− Ck(t)2

}
= O(ñ−1).

This proves R1 & 1
ñ , which implies R1 = O(ñ−1). Using a similar approach, we can prove

R2 = O(ñ−1). From (31), we get τ2
k = O(ñ−1 + Ck(t)

2).

Now we prove τ̂2
k = τ̃2n

2ñ(n−1) = τ2
k [1 + op(1)]. By the definition of τ̃n, we have

τ̃2
n

2ñ(n− 1)
=

1

2ñ(n− 1)

n∑
i=2

(Q(yi)−Q(yi−1))2

=
1

2ñ(n− 1)

n∑
i=2

{Q(g0(i/n) + σεi)−Q(g0((i− 1)/n) + σεi−1)}2

=
1

2ñ(n− 1)

n∑
i=2

{
g0(i/n)− g0((i− 1)/n) +Q(σεi)−Q(σεi−1) + δ̃i

}2

=
1

2ñ(n− 1)

n∑
i=2

{Q(σεi)−Q(σεi−1)}2 +
1

2ñ(n− 1)

n∑
i=2

{
g0(i/n)− g0((i− 1)/n) + δ̃i

}2

+
1

ñ(n− 1)

n∑
i=2

{Q(σεi)−Q(σεi−1)}
{
g0(i/n)− g0((i− 1)/n) + δ̃i

}
,
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where |δ̃i| = O(Ck(t)) for i = 1, · · · , n. Note that, by the central limit theorem, it holds
that

1

2(n− 1)

n∑
i=2

{Q(σεi)−Q(σεi−1)}2 = V ar [Q(σε1)] +Op(n
−1/2),

and that g0(i/n)− g0((i− 1)/n) = O(1/n) by the smoothness of function g0, we have that

τ̃2
n

2ñ(n− 1)
=

1

ñ

[
V ar(Q(σε1)) +O(n−2 + Ck(t)

2) +Op(n
−1/2) +O(n−1 + Ck(t))

]
= τ2

k

[
1 +Op(n

−1/2 + Ck(t))
]
, (32)

which completes the proof.

Lemma 12 Suppose Condition (B) holds true, and it holds that Ck(t)→ 0. Let τ̂2
k be the

quantied variance based on ylinear, then we have that τ̂2
k = τ̃2n

2ñ(n−1) = τ2
k

[
1 +Op(n

−1/2 + Ck(t))
]

=

τ2
k [1 + op(1)].

Proof By the definition of τ̂2
k , we have

τ̃2
n

2ñ(n− 1)
=

1

2ñ(n− 1)

n∑
i=2

(Q(ylinear
i )−Q(ylinear

i−1 ))2

=
1

2ñ(n− 1)

n∑
i=2

{Q[Q(g0(i/n) + σεi)− ŷi]−Q[Q(g0((i− 1)/n) + σεi−1)]− ŷi−1}2

=
1

2ñ(n− 1)

n∑
i=2

{
g0(i/n)− g0((i− 1)/n) + ŷi − ŷi−1 +Q(σεi)−Q(σεi−1) + δ̃i

}2
,

where |δ̃i| = O(Ck(t)) for i = 1, · · · , n. Note that ĝ ∈ L(I), one has that |ŷi−ŷi−1| = Op(1/n)

by the smoothness of ĝ. Similar to the proof in Lemma 11, we get τ̂2
k = τ̃2n

2ñ(n−1) =

τ2
k

[
1 +Op(n

−1/2 + Ck(t))
]

= τ2
k [1 + op(1)].

To ease calculation, we define some useful notations. Let z0
i be the quantized data

conditional on g0(x) = 0 and z0 = (z0
1 , . . . , z

0
c )T . According to (6), we have∣∣∣∣∣∣z0

i −
1

ñ

iñ∑
j=(i−1)ñ+1

Q(σεj)

∣∣∣∣∣∣ ≤ Ck(t), for i = 1, . . . , c. (33)

Furthermore, we let z̃0 = (z̃0
1 , . . . , z̃

0
c )T , z̃ = (z̃1, . . . , z̃c)

T , where for i = 1, . . . , c,

z̃0
i = z0

i 1(csρ+ σ|εj | ≤
√
Tn for all j = (i− 1)ñ+ 1, . . . iñ),

z̃i = zi1(csρ+ σ|εj | ≤
√
Tn for all j = (i− 1)ñ+ 1, . . . iñ).
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Lemma 13 Suppose g is the regression function generating the samples. Suppose Condition
(B) holds and σ|εj | + csρ ≤

√
Tn holds for all j = 1, . . . , n. Then for any g ∈ Sm(I)

with J(g) ≤ ρ2, it holds that |z̃i − z̃0
i − f(i/c)| ≤ 4Ck(t) + ζ, i = 1, . . . , c, where f is the

corresponding integral equation defined in (15), ζ = max
i=1,...,c

|f(i/c)− 1
ñ

∑iñ
j=(i−1)ñ+1 g(j/n)| =

max
i=1,...,c

| 1
2∆

∫ min(i/c+∆,1)
max(i/c−∆,0) g(s)ds− 1

ñ

∑iñ
j=(i−1)ñ+1 g(j/n)| and ∆ = 1

c .

Proof : Suppose σεi ∈ Rj(t) for some 1 ≤ j ≤ k. Since min{t21, t2k−1} = Tn and csρ+σ|εi| ≤√
Tn, we must have 2 ≤ j ≤ k − 1. Suppose that g(i/n) + σεi ∈ Rl(t) for some 1 ≤ l ≤ k.

Since min{t21, t2k−1} = Tn and by (12) implying |g(i/n)| ≤ csρ, we have

|yi| = |g(i/n) + σεi| ≤ |g(i/n)|+ |σεi| ≤ csρ+ |σεi| ≤
√
Tn = min{|t1|, |tk−1|}.

Therefore, 2 ≤ l ≤ k − 1. Since

tj−1 ≤ σεi < tj , tl−1 ≤ g(i/n) + σεi < tl,

tj−1 ≤ µj < tj , tl−1 ≤ µl < tl,

we have

tl−1 − tj < µl − µj < tl − tj−1,

tl−1 − tj < g(i/n) < tl − tj−1.

Hence it holds that

|Q(yi)−Q(σεi)− g(i/n)| = |µl − µj − g(i/n)| ≤ |tl − tl−1|+ |tj − tj−1| ≤ 2Ck(t). (34)

Since csρ+ σ|εj | ≤
√
Tn for all j = 1, . . . , n, the result follows from (6) and (33) that

|z̃i − z̃0
i − f(i/c)| =

∣∣∣zi − ∑iñ
j=(i−1)ñ+1Q(yj)

ñ
−

(
z0
i −

∑iñ
j=(i−1)ñ+1Q(σεj)

ñ

)

+

∑iñ
j=(i−1)ñ+1Q(yj)

ñ
−
∑iñ

j=(i−1)ñ+1Q(σεj)

ñ
− f(i/c)

∣∣∣
≤

∣∣∣∑iñ
j=(i−1)ñ+1 ((Q(yj)−Q(σεj))− ñf(i/c)

∣∣∣
ñ

+ 2Ck(t)

=

∣∣∣∑iñ
j=(i−1)ñ+1 {Q(yj)−Q(σεj)− g(j/n)}+

∑iñ
j=(i−1)ñ+1 g(j/n)− ñf(i/c)

∣∣∣
ñ

+ 2Ck(t)

≤

∣∣∣∑iñ
j=(i−1)ñ+1 {Q(yj)−Q(σεj)− g(j/n)}

∣∣∣+
∣∣∣∑iñ

j=(i−1)ñ+1 g(j/n)− ñf(i/c)
∣∣∣

ñ
+ 2Ck(t)

≤4Ck(t) + ζ,

where the last inequality follows from (34) and the definition of ζ.
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Lemma 14 Suppose Condition (B) holds, and h → 0, ch → ∞. Then for any g ∈ Sm(I)
with J(g) ≤ ρ2, we have

sup
g∈Smρ (I)

E{|(z̃ − z̃0)TAz0|2}
(1 + (ch2)−1)(τ2

k + 4Ck(t)2)
∑c

i=1(|f(i/c)|+ 4Ck(t) + ζ)2
≤ 8, as c→∞, (35)

where ζ = max
i=1,...,c

| 1
2∆

∫ min(i/c+∆,1)
max(i/c−∆,0) g(s)ds− 1

ñ

∑iñ
j=(i−1)ñ+1 g(j/n)| and ∆ = 1

c .

Proof : For convenience, let ωi = z̃i − z̃0
i . From Lemma 13 and the fact that z̃i − z̃0

i = 0 if
csρ+ σ|εj | >

√
Tn for some (i− 1)ñ+ 1 ≤ j ≤ iñ, it holds that

|ωi| ≤ |f(i/c)|+ 4Ck(t) + ζ for all 1 ≤ i ≤ c. (36)

According to (33) and the fact that∣∣∣∣∣∣E
 1

ñ

iñ∑
j=(i−1)ñ+1

Q(σεj)

∣∣∣∣∣∣ ≤ E
 1

ñ

iñ∑
j=(i−1)ñ+1

σεj

+ Ck(t),

one has that

|E(z0
i )| ≤

∣∣∣∣∣∣E
 1

ñ

iñ∑
j=(i−1)ñ+1

Q(σεj)

∣∣∣∣∣∣+ Ck(t) ≤ 2Ck(t),

which further implies that

E(|z0
i |2) = V ar(z0

i ) + |E(z0
i )|2 ≤ τ2

k + 4Ck(t)
2.

For any g ∈ Sm(I) with J(g) ≤ ρ2, we have

E{|(z̃ − z̃0)TAz0|2}

= E{(
c∑

u,v=1

au,vωuz
0
v)2}

=
∑

1≤u1,u2,v1,v2≤c
au1,v1au2,v2E{ωu1ωu2z0

v1z
0
v2}

=
∑

u1,u2,v1
are mutually different

au1,v1au2,v1E{ωu1}E{ωu2}E{|z0
v1 |

2}+
∑
u1 6=v1

a2
u1,v1E{ω

2
u1}E{|z

0
v1 |

2}

+
∑
u1 6=u2

au1,u1au2,u2E{ωu1z0
u1}E{ωu2z

0
u2}+

∑
u1 6=u2

au1,u1au2,u1E{ωu1 |z0
u1 |

2}E{ωu2}

+
∑
u1

a2
u1,u1E{ω

2
u1 |z

0
u1 |

2} ≡ T1 + T2 + T3 + T4 + T5.

To complete the proof, we will analyze the above T1 through T5 terms.
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For T1, we have

T1 = (τ2
k + 4Ck(t)

2)
∑
u1 6=u2

∑
v1 6=u1,u2

au1,v1au2,v1E{ωu1}E{ωu2}

≤ (τ2
k + 4Ck(t)

2)
n∑

u1,u2=1

 ∑
v1 6=u1,u2

au1,v1au2,v1

E{ωu1}E{ωu2}

= (τ2
k + 4Ck(t)

2)E{x}T (A−A0)2E{x}
≤ 2(τ2

k + 4Ck(t)
2)E{x}T (A2 +A2

0)E{x},
where recall A0 = diag(a1,1, . . . , ac,c). Since A ≤ Ic and a1,1 = · · · = ac,c � 1/(ch) = o(1),
we have A2 +A2

0 ≤ 2Ic (as c→∞), which, together with (36), further leads to

T1 ≤ 4(τ2
k + 4Ck(t)

2)E{x}TE{x}

≤ 4(τ2
k + 4Ck(t)

2)

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2

≤ 4(1 + (ch2)−1)(τ2
k + 4Ck(t)

2)
c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2.

For T2, we have

T2 = (τ2
k + 4Ck(t)

2)
c∑

u1=1

 ∑
v1 6=u1

a2
u1,v1

E{ω2
u1}

≤ (τ2
k + 4Ck(t)

2)
c∑

u1=1

(
c∑

v1=1

a2
u1,v1

)
(|fu1 |+ 4Ck(t) + ζ)2

≤ (1 + (ch2)−1)(τ2
k + 4Ck(t)

2)

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2,

where the last inequality follows from

c∑
v=1

a2
i,v =

1

c

c−1∑
r=0

λ2
d,r

(λ+ λd′,r)4
. (ch)−1 → 0.

