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Abstract

Linear Gaussian exploratory tools such as principal component analysis (PCA) and
factor analysis (FA) are widely used for exploratory analysis, pre-processing, data visual-
ization, and related tasks. Because the linear-Gaussian assumption is restrictive, for very
high dimensional problems, they have been replaced by robust, sparse extensions or more
flexible discrete-continuous latent feature models. Discrete-continuous latent feature mod-
els specify a dictionary of features dependent on subsets of the data and then infer the
likelihood that each data point shares any of these features. This is often achieved using
rich-get-richer assumptions about the feature allocation process where the dictionary tries
to couple the feature frequency with the portion of total variance that it explains. In this
work, we propose an alternative approach that allows for better control over the feature to
data point allocation. This new approach is based on two-parameter discrete distribution
models which decouple feature sparsity and dictionary size, hence capturing both common
and rare features in a parsimonious way. The new framework is used to derive a novel
adaptive variant of factor analysis (aFA), as well as an adaptive probabilistic principal
component analysis (aPPCA) capable of flexible structure discovery and dimensionality
reduction in a wide variety of scenarios. We derive both standard Gibbs sampling, as well
as efficient expectation-maximisation inference approximations converging orders of magni-
tude faster, to a reasonable point estimate solution. The utility of the proposed aPPCA and
aFA models is demonstrated on standard tasks such as feature learning, data visualization,
and data whitening. We show that aPPCA and aFA can extract interpretable, high-level
features for raw MNIST or COLI-20 images, or when applied to the analysis of autoencoder
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features. We also demonstrate that replacing common PCA pre-processing pipelines in the
analysis of functional magnetic resonance imaging (fMRI) data with aPPCA, leads to more
robust and better-localised blind source separation of neural activity.

Keywords: principal component analysis, factor analysis, dimensionality reduction,
Bayesian nonparametrics

1. Introduction

Linear dimensionality reduction methods such as factor analysis (FA) and principal compo-
nent analysis (PCA) are mainstays of high-dimensional data analysis, due to their simple
geometric interpretation and attractive computational properties. Both FA and PCA can
be seen as matrix decomposition techniques which aim to explain the dependence struc-
ture among high-dimensional observations through a decomposition of the positive-definite
covariance matrix Σ ∈ RD×D, i.e., assuming Σ = ΛΛT + ε where Λ ∈ RD×K is a fac-
tor loading matrix with D > K and ε ∈ RD×D with entries depending on the assumed
FA or PCA model. As data increases in size and complexity, the assumption that linear
components are a linear combination of all of the original variables becomes increasingly
restrictive. This has motivated a plethora of work on variants of sparse FA models (West,
2003; Knowles and Ghahramani, 2007; Paisley and Carin, 2009a; Bhattacharya and Dunson,
2011; Gao et al., 2013) which play a fundamental role in dimensionality reduction and latent
structure discovery for high dimensional data. Sparse FA models tend to vary significantly
depending on whether or not they are motivated by overcomplete setting with N � D, i.e.,
dimensionality larger than the number of observations (Aharon et al., 2006); a common
example of which are gene expression studies (West, 2003; Carvalho et al., 2008). The rea-
son for that is that, if N � D for the data, and we assume the factor matrix is full rank,
an infinite number of solutions are available for the representation problem, implying that
explicit constraints on the solution must be set. Such constraints most often take the form
of shrinkage assumptions about the diagonal and off-diagonal elements of the factor loading
matrix. In the context of PCA models, Zou et al. (2006) place a least absolute shrinkage
and selection operator (LASSO) regularisation on the factor loading vectors, which, com-
pared to simple thresholding, leads to more interpretable factors or components. A fully
Bayesian formulation can be derived using relevance determination priors (Engelhardt and
Stephens, 2010; Campbell and Yau, 2017) such as a Student-t prior placed on the covariance
of the factor loading matrix. West (2003) proposed placing a two-component mixture model
over the loading vectors that enable factors to be switched on or off, imposing natural di-
mensionality reduction. In this scenario, the probability that factor loadings are non-zero is
independent across all points. Bhattacharya and Dunson (2011) proposed a sparse Bayesian
infinite factor model which assumes a multiplicative gamma process prior on the loading
vectors. The sparse Bayesian infinite FA allows natural inference of the number of latent
sparse factors but assumes coupling between the portion of explained variance and factor
loading sparsity. This coupling is common to many sparse FA models and is a consequence
of applying shrinkage through a single parameter such as the variance of the factor loadings
on all loading parameters (Gao et al., 2013). These continuous sparsity-inducing priors all
have the property that they impose strong shrinkage around zero but have sub-exponential
tails, which allow signals to escape shrinkage. Gao et al. (2013) addressed this issue with
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an alternative factor analysis setup where a flexible three-parameter beta prior is applied to
the factor loading vectors to induce element-specific, factor-specific, and global shrinkage.
Then, an additional two-component mixture prior is applied to cluster each factor as either
sparse or dense. Durante (2017) provides an excellent introduction to more of the issues
involved with multiplicative gamma process priors and recently, an additional flexible and
sparse, nonparametric factor analysis prior was proposed in Legramanti et al. (2020).

Going beyond the overcomplete setting, FA models can be augmented with discrete
latent variables which explicitly single out subsets of observations that share certain factor
loadings. In this setup, the factor loadings might be a full rank matrix, but a set of
latent variables augments the factors and only a subset of them take non-zero values. This
formulation is achieved in latent feature models which augments the latent space and focuses
on explicitly modelling the partitioning of the high dimensional data (Ghahramani et al.,
2007). The same augmentation is applied in latent class FA models with the difference being
the partition prior over the augmenting variables. Latent class FA models are designed for
modelling non-overlapping clustering in a latent lower-dimensional space. Some well-known
examples include variants of a mixture of FA models (Ghahramani et al., 1996; Ghahramani
and Beal, 2000; Campbell and Yau, 2017) and variants of a mixture of PCA models (Parsons
et al., 2004; Vidal, 2011). Latent feature models allow for richer clustering topology, but the
challenge is designing a sufficiently flexible and intuitive model of the latent feature space.
Several nonparametric FA models have addressed this using the beta processes (Paisley
and Carin, 2009a), or their marginal Indian buffet processes (Knowles and Ghahramani,
2007; Rai and Daumé, 2009) (IBP) which have infinite capacity and can be used to infer
random feature space dimensionality (i.e., number of features). However, with IBP FA
models, feature allocation frequency is coupled with the portion of variance explained by
the factors: as the portion of explained variance decreases, more loadings are switched off.
This is a consequence of IBP regularizing signal and noise in the same way (Efron, 2008;
Gao et al., 2013), and adds to the restrictive implications the IBP makes about the growth
rate of the feature dictionary (Teh and Gorur, 2009). As a consequence, IBP FA models
lead to non-interpretable, spurious features and overestimation of the underlying number
of features (Elvira et al., 2017).

In this work, we propose a novel discrete-continuous latent factor model framework
which can be used to capture both sparse and dense feature allocation distributions. The
idea is to use separate parameters to control the total number of features in the feature
dictionary and the number of features allocated to each data item: the ratio of these pa-
rameters then implicitly controls the sparsity of the feature allocation matrix. We show
that truncated multinomial models or equivalent various forms of the multivariate hyperge-
ometric distribution can be used as a feature allocation process. For simplicity, we mostly
focus on the parametric version of the proposed models which fixes the number of unique
instantiated features, but at the same time has a different parameter controlling the num-
ber of unique features used to represent each data point. This is critical since it allows
us to naturally separate (1) features which explain a large proportion of total variance for
a small subset of the data, and (2) spurious features which explain a small proportion of
total variance for a potentially larger subset of the data. This formulation is natural in
the context of data visualization and dimensionality reduction. In visualization, normally,
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points are reduced to two or three dimensions; in dimensionality reduction, we model each
point with K � D dimensions.

2. Preliminaries

2.1 Linear Gaussian Latent Variable Models

Linear Gaussian latent variable models (LVMs) assume the following generative model for
the data

y = Wx + µ + ε (1)

where the observed data, y ∈ RD; W ∈ RD×K is a transformation matrix, the columns of
which are commonly referred to as factor loadings or principal components depending on the
constraints placed on W; x ∈ RK are unknown multivariate Gaussian latent variables, also
referred to as factors or projections; µ ∈ RD is a mean (offset) vector which is assumed to
be zero, and ε describes the model noise, typically Gaussian. Depending on the assumptions
we impose on x, W, and ε, we can obtain various, widely-used techniques:

• The ubiquitous principal component analysis (PCA) (Pearson, 1901) can be derived
from Equation (1), and further making the assumptions that µ = 0, the matrix
W = [w1, . . . ,wK ] has orthonormal columns; i.e., wT

i wj = 0 if i 6= j, and the
variance of the isotropic noise is 0, i.e., assume ε ∼ MVN

(
0, σ2ID

)
and σ2 → 0

(known as the small variance asymptotic (SVA) assumption).

• If we avoid the SVA of PCA, but still assume W has orthogonal vectors and Gaus-
sian noise ε ∼ MVN

(
0, σ2ID

)
, we recover probabilistic PCA (PPCA) (Tipping and

Bishop, 1999).

• Omitting the orthogonality assumption on W and assuming more flexible elliptical
noise εn ∼MVN

(
0, diag

(
σ2
))

with σ2 =
[
σ21, . . . , σ

2
D

]
, we obtain the classic factor

analysis (FA) (Harman, 1960).

• Variants of independent component analysis (ICA) (Comon, 1994) can be obtained
by assuming flexible elliptical noise ε ∼MVN

(
0, diag

(
σ2
))

with σ2 =
[
σ21, . . . , σ

2
D

]
,

but also, assuming a non-Gaussian distribution model for the latent variables x ∈ RK ;
for example, the multivariate Laplace distribution (Knowles and Ghahramani, 2007).

2.2 Latent Feature Linear Gaussian Models

In latent feature linear Gaussian LVMs, we augment the model in Equation (1) with discrete
indicators which aim to infer inherent groupings of points sharing columns of W. We can
write the following construction in matrix notation for N , D-dimensional observations

Y = W(X� Z) + E (2)

where Y = [y1, . . . ,yN ] is the observation matrix, W is a (D ×K) transformation matrix,
Z = [z1, . . . , zN ] is a binary indicator matrix selecting which of K hidden sources are
active, � denotes the Hadamard product (also known as the element-wise or Schur product),
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Figure 1: Graphical model for generic Bayesian latent feature models of which the proposed
adaptive factor analysis (aFA) and the adaptive probabilistic principal component analysis
(aPPCA) models are particular examples. If we assume K → ∞ we recover Bayesian
nonparametric models such as Bayesian nonparametric FA (isFA) and ICA models.

E = [ε1, . . . , εN ] is a noise matrix consisting of N independent and identically distributed
D-dimensional zero-mean vectors drawn fromMVN

(
0, σ2ID

)
; finally X = [x1, . . . ,xN ] are

the latent variables where each point xk,n is assumed Gaussian for FA and PCA models, and
Laplace distributed for Bayesian ICA models. Linear Gaussian models (i.e., in the form of
Equation 2) with orthogonal W are often referred to as subspace models motivated by the
fact that columns of W span subspaces and Z indicates latent groupings of data which are
efficiently represented by the same subspaces. In the special case where Z is made of one-
hot-encoding vectors (i.e., latent class models), the model of Equation (2) can be referred
to as a subspace clustering model where columns of W specify lower-dimensional subspaces
locally preserving the variance of Y. The graphical model for the generic latent feature
model of Equation (2) is depicted in Figure 1. Figure 2 illustrates synthetic data generated
from Equation (2) when making different assumptions about the feature allocation matrix
Z.

