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Abstract

We consider the problem of sparse nonnegative matrix factorization (NMF) using archetypal
regularization. The goal is to represent a collection of data points as nonnegative linear
combinations of a few nonnegative sparse factors with appealing geometric properties,
arising from the use of archetypal regularization. We generalize the notion of robustness
studied in Javadi and Montanari (2019) (without sparsity) to the notions of (a) strong
robustness that implies each estimated archetype is close to the underlying archetypes and
(b) weak robustness that implies there exists at least one recovered archetype that is close
to the underlying archetypes. Our theoretical results on robustness guarantees hold under
minimal assumptions on the underlying data, and applies to settings where the underlying
archetypes need not be sparse. We present theoretical results and illustrative examples to
strengthen the insights underlying the notions of robustness. We propose new algorithms
for our optimization problem; and present numerical experiments on synthetic and real data
sets that shed further insights into our proposed framework and theoretical developments.

Keywords: Sparse Nonnegative Matrix Factorization, Archetypal Analysis, Robustness
to Perturbation, Model misspecification, Nonconvex Optimization

1. Introduction

Nonnegative Matrix Factorization (NMF) (Lee and Seung, 1999) is a well-known dimension-
ality reduction method where we represent a collection of data points as nonnegative linear
combinations of a few nonnegative latent factors. Nonnegative factors are desirable from
an interpretability standpoint in applications such as computational biology (Kotliar et al.,
2019; Brunet et al., 2004), image processing (Kalayeh et al., 2014; Liu et al., 2011), text
mining (Berry and Browne, 2005), and chemometrics (Lawton and Sylvestre, 1971), among
others. Mathematically, given a m×n data matrix with nonnegative entriesX ∈ Rm×n≥0 (the
rows of X correspond to the m samples and the columns the dimensions), NMF computes
nonnegative lower-dimensional latent factors W ∈ Rm×k≥0 ,H ∈ Rk×n≥0 . Here, k denotes the
number of latent factors with k < m,n and we desire the factors to lead to a good approx-

c©2024 Kayhan Behdin and Rahul Mazumder.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/21-0233.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/21-0233.html


Behdin and Mazumder

imation of the underlying data matrix: X ≈ WH, where rows of H are representatives
of the data and rows of W denote the coefficient weights. NMF can be formulated (Lin,
2007) as the following nonconvex optimization problem

min
H,W

‖X −WH‖2F s.t. H ∈ Rk×n≥0 ,W ∈ Rm×k≥0 (1)

where, ‖ · ‖F denotes the Frobenius norm of a matrix. The NMF problem is agnostic to
scaling: multiplying W with a positive scalar a > 0 and H with a−1 does not change the
objective and feasible set. Therefore, to remove such ambiguity, one needs to impose some
form of regularization.

Archetypal Analysis. Another classic dimension reduction method that is closely related
to NMF is Archetypal Analysis (AA) due to Cutler and Breiman (1994). AA seeks to find
an exact representation of the form X = WH for the data. However, in contrast to NMF,
representatives of the data (aka the archetypes), given by the rows of H, have an appealing
geometric interpretation. The archetypes are estimated so that they belong to the convex
hull of the data and the data is contained within their convex hull. Such constraints on
the archetypes can help make the factorization of the data unique, resulting in more inter-
pretable solutions. In practice however, it may not be possible to find such archetypes due
to exact factorization requirement, especially in applications pertaining to NMF (Javadi
and Montanari, 2019). To this end, Javadi and Montanari (2019), drawing ideas from AA,
propose a regularization scheme for NMF: Among all possible sets of candidate representa-
tives that contain the data in their convex hull with acceptable accuracy (i.e. sufficiently
high data fidelity), we select the one that is the closest to the convex hull of the data.
Figure 1 (a), (b) illustrate the exact AA of Cutler and Breiman (1994) and regularized AA
with a toy example1. As shown by Javadi and Montanari (2019), the archetypal-regularized
NMF framework leads to good performance in practice. Therefore, we pursue a deeper
investigation of this regularization framework in this paper. For simplicity, we will use the
term “AA” to refer to the framework of Javadi and Montanari (2019). When it is not clear
from the context, we use the term “exact AA” to refer to the method of Cutler and Breiman
(1994).

Robustness. If X admits an exact factorization of the form X = WH for some W ∈
Rm×k≥0 andH ∈ Rk×n≥0 , Donoho and Stodden (2004) show that under the so-called separability

assumption2, it is possible to recover W and H from X (up to permutation and scaling of
rows of H/columns of W ). The separability assumption has been consequently generalized
to less restrictive cases, including noisy settings. In particular, Arora et al. (2012) consider
an approximately separable model, where the data is assumed to be a noisy version of a
separable data set. They show that in this model, under additional regularity conditions, a
polynomial-time algorithm exists that finds a factorization that is close to the factorization
of the noiseless data in a suitable metric. Their results are further improved by Recht et al.
(2012), showing that noisy separable NMF can be solved by linear programs. Ge and Zou
(2015) show that a relaxed version of separability, the so-called subset separability condition,
suffices to achieve a good factorization from noisy data. Note that the separability/subset

1. See Appendix B for details of the example.
2. The factorization X = WH is called separable if rows of H are a subset of rows of X.
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separability assumptions are usually hard to verify on real data; and in our development
we do not make use of this assumption. Javadi and Montanari (2019) show that AA enjoys
robustness to perturbation: under certain assumptions, the resulting solution from AA on
the perturbed data is close to the underlying model in a suitable metric (as discussed in
Section 2.2). In particular, this implies that at least one of the recovered archetypes is
close to the underlying archetypes that contain and represent the noiseless data. In this
paper, we generalize this notion to a stronger version of robustness which implies that each
recovered archetype is close to some true archetype.

Some earlier works have considered NMF formulations robust to outliers (Chen et al., 2014;
Kong et al., 2011). In this paper, we consider a different notion of robustness, unrelated to
outliers that arise in the context of robust statistics (Huber, 2004).

Sparsity. Generally speaking, due to nonnegativity constraints on the latent factors, NMF
is known to produce sparse solutions, that is, H and W have some zero entries (Yang
and Oja, 2010). A sparse representation of the data aids in interpretability and requires
less storage space. This property of NMF has been utilized in different applications such
as image processing (Hoyer, 2004), computational biology (Kim and Park, 2007), medical
imaging (Woo et al., 2018), document clustering (Kim and Park, 2008) and audio process-
ing (Virtanen, 2007). Several papers have proposed formulations of NMF with additional
penalties and/or constraints to encourage enhanced sparsity in NMF—we refer to these as
sparse NMF methods. Specifically, Hoyer (2004) consider a sparse NMF problem where they
use a combination of the `1 and `2 penalty on the entries of H. Peharz and Pernkopf (2012)
add a constraint of the form ‖H‖0 ≤ ` to problem (1), where ‖H‖0 is the `0-pseudonorm,
the number of nonzero entries of H and ` is the desired sparsity level. Kim and Park (2008,
2007) add an `1 norm penalty on the entries of H to the cost function of (1) to impose
sparsity on H. To the best of our knowledge, there is limited theoretical work on sparsity
in NMF—in particular, towards understanding the effect of sparsity constraints on the ro-
bustness of the representation returned by NMF, an aspect we study here. In this paper,
we present a simultaneous analysis of sparsity and archetypal regularization in the form of
Sparse AA (SAA). We study regularized AA (Javadi and Montanari, 2019) in the presence
of additional sparsity constraints on H. In other words, we look for H such that it has a
few nonzero entries (i.e., ‖H‖0 is small), its rows describe the data well and are close to
the convex hull of data. See Figure 1 (c) for a numerical illustration of this problem. In
particular, we show that sparsity constrained AA leads to robust solutions, both in the weak
sense of Javadi and Montanari (2019) and the stronger notion of robustness proposed here.
An important feature of our analysis is that we do not assume the underlying archetypes
are sparse—i.e., we can handle model misspecification—this makes our proofs different from
existing work. We also discuss how noise and sparsity affect the robustness properties of
the model.

Algorithms. Due to the bilinearity of the mapping (W ,H) 7→ WH, most formulations
of NMF end up in a nonconvex optimization problem, although some convex formulations
exist (Bach et al., 2008) when the dimension of the latent factors grows to infinity. Some
basic approaches to these nonconvex problems include projected gradient methods (Lin,
2007), multiplicative update rules (Lee and Seung, 1999; Gonzalez and Zhang, 2005) and
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alternating optimization (Paatero and Tapper, 1994; Chu et al., 2004). More sophisticated
algorithms for NMF have been proposed in recent years, for example see Leplat et al. (2019);
Mizutani (2014); Gillis and Vavasis (2014). In this paper we present algorithms to obtain
good solutions for the regularized AA problem with sparsity constraints. To this end, we
present proximal block coordinate methods, and establish that they lead to a stationary
point. We discuss a useful initialization scheme based on Mixed Integer Programming
(MIP) (Wolsey and Nemhauser, 1999; Bertsimas et al., 2016) that leads to high-quality
solutions. To further improve the quality of solutions available from our block coordinate
procedure, we present local search based methods—to this end, our framework draws inspi-
ration from the work of Beck and Eldar (2013); Hazimeh and Mazumder (2020) and adapts
it to the setting of matrix factorization problems. Note that Elhamifar et al. (2012); Mørup
and Hansen (2012); Abrol and Sharma (2020) have proposed algorithms for the original
(exact) AA problem without sparsity constraints. In addition, prior work has extended the
notion of separability arising from NMF to address the exact AA problem: For example,
Damle and Sun (2017) use geometric interpretations of AA and separability to develop a
new algorithm for NMF. Our numerical experiments on synthetic, and real data sets vali-
date our theoretical results, and suggest the superiority of SAA over other popular sparse
NMF methods.

Our Contributions. Our contribution in this paper can be summarized as follows:

• We generalize the robustness framework of Javadi and Montanari (2019) to notions of
weak and strong robustness, introduced in this paper—these notions differ in how they
describe the proximity of our estimators to the underlying archetypes. Furthermore,
we prove robust solutions are good representatives of the noiseless data.

• We show how sparsity and AA can be used together to produce sparse factors that are
robust to noise and perturbation in the data. Our results apply to the mis-specified
setting–i.e., situations where the underlying archetypes are not necessarily sparse.

• We present algorithms3 based on block proximal descent and combinatorial local
search, discuss initialization strategies based on mixed integer programming (MIP);
and present convergence properties of our proposed algorithmic framework. We
demonstrate via numerical experiments on synthetic and real data sets the useful-
ness of our proposed approach.

Notation. For a matrix X, we let Xi,j , Xi,. and X .,j denote the (i, j)-th element, i-th row
and j-th column of X, respectively. With a slight abuse of notation, for indexed variables,
we move the subscript to superscript: that is, the i-th row of X0 is shown as X0

i,.. The
number of rows of a matrix X is denoted as #row(X). The convex hull of rows of the
matrix X ∈ Rm×n is denoted by

Conv(X) =

{
m∑
i=1

αiXi,. : αi ≥ 0,
m∑
i=1

αi = 1

}
.

We define (i) the distance between a vector x and the convex hull Conv(X) as

D(x,X) = min
v∈Conv(X)

‖x− v‖22

3. Implementation can be found at https://github.com/kayhanbehdin/SparseAA.
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Figure 1: In these figures, blue crosses (‘+’) represent the data points in R2. We seek to find 3

archetypes such that their convex hull contains the data. Panel (a): the black convex

hull (triangle) shows an arbitrary solution to NMF, while the red convex hull shows the

exact AA solution that is the smallest triangle containing the data. Panel (b): the black

convex hull shows a solution that describes the data with no error, while it is not close

to the convex hull of the data. The red convex hull shows the regularized AA solution,

which both describes the data well (but with nonzero error) and is close to the data.

Panel (c): the red convex hull shows the exact AA solution which does not have any zero

coordinate, while the black convex hull shows a solution which is sparse and only has 2

nonzero coordinates. In addition, no other solution with the same sparsity can be found

which is closer to the data.

(ii) the distance between a set of points (i.e., the rows of X) and Conv(Y ) as

D(X,Y ) =

#row(X)∑
i=1

D(Xi,.,Y ) and D(X,Y )1/2 =
√
D(X,Y ).

The number of nonzero entries in a matrix A is denoted as ‖A‖0. We define P`(H) to
be the projection of H ∈ Rk×n onto the `-sparse set {X ∈ Rk×n : ‖X‖0 ≤ `}. Moreover,
we define the complement as P⊥` (H) = H − P`(H). The support of a matrix H ∈ Rk×n,
S(H), is defined as the set of its nonzero coordinates:

S(H) = {(i, j) ∈ [k]× [n] : |H i,j | > 0}.

We setEi,j ∈ Rk×n to be the matrix with coordinate (i, j) equal to one and other coordinates
equal to zero. Throughout this paper, we use σmin(H) and σmax(H) to denote the smallest
and largest singular values of H (respectively). We let κ(H) := σmax(H)/σmin(H) denote
the condition number of H. For a convex and subdifferentiable function f : Rd → R, ∂f(x)
denotes the set of subgradients of f at x ∈ Rd. Proofs of main results have been relegated
to the appendix to improve readability.
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2. Problem Formulation

Given m data points in Rn, stacked along the rows of X ∈ Rm×n, the goal of exact AA is
to find k archetypes H1,., · · · ,Hk,. ∈ Rn such that: (i) the rows of X are contained in the
convex hull of the rows of H; and (ii) the rows of H are themselves close to the convex hull
of the rows of X. Equivalently, we seek to learn H such that

D(X,H) = D(H,X) = 0 (2)

where the first term ensures the data is described byH (as it implies there existsW ∈ Rm×k≥0

such that X = WH and each row of W sums to one). The second term ensures that rows
of H are in the convex hull of rows of X. As discussed earlier, the constraint (2) is too
restrictive for most practical cases. Moreover, a general factorization of the form X = WH
is not unique due to multiplicative invariance. Therefore, to remove such ambiguity, offer
some flexibility over the exact AA described above, Javadi and Montanari (2019) propose
a relaxed version of (2) for the NMF problem. In this framework, among all the archetypes
that contain the data with acceptable accuracy in their convex hull, they choose archetypes
that are closest to the convex hull of data. We follow suit, but in addition, we impose a
sparsity on H via the constraint ‖H‖0 ≤ `, where, ` is a budget on the number of nonzero
entries. Specifically, for a pre-specified value of α, our proposed Sparse Archetypal Analysis
(SAA) estimator considers:

Ĥ ∈ argmin
H∈Rk×n≥0

D(H,X) s.t. D(Xi,.,H)1/2 ≤ α, i ∈ [m]; ‖H‖0 ≤ `. (3)

Above the constraint “D(Xi,.,H)1/2 ≤ α, i ∈ [m]” restricts the data points (rows of X)
to be close to the convex hull of the rows of H. The archetypes (i.e., the right latent
factors) are constrained to be sparse. The objective function in problem (3) chooses the
archetypes closest to the convex hull of data points among all feasible solutions. This serves
to regularize the solution.

Remark 1 We note that by taking the value of α to be too small in problem (3), problem (3)
can become infeasible. However, as we show in Theorem 3, under our model setup it is
always possible find a value of α such that problem (3) is feasible.

2.1 Model setup

Suppose X0 ∈ Rm×n≥0 with rank(X0) = k (where we assume k is given a priori) admits a

nonnegative factorization of rank k. That is, there exist W̄ ∈ Rm×k≥0 , H̄ ∈ Rk×n≥0 such that

X0 = W̄ H̄ and rows of W̄ sum to one. This is equivalent to D(X0, H̄) = 0. However,
such a factorization is not generally unique. Hence, we let

H0 ∈ argmin
H∈Rk×n≥0

D(H,X0) s.t. D(X0,H) = 0 (4)

and assume that H0 is unique. The choice of H0 in problem (4) guarantees that X0 has an
exact factorization of the form X0 = W 0H0 for some W 0 ∈ Rm×k≥0 such that its rows sum
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to one and H0 is defined as in (4). Note that rank(H0) = k—otherwise, if rank(H0) < k,
then rank(X0) < k which contradicts our assumption on X0.