Here the above “.” is uniformly of 1 ≤ i ≤ c.
For T3, Cauchy inequality implies that

T3 ≤

(
c∑
i=1

ai,iE{ωiz0
i }

)2

≤ c

c∑
i=1

a2
i,i|E{ωiz0

i }|2

≤ c(τ2
k + 4Ck(t)

2)
c∑
i=1

a2
i,i(|f(i/c)|+ 4Ck(t) + ζ)2

≤ (1 + (ch2)−1)(τ2
k + 4Ck(t)

2)
c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2,
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where the last inequality follows from ca2
1,1 = . . . = ca2

c,c � (ch2)−1, as c→∞.
For T4, we have

T4 =
∑
i 6=v

ai,iav,iE{ωi|z0
i |2}E{ωv}

≤
c∑
i=1

ai,iE{|ωi| · |z0
i |2}

∑
v 6=i
|av,i|E{|ωv|}

.
τ2
k + 4Ck(t)

2

ch

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)

√√√√ c∑
v=1

a2
v,i

√√√√ c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2

.
τ2
k + 4Ck(t)

2

(ch)3/2

√
c

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2

.
τ2
k + 4Ck(t)

2

ch3/2

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2

.
τ2
k + 4Ck(t)

2

ch2

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2

. (1 + (ch2)−1)(τ2
k + 4Ck(t)

2)

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2.

For T5, it holds that

T5 =
c∑
i=1

a2
i,iE{ω2

i |z0
i |2}

.
τ2
k + 4Ck(t)

2

(ch)2

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2

≤ (1 + (ch2)−1)(τ2
k + 4Ck(t)

2)
c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2.

From the above analysis of T1 through T5, we get that as c → ∞, for any g ∈ Sm(I) with
J(g) ≤ ρ2, it follows that

E{|(z̃ − z̃0)TAz0|2} ≤ 8(1 + (ch2)−1)(τ2
k + 4Ck(t)

2)

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2.

This proves the desired result.

For ν = 1, 2, . . . , c, define Φν = (ϕν(1/c), ϕν(2/c), . . . , ϕν(c/c))T . Let ε = exp(2π
√
−1/c),

xr =
1√
c
(1, εr, ε2r, . . . , ε(c−1)r)T , r = 0, 1, . . . , c− 1,

and x∗r be the conjugate transpose of xr.
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Lemma 15 For 0 ≤ r ≤ c− 1 and 1 ≤ v ≤ c− 1, one has that

x∗rΦ2(pc+v)−1 =

√
c

2

(
εvI(r = v) + ε−vI(r + v = c)

)
,

x∗rΦ2(pc+v) =

√
− c

2

(
εvI(r = v)− ε−vI(r + v = c)

)
;

and

x∗rΦ2(pc+c)−1 =

√
c

2
I(r = 0),

x∗rΦ2(pc+c) = 0.

Proof : The proof can be accomplished by direct calculations. For instance, the first case
holds by following arguments. For 0 ≤ r ≤ c− 1 and 1 ≤ v ≤ c− 1,

x∗rΦ2(pc+v)−1 =
1√
2c

c∑
i=1

ε−r(i−1) cos

(
2πvi

c

)

=
1√
2c

c∑
i=1

ε−r(i−1)(εvi + ε−vi)

=
1√
2c

c−1∑
i=0

ε−(r−v)iεv +
1√
2c

c−1∑
i=0

ε−(r+v)iε−v

=

√
c

2

(
εvI(r = v) + ε−vI(r + v = c)

)
.

The proof of other cases is similar.

LetM = (x0, x1, . . . , xc−1) andM∗f = (e0(f), e1(f), . . . , ec−1(f))T , where f = (f(1/c), . . . , f(c/c))T .
Recall M∗ is the conjugate transpose of M . Suppose f ∈ Sm(I) admits Fourier expansion
f =

∑∞
ν=1 fνϕν .

Lemma 16 There exists a universal constant % > 0 s.t. for any f ∈ Sm(I),

fT (Ic −A)f ≤ %c(λ+ c−2m)J(f).

Proof : For simplicity, denote er = er(f). For 1 ≤ r ≤ c/2, we have

λ2
d′,r − λd,r ≤

(
(2πr)−2m + (2π(c− r))−2m + 2d̄′m(2πc)−2m

)2 − (2πr)−4m

≤
(
(2πr)−2m + (1 + 21−2md̄′m)(πc)−2m

)2 − (2πr)−4m

= 2(1 + 21−2md̄′m)(2πr)−2m(πc)−2m + (1 + 21−2md̄′m)2(πc)−4m.
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Therefore, it follows that

1−
λd,r

(λ+ λd′,r)2

=
λ2 + 2λλd′,r + λ2

d′,r − λd,r
(λ+ λd′,r)2

≤ 2λ

λ+ λd′,r
+
λ2
d′,r − λd,r

(λ+ λd′,r)2

≤
(
2λ+ 2(1 + 21−2md̄′m)(πc)−2m + 22m(1 + 21−2md̄′m)2(πc)−2m

)
(2πr)2m

≤ %′m(λ+ c−2m)(2πr)2m, (37)

where %′m = max{2, (2(1+21−2md̄′m)+22m(1+21−2md̄′m)2)π−2m}, and d̄′m is defined in (29).

By Lemma 15 and direct calculations, for 1 ≤ r ≤ c− 1, we have

er =
∞∑
p=0

c∑
v=1

f2(pc+v)−1x
∗
rΦ2(pc+v)−1 +

∞∑
p=0

∞∑
v=1

f2(pc+v)x
∗
rΦ2(pc+v)

=
∞∑
p=0

c−1∑
v=1

f2(pc+v)−1

(√
c

2
εvI(r = v) +

√
c

2
ε−vI(v + r = c)

)

+
∞∑
p=0

c−1∑
v=1

f2(pc+v)

(√
− c

2
εvI(r = v)−

√
− c

2
ε−vI(r + v = c)

)

= εr
√
c

2

∞∑
p=0

(
f2(pc+r)−1 + f2(pc+c−r)−1 +

√
−1f2(pc+r) −

√
−1f2(pc+c−r)

)
.

Therefore, it holds that

|er|2 =
c

2

∣∣∣∣ ∞∑
p=0

(
f2(pc+r)−1 + f2(pc+c−r)−1

) ∣∣∣∣2 +
c

2

∣∣∣∣ ∞∑
p=0

(
f2(pc+r) − f2(pc+c−r)

) ∣∣∣∣2.

It is easy to see that

|er|2 = |ec−r|2, r = 1, . . . , c− 1.
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For 1 ≤ r ≤ c/2, we have

|er|2 ≤ c

∞∑
p=0

f2
2(pc+r)−1(2π(pc+ r))2m

∞∑
p=0

(2π(pc+ r))−2m

+c
∞∑
p=0

f2
2(pc+c−r)−1(2π(pc+ c− r))2m

∞∑
p=0

(2π(pc+ c− r))−2m

+c
∞∑
p=0

f2
2(pc+r)(2π(pc+ r))2m

∞∑
p=0

(2π(pc+ r))−2m

+c
∞∑
p=0

f2
2(pc+c−r)(2π(pc+ c− r))2m

∞∑
p=0

(2π(pc+ c− r))−2m

≤

c ∞∑
p=0

f2
2(pc+r)−1(2π(pc+ r))2m + c

∞∑
p=0

f2
2(pc+c−r)−1(2π(pc+ c− r))2m

+c

∞∑
p=0

f2
2(pc+r)(2π(pc+ r))2m + c

∞∑
p=0

f2
2(pc+c−r)(2π(pc+ c− r))2m


× 2m

2m− 1
(2πr)−2m, (38)

where (38) follows by an elementary inequality

∞∑
p=0

(2π(pc+ r))−2m ≤ 2m

2m− 1
(2πr)−2m, 1 ≤ r ≤ c/2.

Meanwhile, a similar analysis leads to

|e0|2 =
c

2

∣∣∣∣ ∞∑
p=0

f2(pc+c)−1

∣∣∣∣2
≤ c

2

∞∑
p=0

f2
2(pc+c)−1(2π(pc+ c))2m

∞∑
p=0

(2π(pc+ c))−2m

=
c1−2m

2

∞∑
p=0

f2
2(pc+c)−1(2π(pc+ c))2m ×

∞∑
p=1

(2πp)−2m. (39)
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Now it follows from (37), (38) and (39), and elementary facts λd′,r = λd′,c−r and λd,r =
λd,c−r, for 1 ≤ r ≤ c− 1, that

fT (Ic −A)f

=
c−1∑
r=0

(
1−

λd,r
(λ+ λd′,r)2

)
|er|2

=

(
1−

λd,0
(λ+ λd′,0)2

)
|e0|2 +

∑
1≤r≤c/2

(
1−

λd,r
(λ+ λd′,r)2

)
|er|2 +

∑
c/2<r≤c−1

(
1−

λd,r
(λ+ λd′,r)2

)
|er|2

≤ |e0|2 + 2
∑

1≤r≤c/2

(
1−

λd,r
(λ+ λd′,r)2

)
|er|2

≤ c1−2m

2

∞∑
p=0

f2
2(pc+c)−1(2π(pc+ c))2m ×

∞∑
p=1

(2πp)−2m

+2%′mc(λ+ c−2m)
2m

2m− 1

∑
1≤r≤c/2

 ∞∑
p=0

f2
2(pc+r)−1(2π(pc+ r))2m

+
∞∑
p=0

f2
2(pc+c−r)−1(2π(pc+ c− r))2m +

∞∑
p=0

f2
2(pc+r)(2π(pc+ r))2m

+
∞∑
p=0

f2
2(pc+c−r)(2π(pc+ c− r))2m


≤ %mc(λ+ c−2m)

∞∑
ν=1

(
f2

2ν−1 + f2
2ν

)
(2πν)2m

= %mc(λ+ c−2m)J(f),

where %m = max{
∑∞

p=1(2πp)−2m/2, 4m%′m/(2m − 1)}. It is straightforward to see %m is a
decreasing function with respect to m, therefore, we choose % = %m=1. This proves Lemma
16.

The proof of Theorem 8 requires some recent Gaussian approximation result, i.e., The-
orem 3.1 in Koike (2019).

Lemma 17 For each c ∈ N, let Ψc be an c-dimensional centered Gaussian vector with
covariance matrix Σc = (Σc(m,m

′))1≤m,m′≤c and mu ≥ 2 be an integer. Also, for each

m = ml, . . . ,mu, let Am be an c × c symmetric matrix and Zc = (Zc,ml , . . . , Zc,mu)>

be an mu − ml + 1 -dimensional centered Gaussian vector with covariance matrix Cc =
(Cc(m,m

′))ml≤m,m′≤mu . Set Fc,m := Ψ>c AmΨc − E
[
Ψ>c AmΨc

]
and suppose that the fol-

lowing conditions are satisfied:

1. There is a constant b > 0 such that Cc(m,m) ≥ b for every c and every m =
ml, . . . ,mu.
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2. maxml≤m≤mu

(
E
[
F 4
c,m

]
− 3E

[
F 2
c,m

]2)
log6mc → 0 as c→∞.

3. maxml≤m,m′≤mu
∣∣Cc(m,m′)− E [Fc,mFc,m′]∣∣ log2mc → 0 as c→∞.

Then we have

sup
x∈R

∣∣∣∣P ( max
ml≤m≤mu

Fc,m ≤ x
)
− P

(
max

ml≤m≤mu
Zc,m ≤ x

)∣∣∣∣→ 0, as c→∞.

Proof This is Theorem 3.1 in Koike (2019).

The proof of Theorem 9 requires some rate conditions which are summarized in the
following lemma.

Lemma 18 Suppose λm = a2m
n n−4m/(4m+1) log(mu)2m/(4m+1), then for any ml < m <

mu →∞, under Condition (C), the following rate conditions hold:

hm log2(mu)→ 0; mu log2(mu)/chm → 0;

(hm′/hm)−1/2m2
u log2(mu)→ 0, for any ml ≤ m < m′ < mu;

chm/ log(c)→∞; h1/2
m log(c)→ 0,

where hm = λ
1

2m = ann
−2/(4m+1) log(mu)1/(4m+1).