2.3 Beta-Bernoulli Latent Feature Models

Assume the model in Equation (2) with binary feature allocation vectors zn which are inde-
pendently drawn from a Bernoulli distribution with the K mixing parameters {pk}k=1,...,K

(Knowles and Ghahramani, 2007). If the mixing parameters are placed are a conjugate
beta distribution prior, as the number of latent features K → ∞, one can show that the
conjugate prior over the matrix Z = [z1, . . . , zN ] is the beta process (Hjort et al., 1990). The
mixing parameters can be integrated out to work with the simpler IBP marginal process.
Under the IBP prior, the indicator matrix Z has K rows and N columns; with K being the
unknown number of represented features in the observed data which is assumed to increase
with N . The expected number of features K follows a Poisson distribution with mean
α
∑N

n=1
1
N ; for large N , K ≈ α ln (N). The prior for the matrix Z under the IBP is

P (Z|α) ∝ exp (−αHN )αK
(∏K

k=1
(mk−1)!(N−mk)!

N !

)
(3)
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Figure 2: 3D synthetic data generated from latent feature linear Gaussian models; assuming
(left) Y = WX + E; (middle) Y = W(X � Z) + E with columns of Z being one-hot-
encodings, equivalent to the subspace clustering assumption that data lies on one of three,
linear 1D subspaces; and (right) Y = W(X � Z) + E with columns of Z being elements
of the set: {[1, 1, 0] , [0, 1, 1] , [1, 0, 1]}. Shaded planes indicate the latent 2D subspace(s)
spanned by different combinations of the PCs, i.e., columns of W.

where HN =
∑N

n=1
1
n and mk =

∑N
n=1 zk,n. The IBP prior enforces sparsity on Z because

it places diminishing probability on the event of having many common features k, i.e.,
features with large mk. It has been observed that the number of data points being active
in each feature follows Zipf’s law (Teh and Gorur, 2009; Zipf, 1932); this implies that a
small number of data points are active in all features; and a large number of data points
are only active in a small number of features. This Zipf’s law behaviour has been observed
and proven as N →∞ (Teh and Gorur, 2009).

3. Latent Factor Analysis Models

In this section, we derive flexible latent feature FA models which leverage weakly constrained
feature allocations and allow us to model a wide range of sparse FA models. We demon-
strate that using uninformative discrete distributions or constrained distributions without
replacement, one can derive simple modelling alternatives which have favourable properties
such as the ability to represent both sparse and dense factor loadings.

In many machine learning applications such as data visualization, there are naturally
occurring constraints for the intrinsic dimensionality of each point in the latent space. For
example, we may wish to represent each point in exactly 2D, but not expect that the same
two dimensions are shared across all data points; alternatively, we might wish to impose
explicit constraints limiting the number of points sharing the same features.

3.1 Relevance Determination with Discrete Variables

Because latent class FA models make rigid partitioning assumptions, they fail to model
richer clustering topologies, but latent feature FA models can infer uninterpretable features
if not adequately constrained. For example, in beta-Bernoulli models, the first few fea-
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tures are used to decompose most observations, and most of the remaining features only
decompose a small portion of the data.

Let us revisit the common ‘rich-get-richer’ assumption underlying the feature allocation
behaviour of many latent feature linear Gaussian models (see Section 2.2). Whereas latent
feature FA models capture richer clustering topologies when compared to latent class FA
models, beta-Bernoulli models impose strong assumptions about the distribution of the total
number of factors and individual factor allocation frequency. Instead, a flexible relevance
determination assumption can be that, each input data point is associated with a different
subset of L features, selected from a total of K unique features. The parameter K then
accounts for the global sharing of structure across overlapping groups of data points with
common features; if K is large enough, each point can be associated with non-overlapping
subsets of L features. This behaviour is equivalent to the mixture of the FAs model. As K
decreases, more of these features are constrained to be shared across subsets of the data.
L acts much like the number of latent dimensions in traditional linear LVMs, but here L
is constrained by K. Thus, we can interpret L as the local capacity of the model, with K
controlling the global sharing capacity. If L = K, we recover the classical linear Gaussian
model of Equation (1), since all features are associated with all observed data points. As
K − L increases, more local structure in the data can be represented.

If we assume that, for each column of Z in a latent feature model, exactly L out of
K features are non-zero, then there are

(
K
L

)
possible configurations for each column of Z.

When a flat prior is placed on Z, then each configuration has an equal likelihood, 1

(KL)
. The

joint probability over any allocation matrix is given by the product

P (Z|K,L) =
N∏
n=1

1(
K
L

) (4)

The restriction that L out of K features are non-zero, means that the columns of Z can
no longer be distributed across the K feature rows. Instead, each of the 1

(KL)
configurations

have categorical likelihood which depends on a different combination of L non-zero factor
loadings

P (zn = z∗| . . . ) ∝
∏
j∈z∗

P (yn|wj , . . . ) (5)

where z∗ denotes some K-dimensional configuration [1, 0, 0, 1, . . . , 0, 1]T with L 1’s. For
large K and small L, the number of unique configurations z∗ grows factorially and we may
wish to approximate the posterior over zn assuming conditional independence of the feature
assignments. In that case, we sequentially sample without replacement from the categorical
posterior

l|yn,W,X ∼ Categorical

(
(1− z1,n) P (yn|w1, . . . )∑K
k=1 (1− zk,n) P (yn|wk, . . . )

, . . . ,
(1− zK,n) P (yn|wK , . . . )∑K
k=1 (1− zk,n) P (yn|wk, . . . )

)
.

(6)
This information is encoded in zn by setting the l-th element to 1, this is repeated L

times to ensure each zn satisfies the constraint that L features are allocated per point.
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The posterior in Equation (6) is identical to the posterior in a mixture model, but draws
are made without replacement from the categorical posterior. If we are to further assume
that the probability of each feature being active depends on how often it is selected in the
rest of the data (i.e., the ‘rich-get-richer’ effect applies), we augment Equation (6) with
independent counts

l|zn,yn,W ∼ Categorical
( (1− z1,n)m

(−n)
1 P (yn|w1, . . . )∑K

k=1 (1− zk,n)m
(−n)
k P (yn|wk, . . . )

, . . .

. . . ,
(1− zK,n)m

(−n)
K P (yn|wK , . . . )∑K

k=1 (1− zk,n)m
(−n)
k P (yn|wk, . . . )

) (7)

where m
(−n)
k =

∑
i 6=n zk,i. This results in a multivariate hypergeometric model for the

numbers of active allocations in Z.

3.2 Constrained Factor Allocation

Above, we assumed that the main feature allocation constraint is the number of non-zero
factor loadings per points (i.e., a column-wise sparsity constraint on Z depending on L).
However, we can also control the row-wise sparsity using constraints on the total number
of times that a factor can be allocated to a point. Let us assume that each data point
is associated with L out of K factors, and explicitly model the number of non-zero factor
loadings across rows. We can place the truncated multinomial distribution as a prior on Z
with K different categories and probability of success πk for k = 1, . . . ,K and

∑K
k=1 πk = 1.

The truncated multinomial can be used to restrict the number of trials L, as well as the total
number of times a category can be selected, i.e., ck for each category k with

∑K
k=1 ck ≥ L.

A sample from the truncated multinomial distribution is then a K-dimensional vector m
of counts

P (m|π) =
L!

V (π, L, c)

K∏
k=1

πmkk
mk!

(8)

where m = [m1, . . . ,mK ]T and V (π, L, c) is a normalising constant

V (π, L, c) =

c1∑
l1=0

· · ·
cK∑
lK=0

(
I

(∑
i

li = L

)
L!

K∏
k=1

πlkk
lk!

)
(9)

where I (·) is an indicator function which is one if the statement inside is true, otherwise
zero. Under this constrained model, we can write the conditional probability over the sparse
matrix Z given π = [π1, . . . , πK ]

P (Z|π) =

N∏
n=1

K∏
k=1

P (zk,n|πk, c∗) ∝
N∏
n=1

L!

V (π, L, c)

K∏
k=1

π
zk,n
k

zk,n!
(10)

where P (zk,n|πk, c∗) cannot be easily distributed since we need to keep track of c∗ the

total number of available draws from each factor, such that
∑K

k=1 zk,n = L. In the fully
Bayesian setting, one can model the allocation marginal probabilities π1, . . . , πK with a
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Dirichlet distribution parametrized by the counts m1, . . . ,mK . A nonparametric extension
of this constrained model can be derived by taking the limit K →∞ in Equation (10) and
integrating out π.

3.3 Adaptive FA Model and Inference

The complete Bayesian specification of the proposed adaptive FA framework takes the form

wk ∼MVN
(
0, σ2wID

)
, k ∈ {1, . . . ,K}

εn ∼MVN
(
0, σ2ID

)
xn ∼MVN

(
0, σ2xIK

)
zn ∼ F (·)
yn = W (xn � zn) + εn

(11)

where F (·) denotes the chosen prior for Z. For simplicity, we will use a single variance
parameter σ2 and assume the factor loading variables have fixed variance σ2w = 1 (i.e.,
wk ∼MVN (0, ID)). Because of the prohibitive computational costs involved with training
most existing latent feature FA models, we next derive a scalable expectation-maximisation
(EM) algorithm for approximate inference in the aFA model. The data log-likelihood for
the proposed model is

LN = −
N∑
n=1

(
K

2
ln
(
σ2x
)

+
D

2
ln
(
σ2
)

+
1

2σ2x
xT
nxn +

1

2σ2
yT
nyn −

1

σ2
xT
nAT

nWTyn +
1

2σ2
xT
nAT

nWTWAnxn

) (12)

where An = diag (zn) is a (K ×K) matrix with diagonal elements set to zn. In the
parametric aFA setting, we do not need to integrate out the factor parameters and mixing
terms, therefore an efficient EM algorithm for training the aFA model can be derived.
It can be used both for initialisation of a full Gibbs sampler or for rapidly obtaining a
(local) maximum-a-posteriori solution for the model. For EM inference, we will treat the
factor loading matrix W as a parameter instead of a random variable. In the E-step, the
expectation of the latent variables x1,...,N is taken with respect to the posterior distribution;
this results in the complete data log-likelihood

Lcomplete
N = −

N∑
n=1

(
K

2
ln
(
σ2x
)

+
D

2
ln
(
σ2
)

+
1

2σ2x
tr
(
E
[
xnx

T
n

])
+

1

2σ2
yT
nyn −

1

σ2
E [xn]T AT

nWTyn

+
1

2σ2
tr
(
AT
nWTWAnE

[
xnx

T
n

]))
(13)
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Algorithm 1 EM algorithm for parametric adaptive factor (aFA) analysis.