We assume that the observed data matrix X, is given by X = X0 + Z where Z is
additive noise. In what follows, we do not make any distributional assumptions on Z.

Remark 2 Our analysis of robustness is goes through without the uniqueness assumption
on H0. We make the uniqueness assumption for simplicity of exposition.

Remark 3 Note that we do not assume that H0 is sparse, though formulation (3) imposes
an explicit cardinality constraint on H. This model misspecification leads to technical chal-
lenges: The analysis presented in Javadi and Montanari (2019) does not readily generalize
to our setting, and we present a new analysis technique.

Remark 4 We also note that

X0 = W 0H0 =
k∑
j=1

(W 0):,k(H0)k,:.

This implies
rank(X0) = rank+(X0) = k

where rank+ denotes the nonnegative rank (Cohen and Rothblum, 1993), defined as the min-
imum number of nonnegative rank-one matrices that sum up to X0. Therefore, nonnegative
and ordinary ranks of X0 are equal which might not be true in general. However, we note
that this only concerns the noiseless data and the observed noisy data can be of any rank.

2.2 Robustness to noise in Archetypal Analysis

We are interested to see if a solution Ĥ of (3) is close toH0, the underlying set of archetypes.
To this end, following Javadi and Montanari (2019), we define a distance between two sets
of archetypes H1 ∈ Rk1×n,H2 ∈ Rk2×n as

L(H1,H2) =

k1∑
i=1

min
j∈[k2]

‖H1
i,. −H2

j,.‖22. (5)

Javadi and Montanari (2019) show that under the so-called uniqueness assumption, one has
L(H0,HX)1/2 ≤ C maxi∈[m] ‖Zi,.‖2 for some constant C > 0 where HX is the solution to
the relaxed AA (i.e. (3) with ` = nk). Note that L(H1,H2) in (5) is a sum of the squared
distances between each row of H1 and the row of H2 closest to it. Observe that L(H1,H2)
is not symmetric in its arguments. In fact, a small value of L(H1,H2) does not imply that
L(H2,H1) is also small (see Section 2.3 for details). Definition 1 below presents a formal
definition of weak and strong robustness.

Definition 1 (Robustness) An estimator H ∈ Rk×n≥0 is said to be:

(1) (Weak robustness): Weakly robust if L(H0,H)1/2 ≤ f1(maxi∈[m] ‖Zi,.‖2) where f1 is

an increasing real function that does not depend on X.
(2) (Strong robustness): Strongly robust if L(H,H0)1/2 ≤ f2(maxi∈[m] ‖Zi,.‖2) where f2

is an increasing real function that does not depend on X.

7



Behdin and Mazumder

Note that based on Definition 1, the result of Javadi and Montanari (2019) is an instance
of weak robustness with f1(x) = Cx for x ≥ 0 and some constant C > 0.

2.3 Strong robustness implies weak robustness

Here we explain the differences between weak and strong robustness and provide some
intuition around the choice of terminology: strong and weak.

2.3.1 Illustrative Examples

First, we present an illustrative example below exploring strong and weak robustness.

Example 1 Consider the example shown in Figure 2. In this example, we set n = 2, k =
3,m = 200. In Figure 2(a), we show the underlying archetypes and their convex hull in blue.
We also illustrate noisy data points with red dots. In Figure 2(b), we show the regularized AA
solution of Javadi and Montanari (2019) in black; in addition to the underlying archetypes
and the noisy data. The regularized AA solution is close to the convex hull of the data,
and while it does not completely contain the data, it contains the data with a small error.
In Figure 2(c,d,e) we show 3 sets of candidate archetypes which contain the data perfectly
(i.e., D(X,H) = 0). In other words, these sets of candidate archetypes are feasible for
problem (3) (with ` = kn, no sparsity). However, as we can see, these solutions are not
that close to the underlying true archetypes that generate the noiseless data. Comparing
Figure 2(b) to Figure 2(c,d,e), we see that the archetypal solution (that is closer to the
convex hull of the data) is closer to the true model, and therefore more desirable in practice.
We show that the solution in Figure 2(b), indeed, is the most robust solution among the
ones presented here. For concreteness, we report strong and weak robustness quantities for
each example in Table 1.

Solution L(H0,H)/‖H0‖2F L(H,H0)/‖H0‖2F
(Weak) (Strong)

H0(a) 0 0

H1(b) 0.0071 0.0071

H2(c) 0.4022 0.4142

H3(d) 0.4022 0.8609

H4(e) 0.6730 0.9358

Table 1: Robustness quantities for solutions appearing in Example 1.

The ground truth candidate in Figure 2(a) has zero robustness error (i.e. is perfectly ro-
bust). As we move towards solutions that are further from the true model (and therefore less
desirable/interpretable), robustness error quantities (L(H0,H),L(H,H0)) become larger.
We can also see the difference between weak and strong robustness here. We see that (c) and
(d) have the same weak robustness quantities, while (c) has a lower strong robustness error.
In other words, the cases (c) and (d) are the same in terms of weak robustness but differ in
terms of strong robustness. This occurs because in both (c) and (d), each true archetype is
fairly close to an estimated archetype, while in (d), there is an estimated archetype that is
far from all true archetypes. Finally, (e) has larger weak and strong robustness errors com-
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Figure 2: Solutions for Example 1. Panel (a): The true (underlying) archetypes and the noisy
data Panel (b): Noisy data and true archetypes, in addition to the AA solution which
is strongly and weakly robust and is close to the true model. Panels (c,d,e): Noisy
data and true archetypes, in addition to some candidate archetypes that contain the
noisy data perfectly (i.e. are feasible for problem (3) with ` = kn). Particularly, the
candidate archetypes in Panels (c) and (d) have equal weak robustness error, while the
one in Panel (c) has a smaller strong robustness error. This shows that strong robustness
can distinguish between sets of candidate solutions in Panels (c) and (d), unlike weak
robustness.

pared to (c,d). This example, hence, shows how robustness, and specially strong robustness,
can be useful in practice by quantifying the closeness to the correct model.

In Example 2 we present a concrete instance where the estimator is weakly robust but
not strongly robust.

Example 2 Let m = 3, n = 2 and k = 2 and

X0 =

 0 1
1 0

1/2 1/2

 , H0 =

[
1 0
0 1

]
.

For θ ∈ (0, π/4), we let the noisy data (Xθ) and noise matrix (Zθ) be:

Xθ =


√

1− cos θ cos(π4 −
θ
2) 1 +

√
1− cos θ sin(π4 −

θ
2)

1− sin θ√
2 sin(θ+

π
4 )

0

1
2

1
2

 and

Zθ =


√

1− cos θ cos(π4 −
θ
2)
√

1− cos θ sin(π4 −
θ
2)

− sin θ√
2 sin(θ+

π
4 )

0

0 0

 .
9
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Figure 3: Illustration of Example 1: (a) The noiseless data and two examples of noisy data. (b)
Details of the example for a specific value of θ.

Figure 3 presents an illustration of Example 2. In this figure (panel (a)), X1, X2, X3

correspond to the original data points (i.e., the rows of X0) and points X ′1, X
′
2, X

′
3 and

X ′′1 , X
′′
2 , X

′′
3 are the noisy data points for two different values of θ. Note that, in all cases,

the data points lie on a line. The lines X ′1, X
′
2, X

′
3 and X ′′1 , X

′′
2 , X

′′
3 are obtained by rotating

the noiseless data line X1, X2, X3 along its center (1/2, 1/2). Figure 3 (panel (b)) shows
line X1, X2, X3 and its rotated version X ′1, X

′
2, X

′
3 (after being rotated by an angle θ). Let

Hθ =

 0

[
1− sin θ√

2 sin(θ+π
4

)

]
tan(θ + π

4 )

1− sin θ√
2 sin(θ+π

4
)

0

 .
Note that Hθ

2,. is the same as the point Xθ
2,.. The line passing through the noisy data points

intersects the y-axis at Hθ
1,.. For the line, X ′1, X

′
2, X

′
3, the point Hθ

1,. is given by X4 in

Figure 3, (b). As a result, Xθ
1,.,X

θ
2,.,X

θ
3,. are on the segment connecting Hθ

1,. and Hθ
2,.

and D(Xθ,Hθ) = 0. In addition, maxi∈[3] ‖Zθ
i,.‖2 ≤

√
2 showing the amount of noise added

to the data is limited. Moreover,

L(H0,Hθ) ≤ ‖H0
1,. −Hθ

2,.‖22 + ‖H0
2,. −Hθ

2,.‖22 ≤ 4

for all θ ∈ (0, π/4), showing Hθ is weakly robust. However, note that

L(Hθ,H0) ≥ min
i∈[2]
‖Hθ

1,. −H0
i,.‖22 = ‖Hθ

1,. −H0
2,.‖22

=

([
1− sin θ√

2 sin(θ + π/4)

]
tan(θ + π/4)− 1

)2

and L(Hθ,H0)→∞ as θ → π/4, showing Hθ is not strongly robust.

Hθ is not a strongly robust estimator in Example 2 as the first row ofHθ can be far fromH0,
the set of underlying archetypes. Weak robustness implies that among recovered archetypes,

10
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there is at least one of them which is close to the correct archetypes (for example, the
second row of Hθ in Example 2 is close to the first row of H0). On the other hand, strong
robustness implies that all recovered archetypes are close to some underlying archetype.
This is true because considering the definition of L(H1,H2) in (5), strong robustness limits
the distance between each recovered archetype and the set of correct archetypes. However,
weak robustness limits the distance between each true archetype and the set of recovered
archetypes, therefore, this distance can be small even if some recovered archetypes are far.

2.3.2 Theoretical Results

Theorem 1 below states that strong robustness implies weak robustness (and in light of
Example 2, this containment is strict).

Theorem 1 (Strong robustness implies weak robustness) Let us define the quantity

b(H0) = max
i,j∈[k]

‖H0
i,. −H0

j,.‖2. (6)

Then for any H ∈ Rk×n≥0 we have

L(H0,H) ≤ 2kb(H0)2 + 2L(H,H0). (7)

If H is a strongly robust estimator, L(H,H0) is bounded and as b(H0) depends on the
underlying archetypes, b(H0) is finite. Therefore, the right hand side in (7) is bounded and
L(H0,H) is bounded, implying H is also weakly robust.

Remark 5 Interestingly, Theorem 1 does not tell us that strong robustness can be obtained
from weak robustness. Note that we can interchange H and H0 in Theorem 1, which results
in the following inequality:

L(H,H0) ≤ 2kb(H)2 + 2L(H0,H) (8)

where
b(H) = max

i,j∈[k]
‖H i,. −Hj,.‖2.

However, b(H) can be arbitrarily large—from Example 2, we have:

b(Hθ) =

[1− sin θ√
2 sin(θ + π

4 )

]2

tan2(θ + π
4 ) +

[
1− sin θ√

2 sin(θ + π
4 )

]2


1
2

and b(Hθ)→∞ as θ → π/4, making the upper bound in (8) uninformative.

Theorem 2 shows that a weak/strong robust estimator H serves as a good approximation
to the noiseless data matrix X0.

Theorem 2 For any H ∈ Rk×n≥0 we have

D(X0,H)1/2 ≤
√
mmin

{
L(H0,H)1/2, k‖H0‖F + L(H,H0)1/2

}
. (9)

11



Behdin and Mazumder

+

+
+

+
+

+

+

+

+

+

+
+

+

++
+

+
+

+
+

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x1

x2

+
o
o

Data
Underlying Archetypes
Candidate Archetypes

Figure 4: In this figure, blue crosses represent the data points in R2 and blue circles and line
represent H0 and its convex hull containing the data. Black circles and lines represent
two candidate set of archetypes and their convex hulls. Note that the set that is closer
to H0 describes the data better as anticipated by Theorem 2.

If the right hand side in (9) is small, which means H is either a weakly or strongly robust
estimator, then the left hand side in (9) is small. This shows that the noiseless data is close
to the convex hull of H—so rows of H are good representatives of the noiseless data. See
Figure 4 for an illustrative example.

3. Archetypal Analysis with Sparsity Constraints

In this section, our primary goal is to show that under suitable conditions, both weak and
strong robustness hold for the Sparse Archetypal Analysis (SAA) estimator given by (3).

Theorem 3 Let X0,H0 be as described in Section 2.1 and Ĥ be a solution of problem (3).
Set α = δ+β where δ = maxi∈[m] ‖Zi,.‖2 and β = ‖P⊥` (H0)‖F . Moreover, let X = X0 +Z

and X̃0 ∈ Rk×n be such that

X̃
0
i,. = argmin

u∈{X0
j,.:j∈[m]}

‖u−H0
i,.‖2.

There exist constants4 c1, . . . , c10 depending on k, κ(H0), σmin(H0) such that the following
bounds hold:
1. (Weak Robustness)

L(H0, Ĥ)1/2 ≤ c1D(H0, X̃0)1/2 + c2 max
i∈[m]

‖Zi,.‖2 + c3‖P⊥` (H0)‖F (10)

2. (Strong Robustness) If

c4D(H0, X̃0)1/2 + c5 max
i∈[m]

‖Zi,.‖2 + c6‖P⊥` (H0)‖F ≤ c7, (11)

4. To aid readability, the precise expressions for these constants are presented in Section D.3.

12
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we have the following strong robustness guarantee

L(Ĥ,H0)1/2 ≤ c8D(H0, X̃0)1/2 + c9 max
i∈[m]

‖Zi,.‖2 + c10‖P⊥` (H0)‖F . (12)

In Theorem 3, δ controls the amount of additive noise Z; and β = ‖P⊥` (H0)‖F captures
the sparsity level of H0. If the amount of noise in the data is high (i.e. δ is large) and/or
H0 is not sparse (i.e. β is large), the value of α in problem (3) is larger. This implies that
D(Xi,., Ĥ) for i ∈ [m] can be potentially larger because of the constraint D(Xi,.,H)1/2 ≤ α
in problem (3) becomes more loose—Ĥ might not represent the data points well. However,
this is the price we pay to guarantee robustness.

If H0 is not `-sparse, or equivalently ‖P⊥` (H0)‖F > 0, problem (3) obtains a sparse es-

timator Ĥ, which approximates H0. This is an example of model misspecification; and
even in this case, Problem (3) leads to an estimator that is weakly and strongly robust. In
Theorem 3, the quantity D(H0, X̃0) determines how close the underlying model is to the
noiseless data; and it depends upon H0 and X0. Choosing H0 as in (4) results in a smaller
value of D(H0, X̃0) and improves our bounds. The constant D(H0, X̃0) can be zero which
is a generalization of the separable case (Donoho and Stodden, 2004), where the underlying
archetypes are assumed to be among noiseless data points. In addition, condition (11) en-
sures that the noise in the data is not too large and the underlying archetypes are suitably
sparse — this suffices to derive a strong robustness guarantee for Ĥ.

Another interesting point is that the bounds in Theorem 3 do not directly depend on
the dimension of the data, n. This shows our results can be applied to the high-dimensional
settings where n� m. In addition, the bounds in Theorem 3 do not depend on the number
of samples, m. This might seem counter-intuitive as increasing the number of samples and
adding new observations does not necessarily result in a smaller robustness bound. We
believe this is due to the nature of our worst-case analysis. In fact, in an extreme case, one
can increase the number of samples by recycling old samples, and this does not add any ‘new
information’ to the problem. With more samples, however, we obtain a better representation
of the (underlying) data. This is captured by the average error in the representation of the
noiseless data, defined as

1

m
D(X0,H)1/2.

Note that by Theorem 2 and Theorem 3, increasing m, while keeping other parameters
constant, results in D(X0,H)1/2/m → 0, showing the resulting archetypes can represent
the original data well on average. We would also like to remind the reader that our analysis
makes no distributional assumption on the data and is valid under minimal assumptions,
making our result applicable to quite general situations.