Proof It is easy to see hml < hm < hmu . Therefore

hm log2(mu) < hmu log2(mu) . ann
−2/(4mu+1)[log(n)]2 → 0.

mu log2(mu)/chm < mu log2(mu)/chml . n2/(4ml+1) log(n)/(can)→ 0.

(hm′/hm)−1/2m2
u log2(mu) = n

− 4(m′−m)

(4m+1)(4m′+1) (log(mu))
− 2m′−2m

(4m+1)(4m′+1)m2
u log2(mu)

. n
− 4

(4mu+1)2 (log(mu))
− 2

(4mu+1)2m2
u log2(mu)→ 0.

where the last “→ 0” follows from the assumption mu . logd0(n) for some d0 ∈ (0, 1/2).
For the last two terms, one has that

chm/ log(c) > chml/ log(c) &
can

n2/(4ml+1) log(n)
→∞.

h1/2
m log(c) < h1/2

mu log(c) . a1/2
n n−1/(4mu+1) log(n)→ 0.

42



Nonparametric Inference under B-bits Quantization

Appendix D. Proofs for main theorems

Proof of Theorem 1:
It holds that ‖ĝB

µ,t,c− g0‖2 ≤ 2‖ĝB
µ,t,c− ĝss

c ‖2 + 2‖ĝss
c − g0‖2, and we analyze these two terms

separately. We first analyze ‖ĝB
µ,t,c − ĝss

c ‖2. Because

|Q(yj)− yj | ≤ Ck(t)1
{
yj ∈ ∪k−1

j=2Rj(t)
}

+ |yj − µ1|1 {yj ∈ R1(t)}+ |yj − µk|1 {yj ∈ Rk(t)} ,

we have

(zi − ỹi)2 =

zi − 1

ñ

iñ∑
j=(i−1)ñ+1

Q(yj) +
1

ñ

iñ∑
j=(i−1)ñ+1

Q(yj)− ỹi


2

≤2

 1

ñ

iñ∑
j=(i−1)ñ+1

(
Q(yj)− yj

)
2

+ 2Ck(t)
2

≤2

{
1

ñ

iñ∑
j=(i−1)ñ+1

Ck(t)1
{
yj ∈ ∪k−1

j=2Rj(t)
}

+ |yj − µ1|1 {yj ∈ R1(t)}+ |yj − µk|1 {yj ∈ Rk(t)}

}2

+ 2Ck(t)
2

≤4Ck(t)
2 +

2

ñ

iñ∑
j=(i−1)ñ+1

(yj − µ1)2
1 {yj ∈ R1(t)}+

2

ñ

iñ∑
j=(i−1)ñ+1

(yj − µk)2
1 {yj ∈ Rk(t)} .

Therefore, from Lemma 10, we have

E‖ĝB
µ,t,c − ĝss

c ‖2 ≤ c−1
c∑
i=1

E
{

(zi − ỹi)2
}

≤ 4Ck(t)
2 +

2

n

n∑
i=1

E
{

(yi − µ1)2
1 {yi ∈ R1(t)}

}
+

2

n

n∑
i=1

E
{

(yi − µk)2
1 {yi ∈ Rk(t)}

}
.

On the other hand, by elementary calculations we have

2

n

n∑
i=1

E
{

(yi − µ1)2
1 {yi ∈ R1(t)}

}
=

2

n

n∑
i=1

∫ t1

−∞
(z − µ1)2p

(
z − g0(i/n)

σ

)
σ−1dz,

2

n

n∑
i=1

E
{

(yi − µk)2
1 {yi ∈ Rk(t)}

}
=

2

n

n∑
i=1

∫ ∞
tk−1

(z − µk)2p

(
z − g0(i/n)

σ

)
σ−1dz,

where p(·) is the distribution of ε. Combining the above, we get

E‖ĝB
µ,t,c − ĝss

c ‖2 ≤ Gc,k(t). (40)

Next, we analyze the mean square error of the second term ‖ĝss
c − g0‖2. For the sake of

theoretical investigation, we introduce the following function,

gnew =
c∑
i=1

θnew,iKi/c,
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where (θnew,1, . . . , θnew,c)
T = c−1(Σc + λIc)

−1f̃ with f̃ = (f(1/c), . . . , f(c/c))T ∈ Rc, and
f(x) is the integral function of g0 as defined in (15), i.e.,

f(x) =
1

2∆

∫ min(x+∆,1)

max(x−∆,0)
g0(s)ds, where x ∈ [0, 1], and ∆ =

1

c
.

Recall that ĝss
c =

∑c
i=1 θ̃iKi/c = c−1

∑∞
ν=1

ΦTν (Σc+λIc)−1ỹ
γν

ϕν , where (θ̃1, . . . , θ̃c)
T = c−1(Σc +

λIc)
−1ỹ with ỹ = (ỹ1, . . . , ỹc)

T , ϕ2k−1(x) =
√

2 cos(2πkx), ϕ2k(x) =
√

2 sin(2πkx) are the
trigonometric basis functions, γ2k−1 = γ2k = (2πk)2m, and Φν = (ϕν(1/c), ϕν(2/c), . . . , ϕν(c/c))T .
Therefore, we have

‖E(ĝss
c )− gnew‖2 = c−1(g̃ − f̃)T (Σc + λIc)

−1Ωc(Σc + λIc)
−1(g̃ − f̃)

≤ c−1(g̃ − f̃)T (g̃ − f̃)

= O(n−2), (41)

where g̃ = (g̃1, . . . , g̃c)
T and g̃i =

∑iñ
j=(i−1)ñ+1 g0(j/n)

ñ , i = 1, . . . , c. Next, we evaluate E(‖ĝss
c −

E(ĝss
c )‖2). Note that Σc,Ωc can be decomposed as Σc = MΛd′M

∗, Ωc = MΛdM
∗, as

defined in (26). Furthermore, we let ỹ0 = (ỹ0
1, . . . , ỹ

0
c )
T , where ỹ0

i = 1
ñ

∑iñ
j=(i−1)ñ+1 σεj .

Hence, we obtain

E(‖ĝss
c − E(ĝss

c )‖2) =
1

c2γ2
ν

∞∑
ν=1

E

{∣∣∣ΦT
ν (Σc + λIc)

−1 ỹ0
∣∣∣2}

=
σ2

c2γ2
ν

∞∑
ν=1

trace
(

(Σc + λIc)
−1 ΦνΦT

ν (Σc + λIc)
−1
)
Eε̃2

=
σ2

n
trace

(
(Σc + λIc)

−1
∞∑
ν=1

ΦνΦT
ν /c

γ2
ν

(Σc + λIc)
−1

)

=
σ2

n
trace

(
(Σc + λIc)

−1 Ωc (Σc + λIc)
−1
)

=
σ2

n
trace

(
M (Λd′ + λIc)

−1 Λd (Λd′ + λIc)
−1M∗

)
=
σ2

n

c−1∑
l=0

λd,l(
λ+ λd′,l

)2 .
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By expressions of λd,l’s, the above is upper bounded by the following

2σ2d̄m

n
(
2d̄′m + (2πc)2mλ

)2 + σ2
(
1 + d̄m

)
n−1

c−1∑
l=1

(2π(c− l))−4m + (2πl)−4m

(λ+ (2π(c− l))−2m + (2πl)−2m)2

≤ 2σ2d̄m

n
(
2d̄′m + (2πc)2mλ

)2 + 2σ2
(
1 + d̄m

)
n−1

∑
1≤l≤n/2

(2πl)−4m + (2π(c− l))−4m

(λ+ (2πl)−2m + (2π(c− l))−2m)2

≤ 2σ2d̄m

n
(
2d̄′m + (2πc)2mλ

)2 + 4σ2
(
1 + d̄m

)
n−1

∑
1≤l≤n/2

(2πl)−4m

(λ+ (2πl)−2m)2

≤ 2σ2d̄m

n
(
2d̄′m + (2πc)2mλ

)2 +
2σ2

(
1 + d̄m

)
πnh

∫ πch

0

1

(1 + x2m)2dx

≤ bm
(
σ2

n
+
σ2

nh

∫ πch

0

1

(1 + x2m)2dx

)
,

where bm ≥ 1 is a constant only depending on m. From the above analysis, we obtain

E(‖ĝss
c − E(ĝss

c )‖2) . n−1 + (nh)−1.

Using above analysis and (41), we have

E(‖ĝss
c − gnew‖2) . n−1 + (nh)−1. (42)

Now, we consider the difference between original regression function g0 and the integral
function f defined in (15), i.e., ‖f − g0‖2. By definition, for t ∈ [∆, 1 −∆], there exists t′

between t−∆ and t+ ∆ such that

f(t)− g0(t) =
1

2∆

∫ t+∆

t−∆
(g0(s)− g0(t)) ds

=
1

2∆

∫ t+∆

t−∆

(
g′0(t)(s− t) +

g′′0(t′)

2
(s− t)2

)
ds

=
1

2∆

∫ t+∆

t−∆

g′′0(t′)

2
(s− t)2ds =

∆2

3
g′′0(t′).

On the other hand, for t ∈ [0,∆], there exists t′ between 0 and t+ ∆ such that

f(t)− g0(t) =
1

2∆

∫ t+∆

0
(g0(s)− g0(t)) ds

=
1

2∆

∫ t+∆

0

(
g′0(t′)(s− t)

)
ds ≤ ∆

4
g′0(t′).

In a similar way, we obtain f(t) − g0(t) ≤ ∆
4 g
′
0(t′) for t ∈ [t − ∆, 1] and some t′ ∈ [t −

∆, 1]. Therefore, by Sobolev inequality, we know
∫ 1

0 |g
′′
0(t)|2dt ≤

∫ 1
0 |g

(m)
0 (t)|2dt < ∞ and
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∫ 1
0 |g

′
0(t)|2dt ≤

∫ 1
0 |g

(m)
0 (t)|2dt <∞, which implies

‖f − g0‖2 =

∫ 1

0
|f(t)− g(t)|2dt

=

∫ t+∆

t−∆
|f(t)− g(t)|2dt+

∫ t+∆

0
|f(t)− g(t)|2dt+

∫ 1

t−∆
|f(t)− g(t)|2dt

= O(c−3). (43)

In the end, because both gnew and f belong to Sobolev space, and gnew can be viewed
as the approximate error of spline estimates with respect to f without random error. By
classical spline theory ((Wahba, 1990)), we know

‖gnew − f‖2 = O(c−2m + λ). (44)

As a consequence, from (42), (43), and (44), we have E‖ĝss
c − g0‖2 ≤ 3E(‖ĝss

c − gnew‖2) +
3‖gnew − f‖2 + 3‖f − g0‖2 = O

(
(nh)−1 + c−3 + c−2m + λ

)
. Combining the result in (40),

we get the desired result.

Proof of Corollary 2: Because as |t1| → ∞,

Gc,k,1(t) =
1

n

n∑
i=1

∫ t1

−∞
(z − µ1)2σ−1p

(
z − g0(i/n)

σ

)
dz

. 2n−1σ−1

∫ t1−g0(i/n)
σ

−∞

n∑
i=1

z2p(z)dz + 2n−1σ−1

∫ t1−g0(i/n)
σ

−∞

n∑
i=1

µ2
1p(z)dz.

The first term in the above equation is bounded by n−2m/(2m+1) because p(z) satisfies∫
|z|≥T z

2p(z)dz = O(exp(−T d)) and d ≥ 4m
2m+1 , |t1| �

√
log(n). Due to Condition (B), we

know Gc,k,1(t) = O(n−2m/(2m+1)). Similarly, we know Gc,k,2(t) = O(n−2m/(2m+1)). Hence
Gc,k(t) = Ck(t)

2 +Gc,k,1(t) +Gc,k,2(t) = O(n−2m/(2m+1)). The result follows by Theorem 1

and λ � n−2m/(2m+1), c � n
max{1,2m/3}

2m+1 .