Input: Y,Θ,MaxIter
Initialise: Sample a random (K ×N) binary matrix Z and initialise {W,X} using PCA
for iter← 1 to MaxIter

for n← 1 to N
Set xn =

(
σ−2
x IK + σ−2AnWTWAn

)−1 (
σ−2AnWTyn

)
Set Ψn =

(
σ−2
x IK + σ−2AnWTWAn

)−1
+ xnxTn

Update z1,...,N using (6)

Set W =
(∑N

n=1 yn (Anxn)
T
)(∑N

n=1 AnΨnAn

)−1

Set σ2 = 1
ND

∑N
n=1

(
yT
nyn − 2xTnAnWTyn + trace

(
AnWTWAnΨn

))
Set σ2

x = 1
NK

∑N
n=1 trace (Ψn)

where

E [xn] =
(
σ−2x IK + σ−2AT

nWTWAn

)−1 (
σ−2AT

nWTyn
)

E
[
xnx

T
n

]
=
(
σ−2x IK + σ−2AnW

TWAn

)−1
+ E [xn]E [xn]T

In the M-step, the complete data log-likelihood in Equation (13) is maximised with respect

to the other parameters; this is done by solving
∂Lcomplete

N
∂W = 0,

∂Lcomplete
N
∂σx

= 0 and
∂Lcomplete

N
∂σ =

0, which results in the following parameter updates

W =

(
N∑
n=1

yn (Anxn)T
)(

N∑
n=1

AnE
[
xnx

T
n

]
An

)−1

σ2 =
1

ND

N∑
n=1

(
yT
nyn − 2xTnAnW

Tyn + trace
(
AnW

TWAnE
[
xnx

T
n

]))
σ2x =

1

NK

N∑
n=1

trace
(
E
[
xnx

T
n

])
Since we are often interested only in a point estimate for the indicator variables Z, iterative
optimisation via a coordinate descent procedure can lead to a robust, local maximum-
a-posteriori (MAP) estimate i.e., ZMAP (Wang and Dunson, 2011; Broderick et al., 2013;
Raykov et al., 2016). Then, the M-step update for the point estimates of the latent variables
zn involves choosing the top L active factors from Equation (6) or most likely configuration
from Equation (4). The probabilities P (yn|wk, . . . ) inside Equation (6) are

P (yn|wk, . . . ) = γ exp

(
µ2

2γ2

)
(14)

where µ =
wTk ε

−k
n

σ2+wTkwk
, γ = σ2

σ2+wTkwk
, and ε−kn is the same as εn from Equation (11) but with

zk,n = 0. The complete EM algorithm for the proposed aFA is summarised in Algorithm 1.

4. Latent Feature Subspace Models

Latent feature visualization methods have received little attention, despite the popularity
of sparse principal component analysis techniques (Zou et al., 2006; Jolliffe et al., 2003).
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This is most likely due to the complexity of specifying distributions over, and performing
parameter inference with, orthogonal matrices. In this section, we extend the Bayesian
nonparametric FA model of Knowles and Ghahramani (2007) to the PPCA setting in which
the columns of the transformation matrix W are orthogonal. We argue that nonparametric
PPCA is likely to suffer from the same limitations, as isFA, in the presence of dense PCs, and
in order to address these limitations, introduce an efficient adaptive probabilistic principal
component analysis (aPPCA) framework which also uses hypergeometric feature allocations.
The proposed aPPCA method allows for explicit control over both the number of unique
columns K in W, as well as, the observation-specific number of active vectors, L.

Latent feature subspace models are a special case of latent feature linear Gaussian models
(see Section 2.2) where the latent traits are assumed to share orthogonal one-dimensional
subspaces, characterised via the projection vectors w1,w2, ...,wK forming W. If two points
yi and yj both have high probabilities P(zk,i) and P(zk,j), yi and yj share certain covariance
structure in the direction of wk. Both nonparametric and adaptive PPCA models share the
following construction

W ∼ B (·)
εn ∼MVN

(
0, σ2ID

)
xn ∼MVN (0, IK)

zn ∼ F (·)
yn = W (xn � zn) + ε

(15)

where B (·) is the distribution over matrix W = [w1, . . . ,wK ] with orthonormal columns
(i.e., Bingham or matrix von Misses-Fisher distributions); i.e., wT

i wj = 0 if i 6= j and
wT
i wi = 1, F (·) is the same as for aFA models in Section 3.

4.1 Inference

Computing the posterior distribution of the latent variables {X,Z} and the projection
matrix W is analytically intractable and we have to resort to approximate inference. Unlike
with aFA above, the posterior updates of the orthonormal matrix W are not available in
closed form. Numerically optimising over W and simultaneously marginalising X leads to
slow mixing and an EM scheme leads to poor local solutions for this model. As a solution,
an efficient Markov Chain Monte Carlo (MCMC) scheme (Gelman et al., 2013) can be
derived which iterates between explicit updates for W, zn, xn and the hyperparameters we
wish to infer, i.e., σ2 and α (updates for σ2 and α are given in Appendix B). Sampling from
directional posteriors is prohibitively slow, so we propose a MAP scheme for the updates
on W. We could use automated MCMC platforms such as STAN (Carpenter et al., 2017)
for inference, adopting continuous relaxation of the discrete variables such as Concrete
distributions (Maddison et al., 2016) or numerical solver extensions such as Nishimura
et al. (2017). However, since the proposed model is tractable, closed-form inference in
latent feature PPCA is more efficient.
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The joint data likelihood of both of the latent feature subspace models we propose takes
the form

P
(
Y,W,X,Z|σ2, α

)
=

N∏
n=1

(
P
(
yn|W,xn, zn, σ

2
) K∏
k=1

P (xk,n) P (zk,n|α)

)
× P (W)

(16)

We can check whether the MCMC sampler has converged using standard tests such as
Raftery and Lewis (1992) directly on Equation (16). Comparing the Bayesian nonparametric
sparse PPCA model and the aPPCA model, the only difference is in P (Z). We will see that
this affects the posterior updates of Z, but the rest of the inference algorithm is otherwise
identical for both models.

Posterior of W: In order to comply with the orthogonality constraint on W, i.e., wi ⊥
wj ∀i 6= j, we must ensure that the distribution B (·) from Equation (15) has support on
the Stiefel manifold (see Tagare, 2011 for a good introduction). Elvira et al. (2017) explored
exactly this problem in the context of latent feature subspace modelling and proposed using
a conjugate Bingham prior (Bingham, 1974) independently on the columns of W leading to
an independent von Mises-Fisher posterior over each column, where re-scaling is required
after each sample to maintain orthogonality. However, empirical trials suggest that this
results in very poor mixing; see Appendix D. To overcome this issue, we propose joint
sampling of the columns of W. We place a uniform prior over the Stiefel manifold on the
matrix W which allows us to work with a matrix von Mises-Fisher (Khatri and Mardia,
1977) posterior

P
(
W|Y,X,Z, σ2

)
= 0F

−1
1

(
∅, D

2
,BBT

)
exp (tr (BW)) (17)

where B = 1
2σ2 (X� Z) YT and 0F

−1
1 (·) is a hypergeometric function (Herz, 1955). The

normalisation term of the matrix von Mises-Fisher posterior is not available in closed form,
hence it is common to sample from it using rejection sampling. Fallaize and Kypraios (2016)
proposed a Metropolis-Hastings scheme to generate samples from the matrix posterior in
Equation (17). The resulting posterior of W converges faster than independent column-
wise von-Mises-Fisher posteriors, but can be further sped up by numerical optimisation
methods. Here, we propose updating the matrix W by maximising the posterior in Equation
(17) over the Stiefel manifold, i.e., enforcing orthogonality wi ⊥ wj ∀i 6= j. An efficient
implementation can be achieved using the Pymanopt toolbox (Townsend et al., 2016), for
optimisation over manifolds with different geometries; this step is outlined in Appendix C.

Posterior of X: The posterior distribution over the latent variables xk,n for which
zk,n = 1, is sampled from a Gaussian

xk,n| · · · ∼ N
(

yTnwk

σ2 + 1
,

σ2

σ2 + 1

)
(18)

where all variables upon which xk,n depends, have been omitted for notational convenience,
and wk is the k-th column of the matrix W.

12



Adaptive Latent Feature Sharing for Piecewise Linear Dimensionality Reduction

4.1.1 Bayesian nonparametric sparse PPCA model

In Bayesian nonparametric PPCA, we place an IBP prior over the indicator matrix Z;
this assumes that after a finite number N of observations, only a finite number K of 1-
D subspaces are active. This results in the first K rows of Z having non-zero entries, the
remaining rows being all zeros. By construction, K cannot exceed the dimension of the data
D and this leads to truncation of the IBP such that K has a upper limit of Kmax where
K ≤ Kmax, therefore in Bayesian nonparametric PPCA, Z is a (Kmax ×N) binary matrix,
with the sum of the first K rows being non-zero and the sum of the remaining Kmax −K
rows being zero. We sample the matrix Z in two stages: sampling “existing features” and
“new features”; in both of these stages the latent variables xk,n are marginalised out. The
posterior distribution over the existing features zk,n is Bernoulli distributed

zk,n . . . ∼

Bernoulli

(
P (yn|zk,n = 1) P (zk,n = 1|zk,−n)

P (yn|zk,n = 1) P (zk,n = 1|zk,−n) + P (yn|zk,n = 0) P (zk,n = 0|zk,−n)

)

=Bernoulli

 mk,−n
N exp

(
1

2σ2(σ2+1)

(
yTnwk

))(
σ2

σ2+1

) 1
2

mk,−n
N exp

(
1

2σ2(σ2+1)
(yTnwk)

)(
σ2

σ2+1

) 1
2

+ 1


(19)

where all variables upon which zk,n depends have been omitted for notational convenience,
and mk,−n =

∑
i 6=n zk,i.

Then, we sample κ number of new features using κ ∼ Poisson
(
α
N

)
, where we maintain

κ > 0 or κ+K ≤ Kmax. For observed data point n, the posterior distribution over the new
features is

zK+j,n| · · · ∼ Bernoulli

 exp
(

1
2σ2(σ2+1)

∑K+κ
k=K+1

(
yTnwk

)2)( σ2

σ2+1

)κ
2

exp
(

1
2σ2(σ2+1)

∑K+κ
k=K+1 (yTnwk)

2
)(

σ2

σ2+1

)κ
2

+ 1

 (20)

for j = 1, . . . , κ new features; all variables upon which zK+j,n depends have been omitted
for notational convenience.

4.1.2 Adaptive PPCA model

In many applications of PPCA, constraints on the latent feature dimensionality occur nat-
urally. In particular, for data visualization, we are mostly interested in reducing high
dimensional data down to two or three dimensions; in regression problems when PCA is
used to remove multicollinearity from the input features, the output dimensionality is usu-
ally fixed to D (the dimensionality of the input). In these scenarios, the constraints on
Z in Section 3 allow for explicit control over the number of latent subspaces L used to
decompose each single observed data point. In the aPPCA context, K denotes the number
of unique orthogonal linear subspaces which we will use to reduce the original data into the
lower dimensional space; each input data point can be associated with a different subset

13
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Algorithm 2 Inference in Bayesian nonparametric PPCA using Gibbs sampling.
Input: Y,Θ,MaxIter, K
Initialise: Sample a random (Kmax ×N) binary matrix Z and initialise W using PCA
for iter← 1 to MaxIter

for n← 1 to N
for k ← 1 to K

Sample zk,n using Equation (19)
Sample κ ∼ Poisson

(
α
N

)
Accept κ new features from Equation (20) and update K accordingly

for n← 1 to N
for k ← 1 to K

if zk,n = 1
Sample xk,n using Equation (18)

Sample W using Equation (17)
Sample

{
σ2, α

}
from Appendix B

Algorithm 3 Inference in parametric aPPCA using Gibbs sampling.
Input: Y,Θ,MaxIter
Initialise: Sample a random (K ×N) binary matrix Z and initialise W using PCA
for iter← 1 to MaxIter

for n← 1 to N
for k ← 1 to K

if zk,n = 1
Sample xk,n using (18)

Update z1,...,N using (6)
Sample W using (17)
Sample

{
σ2, α

}
using Appendix B

of L subspaces, selected from a total of K subspaces. Therefore, any single observed data
point is represented by lower dimensional spaces subsets of RL. Note that the orthogonality
assumption wi ⊥ wj ∀i 6= j for the columns of W implies that K ≤ D.

If we assume an uninformative allocation prior over Z, the updates are parallel across
N , since the number of observed data points assigned to each latent subspace no longer
affects its assignment probability. In dimensionality reduction applications we often assume
L being two or three, so that l1 might indicate the x-axis, l2 the y-axis and l3 the z-axis of
the lower dimensional subspace. A Gibbs sampler for aPPCA is suggested in Algorithm 3.