It is also worth noting that parameters appearing in the bounds in Theorem 3 depend on
the underlying model and may be unknown in practice. Therefore, numerically computing
these upper bounds on real data instances will be tricky. Nonetheless, our bounds here
show the dependence of robustness on model parameters such as m,n, k. This can provide
guidance on how the model performance degrades/improves if, for example, new data points
are added or the rank of the factorization is changed. See Section 5.1.1 for a numerical
exploration of this idea.
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Finally, we outline how our proof techniques differ from the ones by Javadi and Montanari
(2019). The proof of robustness in Javadi and Montanari (2019) critically depends on
constructing a feasible solution for problem (2.4) in Javadi and Montanari (2019), and
comparing its objective to the optimal solution. In particular, this is done in Lemma B.6
of Javadi and Montanari (2019), and the feasible solution is denoted by H̃. This way of
constructing a feasible solution does not apply in our case because they use the underlying
model to construct this solution, not the properties of the optimization problem. Therefore,
the sparsity and feasibility of H̃ cannot be guaranteed. In summary, it is unclear to us if
we can obtain our results as an extension/adaptation of Javadi and Montanari (2019) — so
we use different proof techniques to arrive at our results.

3.1 A deeper investigation of the separable case (Donoho and Stodden, 2004)

In the special case where the underlying model is separable (i.e., D(H0, X̃0) = 0) we can
derive tighter bounds for robustness: see Proposition 1 below.

Proposition 1 Let Ĥ be a solution to Problem (3), δ = maxi∈[m] ‖Zi,.‖2 and β = ‖P⊥` (H0)‖F .

Under the assumption of Theorem 3 and assuming separability i.e, D(H0, X̃0) = 0, we have
the following:
1. (Weak Robustness)

L(H0, Ĥ)1/2 ≤
(

4
√

2κ(H0)
√
k + 3(1 +

√
2)
√

2k
)
δ +

(
2
√

2κ(H0)
√
k + (2 + 2

√
2)k
)
β.

2. (Strong Robustness) If
(
12
√

2k + 18
√

2k
)
δ +

(
6
√

2k + 12k
)
β ≤ σmin(H0),

L(Ĥ,H0)1/2 ≤
(

21κ(H0)
√

2k + 2(1 +
√

2)
√

2k
)
δ +

(
14κ(H0)

√
k +
√

2(1 +
√

2)k
)
β.

The results in Proposition 1 can be summarized as

L(H0, Ĥ)1/2 = O(kδ + kβ) and L(Ĥ,H0)1/2 = O(kδ + kβ)

where δ = maxi∈[m] ‖Zi,.‖2 (assuming κ(H0) is constant). In particular, in the separable
case, Proposition 1 implies that robustness degrades linearly with rank. Our numerical
experiments in Section 5.1.1 further validate this result.

Comparison with Javadi and Montanari (2019): Although Javadi and Montanari
(2019) do not consider sparsity in their formulation, it is useful to compare our results with
theirs. The results of Javadi and Montanari (2019) are valid under a specific uniqueness
assumption on the model—this matches with our assumption in the separable case. There-
fore, to compare our results we consider the case β = D(H0, X̃0) = 0. In this regime,
the result of Javadi and Montanari (2019) is similar to the first part of the Proposition 1
without any sparsity guarantee on the solution and with different coefficients. The bound
of Javadi and Montanari (2019) is

L(H0, Ĥ)1/2 = O
(
k5/2 max(1, κ(H0)k−1/2)δ

)
(assuming other parameters in their bound are constant) which is loose compared to our
bound. While the uniqueness assumption of Javadi and Montanari (2019) is more general
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than the separable case, this assumption is difficult to verify except for very simple cases,
as discussed by the authors. Javadi and Montanari do not provide results similar to the
second part of Proposition 1.

Finally, we discuss an important special case of the separable setting in Example 3.

Example 3 (Pure AA) In the pure AA setting, in the underlying archetypal decompo-
sition X0 = W 0H0, the matrix W 0 only has binary entries. In words, this implies
that noiseless data points are the same as true archetypes. Without loss of generality,
we can assume each true archetype appears at least once in the noiseless data, otherwise,
that archetype is redundant and can be discarded. Hence, with this assumption we have
rank(X0) = rank(H0). Therefore, as long as H0 has full-rank, our rank assumptions on
X0 are satisfied and the results of Proposition 1 readily apply to this case.
Next, we investigate how well our bounds work in the case of pure AA. To this end, assume
m = n = k = ` and let X0 = W 0 = H0 = I. We also let Z = δI. We claim H = (1 + δ)I
is the solution to problem (3). To see this, note that X = H so D(X,H) = D(H,X) = 0
showing optimality and feasibility. Next, we calculate robustness metrics of this solution.
Note that for i ∈ [k], ‖H i,. −H0

i,.‖22 = δ2 and for i 6= j, ‖H i,. −H0
j,.‖22 = 1 + (1 + δ)2.

Therefore,
L(H,H0)1/2 = L(H0,H)1/2 =

√
kδ.

The above robustness quantity is smaller than the worst-case bound in Proposition 1 by a
factor of

√
k. However, as we observe in our numerical experiments (see Section 5.1.1), in

the general case, our bounds seem to capture the dependence of robustness on k correctly.

3.2 The penalized formulation

Theorem 3 presents robustness guarantees for the constrained SAA problem (3). We now
consider the penalized formulation:

Ĥλ ∈ argmin
H∈Rk×n≥0

Φλ(H) := D(X,H) + λD(H,X) s.t. ‖H‖0 ≤ ` (13)

which is amenable to optimization algorithms (see Section 4). In (13), D(X,H) is the data
fidelity term, D(H,X) is the regularization term and λ is the regularization parameter. In
fact, λ = 0 is equivalent to setting α = 0 in problem (3) (which can lead to an infeasible
problem) and λ→∞ is equivalent to removing the data fidelity constraint all together.
We show robustness properties of estimator (13). Proposition 2 establishes both weak (10)
and strong (12) robustness. For simplicity, we consider the separable case (D(H0, X̃0) = 0)
where H0 is sparse (‖P⊥` (H0)‖F = 0).

Proposition 2 (The penalized formulation (13)) Let Ĥλ be a solution to problem (13).
Suppose the assumptions of Theorem 3 hold; and in addition D(H0, X̃0) = ‖P⊥` (H0)‖F =
0. There exist constants5 c1

λ, c
2
λ, c

3
λ depending on m, k, κ(H0), λ such that c1

λ, c
2
λ, c

3
λ →∞ as

λ→ 0 or λ→∞; and the following holds:

L(H0, Ĥλ)1/2 ≤ c1
λ max
i∈[m]

‖Zi,.‖2. (14)

5. The values of the constants can be found in the appendix, Section D.5
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Moreover, if
c3
λ max
i∈[m]

‖Zi,.‖2 ≤ c7, (15)

then
L(Ĥλ,H0)1/2 ≤ c2

λ max
i∈[m]

‖Zi,.‖2. (16)

Note that c1
λ, c

2
λ →∞ as λ→ 0 or λ→∞—hence, there is no trivial value of λ that guaran-

tees robustness. In fact, if we have λ = 0 (this is equivalent to normal NMF), the archetypes
need not be close to the data (which is approximated by the underlying archetypes)—they
can be far from the underlying archetypes and robustness is not guaranteed. If λ → ∞,
we do not reduce the recovery error (D(X,H)) which does not result in robustness. This
shows the usefulness of using AA as a regularization term.

Remark 6 Results for the penalized form of AA as in Proposition 2 are not discussed in
Javadi and Montanari (2019), as far as we can tell.

Remark 7 Unlike problem (3) which can become infeasible for small values of α (see Re-
mark 1), problem (13) is always feasible.

4. Optimization Algorithms

In this section, we propose algorithms to obtain good solutions to the penalized SAA prob-
lem (13). In Section 4.1, we present a block coordinate descent method and derive its
convergence guarantees. As problem (13) is nonconvex, we discuss methods to improve the
quality of solutions: Section 4.2 discusses an initialization scheme based on MIP techniques,
and Section 4.3 presents a local search algorithm.

4.1 A Block Coordinate Descent Algorithm

We rewrite problem (13) as follows:

min
W ,W̃ ,H

Ψ(W , W̃ ,H) := ‖X −WH‖2F + λ‖H − W̃X‖2F (17)

s.t. H ≥ 0,W ≥ 0, W̃ ≥ 0

W1k = 1m, W̃1m = 1k, ‖H‖0 ≤ `.

We propose a proximal gradient based block coordinate descent algorithm (Xu and Yin,
2017) for (17). We first note that the gradient of the objective function is Lipschitz for
every block W , W̃ , and H, that is

‖∇HΨ(H1,W , W̃ )−∇HΨ(H2,W , W̃ )‖F ≤ L1(W )‖H1 −H2‖F ,

‖∇WΨ(H,W 1, W̃ )−∇WΨ(H,W 2, W̃ )‖F ≤ L2(H)‖W 1 −W 2‖F
‖∇W̃Ψ(H,W , W̃ 1)−∇W̃Ψ(H,W , W̃ 2)‖F ≤ L3(X)‖W̃ 1 − W̃ 2‖F

where L1(W ) = 2(λ+σmax(W )2), L2(H) = 2 max{σmax(H)2, ε} and L3(X) = 2λσmax(X)2

for any fixed ε > 0. Our algorithm follows the block proximal update of Xu and Yin (2017).
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Specifically, for step size values {2L1(W j)}−1, {2L2(Hj)}−1, {2L3(X)}−1, at iteration j we
perform the following updates:

Hj+1 = argmin
H≥0
‖H‖0≤`

∥∥∥∥H − (Hj −
1

2L1(W j)
∇HΨ(Hj ,W j , W̃ j)

)∥∥∥∥2

F

(18)

W j+1 = argmin
W≥0

W1k=1m

∥∥∥∥W −
(
W j −

1

2L2(Hj+1)
∇WΨ(Hj+1,W j , W̃ j)

)∥∥∥∥2

F

(19)

W̃ j+1 = argmin
W̃≥0

W̃1m=1k

∥∥∥∥W̃ −
(
W̃ j −

1

2L3(X)
∇W̃Ψ(Hj+1,W j+1, W̃ j)

)∥∥∥∥2

F

. (20)

After a sweep across the updates (18), (19) and (20) the objective decreases:

Ψ(Hj+1,W j+1, W̃ j+1) ≤ Ψ(Hj ,W j , W̃ j).

Algorithm 1 summarizes the above procedure, where Psimplex(W ) projects each row of W
onto the unit simplex. See Duchi et al. (2008) for an efficient algorithm to calculate Psimplex.
Before presenting the theoretical analysis of Algorithm 1, we define a stationarity point.

Definition 2 We say a point θ∗ = (H∗,W ∗, W̃
∗
) is stationary for problem (17) if update

rules (18), (19) and (20) initialized with θ∗ result in the same solution θ∗.

Remark 8 Definition 2 is a generalization of the notion of L-stationarity by Beck and
Eldar (2013) to the case of the block proximal method. Moreover, the stationarity condition
in Definition 2 is a necessary condition for an optimal solution to problem (17).

Algorithm 1: SparseAA(H0,W 0, W̃ 0, λ)

j = 0
while not converged do

π = Hj − [1/L1(W j)](−W T
j [X −W jHj ] + λ[Hj − W̃ jX])

Hj+1 = P` (max{π, 0})
W j+1 = Psimplex(W j − [1/L2(Hj+1)](X −W jHj+1)HT

j+1)

W̃ j+1 = Psimplex(W̃ j − λ[1/L3(X)](Hj+1 − W̃ jX)XT )
j = j + 1

end

In Theorem 4, first we show that problem (17) satisfies the convergence conditions of Xu
and Yin (2017) and therefore Algorithm 1 converges. Then, we show that the limit point
of Algorithm 1 is a stationary point as in Definition 2.

Theorem 4 Suppose λ > 0 and let {(Hj ,W j , W̃ j)}j≥1 be the sequence of solutions pro-
duced by Algorithm 1. The following results hold:
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1. The sequence (Hj ,W j , W̃ j) converges to a feasible solution (H∗,W ∗, W̃
∗
) of (17)

2. Let

T = max{0,H∗ − [1/L1(W ∗)](−W ∗T [X −W ∗H∗] + λ[H∗ − W̃ ∗
X])} (21)

and if ‖T ‖0 > `, assume T ]` > T ]`+1 where T ]1, · · · ,T
]
kn are entries of T ordered from

largest to smallest. Then, the limit point (H∗,W ∗, W̃
∗
) is a stationary point of (17).

The condition on T above is needed to make sure P`(T ) is unique. Otherwise, there will
be multiple possible solutions for update rule (18) when initialized with θ∗. Note however,
that this condition is quite mild, and is unlikely to be violated in practice (due to noise in
data).

4.2 Initialization via Mixed Integer Programming (MIP)

Problem (17) is not convex, hence having a good initialization can help obtain a high-quality
local solution. To initialize Algorithm 1, we use a continuation method as discussed below.
We first obtain a solution to (17) for a large value of λ — this leads to the following problem:

min
W̃ ,H

‖H − W̃X‖2F s.t. H ≥ 0; W̃ ≥ 0; W̃1m = 1k; ‖H‖0 ≤ `. (22)

Note that Problem (22) has a convex quadratic objective in W̃ ,H and the only source of
nonconvexity is the cardinality constraint onH. This is a Mixed Integer Quadratic Problem
(MIQP)—while these problems are computationally difficult in the worst-case, recent work
(Bertsimas et al., 2016; Hazimeh et al., 2022; Bertsimas and Van Parys, 2020)6 has shown
that a family of sparse regression problems can be solved to near-optimality using specialized
algorithms for fairly large problem instances. Inspired by this line of work, we present new
algorithms to solve (22) to optimality.

Once we obtain a near-optimal solution to (22), we decrease λ and use Algorithm 1 to
obtain a feasible solution for (22). We continue this process by successively decreasing λ,
and using a solution obtained from the previous (larger) value of λ to initialize Algorithm 1.

4.2.1 A Specialized MIP algorithm for solving Problem (22)

We present a MIQP formulation of (22). We first show that the solution of this problem is
bounded.

Proposition 3 If (H∗, W̃
∗
) is an optimal solution to (22), we have the following bound

on H∗:

‖H∗‖2F ≤ k
(

max
u∈[m]

‖Xu,.‖2 +
√
k min
u∈[m]

‖Xu,.‖2
)2

:= b.

6. Note that problem (17) with archetypal regularization (i.e., for λ > 0) does not admit a MIQP repre-
sentation, unlike (22).
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Based on Proposition 3, we reformulate problem (22) as the following MIQP:

min
H,W̃ ,Y

‖H − W̃X‖2F (23)

s.t. H ≥ 0, W̃ ≥ 0,Y ∈ {0, 1}k×n

W̃1m = 1k,
∑
i,j

Y i,j ≤ `

H i,j ≤
√
bY i,j ∀(i, j) ∈ [k]× [n],

where b is as defined in Proposition 3. Note that the last constraint in (23) does not change
the optimal solution because of Proposition 3.
Problem (23) can be formulated and solved (to optimality) by off-the-shelf MIP solvers (e.g.,
Gurobi, CPLEX, GLPK) for small/moderate instances—however, the runtimes become long
as soon as the number of variables are of the order of a few thousand. With efficiency in
mind, we present a cutting plane approach to obtain a certifiably optimal solution7. To this
end, we rewrite (23) as a binary convex optimization problem:

min
Y

F (Y ) s.t. Y ∈ {0, 1}k×n,
∑

(i,j)∈[k]×[n]

Y i,j ≤ ` (24)

where, for any Y ∈ [0, 1]k×n, the objective function F (Y ) is defined via the following convex
optimization problem:

F (Y ) = min
H,W̃

‖H − W̃X‖2F (25)

s.t. H ≥ 0, W̃ ≥ 0, W̃1m = 1k

H i,j ≤
√
bY i,j ∀(i, j) ∈ [k]× [n].

Proposition 4 presents some properties of the function F (Y ).

Proposition 4 Let (H∗, W̃
∗
) be an optimal solution to the minimization problem (25).

Then, we have the following:

1. The function Y 7→ F (Y ) is convex on Y ∈ [0, 1]k×n.

2. G = −
√
bΛ is a subgradient of F (Y ), where for (i, j) ∈ [k]× [n],

Λi,j =

{
2(W̃

∗
X −H∗)i,j if (W̃

∗
X −H∗)i,j > 0

0 if (W̃
∗
X −H∗)i,j ≤ 0

.

