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Abstract

Distributed estimation of a Gaussian mean under communication constraints is studied
in a decision theoretical framework. Minimax rates of convergence, which characterize the
tradeoff between communication costs and statistical accuracy, are established under the
independent protocols. Communication-efficient and statistically optimal procedures are
developed. In the univariate case, the optimal rate depends only on the total communica-
tion budget, so long as each local machine has at least one bit. However, in the multivariate
case, the minimax rate depends on the specific allocations of the communication budgets
among the local machines.

Although optimal estimation of a Gaussian mean is relatively simple in the conventional
setting, it is quite involved under communication constraints, both in terms of the optimal
procedure design and the lower bound argument. An essential step is the decomposition
of the minimax estimation problem into two stages, localization and refinement. This
critical decomposition provides a framework for both the lower bound analysis and optimal
procedure design. The optimality results and techniques developed in the present paper can
be useful for solving other problems such as distributed nonparametric function estimation
and sparse signal recovery.

Keywords: Communication constraints, distributed learning, Gaussian mean, minimax
lower bound, optimal rate of convergence

1. Introduction

In the conventional statistical decision theoretical framework, the focus is on the cen-
tralized setting where all the data are collected together and directly available. The main
goal is to develop optimal (estimation, testing, detection, ...) procedures, where opti-
mality is understood with respect to the sample size and parameter space. Communica-
tion/computational costs are not part of the consideration.
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In the age of big data, communication/computational concerns associated with a sta-
tistical procedure are becoming increasingly important in contemporary applications. One
of the difficulties for analyzing large datasets is that data are distributed, instead of in a
single centralized location. This setting arises naturally in many statistical applications.

• Large datasets. When the datasets are too large to be stored on a single computer
or data center, it is necessary to divide the whole dataset into multiple computers or
data centers, each assigned a smaller subset of the full dataset. Such is the case for a
wide range of applications.

• Privacy and security. Privacy and security concerns can also cause the decentral-
ization of the datasets. For example, medical and financial institutions often collect
datasets that contain sensitive and valuable information. For privacy and security
reasons, the data cannot be released to a third party for a centralized analysis and
need to be stored in different and secure places while performing data analysis.

Distributed learning, which aims to learn from distributed datasets, has attracted much
recent attention. For example, Google AI proposed a machine learning setting called “Fed-
erated Learning” (McMahan and Ramage, 2017), which develops a high-quality centralized
model while the training data remain distributed over a large number of clients. Figure 1a
provides a simple illustration of a distributed learning network. In addition to advances on
architecture design for distributed learning in practice, there is also an increasing amount
of literature on distributed learning theories, including Jordan et al. (2019), Battey et al.
(2018), Dobriban and Sheng (2018), and Fan et al. (2019) in statistics, computer science,
and information theory communities. Several distributed learning procedures with some
theoretical properties have been developed in recent works. However, they do not impose
any communication constraints on the proposed procedures thus fail to characterize the re-
lationship between the communication costs and statistical accuracy. Indeed, in a decision
theoretical framework, if no communication constraints are imposed, one can always output
the original data from the local machines to the central machine and treat the problem same
as in the conventional centralized setting.

For large-scale data analysis, communications between machines can be slow and expen-
sive and limitation on bandwidth and communication sometimes becomes the main bottle-
neck on statistical efficiency. It is therefore necessary to take communication constraints into
consideration when constructing statistical procedures. When the communication budget
is limited, the algorithm must carefully “compress” the information contained in the data
as efficiently as possible, leading to a trade-off between communication costs and statisti-
cal accuracy. The precisely quantification of this trade-off is an important and challenging
problem.

Estimation of a Gaussian mean occupies a central position in parametric statistical
inference. In the present paper we consider distributed Gaussian mean estimation under
the communication constraints in both the univariate and multivariate settings. Although
optimal estimation of a Gaussian mean is a relatively simple problem in the conventional
setting, this problem is quite involved under the communication constraints, both in terms
of the construction of the rate optimal distributed estimator and the lower bound argu-
ment. Optimal distributed estimation of a Gaussian mean also serves as a starting point
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for investigating other more complicated statistical problems in distributed learning in-
cluding distributed nonparametric function estimation, distributed high-dimensional linear
regression, and distributed large-scale multiple testing.

1.1 Problem formulation

We begin by giving a formal definition of transcript, distributed estimator, and
independent distributed protocol. Let P = {Pθ : θ ∈ Θ} be a parametric family of
distributions supported on space X , where θ ∈ Θ ⊆ Rd is the parameter of interest. Suppose
there are m local machines and a central machine, where each local machine contains
n i.i.d observations and the central machine produces the final estimator of θ under the
communication constraints between the local and central machines. More precisely, suppose
we observe i.i.d. random samples drawn from a distribution Pθ ∈ P:

Xi,j
iid∼ Pθ, i = 1, . . . ,m; j = 1, . . . , n

where the i-th local machine has access to Xi,1, Xi,2, ..., Xi,n only. We denote X̃i = (Xi,1,
Xi,2, ..., Xi,n) as the set of data on the i-th local machine.

For i = 1, ...,m, let bi ≥ 1 be a positive integer and the i-th local machine can only
transmit bi bits to the central machine. That is, the observation X̃i on the i-th local machine
needs to be processed to a binary string of length bi by a (possibly random) function
Πi : X n → {0, 1}bi . The resulting string Zi ≜ Πi(X̃i), which is called the transcript
from the i-th machine, is then transmitted to the central machine. Finally, a distributed
estimator θ̂ is constructed on the central machine based on the transcripts Z1, Z2, ..., Zm,

θ̂ = θ̂(Z1, Z2, ..., Zm).

The above scheme to obtain a distributed estimator θ̂ is called an independent dis-
tributed protocol, or independent protocol.

In addition to the independent protocol, there are other more general and interactive
distributed protocols including the sequential protocol and blackboard protocol, which are
two popular communication protocols considered in the literature (Zhang et al., 2013a;
Barnes et al., 2019). We shall only focus on the independent protocol in the present work.

The class of independent distributed protocols with communication budgets b1, b2, ..., bm
is defined as

Aind(b1, b2, ..., bm) = {(θ̂,Π1,Π2, ...,Πm) : Πi : X n → {0, 1}bi , i = 1, 2, ...,m,

θ̂ = θ̂(Π1(X̃1), ...,Πm(X̃m))}.

We use b1:m as a shorthand for (b1, b2, ..., bm) and denote θ̂ ∈ Aind(b1:m) for (θ̂,Π1, ...,Πm)
∈ Aind(b1:m). We shall always assume bi ≥ 1 for all i = 1, 2, ...,m, i.e. each local machine
can transmit at least one bit to the central machine. Otherwise, if no communication is
allowed from any of the local machines, one can just exclude those local machines and
treat the problem as if there are fewer local machines available. Figure 1b gives a simple
illustration for the distributed protocols.

As usual, the estimation accuracy of a distributed estimator θ̂ is measured by the mean
squared error (MSE), EPθ

󰀂θ̂ − θ󰀂22, where the expectation is taken over the randomness in
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Figure 1: (a) Left panel: An illustration of a distributed learning network. Communication between
the data servers and the central learner is necessary in order to learn from distributed
datasets. (b) Right panel: An illustration of independent distributed protocol. The i-th
machine can only transmit a bi bits transcript to the central machine. The transcript Zi

only depends on observations X̃i.

both the data and construction of the transcripts and estimator. As in the conventional
decision theoretical framework, a quantity of particular interest in distributed learning is
the minimax risk for the distributed protocols

inf
θ̂∈Aind(b1:m)

sup
Pθ∈P

EPθ
󰀂θ̂ − θ󰀂22,

which characterizes the difficulty of the distributed learning problem under the communica-
tion constraints b1:m. As mentioned earlier, in a rigorous decision theoretical formulation of
distributed learning, the communication constraints are essential. Without the constraints,
one can always output the original data from the local machines to the central machine and
the problem is then reduced to the usual centralized setting.

1.2 Distributed estimation of a univariate Gaussian mean

We first consider distributed estimation of a univariate Gaussian mean under the com-
munication constraints b1:m, where Pθ = N(θ,σ2) with θ ∈ [0, 1] and the variance σ2 known.
Set σn = σ/

√
n. Note that by a sufficiency argument, one can estimate θ based on the sam-

ple means Xi ≜ 1
n

󰁓n
j=1Xi,j on the local machines, and the problem is the same as if one

only observes Xi ∼ N(θ,σ2
n) on the i-th machine, for i = 1, . . . ,m. Throughout the paper

we will focus on the case σn < 1, since the case σn ≥ 1 can be considered easy and the
minimax rate of convergence has been already derived in the literature, see Zhang et al.
(2013b); Garg et al. (2014); Braverman et al. (2016); Barnes et al. (2019).

Assume σn < 1 and bi ≥ 1 for i = 1, 2, ...,m, our analysis in Section 2 establishes the
following minimax rate of convergence for distributed univariate Gaussian mean estimation
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Figure 2: The minimax rate of univariate Gaussian mean estimation under communication con-
straints has 3 phases: localization, refinement and optimal-rate.

under the communication constraints b1:m,

inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]

E(θ̂ − θ)2 ≍

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2−2B if B < log2
1
σn

+ 2
σ2
n

(B−log2
1
σn

)
if log2

1
σn

+ 2 ≤ B < log2
1
σn

+m

σ2
n
m if B ≥ log2

1
σn

+m

, (1)

where B =
󰁓m

i=1 bi is the total communication budget, and a ≍ b denotes cb ≤ a ≤ Cb for
some constants c, C > 0.

The above minimax rate characterizes the trade-off between the communication costs
and statistical accuracy for univariate Gaussian mean estimation. An illustration of the
minimax rate is shown in Figure 2.

The minimax rate (1) is interesting in several aspects. First, the optimal rate of conver-
gence only depends on the total communication budget B =

󰁓m
i=1 bi, but not the specific

allocation of the communication budgets among the m local machines, as long as each
machine has at least one bit. Second, the rate of convergence has three different phases:

1. Localization phase. When B < log2
1
σn

+ 2, as a function of B, the minimax risk de-
creases fast at an exponential rate. In this phase, having more communication budget
is very beneficial in terms of improving the estimation accuracy. Also, in this phase,
the statistical accuracy is the same as noiseless case (i.e. σn ≈ 0) where statistical
risk mainly comes from approximation error under communication constraints.

2. Refinement phase. When log2
1
σn

+ 2 ≤ B < log2
1
σn

+ m, as a function of B, the
minimax risk decreases relatively slowly and is inverse-proportional to the total com-
munication budget B. This can be also viewed as an intermediate phase between
localization and optimal-rate phase.
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3. Optimal-rate phase. When B ≥ log2
1
σn

+m, the minimax rate does not depend on
B, and is the same as in the centralized setting where all the data are combined and
no communication constraints are present.

An essential technique for solving this problem is the decomposition of the minimax
estimation problem into two steps, localization and refinement. This critical decomposition
provides a framework for both the lower bound analysis and optimal procedure design.
In the lower bound analysis, the statistical error is decomposed into “localization error”
and “refinement error”. It is shown that one of these two terms is inevitably large under
the communication constraints. In our optimal procedure called MODGAME, bits of the
transcripts are divided into three types: crude localization bits, finer localization bits, and
refinement bits. They compress the local data in a way that both the localization and
refinement errors can be optimally reduced. More technical details and discussion are
presented in Section 2. Furthermore, it will be shown that MODGAME is also robust
against departures from Gaussianity. See Section 4 for a detailed discussion.

1.3 Distributed estimation of a multivariate Gaussian mean

We then consider the multivariate case under the communication constraints b1:m, where
Pθ = Nd(θ,σ

2Id) with θ ∈ [0, 1]d and the noise level σ is known. As in the univariate case,
by a sufficiency argument, it is equivalent to consider distributed estimation where each
local machine only observes a local sample mean vector Xi ∼ Nd(θ,σ

2
nId), with σn = σ/

√
n.

The goal is to optimally estimate the mean vector θ under the squared error loss.

Assume σn < 1 and bi ≥ 1 for i = 1, 2, ...,m, the construction and the analysis given in
Section 3 show that the minimax rate of convergence in this case is given by

inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]d

E󰀂θ̂−θ󰀂22 ≍

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2−2B/dd if B/d < log2
1
σn

+ 2
dσ2

n

(B/d−log2
1
σn

)
if log2

1
σn

+ 2 ≤ B/d < log2
1
σn

+max{m′, 2}

dmin σ2
n

m′ if B/d ≥ log2
1
σn

+max{m′, 2}
(2)

where B =
󰁓m

i=1 bi is the total communication budgets and m′ =
󰁓m

i=1min
󰁱

bi
d , 1

󰁲
is the

“effective sample size”.

The minimax rate in the multivariate case (2) is an extension of its univariate counter-
part (1), but it also has its distinct features, both in terms of the estimation procedure and
lower bound argument. Intuitively, the total communication budgets B are evenly divided
into d parts so that roughly B/d bits can be used to estimate each coordinate. Because
there are d coordinates, the risk is multiplied by d. The effective sample size m′ is a special
and interesting quantity in multivariate Gaussian mean estimation. This quantity suggests
that even when the total communication budget is sufficient, the rate of convergence must

be larger than the benchmark dmin
󰁱

σ2
n

m′ , 1
󰁲
. There is a gap between the distributed opti-

mal rate and centralized optimal rate if m′ ≪ m. See Section 3 for further technical details
and discussion.
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1.4 Related literature

The study on how the communication constraints compromise the estimation accuracy in
the distributed settings has a long history. Dating back to 1980’s, Zhang and Berger (1988)
proposed an asymptotically unbiased distributed estimator and calculated its variance. In
recent years, there has been emerging literature focusing on the theoretical properties of
distributed estimation under communication constraints. Among them, distributed Gaus-
sian mean estimation has been intensively studied. We divide the discussion into two parts
– lower bound and upper bound.

Lower bound: Zhang et al. (2013a) introduced general technical tools to derive lower
bounds for several distributed estimation problems. Specifically, for d-dimensional Gaussian

mean estimation with independent protocols, the lower bound is of order σ2
nd

2

(
󰁓m

i=1 bi∧d) logm
.

Garg et al. (2014) studied distributed estimation of the mean of a high-dimensional Gaus-

sian distribution. A lower bound of order min{σ2
nd

2

B , d} is established for the mean squared
error of any independent protocol. Braverman et al. (2016) applied a strong data processing
inequality to obtain lower bounds for distributed estimation with blackboard protocols. A
lower bound for sparse Gaussian mean estimation is derived. Han et al. (2018); Barnes
et al. (2019) proposed non-information theoretic approaches to obtain lower bounds for dis-
tributed estimation. In the case of Gaussian mean estimation, it was shown in Barnes et al.
(2019) that a lower bound of order σ2

nmax{d2

B , d
m} holds for any independent, sequential or

blackboard protocols.

Upper bound: Garg et al. (2014) proposed a blackboard distributed protocol with the

communication cost O(md) which estimates the mean vector up to a squared loss of O(dσ
2
n

m ).
Braverman et al. (2016) introduced an independent distributed protocol for Gaussian mean

estimation. If log(md/σn) = o(m), the protocol achieves the mean squared error O(σ
2
nd

αm )
with the communication cost C = αdm.

In summary, the known minimax rate for distributed Gaussian mean estimation is σ2
nd

2

B
when log(md/σn) = o(m). So the tight bound has been already obtained when σn ≥ 1.
However, when n is large such that log(1/σn)/m is bounded away from zero, the optimal
rate is still unknown.

In addition to the above closely related literature, Szabó and van Zanten (2018); Zhu
and Lafferty (2018) considered distributed nonparametric regression with Gaussian noise
and derived an optimal rate of convergence up to a logarithmic factor. The optimal rate
is divided into three phases, namely insufficient regime, intermediate regime, and sufficient
regime. Current best results for distributed nonparametric regression also suffer from a
logarithmic gap, which in our opinion is due to the incomplete understanding of distributed
Gaussian mean estimation with a small variance. Other related results can be found in
the literature, see, for example, Zhang et al. (2013b); Shamir (2014); Diakonikolas et al.
(2017); Han et al. (2018); Lee et al. (2017); Chang et al. (2017); Guo et al. (2017); Kipnis
and Duchi (2019); Hadar and Shayevitz (2019); Mücke et al. (2022); Dobriban and Sheng
(2018); Mücke and Blanchard (2018); Szabó and van Zanten (2019, 2020).
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1.5 Our contribution

Although the interplay between communication costs and statistical accuracy has drawn
increasing recent attention, to the best of our knowledge, the present paper is the first to
establish a sharp minimax rate for distributed Gaussian mean estimation that holds for all
values of the parameters d,m,σn and in all communication budget regimes under indepen-
dent protocol. Two rate-optimal estimation procedures – MODGAME for the univariate
case and multi-MODGAME for the multivariate case – are developed and are shown to be
robust against departures from Gaussianity.

In particular, the unified minimax rate applies to the case σn < 1. In comparison,
when σn < 1, the previous results are not sharp even in the high communication budget
regime (i.e. refinement phase and optimal-rate phase). See Remarks 9 and 11 for detailed
comparison with previous results. This is an important case that arises in many statistical
applications including distributed nonparametric regression and sparse signal recovery. Es-
tablishing a sharp and complete minimax rate is not only important for distributed Gaussian
mean estimation itself, but also fundamental for solving these related problems.