Proof of Theorem 3: Suppose z?i ’s are the quantized samples corresponding to µj = µ?j
for 1 ≤ j ≤ k, where µ?j are defined by

µ?j =

∑n
i=1E{yiI(yi ∈ Rj(t))}∑n

i=1 P (yi ∈ Rj(t))
. (45)

For p > 0, define the pth order moment of the standardized z?i :

mp = EH0{|z?i /τ?k |p}, (46)

where EH0 denotes the expectation under H0 and τ?2k = V ar(z?i |H0). Because |µj − µ?j | ≤
Ck(t) for j = 2, . . . , k − 1, and under Condition (B), we have that τ?2k = O(cn−1). Fur-

thermore, since b � log2

(√
nTnh1/2

)
, which implies that Ck(t)

4 � T 2
n

24b
� T 2

n
n2hT 2

n
=
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(n2h)−1 = o(c2n−2) and the assumption that E([ñ−1
∑ñ

j=1Q(εj)]
4) = O(c2n−2), one has

that mp = O(1) for p = 3, 4.

Define zsd
i = z?i /τ

?
k for i = 1, . . . , c. Then zsd

i are iid variables with zero-mean and unit
variance. Define z? = (z?1 , . . . , z

?
c )T and zsd = (zsd

1 , . . . , z
sd
c )T . DefineA0 = diag(a1,1, . . . , ac,c)

and A1 = A−A0. Let B = A1/sc. Define αl =
λd,l

(λ+λd′,l)
2 , l = 0, . . . , c− 1. Immediately, for

all i = 1, . . . , c, ai,i = c−1
∑c−1

l=0 αl � 1/(ch), therefore,

∑
i 6=i′

a2
i,i′ =

c∑
i,i′=1

a2
i,i′ −

c∑
i=1

a2
i,i

= trace(A2)− c

(
c−1

c−1∑
l=0

αl

)2

=

c−1∑
l=0

α2
l − c

(
c−1

c−1∑
l=0

αl

)2

� h−1(1− 1/(ch)) � h−1,

where the last “�” follows from condition (ch)−1 = o(1). This implies that s2
c � h−1.

Furthermore,

trace(A2) =
c−1∑
l=0

α2
l � h−1 and trace(A4) =

c−1∑
l=0

α4
l � h−1. (47)

Let T ?µ?,t,c be the test statistic corresponding to z?i ’s. By (25) it can be shown that

cT ?µ?,t,c = z?TAz?, which leads to that

cT ?µ?,t,c −
∑c

i=1 ai,iτ
?2
k

scτ?2k
=

z?TAz? −
∑c

i=1 ai,iτ
?2
k

scτ?2k

=
(zsd)TAzsd −

∑c
i=1 ai,i

sc

=

∑c
i=1 ai,i((z

sd
i )2 − 1) +

∑
1≤i 6=i′≤c ai,i′z

sd
i z

sd
i′

sc

=

∑c
i=1 ai,i((z

sd
i )2 − 1)

sc
+
∑
i 6=i′

bi,i′z
sd
i z

sd
i′ ≡ Q1 +Q2.

We first look at Q1. By (46) we have

E{|
c∑
i=1

ai,i((z
sd
i )2 − 1)|2}/s2

c = s−2
c

c∑
i=1

a2
i,i(m4 − 1) � m4 − 1

ch
= o(1),

which leads to Q1 = oP (1).

Define bi,i = 0 for i = 1, . . . , c and B = [bi,i′ ]1≤i,i′≤c. We next analyze Q2. Note that
Q2 = (zsd)TBzsd. Let (z̃sd

1 , . . . , z̃
sd
c )T be an independent copy of zsd = (zsd

1 , . . . , z
sd
c )T .
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Let I be uniform distributed on {1, 2, . . . , c}. Throughout, we let z̃sd
i , zsd

i and I be
mutually independent. Define z̃sd = (zsd

1 , . . . , z
sd
I−1, z̃

sd
I , z

sd
I+1, . . . , z

sd
c )T . So (zsd, z̃sd) is

an exchangeable pair (see Reinert and Röllin (2009)), and z̃sd = zsd + eI(z̃
sd
I − zsd

I ),
where ej = (0, . . . , 0, 1, 0, . . . , 0)T with 1 being at the jth position for j = 1, . . . , c. Let
Q′2 = ((z̃sd)TBz̃sd. By a simple calculation it can be shown that Q′2 −Q2 = (z̃sd)TBz̃sd −
(zsd)TBzsd = 2(z̃sd

I − zsd
I )eTI Bz

sd. So it follows that

E{Q′2 −Q2|zsd} = E{2(z̃sd
I − zsd

I )eTI Bz
sd|zsd} =

2

c

c∑
j=1

E{(z̃sd
j − zsd

j )eTj Bz
sd|zsd} = −2

c
Q2.

(48)

Let g?0 : R → [0, 1] be a C3-function such that g?0(s) = 1 for s ≤ 0 and g?0(s) = 0 for
s ≥ 1. Let Gu(s) = g?0(ψc(s − u)) for u ∈ R, where ψc is a positive sequence tending to
infinity and satisfying

(m2
4 +m2

3 +m4)ψ2
ch = o(1), m3ψ

3
ch

1/2 = o(1). (49)

The existence of such ψc follows by (46).

Next we will approximate E{Gu(Q2) − Gu(V )} where V ∼ N(0, 1). Consider Stein’s
equation

Gu(s)− E{Gu(V )} = g̈(s)− zsdġ(s), (50)

where ġ and g̈ represent first- and second-order derivatives of g. By Goldstein and Rinott
(1996), a solution to (50) is

g(s) = −
∫ 1

0

1

2t
[E{Gu(

√
ts+

√
1− tV )} − E{Gu(V )}]dt. (51)

Let C1 = ‖ġ?0‖sup, C2 = ‖g̈?0‖sup, and C3 = ‖
...
g ?

0‖sup, where
...
g ?

0 is the third-order
derivative of g?0. It is easy to see that

g̈(s) = −1

2

∫ 1

0
EU{G̈u(

√
ts+

√
1− tU)}dt,

...
g (s) = −1

2

∫ 1

0

√
tEU{

...
Gu(
√
ts+

√
1− tU)}dt.

Clearly, it holds that ‖g̈‖sup ≤ ‖G̈u‖sup ≤ C2ψ
2
c and ‖

...
g ‖sup ≤ ‖

...
Gu‖sup ≤ C3ψ

3
c .

By exchangeability, 1
2E{(Q

′
2 − Q2)(ġ(Q′2) + ġ(Q2))} = 0. So E{(Q′2 − Q2)ġ(Q2)} +

1
2E{(Q

′
2−Q2)(ġ(Q′2)−ġ(Q2))} = 0. Since E{(Q′2−Q2)ḟ(Q2)} = E{E{Q′2−Q2|w}ġ(Q2)} =
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−2
cE{Q2ġ(Q2)}, we have

E{Q2ġ(Q2)} − E{g̈(Q2)}

=
c

4
E{(Q′2 −Q2)(ġ(Q′2))− ġ(Q2))} − E{g̈(Q2)}

=
c

4
E{g̈(Q2)(Q′2 −Q2)2} − E{g̈(Q2)}+

c

4

∫ 1

0
(1− t)× E{

...
g (Q2 + t(Q′2 −Q2))(Q′2 −Q2)3}dt

= E{g̈(Q2)(
c∑
i=1

(z̃sd
i − zsd

i )2(eTi Bz
sd)2 − 1)}

+2

∫ 1

0
(1− t)E{

...
g (Q2 + t(Q′2 −Q2))

c∑
i=1

(z̃sd
i − zsd

i )3(eTi Bz
sd)3}

≡ J1 + J2. (52)

Next, we analyze J1 and J2 separately. Let Mp = E{(zsd
i )p} for p ≥ 1. For J1, by direct

examinations we have

|J1| ≤ C2ψ
2
cE{|

c∑
i=1

(1 + (zsd
i )2)(eTi Bz

sd)2 − 1|} ≤ C2ψ
2
cE{|

c∑
i=1

Di − 1|2}1/2,

where Di = (1 + (zsd
i )2)(eTi Bz

sd)2. Since
∑c

i=1E{Di} = 1, we get that

E{(
c∑
i=1

Di − 1)2} = E{|
c∑
i=1

[Di − E{Di}]|2}

=

c∑
i=1

E{(Di − E{Di})2}+
∑
i 6=i′

E{(Di − E{Di})(Di′ − E{Di′})}. (53)

The first term of (53) is equal to

c∑
i=1

[3(3 +M4)(eTi B
2ei)

2 − 4(eTi B
2ei)

2] = (5 + 3M4)
c∑
i=1

(eTi B
2ei)

2

= (5 + 3M4)

c∑
i=1

(
c∑
l=1

b2i,l

)2

≤ (5 + 3M4)
c∑
i=1

(
c∑
l=1

a2
i,l

)2

/s4
c

≤ (5 + 3M4)trace(A4)/s4
c � (5 + 3M4)h,

where the last “�” follows by (47).
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The second term of (53) is equal to

∑
i 6=i′

(
E{(1 + (zsd

i )2)(1 + (zsd
i′ )2)(eTi Bz

sd)2(eTi′Bz
sd)2}

−E{(1 + (zsd
i )2)(eTi Bz

sd)2}E{(1 + (zsd
i′ )2)(eTi′Bz

sd)2}
)

=
∑
i 6=i′

(
E{(1 + (zsd

i )2)(1 + (zsd
i′ )2)E{(eTi Bzsd)2(eTi′Bz

sd)2|zsd
i , z

sd
i′ }}

−E{(1 + (zsd
i )2)(eTi Bz

sd)2}E{(1 + (zsd
i′ )2)(eTi′Bz

sd)2}
)
.

We have that

E{(eTi Bzsd)2(eTi′Bz
sd)2|zsd

i , z
sd
i′ } = E{(bi,i′zsd

i′ +
∑
l 6=i,i′

bi,lz
sd
l )2(bi′,iz

sd
i +

∑
l 6=i,i′

bi′,lz
sd
l )2|zsd

i , z
sd
i′ }

= E{(N1 +N2 +N3)(N ′1 +N ′2 +N ′3)|zsd
i , z

sd
i′ }

= E{N1N
′
1|zsd

i , z
sd
i′ }+ E{N1N

′
2|zsd

i , z
sd
i′ }+ E{N1N

′
3|zsd

i , z
sd
i′ }

+E{N2N
′
1|zsd

i , z
sd
i′ }+ E{N2N

′
2|zsd

i , z
sd
i′ }+ E{N2N

′
3|zsd

i , z
sd
i′ }

+E{N3N
′
1|zsd

i , z
sd
i′ }+ E{N3N

′
2|zsd

i , z
sd
i′ }+ E{N3N

′
3|zsd

i , z
sd
i′ },

whereN1 = (
∑

l 6=i,i′ bi,lz
sd
l )2, N2 = 2

∑
l 6=i,i′ bi,lz

sd
l bi,i′z

sd
i′ , N3 = b2i,i′(z

sd
i′ )2, N ′1 = (

∑
l 6=i,i′ bi′,lz

sd
l )2,

N ′2 = 2
∑

l 6=i,i′ bi′,lz
sd
l bi′,iz

sd
i , N ′3 = b2i′,i(z

sd
i )2. By direct calculations, it is easy to see that

E{N1N
′
1|zsd

i , z
sd
i′ } = M4

∑
l 6=i,i′

b2i,lb
2
i′,l +

∑
l1,l2 6=i,i′
l1 6=l2

b2i,l1b
2
i′,l2 + 2

∑
l1,l2 6=i,i′
l1 6=l2

bi,l1bi,l2bi′,l1bi′,l2 ,

E{N1N
′
2|zsd

i , z
sd
i′ } = 2M3bi′,iz

sd
i

∑
l 6=i,i′

b2i,lbi′,l,

E{N1N
′
3|zsd

i , z
sd
i′ } = b2i′,i(z

sd
i )2

∑
l 6=i,i′

b2i,l,

E{N2N
′
1|zsd

i , z
sd
i′ } = 2M3bi,i′z

sd
i′

∑
l 6=i,i′

b2i′,lbi,l,

E{N2N
′
2|zsd

i , z
sd
i′ } = 4b2i,i′z

sd
i′ z

sd
i

∑
l 6=i,i′

bi,lbi′,l,

E{N2N
′
3|zsd

i , z
sd
i′ } = E{N3N

′
2|zsd

i , z
sd
i′ } = 0,

E{N3N
′
1|zsd

i , z
sd
i′ } = b2i,i′(z

sd
i′ )2

∑
l 6=i,i′

b2i′,l,

E{N3N
′
3|zsd

i , z
sd
i′ } = b2i,i′b

2
i′,i(z

sd
i )2(zsd

i′ )2.
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Therefore, it can be shown that