The function F (Y ) is convex and subdifferentiable. Specifically, for any Y 0 ∈ Rk×n and
any subgradient G0 ∈ ∂F (Y 0),

F (Y ) ≥ F (Y 0) + 〈G0,Y − Y 0〉. (26)

7. That is, along with delivering a feasible solution, we also present a dual bound (aka lower bound) on the
optimal objective value of (23).
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MIP Algorithm based on outer approximation: We present an outer approximation
algorithm (Duran and Grossmann, 1986) to solve the binary convex program (24). This
algorithm starts from an initial point Y 0 which is feasible for (24). At iteration t, using a
list of subgradient-based inequalities (26), we consider the following piecewise linear lower
bound of F (Y ):

F (Y ) ≥ max {F (Y 0) + 〈G0,Y − Y 0〉, · · · , F (Y t−1) + 〈Gt−1,Y − Y t−1〉} (27)

where Y 0, · · · ,Y t−1 are feasible for Problem (24) and Gt ∈ ∂F (Y t) for all t. We define
Y t as a minimizer of the right hand side of (27) under the constraints of Problem (24).
Mathematically, this can be written as a Mixed Integer Linear Program (MILP)

(Y t, ηt) ∈ argmin
Y ,η

η (28)

s.t. Y ∈ {0, 1}k×n, η ∈ R
η ≥ F (Y i) + 〈Gi,Y − Y i〉 i = 0, · · · , t− 1∑
(i,j)∈[k]×[n]

Y i,j ≤ `.

The optimal objective value of (28) is a lower bound (aka dual bound) for (24); and these
lower bounds improve as the iterations progress (i.e., t increases). As the feasible set
of problem (24) is finite, after finitely many iterations t, an optimal solution to (24) is
found. The optimality gap (OG) of the outer approximation can be calculated as OG =
(UB−LB)/UB where LB is the current (and the best) lower bound achieved by the piecewise
approximation and UB is the best upper bound for (24) found so far. We summarize the
procedure in Algorithm 2 where, ‘tol’ denotes a pre-specified tolerance level.

Algorithm 2: An outer approximation method to solve (24)

t = 1
while OG > tol do

(Y t, ηt) are solutions of (28).
Fbest = mini=0,··· ,t−1 F (Y i)
OG = (Fbest − ηt)/Fbest

t = t+ 1
end

The optimization Problem (25) is convex in (H, W̃ ) and we use an accelerated proximal
gradient method (Beck and Teboulle, 2009) to solve it.

Remark 9 We note that our algorithm is different from that of Bertsimas and Van Parys
(2020) who consider the sparse linear regression problem with an additional ridge regular-
ization. Bertsimas and Van Parys (2020) use an outer approximation algorithm to solve
an equivalent convex integer program, with an explicit closed-form expression. In contrast,
in our work, the function F (Y ) is given (implicitly) by the optimal objective value of a
convex optimization problem — there is no closed form expression for F (Y ). Furthermore,
our formulation of (23) uses the binary variable as a linear constraint — this is different
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from Bertsimas and Van Parys (2020) where, the binary variable appears as a nonlinear
expression within the objective function.

4.2.2 Quantifying the effect of a MIP-based warm-start

As discussed earlier, we use MIP-techniques to obtain a solution to Problem (22), which
is subsequently used to initialize our coordinate descent algorithm (i.e., Algorithm 1) for
Problem (13). The MIP-approach provides an optimality certificate (via dual bounds) for
Problem (22) and Proposition 5 below presents a guarantee on using such a initialization.

Proposition 5 Let H∗∞ be the solution returned by Algorithm 2 with the optimality gap
OG. Moreover, let H∗λ be the solution returned by Algorithm 1 initialized with H∗∞ and
Ĥλ be the optimal solution to problem (13). Then,

Φλ(H∗λ)− Φλ(Ĥλ)

Φλ(H∗λ)
≤ D(X,H∗∞) + λ(OG)D(H∗∞,X)

λ(1−OG)D(H∗∞,X)
(29)

where recall that Φλ(·) is the objective function in problem (13).

When λ is sufficiently large, we have

Φλ(H∗λ)− Φλ(Ĥλ)

Φλ(H∗λ)
≤ OG

1−OG
+ ελ, (30)

where, ελ is of the order O(1/λ). Note that when our MIP algorithm delivers a near-
optimal solution, OG will be close to zero — hence, H∗λ will be a near-optimal solution to
problem (13). The proposition presents theoretical support towards why our initialization
framework appears to work well in practice—this is also seen in our numerical experiments
in Section 5.

4.3 Improving Algorithm 1 with Local Search

As discussed in Section 4.1, the block CD method (Algorithm 1) is guaranteed to deliver
a stationary point for Problem (17). We present some heuristics to improve the solution
quality based on local search, drawing inspiration from the work of Beck and Eldar (2013);
Hazimeh and Mazumder (2020) who also explore local search based updates for a different
problem.
Once we are at a stationary point delivered by Algorithm 1, our local search algorithm
swaps a coordinate in the support of H with a coordinate from outside the support. That
is, a nonzero coordinate of H is set to zero and a zero coordinate of H is allowed to
become nonzero. Then, the optimization is solely done on the coordinate entering the
support. If this optimization leads to a lower objective value, we retain the new support.
Mathematically, let (H∗,W ∗, W̃

∗
) be a feasible solution of problem (17) with ‖H∗‖0 = `.

This solution can be an output of Algorithm 1. Suppose (i1, j1) ∈ S(H∗) (here, S(H∗) is
the support of H∗) leaves the support and (i2, j2) /∈ S(H∗) enters the support. We perform
an optimization on the coordinate (i2, j2) of H to decide whether this change in the support
improves the objective function. Let Ei1,j1 be a matrix with all entries equal to zero except
coordinate (i1, j1) equal to one. We denote H = H∗ −H∗i1,j1E

i1,j1 as the solution with
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coordinate (i1, j1) removed from the support. The candidate solution with the new support
has the form H + tEi2,j2 for t ≥ 0. This leads to the following problem:

min
W ,W̃ ,t

‖X −WH − tWEi2,j2‖2F + λ‖H + tEi2,j2 − W̃X‖2F (31)

s.t. t ≥ 0,W ≥ 0, W̃ ≥ 0

W1k = 1m, W̃1m = 1k

where, we are optimizing over (W , W̃ , t) for a given (i2, j2) and (i1, j1). For a fixed value
of t, the optimal values of W and W̃ in (31) are given as

Ŵ ∈ argmin
W

‖X −W (H + tEi2,j2)‖2F s.t. W ≥ 0; W1k = 1m (32)

ˆ̃W ∈ argmin
W̃

‖H + tEi2,j2 − W̃X‖2F s.t. W̃ ≥ 0; W̃1m = 1k. (33)

Problems (32) and (33) are convex and can be efficiently solved by standard first order
methods such as proximal gradient. Note that these first order methods also benefit from
warm-starts available from prior estimates of (W , W̃ ). Once W and W̃ are updated by

(32) and (33), the value of t that minimizes (31) with W = Ŵ and W̃ = ˆ̃W is:

t = max

{∑m
r=1U r,j2W r,i2 − λV i2,j2

λ+ ‖W .,i2‖22
, 0

}
(34)

where U = X −WH and V = H − W̃X.
We use an alternating optimization scheme where the three updates (32),(33) and (34) are
performed sequentially until convergence. These updates result in a descent method by
construction, though there may not be a strict decrease in the objective value (in which
case, the swap may not result in a better solution).

In the discussion above, we assumed a fixed pair of indices (i1, j1) and (i2, j2). Ideally, we
would like to try all possible choices of such indices and consider the one that leads to the
maximal decrease in objective value (if any). Instead of using an exhaustive search over all
such pairs, we use a heuristic to select a suitable pair of indices. We choose (i1, j1) to be
the smallest nonzero entry in H∗:

(i1, j1) ∈ argmin
(i,j)∈S(H∗)

H∗i,j . (35)

For the pair (i2, j2) from outside the current support of H, we choose the coordinate of H∗

that has the smallest (most negative) gradient of the objective function:

(i2, j2) ∈ argmin
(i,j)∈[k]×[n]\S(H∗)

∂

∂H i,j
Ψ(H∗,W ∗, W̃

∗
). (36)

The overall procedure of local search is shown in Algorithm 3.
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Algorithm 3: A Local Search improvement for Algorithm 1

Initialize with H∗,W ∗, W̃
∗
.

while not converged do
if ‖H∗‖0 < ` then

Choose (i2, j2) as in (36).
H = H∗

end
else

Choose (i1, j1) as in (35) and (i2, j2) as in (36).
H = H∗ −H∗i1,j1E

i1,j1

end
while not converged do

Update W , W̃ and t via (32), (33) and (34).
end

if Ψ(H + tEi2,j2 ,W , W̃ ) < Ψ(H∗,W ∗, W̃
∗
) then

H∗ = H + tEi2,j2 ,W ∗ = W , W̃
∗

= W̃
end

end

4.4 Tuning Parameter Selection

Our SAA model has three tuning parameters: rank of the factorization (k), sparsity level
(`) and the archetypal regularization tuning parameter (λ). The problem of selecting the
rank k in a factorization arises in earlier work on NMF: For example, Owen and Perry
(2009); Bro et al. (2008) discuss cross-validation-type approaches to guide the selection
of k. The choice of ` controls the sparsity of the latent factor H—this can improve the
interpretability of the model while potentially decreasing the accuracy and robustness of
the model (especially, if the underlying factors are not sparse), as discussed in Section 3.
In many cases however, the choices of k, ` are made by the practitioner depending upon
problem-specific considerations. Assuming k and ` are given (or have been pre-specified by
the user), we consider the problem of selecting λ. To this end, we propose a validation-
based scheme. Let S ⊆ [m] be a held-out subset of the data. Suppose H∗λ be the estimator
from problem (13) obtained on the data points i ∈ [m] \ S. We choose the value of λ that
minimizes the validation loss Vλ(S), which is defined as

Vλ(S) =
∑
i∈S

D(Xi,.,H
∗
λ). (37)

Intuitively, the validation loss above captures the fact that a robust solution can describe
the data better than other solutions. Proposition 6 formalizes this intuition.

Proposition 6 Let H−S be the estimator trained on the training data (with the validation
set S removed). Moreover, let

d(X) = max
i∈[m]

min
j∈[m]\S

‖Xi,. −Xj,.‖2.
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Then,

D(XS ,H(−i))
1/2 ≤

√
|S|
[
d(X) + max

j∈[m]
‖Zj,.‖2+

min
{
k‖H0‖F + L(H−S ,H0)1/2,L(H0,H

−S)1/2
}]

where XS ∈ R|S|×n is the validation set.

Proposition 6 shows that a more robust solution leads to a lower validation loss Vλ, and we
seek to choose a λ that results in the smallest validation loss.

5. Numerical Experiments

In this section, we discuss results of our numerical experiments on synthetic and real data
and investigate how our framework performs in practice. Our experiments are done on a
computer equipped with Intel(R) Core(R) i7 6700HQ CPU @ 2.60GHz, running Microsoft(R)
Windows(R) 10 and using 16GB of RAM. We implemented all of our algorithms in Julia

and we use Gurobi(R) to solve MILPs arising in our initialization scheme. An implemen-
tation of our framework in Julia is available at:

https://github.com/kayhanbehdin/SparseAA.

5.1 Synthetic Data

In this section, we consider synthetic data to validate the theory we developed in Sections
3 and 4; and gather further insights into the operating characteristics of SAA.

Data set generation: The entries of H0 are drawn iid from Unif[0, 1] and 20% of entries
are set to zero at random to produce a matrix with at most 0.8nk nonzero entries. Inde-
pendent of H0, the entries of W 0 are drawn iid from Unif[0, 1] and each row is normalized
to sum to one. The noiseless data is X0 = W 0H0 and the noisy data is produced as
X = max{X0 +Z, 0} where entries of Z are from an independent Gaussian ensemble with
mean zero and variance σ2

z .

5.1.1 Understanding robustness

We compare the performance of our algorithm with other sparse NMF algorithms in terms
of robustness of the solution. We consider algorithms by Kim and Park (2007) (shown
as KP), Peharz and Pernkopf (2012) (shown as PP) and Hoyer (2004) (shown as Hoyer).
To quantify the usefulness of having a sparse solution over a dense one, we compare our
algorithms with the archetypal regularization framework of Javadi and Montanari (2019),
which delivers a dense solution (shown as AA). We set m = 200, k = 15, n = 5000, λ = 1.
We consider settings for our ablation studies:
• We keep the sparsity level ` fixed and change the noise level σz
• We keep σz fixed and vary the sparsity level `
• We keep all parameters fixed except k and explore how changing the rank can affect

the performance.
• We investigate the effect of varying λ in our framework
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(Ĥ

,
H

0
)/
‖H

0
‖2 F

10-2 10-1 100

z

10-4

10-3

10-2

10-1

100

101

AA

SAA

KP

Hoyer

PP

10-2 10-1 100

z

102

103

104

AA

SAA

KP

Hoyer

PP

Figure 5: Effect of varying noise on the performance of different algorithms for the well-specified
case in Section 5.1.

Robustness versus varying σz: First, we set `/nk = 0.8 and set the tuning parameters for
different algorithms to get solutions that have 0.8nk nonzeros. This can be thought of as a
case where the sparsity level is well-specified. Specifically, as KP considers an `1 regularized
version of NMF, we start with a small value of the `1 regularization parameter and gradually
increase it till we reach the target sparsity-level. PP uses an `0 constrained version of original
NMF (without archetypal regularization) and we set the constraint such that a solution has
at most ` nonzeros. The sparsity constraint of Hoyer is set such that the result has `
nonzeros. We vary σz and plot the average value of normalized weak (L(H0,H)/‖H0‖2F )
and strong (L(H,H0)/‖H0‖2F ) robustness quantities8 over 10 independent repetitions. We
also report the average runtime (in seconds) for different methods. The runtime for our
approach corresponds to the continuation framework. To compute the initialization which
is a one-time cost, we cap the MIP procedure to 3 minutes, and do not include this runtime.
The results for this scenario are shown in Figure 5. We observe that the SAA solutions
almost always outperforms other algorithms in terms of strong and weak robustness metrics.
Specifically, the difference between SAA and other algorithms is most noticeable when the
noise is small. This is expected as other (sparse) algorithms in our experiments do not
use any regularization that results in robustness. Moreover, solutions of SAA become less
robust as noise is increased, as anticipated by Theorem 3 and Proposition 2. In addition,
SAA has even smaller error compared to AA, while the AA solution is almost fully dense.
This shows that the sparsity constraint helps us to obtain a better solution as the underlying
model is also sparse. In terms of runtime, most algorithms are generally of the same order of
magnitude, but we note that our method obtains a path of solutions due to our continuation
scheme, and therefore, can be faster for a given value of λ.

Robustness versus varying `: To compare the performance of different algorithms for
varying values of `, we do another set of experiments. We consider a setup similar to the
previous experiment. However, we fix σz = 0.01 and change the value of ` (while keeping the
underlying model sparsity budget fixed at 0.8nk). This shows how well different algorithms
can deal with sparsity. The results for this case are shown in Figure 6. We see that SAA
outperforms other sparse algorithms and is the most (strongly and weakly) robust method
among sparse ones. In addition, we observe that as ` is decreased, the solution becomes less

8. Note that the robustness error values are reported relative to the baseline estimator H = 0.
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Figure 6: Effect of varying sparsity ` on the performance of different algorithms in Section 5.1.
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Figure 7: Effect of varying k on the performance of different algorithms in Section 5.1.

robust as anticipated by Theorem 3. Another interesting comparison can be done between
SAA and AA. It can be observed that when `/nk ≥ 0.75, SAA outperforms AA, and the
best robustness is achieved for `/nk = 0.8 which corresponds to the true sparsity level.