4.2 Relationship to PCA

If we marginalize the likelihood (from Equation 16) with respect to the discrete and con-
tinuous latent variables {xn, zn}) and take the SVA limit σ2 → 0, the maximum likelihood
solution with respect to the transformation matrix W is a scaled version of the K largest
eigenvectors of the covariance matrix of the data (up to an orthonormal rotation); proof of
this is given in Appendix A. Furthermore, different priors over the matrix Z result in dif-
ferent variants of the model, giving explicit control over the scale of the different projection
axis.
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Sparse Balance Dense Class Full
K
2 aFA 0.15 0.31 0.93 4.20 0.35 0.42 1.10 4.10 0.77 0.93 1.36 4.20 0.08 0.21 1.01 4.20 0.86 1.15 1.67 4.10

fsFA 0.12 0.34 1.11 4.21 0.25 0.41 1.20 4.20 0.37 0.63 1.26 4.30 0.02 0.25 1.12 4.17 0.43 0.72 1.42 4.45
FA 0.96 1.25 1.63 4.06 1.04 1.12 1.79 4.49 2.33 2.64 3.44 5.88 1.08 1.79 2.69 4.75 3.24 2.77 3.73 6.51

sdFA 0.07 0.35 1.42 4.20 0.10 0.39 1.52 4.40 0.12 0.40 1.12 5.02 0.09 0.25 1.02 4.50 0.28 0.36 1.21 4.60
isFA 0.03 0.26 1.36 4.21 0.04 0.35 1.42 4.30 0.04 0.29 1.01 5.10 0.02 0.25 0.97 4.48 0.06 0.29 1.07 4.03

K aFA 0.01 0.19 0.79 4.10 0.05 0.18 0.85 4.10 0.06 0.18 0.92 4.00 0.01 0.15 0.78 4.10 0.09 0.18 0.75 4.20
fsFA 0.03 0.20 0.80 4.18 0.05 0.38 0.87 4.10 0.07 0.25 0.80 4.00 0.01 0.20 0.82 4.00 0.08 0.26 0.74 4.00
FA 0.01 0.18 0.77 3.42 0.01 0.19 0.75 3.28 0.01 0.19 0.74 3.12 0.01 0.19 0.79 3.06 0.01 0.18 0.72 3.09

sdFA 0.07 0.35 1.42 4.20 0.10 0.39 1.52 4.40 0.12 0.40 1.12 5.02 0.09 0.25 1.02 4.50 0.28 0.36 1.21 4.60
isFA 0.03 0.26 1.36 4.21 0.04 0.35 1.42 4.30 0.04 0.29 1.01 5.10 0.02 0.25 0.97 4.48 0.06 0.29 1.07 4.03

K + 4 aFA 0.01 0.18 0.72 2.97 0.01 0.18 0.71 2.80 0.01 1.60 0.70 2.85 0.01 0.17 0.68 2.86 0.01 0.18 0.71 2.87
fsFA 0.03 0.25 1.00 4.08 0.03 0.27 0.99 3.99 0.04 0.29 0.96 4.00 0.02 0.24 0.96 3.99 0.05 0.29 1.06 4.01
FA 0.01 0.18 0.71 3.00 0.01 0.17 0.72 3.02 0.01 0.17 0.69 2.89 0.01 0.17 0.70 2.85 0.01 0.17 0.68 2.75

sdFA 0.07 0.35 1.42 4.20 0.10 0.39 1.52 4.40 0.12 0.40 1.12 5.02 0.09 0.25 1.02 4.50 0.28 0.36 1.21 4.60
isFA 0.03 0.26 1.36 4.21 0.04 0.35 1.42 4.30 0.04 0.29 1.01 5.10 0.02 0.25 0.97 4.48 0.06 0.29 1.07 4.03

2K aFA 0.01 0.13 0.51 2.07 0.00 0.13 0.49 2.06 0.00 0.12 0.48 2.05 0.00 0.14 0.48 1.99 0.00 0.13 0.50 2.00
fsFA 0.03 0.25 0.98 4.06 0.03 0.26 0.96 3.90 0.04 0.28 0.96 3.88 0.02 0.24 0.95 3.94 0.05 0.28 1.03 3.96
FA 0.01 0.16 0.66 2.40 0.01 0.15 0.61 2.40 0.01 0.15 0.60 2.38 0.01 0.17 0.63 2.25 0.01 0.16 0.61 2.30

sdFA 0.07 0.35 1.42 4.2 0.10 0.39 1.52 4.40 0.12 0.40 1.12 5.02 0.09 0.25 1.02 4.50 0.28 0.36 1.21 4.60
isFA 0.03 0.26 1.36 4.21 0.04 0.35 1.42 4.30 0.04 0.29 1.01 5.10 0.02 0.25 0.97 4.48 0.06 0.29 1.07 4.03

3K aFA 0.00 0.01 0.06 0.25 0.00 0.01 0.06 0.25 0.00 0.01 0.06 0.24 0.00 0.02 0.06 0.23 0.00 0.02 0.08 0.24
fsFA 0.03 0.25 0.97 4.01 0.00 0.25 0.94 4.00 0.04 0.28 0.94 3.95 0.02 0.24 0.92 3.89 0.05 0.28 1.00 3.89
FA 0.01 0.12 0.47 1.07 0.01 0.12 0.47 1.15 0.01 0.13 0.47 1.11 0.01 0.13 0.51 1.11 0.01 0.12 0.47 1.09

sdFA 0.07 0.35 1.42 4.2 0.10 0.39 1.52 4.40 0.12 0.40 1.12 5.02 0.09 0.25 1.02 4.50 0.28 0.36 1.21 4.60
isFA 0.03 0.26 1.36 4.21 0.04 0.35 1.42 4.30 0.04 0.29 1.01 5.10 0.02 0.25 0.97 4.48 0.06 0.29 1.07 4.03

Table 1: Mean squared reconstruction error of different variants of factor analysis (FA) methods on five
different data sets of dimension D = 35 and K = 10 latent features; the data generating process is described
in Section 5.1. We have evaluated all methods and configurations using 4 different values of the noise parameter
σ2 controlling the signal-to-noise ratio in the generated data: σ2 = {0.01, 0.25, 1, 4} displayed left-to-right in
each of the 5 main columns. Parameters for each model were estimated using 80% of the data set, and the
resulting model was tested on the remaining 20%; average of the mean square out-of-sample reconstruction
error over 20 different experiments, is reported. Standard deviation estimates have been omitted due to all
estimates being < 0.005.

5. Experiments

This section provides some empirical results on the performance of the proposed variants
of PCA and FA applied to data visualization, data whitening and blind source separation.
The methods are evaluated on different kinds of synthetic data, images of handwritten
digits from MNIST, images of objects from the Coil-20 data set, and functional magnetic
resonance imaging (fMRI) data.
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Sparse Balance Dense Class Full
K
2 aFA 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

fsFA 0.99 0.65 0.64 0.70 0.99 0.85 0.79 0.81 0.92 0.87 0.87 0.93 0.67 0.88 0.84 0.87 0.85 0.89 0.95 0.99
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.63 0.63 0.84 0.65 0.77 0.53 0.78 0.62 0.70 0.65 0.61 0.52 0.55 0.44 0.50 0.49 0.41 0.32 0.45 0.47
isFA 0.91 0.61 0.59 0.75 0.94 0.87 0.92 0.88 0.81 0.98 0.90 0.92 0.88 0.78 0.73 0.73 0.98 0.89 0.98 0.94

K aFA 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
fsFA 0.99 0.34 0.48 0.73 0.96 0.96 0.99 0.76 0.95 0.97 0.98 0.86 0.89 0.79 0.85 0.67 0.99 0.95 0.95 0.90
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.63 0.63 0.84 0.65 0.77 0.53 0.78 0.62 0.70 0.65 0.61 0.52 0.55 0.44 0.50 0.49 0.41 0.32 0.45 0.47
isFA 0.91 0.61 0.59 0.75 0.94 0.87 0.92 0.88 0.99 0.98 0.90 0.92 0.88 0.78 0.73 0.73 0.98 0.89 0.98 0.94

K + 4 aFA 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
fsFA 0.84 0.24 0.33 0.65 0.91 0.77 0.78 0.70 0.98 0.85 0.81 0.64 0.84 0.78 0.67 0.52 0.84 0.79 0.86 0.88
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.63 0.63 0.84 0.65 0.77 0.53 0.78 0.62 0.70 0.65 0.61 0.52 0.55 0.44 0.50 0.49 0.41 0.32 0.45 0.47
isFA 0.91 0.61 0.59 0.75 0.94 0.87 0.92 0.88 0.81 0.98 0.90 0.92 0.88 0.78 0.73 0.73 0.98 0.89 0.98 0.94

2K aFA 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
fsFA 0.76 0.45 0.26 0.66 0.94 0.81 0.58 0.53 0.92 0.69 0.60 0.66 0.67 0.70 0.60 0.46 0.70 0.91 0.78 0.64
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.63 0.63 0.84 0.65 0.77 0.53 0.78 0.62 0.70 0.65 0.61 0.52 0.55 0.44 0.50 0.49 0.41 0.32 0.45 0.47
isFA 0.91 0.61 0.59 0.75 0.94 0.87 0.92 0.88 0.99 0.98 0.90 0.92 0.88 0.78 0.73 0.73 0.98 0.89 0.98 0.94

3K aFA 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
fsFA 0.81 0.36 0.37 0.48 0.85 0.52 0.58 0.47 0.98 0.59 0.49 0.63 0.73 0.55 0.67 0.54 0.57 0.76 0.63 0.65
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.63 0.63 0.84 0.65 0.77 0.53 0.78 0.62 0.70 0.65 0.61 0.52 0.55 0.44 0.50 0.49 0.41 0.32 0.45 0.47
isFA 0.91 0.61 0.59 0.75 0.94 0.87 0.92 0.88 0.99 0.98 0.90 0.92 0.88 0.78 0.73 0.73 0.98 0.89 0.98 0.94

Table 2: Sparsity of the variants of factor analysis (FA) methods evaluated in Table 1; the data generating
process is described in Section 5.1. We have evaluated all methods and configurations using 4 different values
of the noise parameter σ2 controlling the signal-to-noise ratio in the generated data: σ2 = {0.01, 0.25, 1, 4}
displayed left-to-right in each of the 5 main columns. For aFA sparsity is computed as the portion of zeros
out of all values of the Z matrix, whereas for all other methods the reported sparsity is the portion of zeros
out of the W matrix; conventional FA does not induce sparsity (i.e. the reported sparsity value would be 0.00
in all reported scenarios).
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5.1 Synthetic Data from Latent Feature FA Models

First, we generate a wide variety of latent feature linear Gaussian data sets, assuming that
the data matrix Y ∈ RD×N takes the form Y = W(X� Z) + E with X ∈ RK∗×N a latent
feature matrix with standard Gaussian distribution; W ∈ RD×K∗

is a factor loading matrix
with columns drawn from a multivariate Gaussian with mean zero and covariance matrix
σ2W IK∗ with σ2W = 1; E ∈ RD×N is a noise matrix with multivariate Gaussian columns
each with mean zero and covariance matrix σ2ID with varying signal-to-noise ratio across
experiments: σ2 = {0.01, 0.25, 1, 4}. The core of the generative model remains the same
across the different data sets we generate (N = 1200, D = 35) with only the number
of assumed latent features K the indicator matrix Z changing. We have considered five
separate synthetic data sets and the distribution of Z for each setup is displayed in Figure
3. We evaluate the reconstruction error of the estimated MAP solutions of the different
FA methods (i.e., with changing treatment of Z) across each scenario; parameters for each
model were estimated using 80% of the data set and the model was tested on the remaining
20%. The five FA methods tested are:

• Factor analysis (FA): the Z matrix is full of ones and all factors are shared across all
points;

• Infinite sparse FA (isFA): the Z matrix is modelled with an IBP prior (from Equation
3) and most factors are shared only across small, overlapping subsets of points;

• Finite sparse FA (fsFA): the Z matrix is modelled with a finite Beta-Bernoulli distri-
bution across all points and features;

• Adaptive FA (aFA): columns of Z are modelled with the prior in Equation (4), and
aFA is trained with the EM scheme in Algorithm 1;

• Sparse and dense FA (sdFA): the factor loading matrix W is split into two components:
one component is assumed to be dense and the other sparse Gao et al. (2013).