∑
i 6=i′

[E{DiDi′} − E{Di}E{Di′}]

= 4M4

∑
i 6=i′

∑
l 6=i,i′

b2i,lb
2
i′,l + 4

∑
i 6=i′

∑
l1,l2 6=i,i′
l1 6=l2

b2i,l1b
2
i′,l2

+8
∑
i 6=i′

∑
l1,l2 6=i,i′
l1 6=l2

bi,l1bi,l2bi′,l1bi′,l2 + 4M2
3

∑
i 6=i′

bi,i′
∑
l 6=i,i′

b2i,lbi′,l

+4M2
3

∑
i 6=i′

bi′,i
∑
l 6=i,i′

bi,lb
2
i′,l + 2(1 +M4)

∑
i 6=i′

b2i,i′
∑
l 6=i,i′

b2i,l

+2(1 +M4)
∑
i 6=i′

b2i,i′
∑
l 6=i,i′

b2i′,l + 4M2
3

∑
i 6=i′

b2i′,i
∑
l 6=i,i′

bi,lbi′,l

+(1 +M4)2
∑
i 6=i′

b4i,i′ − 4
∑
i 6=i′

∑
l 6=i

b2i,l
∑
l 6=i′

b2i′,l

≤ 4M4

∑
i 6=i′

∑
l 6=i,i′

b2i,lb
2
i′,l + 8

∑
i 6=i′

∑
l1,l2 6=i,i′
l1 6=l2

bi,l1bi,l2bi′,l1bi′,l2 + 4M2
3

∑
i 6=i′

bi,i′
∑
l 6=i,i′

b2i,lbi′,l

+4M2
3

∑
i 6=i′

bi′,i
∑
l 6=i,i′

bi,lb
2
i′,l + 2(1 +M4)

∑
i 6=i′

b2i,i′
∑
l 6=i,i′

b2i,l

+2(1 +M4)
∑
i 6=i′

b2i,i′
∑
l 6=i,i′

b2i′,l + 4M2
3

∑
i 6=i′

b2i′,i
∑
l 6=i,i′

bi,lbi′,l + (1 +M4)2
∑
i 6=i′

b4i,i′

≤ (M2
4 + 12M2

3 + 10M4 + 13)trace(B4).

The last inequality holds because each term in the summation is bounded by trace(B4)
multiplied by suitable constants.

Since B = (A − A0)/sc, we have B2 ≤ 2(A2 + A2
0)/s2

c and B4 ≤ 8(A4 + A4
0)/s4

c . So it
holds that

trace(B4) ≤ 16s−4
c trace(A4),

where the last inequality follows from the trivial fact trace(A4) ≥
∑c

i=1 a
4
i,i. From the above

analysis, we get that

|J1| ≤ C2(16M2
4 + 192M2

3 + 163M4 + 213)ψ2
cs
−4
c trace(A4). (54)
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For J2, it holds that

|J2| =
∣∣2 c∑

i=1

∫ 1

0
(1− t)E{

...
g (Q2 + t(Q′2 −Q2))(z̃sd

i − zsd
i )3(eTi Bz

sd)3}
∣∣

≤ 2‖
...
g ‖sup

c∑
i=1

E{|z̃sd
i − zsd

i |3|eTi Bzsd|3}

= 2‖
...
g ‖sup

c∑
i=1

E{|z̃sd
i − zsd

i |}E{|eTi Bzsd|3}

≤ 32C3E{|zsd
i |3}ψ3

c

c∑
i=1

E{|eTi Bzsd|3}

≤ 32C3E{|zsd
i |3}ψ3

c

c∑
i=1

E{|eTi Bzsd|4}1/2E{|eTi Bzsd|2}1/2

= 32
√

3C3E{|zsd
i |3}ψ3

c

c∑
i=1

(eTi B
2ei)

3/2

≤ 32
√

3C3E{|zsd
i |3}ψ3

c

√√√√ c∑
i=1

(eTi B
2ei)2

c∑
i=1

eTi B
2ei

≤ 32
√

3/2C3E{|zsd
i |3}ψ3

c

√
trace(B4)

≤ 128
√

3/2C3E{|zsd
i |3}ψ3

cs
−2
c

√
trace(A4).

By (47), (54) and s2
c � h−1, we have

|J1| . C2(16M2
4 + 192M2

3 + 163M4 + 213)ψ2
ch,

|J2| . 128
√

3/2C3E{|zsd
i |3}ψ3

ch
1/2.

By (49) the following holds uniformly for u ∈ R:

E{Gu(Q2)} − E{Gu(V )} → 0, c→∞. (55)

Similarly, for G̃u(s) = g?0(ψn(s−u) + 1), it can be shown that the following statement holds
uniformly for u ∈ R:

E{G̃u(Q2)} − E{G̃u(V )} → 0, c→∞. (56)

By elementary facts, we have

P (Q2 ≤ u) ≤ E{Gu(Q2)} ≤ P (Q2 ≤ u+ ψ−1
c ),

P (V ≤ u) ≤ E{Gu(V )} ≤ P (V ≤ u+ ψ−1
c ),

P (Q2 ≤ u− ψ−1
c ) ≤ E{G̃u(Q2)} ≤ P (Q2 ≤ u),

P (V ≤ u− ψ−1
c ) ≤ E{G̃u(V )} ≤ P (V ≤ u). (57)

By (55), (56) and (57), the following statements hold uniformly for u ∈ R,

P (Q2 ≤ u)− P (V ≤ u) ≤ E{Gu(Q2)−Gu(V )}+ P (V ≤ u+ ψ−1
c )− P (V ≤ u)→ 0,

P (V ≤ u)− P (Q2 ≤ u) ≤ E{G̃u(V )− G̃u(Q2)}+ P (V ≤ u)− P (V ≤ u− ψ−1
c )→ 0.
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Hence, as c tends to infinity,

sup
u∈R
|P (Q2 ≤ u)− P (V ≤ u)| → 0.

This, together with Q1 = oP (1), proves

cT ?µ?,t,c − trace(A)τ?2k
scτ?2k

d−→ N(0, 1), as c→∞. (58)

Let zi’s and Tµ,t,c be the quantized samples and testing statistics in Theorem 3, then
we have

cTµ,t,c −
∑c

i=1 ai,iτ̂
2
k

scτ̂2
k

=
cTµ,t,c − cT ?µ?,t,c

scτ̂2
k

+
cT ?µ?,t,c −

∑c
i=1 ai,iτ̂

2
k

scτ̂2
k

= R1 +R2.

We will analyze these two terms separately. For R1, one has that

cTµ,t,c − cT ?µ?,t,c
scτ̂2

k

=
zTAz − z?TAz?

scτ̂2
k

=
∆?TA∆?

scτ̂2
k

+
2∆?TAz?

scτ̂2
k

, (59)

where ∆? = (∆?
1, . . . ,∆

?
c)
T with ∆?

i = zi − z?i which satisfies E(∆?2
i ) ≤ C2

k(t) + 1/n under
Condition B.

For the first term, since ‖∆?‖2 ≤ Op
(
cCk(t)

2 + cn−1
)

and A ≤ Ic, it follows that

∆?TA∆?

scτ̂2
k

≤ ‖∆
?‖2

scτ̂2
k

≤ c

scτ̂2
k

Op
(
Ck(t)

2 + n−1
)

= Op

(
cCk(t)

2

h−1/2c/n

)
= Op

(
nh1/2Ck(t)

2
)

= op(1),

where the last equality follows from the condition b� log2

(√
nTnh1/2

)
, which implies that

Ck(t)
2 � Tn

22b
� Tn

(nh1/2)Tn
= (nh1/2)−1.
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For the second term in (59), using the fact that (∆?
i , z

?
i )T , (∆?

j , z
?
j )T are independent if

i 6= j, and Ez? = 0, it is straightforward to show that

E
(
(∆? − E∆?)TAz?

)2
=

c∑
i=1

a2
iiE((∆?

i − E∆?
i )z

?
i )2 +

c∑
i=1

c∑
j=1

a2
ijE((∆?

i − E∆?
i )(∆

?
i − E∆?

i )z
?
j z
∗
j )

+
c∑
i=1

c∑
j=1

aijajiE((∆?
i − E∆?

i )z
?
j (∆?

j − E∆?
j )z

?
i )

+

c∑
i=1

c∑
j=1

aiiajjE((∆?
i − E∆?

i )z
?
i (∆?

j − E∆?
j )z

?
j )

+

c∑
i=1

c∑
j=1

ajjaiiE((∆?
j − E∆?

j )z
?
j (∆?

i − E∆?
i )z

?
i )

≤
c∑
i=1

a2
iiCk(t)

2τ?2k +

c∑
i=1

c∑
j=1

a2
ijCk(t)

2τ?2k

+
c∑
i=1

c∑
j=1

aijajiCk(t)
2τ?2k +

c∑
i=1

c∑
j=1

aiiajjCk(t)
2τ?2k +

c∑
i=1

c∑
j=1

ajjaiiCk(t)
2τ?2k

=

(
c∑
i=1

a2
ii

)
Ck(t)

2τ?2k + 2trace(A2)Ck(t)
2τ?2k + 2[trace(A)]2Ck(t)

2τ?2k .

In the proof of (47), we have shown that aii � (ch)−1, trace(A) � trace(A2) � h−1, thence
we have that

E
(
(∆? − E∆?)TAz?

)2
. h−2Ck(t)

2τ?2k ,

which implies that

2(∆? − E∆?)TAz?

scτ̂2
k

= Op

(
h−1Ck(t)τ

?
k

scτ̂2
k

)
= Op

(
h−1Ck(t)

√
c/n

h−1/2c/n

)
= Op

(
Ck(t)

√
n

ch

)
.

Furthermore, since A ≤ Ic, we have that

E
[
(E∆?)TAz?

]2
= E

[
(E∆?)TAz?z?TA(E∆?)

]
= τ?2k (E∆?)TA2(E∆?) ≤ τ?2k ‖E∆?‖2 ≤ cCk(t)2τ?2k ,

which implies that

2(E∆?)TAz?

scτ̂2
k

= Op

(√
cCk(t)τ

?
k

scτ̂2
k

)
= Op

(√
cCk(t)

√
c/n

h−1/2c/n

)
= Op

(
Ck(t)

√
nh
)
,

and consequently,
2∆?TAz?

scτ̂2
k

= Op

(
Ck(t)

√
n

ch
+ Ck(t)

√
nh

)
. (60)

Using the condition b � log2

(√
(nh1/2 + n(ch)−1)Tn

)
, and the fact that h → 0, one

has that

Ck(t)
2 � Tn

22b
� Tn

(nh1/2 + n(ch)−1)Tn
≤ Tn

(nh+ n(ch)−1)Tn
= (nh+ n(ch)−1)−1,
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which gives that 2∆?TAz?

scτ̂2k
= op(1). Plugging this back to equation (59), we have that

R1 = op(1).
Now we analyze R2, by Lemma 11, we have

cT ?µ?,t,c −
∑c

i=1 ai,iτ̂
2
k

scτ̂2
k

=
cT ?µ?,t,c − trace(A)τ?2k + trace(A)τ?2k − trace(A)τ̂2

k

scτ?2k

τ?2k
τ̂2
k

=
cT ?µ?,t,c − trace(A)τ?2k

scτ?2k
+

trace(A)(τ?2k − τ̂2
k )

scτ?2k
+ op(1)

=
cT ?µ?,t,c − trace(A)τ?2k

scτ?2k
+Op(Ck(t)h

−1/2).

Since k �
√

(nh1/2 + n(ch)−1)Tn, one has that

Ckh
−1/2 �

√
Tn√

(nh1/2 + n
ch)Tnh

=
1√

(nh3/2 + n
c )
≤
√
c/n = O(1).

From (58), we get the desired result.