This paper also develops a key technique – the decomposition of the minimax estimation
problem into two steps, localization and refinement. We provide a general framework and
techniques to study the optimal trade-off between the localization and refinement errors.
This is reflected in both the construction of the MODGAME procedure and in the lower
bound argument. In contrast, the previous literature focused exclusively on the refinement
error, and failed to consider the localization error. As a result, the existing results are
sharp only when the communication costs for localization are negligible. We believe the
technique for understanding the interplay between the localization and refinement errors is
of independent interest as it can be used to solve other distributed estimation problems.

1.6 Organization of the paper

We finish this section with notation and definitions that will be used in the rest of the
paper. Section 2 studies distributed estimation of a univariate Gaussian mean under com-
munication constraints with independent protocols and Section 3 considers the multivariate
case. Section 4 considers the robustness of the proposed procedures against departures from
Gaussianity. The numerical performance of the proposed distributed estimators is investi-
gated in Section 5 and further research directions are discussed in Section 6. For reasons of
space, we prove the lower bound for the univariate case in Section 7 and defer the proofs of
the other main results and the technical lemmas to the Appendix.

1.7 Notation and definitions

For any a ∈ R, let ⌊a⌋ denote the floor function (the largest integer not larger than a).
Unless otherwise stated, we shorthand log a as the base 2 logarithmic of a. For any a, b ∈ R,
let a ∧ b ≜ min{a, b} and a ∨ b ≜ max{a, b}. For any vector a, we will use a(k) to denote

the k-th coordinate of a, and denote by 󰀂a󰀂 ≜
󰁴󰁓

k

󰀃
a(k)

󰀄2
its l2 norm. For any set S, let

Sk ≜ S×S× ...×S be the Cartesian product of k copies of S. Let I{·} denote the indicator
function taking values in {0, 1}.
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For any discrete random variables X,Y supported on X ,Y, the entropy H(X), condi-
tional entropy H(X|Y ), and mutual information I(X;Y ) are defined as

H(X) ≜ −
󰁛

x∈X
P(X = x) logP(X = x),

H(X|Y ) ≜ −
󰁛

x∈X ,y∈Y
P(X = x, Y = y) logP(X = x|Y = y),

I(X;Y ) ≜
󰁛

x∈X ,y∈Y
P(X = x, Y = y) log

P(X = x|Y = y)

P(X = x)
.

2. Distributed Univariate Gaussian Mean Estimation

In this section we consider distributed estimation of a univariate Gaussian mean, where
one observes on m local machines i.i.d. random samples:

Xi
iid∼ N(θ,σ2

n), i = 1, . . . ,m,

under the constraints that the i-th machine has access to Xi only and can transmit bi bits
only to the central machine. We denote by P1

σn
the Gaussian location family

P1
σn

=
󰀋
N(θ,σ2

n) : θ ∈ [0, 1]
󰀌
,

where θ ∈ [0, 1] is the mean parameter of interest and the variance σ2
n is known. For

given communication budgets b1:m with bi ≥ 1 for i = 1, . . . ,m, the goal is to optimally
estimate the mean θ under the squared error loss. A particularly interesting quantity
is the minimax risk under the communication constraints, i.e., the minimax risk for the
independent distributed protocol Aind(b1:m):

R1(b1:m) = inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]

E(θ̂ − θ)2,

which characterizes the difficulty of the estimation problem with independent protocols
under the communication constraints.

We first introduce an estimation procedure and provide an upper bound for its perfor-
mance and then establish a matching lower bound on the minimax risk for the case σn < 1.
The upper and lower bounds together establish the minimax rate of convergence and the
optimality of the proposed estimator. Then we will briefly discuss the case σn ≥ 1 for
completeness.

2.1 Estimation procedure - MODGAME

We begin with the construction of an estimation procedure under the communication
constraints and provide a theoretical analysis of the proposed procedure. The procedure,
called MODGAME (Minimax Optimal Distributed GAussian Mean Estimation), is a deter-
ministic procedure that generates a distributed estimator θ̂D under the distributed protocol
Aind(b1:m). We assume σn < 1 is known in MODGAME procedure.

High-level intuition of MODGAME procedure: MODGAME consists of two
steps: localization and refinement.

9
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1. Roughly speaking, the first step utilizes log 1
σn

+ o(B − log 1
σn

) bits, out of the total
budget B =

󰁓m
i=1 bi bits, for localization to roughly locate where θ is, up to O(σn)

error. This step is similar to binary search - we make use of log 1
σn

bits to locate θ
to an interval whose length is O(σn). This binary search could be trivial if σn = 0,
i.e. at each machine we observe exact value of θ, where we could just query the first
log 1

σn
digits of θ and do the job. However, if observations Xi are noisy Gaussian

random variables, the task is not as easy. We use Gray codes with some additional
denoising techniques (as shown in finer localization step) so that we achieve the same
communication cost-efficiency as if there is no noise in observations.

2. Building on the location information, after first step, we are supposed to have located
θ in an interval of length O(σn). However, there is still a gap to the centralized rate
O(σn/

√
m). The remaining B− log 1

σn
bits are used for refinement to further increase

the accuracy of the estimator, trying to bridge the gap. In this refinement step, we
query one bit from each machine (up to the communication budget), trying to tell
the central machine whether the observation Xi is on the “left side“ of the interval
or the “right side“ of the interval. Then based on these one-bit information from
local machines, we generate a maximum likelihood estimate as the final MODGAME
estimate θ̂.

Before describing the MODGAME procedure in detail, we define several useful functions
that will be used to generate the transcripts. For any interval [L,R], let τ[L,R] : R → [L,R]
be the truncation function defined by

τ[L,R](x) =

󰀻
󰁁󰀿

󰁁󰀽

L if x ≤ L

x if L < x < R

R if x ≥ R

. (3)

For any integer k ≥ 0, denote gk : R → {0, 1} be the k-th Gray function defined by

gk(x) ≜
󰀫
0 if ⌊2kτ[0,1](x)⌋ mod 4 = 0 or 3

1 if ⌊2kτ[0,1](x)⌋ mod 4 = 1 or 2.

Similarly we denote by ḡk : R → {0, 1} the k-th conjugate Gray function defined by

ḡk(x) ≜
󰀫
0 if ⌊2kτ[0,1](x)⌋ mod 4 = 0 or 1

1 if ⌊2kτ[0,1](x)⌋ mod 4 = 2 or 3.

To unify the notation we set gk(x) ≡ ḡk(x) ≡ 0 if k < 0.
It is worth mentioning that these Gray functions mimic the behavior of the Gray codes

(for reference see Savage (1997)). Fix K ≥ 1, if we treat (g1(x), g2(x), ..., gK(x)) as a string
of code for any source x ∈ [0, 1], then those x within the interval [2−K(s−1), 2−Ks) where s
is a integer will match the same code. Moreover, the code for adjacent intervals only differs
by one bit, which is also a key feature for the Gray codes. This key feature guarantees the
robustness of the Gray codes, where the Gray codes satisfy the so-called stability property
for coding/decoding: There exist small numbers 󰂃, δ > 0 such that, for any X and its
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Figure 3: An illustration of the Gray functions and Gray codes.

perturbed observations X1, X2, ..., Xk satisfying |Xk − X| < 󰂃 for all k = 1, ...,K. If X̃
makes gk(X̃) = gk(Xk), k = 1, ...,m, then we must have |X̃ −X| < δ.

Such stability property makes the Gray functions very useful for distributed estimation
An example for K = 3 is shown in Figure 3 to better illustrate the behavior of the Gray
functions.

Along with the figure, we also provide a simple example to show why the Gray codes
are robust to stochastic errors. Suppose X1, X2, and X3 are three i.i.d random variables
with mean 1/4 + 󰂃 and a small variance that is slightly larger than 󰂃2. The goal is to
estimate their mean by one-bit measurement of each observation. By using the Gray codes,
(g1(X1), g2(X2), g3(X3)) is equal to (001) or (011) with large probability, whose decoded
interval (1/8, 1/4) or (1/4, 3/8) is close to 1/4. As a contrast, if one uses the binary codes,
the result will be unstable due to the stochastic error of X2. In the MODGAME procedure,
the Gray codes are used to help crudely “locate” the final estimator θ̂D to an interval of
length O(σn).

Define the refinement function h(x) : R → {0, 1} and the conjugate refinement function
h̄(x) : R → {0, 1} by

h(x) ≜ ⌊2(⌊log
1
σn

⌋−7)x⌋ mod 2 and h̄(x) ≜ ⌊2(⌊log
1
σn

⌋−7)x− 1

2
⌋ mod 2. (4)

For any function f , define the convolution function

Φf (x) ≜ EX∼N(x,σ2
n)
f(X) =

󰁝 ∞

−∞

1√
2πσn

e
− (y−x)2

2σ2
n f(y)dy.

The above refinement functions and convolution function are used to accurately esti-
mate the mean of the Gaussian observations. In the MODGAME procedure, the central
machine collects one-bit measurements of some observations, say h(X1), h(X2), ...h(Xu).
By definition, the mean of those one-bit measurements is exactly Φh(θ). Note that Φh(x)
is a periodic wave-shape function, therefore after locating θ to a short interval of length
O(σn) during the preliminary steps, the central machine obtains a good estimate for θ by
solving estimating equation Φh(θ) = u−1

󰁓u
i=1 h(Xi). A similar communication strategy is

also adopted in Braverman et al. (2016).
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For any K ≥ 1, let DecK(y1, y2, ..., yK) : {0, 1}K → 2[0,1] be the decoding function
defined by

DecK(y1, y2, ..., yK) ≜ {x ∈ [0, 1] : gk(x) = yk for k = 1, 2, ...,K}.

Last, we define the distance between a point x ∈ R and a set S ⊆ R as

d(x, S) ≜ min
y∈S

|x− y|.

We are now ready to introduce the MODGAME procedure in detail. Again, we divide
into three cases.

Case 1: B < log 1
σn

+ 2. In this case, the output is the values of the first B localization
bits from the local machines, where the k-th localization bit is defined as the value of the
function gk(·) evaluated on the local sample. The procedure can be described as follows.

Step 1: Generate transcripts on local machines. Define s0 = 0 and si =
󰁓i

j=1 bj for i =
1, . . . ,m. On the i-th machine, the transcript Zi is concatenated by the (si−1+1)-th,
(si−1 + 2)-th, ..., (si−1 + bi)-th Gray functions evaluated at Xi. That is,

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi),

where Usi−1+k ≜ gsi−1+k(Xi) for k = 1, 2, ..., bi.

Step 2: Construct distributed estimator θ̂D. Now we collect the bits U1, U2, ..., UB from the
transcripts Z1, Z2, ..., Zm. Note that Uk is the k-th Gray function evaluate at a random
sample drawn from N(θ,σ2

n), one may reasonably ”guess” that Uk ≈ gk(θ). By this
intuition, we set θ̂D to be the minimum number in the interval DecB(U1, U2, ..., UB),
i.e.

θ̂D = min{x : x ∈ DecB(U1, U2, ..., UB)}.

Case 2: log 1
σn

+ 2 ≤ B ≤ log 1
σn

+m. Let

u ≜ max

󰀝
s ∈ N : ⌊log s⌋2 + 2s ≤ B − ⌊log 1

σn
⌋
󰀞
, (5)

and define finer localization functions:

f1(x) ≜ g⌊log 1
σn

⌋−⌊log u⌋−2(x),

f2(x) ≜ ḡ⌊log 1
σn

⌋−⌊log u⌋−2(x),

fk(x) ≜ g⌊log 1
σn

⌋−⌊log u⌋−4+k(x) for k ≥ 3.

(6)

In this case the total communication budget is divided into 3 parts: crude localization
bits (roughly ⌊log 1

σn
⌋ bits), finer localization bits (⌊log u⌋2 bits), and refinement bits (2u

bits). The crude localization bits are the values of the functions g1(·), g2(·), ..., g⌊log 1
σn

⌋(·),
each evaluated on a local sample. We denote those resulting binary bits by U1, U2, ..., U⌊log 1

σn
⌋.

12
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The finer localization bits are the values of the functions f1(·), f2(·), ..., f⌊log u⌋(·), each func-
tion is evaluated on ⌊log u⌋ different local samples. The function values of fk(·) are denoted
by Wk,1,Wk,2, ...,Wk,⌊log u⌋. The refinement bits are the values of the function h(·), evalu-
ated on u local samples; and the values of the function h̄(·), evaluated on u different local
samples. The resulting binary bits are denoted by V1, V2, ..., Vn and V̄1, V̄2, ..., V̄n respec-
tively.

These three types of bits are assigned to local machines by the following way: (1) Among
all m machines, there are ⌊log u⌋2 local machines who will output transcript consisting of
1 finer localization bit and bi − 1 crude localization bits. (2) Among all m machines, there
are 2u local machines who will output transcript consist of 1 refinement bit and bi−1 crude
localization bits. (3) The remain m−(⌊log u⌋2+2u) machines will output transcript consist
of bi crude localization bits. The above assignment is feasible because

⌊log u⌋2 + 2u ≤ B − ⌊log 1

σn
⌋ ≤ m.

It is worth mentioning that every finer localization bits and every refinement bits are
assigned to different machines. Intuitively, this is because we need these bits to be indepen-
dent so that we can gain enough information for estimation. See Figure 4 for an overview
of the MODGAME procedure. The procedure can be summarized as follows:

Step 1: Generate transcripts on local machines. Define si =
󰁓i

j=1(bj − I{j≤⌊log u⌋2+2u}) and
s0 = 0. On the i-th machine:

• If (j − 1)⌊log u⌋+ 1 ≤ i ≤ j⌊log u⌋ for some integer 1 ≤ j ≤ ⌊log u⌋, output

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi−1,Wj,i−(j−1)⌊log u⌋);

(If bi = 1, just output Zi = Wj,i−(j−1)⌊log u⌋.)

• If ⌊log u⌋2 + 1 ≤ i ≤ ⌊log u⌋2 + u, output

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi−1, Vi−⌊log u⌋2);

(If bi = 1, just output Zi = Vi−⌊log u⌋2 .)

• If ⌊log u⌋2 + u+ 1 ≤ i ≤ ⌊log u⌋2 + 2u, output

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi−1, V̄i−(⌊log u⌋2+u));

(If bi = 1, just output Zi = V̄i−(⌊log u⌋2+u).)

• If i ≥ ⌊log u⌋2 + 2u+ 1, output

Zi = (Usi−1+1, Usi−1+2, ..., Usi−1+bi).

The above binary bits are calculated by

Usi−1+k ≜ gsi−1+k(Xi) for i = 1, 2, ...,m; k = 1, 2, ..., bi;

Wj,i−(j−1)⌊log u⌋ ≜ fj(Xi) for j = 1, 2, ..., ⌊log u⌋ − 1;

i = (j − 1)⌊log u⌋+ 1, (j − 1)⌊log u⌋+ 2, ..., j⌊log u⌋;
Vi−⌊log u⌋2 ≜ h(Xi) for i = ⌊log u⌋2 + 1, ⌊log u⌋2 + 2, ..., ⌊log u⌋2 + u;

V̄i−(⌊log u⌋2+u) ≜ h̄(Xi) for i = ⌊log u⌋2 + u+ 1, ..., ⌊log u⌋2 + 2u.
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Figure 4: An illustration of MODGAME. The bits in the transcripts are transmitted to the central
machine and divided into three types: crude localization bits, finer localization bits, and
refinement bits. One then constructs on the central machine a crude interval I1, a finer
interval I2, and the final estimate θ̂D step by step.

Step 2: Construct distributed estimator θ̂D. From transcripts Z1, Z2, ..., Zm, we can collect
(a) crude localization bits U1, U2, ..., U⌊log 1

σn
⌋; (b) finer localization bits W1,1,W1,2, ...,

W⌊log u⌋,⌊log u⌋; (c) refinement bits V1, V2, ..., Vu and V̄1, V̄2, ..., V̄u.

Step 2.1: First, we use crude localization bits U1, U2, ...U⌊log 1
σn

⌋−⌊log u⌋−3 to roughly locate

θ. The “crude interval” I1 will be obtained in this step.

(a) If ⌊log 1
σn

⌋ − ⌊log u⌋ ≤ 3, just set I1 = I ′1 = [0, 1].

(b) If ⌊log 1
σn

⌋ − ⌊log u⌋ ≥ 4, let

I ′1 ≜ Dec⌊log 1
σn

⌋−⌊log u⌋−3(U1, U2, ..., U⌊log 1
σn

⌋−⌊log u⌋−3). (7)

Then we further stretch I ′1 to a larger interval I1 so that I1 will double the length
of I ′1:

I1 ≜
󰁱
x : d(x, I ′1) ≤ 2−(⌊log 1

σn
⌋−⌊log u⌋−2)

󰁲
. (8)

Step 2.2: Then, we use finer localization bits to locate θ to a smaller interval of length
roughly O(σn). A “finer interval” I2 will be generated in this step. For any
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1 ≤ k ≤ ⌊log u⌋, let
Wk = I{󰁓⌊log u⌋

j=1 Wk,j≥ 1
2
⌊log u⌋}

be the majority voting summary statistic for Wk,1,Wk,2, ...,Wk,⌊log u⌋.