In this comparison, conventional FA implicitly aims to minimize the reconstruction error
(at the SVA limit) whereas all of the other FA models introduce regularization constraints
which aim to induce more parsimonious factors W which preserve the variance of only
portions of the input. The regularization implies that the sparse FA models aim to preserve
only a portion of the sample covariance, systematically leading to higher reconstruction
error (in N � D setting). Therefore, our emphasis is to evaluate the ability of aFA and
different FA techniques to obtain comparable reconstruction error to the conventional FA
(Table 1), but inducing sparser factor loadings W (Table 2). The different FA models are
included as a reference point for their relative performance across different sparsity scenarios
and signal-to-noise ratio, but the direct comparison across methods is difficult due to their
different hyperparameters and intended use. The number of factors are fixed for the FA and
fsFA to the generating number of factors K∗. The concentration parameter for the isFA
is set such that the most common estimated number of factors is equal to K∗, and sdFA
parameters are set following standard Bayesian model selection as described in Gao et al.
(2013).
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Figure 3: A plot of the different distributions used to model the latent space in Table 1 and
Table 2. The subplots display different samples of the zero-one indicator matrix Z: black
cells indicate 1’s and white cells indicate 0’s. Five different latent models are considered:
(a) Sparse latent feature model, (b) Dense latent feature model, (c) Latent class model in
which sharing of some feature between subsets of points implies sharing of all features of
those points, (d) Balanced latent feature model sampled from a specific hypergeometric
distribution, and (e) Collapsed latent space consisting of a single state.

The results in Table 1 and Table 2 summarize the key results of the comparison when
the generating K∗ = 10. Further results are available in Appendix E (Table 4 and Table
5) which list results in the case of K∗ = 15. The reported reconstruction error for sdFA
and isFA does not change in the different rows (i.e. for values of the set K) since they
are inferred with a fixed hyperparameters across rows and varying hyperparameters across
noise levels; the fixed value of K used for inference affects the reported results for the
parametric FA, fsFA and aFA. The second parameter L controlling the sparsity of Z is fixed
deterministically to L = K − 2 (whereas K is fixed to values indicated in the left column of
Tables 1 and 2) across experiments to reduce the degrees of freedom for aFA and ease the
interpretability of Tables 1, 2, 4, and 51.

The results in Table 1 suggest that given large enough values for K and L, aFA achieves
lowest mean reconstruction error across different noise levels. For fixed values of K and
L, sdFA and aFA perform robustly across different sparsity data sets. As seen in Table
5, the sparsity of Z in aFA is deterministically determined by the choices of K and L.
For high enough values of K and L with respect to the generating parameters, we get
consistently low reconstruction error when the signal-to-noise ratio is high (i.e. σ2 is low).
As expected, increasing the noise levels leads to lower performance for all methods with
sparser configurations of the different FA behaving more robustly at the higher noise levels.
The aFA uses more more parameters (i.e. inferrable columns of W) as K and L increase
so intuitively we also see robust performance of aFA with respect to signal-to-noise ratio
in those settings (for larger assumed values of K). In practice, alternating the ratio of K
and L (i.e. either by using different fixed values or in a Bayesian fashion) would enable
even better consistency across noise and sparsity levels. The fsFA performs similarly to the

1. Choosing K and L differently across the different synthetic data sets naturally renders lower reconstruc-
tion errors

18



Adaptive Latent Feature Sharing for Piecewise Linear Dimensionality Reduction

Figure 4: Estimated proportion of data associated with the different factors for sparse (left)
and dense (right) synthetically generated linear Gaussian data (as in Tables 1). The y-axis
denotes the proportion of points associated with a factor (i.e., factor allocation frequency);
the x-axis denotes the factor numbers where factors are ordered by size (i.e., number of
data points assigned to them). The true feature allocation frequency is displayed in red;
the remaining lines show the feature allocation frequency associated with the estimated
factors using the nonparametric factor analysis (isFA) and the proposed adaptive factor
analysis (aFA) model.

conventional FA with slightly higher reconstruction error due to the sparsity regularization.
We do observe that sdFA infers denser W when compared to the other sparse FA methods
(namely fsDA and isFA) across data sets which are generated from more balance or dense
models. The difference in the sparsity assumption in isFA and aFA is in the assumed priors
on the matrix Z. To provide some intuition of the induced power law behaviour under the
IBP prior, in Figure 4 we display the distribution of the raw-totals mk =

∑N
n=1 zk,n. Those

are shown in the case when the observed generating linear Gaussian model is sparse (left
panel) with linearly decreasing raw-totals mk (left-ordered) and dense (right panel) when
the raw-totals mk are uniformly distributed.

5.2 Factor Sharing between MNIST Digits

In this section we demonstrate estimated the parameters of the proposed aFA model on
N = 2500 odd-labelled digits (500 of each type) from the MNIST handwritten digit data
set. The raw pixel data were first reduced to D = 350 using standard PCA since this still
preserves 99.5% of the total variance within the data. The total number of unique factors
is set to K = 100 and the number L of observation-specific factors is set to maximize the
factor profiles of the different digits.

In Figure 5, we show the factor sharing across the digits which are calculated based on
the proportion of factors shared between different digit pairs. To estimate factor sharing,
we have assumed greedily that indicator variables take the value 1 for the first L highest
probability factors and 0 for the remaining factors. We count the number of factors shared
between samples of 1’s and 1’s, 1’s and 3’s, 1’s and 5’s, 1’s and 7’s, 1’s and 9’s, then we
normalise by the largest number of features shared; the procedure is repeated for the full
grid. Larger and darker circles indicate sharing of more factors. As expected, observations
depicting the same digits have the most shared factors; 1’s and 7’s also share significant
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Figure 5: aFA model parameters estimated on 2500 odd-labelled MNIST digits, 500 of each
label. Factor sharing grid between digits (left): circles are sized according to the number
of features shared between digit pairs denoted on the x-axis and y-axis; colour enforces
this effect where darker circles indicate more sharing and brighter circles, less. Distribution
of feature allocation processes (right): y-axis denotes the proportion of data sharing the
current factor; x-axis indicates the factor number where the factors are ordered from the
most (left) to the least (right) frequently allocated, with a small number of data points
allocated (right).

structure as well as 5’s and 9’s which broadly coincides with the geometry of the digits. The
results can be directly compared with a similar experiment in Paisley and Carin (2009b). In
Figure 5 we display the estimated feature weights obtained by summing over the Z matrix
and normalising. Varying L and K one can study how well sparse and dense aFA models
infer features specific to the different digits.

5.3 Visualization with aPPCA

Despite the increased popularity of nonlinear manifold embedding algorithms for data vi-
sualization, linear dimensionality reduction methods remain of fundamental importance
to exploratory data visualization, arguably due their scalability, stability, and transparent
data representation. In this section, we provide a simple illustrations of how latent feature
PCA complements conventional PCA visualizations. Typically we use PCA to project all
of the data down to the first two PCs, in aPPCA each point is also reduced to say L = 2
components, but these components are computed using only a fraction of the data, having
some larger K unique sparse PCs in total. This implies we visualise the data using multiple
scatter plots, each plot showing different subsets of the projected data instead of a single,
crowded plot obtained using PCA.

5.3.1 MNIST Data set

First, we look at subspace sharing of MNIST digits. For more intuitive visualization, we first
use a two-layer multilayer perceptron variational autoencoder (VAE) Kingma and Welling
(2013) to reduce the dimension of the 10,000 MNIST digits. The 784-dimensional data is
reduced using the VAE to 10 dimensions, and then we estimate the aPPCA model param-

20



Adaptive Latent Feature Sharing for Piecewise Linear Dimensionality Reduction

Figure 6: Scatter plot of 2D projections of 10, 000 MNIST digits, obtained using aPPCA
and PCA. The first three subplots contain only proportions of the data which have been
estimated by aPPCA to lie in the corresponding subspace (i.e., subspace 1 is spanned by
features 1 and 2; subspace 2 by features 2 and 3; and subspace 3 by 1 and 3). The fourth
subplot shows the 2D projection of all digits obtained using PCA.

eters with K = 3 and L = 2 to visualise the digits in the latent space. We will assume
that subspace 1 is spanned by the inferred features 1 and 2; subspace 2 by features 2 and
3; subspace 3 by features 1 and 3. Note that all pairs of subspaces share one of their
principal axes. Figure 6 displays the reduced data in each of these subspaces, where we
can see increased separation between many of the distinct clusters of different digits. From
Figure 7 we can see that distinct geometric properties of digits are encoded in the different
latent subspaces. Figure 7 shows randomly selected digits from each subspace; we can see
that most digits in subspace 1 are written in thicker font; most digits in subspace 3 are
slanted. This visualization reduces the crowding effect of PCA (Maaten and Hinton, 2008)
and produces multiple 2D plots which jointly decompose and organize the observed data.

5.3.2 COIL-20 Data set

We consider another data visualization example, this time using data from the Columbia
University Image Library (COIL-20) (Nene et al., 1996). The data set contains low resolu-
tion images (32× 32 pixels) of 20 different objects. The objects are placed on a motorised
turntable against a blank background and the turntable is rotated through 360 degrees to
vary object pose with respect to a fixed camera. 72 images of each object are taken, at
pose intervals of 5-degree rotation, and the images are size normalised. This means that
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Figure 7: Randomly selected MNIST digits from each of the identified subspaces. The top
panel consist of mostly thicker digits; the bottom panel is dominated by slanted digits.

objects which are very similar at different view angles, will result in very similar 72-image
observations. First, we reduce all 1,440 images onto the two PCs which are computed to
preserve the variance globally across all data points. Images from the different objects are
displayed in different colours in Figure 8, whereas a fraction of the actual images is overlaid
on the scatter plot. We see that some of the objects, such as two of the toy cars framed
from front view angle (i.e., green, and yellow class on the far right of the plot), are well
separated into a group with other rectangular objects having similar geometry. However,
most of the objects are bundled in the centre of the plot and not distinguishable in the
reduced, global 2D latent space.

Next, we fit an aPPCA model with K = 4 and L = 2 which effectively learns four sparse
PCs with each data point associated to a subset of exactly two of these components. In
(b)-(c) of Figure 8, we display the points sharing combinations of the estimated subspaces
spanned by the sparse principal components (i.e., four unique components leads to (4 ×
3)/2 = 6 subspaces with some shared axes). We see that projections onto the sparse PCs
reduce the crowding effect of PCA. In addition, the different sparse PCs encode interpretable
geometric properties of the objects observed. For example, objects with smaller values along
the sparse PC number 2, tend to be narrower, whereas objects with large values along the
sparse PC number 1 tend to be less cylindrical. Within each 2D subspace, the different
object projections are easier to separate and different objects with similar projections also
have visually clear image similarity under a rotation angle.

5.3.3 Interpreting global structure in manifold embedding

Toy problems such as COIL-20 have been used to showcase manifold embedding meth-
ods such as t-SNE (Maaten and Hinton, 2008) and more recently UMAP (McInnes et al.,
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(a) PCA (b) aPPCA: subspace {1, 2} (c) aPPCA: subspace {1, 3}

Figure 8: 2D projections of the COIL-20 data set images using PCA and aPPCA methods.
(a) 2D scatter plot obtained by reducing the 1,024D images to 2D with (global) PCA, a
sample of the original images is placed over their projection. (b)-(c) 2D projections of data
points onto the sparse principal components with which they they are associated, inferred
using aPPCA. Where (a) includes all data points in a single projection, aPPCA in (b)-(c)
identifies subsets of the data sharing principal components, hence principal components are
estimated using only a subset of the observations (i.e., sparse principal components).