The effect of varying k: For the next set of experiments, we set ` = 0.8nk and σz = 0.1,
with other parameters as before. However, we vary the value of k (for the underlying
model and the algorithm) to see the effect of rank on the results. We report the results for
this case in Figure 7. Overall, we see that increasing k results in more error as expected.
Specifically, from this figure we can observe that both robustness quantities for SAA scale
overall as L = O(kα) where 1.5 ≤ α ≤ 2. Comparing this to what our theory predicts
in Proposition 1, we see that the scaling of the robustness quantities in our theory and
experiments match, showing that our theoretical bounds are tight.

The effect of varying λ: To show how changing the parameter λ affects the SAA al-
gorithm, we conduct another set of experiments. We set σz = 1, ` = 0.5nk and choose λ
from a logarithmic grid with 100 points between 0.0625 and 12.5. In addition, we draw a
validation set of size mvalidation = m = 200 to calculate the validation loss defined in (37).
The average results for this setting are shown in Figure 8. The left panel in this figure
shows the validation loss, the middle panel shows the weak robustness quantity and the
right panel shows the strong robustness quantity. As it can be seen, all three quantities
are minimized for some value of λ in the interval [1, 2] which is close to the value of λ we
consider.
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Figure 8: Figure showing the profile of validation loss [left], and robustness quantities [middle and
right panels respectively] for varying values of λ. We use the synthetic data discussed in
Section 5.1.

5.1.2 Usefulness of MIP-based Initialization and Local Search

We perform numerical experiments to show the usefulness of the initialization procedure in
Section 4.2 and the local search scheme in Section 4.3. We show these algorithms improve
upon a baseline initialization. We set m = 200, k = 20, n = 12000 and λ = 1 and vary σz
and ` (see Table 2). We consider three cases:

(i) Algorithm 1 initialized with H = 0 (shown as Zero in Table 2).
(ii) Algorithm 1 initialized with the successive projections initialization of Javadi and

Montanari (2019), projected on the set of `-sparse matrices (shown as Projections).
(iii) Algorithm 1 with MIP initialization (see Section 4.2) and using warm-start contin-

uation over 8 values of λ on a logarithmic scale from 30 to 1. (Shown as SAA in
Table 2).

(iv) Improving solution from (iii) with local search discussed in Section 4.3. This is denoted
by SAA+LS in Table 2.

The maximum runtime of Algorithm 2 is capped to 20 minutes and we retain the best
solution. The average final cost function achieved by three methods explained above (over
5 independently generated data sets) are reported in Table 2. As it can be seen, our
initialization scheme achieves a significantly lower objective value compared to the baseline
(Zero) while being computationally feasible for such data size. In addition, our local search
algorithm can improve the objective value as well as the support in a reasonable time (the
number of changes in support for SAA+LS is reported in the parentheses). Moreover, the
SAA framework usually outperforms the Projections method in most cases by a significant
margin. However, Projections also perform better than Zero. In addition, when the noise
is high, Projections performs closer to our SAA method and even better in one case. This
suggests that for very large problems where the MIP algorithm might not be feasible, the
Projections methods can be a good alternative compared to a simple Zero initial solution.
We also note that in general, the runtime of the MIP algorithm 2 can be further capped in
cases where runtime is of essence, allowing for obtaining good (but possibly sub-optimal)
initial solutions quickly.
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σz Method `/nk = 0.5 `/nk = 0.65 `/nk = 0.8

0.01

Zero 47785 42123 37566
Projections 34620 33692 31254

SAA 32193 29766 27139
SAA+LS 31867 (12.8) 29729 (13.4) 27091 (20.2)

0.1

Zero 69366 63776 59276
Projections 58042 54028 50316

SAA 54784 52253 49228
SAA+LS 54465 (18.4) 52159 (19.8) 49131 (24)

0.5

Zero 448088 440974 434590
Projections 428025 421931 415053

SAA 426238 420134 416901
SAA+LS 424776 (22.6) 419932 (26.8) 416628 (32)

Table 2: Comparison of zero initialization, SAA and SAA+LS in Section 5.1. The number in
parentheses for SAA+LS shows the number of changes in the support after local search.
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Figure 9: The illustrative example from Section 5.1.3

5.1.3 Illustrating the joint effect of AA and sparsity

Finally, we present an illustrative example here that sheds further light into why archetypal
regularization and sparsity work well together. We set m = 200, n = 2, k = 3, ` = 2 and take
the underlying archetypes to be (0, 0), (0, 1) and (1, 0). The results for this case are shown
in Figure 9. First, we see in the AA solution, by increasing λ the solutions get closer to
the data, as expected. However, at the same time, we see that AA solutions are not sparse
and although increasing λ pushes the solutions towards the data, AA makes mistakes and
cannot capture the true noiseless archetypes due to lack of sparsity. In contrast, when SAA
is used, SAA recovers the correct pattern of archetypes, and therefore, by choosing a good
value of λ, SAA can have small error. This illustrates how sparsity in conjunction with
archetypal regularization helps to make the problem more well-defined.
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5.2 The Face Data Set (Samaria and Harter, 1994)

A classical application of sparse NMF is in face detection and recognition (Hoyer, 2004).
The goal is to obtain a low-rank representation of a data set of human faces under different
lighting and shadow conditions and also different angles of photography. Hoyer (2004) show
the effect of sparsity in finding such representations of the data. In particular, they show
that sparse NMF leads to part-based representations where each factor represents one part
of the face. Here, we are interested in finding the effect of AA as well as the combined effect
of AA and sparsity. We use the AT&T database of faces (Samaria and Harter, 1994) which
consists of 40 different people and 10 different photos of each person, 400 images in total.
Each image is a grayscale 92 × 112 image, which is converted to a vector of length 10304.
We then concatenate these 400 vectorized images into one matrix of size 400×10304 matrix.
We consider k = 25 (following Hoyer (2004)) for this data set and do the factorization based
on problem (13) for different values of λ and `. The estimated representations of the data
(rows of resulting H which are reshaped into 92× 112 images) are shown in Figure 10. We
use the MIP initialization and continuation framework (over 8 values of λ) in Section 4.2.
In the rest of this section, we discuss the connections between the robustness theory we
developed and our numerical results.

We first explore the difference between AA and basic NMF. By comparing Figures 10 (a),
(b), we deduce that as λ is increased, the resulting factors appear to become more similar
to human faces—making it easier to recognize the people in the data set. As λ is decreased,
the results become more abstract and the images do not resemble human faces anymore.
Considering that the theory we developed in Section 3 holds under mild assumptions, the
representation achieved from Problem (13) with λ = 0.4 more likely corresponds to a robust
solution—that is, the solution is closer to the underlying representation (we do not expect
λ = 0 to result in robustness). Intuitively, we expect the underlying model that produces
the face images to resemble the people in the data set—this suggests that the solution
achieved by λ = 0.4 is more robust.

As discussed by Hoyer (2004), adding sparsity to NMF produces part-based representations
of the data. This can be also seen in our experimental results in Figure 10. By forcing
the solution H to be sparse, we notice that each set of solutions (in Figures 10 (c), (d))
includes two groups of factors. The first group consists of complete faces (columns and rows
2 to 4 in each set) and the second group consists of parts of a face (the border factors).
In fact, this can be interpreted as each face being a combination of an overall shape of a
human face and additional details arising from different parts of the face. The factors that
contain a complete face in Figures 10 (c), (d) represent the overall shape of a human face,
while other factors represent different parts of a face, like the forehead, cheeks, eyes and
also the background of images. Once again, considering that our theoretical development
in Section 3 is valid in the sparse NMF case, we expect the factors recovered by λ = 0.4 to
be more robust. Our hypothesis is the solution with λ = 0.4 is more robust as factors in
Figure 10 (d) appear to more closely resemble human faces (compare the central columns
in Figures 10 (c), (d)).
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Figure 10: The resulting face images in Section 5.2: (a) λ = 0, `/k = 10304 (b) λ = .4, `/k = 10304

(c) λ = 0, `/k = 4000 (d) λ = .4, `/k = 4000

5.3 Cancer Gene Expression Example (Ramaswamy et al., 2001)

It is well-known that a primary goal of AA is to find a few representative points for a
collection of data points. These representative points are useful in cluster analysis, where
data points are put into a few clusters based on a suitable similarity/dissimilarity measure.
In AA, each archetype (i.e., a row of H) can be considered as a cluster center and data
points are assigned to clusters based on their proximity to different archetypes. As a result,
each row of matrix H (or each archetype) is considered as a center and each data point is
assigned to the closest row of H (Mørup and Hansen, 2012).

An important application area of sparse NMF for clustering is in computational biology.
Specifically, this problem has been considered by Kim and Park (2007) where the authors
provide biological interpretations of sparsity in the context of NMF and do an extensive
analysis of sparse NMF for microarray data. Here, we are interested in the clustering
performance of our method. To this end, we consider a real data set: the 14 Cancers Gene
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Expression data set (Ramaswamy et al., 2001). This data set consists of gene expression
data of 198 samples and 14 different types of tumors. There are 16,063 features in the data
set, however, the data is not nonnegative. Therefore, we use a trick introduced by Kim and
Tidor (2003) to transform the data: each feature is divided into two new features where
one contains nonnegative coordinates (and zero elsewhere) and the other one contains the
absolute value of negative coordinates (and zero elsewhere). Consequently, this leads to
32,126 nonnegative features—the data matrix is given by X ∈ R198×32126

≥0 . The rank of the
factorization is 14, the number of different types of tumors in the data set. The i-th data
point (i ∈ [198]) belongs to the cluster ji:

ji = argmin
j∈[14]

‖Xi,. −Hj,.‖2

where H is the resulting matrix of archetypes. To compare the performance of different
algorithms (discussed below), we use two metrics, Purity and Entropy (Kim and Park,
2008). Let for i ∈ [198], j∗i ∈ [14] denote the true cluster of point i and ji ∈ [14] denote the
estimated cluster for the same point. Let mu

r be the number of samples that belong to the
true cluster u but are estimated to be in cluster r. Equivalently,

mu
r = |{i ∈ [m] : j∗i = u, ji = r}|.

The metrics Purity and Entropy are defined as

Purity =
1

m

k∑
r=1

max
u∈[k]

mu
r and Entropy = − 1

m log2 k

k∑
r=1

k∑
u=1

mu
r log2

mu
r

mr

where mr =
∑k

u=1m
u
r . A larger value of Purity and a smaller value of Entropy imply a

better clustering performance.
The results of clustering performance of different algorithms is reported in Table 3. SAA is
our proposed framework (we use MIP initialization with continuation over 8 values of λ from
30 to 1 as in Section 4.2), AA is the algorithm proposed by Javadi and Montanari (2019)
which does not enforce any sparsity. KP and PP are as introduced before. Chen is the exact
AA of Cutler and Breiman (1994) with the algorithmic approach of Chen et al. (2014). We
also include Kmeans in our experiments as a baseline for the clustering performance. As
it can be seen, among algorithms that enforce sparsity, SAA performs the best in terms of
clustering. In fact, SAA is at par with Kmeans, while providing a solution that is two times
more sparse. AA has the best clustering performance, however, it fails to provide a sparse
solution. Other algorithms provide sparse solutions, but their clustering performance is not
as good as SAA. In our experiments in this section, all NMF-based methods terminated in
less than a minute.

5.4 Hyperspectral Unmixing data set (Baumgardner et al., 2015)

For our next set of experiments, we consider the Indian Pines data (Baumgardner et al.,
2015), which is a Hyperspectral image segmentation data set. This data consists of images
of the Indian Pines landscape in Indiana, US, each image with size 145× 145 pixels. These
images are taken over different 220 different spectral bands (i.e. portions of the electro-
magnetic spectrum), resulting in 220 images. A reference image of the data set is shown in
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SAA AA Chen Kmeans KP PP Hoyer

‖H‖0/kn 0.350 0.649 0.634 0.710 0.365 0.385 0.350
Purity 0.660 0.868 0.698 0.654 0.446 0.477 0.433

Entropy 0.361 0.216 0.354 0.375 0.723 0.690 0.731

Table 3: Performance of different algorithms for the gene expression data set in Section 5.3

Figure 11 (top left panel). The goal in this data set is to recognize different segments of
the landscape from the images. Hence, this problem can be thought of as a clustering prob-
lem, where each pixel is an observation, for each pixel different spectral bands constitute as
different features, and clusters are different segments and objects in the area. As different
areas of the landscape may appear more or less prominent in different spectral bands, one
might expect the underlying archetypes to be sparse.

To tackle this data, we vectorize each of 220 images into a vector of length 21025. This
results in a data matrix X ∈ R21025×220

≥0 . We also set the number of clusters to k = 17 from
the ground truth, given in Figure 11. Then we scale X to have entries between 0 and 1. We
also set ` = 0.65nk. The rest of the setup is the same as the experiment in Section 5.3. The
numerical results from this data are shown in Table 4 and a visual comparison of results
are shown in Figure 11.

SAA AA Chen Kmeans KP PP Hoyer

‖H‖0/kn 0.75 1 1 1 0.74 0.75 0.75
Purity 0.559 0.563 0.561 0.570 0.512 0.512 0.522

Entropy 0.534 0.529 0.530 0.517 0.645 0.645 0.626

Table 4: Performance of different algorithms for the hyperspectral unmixing data set in Section 5.4

Overall, Kmeans has the best performance in this data, although AA/Chen perform
close. However, we note that solutions from these methods are fully dense. Moving to
sparse methods, we see that SAA has the best performance and performs close to non-
sparse methods. Moreover, as seen in Figure 11, the SAA solution seems to perform the best
visually and identifies the landscape better than Kmeans and AA/Chen. More details on
the performance of different methods and visual comparisons can be found in Appendix E.3.

5.5 Scene Categorization data set (Xiao et al., 2010)

Finally, we consider another popular application of AA arising in the context of image
categorization (Abrol and Sharma, 2020; Chen et al., 2014). Given a collection of photos,
AA can be used to identify a small subset of photos as their representatives (archetypes).
Based on the mathematical formulation of AA, archetypes are expected to represent ex-
treme scenes and objects present in the data, for instance, they should categorize different
indoor/outdoor settings or city/nature scenes.
As far as we can tell, NMF with an explicit `0 regularization has not been used before to
address the problem of scene categorization. However, in view of Theorem 3, we do not
anticipate that additional sparsity will reduce the robustness properties of the estimator
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Reference Image Ground Truth Kmeans AA/Chen

Hoyer KP PP SAA

Figure 11: The figures for Section 5.4. The two top left images show a reference image and the
ground truth. The rest show outputs of different methods.

if the underlying matrix of archetypes is sparse. In addition, a sparse model may be de-
sirable in terms of compressed storage. We apply SAA on the Scene Categorization data
set (Xiao et al., 2010). We select 12 different scenes that consist of different indoor and out-
door settings (2617 images in total). These scenes are toll plaza, hospital exterior, harbor,
electricity station, underwater, youth hostel, valley, ski resort, football stadium, residential
neighborhood, vineyard and iceberg. We extract and concatenate GIST and HOG features
(Xiao et al., 2010) and implement different sparse NMF algorithms on the data with k = 12.
As estimated archetypes in the feature space cannot be visualized, we use the closest data
point to each archetype to visualize the result.
First, we consider AA and SAA with `/kn = 0.5 (we use the MIP initialization with con-
tinuation framework in Section 4.2 and choose the value of λ that maximizes purity). The
resulting visualization of archetypes for these two cases is the same. The visualization of
estimated archetypes is shown in Figure 12 (a). We observe that the resulting archetypes
appear to span the 12 different scenes in the data set. Figure 12 (b) shows the resulting
visualization for PP where the resulting archetypes matrix is set to have at most 0.65nk
nonzeros. As it can be seen, PP can identify 10 distinct scenes and chooses the electricity
station and the toll plaza twice. Figure 12 (c) shows the results for KP with the same spar-
sity as PP. This algorithm only identifies 5 distinct scenes. In summary, our SAA algorithm
works as well as AA in terms of identifying different scenes while providing a sparse solution.
This shows a sparse solution can be achieved without losing categorization performance.