(a) If ⌊log 1
σn

⌋ − ⌊log u⌋ ≤ 3, and ⌊log 1
σn

⌋ ≤ 4, let

I2 = I ′2 = [0, 1].

(b) If ⌊log 1
σn

⌋ − ⌊log u⌋ ≤ 3, and ⌊log 1
σn

⌋ ≥ 5, let

I ′2 ≜ Dec⌊log 1
σn

⌋−4(W⌊log u⌋−⌊log 1
σn

⌋+5,W⌊log u⌋−⌊log 1
σn

⌋+6, ...,W⌊log u⌋). (9)

Then we further stretch I ′2 to a larger interval I2 so that I2 will double the length
of I ′2:

I2 ≜
󰁱
x : d(x, I ′2) ≤ 2−(⌊log 1

σn
⌋−3)

󰁲
.

(c) If ⌊log 1
σn

⌋ − ⌊log u⌋ ≥ 4, let

I ′2 ≜ {x ∈ I1 : fk(x) = Wk for all k = 1, 2, ..., ⌊log u⌋} . (10)

Lemma 21 in the Appendix shows I ′2 is an interval. Then we further stretch I ′2
to a larger interval I2 so that I2 will double the length of I ′2:

I2 ≜
󰁱
x : d(x, I ′2) ≤ 2−(⌊log 1

σn
⌋−3)

󰁲
.

Step 2.3: Finally, we use refinement bits V1, V2, ..., Vu and V̄1, V̄2, ..., V̄u to get an accurate
estimate θ̂D. Lemma 22 in the Appendix shows that one of the following two
conditions must hold:

I2 ⊆
󰀗
(2j − 3

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

3

4
) · 2−(⌊log 1

σn
⌋−6)

󰀘
for some j ∈ Z

or

I2 ⊆
󰀗
(2j +

1

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

7

4
) · 2−(⌊log 1

σn
⌋−6)

󰀘
for some j ∈ Z.

So we can divide the procedure into the following two cases.

(a) If I2 ⊆ [(2j − 3
4) · 2

−(⌊log 1
σn

⌋−6), (2j + 3
4) · 2

−(⌊log 1
σn

⌋−6)] for some j ∈ Z.
Then Φh(x) is a strictly monotone function on I2 (proved in Lemma 22 in the
Appendix. Denote

LI ≜ inf
x∈I2

Φh(x) and RI ≜ sup
x∈I2

Φh(x).

By monotonicity, Φh is invertible on I2. Let Φ−1
h : [LI , RI ] → I2 be the inverse

of Φh, the distributed estimator θ̂D is given by

θ̂D = Φ−1
h

󰀳

󰁃τ[LI ,RI ]

󰀳

󰁃1

u

u󰁛

j=1

Vj

󰀴

󰁄

󰀴

󰁄 (11)
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where τ[LI ,RI ] is the truncation function defined in (3).

(b) Otherwise, we have I2 ⊆ [(2j+1
4)·2

−(⌊log 1
σn

⌋−6), (2j+7
4)·2

−(⌊log 1
σn

⌋−6)] for some j ∈
Z. In this case Φh̄(x) is a strictly monotone function on I2 (proved in Lemma 22
in the Appendix. Denote

L̄I ≜ inf
x∈I2

Φh̄(x) and R̄I ≜ sup
x∈I2

Φh̄(x).

By monotonicity, Φh̄ is invertible on I2. Let Φ−1
h̄

: [L̄I , R̄I ] → I2 be the inverse

of Φh̄, the distributed estimator θ̂D is given by

θ̂D = Φ−1
h

󰀳

󰁃τ[L̄I ,R̄I ]

󰀳

󰁃1

u

u󰁛

j=1

V̄j

󰀴

󰁄

󰀴

󰁄 (12)

where τ[L̄I ,R̄I ]
is the truncation function defined in (3).

Case 3: B > log 1
σn

+ m. We only need to use part of the total communication budget

B as if we deal with the case B = ⌊log 1
σn

⌋ +m. To be precise, we can always easily find
b′1, b

′
2, ..., b

′
m so that 1 ≤ b′i ≤ bi for i = 1, 2, ...,m and

m󰁛

i=1

b′i = ⌊log 1

σn
⌋+m.

Then we can implement the procedure introduced in Case 2 where we let the i-th machine
only output a transcript of length b′i.

2.2 Theoretical properties of the MODGAME procedure

Section 2.1 gives a detailed construction of the MODGAME procedure, which clearly
satisfies the communication constraints by construction. The following result provides a
theoretical guarantee for the statistical performance of MODGAME.

Theorem 1. Suppose σn < 1. For given communication budgets b1:m with bi ≥ 1 for
i = 1, . . . ,m, let B =

󰁓m
i=1 bi and let θ̂D be the MODGAME estimate. Then there exists a

constant C > 0 such that

sup
θ∈[0,1]

E(θ̂D − θ)2 ≤

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

C · 2−2B if B < log 1
σn

+ 2

C · σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m

C · σ2
n
m if B ≥ log 1

σn
+m

. (13)

An interesting and somewhat surprising feature of the upper bound is that it depends
on the communication constraints b1:m only through the total budget B =

󰁓m
i=1 bi, not the

specific value of b1:m, so long as each machine can transmit at least one bit. This surprising
phenomenon is possibly due to the symmetry among the local machines since samples on
different machines are independent and identically distributed. The proof of Theorem 1 is
provided in the Appendix.
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2.3 Lower bound analysis and discussions

Section 2.1 gives a detailed construction of the MODGAME procedure and Theorem 1
provides a theoretical guarantee for the estimator. We shall now prove that MODGAME
is indeed rate optimal among all estimators satisfying the communication constraints by
showing that the upper bound in Equation (13) cannot be improved. More specifically, the
following lower bound provides a fundamental limit on the estimation accuracy under the
communication constraints.

Theorem 2. Suppose bi ≥ 1 for all i = 1, 2, ...,m. Let B =
󰁓m

i=1 bi. Then there exists a
constant c > 0 such that

R1(b1:m) ≥

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

c · 2−2B if B < log 1
σn

+ 2

c · σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m

c · σ2
n
m if B ≥ log 1

σn
+m.

The key novelty in the lower bound analysis is the decomposition of the statistical risk
into localization error and refinement error based on a delicate construction of the following
candidate set Gδ:

Gδ ≜
󰀝
θu,v = σnu+ δv : u = 0, 1, 2, ...,

󰀕
⌊ 1

σn
⌋ − 1

󰀖
, v = 0, 1

󰀞
,

where δ is a precision parameter that will be specified later. By assigning θ a uniform prior
on the candidate set Gδ, estimation of θ can be decomposed into estimation of u and v.
One can view estimation of u as the localization step and estimation of v as the refinement
step. The following lemma is a key technical tool.

Lemma 3. Let 0 < σn < 1 and let u be uniformly distributed on {0, 1, ..., ⌊ 1
σn

⌋ − 1} and v
be uniformly distributed on {0, 1}. Let u and v be independent and let θ = θu,v = σnu+ δv

where 0 < δ < σn
8 . Then for all θ̂ ∈ Aind(b1:m),

I(θ̂;u) +
σ2
n

64δ2
I(θ̂; v) ≤ B. (14)

Remark 4. The proof of Lemma 3 mainly relies on the strong data processing inequality
(Lemma 14 in Appendix). The strong data processing inequality was originally developed
in information theory, for reference see Raginsky (2016). Zhang et al. (2013a) and Braver-
man et al. (2016) applied this technical tool to obtain lower bounds for distributed mean
estimation. However, their lower bounds are not sharp when σn is very small, due to the
fact that the focus was on bounding the refinement error using the strong data processing
inequality, but failed to bound the localization error.

Lemma 3 suggests that under the communication constraints b1:m, there is an unavoid-
able trade-off between the mutual information I(θ̂;u) and I(θ̂; v). So one of the above two
quantities must be “small”. When I(θ̂;u) (or I(θ̂; v)) is smaller than a certain threshold,
it can be shown that the estimator θ̂ cannot accurately estimate u (or v), which means the
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localization error (or the refinement error) is large. Given that one of localization error and
refinement error must be larger than a certain value, the desired lower bound follows. A
detailed proof of Theorem 2 is given in Section 7.

Minimax rate of convergence. Theorems 1 and 2 together yield a sharp minimax rate for
distributed univariate Gaussian mean estimation with independent protocols when σn < 1:

inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]

E(θ̂ − θ)2 ≍

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2−2B if B < log 1
σn

+ 2
σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m

σ2
n
m if B ≥ log 1

σn
+m

. (15)

The results also show that MODGAME is rate optimal.
The minimax rate only depends on the total communication budgets B =

󰁓m
i=1 bi. As

long as each transcript contains at least one bit, how these communication budgets are
allocated to local machines does not affect the minimax rate. This surprising phenomenon
is due to the symmetry among the local machines since samples on different machines are
independent and identically distributed.

Remark 5. Figure 2 gives an illustration for the minimax rate (15), which is divided
into three phases: localization, refinement, and optimal-rate. The minimax risk decreases
quickly in the localization phase, when the communication constraints are extremely se-
vere; then it decreases slower in the refinement phase, when there are more communication
budgets; finally the minimax rate coincides with the centralized optimal rate (Bickel, 1981)
and stays the same, when there are sufficient communication budgets. The value for each
additional bit decreases as more bits are allowed.

In the localization phase, the risk is reduced to as small as O(σ2
n), which can be achieved

by using the sample on only ONE machine and there is no need to “communicate” with mul-
tiple machines. In the refinement phase, the risk is further reduced to O(σ2

n/m). However,
one must aggregate information from all machines in order to achieve this rate.

Remark 6. If the central machine itself also has an observation, or equivalently if one of the
local machines serves as the central machine, then the communication constraints can be
viewed as one of bi is equal to infinity. This setting is considered in some related literature,
for instance, see Jordan et al. (2019). Then according to Theorem 1, MODGAME always

achieves the centralized rate σ2
n
m , as long as at least one bit is allowed to communicate with

each local machine.

Remark 7. Our analysis on the minimax rate can be generalized to the lr loss for any
r ≥ 1, with suitable modifications on both the lower bound analysis and optimal procedure.

2.4 Optimal procedure when σn ≥ 1

For completeness, we briefly discuss the case σn ≥ 1. When σn ≥ 1, each machine only
need to output a one-bit measurement to achieve the global optimal rate as if there are no
communication constraints. Therefore, the statistical upper bound automatically matches
the trivial lower bound. Some related results are available in Kipnis and Duchi (2019). The
following procedure is based on the setting when bi = 1 for all i = 1, ...,m. If bi > 1 for
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some i, then one can simply discard all remaining bits so that only one bit is sent by each
machine.

Here is the procedure when σn ≥ 1:

Step 1. The i-th machine outputs

Zi =

󰀫
0 if Xi < 0

1 if Xi ≥ 0
.

Step 2. The central machine collects Z1, Z2, ..., Zm and estimates θ by

θ̂D = τ[0,1]

󰀣
σnΦ

−1

󰀣
1

m

m󰁛

i=1

Zi

󰀤󰀤

where τ is the truncation function defined in (3) and Φ is the cumulative distribution
function of a standard normal, Φ(x) ≜ 1√

2π

󰁕 x
−∞ et

2/2dt. Here Φ−1 is the inverse of Φ

and we extend it by defining Φ−1(0) = −∞ and Φ−1(1) = ∞.

3. Distributed Multivariate Gaussian Mean Estimation

We turn in this section to distributed estimation of a multivariate Gaussian mean under
the communication constraints. Similar to the univariate case, suppose we observe on m
local machines i.i.d. random samples:

Xi
iid∼ Nd(θ,σ

2
nId), i = 1, . . . ,m,

where the i-th machine has access to Xi only. Here we consider the multivariate Gaussian
location family

Pd
σn

=
󰁱
Nd(θ,σ

2
nId) : θ ∈ [0, 1]d

󰁲
,

where θ ∈ [0, 1]d is the mean vector of interest and the noise level σn is known. Under the
constraints on the communication budgets b1:m with bi ≥ 1 for i = 1, . . . ,m, the goal is to
optimally estimate the mean vector θ under the squared error loss. We are interested in the
minimax risk for the distributed protocol Aind(b1:m):

Rd(b1:m) = inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]d

E󰀂θ̂ − θ󰀂2.

Another goal is to develop a rate-optimal estimator that satisfies the communication con-
straints. The multivariate case is similar to the univariate setting, but it also has some
distinct features, both in terms of the estimation procedure and the lower bound argument.
In this section, we still assume σn < 1.

3.1 Lower bound analysis

We first obtain the minimax lower bound which is instrumental in establishing the
optimal rate of convergence. The following lower bound on the minimax risk shows a
fundamental limit on the estimation accuracy when there are communication constraints.
In view of the upper bound to be given in Section 3.2 that is achieved by a generalization
of the MODGAME procedure, the lower bound is rate optimal.
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Figure 5: An illustration for multi-MODGAME. Communication budgets are evenly divided into
three parts with each part used for estimating a coordinate of θ by the MODGAME
procedure.

Theorem 8. Suppose bi ≥ 1 for all i = 1, 2, ...,m. Let B =
󰁓m

i=1 bi and m′ = 1
d

󰁓m
i=1(bi∧d),

then there exists a constant c > 0 such that

Rd(b1:m) ≥

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

c · 2−2B/dd if B/d < log 1
σn

+ 2

c · dσ2
n

(B/d−log 1
σn

)
if log 1

σn
+ 2 ≤ B/d < log 1

σn
+ (m′ ∨ 2)

c · dσ2
n

m′ if B/d ≥ log 1
σn

+ (m′ ∨ 2)

.

A detailed proof of Theorem 8 is given in the Appendix.

Remark 9. In the earlier work including Garg et al. (2014); Barnes et al. (2019), a lower

bound for distributed Gaussian mean estimation has been established as Ω(σ
2
nd

2

B ), where B is
the total communication cost. This lower bound is sharp for σn ≥ 1. However, when σn < 1,
by showing that the additional and exact log(1/σn) localization bits are necessary for esti-

mating a Gaussian mean, the lower bound can be improved to Ω(min{ σ2
nd

2

B−d log(1/σn)
,σ2

nd}).
The improvement is significant when log(1/σn)/m is bounded away from 0.

3.2 Optimal procedure

We now construct an estimator of the mean vector under the communication constraints.
Roughly speaking, the procedure, called multi-MODGAME, first divides the communica-
tion budgets evenly into d parts and then each part of communication budgets will be
used to estimate one coordinate of θ. Our analysis shows that multi-MODGAME achieves
the minimax optimal rate under the communication constraints. The construction of the
distributed estimator θ̂D is divided into three steps.

Step 1: Assign communication budgets. In this step we will calculate b
(k)
i (i = 1, 2, ...,m; k =

1, 2, ..., d) so that

bi = b
(1)
i + b

(2)
i + ...+ b

(d)
i for all i = 1, 2, ...m.

20



Distributed Gaussian Mean Estimation

where b
(k)
i is the number of bits within the transcript Zi which is associated with estimation

of θ̂(k).
Without loss of generality we assume b1 ≤ b2 ≤ ... ≤ bm, which can always be achieved

by permuting the indices of the machines. Write 1, 2, 3, ..., d repeatedly to form a sequence:

Q ≜ 1, 2, 3, ..., d, 1, 2, 3, ..., d, 1, 2, 3, ...

The sequence Q is then divided into subsequences of lengths b1, b2, ..., bm. Let Q1 be
the subsequence of Q from index 1 to index b1; let Q2 be the next subsequence from index
b1 + 1 to b1 + b2; ... let Qm be the subsequence from index

󰁓m−1
i=1 bi + 1 to

󰁓m
i=1 bi. For

each 1 ≤ k ≤ d, let b
(k)
i be the number of occurrence of k within Qi. To be more precise,

b
(k)
i can be calculated by

b
(k)
i =

󰀧󰁓i
j=1 bj − k

d

󰀨
−

󰀧󰁓i−1
j=1 bj − k

d

󰀨
.

Step 2: Generate transcripts on local machines. On the i-th machine, the transcript

Zi is concatenated by short transcripts Z
(1)
i , Z

(2)
i , ..., Z

(d)
i , where the length of Z

(k)
i is b

(k)
i

for k = 1, 2, ..., d. Note that the k-th coordinate of the observations on each machine,

X
(k)
1 , X

(k)
2 , ..., X

(k)
m , can be viewed as i.i.d univariate Gaussian variables with mean θ(k) and

variance σ2
n. For 1 ≤ k ≤ d, the transcripts Z

(k)
1 , Z

(k)
2 , ..., Z

(k)
m can be generated the same

way as if we implement MODGAME to estimate θ(k) from observations X
(k)
1 , X

(k)
2 , ..., X

(k)
m ,

within the communication budgets b
(k)
1 , b

(k)
2 , ..., b

(k)
m . Some machines may be assigned zero

communication budget, if that happens those machines are ignored and the procedure is
implemented as if there are fewer machines.