2018). Empirically, both t-SNE and UMAP often lead to very good class separability in
the lower dimensional projections particularly in scenarios where class separability in the
original high-dimensional data is good (i.e., such as for COIL-20). At the same time, it is
well known that many manifold embedding algorithms such as UMAP and t-SNE do not
preserve the global structure of the data manifold, unlike linear methods such as PCA and
multidimensional scaling, or kernel space models such as Gaussian process latent variable
models. This often leads to lower dimensional projections which reflect class separability
well when captured in localised regions of the manifold (such as in MNIST and COIL-20),
but do not capture similarities across different classes adequately. To illustrate, Figure 9
shows 2D projections of COIL-20, obtained using UMAP. On the right (Figure 9c), objects
from the same class are associated with the same colour. Certain objects have been sep-
arated into 2 or 3 clusters (i.e., the duck and the bowl), depending on the angle of view,
but if the aim is object classification based on 2D embedding of the data, the task is nearly
trivial. The challenge is less clear if we are looking to uncover latent structure between the
objects.

McInnes et al. (2018) has suggested using PCA to reduce data onto its first three PCs
and colour UMAP embeddings using RGB values defined by the 3D PCA projections of
each point. This approach suggests that points close in the PCA projection of the data,
would also have a similar colour. By contrast, as colours transition, this means that data
points are projected far apart on some of the PCs. The problem with using PCA as
diagnostics for UMAP projections in this manner, is that we are likely to crowd observations,
overestimating proximity between most points due to the simplistic, global assumptions of
PCA. If we are interested in using manifold embedding methods such as UMAP, which
preserve the local structure of the original manifold, we can instead use piecewise linear
methods such as aPPCA, which capture the global structure of the manifold, and use
these to annotate the 2D UMAP projections (Figure 9b). In this figure, we use different
symbols to denote points associated with different subspaces; the colours depend on the

23



Farooq and Raykov et al.

(a) UMAP: colored by aPPCA
embeddings

(b) UMAP: colored by shared
subspaces (c) UMAP: colored by classes

Figure 9: 2D projections of the COIL-20 data set images using UMAP. The x-axis and y-
axis are determined based on the UMAP projection. In (a) the colours encode the non-zero
3D projection of the points performed using aPPCA. Each point is associated with exactly
three sparse PCs, but the total number of components is larger. In (b) the colours encode
subspace sharing with same colours (i.e., points in the same colour share at least two sparse
PCs). In (c) the colours encode indicate the object classes.

Figure 10: Example images from different object classes in the COIL-20 data set, with
shared subspaces and close proximity in the 3D orthogonal aPPCA projection of input
images. Proximity was defined with basic K-means clustering of the lower dimensional
projections, where Figure 8 shows how clustered specific subspaces are. Note that objects
sharing subspaces are merely estimated to have a shared covariance structure.

3D projection obtain with a single run of aPPCA with K = 4 and L = 3 (i.e., leading to
four subspaces spanned by sparse PCs {1, 2, 3}; {2, 3, 4}; {1, 2, 4} and {1, 3, 4}). Note that
under this diagnostic, similar colours (in RGB values) indicate similarity in the reduced
form. We can see that aPPCA much of the omitted cross-object similarities is specific to
certain rotations: the rotated Maneki-neko (i.e., lucky cat figurine) and cylindrical bottle;
the duck toy and the similar shape wooden part; the different clusters of bowl images and
others. To further aid intuition, we have also included images of rotated object similarities
identified using subspace decomposition diagnostics with aPPCA, see Figure 10.

5.4 Data pre-processing

Another ubiquitous use of PCA is data whitening. This is an often-used pre-processing step
that aims to decorrelate the observed data to simplify subsequent processing and analysis,
for example, image data tends to have highly correlated adjacent pixels. In this capacity,
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Figure 11: Classification accuracy of a multilayer perceptron was evaluated using 10,000
MNIST digits in three different setups: no whitening; data pre-processed with PCA; data
pre-processed with adaptive probabilistic PCA (aPPCA). On the x-axis we show the number
of reduced dimensions for different instances of the same classifier. The y-axis indicates the
out-of-sample digit classification accuracy, evaluated using 10-fold cross-validation.

PCA works by ”rotating” the data in observation space, retaining dimensionality, unlike
visualization applications.

Here we show a simple example demonstrating how aPPCA can be used to do more
effective local whitening which can lead to more accurate and interpretable supervised clas-
sification in decorrelated latent feature space. To demonstrate this, we compare a classifier
trained on raw data with the same classifier trained on the first few PC projections of the
data where the PCs are estimated (1) globally using PCA and (2) locally, within subsets of
the data using aPPCA. For simplicity, we show an example of pre-processing the MNIST
handwritten digit classification data set, before training a multilayer perceptron. We train
a simple multilayer perceptron with one hidden layer with a softmax activation function
evaluated using 10-fold cross-validation on 10, 000-image subset of the 784−D MNIST data
set. We compare the performance of the same classifier network when (1) trained on the
original 784-D pre-processed data, (2) trained on lower-dimensional projection of the data
using PCA (3) trained on data locally whitened by aPPCA (K-dimensional). The classifier
is a multilayer perceptron in all three scenarios. Figure 11 shows the classification accuracy
of these three different pre-processing approaches as we vary K, i.e., the number of PCs
onto which we can project the data. For aPPCA, we have kept L = K − 1 for simplicity.
Intuitively, we also see increases in performance if multiple, separate classifiers are trained
on each L-dimensional subspace, but usually, after whitening with PCA, a single classifier
is used.

A key feature of aPPCA for localised data whitening is that it estimates more robust
subspaces than global PCA, which can be seen in the smaller number of subspaces (i.e., PCs
or columns of W) required for training of the same classifier to achieve the same level of
out-of-sample prediction performance. The multilayer perceptron trained on PCA whitened
data requires more subspaces in training to achieve comparable out-of-sample performance.
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Figure 12: fMRI data of 3D brain volumes was collected over time (e.g. every 0.8 seconds).
Typically, images are vectorised and represented as 2D T ×V matrices (top panel), with
V being the number of all voxels in all dimensions and T the number of time instances.
This matrix can then be reduced to a K×V matrix (i.e., X) which represents spatial maps
of regions with intrinsically similar time courses (middle panel). W denotes the modelled
transformation matrix and Z indicates whether components (i.e., rows of X) should be
included in the representation of the data matrix or not. Columns of W, also referred to
as components, are easier to interpret in terms of their correlation to experimental stimuli.

5.5 Blind source separation in fMRI

Functional magnetic resonance imaging (fMRI) is a technique for the non-invasive study of
brain function. fMRI can act as an indirect measure of neuronal activation in the brain, by
detecting blood oxygenation level-dependent (BOLD) contrast (Zarahn et al., 1997). BOLD
relies on the fact that oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood
have different magnetic properties. When neurons fire there is an increase in localised flow
of more oxygenated blood, which can be detected using BOLD fMRI.

fMRI time-series data is often represented as a series of 3D images (see Figure 12).
However, this data can be also represented as a 2D matrix using vectorised voxel matrices
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over time (time by voxels). In this representation, each matrix row contains all voxels from
the brain image (or the subset selected for analysis) from a single time instant. Although
useful, fMRI data often suffers from a low image contrast-to-noise ratio, it is biased by
subject head motions, scanner drift (i.e., due to equipment overheating), and signals from
irrelevant physiological sources (cardiac or pulmonary). Therefore, direct analysis of raw
fMRI measurements is rare (Pruim et al., 2015) and domain experts tend to work with
pre-processed, reduced statistics of the data. In clinical studies, due to the typical scarcity
of fMRI series per subject and the low signal-to-noise ratio, flexible black-box algorithms
are rarely used. The preferred methods for pre-processing of fMRI series and localisation of
active spatial regions of the brain are variants of linear dimensionality reduction methods
such as PCA and FA (Calhoun et al., 2003; Taghia et al., 2017; Beckmann and Smith,
2005; Pruim et al., 2015; Højen-Sørensen et al., 2002). Typically, of primary interest is then
analysis of a representative subset of the inferred PCs or factors respectively, instead of the
use of raw data.

A key problem with this approach is that these simple methods assume that the com-
ponents/factors are a linear combination of all of the data, i.e., in other words, PCA and
FA assume that all components are active for the full duration of the recording. Common
implementations for fMRI series (McKeown et al., 2003; Calhoun et al., 2009) might thresh-
old the inferred components, or use sparse versions of the decomposition techniques. These
can still lead to biased component decomposition, and we are likely to overestimate the
size of the activation area of the brain for some components and completely overlook func-
tional areas of the brain which are active for short periods of time. Here, we show that our
proposed adaptive linear methods, are better-motivated models for alleviating this problem
and can infer better localised spatial regions of activation from fMRI. Furthermore, we can
potentially discover novel short-term components in a principled, probabilistic, data-driven
fashion.

As a proof of concept, here we apply aPPCA to fMRI data collected from a single
participant while exposed to continuous visual stimuli (Raykov et al., 2021). The fMRI
data were initially realigned to correct for subject motion and registered to a group template
(Montreal Neurological Institute Template). Using a 3T Siemens scanner, a whole brain
image with a voxel resolution of 2 × 2 × 2 mm was acquired every 0.8 seconds. The data
had 215, 302 voxels and 989 time instances. The aPPCA decomposition was performed by
treating time instances as features, which is standard procedure in the neuroimaging field.
For aPPCA we used K = 500 unique components and constraint of L = 200 components,
which were selected to achieve component similarity with the benchmark and enable visually
intuitive comparisons. We also performed PPCA with K = 200 components for comparison,
see Figure 13.

The figure shows the component most associated with the task estimated both with
aPPCA and PPCA. aPPCA results in sparser maps across space, which enhance localisation.
This sparsity increases with higher numbers of components that explain less variance in
the data. This can be useful for identifying noisy components and brain areas that are
only transiently active during task performance. We also show the corrected t-statistic
map (Figure 13) which shows the voxels that have a significant correlation with the visual
stimuli. The map is family-wise error (FWE) rate corrected at p < 0.05 at voxel threshold
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Figure 13: Lower dimensional fMRI recording reduced across time, plotted against the
subject brain. The fMRI time series of length T is reduced to K components and here
we display the single component most associated with the stimuli during the experiment.
Reduced projection estimated using aPPCA (top) and projection estimated using PPCA
(middle). The larger numbers of grey regions indicate that aPPCA projection better lo-
calises regions of the brain fluctuation through time, as a response to the visual stimuli.
Reference regions of activation can be seen from the t-map (bottom) displaying the corre-
lation of the component with the ground-truth visual stimuli.

p < 0.001. One benefit of decomposition methods versus standard correlation methods is
that they do not need a predefined model of assumed task activation.

Direct quantitative evaluation of pre-processing tools for fMRI data is an open problem,
due to the lack of a clear ground-truth definition of brain-activity-related components.
We have measured the mean reconstruction error across all 215, 302 voxels as well as the
standard deviation across voxels. We find that the highest error with the highest standard
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deviation, average root mean square error (RMSE) of 16.5, and the standard deviation of
RMSE of 4.8), was obtained using PPCA. aPPCA reconstruction gradually reduces these
errors depending upon the ratio of K to L, with the best scoring reconstruction having an
average RMSE of 14.1 and standard deviation RMSE (across voxels) of 3.0. The lower
standard deviation of error across voxels supports our hypothesis of better-preserved local
region information using aPPCA. Due to the simplicity of the imaging setup, both methods
were able to identify components highly correlated to the stimuli (Figure 13). The typical
goal for experts would be to examine functions of the specific brain regions or networks, as
well as potentially affected areas of the brain after head trauma or stroke.