6. Conclusion

In this paper, we consider the problem of sparse NMF with archetypal regularization where
the goal is to represent a collection of data points as nonnegative linear combinations of a
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SAA (this paper)

PP (Peharz and Pernkopf, 2012)

KP (Kim and Park, 2007)

Figure 12: The visualization of archetypes achieved by different algorithm for the scene categoriza-
tion data in Section 5.5: (a) SAA (b) PP (c) KP.
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few nonnegative sparse factors. Javadi and Montanari (2019) recently showed that NMF
(without sparsity) with archetypal regularization leads to robustness—factors learnt from
noisy data are close to the underlying factors that generate the noiseless data. We generalize
the notion of robustness to (a) strong robustness that implies each estimated archetype is
close to the underlying archetypes and (b) weak robustness that implies there exists at least
one recovered archetype that is close to the underlying archetypes. Javadi and Montanari
(2019) is an instance of the notion of weak robustness presented herein. We show that under
minimal assumptions, robustness in sparse NMF can be achieved by considering a sparsity
constrained regularized AA problem, even if the underlying archetypes are not sparse. We
present a block coordinate algorithm to get a good solution to the sparse AA problem
and also an initialization framework using mixed integer programming that leads to better
numerical results. We also present a local search algorithm that improves the quality of the
solution of our block coordinate algorithm. Numerical experiments on synthetic and real
data sets shed further insights into the theoretical developments pursued in this paper.
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Proofs and Technical Details

Appendix A. Additional Notation

We define

D̃(X,Y ) =

#row(X)∑
i=1

√
D(Xi,.,Y ) and L̃(X,Y ) =

#row(X)∑
i=1

min
j∈[#row(Y )]

‖Xi,.−Y j,.‖2. (38)

For a set S, Sc denotes the complement of the set. We use Ik to denote the identity matrix
of size k.

Appendix B. Technical Details of The Toy Example

For Figure 1 Panel (a), we let

H0 =

0.15 0.15
0.1 0.7
0.7 0.1


and produce 50 data points. To do so, each entry of W 0 is drawn from an independent
uniform distribution in [0, 1] and each row is normalized to sum to one. The noiseless data
matrix is X0 = W 0H0 and we add three rows of H0 to this to a obtain separable problem.
In this case, we can see D(X0,H0) = D(H0,X0) = 0 which is the exact AA solution of
Cutler and Breiman (1994). The red convex hull is Conv(H0). Let

H1 =

0.05 0.05
1 0.1

0.1 1

 .
The black convex hull is Conv(H1) for which we have D(X0,H1) = 0 but D(H1,X0) > 0.

For Figure 1 Panel (b), the data X is produced by X = X0 + Z where Z has zero-mean
iid normal coordinates with variance of 0.1. In this case, we have for every data point i,
D(Xi,.,H0) ≤ 0.1 making H0 a feasible solution for the regularized AA of Javadi and
Montanari (2019) and as D(H0,X) = 0, this is the solution of the regularized AA problem
(the red convex hull). However, we have D(X,H1) = 0 and D(H1,X) > 0, so the black
convex hull is not an optimal solution.

Finally, let

H2 =

 0 0
0 0.8

0.8 0

 .
In Figure 1 Panel (c), the black convex hull is Conv(H2) and the red one is Conv(H0). We
have ‖H2‖0 = 2 and ‖H0‖0 = 6 so the red convex hull is not sparse. In addition, among
all solutions that have ‖H‖0 = 2 and D(X0,H) = 0, the quantity D(H,X0) is minimized
for the black convex hull, making it the sparse archetypal solution.
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Appendix C. Technical Lemmas

Lemma 1 For any two matrices X ∈ Rm1×n and Y ∈ Rm2×n, we have:

1
√
m1

D̃(X,Y ) ≤ D(X,Y )1/2 ≤ D̃(X,Y ) (39)

1
√
m1
L̃(X,Y ) ≤ L(X,Y )1/2 ≤ L̃(X,Y ), (40)

where, recall D̃ and L̃ are as defined in (38).

Proof Define the vector u ∈ Rm1 such that ui =
√
D(Xi,.,Y ). Note that

1
√
m1

D̃(X,Y ) =
1
√
m1
‖u‖1 ≤ ‖u‖2 = D(X,Y )1/2 ≤ ‖u‖1 = D̃(X,Y )

which establishes (39). The proof of (40) is similar.

Lemma 2 If D(A1,A2) ≤ D(B1,B2) where A1,A2 ∈ Rm×n,B1,B2 ∈ Rk×n , we have

D̃(A1,A2) ≤
√
mD̃(B1,B2).

Proof We make use of Lemma 1. The proof follows from:

D̃(A1,A2) ≤
√
mD(A1,A2)1/2 ≤

√
mD(B1,B2)1/2 ≤

√
mD̃(B1,B2).

Lemma 3 Suppose X ∈ Rm1×n,Y ∈ Rm2×n,Z ∈ Rm3×n, then

D̃(X,Z) ≤ L̃(X,Y ) +m1D̃(Y ,Z).

Proof Fix i ∈ [m1]. For any u ∈ Rn, we have√
D(Xi,.,Z) = min

v∈Conv(Z)
‖Xi,. − v‖2

≤ min
v∈Conv(Z)

{‖Xi,. − u‖2 + ‖u− v‖2} (41)

= ‖Xi,. − u‖2 + min
v∈Conv(Z)

‖u− v‖2.

Let
u = argmin

p∈{Y j,.:j∈[#row(Y )]}
‖Xi,. − p‖2.

As a result, noting that D̃(Y ,Z) =
∑m2

j=1

√
D(Y j,.,Z) and u is a row of Y ,

min
v∈Conv(Z)

‖u− v‖2 =
√
D(u,Z) ≤

m2∑
j=1

√
D(Y j,.,Z) = D̃(Y ,Z). (42)
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Using the definition of u and (42) we can bound the rhs in (41) to get:

√
D(Xi,.,Z) ≤ min

j∈m2

‖Xi,. − Y j,.‖2 + D̃(Y ,Z).

By summing the above over i, we have:

D̃(X,Z) =

m1∑
i=1

√
D(Xi,.,Z)

≤
m1∑
i=1

min
j∈m2

‖Xi,. − Y j,.‖2 +

m1∑
i=1

D̃(Y ,Z)

= L̃(X,Y ) +m1D̃(Y ,Z)

which completes the proof.

Lemma 4 (Javadi and Montanari (2019)) If A,B ∈ Rm×n, m ≤ n are matrices with
linearly independent rows, we have

L(A,B)1/2 ≤ 2κ(A)D(A,B)1/2 + (1 +
√

2)
√
mD(B,A)1/2

where recall that κ(H) := σmax(H)/σmin(H) denotes the condition number of H.

Lemma 5 Suppose H ∈ Rk×n, X0 ∈ Rm×n and Z ∈ Rm×n is such that maxi∈[m] ‖Zi,.‖2 ≤
δ. Let X = X0 +Z. We have

D̃(H,X) ≤ D̃(H,X0) + kδ (43)

D̃(X,H) ≤ D̃(X0,H) +mδ. (44)

Proof Let us denote the m-dimensional unit simplex by:

∆m = {α ∈ Rm :
m∑
i=1

αi = 1,αi ≥ 0}. (45)
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We have for any i ∈ [k]

D̃(H i,.,X) = min
α∈∆m

‖H i,. −
m∑
j=1

αjXj,.‖2

= min
α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,. −

m∑
j=1

αjZj,.‖2

≤ min
α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,.‖2 + ‖

m∑
j=1

αjZj,.‖2


≤ min
α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,.‖2 +

m∑
j=1

αj‖Zj,.‖2


≤ min
α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,.‖2 + (

m∑
j=1

αj) max
j∈[m]

‖Zj,.‖2


≤ min
α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,.‖2 + δ

= D̃(H i,.,X0) + δ.

Using the above bound, we have:

D̃(H,X) =

k∑
i=1

D̃(H i,.,X) ≤
k∑
i=1

D̃(H i,.,X0) + kδ = D̃(H,X0) + kδ

which establishes (43). We now show (44). For a fixed i ∈ [m], we have

D̃(Xi,.,H) = min
α∈∆k

‖Xi,. −
k∑
j=1

αjHj,.‖2

= min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,. +Zi,.‖2

≤ min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,.‖2 + ‖Zi,.‖2

≤ min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,.‖2 + δ

= D̃(X0
i,.,H) + δ.

By summing the above bound over i, we arrive at (44).
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Lemma 6 Suppose H ∈ Rk×n, X0 ∈ Rm×n and Z ∈ Rm×n is such that maxi∈[m] ‖Zi,.‖2 ≤
δ. Let X = X0 +Z. We have

D(H,X)1/2 ≤
√

2D(H,X0)1/2 +
√

2kδ (46)

D(X,H)1/2 ≤
√

2D(X0,H)1/2 +
√

2mδ. (47)

Proof Let ∆m be defined as in (45). We have for any i ∈ [k]

D(H i,.,X) = min
α∈∆m

‖H i,. −
m∑
j=1

αjXj,.‖22

= min
α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,. −

m∑
j=1

αjZj,.‖22

(a)

≤ 2 min
α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,.‖22 + ‖

m∑
j=1

αjZj,.‖22


≤ 2 min

α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,.‖22 +

 m∑
j=1

αj‖Zj,.‖2

2
≤ 2 min

α∈∆m

‖H i,. −
m∑
j=1

αjX
0
j,.‖22 + (

m∑
j=1

αj)
2 max
j∈[m]

‖Zj,.‖22


≤ 2 min

α∈∆m
‖H i,. −

m∑
j=1

αjX
0
j,.‖22 + 2δ2

= 2D(H i,.,X0) + 2δ2

where (a) uses ‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22. Using the above bound, we have:

D(H,X) =
k∑
i=1

D(H i,.,X) ≤
k∑
i=1

2D(H i,.,X0) + 2kδ2 = 2D(H,X0) + 2kδ2.

As a result,

D(H,X)1/2 =
√
D(H,X) ≤

√
2D(H,X0) + 2kδ2 ≤

√
2D(H,X0)1/2 +

√
2kδ
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which establishes (46). We now show (47). For a fixed i ∈ [m], we have

D(Xi,.,H) = min
α∈∆k

‖Xi,. −
k∑
j=1

αjHj,.‖22

= min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,. +Zi,.‖22

≤ 2 min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,.‖22 + 2‖Zi,.‖22

≤ 2 min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,.‖2 + 2δ2

= 2D(X0
i,.,H) + 2δ2.

Hence,

D(X,H) =
m∑
i=1

D(Xi,.,H) ≤ 2
m∑
i=1

D(X0
i,.,H) + 2mδ2 = 2D(X0,H) + 2mδ2

which implies (47).

Lemma 7 Suppose H ∈ Rk×n, k ≤ n, has full row rank and X ∈ Rm×n is such that
Conv(X) ⊆ Conv(H). Let X̃ ∈ Rk×n be a matrix with its i-row given by:

X̃i,. = argmin
u∈{Xj,.:j∈[m]}

‖u−H i,.‖2 (48)

for all i ∈ [k]. Then,

L(H,X)1/2 ≤ 2kκ(H)D(H, X̃)1/2. (49)

Proof Fix any ε > 0. There is a matrix Zε ∈ Rk×n such that ‖Zε‖F ≤ ε (therefore,
maxi∈[m] ‖Zε

i,.‖2 ≤ ε) and X̃ +Zε has full row rank. We have for any i ∈ [k]

L̃(H i,.,X) = L̃(H i,., X̃)

= min
j∈[k]
‖H i,. − X̃j,.‖2

= min
j∈[k]
‖H i,. − X̃j,. + (Zε)j,. − (Zε)j,.‖2

≤ min
j∈[k]
‖H i,. − X̃j,. − (Zε)j,.‖2 + ‖(Zε)j,.‖2

≤ L̃(H i,., X̃ +Zε) + ε. (50)
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Note that we have the following inequalities:

L(H,X)1/2
(a)

≤ L̃(H,X)

=

k∑
i=1

L̃(H i,.,X)

(b)

≤ L̃(H, X̃ +Zε) + kε

(c)

≤
√
kL(H, X̃ +Zε)

1/2 + kε, (51)

where, (a), (c) are results of Lemma 1 and (b) is a result of (50). In addition, by Lemmas
1 and 5, we have:

D(H, X̃ +Zε)
1/2 ≤ D̃(H, X̃ +Zε) ≤ D̃(H, X̃) + kε (52)

and

D(X̃ +Zε,H)1/2 ≤ D̃(X̃ +Zε,H) ≤ D̃(X̃,H) +mε = mε, (53)

where the last equality in (53) follows from the fact that D̃(X̃,H) = 0 (as Conv(X) ⊆
Conv(H)).

Starting with (51), we have

L(H,X)1/2 ≤
√
kL(H, X̃ +Zε)

1/2 + kε (54)

≤ 2
√
kκ(H)D(H, X̃ +Zε)

1/2 + k(1 +
√

2)D(X̃ +Zε,H)1/2 + kε (55)

≤ 2
√
kκ(H)D̃(H, X̃) + ε(k +mk(1 +

√
2) + 2

√
k3κ(H)) (56)

≤ 2kκ(H)D(H, X̃)1/2 + ε(k +mk(1 +
√

2) + 2
√
k3κ(H)) (57)

where above, inequality (55) is a result of Lemma 4; (56) follows from (52) and (53). Finally,
inequality (57) is a result of Lemma 1. As inequality (57) is true for any ε > 0, taking the
limit ε ↓ 0+, we arrive at (49).

Appendix D. Proofs of Main Results

D.1 Proof of Theorem 1

Proof For any i, let us denote:

ji = argmin
j∈[k]

‖H i,. −H0
j,.‖2.
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We have

L(H0,H) =

k∑
i=1

min
j∈[k]
‖H0

i,. −Hj,.‖22

≤
k∑
i=1

‖H0
i,. −H i,.‖22

=
k∑
i=1

‖H0
i,. −H0

ji,. +H0
ji,. −H i,.‖22

≤ 2

k∑
i=1

‖H0
i,. −H0

ji,.‖
2
2 + 2

k∑
i=1

‖H0
ji,. −H i,.‖22

≤ 2kb(H0)2 + 2L(H,H0),

where, the last line follows from the definition of b(H) in (6).

D.2 Proof of Theorem 2

Proof For any given matrices H and H0, there exists a matrix U1 ∈ {0, 1}k×k such that
it has exactly one 1 in each row, such that

L(H,H0) = ‖H −U1H0‖2F . (58)

In fact, for any i ∈ [k], we have U1
i,ji = 1 where

ji = argmin
j∈[k]

‖H i,. −H0
j,.‖2.

Noting the noiseless data X0 is given as X0 = W 0H0 where W 0 ≥ 0 and W 01k = 1m,
one has

D(X0,H)1/2 = min
W≥0

W1k=1m

‖X0 −WH‖F ≤ ‖X0 −W 0H‖F

= ‖W 0H0 −W 0(H −U1H0 +U1H0)‖F
= ‖W 0(Ik −U1)H0 +W 0(H −U1H0)‖F
≤ ‖W 0(Ik −U1)H0‖F + ‖W 0(H −U1H0)‖F . (59)

Note that each row of W 0 sums to 1 and is nonnegative. Therefore, for each row, ‖W 0
i,.‖22 ≤

1 and

‖W 0‖2F =
m∑
i=1

‖W 0
i,.‖22 ≤ m. (60)

Using (59), we have the following inequalities:

D(X0,H)1/2 ≤ ‖W 0(Ik −U1)H0‖F + ‖W 0(H −U1H0)‖F
≤
√
m‖H0‖F ‖Ik −U1‖F +

√
m‖H −U1H0‖F

≤ k
√
m‖H0‖F +

√
mL(H,H0)1/2
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where the second inequality makes use of (60); and the last inequality uses (58) and ‖Ik −
U1‖F ≤ k (since, Ik −U1 is a matrix with every entry between -1 and 1).

Similar to U1 in the definition (58), we can consider U2 ∈ {0, 1}k×k such that

L(H0,H) = ‖H0 −U2H‖2F . (61)

Since U21k = 1k; and using the fact that every row of W 0 sums to one, we have:
W 0U21k = 1m and

W 0U2 ∈ {W : W ≥ 0,W1k = 1m}. (62)

Note that we have the following:

D(X0,H)1/2 = min
W≥0

W1k=1m

‖X0 −WH‖F
(a)

≤ ‖X0 −W 0U2H‖F

= ‖W 0H0 −W 0U2H‖F
(b)

≤
√
m‖H0 −U2H‖F

(c)
=
√
mL(H0,H)1/2,

where, (a) uses feasibility condition (62), (b) is due to (60) and (c) uses (61).