Step 3: Construct distributed estimator θ̂D. We have collected Z
(k)
i (i = 1, 2, ...,m; k =

1, 2, ..., d) from the m local machines. For 1 ≤ k ≤ d, as in MODGAME, one can use

Z
(k)
1 , Z

(k)
2 , ..., Z

(k)
m to obtain an estimate for θ̂(k):

θ̂
(k)
D = θ̂

(k)
D

󰀓
Z

(k)
1 , Z

(k)
2 , ..., Z(k)

m

󰀔
.

The final multi-MODGAME estimator θ̂D of the mean vector θ is just the vector consisting
of the estimates for the d coordinates:

θ̂D ≜
󰀓
θ̂
(1)
D , θ̂

(2)
D , ..., θ̂

(d)
D

󰀔
.

The following result provides a theoretical guarantee for multi-MODGAME.

Theorem 10. Let B =
󰁓m

i=1 bi and m′ = 1
d

󰁓m
i=1(bi ∧ d). Then there exists a constant

C > 0 such that

sup
θ∈[0,1]d

E󰀂θ̂D − θ󰀂2 ≤

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

C · 2−2B/dd if B/d < log 1
σn

+ 2

C · dσ2
n

(B/d−log 1
σn

)
if log 1

σn
+ 2 ≤ B/d < log 1

σn
+ (m′ ∨ 2)

C · dσ2
n

m′ if B/d ≥ log 1
σn

+ (m′ ∨ 2).

(16)
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Remark 11. Compared to the state-of-art results in the literature including Braverman
et al. (2016), the multi-MODGAME procedure is more communication-efficient and more
flexible in communication budget allocation. To be specific, the algorithm proposed in

Braverman et al. (2016) achieves the mean squared error O(σ
2
nd

αm ) with the total communi-
cation cost of order αmd+ d log2(αmd/σn)). In comparison, to achieve the same statistical
performance, MODGAME only needs αmd + d log(1/σn) bits. The difference could be
significant when σn ≪ 1.

Moreover, multi-MODGAME achieves the optimal statistical performance in the dis-
tributed setting with any pre-specified communication budget allocation (b1, b2, ..., bm).
That is, the constraint is imposed on each individual local machine. In comparison, the pro-
tocol in Braverman et al. (2016) assigns the total communication budget by the algorithm
thus in a way solves a simpler “total communication constrained” problem.

The lower and upper bounds given Theorems 8 and 10 together establish the minimax
rate for distributed multivariate Gaussian mean estimation:

inf
θ̂∈Aind(b1:m)

sup
θ∈[0,1]d

E󰀂θ̂ − θ󰀂2 ≍

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2−2B/dd if B/d < log 1
σn

+ 2
dσ2

n

(B/d−log 1
σn

)
if log 1

σn
+ 2 ≤ B/d < log 1

σn
+ (m′ ∨ 2)

dσ2
n

m′ if B/d ≥ log 1
σn

+ (m′ ∨ 2)

(17)
where B =

󰁓m
i=1 bi is the total communication budget and m′ = 1

d

󰁓m
i=1(bi ∧ d) is the

“effective sample size”. In particular, the minimax rate (15) for the univariate case is an
special case for the above minimax rate (17) with d = 1.

Remark 12. Different from the univariate case, in the multivariate case the minimax rate
depends on not only the total communication budget B, but also the effective sample sizem′.
How the communication budgets assigned to individual local machines affects the difficulty
of the estimation problem. If the communication budgets are tight on some machines, then
one may have m′ ≪ m, which means the centralized minimax rate cannot be achieved even
if the total communication budget B is sufficiently large.

Remark 13. The present paper focuses on the unit hypercube [0, 1]d as the parameter
space. A similar analysis can be applied to other “regular” shape constraints, such as a ball
or a simplex, and the minimax rate depends on the constraint.

4. Robustness Against Departures from Gaussianity

We have so far focused exclusively on the Gaussian location families. Both the optimal
distributed procedures and lower bound arguments are established under the assumption of
Gaussian observations. We consider in this section robustness of the proposed MODGAME
and multi-MODGAME procedures against departures from Gaussianity.

Even if the i.i.d observations Xi,j , i = 1, 2, ..,m, j = 1, 2, ..., n are drawn from a non-
Gaussian distribution, after taking the sample mean on each local machine, according to
the central limit theorem, the distribution of these sample means is close to a Gaussian
distribution when n is large. Thus intuitively the proposed procedures should still work
even when the original observations are nongaussian.
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For simplicity we focus on the one-dimensional estimation problem. The multivariate
case can be considered as a direct generalization to the univariate case. Let Pθ be a location
family where θ is the mean, and its variance is σ2. Denote P̄n

θ as the distribution of the
mean of n i.i.d copies drawn from Pθ. If on each local machine we can access to n i.i.d
observations Xi,1, Xi,2, ..., Xi,n ∼ Pθ, then each machine can take the local sample mean
Xi ≜

󰁓n
j=1Xi,j ∼ P̄n

θ . Even though P̄n
θ is a non-Gaussian distribution, the MODGAME

procedure can take Xi as inputs to generate a final estimate.
Recall that MODGAME is divided into three steps: crude localization step, finer local-

ization step, and refinement step. During the first two steps, in order to obtain the desired
statistical guarantee for the “confidence interval” I2, we only need sub-Gaussian tail condi-
tion for Xi. During the refinement step, the key is to use Φh or Φh̄ to generate estimates
from the one-bit measurements. If Xi is not drawn from a Gaussian distribution, there is
additional bias that could be controlled under certain conditions.

Let TV (·, ·) denote the total variation distance between two probability distributions.
A random variable X (or a distribution P where X ∼ P ) is called v-subgaussian if

E exp(s(X − EX)) ≤ exp(v
2s2

2 ), ∀s ∈ R. The following theorem shows that when the total
variation distance between the distribution P̄n

θ of the local sample mean and the Gaussian
distribution N(θ,σ2

n) is sufficiently small, MODGAME has the same theoretical guarantee
as in the Gaussian case. This implies that MODGAME is robust against departures from
the Gaussian distribution.

Theorem 14. Suppose σn < 1. If P̄n
θ is a Dσn-subgaussian distribution and TV (P̄n

θ , N(θ,σ2
n)) ≤

D√
m

for some D > 0. Then there exists a constant C > 0 such that

sup
θ∈[0,1]

E(θ̂ − θ)2 ≤ C ·

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2−2B if B < log 1
σn

+ 2
σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m

σ2
n
m if B ≥ log 1

σn
+m

. (18)

where θ̂ is the output of the MODGAME procedure and B =
󰁓m

i=1 bi is the total communi-
cation cost.

A sketch of the proof is given in the Appendix. Note that Xi ∼ P̄n
θ is the mean of

i.i.d observations in the ith local machine. The L1 Berry-Esseen bound (e.g. (Chen et al.,

2010, Corollary 4.2)) suggests TV (P̄n
θ , N(θ,σ2

n)) ≤
E(|X1−θ|/σ)3

2
√
n

. If X1 is a Dσ-subgaussian

distribution, then E(|X1 − θ|/σ)3 is bounded by a constant (depending on D). Hence the
following corollary holds.

Corollary 15. Suppose σn < 1. If Pθ is a Dσ-subgaussian distribution, and m ≤ Dn for
some D > 0. Then there exist a constant C > 0 such that

sup
θ∈[0,1]

E(θ̂ − θ)2 ≤ C ·

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

2−2B if B < log 1
σn

+ 2
σ2
n

(B−log 1
σn

)
if log 1

σn
+ 2 ≤ B < log 1

σn
+m

σ2
n
m if B ≥ log 1

σn
+m

. (19)

where θ̂ is the output of the MODGAME procedure. B =
󰁓m

i=1 bi is the total communication
cost.
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Corollary 15 shows that, if n/m is asymptotically bounded away from 0, then MOD-
GMAE achieves the same statistical performance as in the Gaussian case as long as the
observations are drawn from a subgaussian distribution.

Theorem and Corollary 15 are stated in univariate Gaussian mean estimation setting. It
is not difficult to extend the current result to multivariate setting since multi-MODGAME
procedure can be viewed as an aggregation of MODGAME procedures in each dimension.

5. Simulation Studies

It is clear by construction that MODGAME and multi-MODGAME satisfy the com-
munication constraints and are easy to implement. We investigate in this section their
numerical performance through simulation studies. Comparisons with the existing methods
are given and the results are consistent with the theory. In this section, we implement a
slightly modified version of MODGAME procedure, where each local machine output three
refinement bits instead of one. This slightly modified MODGAME procedure has better
numerical performance and also has the same theoretical guarantee as what is stated in
Section 2.

We first consider MODGAME for estimating a univariate Gaussian mean. In this case,
we set d = 1 and b1 = b2 = ... = bm = b, i.e. the communication budgets for all machines
are equal, and compare the empirical MSEs of MODGAME, naive quantization (see e.g.
Zhang et al. (2013a)), and sample mean. For naive quantization, each machine projects its
observation to [0, 1] and quantizes it to precision 2−b. The quantized observation is sent to
the central machine and the central machine uses their average as the final estimate. The
sample mean is the efficient estimate when there are no communication constraints, which
can be viewed as a benchmark for any distributed Gaussian mean estimation procedure.

First, we fix m = 100, σn = 2−8 and assign the communication budget for each machine
b from 1 to 7. The MSEs of the three estimators are shown in Figure 6a, which shows
that MODGAME makes better use of the communication resources in comparison to naive
quantization. It can be seen from the figure, MODGAME outperforms naive quantization
when the communication constraints are extremely severe. As the communication budgets
increases, naive quantization can nearly achieve the optimal MSE, meanwhile MODGAME
still performs very well.

In the second setting, we fix σn = 2−8, b = 5 and vary the number of machines m from
10 to 40960. Figure 6b plots the MSEs of the three methods. The MSE of MODGAME
decreases as number of machine increases and outperforms naive quantization; the MSE of
naive quantization remains constant as the quantization error plays a dominant role in the
MSE.

Finally, we fix b = 5, m = 100 and vary the standard deviation σn from 2−1 to 2−13.
Figure 6c shows the MSEs of the three estimators. It can be seen that MODGAME is
robust for all choices of σn. The difference between the MSE of MODGAME and the
optimal MSE for non-distributed sample mean is small. For naive quantization, it is as
good as the optimal non-distributed sample mean when σn is large. However, as seen in
the previous experiment, when σn is small, the MSE of naive quantization is dominated
by the quantization error and is much larger than the MSE of MODGAME. In all three
settings, it can be seen clearly that the MSE of MODGAME decreases as the communication
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Figure 6: Comparisons of the MSEs of MODGAME (red), naive quantization (blue) and sample
mean (black). MSEs are plotted on log-scale. In 6b and 6c, m and σn are plotted on
log-scale.

budgets increases. This is consistent with the theoretical results established in Section 2
and demonstrates the tradeoff between the communication costs and statistical accuracy.

Besides, to demonstrate that the performance of the MODGAME procedure only de-
pends on total communication budget B, we implement another simulation. We fix m = 6,
σn = 2−12 and assign the total communication budgets B from 18 to 36. We compare the
performance of the MODGAME procedure with different communication allocation. That
is, in one simulation we assign bi = 3 bits to each local machine except one, and that one ma-
chine are assigned B−3(m−1) bits. In another simulation we assign equal communication
budget bi = B/m to each machine. As a benchmark, we also implement non-distributed
sample mean estimator. Figure 7a shows the MSEs of the above three methods. It is shown
clearly that how communication budgets are assigned to local machines doesn’t affect the
performance of the MODGAME procedure, which is consistent with our theory.

We now turn to multi-MODGAME. Different values of the dimension d yield similar
phenomena. We use d = 50 here for illustration. When d is larger than the number of bits
that is allowed to communicate on each machine, naive quantization is not valid as it is
unclear how to quantize the d coordinates of the observed vector. As a comparison, it can
be seen in the following experiments that multi-MODGAME still performs well even if d is
large and the communication budgets are tight.

Same as before, we set b1 = b2 = ... = bm = b, i.e. the communication budgets for
all machines are equal. We set d = 50, σn = 2−8,m = 25 and assign the communication
budgets b for each machine from 2 to 21. The MSEs of different methods are shown in
Figure 7b. A phase transition at b = 10 can be clearly seen. When b ≤ 10, the MSE
decreases quickly at an exponential rate. When b > 10, the decrease becomes relatively
slow. This phenomenon is consistent with the theoretical prediction that different phases
appear in the convergence rate for multi-MODGAME (Theorem 10).

6. Discussion

We established in the present paper the sharp minimax optimal rate that holds for all
values of the parameters d,m, n, and σ in all communication budget regimes under the
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Figure 7: Left panel: Comparisons of the MSEs of MODGAME with equal assignment (red),
MODGAME with unequal assignment (blue) and sample mean (black). Right panel:
Comparisons of the MSEs of multi-MODGAME (red) and sample mean (black). MSEs
are plotted on log-scale.

independent protocol. A key technique is the decomposition of the minimax estimation
problem into two steps, localization and refinement, which appears in both the lower bound
analysis and optimal procedure design. The optimality results and techniques developed can
be useful for solving other problems such as distributed nonparametric function estimation
and distributed sparse signal recovery.

In spite of these optimality results, there are still several open problems on distributed
Gaussian mean estimation. For example, an interesting problem is the optimal estimation
of the mean θ when the variance σ2 is unknown. The lack of knowledge of σ2 requires
additional communication efforts for optimally estimating θ. When there are more than one
sample available on each local machine, a natural approach is to estimate σ2 on each local
machine and then use MODGAME to estimate θ. It would be interesting to investigate the
performance of such an estimator. Other than estimating the mean θ, distributed estimation
of the variance σ2 is also an interesting and important problem. When there are multiple
samples on each local machine, the local estimate of σ2 can be viewed as an observation
drawn from a scaled χ2 distribution. The problem then becomes a distributed χ2 estimation
problem and it might be solved by using a similar approach to the one used in the present
paper. We leave these for future work.

Optimal estimation of the mean of a multivariate Gaussian distribution with a general
(known) covariance matrix is another interesting problem. A naive approach is to ignore the
dependency and apply MODGAME to estimate the coordinates individually, this is arguably
not communication efficient in general. For instance, if the correlation between certain coor-
dinates is large, it may be possible to save a significant amount of communication budget by
utilizing the information from one coordinate to help estimate the other. Another approach
is to use multi-MODGAME after orthogonalization. More specifically, consider the Gaus-
sian location family with a general non-singular covariance matrix Σ. Let λmin > 0 be the

smallest eigenvalue of Σ. For X ∼ Nd(θ,Σ), λ
1/2
min(dΣ)

−1/2X ∼ Nd

󰀓
λ
1/2
min(dΣ)

−1/2θ, λmin
d Id

󰀔
.
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Note that λ
1/2
min(dΣ)

−1/2θ ∈ [0, 1]d for any θ ∈ [0, 1]d, therefore one can apply multi-

MODGAME to estimate λ
1/2
min(dΣ)

−1/2θ, then transform it back to get an estimate for
θ. However, this is generally not rate-optimal. A systematic study is needed for this prob-
lem. Another related and more challenging problem is optimal distributed estimation of
the covariance matrix Σ.

This paper arguably considered one of the simplest settings for optimal distributed es-
timation under the communication constraints, but as can be seen in the paper, both the
construction of the rate optimal estimators and the theoretical analysis are already quite
involved for such a seemingly simple problem. As we deepen our understanding on dis-
tributed learning under the communication constraints, we hope to extent this line of work
to investigate other statistical problems in distributed settings, including nonparametric
function estimation, high-dimensional linear regression, and large-scale multiple testing.

We hope that the results and techniques developed in this paper serve as a starting
point for developing optimality theories for other distributed learning problems.

7. Proofs

In this section we prove Theorem 2 for the univariate case. For reasons of space, Theo-
rems 1, 8, 10, 4 and the technical lemmas are proved in the Appendix.

We prove separately the three cases in Theorem 2: B < log 1
σn

+ 2, log 1
σn

+ 2 ≤ B <

log 1
σn

+m, and B ≥ log 1
σn

+m. We first focus on the most important case log 1
σn

+ 2 ≤
B < log 1

σn
+m. New technical tools are developed in the proof. The other two cases are

relatively easy.

Case 1: log 1
σn

+ 2 ≤ B < log 1
σn

+m. Note that bi ≥ 1 for all i = 1, 2, ...,m implies that
B =

󰁓m
i=1 bi ≥ m. Therefore in this case we must have σn < 1.

Let 0 < δ < 1
8σn be a parameter to be specified later. Define a grid of candidate values

of θ as

Gδ ≜
󰀝
θu,v = σnu+ δv : u = 0, 1, 2, ...,

󰀕
⌊ 1

σn
⌋ − 1

󰀖
, v = 0, 1

󰀞
. (20)

Let U(Gδ) be a uniform prior of θ on Gδ. Note that Gδ ⊂ [0, 1], so the minimax risk is
lower bounded by the Bayesian risk:

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ inf
θ̂∈A(b1:m)

Eθ∼U(Gδ)(θ̂ − θ)2. (21)

For any estimator θ̂ ∈ A(b1:m), the rounded estimator θ̂′ ≜ argminθ̃∈Gδ
|θ̃ − θ̂| always

satisfy (θ̂ − θ)2 ≥ 1
4(θ̂

′ − θ)2 for all θ ∈ Gδ. Note that θ̂′ also belongs to the protocol class
A(b1:m), and only takes value in Gδ, this implies

inf
θ̂∈A(b1:m)

Eθ∼U(Gδ)(θ̂ − θ)2 ≥ 1

4
inf

θ̂∈A(b1:m)∩Gδ

Eθ∼U(Gδ)(θ̂ − θ)2, (22)

where A(b1:m) ∩Gδ is a shorthand for A(b1:m) ∩ {θ̂ : θ̂ only takes value in Gδ}.