Proof of Proposition 4: Suppose pσ(·) is the density of σε1. By direct calculations, we
have

E([ñ−1
ñ∑
j=1

Q(εj)]
4) = 3σ4(

1

ñ2
− 1

ñ3
)E2{Q(σε1)2}+

σ2E{Q(σε1)4}
ñ3

. (61)

For the first term, under Condition (B), we know E{Q(σε1)2} = O(1), which implies
3σ4( 1

ñ2 − 1
ñ3 )E2{Q(σε1)2} = O(c2n−2). For the second term, we have that

E{Q(σε1)4} =
k−1∑
j=2

µ4
jP (σε1 ∈ Rj) + µ4

1P (σε1 ∈ R1) + µ4
kP (σε1 ∈ Rk)

=
k−1∑
j=2

∫
Rj

µ4
jpσ(x)dx+ µ4

1P (σε1 ∈ R1) + µ4
kP (σε1 ∈ Rk)

≤
k−1∑
j=2

∫
Rj

(|x|+ Ck(t))
4pσ(x)dx+ µ4

1P (σε1 ∈ R1) + µ4
kP (σε1 ∈ Rk)

≤ 8
k∑
j=1

∫
Rj

σ4x4pσ(x)dx+ 8Ck(t)
4 + µ4

1P (σε1 ∈ R1) + µ4
kP (σε1 ∈ Rk)

= 8σ4E{ε41}+ 8Ck(t)
4 + µ4

1P (σε1 ∈ R1) + µ4
kP (σε1 ∈ Rk).

Since Ck(t)
4 = o(1), E{ε41} = O(nc−1) and µ4

jP (σε1 ∈ Rj(t)) = O(nc−1) for j = 1, k, one

has that σ2E{Q(σε1)4}
ñ3 = O(c2n−2). Plugging this back to equation (61), we get the desired

result.
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Proof of Theorem 5: Without loss of generality, we only consider the case g∗(x) = 0
in (2). By Condition (B), we have that min{t21, t2k−1} > 4c2

sρ
2, as n → ∞. Consider the

following event:

E1 = {σ|εi|+ csρ ≤
√
Tn for all 1 ≤ i ≤ n}. (62)

It is easy to show that P (E1)→ 1 as n→∞ under Condition (B). Thus, we choose N ′η s.t.
P (E1) ≥ 1− η/3 if c ≥ N ′η.

Throughout the proof, we suppose that g ∈ Smρ (I) is the function that generates the

samples and f is the integral function of g defined in (15). Let ωi = z̃i−z̃0
i , ω = (ω1, . . . , ωc)

T .
It is straightforward to see that ωi = zi − z0

i under event E1. Because

Ck(t)
2 � Tn

22b
� Tn

(nh1/2 + n(ch)−1)Tn
≤ Tn

(nh+ n(ch)−1)Tn
= (nh+ n(ch)−1)−1 � τ2

k ,

it follows by Lemma 14 that there exists N ′′ s.t., when c ≥ N ′′, the following equation holds

sup
g∈Smρ (I)

E{|(z̃ − z̃0)TAz0|2}
(1 + (ch2)−1)τ2

k

∑c
i=1(|f(i/c)|+ 4Ck(t) + ζ)2

≤ 8, as c→∞. (63)

Consider the event

E2 =

|ωTAz0| ≤ C ′η
√

1 + (ch2)−1τk

√√√√ c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2

 ,

where C ′η =
√

24/η.
Then

1− P (E2) ≤ E{|ωTAz0|2}
(C ′η)

2(1 + (ch2)−1)τ2
k

∑c
i=1(|f(i/c)|+ 4Ck(t) + ζ)2

≤ η/3,

which implies that P (E2) ≥ 1− η/3.
Let τ̂2

k,0 be the estimated variance under the null. Then one has that

(z0)TAz0 − trace(A)τ̂2
k

scτ̂2
k

=
(z0)TAz0 − trace(A)τ̂2

k,0 + trace(A)τ̂2
k,0 − trace(A)τ̂2

k

scτ̂2
k,0

τ̂2
k,0

τ̂2
k,0

=
(z0)TAz0 − trace(A)τ̂2

k,0

scτ̂2
k,0

+
trace(A)(τ̂2

k,0 − τ̂2
k )

scτ̂2
k,0

+ op(1)

=
(z0)TAz0 − trace(A)τ̂2

k,0

scτ̂2
k,0

+Op(Ck(t)h
−1/2).

Since k �
√

(nh1/2 + n(ch)−1)Tn, one has that

Ckh
−1/2 �

√
Tn√

(nh1/2 + n
ch)Tnh

=
1√

(nh3/2 + n
c )
≤
√
c/n = O(1).
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It follows from Theorem 3 that

(z0)TAz0 − trace(A)τ̂2
k

scτ̂2
k

= OP (1).

Hence, there exists C ′′η > 0 s.t. P (E3) ≥ 1− η/3 for all c ≥ N ′η and N ′′, where

E3 =

{∣∣∣∣(z0)TAz0 − trace(A)τ̂2
k

scτ̂2
k

∣∣∣∣ ≤ C ′′η} .
Let E = E1 ∩ E2 ∩ E3, then P (E) ≥ 1− η for any c ≥ N ′η and N ′′.

Suppose g ∈ Smρ (I) satisfies ‖g‖c ≥ Cηδ∗, where

Cη = max
{

6%ρ2, 384, (72C ′η)
2, 6(C ′′η + z1−α/2 + 1)

}
, (64)

δ∗ =
√
c−1τ2

k (1 + sc + (ch2)−1) + λ+ c−2m + Ck(t)2 + ζ2, (65)

where τ2
k = O(ñ−1), ζ = max

i=1,...,c

∣∣f(i/c)− 1
ñ

∑iñ
j=(i−1)ñ+1 g(j/n)

∣∣ = O(n−1).

It follows from Lemma 13 that, on E , |ωi − f(i/c)| ≤ 4Ck(t) + ζ. Since A ≤ Ic, we get
that

(ω − f)TA(ω − f) ≤
c∑
i=1

(ωi − f(i/c))2 ≤ 32cCk(t)
2 + 2cζ2,

which, together with Lemma 16, leads to that

ωTAω ≥ 1

2
fTAf− (ω − f)TA(ω − f)

=
c

2
‖g‖2c −

1

2
fT (Ic −A)f− (ω − f)TA(ω − f)

≥ c

2
‖g‖2c −

1

2
%c(λ+ c−2m)ρ2 − 32cCk(t)

2 − 2cζ2.
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Therefore, on E , we have

cTµ,t,c − trace(A)τ̂2
k

scτ̂2
k

=
zTAz − (z0)TAz0

scτ̂2
k

+
(z0)TAz0 − trace(A)τ̂2

k

scτ̂2
k

≥ zTAz − (z0)TAz0

scτ̂2
k

− C ′′η

=
ωTAω + 2ωTAz0

scτ̂2
k

− C ′′η

≥
c
2
‖g‖2c− 1

2
%c(λ+c−2m)ρ2−32cCk(t)2−2cζ2−2C′ητk

√
(1+ 1

ch2
)
∑c
i=1(|f(i/c)|+4Ck(t)+ζ)2

scτ̂2k
− C ′′η

≥
c
2
‖g‖2c− 1

2
%c(λ+c−2m)ρ2−32cCk(t)2−2cζ2−6C′η

√
1+(ch2)−1τk

√
c‖g‖c

scτ̂2k
− C ′′η (66)

=

c
2‖g‖

2
c

(
1−

1
2
%c(λ+c−2m)ρ2

c
2
‖g‖2c

− 32cCk(t)2
c
2
‖g‖2c

− 2cζ2
c
2
‖g‖2c
− 6C′η

√
1+(ch2)−1τk

√
c‖g‖c

c
2
‖g‖2c

)
scτ̂2

k

− C ′′η

≥
c
6‖g‖

2
c

scτ̂2
k

− C ′′η > z1−α/2, (67)

where (66) follows from Cη > 12 (see (64)), i.e.,

c∑
i=1

f(i/c)2 = c‖g‖2c ≥ cCηδ2
∗ ≥ 48cCk(t)

2, ,
c∑
i=1

f(i/c)2 = c‖g‖2c ≥ cCηδ2
∗ ≥ 3cζ2,

which leads to

c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2 ≤ 3

c∑
i=1

f(i/c)2 + 48cCk(t)
2 + 3cζ2 ≤ 9

c∑
i=1

f(i/c)2 = 9c‖g‖2c ;

and (67) follows from (64), i.e.,

1
2%c(λ+ c−2m)ρ2

c
2‖g‖2c

≤ 1/6,

32cCk(t)
2

c
2‖g‖2c

≤ 1/6,

2cζ2

c
2‖g‖2c

≤ 1/6,

6C ′η
√

1 + (ch2)−1τk
√
c‖g‖c

c
2‖g‖2c

≤ 1/6.
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Then for any g ∈ Smρ (I) satisfying ‖g‖c ≥ Cηδ∗, where Cη, δ∗ are defined in (64) (65), there
exist Nη ≡ max{N ′η, N ′′} such that for any c ≥ Nη, we have

P (reject H0|H1 is true)

≥ P

(
E and

∣∣∣∣cTµ,t,c − trace(A)τ̂2
k

scτ̂2
k

∣∣∣∣ ≥ z1−α/2

)
= P (E) ≥ 1− η.

In the end, since h = λ1/(2m), nh1/2Ck(t)
2 = o(1), ch → ∞, ζ = O(n−1), immediately, one

has that ‖g‖c ≥ Cηδ∗ is equivalent as ‖g‖c ≥ Cηδn,c,λ. This proves the desired result.

Proof of Theorem 6: Suppose g = βx + α is the “true” function under H linear
0 and

yi = g(i/n) + σεi, i = 1, . . . , n. We use ĝ to denote the least-square estimator of g based on
Q(yi)’s. Consider the following two events:

E1 = {σ|εi|+ csρ ≤
√
Tn for all 1 ≤ i ≤ n},

E2 = {|g(i/n)− ĝ(i/n)| ≤
√
Tn for all 1 ≤ i ≤ n}.

It is easy to show that P (E1 ∩ E2) → 1, as n → ∞. Since min{t21, t2k−1} = Tn > 4c2
sρ

2 as
n→∞, under event E1 ∩ E2, for j = 1, . . . , c, one has that

σ|εj | ≤ min{|t1|, |tk−1|}, |yj | ≤ min{|t1|, |tk−1|}, |g(j/n)− ŷj | ≤ min{|t1|, |tk−1|}.

Furthermore, we have

zlinear
i ≤

∑iñ
j=(i−1)ñ+1Q(ylinear

j )

ñ
+ Ck(t) (68)

=

∑iñ
j=(i−1)ñ+1Q

(
Q(yj)− ŷj

)
ñ

+ Ck(t)

=

∑iñ
j=(i−1)ñ+1Q

(
yj − g(j/n) +Q(yj)− yj + g(j/n)− ŷj

)
ñ

+ Ck(t)

≤
∑iñ

j=(i−1)ñ+1Q
(
yj − g(j/n)

)
+Q

(
Q(yj)− yj

)
+Q

(
g(j/n)− ŷj

)
ñ

+ 7Ck(t)

≤
∑iñ

j=(i−1)ñ+1Q(σεj)

ñ
+

∑iñ
j=(i−1)ñ+1Q

(
g(j/n)− ŷj

)
ñ

+ 9Ck(t)

≤ z0
i + ςi + 10Ck(t), (69)

where ςi =
∑iñ
j=(i−1)ñ+1Q

(
g0(j/n)−ŷj

)
ñ satisfying ςi = Op(1/n + Ck(t)), and equations (68),

(69) follow from (6), (33). Let z0 = (z0
1 , . . . , z

0
c )T , ς = (ς1, . . . , ςc)

T . Therefore, the test
statistic

cTlinear = c‖ĝB
linear,µ,t,c‖2 = (zlinear)TAzlinear

≤ (z0)TAz0 + ςTAς + 100
−−−→
Ck(t)

TA
−−−→
Ck(t) + 2

(
(z0)TAς + 10(z0)TA

−−−→
Ck(t) + 10ςTA

−−−→
Ck(t)

)
= T1 + T2 + T3 + T4,
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where
−−−→
Ck(t) = (Ck(t), . . . , Ck(t))

T . Now we proceed to prove that cTlinear is dominated by
T1. Using the fact that z0

i , z0
j are independent of each other if i 6= j, and E({z0

i }2) =

O(τ2
k ) = O(c/n), E({z0

i }4) = O(c2/n2), then for the first term T1, it is straightforward to
show that

E
(
(z0)TAz0

)2
=

c∑
i=1

a2
iiE(z0

i )4 +

c∑
i=1

c∑
j=1

a2
ijE(z0

i z
0
i z

0
j z

0
j ) +

c∑
i=1

c∑
j=1

aijajiE(z0
i z

0
j z

0
j z

0
i )

+
c∑
i=1

c∑
j=1

aiiajjE(z0
i z

0
i z

0
j z

0
j ) +

c∑
i=1

c∑
j=1

ajjaiiE(z0
j z

0
j z

0
i z

0
i )

�c2n−2

 c∑
i=1

a2
ii +

c∑
i=1

c∑
j=1

a2
ij +

c∑
i=1

c∑
j=1

aijaji +
c∑
i=1

c∑
j=1

aiiajj +
c∑
i=1

c∑
j=1

ajjaii


=c2n−2

(
c∑
i=1

a2
ii + 2trace(A2) + 2[trace(A)]2

)
.