D.3 Proof of Theorem 3

Note that the constants in this theorem are listed below.

c1 =4
√
k3κ2(H0) + (1 +

√
2)
√
k3

c2 =4k2κ(H0) + (1 +
√

2)
√
k(k +

√
k3)

c3 =2k2κ(H0) + (1 +
√

2)k2

c4 =k + 2
√
k3κ(H0)

c5 =(k +
√
k3) + 2k2

c6 =
√
k3 + k2

c7 =
σmin(H0)

6
√
k

c8 =7kκ(H0) + 2(1 +
√

2)k2κ(H0)

c9 =7κ(H0)(k +
√
k3) + 2(1 +

√
2)
√
k5

c10 =7κ(H0)
√
k3 + (1 +

√
2)
√
k5.

(63)

We first present Lemmas 8 and 9 useful for the proof of Theorem 3.

Lemma 8 Under the assumptions of Theorem 3, P`(H0) is feasible for problem (3).

Proof By our model-setup, there is a nonnegative W 0 with W 01k = 1m such that
X0 = W 0H0. For i ∈ [m], let

vi = W 0
i,.P`(H0) ∈ Conv(P`(H0)).
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Using the definition of vi above, we have for i ∈ [m]

D(X0
i,., P`(H0)) = min

u∈Conv(P`(H0))
‖X0

i,. − u‖22 ≤ ‖X0
i,. − vi‖22

= ‖X0
i,. −W 0

i,.P`(H0)‖22. (64)

As a result, for i ∈ [m], we have:

D(X0
i,., P`(H0))1/2

(a)

≤ ‖X0
i,. −W 0

i,.P`(H0)‖2
= ‖W 0

i,.(H0 − P`(H0))‖2
= ‖W 0

i,.P
⊥
` (H0)‖2 ≤ ‖W 0

i,.‖2‖P⊥` (H0)‖F (65)

where (a) is a result of (64). By (60) and (65), we have:

D(X0
i,., P`(H0))1/2 ≤ ‖P⊥` (H0)‖F = β. (66)

In what follows, for notational convenience, we denote H = P`(H0). Note that H satisfies
the sparsity constraint in (3). We have the following:

D(Xi,.,H)1/2 ≤ D̃(X0
i,. +Zi,.,H) ≤ D̃(X0

i,.,H) + ‖Zi,.‖2
≤ D(X0

i,.,H)1/2 + max
i
‖Zi,.‖2︸ ︷︷ ︸
δ

≤ β + δ. (67)

where the first inequality is a result of Lemma 1 and the fact X = X0 + Z; the second
inequality is a result of Lemma 5 (we use (44) with m = 1); and the third inequality
uses (66). Bound (67) shows that H = P`(H0) is a feasible solution for problem (3).

Lemma 9 Under the assumptions of Theorem 3, one has

D(Ĥ,H0)1/2 ≤
√
kD(H0, X̃0)1/2 +

√
k3β + (k +

√
k3)δ (68)

D(H0, Ĥ)1/2 ≤2
√
k3κ(H0)D(H0, X̃0)1/2 + 2k2δ + k2β. (69)

Proof We first prove (68). To this end, note that Conv(X0) ⊆ Conv(H0), so

D(Ĥ,H0)1/2 ≤ D(Ĥ,X0)1/2 ≤ D̃(Ĥ,X0)

where the second inequality is a result of Lemma 1. In addition, as Ĥ is the optimal
solution of (3) and P`(H0) is feasible for problem (3) (by Lemma 8), we have D(Ĥ,X) ≤
D(P`(H0),X) and by Lemma 2,

D̃(Ĥ,X) ≤
√
kD̃(P`(H0),X). (70)
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Therefore, one can write

D(Ĥ,H0)1/2
(a)

≤ D̃(Ĥ,X0) = D̃(Ĥ,X −Z)
(b)

≤ D̃(Ĥ,X) + kδ

(c)

≤
√
kD̃(P`(H0),X) + kδ =

√
kD̃(H0 − P⊥` (H0),X) + kδ

(d)

≤
√
kD̃(H0,X) +

√
k3 max

j∈[k]
‖P⊥` (H0)j,.‖2 + kδ

≤
√
kD̃(H0,X) +

√
k3‖P⊥` (H0)‖F + kδ

≤
√
kD̃(H0,X) +

√
k3β + kδ

(e)

≤
√
kD̃(H0,X0) +

√
k3β + (k +

√
k3)δ

(f)

≤
√
kD̃(H0, X̃0) +

√
k3β + (k +

√
k3)δ

where (a) is a result of Lemma 1, (b), (d), (e) are results of Lemma 5, (c) is a result of (70),
and (f) is true as

√
kD̃(H0,X0) ≤

√
kD̃(H0, X̃0) because Conv(X̃0) ⊆ Conv(X0). This

establishes (68).
We now proceed to show (69). To this end, using Lemma 3,

D(H0, Ĥ)1/2 ≤ D̃(H0, Ĥ) ≤ L̃(H0, X̃0) + kD̃(X̃0, Ĥ). (71)

Note that by Lemma 7,

L̃(H0, X̃0) ≤ 2
√
k3κ(H0)D(H0, X̃0)1/2 (72)

by the definition of X̃. Let ji ∈ [m] for i ∈ [k] be such that X̃
0
i,. = X0

ji,.. Let Z̃ ∈ Rk×n be

such that Z̃i,. = Zji,. for i ∈ [k] and X̃ = X̃0 + Z̃. As a result,

D̃(X̃0, Ĥ) = D̃(X̃ − Z̃, Ĥ)
(a)

≤ D̃(X̃, Ĥ) + kδ

(b)

≤
√
kD(X̃, Ĥ)1/2 + kδ

=
√
k

√√√√ k∑
i=1

D(X̃i,., Ĥ) + kδ

=
√
k

√√√√ k∑
i=1

D(Xji,., Ĥ) + kδ

(c)

≤
√
k

√√√√ k∑
i=1

(δ + β)2 + kδ

≤ k(δ + β) + kδ = 2kδ + kβ (73)

where (a) is a result of Lemma 5, (b) is a result of Lemma 1 and (c) is due to the constraint
D(Xi,.,H)1/2 ≤ δ + β in Problem (3). Therefore, by (71), (72) and (73),

D(H0, Ĥ)1/2 ≤ 2
√
k3κ(H0)D(H0, X̃0)1/2 + 2k2δ + k2β
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which establishes (69).

Proof [Proof of Theorem 3] Part 1) If Ĥ has linearly independent rows, the desired
result is achieved by substituting (68) and (69) into Lemma 4 with A = H0 and B = Ĥ.
If Ĥ does not have linearly independent rows, for ε > 0 there exists Ĥε with linearly
independent rows such that ‖Ĥε − Ĥ‖F ≤ ε. Following a path similar to the proof of
Lemma 7 and taking the limit ε ↓ 0+ the desired result is achieved.
Part 2) By summing (68) and (69),

D(Ĥ,H0)1/2 +D(H0, Ĥ)1/2 ≤ c4D(H0, X̃0)1/2 + c5 max
i∈[m]

‖Zi,.‖2 + c6‖P⊥` (H0)‖F

(a)

≤ σmin(H0)

6
√
k

where (a) is a result of condition (11). As a result,

D(Ĥ,H0)1/2 +D(H0, Ĥ)1/2 ≤ σmin(H0)

6
√
k

.

Therefore, condition (B.42) of Javadi and Montanari (2019) holds and by Lemma B.3 of
Javadi and Montanari (2019), we have

κ(Ĥ) ≤ 7

2
κ(H0), (74)

which shows Ĥ has linearly independent rows. The rest of the proof is achieved by substi-
tuting (74), (68) and (69) into Lemma 4 with A = Ĥ and B = H0.

D.4 Proof of Proposition 1

Proof One has

D(Ĥ,H0)1/2
(a)

≤ D(Ĥ,X0)1/2

= D(Ĥ,X −Z)1/2

(b)

≤
√

2D(Ĥ,X) +
√

2kδ

(c)

≤
√

2D(P`(H0),X)1/2 +
√

2kδ

=
√

2D(H0 − P⊥` (H0),X)1/2 +
√

2kδ

(d)

≤ 2D(H0,X)1/2 + 2
√
kmax
j∈[k]
‖P⊥` (H0)j,.‖2 +

√
2kδ

≤ 2D(H0,X0 +Z)1/2 + 2
√
k‖P⊥` (H0)‖F +

√
2kδ

(e)

≤ 2
√

2D(H0,X0)1/2 + 2
√
k‖P⊥` (H0)‖F + 3

√
2kδ

(f)
= 2
√
k‖P⊥` (H0)‖F + 3

√
2kδ
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where (a) is true as Conv(X0) ⊆ Conv(H0), (b) is by Lemma 6, (c) is by optimality of
Ĥ, (d) and (e) are by Lemma 6 and (f) is true as by separability, D(H0,X0) = 0. Next,
without loss of generality assume that for i ∈ [k], we have that X0

i,. = H0
i,. (note that each

row of H0 is also a row of X0 by separability) or in other words, H0 = X̃0 = X0
1:k,.. Then,

D(H0, Ĥ)1/2 = D(X̃0, Ĥ)1/2

= D(X̃ − Z̃, Ĥ)1/2

(a)

≤
√

2D(X̃, Ĥ)1/2 +
√

2kδ

=
√

2

√√√√ k∑
i=1

D(X̃i,., Ĥ) +
√

2kδ

(b)

≤
√

2

√√√√ k∑
i=1

(δ + β)2 +
√

2kδ

=
√

2kβ + 2
√

2kδ (75)

where (a) is by Lemma 6, and (b) is by feasibility of Ĥ. Rest of the proof follows the proof
of Theorem 3.

D.5 Proof of Proposition 2

The constants in this proposition are listed below:

c1
λ =

(
2κ(H0)

[
k
√
m
√
m+ λk2 +mk

]
+ (1 +

√
2)
√
k
[√

mk/λ+ k3 + k
])

c2
λ =

(
7κ(H0)

[√
mk/λ+ k3 + k

]
+ (1 +

√
2)
√
k
[
k
√
m
√
m+ λk2 +mk

])
c3
λ =

[
(1 +m)k + k

√
m
√
m+ λk2 +

√
mk/λ+ k3

]
.

(76)

Lemma 10 Under the assumptions of Proposition 2, one has

D(Ĥλ,H0)1/2 ≤
√
k

√
mδ2

λ
+ k2δ2 + kδ, (77)

D(H0, Ĥλ)1/2 ≤ k
√
m
√
mδ2 + λk2δ2 +mkδ. (78)

Proof Recall that in this proposition, we assume P`(H0) = H0 (β = 0) and

D(H0, X̃0) = D̃(H0,X0) = 0. (79)

From (67), we have

D(X,H0) =

m∑
i=1

D(Xi,.,H0) ≤ mδ2. (80)
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In addition, we have

D(H0,X)1/2
(a)

≤ D̃(H0,X) = D̃(H0,X0 +Z)
(b)

≤ D̃(H0,X0) + kδ
(c)
= kδ (81)

where (a) is due to Lemma 1, (b) is due to Lemma 5 and (c) is true because of (79).
Therefore, from (81) we have:

D(H0,X) ≤ [D̃(H0,X)]2 ≤ k2δ2.

Let u = mδ2 and v = k2δ2. Note that as Ĥλ is the optimal solution of the penalized
problem (13), by (80) and (81) we have

D(X, Ĥλ) + λD(Ĥλ,X) ≤ u+ λv. (82)

Note that we have the following:

D(Ĥλ,H0)1/2
(a)

≤ D(Ĥλ,X0)1/2
(b)

≤ D̃(Ĥλ,X0)

= D̃(Ĥλ,X −Z)
(c)

≤ D̃(Ĥλ,X) + kδ

(d)

≤
√
kD(Ĥλ,X)1/2 + kδ

(e)

≤
√
k

√
u

λ
+ v + kδ, (83)

where (a) is because Conv(X0) ⊆ Conv(H0), (b), (d) are due to Lemma 1, (c) is due to
Lemma 5; and in (e) we use the observation D(Ĥλ,X) ≤ u/λ+v (which follows from (82)).
This proves (77).
We will now prove (78). We obtain the following set of inequalities:

D(H0, Ĥλ)1/2
(a)

≤ L̃(H0,X0) + kD̃(X0, Ĥ)

(b)

≤ 2
√
k3κ(H0)D(H0, X̃0)1/2 + kD̃(X0, Ĥ)

(c)
= kD̃(X0, Ĥλ)

(d)

≤ kD̃(X, Ĥλ) +mkδ

(e)

≤ k
√
mD(X, Ĥλ)1/2 +mkδ

(f)

≤ k
√
m
√
u+ λv +mkδ (84)

where (a) is a result of (71), (b) is due to (72), (c) is due to (79), (d) is due to Lemma 5 with
X0 = X −Z, (e) is true by Lemma 1; and (f) is a result of (82). This establishes (78).

Proof [Proof of Proposition 2]
Part 1) If Ĥλ has linearly independent rows, this part of the proposition is a direct

result of (77) and (78) together with Lemma 4 with A = H0 and B = Ĥλ. If Ĥλ does not
have linearly independent rows, a perturbation argument similar to the proof of Theorem 3
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Part 1 suffices.
Part 2) Similar to the proof of Theorem 3, condition (15) guarantees κ(Ĥλ) ≤ (7/2)κ(H0).
The rest of the proof follows from (77) and (78) together with Lemma 4 with A = Ĥλ and
B = H0.

D.6 Proof of Theorem 4

Proof Part 1) The proof of convergence is based on Theorem 2 of Xu and Yin (2017).
Following Xu and Yin (2017), we define the maximum and minimum of Lipschitz constants
across three blocks (H,W , W̃ ) at iteration j as

Lj = max{L1(W j), L2(Hj), L3(X)} and `j = min{L1(W j), L2(Hj), L3(X)}

respectively. By substituting the values of L1(W j), L2(Hj), L3(X),

Lj = max{2(‖W T
jW j‖2 + λ), 2 max{‖HjH

T
j ‖2, ε}, 2λ‖XXT ‖2} (85)

`j = min{2(‖W T
jW j‖2 + λ), 2 max{‖HjH

T
j ‖2, ε}, 2λ‖XXT ‖2}. (86)

As W j , W̃ j are simplex matrices and bounded, and considering the cost function Ψ(., ., .)
is bounded from above, Hj needs to be bounded. Consequently, Lj is uniformly bounded
from above. In addition, by the assumption λ > 0, `j is uniformly bounded away from
zero. As a result, the Lipschitz constants across three blocks are uniformly bounded from
above and bounded away from zero from below—a condition of Theorem 2 of Xu and Yin
(2017). Other conditions of Theorem 2 of Xu and Yin (2017) are satisfied and therefore,
this implies the convergence of Algorithm 1.
Part 2) Let

T j = max{0,Hj − [1/L1(W j)](−W j
T [X −W jHj ] + λ[Hj − W̃ jX])}. (87)

Note that T j → T where T is defined in (21). In addition by the assumption of the second
part of the theorem on T , P`(T ) is unique. First, we show that P`(T j) → P`(T ). Let us
consider two cases:

1. ‖T ‖0 > `: In this case, there exists i∗ ≥ 1 such that the support of P`(T i) and P`(T )
are the same for i ≥ i∗. Therefore, for i ≥ i∗, for (r, u) ∈ S(P`(T i)) = S(P`(T )) [recall
that S(T ) is the support of T ],

P`(T i)r,u = T ir,u → T r,u = P`(T )r,u

and for (r, u) ∈ S(P`(T i))
c = S(P`(T ))c,

P`(T i)r,u = 0 = P`(T )r,u.