27



Cai and Wei

Now we have θ̂, θ ∈ Gδ thus they can be reparametrized by θ̂ = θû,v̂ and θ = θu,v. It is
easy to verify the inequality

(θ̂û,v̂ − θu,v)
2 ≥ max

󰀝
σ2
n

4
(û− u)2, δ2I{v̂ ∕=v}

󰀞
.

Hence

inf
θ̂∈A(b1:m)∩Gδ

Eθ∼U(Gδ)(θ̂ − θ)2 ≥ inf
θû,v̂∈A(b1:m)∩Gδ

Eθu,v∼U(Gδ)max

󰀝
σ2
n

4
(û− u)2, δ2I{v̂ ∕=v}

󰀞
.

(23)
Putting together (21), (22), and (23), we have

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ 1

4
inf

θû,v̂∈A(b1:m)∩Gδ

Eθu,v∼U(Gδ)max

󰀝
σ2
n

4
(û− u)2, δ2I{v̂ ∕=v}

󰀞

≥ inf
θû,v̂∈A(b1:m)∩Gδ

max

󰀝
σ2
n

16
Eθu,v∼U(Gδ)(û− u)2,

δ2

4
Pθu,v∼U(Gδ)(v̂ ∕= v)

󰀞
.

(24)

Therefore, by assigning a prior θ ∼ U(Gδ), we have successfully decomposed the es-
timation problem of θ into estimation problems of u and v. We can view estimation of
u as “localization” step and estimation of v as “refinement” step, so (24) essentially has
decomposed the statistical risk into localization error and refinement error. To lower bound
the right hand side of (24), we show that under communication constraints, one cannot
simultaneously estimate both u and v accurately, i.e. the localization and refinement errors
cannot be both too small. Lemma 3, which shows that for any distributed estimator θ̂,
there is unavoidable trade-off between the mutual information I(θ̂;u) and I(θ̂; v), is a key
step.

We set δ = σn󰁴
256(B+1−log(⌊ 1

σn
⌋))

, and assign the uniform prior U(Gδ) to the parameter

θ = θu,v. One can easily verify δ < 1
8σn, and u, v are independent random variables where

u is uniform distributed on {0, 1, ..., ⌊ 1
σn

⌋ − 1}, and v is uniform distributed on {0, 1}.
Therefore, we can apply Lemma 3 to get inequality (14). From the inequality (14) we can
further get, for any θ̂ ∈ A(b1:m) ∩Gδ, one of the following two inequalities

I(θ̂;u) ≤ log(⌊ 1

σn
⌋)− 1 or I(θ̂; v) ≤ 64δ2

σ2
n

󰀕
B + 1− log(⌊ 1

σn
⌋)
󰀖

must hold. We show that either of the above bounds on the mutual information will result
in a large statistical risk.

Case 1.1: I(θ̂;u) ≤ log(⌊ 1
σn

⌋) − 1. Note that û is a function on θ̂, thus by data process-

ing inequality, I(û;u) ≤ I(θ̂;u) ≤ log(⌊ 1
σn

⌋) − 1. Note that u is uniform distributed on

{0, 1, ..., ⌊ 1
σn

⌋ − 1}, thus H(u) = log(⌊ 1
σn

⌋). We have

H(u|û) = H(u)− I(û;u) ≥ 1. (25)

The following lemma shows that large conditional entropy will result in large L2 distance
between two integer-valued random variables.
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Lemma 16. Suppose A,D are two integer-valued random variables. If H(A|D) ≥ 1
2 , then

there exist a constant c2 > 0 such that

E(A−D)2 ≥ c2.

Given (25) and the fact that û, u are integer valued, Lemma 16 yields

Eθu,v∼U(Gδ)(û− u)2 ≥ c2. (26)

Case 1.2: I(θ̂; v) ≤ δ2

c1σ2
n
(B+1− log(⌊ 1

σn
⌋)). By the strong data processing inequality, plug

in δ = σn󰁴
256(B+1−log(⌊ 1

σn
⌋))

we have I(v̂; v) ≤ I(θ̂; v) ≤ 1
4 , so H(v|v̂) = H(v) − I(v̂; v) ≥ 3

4 .

It follows from Lemma 16 that

Pθu,v∼U(Gδ)(v̂ ∕= v) = Eθu,v∼U(Gδ)(v̂ − v)2 ≥ c2. (27)

Combine (26) for Case 1.1 and (27) for Case 1.2 together, we have for any θ̂ ∈ A(b1:m)∩
Gδ,

max

󰀝
σ2
n

16
Eθu,v∼U(Gδ)(û− u)2,

δ2

4
Pθu,v∼U(Gδ)(v̂ ∕= v)

󰀞

≥c2min

󰀝
σ2
n

16
,
δ2

4

󰀞
=

c2σ
2
n

1024(B + 1− log(⌊ 1
σn

⌋))
≥ c2

2048
· σ2

n

(B − log 1
σn

)
.

(28)

The minimax lower bound follows by combining (24) and (28),

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ c2
2048

· σ2
n

(B − log 1
σn

)
.

Case 2: B < log 1
σn

+ 2. Let S = 2B+1 and KS ≜ { i
S : i = 0, 1, ..., S − 1}. Denote by

U(KS) the uniform distribution on KS . For the same reason as in (21) and (22) we have

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ inf
θ̂∈A(b1:m)

Eθ∼U(KS)(θ̂ − θ)2 ≥ 1

4
inf

θ̂∈A(b1:m)∩KS

Eθ∼U(KS)(θ̂ − θ)2

=
1

4S2
inf

θ̂∈A(b1:m)∩KS

Eθ∼U(KS)(Sθ̂ − Sθ)2.

(29)

The parameter θ can be treated as a random variable drawn from U(KS). Note that by
the data processing inequality, for any θ̂ ∈ A(b1:m),

I(θ̂; θ) = I(θ̂(Z1, Z2, ..., Zm); θ) ≤ I(Z1, Z2, ..., Zm; θ) ≤
m󰁛

i=1

H(Zi) ≤ B.

By θ ∼ U(KS) we have H(θ|θ̂) = H(θ) − I(θ̂; θ) ≥ logS − B ≥ 1. Note that when
θ ∼ U(KS), for any θ̂ ∈ A(b1:m)∩KS , Sθ̂ and Sθ both take value in {0, 1, 2, ..., S−1}. Also we
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have H(Sθ|Sθ̂) = H(θ|θ̂) ≥ 1. Therefore, Lemma 16 yields that Eθ∼U(KS)(Sθ̂ − Sθ)2 ≥ c2.
We thus conclude that

1

4S2
inf

θ̂∈A(b1:m)∩KS

Eθ∼U(KS)(Sθ̂ − Sθ)2 ≥ c2

4 · 22(B+1)
=

c2
16

· 2−2B.

The desired lower bound follows by plugging into (29).

Case 3: B ≥ log 1
σn

+ m. The minimax risk for distributed protocols is always lower
bounded by the minimax risk with no communication constraints:

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]

(θ̂ − θ)2 ≥ inf
θ̂

sup
θ∈[0,1]

(θ̂ − θ)2 ≍ σ2
n

m
.

which is given in Bickel (1981).
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Appendix A. Notation and definitions

There will be several new notation and definitions involved in the following proofs. For
any distributions P and Q with common support X , denote the Kullback-Leibler divergence
between P and Q as

DKL(P󰀂Q) ≜
󰁝

p(x) log

󰀕
p(x)

q(x)

󰀖
dx,

where p, q are densities of P,Q respectively.

For continuous random variables X,Y supported on X ,Y ⊆ Rd with a joint probabil-
ity density function f(x, y), the differential entropy H(X), conditional differential entropy
H(X|Y ) and mutual information I(X;Y ) are defined as

H(X) ≜ −
󰁝

X
f(x) log f(x)dx,

H(X|Y ) ≜ −
󰁝

X ,Y
f(x, y) log f(x|y)dxdy,

I(X;Y ) ≜
󰁝

X ,Y
f(x, y) log

f(x|y)
f(x)

dxdy.

where f(x) is the marginal density function of X and f(x|y) is the conditional density
function of X given Y .

Appendix B. Proof of Theorem 1

We first define the “change points sets” for the Gray functions gk(x) and conjugate Gray
functions ḡk(x). For any k ≥ 1, let Gk be the change points set for gk, which is defined as

Gk ≜ {(2j − 1) · 2−k : 1 ≤ j ≤ 2k−1}.

Similarly, let Ḡk be the change-points set for ḡk, which is defined as

Ḡk ≜ {j · 21−k : 1 ≤ j ≤ 2k−1 − 1}.

As the name suggests, the change points set for a Gray function (or a conjugate Gray
function) is the collection of points x ∈ [0, 1] where gk(x) (or ḡk(x)) changes its value from
0 to 1 or from 1 to 0. More precisely,

Gk = {x : lim
y→x−

gk(y) ∕= lim
y→x+

gk(y)} and Ḡk = {x : lim
y→x−

ḡk(y) ∕= lim
y→x+

ḡk(y)}.

An important property for the change-points sets is that for any k ≥ 1,

Ḡk+1 =

k󰁞

i=1

Gk and Gi ∩Gj = ∅ ∀1 ≤ i < j ≤ k. (30)

Case 1: B < log 1
σn

+ 2. We first state several technical lemmas in general forms. These
lemmas will also be used in Case 2.
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Lemma 17. Let x ∈ [0, 1] and K ≥ 1 be an integer. Let g1, ..., gK be the Gray functions
and let G1, ..., GK be the corresponding sets of change points. Assume that for any k ≤ K,
either zk = gk(x) or d(x,Gk) ≤ 2−(K+2). Then we have

d(x,DecK(z1, z2, ..., zK)) ≤ 2−(K+2)

Lemma 18. If zk = gk(X) where X ∼ N(x,σ2
n), then

P(zk ∕= gk(x)) ≤ 2e
− d(x,Gk)2

2σ2
n . (31)

Similarly, if z̄k = gk(X) where X ∼ N(x,σ2
n), then

P(z̄k ∕= ḡk(x)) ≤ 2e
− d(x,Ḡk)2

2σ2
n . (32)

Lemma 19. Fix any x ∈ [0, 1] and integer 1 ≤ K ≤ log 1
σn

+ 2. For any 1 ≤ k ≤ K, let

zk = gk(Xk) where Xk ∼ N(x,σ2
n). (X1,X2,...,XK can be correlated.) Then there exists a

constant C1 > 0 such that, for any L ≤ K,

P(d(x,DecK(z1, z2, ..., zK)) ≥ 5

4
2−L − 2−K) ≤ C1e

− 2−2(L+2)

2σ2
n .

Now we prove Case 1. For simplicity denote A = d(θ,DecB(U1, U2, ..., UB)). Note that
A ≤ 1, so we have

EA2 ≤ P(A ≤ 5

4
2−B) · (5

4
2−B)2 +

B−1󰁛

k=0

P(
5

4
2−B+k ≤ A ≤ 5

4
2−B+k+1) · (5

4
2−B+k+1)2

≤ 1 · (5
4
2−B)2 +

B−1󰁛

k=0

P(A ≥ 5

4
2−B+k) · (5

4
2−B+k+1)2.

Note that B ≤ log 1
σn

+ 2, and Uk has the same distribution as gk(X) where X ∼
N(θ,σ2

n). We can apply Lemma 19 and further get

EA2 ≤ 25

16
2−2B +

B−1󰁛

k=0

C1e
− 2−2(B−k+2)

2σ2
n ·

󰀕
5

4
2−B+k+1

󰀖2

≤ 25

16
2−2B

󰀣
1 + C1

B−1󰁛

k=0

2−(2k+2)e
− 2−2(− log σn+2−k+2)

2σ2
n

󰀤

≤ C2 · 2−2B,

where C2 ≜ 25
16

󰀓
1 + C1

󰁓∞
k=0 2

−(2k+2)e−2(2k−9)
󰀔
is summable.

Finally, we have θ̂D ∈ DecB(U1, U2, ..., UB) and note that the length of DecB(U1, U2, ..., UB)
is 2−B, therefore we conclude that

E(θ̂D − θ)2 ≤ E(A+ 2−B)2 ≤ 2EA2 + 2−2B ≤ (2C2 + 1)2−2B.
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The upper bound in (13) for Case 1 is proved.
Case 2: log 1

σn
+ 2 ≤ B < log 1

σn
+m. We define

Ĩ1 = {x : d(x, I ′1) ≤ 2−(⌊log 1
σn

⌋−⌊log u⌋)} ∩ [0, 1]. (33)

which is the interval that stretches out 1
4 the length of I ′1 on both sides.

The proof is divided into three steps with each step summarized as a lemma below.
These lemmas also imply the purpose of constructing intervals I1 and I2: they are confidence
intervals with small risks of θ falling outside.

Lemma 20. There exists a constant C3 > 0 such that

E((θ̂D − θ)2I{θ/∈Ĩ1}) ≤
C3σ

2
n

u
.

Lemma 21. The set I ′2 defined in (10) is an interval and there exists a constant C4 > 0
such that

E((θ̂D − θ)2I{θ∈Ĩ1,θ/∈I2}) ≤
C4σ

2
n

u
.

Lemma 22. (1) One of the following two conditions must hold:

I2 ⊆
󰀗
(2j − 3

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

3

4
) · 2−(⌊log 1

σn
⌋−6)

󰀘
for some j ∈ Z

or

I2 ⊆
󰀗
(2j +

1

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

7

4
) · 2−(⌊log 1

σn
⌋−6)

󰀘
for some j ∈ Z.

(2) There exists a constant C5 > 0 such that

E((θ̂D − θ)2I{θ∈I2}) ≤
C5σ

2
n

u
.

From the above three lemmas we get

E((θ̂D − θ)2 ≤ E((θ̂D − θ)2I{θ/∈Ĩ1}) + E((θ̂D − θ)2I{θ∈Ĩ1,θ/∈I2}) + E((θ̂D − θ)2I{θ∈I2})

≤ (C3 + C4 + C5)
σ2
n

u
.

By the definition of u in (5), and u ≥ 1, we know

B − ⌊log 1

σn
⌋ < ⌊log(u+ 1)⌋2 + 2(u+ 1) < 2u+ 2(u+ 1) ≤ 6u.

Hence

E((θ̂D − θ)2 ≤ 6(C3 + C4 + C5)
σ2
n

B − ⌊log 1
σn

⌋
≤ 6(C3 + C4 + C5)

σ2
n

B − log 1
σn

.

Case 3: B > log 1
σn

+ m. We can apply the procedure described in Case 2 (or Case 1 if

m = 1) as if we have B′ = ⌊log 1
σn

⌋+m total communication budgets. So for some constant
C > 0 we have the guaranteed upper bound

E((θ̂D − θ)2 ≤ C
σ2
n

B′ − log 1
σn

≤ 2C · σ
2
n

m
if m ≥ 2

or E((θ̂D − θ)2 ≤ C · 2−2B′ ≤ C · σ2
n
m if m = 1.
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Appendix C. Proof of Theorem 8

Similar as how we proved Theorem 2, we are going to divide our proof into three cases:
B/d < log 1

σn
+ 2, log 1

σn
+ 2 ≤ B/d < log 1

σn
+m′, and B/d ≥ log 1

σn
+m′. We first prove

the case log 1
σn

+2 ≤ B < log 1
σn

+m′, then the case B/d ≥ log 1
σn

+m′. Some new technical
tools are involved in the proof of these two cases. Finally we will prove the relatively easier
case B/d < log 1

σn
+ 2.

Case 1: log 1
σn

+ 2 ≤ B/d < log 1
σn

+ (m′ ∨ 2).

If m′ ≤ 2 then no choices of B,m′ satisfy this case. So we have m′ > 2 and log 1
σn

+2 ≤
B/d < log 1

σn
+m′. Note that B/d ≥ m′ always holds, so this further implies B/d > 2 thus

we must have σn < 1 in this case.
We define the same grid of candidate values of θ as in (20):

Gδ ≜ {θu,v = σnu+ δv : u = 0, 1, 2, ..., (⌊ 1

σn
⌋ − 1), v = 0, 1}

where 0 < δ < 1
8σn is a parameter to be specified later. Let U(Gd

δ) be a uniform prior on

Gd
δ ≜ Gδ ×Gδ × ...×Gδ. This is equivalent to

θ(k)
iid∼ U(Gδ) for k = 1, 2, ..., d.