In the proof to achieve equation (47), we have shown that aii � (ch)−1, trace(A) �
trace(A2) � h−1, thence we have that

E
(
(z0)TAz0

)2 � c2(nh)−2. (70)

Furthermore, since A ≤ Ic, we have that

ςTAς ≤
c∑
i=1

ς2
i =

c∑
i=1

[∑iñ
j=(i−1)ñ+1Q

(
g0(j/n)− ŷj

)
ñ

]2
= Op

(
c/n+ cCk(t)

2
)
,

−−−→
Ck(t)

TA
−−−→
Ck(t) ≤ cCk(t)2.

Since Ck(t)
2 � Tn

22b
� Tn

(nh1/2+n(ch)−1)Tn
≤ Tn

(nh+n(ch)−1)Tn = (nh+ n(ch)−1)−1, one has that

cCk(t)
2 � c(nh+ n(ch)−1)−1 ≤ c(nh)−1.

Together with the fact that cn−1 � c(nh)−1 and equation (70), one has that

T2 � T1, T3 � T1.

Similarly, it can be shown that T4 � T1. Therefore, cTlinear � T1. The dominated term
T1 in cTlinear is nothing but cTµ,t,c for testing H0 : g0(x) = 0 based on z0. Therefore, in
keep with Lemma 11, the limiting distribution of Tlinear under H linear

0 should have the same
limiting distribution as Tµ,t,c under H0 : g0(x) = 0. Thus, according to Theorem 3 and
Lemma 12, the result is proved.

Proof of Theorem 7: The proof of Theorem 7 is similar to Theorem 5. Let g be the
function which generates the observations and PL(I)(g) = arg minf∈L(I) ‖g − f‖2 be the
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projection of g(·) to L(I). We further define f(x) be the integral function associated with
g − PL(I)(g), as defined in (15), that is,

f(x) =
1

2∆

∫ min(x+∆,1)

max(x−∆,0)
[g − PL(I)(g)](s)ds, for x ∈ [0, 1], ∆ =

1

c
.

Therefore, ‖g − PL(I)(g)‖c =
√∑c

i=1 f
2(i/c)/c. To proceed, we first define ĝ? be the least

squared estimator based on Q
(
PL(I)(g)(j/n)+σεj

)
which satisfies |ĝ(i/n)−ĝ?(i/n)| ≤ Ck(t).

Let zlinear
i,0 be the zlinear

i based on PL(I)(g). According to (6), onw has that∣∣∣∣∣∣zlinear
i,0 − ñ−1

iñ∑
j=(i−1)ñ+1

Q
(
Q
(
PL(I)(g)(j/n) + σεj

)
− ĝ?(j/n)

)∣∣∣∣∣∣ ≤ Ck(t), for i = 1, . . . , c.

Let zlinear
0 = (zlinear

1,0 , . . . , zlinear
c,0 )T . Before proceeding, we first define some notations to ease

the calculations. Define

z̃lineari,0 = zlineari,0 1

(
max{σ|εj |+ csρ, |g(j/n)− ĝ(j/n)|, |PL(I)(g)(j/n)− ĝ?(j/n)|} ≤

√
Tn for all j = (i− 1)ñ+ 1, . . . iñ

)
,

z̃lineari = zlineari 1

(
max{σ|εj|+ csρ, |g(j/n)− ĝ(j/n)|, |PL(I)(g)(j/n)− ĝ?(j/n)|} ≤

√
Tn for all j = (i− 1)ñ+ 1, . . . iñ)

)
.

Similar to Lemma 13, we want to find an upper bound of |z̃linear
i − z̃linear

i,0 |. It is straightfor-
ward to show that

|z̃linear
i − z̃linear

i,0 | (71)

≤
∣∣∣ñ−1

iñ∑
j=(i−1)ñ+1

Q(ylinear
j )−Q

(
Q
(
PL(I)(g)(j/n) + σεj

)
− ĝ?(j/n)

)∣∣∣+ 2Ck(t)

=
∣∣∣ñ−1

iñ∑
j=(i−1)ñ+1

Q
(
Q(yj)− ĝ(j/n)

)
−Q

(
Q
(
PL(I)(g)(j/n) + σεj

)
− ĝ?(j/n)

)∣∣∣+ 2Ck(t)

≤
∣∣∣ñ−1

iñ∑
j=(i−1)ñ+1

Q(yj)− ĝ(j/n)− PL(I)(g)(j/n)− σεj + ĝ?(j/n)
∣∣∣+ 6Ck(t)

≤
∣∣∣ñ−1

iñ∑
j=(i−1)ñ+1

yj − PL(I)(g)(j/n)− σεj + ĝ?(j/n)− ĝ(j/n)
∣∣∣+ 7Ck(t)

≤
∣∣∣∣ñ−1

iñ∑
j=(i−1)ñ+1

(
g(j/n)− PL(I)(g)(j/n)

)∣∣∣∣+ 8Ck(t)

≤ |f(i/c)|+ 8Ck(t) + ζ,

where

ζ = max
1≤i≤c

∣∣∣f(i/c)− c

n

iñ∑
j=(i−1)ñ+1

(
g(j/n)− PL(I)(g)(j/n)

)∣∣∣ = O(n−1).
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Suppose that Condition (B) holds, and consider events

E∗1 = {σ|εi|+ csρ ≤
√
Tn for all 1 ≤ i ≤ n},

E∗2 = {|g(i/n)− ĝ(i/n)| ≤
√
Tn for all 1 ≤ i ≤ n},

E∗3 = {|PL(I)(g)(i/n)− ĝ?(i/n)| ≤
√
Tn for all 1 ≤ i ≤ n}.

It is easy to show that P (E∗1 ∩ E∗2 ∩ E∗3 ) → 1 as n → ∞. Let E∗ = E∗1 ∩ E∗2 ∩ E∗3 . Thus, we
choose N ′η s.t. P (E∗) ≥ 1 − η/3 if n ≥ N ′η. Define ωlinear = (ωlinear

1 , . . . , ωlinear
c )T , where

ωlinear
i = z̃linear

i − z̃linear
i,0 . Obviously, ωlinear

i = zlinear
i − zlinear

i,0 under event E∗. Therefore, by

(71), under event E∗, we have |ωlinear
i − f(i/c)| ≤ 8Ck(t) + ζ. Since A ≤ Ic, we get that

(ωlinear − f)TA(ωlinear − f) ≤
c∑
i=1

(ωlinear
i − f(i/c))2 ≤ 128cCk(t)

2 + 2cζ2, (72)

where f = (f(1/c), . . . , f(c/c))T . By Lemma 16 and (72), we get the following lower bound:

(ωlinear)TAωlinear ≥ 1

2
fTAf− (ωlinear − f)TA(ωlinear − f)

=
c

2
‖g − PL(I)(g)‖2c −

1

2
fT (Ic −A)f− (ωlinear − f)TA(ωlinear − f)

≥ c

2
‖g − PL(I)(g)‖2c −

1

2
%c(λ+ c−2m)ρ2 − 128cCk(t)

2 − 2cζ2. (73)

Using a similar argument in Lemma 14, and the facts that V ar(zlinear
i,0 ) = V ar(z0

i )(1 +

op(1)) = τ2
k (1 + op(1)), Ck(t)

2 � τ2
k , as n, c→∞, one has that

E{|(ωlinear)TAzlinear
0 |2}

(1 + (ch2)−1)τ2
k

∑c
i=1(|f(i/c)|+ 8Ck(t) + ζ)2

≤ 8.

Therefore, there exists N ′′ s.t., when c ≥ N ′′, P (E2) ≥ 1− η/3, where event E2 is defined as

E2 =

|(ωlinear)TAzlinear
0 | ≤ C ′η

√
1 + (ch2)−1τk

√√√√ c∑
i=1

(|f(i/c)|+ 8Ck(t) + ζ)2

 , (74)

and C ′η =
√

24/η.
From Theorem 6, it is straightforward to show that

(zlinear
0 )TAzlinear

0 − trace(A)τ̂2
k

scτ̂2
k

= Op(1).

Thus, there exists C ′′η > 0 s.t. P (E3) ≥ 1− η/3 for all c ≥ N ′η and N ′′, where

E3 =

{∣∣∣∣(zlinear
0 )TAzlinear

0 − trace(A)τ̂2
k

scτ̂2
k

∣∣∣∣ ≤ C ′′η} .
Then P (E∗ ∩ E2 ∩ E3) ≥ 1− η for any c ≥ N ′η and N ′′.
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Suppose g ∈ Smρ (I) satisfies

‖g − PL(I)(g)‖c =

√√√√c−1

c∑
i=1

[ c
2

∫ min(i/c+c−1,1)

max(i/c−c−1,0)
[g − PL(I)(g)](s)ds

]2
=

√√√√ c∑
i=1

f2(i/c)/c > Cηδ
?
linear,

where

Cη = max
{

6%ρ2,
√

1536, (72C ′η)
2, 6(C ′′η + z1−α/2 + 1)

}
, (75)

δ?linear =
√
c−1τ2

linear(1 + sc + (ch2)−1) + λ+ c−2m + Ck(t)2 + ζ2.

Then, under event E∗ ∩ E2 ∩ E3, we have

cTlinear,µ,t,c − trace(A)τ̂2
k

scτ̂2
k

=
(zlinear)TAzlinear − (zlinear

0 )TAzlinear
0

scτ̂2
k

+
(zlinear

0 )TAzlinear
0 − trace(A)τ̂2

k

scτ̂2
k

≥(zlinear)TAzlinear − (zlinear
0 )TAzlinear

0

scτ̂2
k

− C ′′η

=
(ωlinear)TAωlinear + 2(ωlinear)TAzlinear

0

scτ̂2
k

− C ′′η

≥
c
2
‖g−PL(I)(g)‖2c− 1

2
%c(λ+c−2m)ρ2−128cCk(t)2−2cζ2−2C′ητk

√
(1+ 1

ch2
)
∑c
i=1(|f(i/c)|+8Ck(t)+ζ)2

scτ̂2k
− C ′′η

≥
c
2
‖g−PL(I)(g)‖2c− 1

2
%c(λ+c−2m)ρ2−128cCk(t)2−2cζ2−6C′η

√
1+(ch2)−1τk

√
c‖g−PL(I)(g)‖c

scτ̂2k
− C ′′η (76)

=

c
2
‖g−PL(I)(g)‖2c

(
1−

1
2 %c(λ+c

−2m)ρ2

c
2 ‖g−PL(I)(g)‖

2
c
− 128cCk(t)

2

c
2 ‖g−PL(I)(g)‖

2
c
− 2cζ2

c
2 ‖g−PL(I)(g)‖

2
c
−

6C′η
√

1+(ch2)−1τk
√
c‖g−PL(I)(g)‖c

c
2 ‖g−PL(I)(g)‖

2
c

)
scτ̂2k

− C ′′η

≥
c
6‖g − PL(I)(g)‖2c

scτ̂2
k

− C ′′η > z1−α/2. (77)

where (76) follows from Cη > 192 (see (75)), i.e.,√√√√ c∑
i=1

f(i/c)2 =
√
c‖g − PL(I)(g)‖c ≥

√
cCηδ

?
linear ≥

√
192cCk(t),

√√√√ c∑
i=1

f(i/c)2 =
√
c‖g − PL(I)(g)‖c ≥

√
cCηδ

?
linear ≥

√
3cζ,

which leads to

c∑
i=1

(|f(i/c)|+8Ck(t)+ζ)2 ≤ 3

c∑
i=1

f(i/c)2+192cCk(t)
2+3cζ2 ≤ 9

c∑
i=1

f(i/c)2 = 9c‖g−PL(I)(g)‖2c ;
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and (77) follows from (75), i.e.,

1
2%c(λ+ c−2m)ρ2

c
2‖g − PL(I)(g)‖2c

≤ 1/6,

128cCk(t)
2

c
2‖g − PL(I)(g)‖2c

≤ 1/6,

2cζ2

c
2‖g − PL(I)(g)‖2c

≤ 1/6,

6C ′η
√

1 + (ch2)−1τk
√
c‖g − PL(I)(g)‖c

c
2‖g − PL(I)(g)‖2c

≤ 1/6.