2. ‖T ‖0 ≤ `: In this case, S(T ) = S(P`(T )) and there exists i∗ ≥ 1 such that for i ≥ i∗,
S(T ) ⊆ S(P`(T i)). As a result, for i ≥ i∗, for (r, u) ∈ S(T ),

P`(T i)r,u = T ir,u → T r,u = P`(T )r,u
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and for (r, u) ∈ S(T )c,

P`(T i)r,u ∈ {0,T ir,u}

and as T ir,u → T r,u = 0,

P`(T i)r,u → P`(T )r,u = 0.

In addition, note that for any bounded convex set C ⊆ Rm, if xi → x∗, PC(xi) → PC(x∗)
where PC is the projection onto C. This along with the fact that P`(T j) → P`(T ), is
sufficient to show stationarity:

H∗ = lim
j→∞

Hj+1

(a)
= lim

j→∞
P` (T j)

(b)
= P` (T )

= P`(max{0,H∗ − [1/L1(W ∗)](−W ∗T [X −W ∗H∗] + λ[H∗ − W̃ ∗
X])})

= argmin
H≥0
‖H‖0≤`

∥∥∥∥H − (H∗ − 1

2L1(W ∗)
∇HΨ(H∗,W ∗, W̃

∗
)

)∥∥∥∥2

F

where (a) is by the definition of the iterate Hj+1 and (b) was proved above, showing sta-
tionarity for the block H.

D.7 Proof of Proposition 3

Proof Let φ(H, W̃ ) = ‖H − W̃X‖2F be the objective function of (22). Suppose H∗, W̃
∗

are optimal solutions to problem (22) and let H ′ = 0. Suppose j is such that ‖Xj,.‖2 =
minu∈[m] ‖Xu,.‖2 and ej ∈ Rm is the vector with all coordinates equal to zero except

coordinate j equal to one. Let W̃
′
= 1ke

T
j . Hence, W̃

′
X = 1kXj,.. Note that H ′, W̃

′
are

feasible for (22).
We prove the statement of this proposition by the method of contradiction. Suppose there
exists i0 ∈ [k] such that

‖H∗i0,.‖2 > max
u∈[m]

‖Xu,.‖2 +
√
k min
u∈[m]

‖Xu,.‖2. (88)

Note that for any v ∈ Conv(X), there exists α1, · · · , αm ≥ 0 such that they sum to one
and v =

∑m
i=1 αiXi,.. As a result,

‖v‖2 = ‖
m∑
i=1

αiXi,.‖2 ≤
m∑
i=1

αi‖Xi,.‖2 ≤
m∑
i=1

αi max
u∈[m]

‖Xu,.‖2 = max
u∈[m]

‖Xu,.‖2

which when used with (88) leads to:

‖H∗i0,.‖2 ≥ ‖v‖2. (89)
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One has

k min
u∈[m]

‖Xu,.‖22
(a)
= φ(H ′, W̃

′
)

(b)

≥ φ(H∗, W̃
∗
)

≥ ‖H∗i0,. − W̃ i0,.X‖22
≥ D(H∗i0,.,X) = min

v∈Conv(X)
‖H∗i0,. − v‖

2
2

(c)

≥ min
v∈Conv(X)

|‖H∗i0,.‖2 − ‖v‖2|
2

(d)

≥ |‖H∗i0,.‖2 − max
v∈Conv(X)

‖v‖2|2

= (‖H∗i0,.‖2 − max
u∈[m]

‖Xu,.‖2)2

(e)
> k min

u∈[m]
‖Xu,.‖22,

where (a) is true by definition of H ′, W̃
′
, (b) is due to the optimality of H∗, W̃

∗
, (c) is true

as for any two vectors a, b, ‖a− b‖22 ≥ (‖a‖2−‖b‖2)2, (d) is due to (89) and (e) is because
of (88). This is a contradiction. Hence, for any i ∈ [k],

‖H∗i ‖2 ≤ max
u∈[m]

‖Xu,.‖2 +
√
k min
u∈[m]

‖Xu,.‖2.

D.8 Proof of Proposition 4

Proof Part 1) The cost function of (25) is jointly convex in H, W̃ ,Y and the feasible
set of (25) is convex. Therefore, F is a marginal minimization of a jointly convex function
(w.r.t. H, W̃ ) over a convex set and is convex (see Section 3.2.5 of Boyd et al. (2004)).
Part 2) For the second part, note that we can rewrite (25) as:

F (Y ) = min
H,W̃ ,U

‖H −U‖2F (90)

s.t. H ≥ 0, W̃ ≥ 0, W̃1m = 1k

H i,j ≤
√
bY i,j ∀(i, j) ∈ [k]× [n]

U = W̃X.

We start by obtaining the dual problem of (90). Note that by enhanced Slater’s condition
(Boyd et al., 2004), strong duality holds for this problem. The Lagrangian of (90) can be
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written as

L(H, W̃ ,U ,M ,Λ,µ) =‖H −U‖2F − 〈M1,H〉 − 〈M2, W̃ 〉+ 〈M3,U − W̃X〉

+ 〈µ, W̃1m − 1k〉+ 〈Λ,H −
√
bY 〉

=
[
‖H −U‖2F − 〈M1 −Λ,H〉+ 〈M3,U〉

]
+
[
−〈M2, W̃ 〉 − 〈M3, W̃X〉+ 〈µ, W̃1m〉

]
(91)

+
[
−〈µ,1k〉 − 〈Λ,

√
bY 〉

]
,

where M1,M2,M3,µ,Λ are the corresponding Lagrangian variables. By considering the
optimality conditions wrt H,U , W̃ , we achieve

2(H −U) = M1 −Λ, (92)

2(H −U) = M3, (93)

M2 +M3X
T = µ1Tm. (94)

Using (92), (93), (94) in (91), we get the dual of (90):

F (Y ) = max
M1,M2,Λ≥0,M3,µ

− 1

4
‖M3‖2F − 〈µ,1k〉 − 〈Λ,

√
bY 〉 (95)

s.t. M2 +M3X
T = µ1Tm

M1 −Λ = M3.

At optimality, note that for (i, j) ∈ [k] × [n], Λi,j = −M3
i,j if M3

i,j < 0 and otherwise
Λi,j = 0 as Λi,j ,Y i,j ≥ 0 and the cost function is higher if Λi,j is smaller. By using
Danskin’s Theorem (Bertsekas, 1997), if Λ is the optimal solution to (95), −

√
bΛ is a sub-

gradient of F . In addition, at optimality, based on KKT conditions, M3 = 2(H − U) by
(93) and U = W̃X by feasibility, completing the proof.

D.9 Proof of Proposition 5

Proof Note that based on the upper/lower bounds returned by the outer approximation
algorithm, for any H ∈ Rk×n≥0 such that ‖H‖0 ≤ `,

D(H,X) ≥ LB and D(H∗∞,X) = UB.

As a result,
D(H∗∞,X)−D(H,X)

D(H∗∞,X)
≤ UB− LB

UB
= OG

or
D(H,X) ≥ (1−OG)D(H∗∞,X). (96)

Thus,

D(X,H∗λ) + λD(H∗λ,X)
(a)

≥ D(X, Ĥλ) + λD(Ĥλ,X)

≥ λD(Ĥλ,X)

(b)

≥ λ(1−OG)D(H∗∞,X) (97)
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where (a) is due to optimality of Ĥλ and (b) is due to (96). Moreover, as Algorithm 1 is a
descent algorithm initialized with H∗∞,

D(X,H∗λ) + λD(H∗λ,X) ≤ D(X,H∗∞) + λD(H∗∞,X). (98)

Hence,

Φλ(Ĥλ)− Φλ(H∗λ)
(a)

≥ −D(X,H∗λ)− λD(H∗λ,X) + λ(1−OG)D(H∗∞,X)

(b)

≥ −D(X,H∗∞)− λ(OG)D(H∗∞,X) (99)

where (a) is a result of (97) and (b) is a result of (98). Additionally, by (96),

λ(1−OG)D(H∗∞,X) ≤ λD(H∗λ,X) ≤ D(X,H∗λ) + λD(H∗λ,X) (100)

so by (99),

Φλ(Ĥλ)− Φλ(H∗λ)

Φλ(H∗λ)
≥ −D(X,H∗∞)− λ(OG)D(H∗∞,X)

λ(1−OG)D(H∗∞,X)
. (101)

D.10 Proof of Proposition 6

Proof Similar to proof of Theorem 2, we can consider the matrix U1 ∈ {0, 1}k×k with
exactly one 1 in each row, such that L(H−S ,H0) = ‖H−S −U1H0‖2F . By the definition
of d(X), for any i ∈ S there exists ji ∈ [m] \ S such that ‖Xi,. −Xji,.‖2 ≤ d(X). Let

X̄0 ∈ R|S|×n be such that for i ∈ S, X̄
0
i,. = X0

ji,.. Moreover, let W̄ 0 ∈ R|S|×k be such that

for i ∈ S, W̄
0
i,. = W 0

ji,.. This implies X̄0 = W̄ 0H0. We define X̄ similar to X̄0. We also
let Z̄ = X̄ − X̄0. One has

D(XS ,H
−S)1/2 = min

W≥0
W1=1

‖XS −WH−S‖F

≤ ‖XS − W̄ 0H
−S‖F

= ‖XS + X̄ − X̄ − W̄ 0H
−S‖F

(a)

≤ ‖XS − X̄‖F + ‖X̄0 + Z̄ − W̄ 0(H−S −U1H0 +U1H0)‖F
(b)

≤
√
|S|d(X) + ‖W̄ 0(Ik −U1)H0‖F + ‖W̄ 0(H−S −U1H0)‖F + ‖Z̄‖F

(c)

≤
√
|S|
[
d(X) + ‖Ik −U1‖F ‖H0‖F + ‖H−S −U1H0‖F + max

j∈[m]
‖Zj,.‖2

]
≤
√
|S|
[
d(X) + k‖H0‖F + max

j∈[m]
‖Zj,.‖2 + L(H−S ,H0)1/2

]
where (a) is due to Z̄ = X̄ − X̄0, (b) is due to the definition of X̄ and considering X̄
has |S|-many rows, and (c) is true because W̄ 0 has |S|-many rows that each has `2 norm
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bounded by 1 (see (60)).
We now turn our attention to the second part of the proof. Similar to the first part of the
proof, there exists U2 ∈ {0, 1}k×k such that L(H0,H

−S) = ‖U2H
−S −H0‖2F . Moreover,

similar to the proof of Theorem 2,

W̄ 0U2 ∈ {W : W ≥ 0,W1k = 1|S|}.

Consequently,

D(XS ,H
−S)1/2 = min

W≥0
W1=1

‖XS −WH−S‖F

≤ ‖XS + X̄ − X̄ − W̄ 0U2H
−S‖F

≤ ‖XS − X̄‖F + ‖X̄ − W̄ 0U2H
−S‖F

≤ ‖XS − X̄‖F + ‖X̄0 − W̄ 0U2H
−S‖F + ‖Z‖F

≤
√
|S|
[
d(X) + max

j∈m
‖Zj,.‖2

]
+ ‖W̄ 0‖F ‖H0 −U2H

−S‖F

≤
√
|S|
[
d(X) + max

j∈m
‖Zj,.‖2 + L(H0,H

−S)1/2

]
.

Appendix E. Additional Numerical Experiments

E.1 Synthetic Data

Robustness and Initialization: In Section 5.1.2 we showed that using the MIP-based ini-
tialization and local search helps to improve the objective function achieved by the solution.
Here, we show that our proposed framework improves the robustness of the resulting model
compared to the baseline. To this end, we consider the same setup as in Section 5.1.2 and
report the strong robustness quantity L(Ĥ,H0) (where H0 is the underlying archetypes
matrix and Ĥ is the estimated one) in Table 5. As it can be seen, our framework of SAA
(and SAA+LS) not only lead to lower objective values (as discussed in Section 5.1.2), but
also leads to more robust solutions compared to a simple initialization in most case, specially
when the noise is low.

E.2 Cancer Gene Expression Example

The effect of initialization: To show the effectiveness of our proposed initialization and
local search framework, we consider the same setup as discussed in Section 5.3. However,
we initialize our method as discussed in Section 5.1.2 (we consider three cases Zero, SAA
and SAA+LS as discussed). We compare the objective value achieved by these three ap-
proaches, in addition to their clustering performance captured by purity and entropy, in
Table 6. As it can be seen and in agreement with our observations from the synthetic
examples, our initialization and local search frameworks improve the quality of the solution

55



Behdin and Mazumder

σz Method `/nk = 0.5 `/nk = 0.65 `/nk = 0.8

0.01

Zero 0.7010 0.5865 0.4914
Projections 0.1398 0.0191 0.0021

SAA 0.0736 0.0082 0.0002
SAA+LS 0.0735 0.0081 0.0002

0.1

Zero 0.7038 0.5877 0.4952
Projections 0.1728 0.0520 0.0298

SAA 0.1055 0.0370 0.0280
SAA+LS 0.1054 0.0370 0.0279

0.5

Zero 0.7927 0.6691 0.5849
Projections 0.7956 0.6306 0.5680

SAA 0.7771 0.6147 0.5780
SAA+LS 0.7769 0.6146 0.5780

Table 5: Comparison of zero initialization, Projections, SAA and SAA+LS in Appendix E.1.

Zero SAA SAA+LS

Objective 1.7× 1012 5.2× 1011 5.1× 1011

Purity 0.364 0.660 0.662
Entropy 0.636 0.361 0.360

Table 6: Performance of different initializations for the gene expression data set in Appendix E.2

significantly compared to the baseline (Zero).

The effect of varying λ: To show how the choice of λ affects the performance of our
method, we consider the following experimental setup. We choose 9 values of λ between 0.1
and 20 and run our method on the data. We randomly select 40 data points as the valida-
tion set and use other 158 data points to estimate H. The left panel in Figure 13 shows
the validation loss (on the held-out data) for different values of λ. We also use the whole
data set to investigate the clustering performance of our method (captured by purity) for
different values of λ. The right panel in Figure 13 shows the purity of the resulting estimator
for different values of λ. As it can be seen, the best clustering performance is achieved for
λ ≈ 0.5− 1.5. The lowest validation loss is also achieved for the value of λ = 1. Overall, it
can be seen choosing λ too small or too large can negatively affect the performance of the
model. However, our validation method can find a good value of λ.

The effect of varying sparsity: Finally, we show our algorithm outperforms other meth-
ods with different values of sparsity. We vary the value of the target sparsity ` between
0.35nk and 0.95nk and tune other methods to result in solutions with the target sparsity (as
discussed in Section 5.1.1). Our simulation setup is the same as in Section 5.3. The purity
results for these cases are shown in Figure 14. We observe that our method outperforms
other sparse NMF methods with different values of sparsity and even performs better than
two non-sparse methods.
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Figure 13: Comparison of validation loss and purity of the clustering result for gene expression
data in Appendix E.2
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Figure 14: Comparison of effect of sparsity for gene expression data in Appendix E.2

Ground Truth Kmeans AA/Chen SAA

Figure 15: Visual comparison for hyperspectral unmixing data in Appendix E.3

E.3 Hyperspectral Unmixing Example

In this section, we present additional results for the experiments conducted in Section 5.4.
First, we show how the results from SAA appear to be more interpretable. To this end,
consider Figure 15.
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Figure 16: Comparison of effect of sparsity for hyperspectral unmixing data in Appendix E.3

The black box in figures above shows a part of the image where AA/SAA/Chen are able
to properly identify a road. Moreover, the yellow and cyan boxes highlight two areas of the
image, where SAA appears to have better recovery. As can be seen in Figure 15, AA/Chen
miss most of the area in the cyan box, where SAA has a better recovery. Similarly, the
area in the yellow box is mostly put into a single cluster by SAA, as expected from the
ground truth, but this is not the case for AA/Chen (we note the color coding between the
estimated clusters and the ground truth might not be unique, as it is not possible to map
clusters from different examples to each other perfectly).
The effect of varying sparsity: Similar to the previous section, we explore the effect of
sparsity on the quality of the solution for different methods. The results for this case are
shown in Figure 16. As it can be seen, as long as the solution is not too sparse, SAA is able
to deliver a good performance. This shows that sparse NMF, and particularly SAA, can
obtain solutions that perform well, while compressing the solution by enforcing sparsity.
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