Follow the same reason as (21) and (22), we have

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]d

󰀂θ̂ − θ󰀂2 ≥ 1

4
inf

θ̂∈A(b1:m)∩Gd
δ

Eθ∼U(Gd
δ)
󰀂θ̂ − θ󰀂2 (34)

where A(b1:m) ∩Gd
δ is a shorthand for A(b1:m) ∩ {θ̂ : θ̂ only takes value in Gd

δ}.
When θ, θ̂ ∈ Gd

δ , for any k = 1, 2, ..., d we have θ(k), θ̂(k) ∈ Gδ, thus we can reparametrize

θ(k), θ̂(k) as

θ(k) = θu(k),v(k) = σnu
(k) + δv(k) and θ̂(k) = θû(k),v̂(k) = σnû

(k) + δv̂(i) (35)

so that in the following proof we can view u(k), v(k) as functions of θ and û(k), v̂(k) as
functions of θ̂.

Follow the same reason as (23), we have

inf
θ̂∈A(b1:m)∩Gd

δ

Eθ∼U(Gd
δ)
󰀂θ̂ − θ󰀂2 = inf

θ̂∈A(b1:m)∩Gd
δ

Eθ∼U(Gd
δ)

d󰁛

k=1

(θ̂(k) − θ(k))2

≥ inf
θ̂∈A(b1:m)∩Gd

δ

Eθ∼U(Gd
δ)

d󰁛

k=1

max

󰀝
σ2
n

4
(û(k) − u(k))2, δ2I{v̂(k) ∕=v(k)}

󰀞

≥ inf
θ̂∈A(b1:m)∩Gd

δ

Eθ∼U(Gd
δ)
max

󰀫
σ2
n

4

d󰁛

k=1

(û(k) − u(k))2, δ2
d󰁛

k=1

I{v̂(k) ∕=v(k)}

󰀬

≥ inf
θ̂∈A(b1:m)∩Gd

δ

max

󰀫
Eθ∼U(Gd

δ)

σ2
n

4

d󰁛

k=1

(û(k) − u(k))2,Eθ∼U(Gd
δ)
δ2

d󰁛

k=1

I{v̂(k) ∕=v(k)}

󰀬
.

(36)
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Combine (34) and (36) we have

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]d

󰀂θ̂−θ󰀂2 ≥ inf
θ̂∈A(b1:m)∩Gd

δ

max

󰀫
Eθ∼U(Gd

δ)

σ2
n

16

d󰁛

k=1

(û(k) − u(k))2,Eθ∼U(Gd
δ)

δ2

4

d󰁛

k=1

I{v̂(k) ∕=v(k)}

󰀬
.

(37)
Therefore, by assigning a prior θ ∼ U(Gd

δ), we have successively decompose the statistical
error into multi-dimensional ”localization error” and ”refinement error”, similar as what we
do in the proof of Theorem 2.

Next we are going to provide a lemma that shows a trade-off between
󰁓d

k=1 I(θ̂, u
(k))

and
󰁓d

k=1 I(θ̂, v
(k)). This lemma is an analog to Lemma 3.

Lemma 23. If σn < 1, θ ∼ U(Gd
δ) and u(k), v(k) is defined as in (35) for all k = 1, 2, ..., d.

Then we have
d󰁛

k=1

I(θ̂;u(k)) +
σ2
n

64δ2

d󰁛

k=1

I(θ̂; v(k)) ≤ B (38)

.

Another lemma is given as an extension to Lemma 16.

Lemma 24. Suppose A1, A2, ..., Ad and D1, D2, ..., Dd are integer-value random variables.
If

1

d

d󰁛

k=1

H(Ak|Dk) ≥
1

2
,

then there exist a constant c3 > 0 such that

1

d

d󰁛

k=1

E(Ak −Dk)
2 ≥ c3.

From now on we set δ = σn󰁴
256(B/d+1−log(⌊ 1

σn
⌋))

, and threat θ is a random variable drawn

from U(Gd
δ). It is easy to verify that δ < σn

8 . So from Lemma 23 we know that, for any

θ̂ ∈ A(b1:m) ∩Gd
δ , one of the following two inequalities must hold:

d󰁛

k=1

I(θ̂;u(k)) ≤ d

󰀕
log(⌊ 1

σn
⌋)− 1

󰀖
or

d󰁛

k=1

I(θ̂; v(k)) ≤ 64dδ2

σ2
n

󰀕
B/d+ 1− log(⌊ 1

σn
⌋)
󰀖
.

Case 1.1:
󰁓d

k=1 I(θ̂;u
(k)) ≤ d

󰀓
log(⌊ 1

σn
⌋)− 1

󰀔
.

Note that for any k = 1, 2, ...d, u(k) is uniformly distributed on {1, 2, ..., ⌊ 1
σn

⌋}. This

implies H(u(k)) = log⌊ 1
σn

⌋ for all k.

Note that û(k) is a function of θ̂ for all k, by data processing inequalities we have
I(û(k), u(k)) ≤ I(θ;u(k)) for all k. Therefore, we can get

d󰁛

k=1

H(u(k)|û(k)) =
d󰁛

k=1

󰀓
H(u(k))− I(û(k);u(k))

󰀔
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≥
d󰁛

k=1

H(u(k))−
d󰁛

k=1

I(θ̂, u(k))

≥ d log⌊ 1

σn
⌋ − d

󰀕
log(⌊ 1

σn
⌋)− 1

󰀖
= d.

û(k) and u(k) only take integer values. So we can apply Lemma 24 to get

d󰁛

k=1

(û(k) − u(k))2 ≥ c3d. (39)

Case 1.2:
󰁓d

k=1 I(θ̂; v
(k)) ≤ 64dδ2

σ2
n

󰀓
B/d+ 1− log(⌊ 1

σn
⌋)
󰀔
.

By data-processing inequality, plug in δ = σn󰁴
256(B/d+1−log(⌊ 1

σn
⌋))

, we have

d󰁛

k=1

I(v̂(k); v(k)) ≤
d󰁛

k=1

I(θ̂; v(k)) ≤ d

4
.

For all k, v(k) is a Bernoulli random variable with mean 1
2 , so H(v(k)) = 1. We can get

d󰁛

k=1

H(v(k)|v̂(k)) =
d󰁛

k=1

󰀓
H(v(k))− I(v̂(k); v(k))

󰀔
≥ 3

4
d.

Apply Lemma 24, and note that v̂(k), v(k) only take values in {0, 1}, we have

d󰁛

k=1

I{v̂(k) ∕=v(k)} =
d󰁛

k=1

(v̂(k) − v(k))2 ≥ c3d. (40)

Combine (39) for Case 1.1 and (40) for Case 1.2 together, we have for any θ̂ ∈ A(b1:m)∩
Gd

δ ,

max

󰀫
Eθ∼U(Gd

δ)

σ2
n

16

d󰁛

k=1

(û(k) − u(k))2,Eθ∼U(Gd
δ)

δ2

4

d󰁛

k=1

I{v̂(k) ∕=v(k)}

󰀬
≥ c3dmin{σ

2
n

16
,
δ2

4
}

=
c3dσ

2
n

1024(B/d+ 1− log(⌊ 1
σn

⌋))

≥ c3
2048

· dσ2
n

(B/d− log 1
σn

)
.

(41)
Combine (37) and (41) we get the minimax lower bound

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]d

󰀂θ̂ − θ󰀂2 ≥ c3
2048

· dσ2
n

(B/d− log 1
σn

)
.

Case 2: B/d ≥ log 1
σn

+ (m′ ∨ 2)
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In this case we assign a two-point prior θ ∼ U({0, δ}d), where δ ≤ 1 is a parameter that
will be defined later.

Then we have

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]d

󰀂θ̂ − θ󰀂2 ≥ 1

4
inf

θ̂∈A(b1:m)∩{0,δ}d
Eθ∼U({0,δ}d)󰀂θ̂ − θ󰀂2

=
δ2

4
inf

θ̂∈A(b1:m)∩{0,δ}d
Eθ∼U({0,δ}d)

d󰁛

k=1

(
θ̂(k)

δ
− θ(k)

δ
)2.

(42)

From now on we treat θ as a random variable drawn from U({0, δ}d), and assume θ̂ is an
arbitrary distributed estimator from protocol A(b1:m) ∩ {0, δ}d. Now we provide a lemma
which can be viewed as “multidimensional strong data processing inequality”:

Lemma 25 (Multidimensional strong data processing inequality). Suppose T = (T (1), T (2), ..., T (d))
where each coordinate is an i.i.d Bernoulli random variable with mean 1

2 . Let µ0 be a d-
dimensional vector and ∆ > 0 be a positive real number. Let X be a d-dimensional Gaussian
random variable where X(1), X(2), ..., X(d) are independent with distribution

X(k) ∼ N(µ
(k)
0 + T (k)∆,σ2

n).

Let Z be a discrete random variable such that T → X → Z is a Markov chain, i.e.
Z ⊥ T |X. Then the following multidimensional strong data processing inequality holds:

I(T ;Z) ≤ 64

󰀕
∆

σn

󰀖2

I(X;Z). (43)

Let T be a vector where T (k) ≜ θ(k)/δ. Recall that θ ∈ {0, δ}d, thus for any 1 ≤ i ≤ m,
on the i− th machine, T → Xi → Zi forms a Markov chain satisfying conditions in Lemma
25 with ∆ = δ. Therefore, we can apply Lemma 25 to get

I(θ;Zi) ≤ 64(
δ

σn
)2I(Xi;Zi) ≤ 64(

δ

σn
)2bi. (44)

where the last inequality is due to I(Xi;Zi) ≤ H(Zi) ≤ bi.
Also by data processing inequality, we have for any 1 ≤ i ≤ m,

I(θ;Zi) ≤ I(θ;Xi) = d · I(θ(1), X(1)
i ) ≤ d · δ2

4σ2
n

. (45)

where the last inequality is due to the facts I(θ(1), X
(1)
i ) = H(X(1))−H(X(1)|θ(1)) and an

upper bound of differential entropy H(X(1)) proved in Michalowicz et al. (2008):

H(X(1)) ≤ 1

2
ln(2πeσ2

n) +
δ2

4σ2
n

= H(X(1)|θ(1)) + δ2

4σ2
n

.

Apply bound (44) for machines with bi < d and apply bound (45) for those machines
with bi ≥ d, after taking the summation we can get

d󰁛

i=1

I(θ;Zi) ≤
d󰁛

i=1

󰀕
64

δ2

σ2
n

biI{bi<d} +
dδ2

4σ2
n

I{bi≥d}

󰀖
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≤ 64
δ2

σ2
n

d󰁛

i=1

min{bi, d}

= 64
dδ2

σ2
n

m′.

Then we provide a technical lemma which is a decomposition on the mutual information
between multiple random variables.

Lemma 26. Suppose A and D are two random variables. Y1, Y2, ..., Ym are mutually inde-
pendent random variables conditional on A and D. Then we have

I(Y1, Y2, ..., Ym;A|D) ≤
m󰁛

i=1

I(Yi;A|D).

Particularly, if D = ∅, i.e. Y1, Y2, ..., Ym are mutually independent random variables
conditional on A. Then we have

I(Y1, Y2, ..., Ym;A) ≤
m󰁛

i=1

I(Yi;A).

Note that X1, X2, ..., Xm are independent conditional on θ, thus Z1, Z2, ..., Zm are also
independent conditional on θ, apply Lemma 26 and data processing inequality, we have

I(θ; θ̂) ≤ I(θ;Z1:m) ≤
m󰁛

i=1

I(θ;Zi).

So now we have

I(θ; θ̂) ≤ 64
dδ2

σ2
n

m′. (46)

Set δ = 1
16

󰀕󰁴
σ2
n

m′ ∧ 1

󰀖
. It is easy to verify that δ < 1 is a feasible value. From (46), we

have I(θ; θ̂) ≤ d
4 . Note that θ(1), θ(2), ..., θ(k) are independent Bernoulli variables with mean

1
2 , we have

d󰁛

k=1

H(θ(k)|θ̂(k)) =
d󰁛

k=1

[H(θ(k))− I(θ(k); θ̂(k))]

≥
d󰁛

k=1

[1− I(θ(k); θ̂)]

≥ d− I(θ; θ̂) ≥ 3

4
d

(47)

where the first inequality is due to H(θ(k)) = 1 and data processing inequality; the second
inequality is due to the following Lemma 27.

Lemma 27. If A is a random variable and Y1, Y2, ..., Yd are independent random variables,
then

I(A; (Y1, Y2, ..., Yd)) ≥
d󰁛

k=1

I(A;Yk).
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Finally, note that θ(k)

δ and θ̂(k)

δ only take integer values for all 1 ≤ k ≤ d. Thus we can
apply Lemma 24 to get

E
d󰁛

k=1

(
θ̂(k)

δ
− θ(k)

δ
)2 ≥ c3d.

Substitute the above inequality into (42). we prove the minimax lower bound

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]d

󰀂θ̂ − θ󰀂2 ≥ c3δ
2d

4
=

c3
1024

· d
󰀕
σ2
n

m′ ∧ 1

󰀖
.

Case 3: B/d < log 1
σn

+ 2

Let S = 2⌊B/d⌋+2. Define

KS ≜ { i

S
: i = 0, 1, 2, ..., S − 1}.

We are going to assign a uniform prior on Kd
S ≜ KS ×KS × ... ×KS to θ. Let U(Kd

S)
denote the uniform distribution on Kd

S . Similar as (29) we have

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]d

󰀂θ̂ − θ󰀂2 ≥ 1

4
inf

θ̂∈A(b1:m)∩Kd
S

Eθ∼U(Kd
S)
󰀂θ̂ − θ󰀂2

=
1

4S2
inf

θ̂∈A(b1:m)∩Kd
S

Eθ∼U(Kd
S)

d󰁛

k=1

(Sθ̂(k) − Sθ(k))2.

(48)

From now on we treat the parameter θ as a random variable drawn from the prior
distribution U(Kd

S), and θ̂ is an arbitrary distributed estimator from protocol A(b1:m)∩Kd
S .

Note that by data processing inequality, for any θ̂ ∈ A(b1:m),

I(θ̂; θ) = I(θ̂(Z1, Z2, ..., Zm); θ)

≤ I(Z1, Z2, ..., Zm; θ)

≤ H(Z1, Z2, ..., Zm)

≤
m󰁛

i=1

H(Zi) ≤
m󰁛

i=1

bi = B.

By θ ∼ U(Kd
S) we have H(θ(k)) = logS for all k. Similar as (47), we can apply Lemma

27 to get

d󰁛

k=1

H(θ(k)|θ̂(k)) =
d󰁛

k=1

[H(θ(k))− I(θ(k); θ̂(k))]

≥
d󰁛

k=1

[logS − I(θ(k); θ̂)]

≥ B + d− I(θ; θ̂) ≥ d.
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Note that Sθ̂ and Sθ both take integer values in {0, 1, 2, ..., S − 1}. Therefore, we can
apply Lemma 24 to have

E(Sθ̂ − Sθ)2 ≥ c3d.

Plug into (48) we can obtain the desired lower bound

inf
θ̂∈A(b1:m)

sup
θ∈[0,1]d

󰀂θ̂ − θ󰀂2 ≥ c3d

4
2−2(⌊B/d⌋+2) ≥ c3

64
2−2B/d · d.

Appendix D. Proof of Theorem 10

Case 1: B < d. We first consider the case when B < d. When B < d we have
m′ ≤ B/d < 1. This implies we have either B/d < log 1

σn
+ 2 or B/d > log 1

σn
+m′ ∨ 2.

If B/d < log 1
σn

+ 2, the trivial bound

sup
θ∈[0,1]d

E󰀂θ̂D − θ󰀂2 ≤ d ≤ C · 2−2B/dd

holds for any C > 4.

If B/d > log 1
σn

+m′ ∨ 2, because m′ ≤ B/d < 1 we have σn > 1. So σ2
n

m′ > 1, thus we
have

sup
θ∈[0,1]d

E󰀂θ̂D − θ󰀂2 ≤ d ≤ C · d
󰀕
σ2
n

m′ ∧ 1

󰀖

holds as long as C ≥ 1.

Case 2: B ≥ d. In this case we assume B ≥ d in the following discussion. First, we
are going to show for any k = 1, 2, ...,m:

• There are at least ⌊m′⌋ machines having positive b
(k)
i , i.e.

#{1 ≤ i ≤ m : b
(k)
i ≥ 1} ≥ ⌊m′⌋. (49)

• The total communication budgets for estimating k-th coordinate is at least ⌊B/d⌋
bits, i.e.

m󰁛

i=1

b
(k)
i ≥ ⌊B/d⌋. (50)

Since b1 ≤ b2 ≤ ... ≤ bm, let L ≥ 0 be the index that

bi ≤ d− 1 for all i ≤ L; bi ≥ d for all i ≥ L+ 1.

Fix any 1 ≤ k ≤ d, for all i ≤ L we have b
(k)
i ≤ 1. And we have

L󰁛

i=1

b
(k)
i =

󰀧󰁓L
j=1 bj − k

d

󰀨
−
󰀙
−k

d

󰀚
≥

󰀧󰁓L
j=1 bj

d

󰀨
.
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Thus

#{1 ≤ i ≤ L : b
(k)
i ≥ 1} ≥

󰀧󰁓L
j=1 bj

d

󰀨
.

On the contrary, for all i ≥ L+ 1 we have b
(k)
i ≥ 1, thus we have

#{L+ 1 ≤ i ≤ m : b
(k)
i ≥ 1} = m− L.