The typical practice would be to threshold the observation-specific loadings (i.e., reduced
form data) and only consider voxels that significantly contribute to selected subsets of
components. The adaptive nature of aPPCA allows us to infer the voxel association with
specific components (i.e., Z switches off voxels not part of a component) in a principled
fashion as a part of a fully probabilistic model. In addition, the experimental user has
explicit control over the contrast voxels used in different components (ratio of K to L) and
this can be useful for achieving better spatial localisation without thresholding, which is an
inherently subjective and overly simplistic, procedure.

6. Conclusion

In this work, we have studied generic discrete latent variable augmentation for ubiquitous
linear Gaussian methods applied for feature learning, whitening, and dimensionality reduc-
tion applications. The manuscript details shortcomings of existing Bayesian nonparametric
linear Gaussian methods and demonstrates that flexible alternatives can be derived by mod-
elling discrete latent features without replacement, such as latent hypergeometric models
and truncated multinomial latent feature models. We propose two such novel frameworks,
the aFA, and aPPCA models, which overcome the inherent over-partitioning in Beta pro-
cesses, allowing for more flexible regularisation of the model capacity when compared to
Beta-Bernoulli models. The proposed models can be extended to many other related meth-
ods such as generalised linear Gaussian models, Gaussian process latent variable models
(GPLVMs), kernel PCA methods, and others. Dai et al. (2015) has already introduced the
problem of handling discontinuity in GPLVMs and proposed a simple spike and slab prior
to augment the continuous latent variables in GPLVMs. Augmenting GPLVMs with dis-
crete hypergeometric feature allocation indicators, would in principle allow for a richer and
more compact model of the manifold using a smaller number of underlying, feature-specific,
Gaussian processes.

In our study of aPPCA models, we have also proposed efficient practical inference meth-
ods for distributions on Stiefel manifolds. The utility of the proposed tools is demonstrated
on synthetic latent feature Gaussian data sets, MNIST handwritten digit images, COIL-20
object images, and brain imaging fMRI data. The synthetic data study shows that a wide
range of feature allocation distributions can be captured with our novel multivariate hyper-
geometric model. We have applied aPPCA to MNIST variational autoencoder projections,
showing that it can be used to identify images sharing clear geometric features. aFA was
applied to nearly raw MNIST digits to show that images of visually similar digits share
more factors than visually distinct digits. We conclude with an application of aPPCA to
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a widely encountered problem in brain imaging with fMRI and demonstrate an accurate
decomposition of active spatial regions in the brain during different stimuli (or at rest).
We also demonstrate that this discrete-continuous decomposition leads to more accurate
localisation of active brain regions. This finding has the potential to lead to significant
improvements to analysis pipelines for fMRI data for neurological screening and cognitive
neuroscience applications.
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Appendix A. Adaptive PCA

In this section, we demonstrate that the proposed aPPCA model from Section 4 is indeed
a generalisation of the ubiquitous PCA using small variance asymptotics Broderick et al.
(2013). Let us first start by marginalising the discrete and continuous latent variables
{xn, zn} which are not of explicit interest in conventional PCA. To compute the marginal
likelihood of yn we compute the expectations

EP(xn,zn) [yn] and EP(xn,zn)

[
(yn − E [yn]) (yn − E [yn])T

]
(21)

where we use E [ ] = EP(xn,zn) [ ] for notational convenience. We express the moments of
the marginal likelihood starting with the posterior mean of the marginal, E [yn]

E [yn] = E [W (xn � zn) + µ+ εn]

= W (E [xn]� E [zn]) + µ+ E [εn]

= W (0� ρ) + µ+ 0

= µ

where we have used a diagonal (K ×K) matrix ρ to denote the expectation of each feature,
which is determined by the prior on the matrix Z

ρk,k =

{
L
K if multivariate hypergeometric prior
1
N

∑
n zk,n if IBP prior

(22)

For the variance of the marginal, we can write

E
[
(yn − E [yn]) (yn − E [yn])T

]
= E

[
(W (xn � zn) + εn) (W (xn � zn) + εn)T

]
= WρWT + σ2ID.

Finally, using the obtained expression for E [yn] and E
[
(yn − E [yn]) (yn − E [yn])T

]
, com-

bined with the Gaussian likelihood of yn resulting in a linear Gaussian model, we can write
the marginal likelihood as

P
(
yn |W,ρ, σ2

)
=

1

(2π)
D
2

|C|−1/2 exp

(
−1

2
yTnC−1yn

)
(23)

where we used C = WρWT + σ2ID to denote the model covariance.

Now, the marginal likelihood in this collapsed aPPCA model is almost identical to the
PPCA model (Tipping and Bishop, 1999b) with the key difference being the weights ρ
which can be a single scalar shared across all dimensions, or direction specific. In fact,
we can say that the PPCA model is a special case of the collapsed aPPCA model when
the diagonal of ρ are full of ones, which occurs when the matrix Z is full of ones, in turn
implying all observations are active in all K numbers of 1D subspaces.
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The complete data log-likelihood of the collapsed model is

L =
N∑
n=1

ln
(
P
(
yn |W,ρ, σ2

))
= −N

2

(
D ln (2π) + ln |C|+ tr

(
C−1S

))
where S = 1

NYYT . To find the maximum likelihood estimate for W, we differentiate the
likelihood and solve

dL
dW

= −N
2

(
2C−1Wρ− 2C−1SC−1Wρ

)
= 0. (24)

The maximum likelihood estimate for W should then satisfy:

C−1Wρ = C−1SC−1Wρ

WMLρ = SC−1WMLρ

To find the solution for the above we first express the Wρ1/2 term using its singular value
decomposition:

Wρ1/2 = ULVT (25)

which leads to

C−1Wρ1/2 = UL
(
L2 + σ2IK

)−1
VT .

Then, we compute

SC−1Wρ1/2 = Wρ1/2

SUL
(
L2 + σ2IK

)−1
VT = ULVT

SUL = U
(
L2 + σ2IK

)
L

which implies that uj is the eigenvector of S with eigenvalue of λj = σ2 + l2j . Therefore, all

potential solutions for WML may be written as

WML =UK

(
KK − σ2IK

)1/2
Rρ−1/2 (26)

where

kjj =

{
λj eigenvalue of uj

σ2 otherwise
(27)

where R is (D ×K) orthonormal matrix. The weighting term ρ allows explicit control over
the scale of the different projection axes; it determines if we should place importance on
the role of the input to the projection axis, which is meant to reflect our posterior belief of
re-scaling, again because not all data points share all subspaces. Appropriate scaling with
ρ can address the well known pitfalls of PCA such as the disproportionate crowding of the
projections due to outliers or multi-modalities; the sphericalisation of the projection.
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Appendix B. Updating hyperparameters

In this section we list a Bayesian procedure for inferring the hyperparameters of aPPCA.

B.1 Updating σ2

We place an inverse-Gamma prior on σ2 with parameters {γ, ϑ}

P
(
σ2|γ, ϑ

)
=

ϑγ

Γ (γ)

(
σ2
)−γ−1

exp

[
− ϑ

(σ2)

]
. (28)

This leads to posterior distribution over σ2 of the form

P
(
σ2|γ, ϑ,Y,W,X,Z

)
=

ϑγ

Γ (γ)

(
σ2
)−γ−1

exp

[
− ϑ

σ2

]
× 1

(2πσ2)
ND
2

exp

(
− 1

2σ2

N∑
n=1

[
(yn −W (xn � zn))T (yn −W (xn � zn))

])
∝
(
σ2
)−(γ+ND/2)−1

× exp

(
− 1

σ2

(
1

2
tr
[
(Y −W (X� Z))T (Y −W (X� Z))

]
+ ϑ

))
.

which is still an inverse-Gamma distribution with parameters γpost = γ + ND
2 and ϑpost =

1
2tr
[
(Y −W (X� Z))T (Y −W (X� Z))

]
+ ϑ.

B.2 Updating α

We place a Gamma prior on the IBP concentration parameter α with parameters {λ, µ}

P (α|λ, µ) =
µλ

Γ (λ)
(α)λ−1 exp [−µα] . (29)

This leads to posterior distribution over α of the form

P (α|λ, µ,Y,W,X,Z) =
µλ

Γ (λ)
(α)λ−1 exp [−µα]

× exp (−αHN )αK ×

(
K∏
k=1

(mk − 1)! (N −mk)!

(N)!

)
∝ (α)λ+K−1 exp (−α (HN + µ))

which is still a gamma distribution with parameters λpost = λ + K, µpost = HN + µ and
HN =

∑N
n=1

1
n .

Appendix C. Projection matrix update using Pymanopt

For both variants of aPPCA, the matrix W is updated numerically by minimising the
negative log of Equation (17) over the Stiefel manifold with respect to the matrix W.
Figure 14 shows the implementation of this using the Pymanopt toolbox Townsend et al.
(2016).
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Figure 14: Python code for aPPCA updates on the rotation matrix W using Pymanopt
toolbox.

Appendix D. Learning W

In this section we compare two different schemes of learning the projection matrix W while
maintaining orthogonality. We generate synthetic data Y ∈ RD×N which takes the form
Y = W(X � Z) + E with X ∈ RK×N a latent feature matrix with standard Gaussian
distribution; W ∈ RD×K is a projection matrix with orthogonal columns; E ∈ RD×N is
a noise matrix with multivariate Gaussian columns each with mean zero and covariance
matrix σ2ID with σ2 = 0.01. The core of the generative model remains the same across the
different data sets we generate (N = 1000, D = 35), and only the number of latent features
K and the indicator matrix Z, changes. We have considered five separate synthetic data
sets and the distribution of Z for each setup is displayed in Figure 3. We evaluate how
two different schemes are able to learn the projection matrix W; the first approach will
sample each column of W using the von Misses-Fisher distribution (and then re-scale to
maintain orthogonality), and the second method jointly optimises all columns of W on the
Stiefel manifold using the Pymanopt toolbox Townsend et al. (2016). For each method
we solely focus on learning W, therefore other parameters are fixed to the true value. For
each experiment W is estimated using 80% of the data and then tested on the remaining
20%; results are reported in Table 3.

Results from Table 3 show that the projection matrix W estimated using the Pymanopt
toolbox has a lower mean squared prediction error when compared to estimating it with
the von Misses-Fisher distribution.

Appendix E. Additional results from the synthetic study

In this section, we include some additional figures illustrating the performance of the dif-
ferent FA techniques from Section 5.1. We reproduce the results in Table 4 and Table 5
using different values for K∗ of the data generation process. Since we assume unchange
dimensionality D = 35, the evaluation simply probes the effect of having different lower di-
mensional data structure (i.e. inducing denser loadings and higher intrinsic dimensionality
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Data Pymanopt von Misses-Fisher

K = 10 0.095 0.323
Sparse ±0.002 ±0.016
matrix K = 20 0.096 0.471

±0.002 ±0.013

K = 10 0.095 0.563
Balanced ±0.001 ±0.029
matrix K = 20 0.096 0.760

±0.001 ±0.017

K = 10 0.095 0.548
Dense ±0.001 ±0.026
matrix K = 20 0.096 0.793

±0.001 ±0.017

K = 10 0.093 0.566
Subsapce ±0.002 ±0.020
clusteringK = 20 0.096 0.769

±0.001 ±0.010

K = 10 0.093 0.614
Single ±0.001 ±0.011
State K = 20 0.096 0.920

±0.003 ±0.015

Table 3: Performance of two different schemes learning the projection matrix W on five
different data sets of dimension D = 35 and latent features K = 10 & K = 20. For
each experiment, W was estimated using 80% of the data and tested on the remaining
20%; average and 1-standard deviation of mean square prediction error (i.e. of predicting
generating W) over 20 different experiments is reported.
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of the latent space). Table 4 reports the mean square reconstruction error and Table 5 the
portion of inferred sparsity when different K∗ = 15 is used.