Then for any c ≥ Nη ≡ max{N ′η, N ′′}, we have

P (reject H0|H1 is true) ≥ P
(
E? ∩ E2 ∩ E3 and

∣∣∣∣cTlinear,µ,t,c − trace(A)τ̂2
k

scτ̂2
k

∣∣∣∣ ≥ z1−α/2

)
≥ 1− η.

In the end, by direct calculations, we know that ‖g−PL(I)(g)‖c ≥ Cηδ?linear is equivalent as

‖g − PL(I)(g)‖c ≥ Cηδlinear
n,c,λ . This proves the desired result.

Proof of Theorem 8: Let ε = (ε1, . . . , εn)T ∼ N(0, In) and ỹ0 = (ỹ0
1, . . . , ỹ

0
c )
T , where

ỹ0
i =

∑iñ
j=(i−1)ñ+1 σεj

ñ follows a normal distribution. We further define ςi = z0
i − ỹ0

i be the
difference of z0

i and ỹ0
i . Let ς = (ς1, . . . , ςc)

T . Consider event

E1 = {σ|εi|+ csρ ≤
√
Tn for all 1 ≤ i ≤ n}.

Then P (E1) → 1 as n → ∞, and under event E1, |ỹ0
i − 1

ñ

∑iñ
j=(i−1)ñ+1Q(σεj)| ≤ Ck(t).

According to (33), one has that |ςi| = Op(Ck(t)). Note that for any given ml ≤ m ≤ mu →
∞, the standardized testing statistic

ξm =
cTm − trace(Am)τ̂2

k

sc,mτ̂2
k

=
(ς + ỹ0)TAm(ς + ỹ0)− trace(Am)τ̂2

k

sc,mτ̂2
k

=
ςTAmς

sc,mτ̂2
k

+
2ςTAmỹ

0

sc,mτ̂2
k

+
(ỹ0)TAmỹ

0 − trace(Am)τ̂2
k

sc,mτ̂2
k

= J1 + J2 + J3.

For J1, notice ςTAmς ≤
∑c

i=1 ς
2
i = Op(cCk(t)

2), and Ck(t)
2 � (nh

1/2
m )−1 for any ml ≤ m ≤

mu, one has J1 = op(1). For J2, using a similar argument as (60), we have

J2 = Op

(
Ck(t)

√
n

chm
+ Ck(t)

√
nhm

)
→ 0, for any ml ≤ m ≤ mu.

For J3, we need to use Lemma 17. Let Ãm = Am/sc,m,Ψc = ñ−1/2(ỹ0
1, . . . , ỹ

0
c )
T . Define

Fc,m := Ψ>c ÃmΨc − E
[
Ψ>c ÃmΨc

]
. Define Zc = (Zc,ml , . . . , Zc,mu)> be an mu − ml + 1

64



Nonparametric Inference under B-bits Quantization

-dimensional centered Gaussian vector with covariance matrix C = Imu−ml+1 Next we need
to verify the conditions in Lemma 17.

By direct calculations, we have E
[
F 4
c,m

]
− 3E

[
F 2
c,m

]2
= 48trace(Ã4

m) � hm
s4c,m

� h3
m.

Then we have maxml≤m≤mu

(
E
[
F 4
c,m

]
− 3E

[
F 2
c,m

]2)
log6mu → 0.

On the other hand,

max
ml≤m,m′≤mu

∣∣C(m,m′)− E
[
Fc,mFc,m′

]∣∣ ≤ mu∑
m=ml

|1− E
[
F 2
c,m

]
|+ 2

∑
ml≤m<m′≤mu

|E
[
Fc,mFc,m′

]
|.(78)

For the first term in (78), recall that s2
c,m = 2

∑
1≤i 6=i′≤c a

2
i,i′ with ai,i′ being the (i, i′)th

entry of Am. Then by Lemma 18, we have,

mu∑
m=ml

|1− E
[
F 2
c,m

]
| log2mu =

mu∑
m=ml

|1− 2trace(Ã2
m)| log2mu �

mu log2(mu)

chm
→ 0. (79)
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For the second term in (78), we need to find a bound of |E
[
Fc,mFc,m′

]
| for m′ > m. It

follows that

E
[
Fc,mFc,m′

]
= 2trace(AmAm′)/(sc,msc,m′)

� 1

(hmhm′)
−1/2

n∑
ν=1

ν−4m

(λm + ν−2m)2

ν−4m′

(λm′ + ν−2m′)2

=
1

(hmhm′)
−1/2

n∑
ν=1

1

(1 + λmν2m)2(1 + λm′ν2m′)2

≤ 1

(hmhm′)
−1/2

n∑
ν=1

1(
1 + (hmν)2m

)(
1 + (hm′ν)2m′

)
≤ 1

(hmhm′)
−1/2

n∑
ν=1

∫ ν

ν−1

1(
1 + (hmx)2m

)(
1 + (hm′x)2m′

)dx
=

1

(hmhm′)
−1/2

∫ ∞
0

1(
1 + (hmx)2m

)(
1 + (hm′x)2m′

)dx
=

∫ ∞
0

√
hmhm′(

1 + (hmx)2m
)(

1 + (hm′x)2m′
)dx

=

∫ ∞
0

1(
1 +

(
x
√
hm/hm′

)2m
)(

m′ +
(
x
√
hm′/hm

)2m′
)dx

≤
∫ ∞

0

1

1 +
(
x
√
hm′/hm

)2m′
dx

= (hm′/hm)−1/2
∫ ∞

0

1

1 + x2m′
dx

= (hm′/hm)−1/2

(∫ 1

0

1

1 + x2m′
dx+

∫ ∞
1

1

1 + x2m′
dx

)
≤ C0 (hm′/hm)−1/2 .

Therefore, using Lemma 18, we have

2
∑

ml≤m<m′≤mu

|E
[
Fc,mFc,m′

]
| log2(mu) . (hm′/hm)−1/2m2

u log2(mu)→ 0.

Together with (79), we have maxml≤m,m′≤mu
∣∣C(m,m′)− E

[
Fc,mFc,m′

]∣∣ log2mu → 0.
Therefore, by Lemma 17, we have

sup
x∈R

∣∣∣∣P (Cn( max
ml≤m∗≤mu

ξm − Cn) ≤ x
)
− P

(
Cn( max

ml≤m≤mu
Zc,m − Cn) ≤ x

)∣∣∣∣→ 0, as c→∞.

By Hall (1979), we know Cn(maxml≤m≤mu Zc,m − Cn) follows an extreme value distri-
bution. Proof is complete.

66



Nonparametric Inference under B-bits Quantization

Proof of Theorem 9: The proof of Theorem 9 is similar to Theorem 5 and Theorem 7.
We use the same notations as in the proof of Theorem 5. Suppose g ∈ Sm∗ρ (I) is the function
which generates the samples and f is the corresponding integral function as defined in (15).
We consider the following three events as defined in the proof of Theorem 5.

E1 = {σ|εi|+ csρ ≤
√
Tn for all 1 ≤ i ≤ n},

E2 =

|ωTAm∗z0| ≤ C ′η
√

1 + (ch2
m∗)
−1τk

√√√√ c∑
i=1

(|f(i/c)|+ 4Ck(t) + ζ)2

 , C ′η =
√

24/η,

E3 =

{∣∣∣∣(z0)TAm∗z
0 − trace(Am∗)τ̂

2
k

sc,m∗ τ̂
2
k

∣∣∣∣ ≤ C ′′η} .

Since P (E1) → 1 as c → ∞, there exist N ′η > 0, such that P (E1) ≥ 1 − η/3 for all
c ≥ N ′η. Follows from Lemma 14 that there exists N ′′ s.t., when c ≥ N ′′, P (E2) ≥ 1− η/3.
Furthermore, using Theorem 3, there exists C ′′η > 0 s.t. P (E3) ≥ 1 − η/3 for all c ≥
max{N ′η, N ′′}.

Suppose g ∈ Sm∗ρ (I) satisfies ‖g‖c ≥ Cηδ∗, where

Cη = max
{

6%ρ2, 384, (72C ′η)
2, 6(C ′′η + z1−α/2 + 1)

}
,

δ∗ =

√
c−1τ2

k (1 + sc,m∗ log1/2(mu) + (ch2
m∗)
−1) + λ+ c−2m∗ + Ck(t)2 + ζ2,

τ2
k = V ar(z1|H0) = V ar(z0

i ) = O(ñ−1), ζ = max
i=1,...,c

∣∣f(i/c)− 1

ñ

iñ∑
j=(i−1)ñ+1

g(j/n)
∣∣ = O(n−1).

Since mu →∞,m∗ ≤ mu eventually. So we assume m∗ ≤ mu. Then it holds that

inf
g∈Sm∗ρ (I)
‖g‖c≥Cηδ∗

P (ξ∗ > qα) = inf
g∈Sm∗ρ (I)
‖g‖c≥Cηδ∗

P (ξmax > Cn + qα/Cn)

≥ inf
g∈Sm∗ρ (I)
‖g‖c≥Cηδ∗

P (ξm∗ > Cn + qα/Cn)

= inf
g∈Sm∗ρ (I)
‖g‖c≥Cηδ∗

P (
cTm∗ − trace(Am∗)τ̂

2
k

sc,m∗ τ̂
2
k

> Cn + qα/Cn).
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Similar to the proof of Theorem 5, we know with probability approaching one

cTm∗ − trace(Am∗)τ̂
2
k

sc,m∗ τ̂
2
k

=
zTAm∗z − (z0)TAm∗z

0

sc,m∗ τ̂
2
k

+
(z0)TAm∗z

0 − trace(Am∗)τ̂
2
k

sc,m∗ τ̂
2
k

=
zTAm∗z − (z0)TAm∗z

0

sc,m∗ τ̂
2
k

+Op(1)

=
ωTAm∗ω + 2ωTAm∗z

0

scτ̂2
k

+OP (1)

≥

c
2‖g‖

2
c

(
1−

1
2
cm∗c(λm∗+c−2m∗ )ρ2

c
2
‖g‖2c

− 32cCk(t)2
c
2
‖g‖2c

− 2cζ2
c
2
‖g‖2c
− 6C′η

√
1+(ch2m∗ )−1τk

√
c‖g‖c

c
2
‖g‖2c

)
sc,m∗ τ̂

2
k

+Op(1).

Since Cn � (log(mu))1/2 we have

cTm∗ − trace(Am∗)τ̂
2
k

sc,m∗ τ̂
2
k

≥ Cn + qα/Cn.

Therefore, for any c ≥ Nη ≡ max{N ′η, N ′′}, we have

P (reject H0|H1 is true) ≥ P
(
E1 ∩ E2 ∩ E3 and

∣∣∣∣cTm∗ − trace(Am∗)τ̂
2
k

sc,m∗ τ̂
2
k

∣∣∣∣ ≥ Cn + qα/Cn

)
≥ 1− η.

In the end, by direct calculations, we know that ‖g‖c ≥ Cηδ∗ is equivalent as ‖g‖c ≥
Cηδn,c,an . This proves the desired result.
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