Combine the two inequalities above we get

#{1 ≤ i ≤ m : b
(k)
i ≥ 1} ≥

󰀧󰁓L
j=1 bj

d

󰀨
+ (m− L) =

󰀧󰁓m
j=1 bj ∧ d

d

󰀨
= ⌊m′⌋.

So we have proved (49)
Moreover, (50) can be proved by

m󰁛

i=1

b
(k)
i =

󰀧󰁓m
j=1 bj − k

d

󰀨
−

󰀙
−k

d

󰀚
≥

󰀙
B

d

󰀚
.

Note that θ̂
(k)
D is obtained by the MODGAME procedure with communication budgets

b
(k)
1 , b

(k)
2 , ..., b

(k)
m . B ≥ d implies B/d ≥ 1 and m′ ≥ 1. By (49), (50) and Theorem 1, we

have

sup
θ(k)∈[0,1]

E(θ̂(k)D − θ(k))2 ≤

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

C · 2−2⌊B/d⌋ if ⌊B/d⌋ < log 1
σn

+ 2

C · σ2
n

(⌊B/d⌋−log 1
σn

)
if log 1

σn
+ 2 ≤ ⌊B/d⌋ < log 1

σn
+ ⌊m′⌋

C · σ2
n

⌊m′⌋ if ⌊B/d⌋ ≥ log 1
σn

+ ⌊m′⌋

So finally we can conclude

sup
θ∈[0,1]d

E󰀂θ̂D − θ󰀂2 = sup
θ∈[0,1]d

m󰁛

k=1

E(θ̂(k)D − θ(k))2

≤
m󰁛

k=1

sup
θ∈[0,1]d

E(θ̂(k)D − θ(k))2

≤

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

C · 2−2⌊B/d⌋d if ⌊B/d⌋ < log 1
σn

+ 2

C · dσ2
n

(⌊B/d⌋−log 1
σn

)
if log 1

σn
+ 2 ≤ ⌊B/d⌋ < log 1

σn
+ ⌊m′⌋

C · d σ2
n

⌊m′⌋ if ⌊B/d⌋ ≥ log 1
σn

+ ⌊m′⌋

The above inequality is equivalent to (16) by properly scaling the constant C.

Appendix E. Proof of Theorem 4

The proof is almost the same as the proof of Theorem 1. Here we only focus on critical
points that make the proof go through.
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Based on the subgaussian tail bound of Xi, we can finish the proof for the case B <
log 1

σn
+ 2, and show that Lemma 20 and 21 for the case log 1

σn
+ 2 ≤ B < log 1

σn
+m still

hold with the same proof as well.
So now it remains to show the Lemma 22 in order to complete the proof. The only

difference is to show

E

󰀣
1

u

u󰁛

i=1

Vi − Φh(θ)

󰀤2

≤ C

u
. (51)

still holds true for some C > 0 under the condition of Theorem 4.
Define

Φ̃h(θ) ≜ EX∼P̄n
θ
h(X) =

󰁝 ∞

−∞
h(y)dP̄n

θ (y).

Note that EVi = Φ̃h(θ) thus we have

E

󰀣
1

u

u󰁛

i=1

Vi − Φ̃h(θ)

󰀤2

≤ 1

4u

Also note that u ≤ m, hence in order to show (51) it suffices to show

|Φ̃h(θ)− Φh(θ)| ≤
C√
m

(52)

holds for all θ with some C > 0. The above inequality can be proved by Hölder’s inquality:

|Φ̃h(θ)− Φh(θ)| = |EX∼P̄n
θ
h(X)− EX∼N(θ,σ2

n)
h(X)| ≤ TV (P̄n

θ , N(θ,σ2
n)) · 󰀂h󰀂∞ ≤ D√

m
.

Appendix F. Proof of Lemma 3

First we state strong data processing inequality on Gaussian channels as a lemma:

Lemma 28 (Strong data processing inequality). Suppose T is a Bernoulli random variable
taking values in {0, 1} with probability 1

2 each. µ0 < µ1 ∈ R. X is a normal variable with
mean µT and variance σ2

n

X ∼ N(µT ,σ
2
n).

Let Z be a finite, discrete random variable such that T → X → Z is a Markov chain,
i.e. Z ⊥ T |X. Then the strong data processing inequality holds:

I(T ;Z) ≤ 64(
µ1 − µ0

σn
)2I(X;Z). (53)

Fix any i ∈ {0, 1, ...,m}. Conditional on u = j for any j ∈ {0, 1, ..., ⌊ 1
σn

⌋ − 1}, we have

P(v = 0|u = j) = P(v = 1|u = j) =
1

2
and Xi|u=j ∼ N(jσn + vδ,σ2

n).

The fact Zi = Πi(Xi) implies v → Xi → Zi forms a Markov chain. Therefore, apply
Lemma 28 we have

I(v;Zi|u = j) ≤ 64δ2

σ2
n

I(Xi;Zi|u = j).
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Further we can get

I(v;Zi|u) =
󰁛

j∈{0,1,...,⌊ 1
σn

⌋−1}

P(u = j)I(v;Zi|u = j)

≤
󰁛

j∈{0,1,...,⌊ 1
σn

⌋−1}

64δ2

σ2
n

P(u = j)I(Xi;Zi|u = j)

=
64δ2

σ2
n

I(Xi;Zi|u).

(54)

From the above inequality we have

H(Zi) = I(Zi;u) +H(Zi|u)
≥ I(Zi;u) + I(Zi;Xi|u)

≥ I(Zi;u) +
σ2
n

64δ2
I(Zi; v|u)

= I(Zi;u, v) + (
σ2
n

64δ2
− 1)I(Zi; v|u).

(55)

Denote Z1:m be the tuple (Z1, Z2, ..., Zm). Note that X1, X2, ..., Xm are independent
conditional on u and v, thus Z1, Z2, ..., Zm are also independent conditional on u and v.
Therefore by Lemma 26 we have

I(Z1:m;u, v) ≤
m󰁛

i=1

I(Zi;u, v). (56)

and

I(Z1:m; v|u) ≤
m󰁛

i=1

I(Zi; v|u). (57)

Now take summation over (55). Note that δ < σn
8 suggest that σ2

n
64δ2

− 1 > 0, applying
(56) and (57) we have

m󰁛

i=1

H(Zi) ≥
m󰁛

i=1

I(Zi;u, v) + (
σ2
n

64δ2
− 1)

m󰁛

i=1

I(Zi; v|u)

≥ I(Z1:m;u, v) + (
σ2
n

64δ2
− 1)I(Z1:m; v|u)

= I(Z1:m;u) +
σ2
n

64δ2
I(Z1:m; v|u).

u ⊥ v suggests H(v|u) = H(v), thus we can get

I(Z1:m; v|u) = H(v|u)−H(v|Z1:m, u) ≥ H(v)−H(v|Z1:m) = I(Z1:m; v).

θ̂ is a function on Z1:m, by data processing inequality we have

I(θ̂;u) ≤ I(Z1:m;u) and I(θ̂; v) ≤ I(Z1:m; v).
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Combine the above three inequalities, we have

I(θ̂;u) +
σ2
n

64δ2
I(θ̂; v) ≤

m󰁛

i=1

H(Zi).

The proof is completed by the bound
󰁓m

i=1H(Zi) ≤
󰁓m

i=1 bi = B.

Appendix G. Proof of Lemma 17

From (30) we know that
󰁖K

k=1Gk is a lattice on [0, 1] of interval length 2−K , and
G1, G2, ..., GK are mutually disjoint. So there is at most one k ∈ {0, 1, ...,K} satisfying
d(x,Gk) ≤ 2−(K+2).

If there is no k ∈ {0, 1, ...,K} satisfying d(x,Gk) ≤ 2−(K+2), then we know that zk =
gk(x) for all k ∈ {0, 1, ...,K}. This apparently implies x ∈ DecK(z1, z2, ..., zK) thus

d(x,DecK(z1, z2, ..., zK)) = 0.

If there is one k ∈ {0, 1, ...,K} satisfying d(x,Gk) ≤ 2−(K+2), denote this number as k′,
and denote the nearest point in Gk′ to x as x′. Now we know that zk = gk(x) for all k ∕= k′.
If zk′ = gk′(x), then similar as above we have x ∈ DecK(z1, z2, ..., zK); If zk′ ∕= gk′(x), this
implies

x ∈ DecK(z1, z2, ..., zk′−1, 1− zk′ , zk′+1, ..., zK).

Note that x′ ∈ Gk′ suggests x
′ is a change-point for gk′ , and also note that x′ is a endpoint

of the interval DecK(z1, z2, ..., zk′−1, 1− zk′ , zk′+1, ..., zK) (because x′ is the nearest point in
the lattice

󰁖K
k=1Gk to x), so it is not difficult to conclude that DecK(z1, z2, ..., zk′−1, 1 −

zk′ , zk′+1, ..., zK) and DecK(z1, z2, ..., zk′ , ..., zK) are adjacent intervals joint at x′. So in this
case we have

d(x,DecK(z1, z2, ..., zK)) = d(x, x′) ≤ 2−(K+2).

Appendix H. Proof of Lemma 18

We only prove (31) here. The proof for (32) is similar.
When |X−x| < d(x,Gk), there is no change-point in Gk between X and x thus gk(x) =

gk(X) = zk. So we have

P(zk ∕= gk(x)) ≤ P(|X − x| ≥ d(x,Gk)) ≤ 2e
− d(x,Gk)2

2σ2
n .

where the second inequality comes from the Gaussian tail bound for X ∼ N(x,σ2
n).

Appendix I. Proof of Lemma 19

Note that DecK(z1, z2, ..., zK) ⊆ DecL(z1, z2, ..., zL) and the length of DecL(z1, z2, ..., zL)
is 2−L, the length of DecK(z1, z2, ..., zL) is 2

−K , so we have

d(x,DecK(z1, z2, ..., zK)) ≤ d(x,DecL(z1, z2, ..., zL)) + (2−L − 2−K).
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This implies

P(d(x,DecK(z1, z2, ..., zK)) ≥ 5

4
2−L − 2−K) ≤ P(d(x,DecL(z1, z2, ..., zL)) ≥ 2−(L+2)).

Apply Lemma 17 and the union bound, then apply lemma 18, we have

P(d(x,DecL(z1, z2, ..., zL)) ≥ 2−(L+2)) ≤ P(∃ k ≤ L : d(x,Gk) > 2−(L+2), zk ∕= gk(x))

≤
󰁛

k≤L:d(x,Gk)>2−(L+2)

P(zk ∕= gk(x))

≤
L󰁛

k=1

2e
− d(x,Gk)2

2σ2
n I{d(x,Gk)>2−(L+2)}

≤
L󰁛

k=1

󰁛

y∈Gk

2e
− (x−y)2

2σ2
n I{|x−y|>2−(L+2)}

=
󰁛

y∈
󰁖L

k=1 Gk

2e
− (x−y)2

2σ2
n I{|x−y|>2−(L+2)}.

where the last equality is due to G1, G2, ..., GL are mutually disjoint.
From (30) we know

󰁖L
k=1Gk is a lattice on [0, 1] of interval length 2−L. Also note that

2−L ≤ 2−K ≤ 1
4σn, thus we have

󰁛

y∈
󰁖L

k=1 Gk

2e
− (x−y)2

2σ2
n I{|x−y|>2−(L+2)} ≤ 4

∞󰁛

j=0

e
− (2−(L+2)+j·2−L)2

2σ2
n

≤ 4e
− 2−2(L+2)

2σ2
n

∞󰁛

j=0

e
−j2 2−2L

2σ2
n

≤ 4e
− 2−2(L+2)

2σ2
n

∞󰁛

j=0

e−j2/32

= C1e
− 2−2(L+2)

2σ2
n .

where C1 ≜ 4
󰁓∞

j=0 e
−j2/32 is summable.

Appendix J. Proof of Lemma 20

If I1 = [0, 1], in this case we have Ĩ1 = I ′1 = [0, 1] thus the lemma automatically holds.
So now we assume I1 is a proper subset of [0, 1]. In this case we have ⌊log 1

σn
⌋−⌊log u⌋ ≥ 4.

For simplicity of notations we denote a = ⌊log 1
σn

⌋ − ⌊log u⌋ − 3. Recall the definition of I ′1
in (7)

I ′1 = Deca(U1, U2, ..., Ua)

and the definition of I1 in (33)

Ĩ1 = {x : d(x, I ′1) ≤
1

4
· 2−a}.
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Note that d(θ, I ′) ≤ 1, so we have the decomposition

E((θ̂D − θ)2I{θ/∈Ĩ1}) =E((θ̂D − θ)2I{d(θ,I′1)> 1
4
·2−a})

≤E((θ̂D − θ)2I{ 1
4
·2−a<d(θ,I′1)≤

5
4
·2−a+1}) +

a−1󰁛

k=1

E((θ̂D − θ)2I{ 5
4
·2−a+k<d(θ,I′1)≤

5
4
·2−a+k+1})

≤P(d(θ, I ′1) >
1

4
· 2−a) · (5

4
· 2−a+1 + 2−a+1)2

+

a−1󰁛

k=1

P(d(θ, I ′1) >
5

4
· 2−a+k) · (5

4
· 2−a+k+1 + 2−a+1)2

≤25P(d(θ, I ′1) >
1

4
· 2−a) · 2−2a + 25

a−1󰁛

k=1

P(d(θ, I ′1) >
5

4
· 2−a+k) · 2−2a+2k,

(58)
where the second inequality is due to the fact that

|θ̂D − θ| ≤ d(θ, I1) + 2−a+1 ≤ d(θ, I ′1) + 2−a+1

because θ̂D ∈ I1 and the length of I1 is 2−a+1.

Note that a ≤ log 1
σn

− log u − 2 ≤ log 1
σn

− 2 , thus we can apply Lemma 19 to right
hand side of (58) then we have

E((θ̂D − θ)2I{θ/∈Ĩ1}) ≤ 25C1

a−1󰁛

k=0

e
− 2−2(a−k+2)

2σ2
n · 2−2a+2k

≤ 25C1 · e
− 2−2(a+2)

2σ2
n · 2−2a

󰀣
1 +

a−1󰁛

k=1

e
− 2−2(a−k+2)−2−2(a+2)

2σ2
n · 22k

󰀤

≤ 25C1 · e
− 2

−2(log 1
σn

−logn)

2σ2
n · 2−2(log 1

σn
−logn−4)

󰀣
1 +

a−1󰁛

k=1

e
− 2−2a+2k−5

2σ2
n · 22k

󰀤

≤ 25C1 · e−
n2

2 · 256n2σ2
n ·

󰀣
1 +

a−1󰁛

k=1

e−22k−1 · 22k
󰀤

≤ C3σ
2
n

n
.

where C3 ≜ 6400C1 ·
󰀕
supx≥1 x

3e−
x2

2

󰀖
·
󰀓
1 +

󰁓∞
k=1 e

−22k−1 · 22k
󰀔
is a finite positive constant.

Appendix K. Proof of Lemma 21

In the following proof we focus on the case ⌊log 1
σn

⌋ − ⌊log u⌋ ≥ 4, i.e. I1 is a proper

subset of [0, 1]. The proof of the case ⌊log 1
σn

⌋ − ⌊log u⌋ < 4 is almost the same except
some modification on notations and definitions (the constructed of nested intervals will be
Deck(W⌊log u⌋−⌊log 1

σn
⌋+5,W⌊log u⌋−⌊log 1

σn
⌋+6, ...,W⌊log u⌋−⌊log 1

σn
⌋+4+k) instead).
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When n = 1 we have I1 ⊂ I2 so the lemma automatically holds. Therefore we assume
n ≥ 2 during the following proof.

For simplicity we still denote a = ⌊log 1
σn

⌋ − ⌊log u⌋ − 3. Define

F1 ≜ G⌊log 1
σn

⌋−⌊log u⌋−2, F2 ≜ Ḡ⌊log 1
σn

⌋−⌊log u⌋−2,

and Fk ≜ G⌊log 1
σn

⌋−⌊log u⌋−4+k for k ≥ 3.

By definition of f in (6), we know for all k, Fk is the change points set for fk. Also,
from (30) we have for all 2 ≤ K ≤ ⌊log u⌋,

K󰁞

k=1

Fk = Ḡ⌊log 1
σn

⌋−⌊log u⌋−3+K and F1, F2, ..., Fk are mutually disjoint. (59)

Now let’s define J0 ≜ I1, and for any 1 ≤ k ≤ ⌊log u⌋,

Jk ≜ {x ∈ I1 : f1(x) = W1, f2(x) = W2, ..., fk(x) = Wk}.

By definition we know
I ′2 = J⌊log u⌋.

Next we are going to provide several claims and show the proof directly after each claim.

Claim 1. For any 0 ≤ k ≤ ⌊log u⌋, Jk is an interval of length 2−(a+k−1) and they are
nested:

I ′2 = J⌊log u⌋ ⊂ J⌊log u⌋−1 ⊂ ... ⊂ J0 = I1.

Note that J0 = I1 is an interval of the form [(2j − 1) · 2−(a+1), (2j + 3) · 2−(a+1)) for
some j ∈ Z, whose length is 2−(a−1). It is not difficult to see that J1 ⊂ J0 is an interval
of the form [(2j − 1) · 2−(a+1), (2j + 1) · 2−(a+1)) for some j ∈ Z, whose length is 2−a...
Further induction can prove that for all 2 ≤ k ≤ ⌊log u⌋, Jk ⊂ Jk−1 is an interval of the
form [j · 2−(a+k−1), (j + 1) · 2−(a+k−1)] for some j ∈ Z, whose length is 2−(a+k−1). Thus the
claim is proved.