The aFA model performs similarly across the different settings tested here, since the
latent space structures in the synthetic data are all special cases for the multivariate hy-
pergeometric model. For smaller generating number of factors K∗ compare to D (Table 1
vs Table 4), we see systematically that isFA is associated with larger uncertainty for dense
and balanced feature allocation matrices, whereas the sdFA for the sparse settings. The
fsFA performs similarly to the conventional FA with slightly higher reconstruction error
due to the sparsity regularization. The consistently higher reconstruction error for sdFA is
most likely explained with the different indented use of sparse FA models where one would
have to use significantly higher K to achieve comparable reconstruction error. However,
an important benefit for this approach is that the relative performance remains consistent
across different sparsity settings.
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Sparse Balance Dense Class Full
K
2 aFA 1.22 1.60 2.01 4.78 2.42 2.70 3.24 5.46 3.78 3.77 5.12 7.35 1.43 2.22 2.14 5.59 5.07 5.44 5.78 7.90

fsFA 1.34 1.75 2.27 4.12 2.62 2.99 3.55 4.13 4.11 4.12 5.59 4.06 1.56 2.46 2.33 4.04 5.48 5.90 6.26 4.01
FA 1.37 1.57 2.05 3.18 2.58 3.06 3.32 3.09 4.38 4.15 5.35 3.01 1.64 2.43 2.25 3.01 5.51 5.83 5.78 2.92

sdFA 0.04 0.35 1.26 4.92 0.03 0.36 1.32 6.32 0.09 0.41 1.58 6.42 0.72 0.45 1.62 5.22 0.06 0.45 1.25 5.88
isFA 0.03 0.26 1.10 4.61 0.02 0.85 1.20 6.20 0.09 0.30 1.42 6.11 0.06 0.30 0.27 4.53 0.06 0.28 1.06 5.76

K aFA 0.04 0.19 0.73 3.15 0.06 0.21 0.75 3.10 0.12 0.21 0.77 3.02 0.01 0.19 0.19 3.02 0.10 0.22 0.76 2.96
fsFA 0.04 0.26 0.26 1.01 0.02 0.30 0.30 1.05 0.09 0.30 0.30 1.04 0.06 0.30 0.30 0.27 0.06 0.28 0.28 1.06
FA 0.01 0.18 0.18 0.73 0.01 0.18 0.18 0.73 0.01 0.18 0.18 0.74 0.01 0.18 0.18 0.18 0.01 0.18 0.18 0.73

sdFA 0.04 0.35 0.35 1.26 0.03 0.36 0.36 1.32 0.09 0.41 0.41 1.58 0.72 0.45 0.45 1.62 0.06 0.45 0.45 1.25
isFA 0.29 0.27 0.27 1.10 0.02 0.85 0.85 1.20 0.09 0.30 0.30 1.43 0.06 0.30 0.30 0.27 0.06 0.28 0.28 1.06

K + 4 aFA 0.01 0.17 0.70 2.91 0.01 0.18 0.72 2.91 0.01 0.18 0.73 2.88 0.01 0.18 0.18 2.82 0.01 0.18 0.72 2.83
fsFA 0.04 0.26 1.0 4.13 0.02 0.29 1.02 4.06 0.09 0.30 1.05 4.03 0.06 0.30 0.27 4.06 0.06 0.28 1.04 3.91
FA 0.01 0.17 0.69 2.99 0.01 0.18 0.70 2.90 0.01 0.18 0.70 2.83 0.01 0.17 0.17 2.81 0.01 0.17 0.69 2.76

sdFA 0.04 0.35 1.26 4.92 0.03 0.36 1.32 6.32 0.09 0.41 1.58 6.42 0.72 0.45 1.62 5.22 0.06 0.45 1.25 5.88
isFA 0.03 0.27 1.10 4.61 0.03 0.85 1.20 6.20 0.09 0.30 1.43 6.11 0.06 0.30 0.27 4.53 0.06 0.28 1.06 5.76

2K aFA 0.01 0.10 0.56 2.31 0.01 0.14 0.57 2.30 0.01 0.14 0.57 2.25 0.01 0.14 0.14 2.20 0.01 0.14 0.56 2.23
fsFA 0.04 0.25 1.00 4.02 0.02 0.28 1.01 4.01 0.09 0.29 1.01 3.94 0.06 0.29 0.26 4.00 0.06 0.27 1.00 3.90
FA 0.01 0.13 0.60 2.35 0.01 0.15 0.60 2.29 0.01 0.16 0.60 2.21 0.01 0.15 0.15 2.21 0.01 0.15 0.59 2.18

sdFA 0.04 0.35 1.26 4.92 0.03 0.36 1.32 6.32 0.09 0.41 1.58 6.42 0.72 0.45 1.62 5.22 0.06 0.45 1.25 5.88
isFA 0.03 0.27 1.10 4.61 0.02 0.85 1.20 6.20 0.09 0.30 1.43 6.11 0.06 0.30 0.27 4.53 0.06 0.28 1.06 5.76

3K aFA 0.00 0.06 0.25 0.94 0.00 0.06 0.25 0.98 0.00 0.06 0.27 1.01 0.00 0.06 0.07 0.94 0.00 0.07 0.27 1.01
fsFA 0.04 0.25 0.97 4.01 0.02 0.28 0.98 3.88 0.09 0.29 0.98 3.91 0.06 0.29 0.26 3.97 0.06 0.26 0.99 3.80
FA 0.01 0.10 0.44 0.89 0.01 0.11 0.42 0.88 0.01 0.11 0.44 0.85 0.01 0.11 0.11 0.84 0.01 0.11 0.42 0.88

sdFA 0.04 0.35 1.26 4.92 0.03 0.36 1.32 6.32 0.09 0.41 1.58 6.42 0.72 0.45 1.62 5.22 0.06 0.45 1.25 5.88
isFA 0.03 0.27 1.10 4.61 0.02 0.85 1.20 6.20 0.09 0.30 1.43 6.11 0.06 0.30 0.27 4.53 0.06 0.28 1.06 5.76

Table 4: Mean squared reconstruction error of different variants of factor analysis (FA) methods on five
different data sets of dimension D = 50 and K = 15 latent features; the data generating process is described
in Section 5.1. We have evaluated all methods and configurations using 4 different values of the noise parameter
σ2 controlling the signal-to-noise ratio in the generated data: σ2 = {0.01, 0.25, 1, 4} displayed left-to-right in
each of the 5 main columns. Parameters for each model were estimated using 80% of the data set, and the
resulting model was tested on the remaining 20%; average of the mean square out-of-sample reconstruction
error over 20 different experiments, is reported. Standard deviation estimates have been omitted due to all
estimates being < 0.005.
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Sparse Balance Dense Class Full
K
2 aFA 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

fsFA 0.73 0.63 0.68 0.70 0.97 0.87 0.90 0.82 0.94 0.95 0.91 0.91 0.80 0.86 0.87 0.89 0.94 0.94 0.95 0.93
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.81 0.61 0.81 0.62 0.75 0.59 0.75 0.58 0.68 0.56 0.75 0.56 0.53 0.39 0.50 0.52 0.49 0.32 0.45 0.48
isFA 0.76 0.63 0.60 0.72 0.98 0.90 0.91 0.87 0.99 0.96 0.89 0.93 0.81 0.74 0.73 0.80 0.99 0.98 0.97 0.94

K aFA 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
fsFA 0.97 0.33 0.43 0.77 0.99 0.96 0.93 0.85 0.99 0.97 0.96 0.91 0.88 0.79 0.82 0.70 0.99 0.98 0.97 0.96
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.81 0.61 0.81 0.62 0.75 0.59 0.75 0.58 0.68 0.56 0.75 0.56 0.53 0.39 0.50 0.52 0.49 0.32 0.45 0.48
isFA 0.76 0.63 0.60 0.72 0.98 0.90 0.91 0.87 0.99 0.96 0.89 0.93 0.81 0.74 0.73 0.80 0.99 0.98 0.97 0.94

K + 4 aFA 0.79 0.90 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
fsFA 0.91 0.30 0.38 0.69 0.96 0.81 0.78 0.75 0.93 0.88 0.85 0.74 0.76 0.75 0.66 0.59 0.88 0.77 0.83 0.82
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.81 0.61 0.81 0.62 0.75 0.59 0.75 0.58 0.68 0.56 0.75 0.56 0.53 0.39 0.50 0.52 0.49 0.32 0.45 0.48
isFA 0.76 0.63 0.60 0.72 0.98 0.90 0.91 0.87 0.99 0.96 0.89 0.93 0.81 0.74 0.73 0.80 0.99 0.98 0.97 0.94

2K aFA 0.87 0.90 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
fsFA 0.89 0.42 0.31 0.62 0.94 0.72 0.60 0.55 0.89 0.64 0.67 0.66 0.63 0.67 0.61 0.46 0.67 0.85 0.77 0.69
FA - - - - - - - - - - - - - - - - - - -

sdFA 0.81 0.61 0.81 0.62 0.75 0.59 0.75 0.58 0.68 0.56 0.75 0.56 0.53 0.39 0.50 0.52 0.49 0.32 0.45 0.48
isFA 0.76 0.63 0.60 0.72 0.98 0.90 0.91 0.87 0.99 0.96 0.89 0.93 0.81 0.74 0.73 0.80 0.99 0.98 0.97 0.94

3K aFA 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
fsFA 0.80 0.43 0.39 0.46 0.84 0.54 0.52 0.54 0.94 0.69 0.61 0.54 0.77 0.57 0.62 0.47 0.52 0.75 0.57 0.58
FA - - - - - - - - - - - - - - - - - - - -

sdFA 0.81 0.61 0.81 0.62 0.75 0.59 0.75 0.58 0.68 0.56 0.75 0.56 0.53 0.39 0.50 0.52 0.49 0.32 0.45 0.48
isFA 0.76 0.63 0.60 0.72 0.98 0.90 0.91 0.87 0.99 0.96 0.89 0.93 0.81 0.74 0.73 0.80 0.99 0.98 0.97 0.94

Table 5: Sparsity of the variants of factor analysis (FA) methods evaluated in Table 4; the data generating
process is described in Section 5.1. We have evaluated all methods and configurations using 4 different values
of the noise parameter σ2 controlling the signal-to-noise ratio in the generated data: σ2 = {0.01, 0.25, 1, 4}
displayed left-to-right in each of the 5 main columns. For aFA sparsity is computed as the portion of zeros
out of all values of the Z matrix, whereas for all other methods the reported sparsity is the portion of zeros
out of the W matrix; conventional FA does not induce sparsity (i.e. the reported sparsity value would be
0.00 in all reported scenarios).

38



Adaptive Latent Feature Sharing for Piecewise Linear Dimensionality Reduction

References

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for design-
ing overcomplete dictionaries for sparse representation. IEEE Transactions on signal
processing, 54(11):4311–4322, 2006.

Christian F Beckmann and Stephen M Smith. Tensorial extensions of independent compo-
nent analysis for multisubject fmri analysis. Neuroimage, 25(1):294–311, 2005.

Anirban Bhattacharya and David B Dunson. Sparse bayesian infinite factor models.
Biometrika, pages 291–306, 2011.

Christopher Bingham. An antipodally symmetric distribution on the sphere. The Annals
of Statistics, pages 1201–1225, 1974.

Tamara Broderick, Brian Kulis, and Michael Jordan. MAD-Bayes: MAP-based asymptotic
derivations from Bayes. In International Conference on Machine Learning, pages 226–234,
2013.

Vince D Calhoun, Tulay Adali, Lars Kai Hansen, Jan Larsen, and James J Pekar. ICA of
functional MRI data: an overview. In in Proceedings of the International Workshop on
Independent Component Analysis and Blind Signal Separation. Citeseer, 2003.
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