Claim 2. Fix integer 2 ≤ K ≤ ⌊log u⌋. If θ ∈ Ĩ1, and

Wk = fk(θ) for all 1 ≤ k ≤ K satisfying d(θ, Fk) ≥ 2−(a+K)

Then we have
d(x, JK) ≤ 2−(a+K).

This claim is an analog to Lemma 17. Let’s assume the conditions stated in the claim
hold. From equation (59) we know that

󰁖K
k=1 Fk is a lattice on [0, 1] of interval length

2a+K−1. Also note that F1, F2, ..., FK are mutually disjoint. So there is at most one set
F ′ ∈ {F1, F2, ..., FK} satisfying d(θ, F ′) < 2−(a+K).

If there is no F ′ satisfying d(θ, F ′) < 2−(a+K), then we know that Wk = fk(θ) for all
1 ≤ k ≤ K. This apparently implies θ ∈ JK thus

d(θ, JK) = 0.
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If there is one F ′ satisfying d(θ, F ′) < 2−(a+K), denote the nearest point in F ′ to θ as
θ′. Note that from K ≥ 2 and θ ∈ Ĩ1, we can point out that θ′ is NOT one of the two
endpoints of the interval I1 (this is important!). So similar as the proof of Lemma 17, we
can show that JK must be one of the two adjacent intervals joint at θ′. Thus we have

either θ ∈ JK or d(θ, JK) = d(θ, θ′) ≤ 2−(a+K).

Therefore we can conclude that

d(θ, JK) ≤ 2−(a+K)

if the conditions stated in the claim hold.

Claim 3. For all 1 ≤ k ≤ ⌊log u⌋ we have

P(Wk ∕= fk(θ)) ≤ 2
−
󰀕

d(θ,Fk)2

4σ2
n

− 3
2

󰀖
⌊log u⌋

. (60)

This claim is an analog to Lemma 18. Because W1,W2, ...,W⌊log u⌋ are generated by
majority voting, the tail bounds are tighter compared to the tail bound in Lemma 18.

For any 1 ≤ k ≤ ⌊log u⌋, recall that Wk is calculated by the majority voting:

Wk = I{󰁓⌊log u⌋
j=1 Wk,j≥ 1

2
⌊log u⌋}.

So we have

P(Wk ∕= fk(θ)) = P

󰀳

󰁃 1

⌊log u⌋

⌊log u⌋󰁛

j=1

I{Wk,j ∕=fk(θ)} ≥
1

2

󰀴

󰁄 . (61)

Note that Wk,1,Wk,2, ...,Wk,⌊log u⌋ come from different machines, so I{Wk,j ∕=fk(θ)} (j =
1, 2, ..., ⌊log u⌋) are i.i.d Bernoulli variables. From Lemma 18 we have an upper bound on
their success probabilities:

P(Wk,j ∕= fk(θ)) ≤ 2e
− d(θ,Fk)2

2σ2
n for all j = 1, 2, ..., ⌊log u⌋.

When d(θ, Fk)
2 ≤ 6σ2

n the bound (60) is trivial. So in the following proof we assume
d(x, Fk)

2 ≥ 6σ2
n. This implies

P(Wk,j ∕= fk(θ)) ≤ 2e−3 <
1

2
.

For simplicity denote p ≜ 2e
− d(θ,Fk)2

2σ2
n . Apply Chernoff-Hoeffding bound to the right

hand side of (61), we have

P(Wk ∕= fk(θ)) ≤ 2
−
󰀓

1
2
log

1/2
p

+ 1
2
log

1/2
1−p

󰀔
⌊log u⌋

≤ 2−(−
1
2
log p−1)⌊log u⌋

= 2
−
󰀕

1
2
log e

d(θ,Fk)2

2σ2
n

− 3
2

󰀖
⌊log u⌋

≤ 2
−
󰀕

d(θ,Fk)2

4σ2
n

− 3
2

󰀖
⌊log u⌋

.
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Claim 4. There exist a constant C ′
4 > 0 such that for any 2 ≤ K ≤ ⌊log u⌋ we have

P(θ ∈ Ĩ1, d(θ, I
′
2) ≥

3

2
· 2−(a+K−1) − 2−(a+⌊log u⌋−1)) ≤ C ′

42
−
󰀕

2−2(a+K)

4σ2
n

− 3
2

󰀖
⌊log u⌋

.

This claim is an analog to Lemma 19. Note that by Claim 1 we have I ′2 ⊆ JK and the
length of JK is 2−(a+K−1), the length of I ′2 is 2−a+⌊log u⌋−1, so we have

d(θ, I ′2) ≤ d(θ, JK) + (2−(a+K−1) − 2−a+⌊log u⌋−1).

This implies

P(θ ∈ Ĩ1, d(θ, I
′
2) ≥

3

2
· 2−(a+K−1) − 2−a+⌊log u⌋−1) ≤ P(θ ∈ Ĩ1, d(θ, JK) ≥ 2−(a+K)).

Apply Claim 2 and the union bound, then apply Claim 3, we have

P(θ ∈ Ĩ1, d(θ, JK) ≥ 2−(a+K)) ≤P
󰀓
∃k ≤ K : d(θ, Fk) ≥ 2−(a+K),Wk ∕= fk(θ)

󰀔

≤
K󰁛

k=1

2
−
󰀕

d(θ,Fk)2

4σ2
n

− 3
2

󰀖
⌊log u⌋

I{d(θ,Fk)≥2−(a+K)}

≤
󰁛

y∈
󰁖K

k=1 Fk

2
−
󰀕

(θ−y)2

4σ2
n

− 3
2

󰀖
⌊log u⌋

I{|θ−y|≥2−(a+K)}

where the last inequality is due to F1, F2, ..., FK are mutually disjoint.

From (59) we know
󰁖K

k=1 Fk is a lattice on [0,1] of interval length 2−(a+K−1). Also note

that 2−(a+K−1) ≥ 2−(a+⌊log u⌋−1) = 2−⌊log 1
σn

⌋+3 ≥ 4σn, thus we have

󰁛

y∈
󰁖K

k=1 Fk

2
−
󰀕

(θ−y)2

4σ2
n

− 3
2

󰀖
⌊log u⌋

I{|θ−y|≥2−(a+K)}

≤ 2

∞󰁛

j=0

2
−
󰀕

(2−(a+K)+j·2−(a+K−1))2

4σ2
n

− 3
2

󰀖
⌊log u⌋

≤ 2 · 2
−
󰀕

2−2(a+K)

4σ2
n

− 3
2

󰀖
⌊log u⌋

·

󰀳

󰁃
∞󰁛

j=0

2
−
󰀕

j2·2−2(a+K−1)

4σ2
n

󰀖
⌊log u⌋

󰀴

󰁄

≤ 2 · 2
−
󰀕

2−2(a+K)

4σ2
n

− 3
2

󰀖
⌊log u⌋

·

󰀳

󰁃
∞󰁛

j=0

2−4j2⌊log u⌋

󰀴

󰁄

≤ C ′
42

−
󰀕

2−2(a+K)

4σ2
n

− 3
2

󰀖
⌊log u⌋

where C ′
4 ≜ 2

󰀓󰁓∞
j=0 2

−4j2
󰀔
is summable.
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Proof of Lemma 21: Next we are going to prove Lemma 21. From Claim 1 we know
that I ′2 = J⌊log u⌋ is an interval. Note that θ̂D ∈ I ′2 ⊆ I1 and the length of I1 is 2−(a−1).

Therefore, when θ ∈ Ĩ1 we have

d(θ, I ′2) ≤ 2−(a−1)

By chaining and apply Claim 3

E
󰀓
(θ̂D − θ)I{θ∈Ĩ1,θ/∈I2}

󰀔
=E

󰀓
(θ̂D − θ)2I{θ∈Ĩ1,d(θ,I′2)>2−(a+⌊log u⌋)}

󰀔

≤E
󰀓
(θ̂D − θ)2I{θ∈Ĩ1,2−(a+⌊log u⌋)<d(θ,I′2)≤

3
2
·2−(a+⌊log u⌋−2)}

󰀔

+

⌊log u⌋−1󰁛

k=3

E
󰀓
(θ̂D − θ)2I{θ∈Ĩ1, 32 ·2−(a+k−1)<d(θ,I′2)≤

3
2
·2−(a+k−2)}

󰀔

+ E
󰀓
(θ̂D − θ)2I{θ∈Ĩ1, 32 ·2−(a+1)<d(θ,I′2)≤2−(a−1)}

󰀔

≤P
󰀓
θ ∈ Ĩ1, d(θ, I

′
2) > 2−(a+⌊log u⌋)

󰀔󰀕
3

2
· 2−(a+⌊log u⌋−2)

󰀖2

+

⌊log u⌋−1󰁛

k=3

P
󰀕
θ ∈ Ĩ1, d(θ, I

′
2) >

3

2
· 2−(a+k−1)

󰀖󰀕
3

2
· 2−(a+k−2)

󰀖2

+ P
󰀕
θ ∈ Ĩ1, d(θ, I

′
2) >

3

2
· 2−(a+1)

󰀖󰀓
2−(a−1)

󰀔2

≤C ′
4

⌊log u⌋󰁛

k=2

2
−
󰀕

2−2(a+k)

4σ2
n

− 3
2

󰀖
⌊log u⌋

·
󰀓
2−(a+k−3)

󰀔2

=C ′
4 · 2

−
󰀕

2−2(a+⌊log u⌋)
4σ2

n
− 3

2

󰀖
⌊log u⌋

·
󰀓
2−(a+⌊log u⌋−3)

󰀔2

·

󰀳

󰁃1 +

⌊log u⌋−1󰁛

k=2

2
−
󰀕

2−2(a+k)

4σ2
n

− 2−2(a+⌊log u⌋)
4σ2

n

󰀖
⌊log u⌋

·
󰀓
2(⌊log u⌋−k)

󰀔2

󰀴

󰁄 .

Further we can get

⌊log u⌋−1󰁛

k=2

2
−
󰀕

2−2(a+k)

4σ2
n

− 2−2(a+⌊log u⌋)
4σ2

n

󰀖
⌊log u⌋

·
󰀓
2(⌊log u⌋−k)

󰀔2
≤

⌊log u⌋−1󰁛

k=2

2
−
󰀕

2−2(a+k)

8σ2
n

󰀖
⌊log u⌋

· 22(⌊log u⌋−k)

=

⌊log u⌋−2󰁛

j=1

2
−
󰀣

2
−2(⌊log 1

σn
⌋−j−3)

8σ2
n

󰀤
⌊log u⌋

· 22j

≤
⌊log u⌋−2󰁛

j=1

2−22j+1·⌊log u⌋ · 22j

≤
∞󰁛

j=1

2−22j+1·⌊log u⌋ · 22j ,
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and

2
−
󰀕

2−2(a+⌊log u⌋)
4σ2

n
− 3

2

󰀖
⌊log u⌋

·
󰀓
2−(a+⌊log u⌋−3)

󰀔2
= 2

−
󰀣

2
−2(⌊log 1

σn
⌋−3)

4σ2
n

− 3
2

󰀤
⌊log u⌋

·
󰀓
2−(⌊log 1

σn
⌋−6)

󰀔2

≤ 2−
5
2
⌊log u⌋ · 214σ2

n

≤ 214σ2
n

u
.

Therefore we have

E
󰀓
(θ̂D − θ)I{θ∈Ĩ1,θ/∈I2}

󰀔
≤ 214C ′

4

󰀳

󰁃1 +

∞󰁛

j=1

2−22j+1·⌊log u⌋ · 22j
󰀴

󰁄 · σ
2
n

u

where 214C ′
4

󰀓
1 +

󰁓∞
j=1 2

−22j+1·⌊log u⌋ · 22j
󰀔
is a finite constant.

Appendix L. Proof of Lemma 22

We are going to provide several claims and show the proof directly after each claim.

Claim 5. One of the following two formulas must hold:

I2 ⊆ [(2j − 3

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

3

4
) · 2−(⌊log 1

σn
⌋−6)], for some j ∈ Z (62)

or

I2 ⊆ [(2j +
1

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

7

4
) · 2−(⌊log 1

σn
⌋−6)], for some j ∈ Z. (63)

This claim is exactly the first part of the Lemma. We first prove that the length of I2

is at most 2−(⌊log 1
σn

⌋−5). We divide the discussion into 4 cases:
If ⌊log 1

σn
⌋ ≤ 4. Then we have I2 = [0, 1]. The length of I2 is 1 < 2−(⌊log 1

σn
⌋−5).

If ⌊log 1
σn

⌋ ≥ 5 and ⌊log 1
σn

⌋ − ⌊log u⌋ ≥ 4, From Claim 1 in Lemma 21 we know the

length of I ′2 is 2−(⌊log 1
σn

⌋−4). Thus the length of I2 is 2−(⌊log 1
σn

⌋−5).
If ⌊log 1

σn
⌋ ≥ 5 and ⌊log 1

σn
⌋ − ⌊log u⌋ = 3, then we have

I ′2 = Dec⌊log 1
σn

⌋−4(W1,W3, ...,W⌊log u⌋)

so the length of I ′2 is 2−(⌊log 1
σn

⌋−4). Thus the length of I2 is 2−(⌊log 1
σn

⌋−5).
If ⌊log 1

σn
⌋ ≥ 5 and ⌊log 1

σn
⌋ − ⌊log u⌋ ≤ 2, then we have

I ′2 = Dec⌊log 1
σn

⌋−4(W⌊log u⌋−⌊log 1
σn

⌋+5, ...,W⌊log u⌋)

so the length of I ′2 is 2−(⌊log 1
σn

⌋−4). Thus the length of I2 is 2−(⌊log 1
σn

⌋−5).

Therefore, we can conclude that the length of I2 is at most 2−(⌊log 1
σn

⌋−5). Define j′

j′ ≜ max

󰀝
j ∈ Z : (j +

1

4
) · 2−(⌊log 1

σn
⌋−6) is at the left to I2

󰀞
.
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Then it is easy to see that I2 ⊂ [(j′+ 1
4)·2

−(⌊log 1
σn

⌋−6), (j′+ 7
4)·2

−(⌊log 1
σn

⌋−6)] because the

length of I2 is at most 2−(⌊log 1
σn

⌋−5). By proper reparametrization, [j′ · 2−(⌊log 1
σn

⌋−5), (j′ +

2) · 2−(⌊log 1
σn

⌋−5)] can be represented as one of the interval forms stated in (62) or (63).
Thus the claim is proved.

Claim 6. For any j ∈ Z, Φh is a strictly monotone function on [(2j− 3
4)·2

−(⌊log 1
σn

⌋−6), (2j+
3
4) · 2

−(⌊log 1
σn

⌋−6)]; Φh̄ is a strictly monotone function on [(2j + 1
4) · 2

−(⌊log 1
σn

⌋−6), (2j + 7
4) ·

2−(⌊log 1
σn

⌋−6)]. Further, there exist a constant c1 > 0 such that

󰀏󰀏󰀏󰀏
dΦh(x)

dx

󰀏󰀏󰀏󰀏 >
c1
σn

for all x ∈ [(2j − 3

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

3

4
) · 2−(⌊log 1

σn
⌋−6)];

󰀏󰀏󰀏󰀏
dΦh̄(x)

dx

󰀏󰀏󰀏󰀏 >
c1
σn

for all x ∈ [(2j +
1

4
) · 2−(⌊log 1

σn
⌋−6), (2j +

7

4
) · 2−(⌊log 1

σn
⌋−6)].

We only prove the properties for Φh here. The properties for Φh̄ can be proved by a
similar way.

When x ∈ [(2j − 3
4) · 2

−(⌊log 1
σn

⌋−6), (2j + 3
4) · 2

−(⌊log 1
σn

⌋−6)] for some j ∈ Z, let

z ≜ x− 2j · 2−(⌊log 1
σn

⌋−6). (64)

Then we have

z ∈ [−3

4
· 2−(⌊log 1

σn
⌋−6),

3

4
· 2−(⌊log 1

σn
⌋−6)].

Note that

Φh(x) =

󰁝 ∞

−∞
φ(

1

σn
(y − x))h(y)dy =

󰁝 ∞

−∞
φ(

1

σn
y)h(x− y)dy.

A direct calculation gives

dΦh(x)

dx
=

∞󰁛

k=−∞
φ

󰀕
1

σn
(x+ (2k − 1) · 2−(⌊log 1

σn
⌋−7))

󰀖
−

∞󰁛

k=−∞
φ

󰀕
1

σn
(x+ 2k · 2−(⌊log 1

σn
⌋−7))

󰀖
.

(65)

For simplicity we denote ∆ ≜ 2−(⌊log 1
σn

⌋−7). Substitute (64) into (65) we have

󰀏󰀏󰀏󰀏
dΦh(x)

dx

󰀏󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏

∞󰁛

k=−∞
φ

󰀕
1

σn
(z + (2k + j − 1)∆)

󰀖
−

∞󰁛

k=−∞
φ

󰀕
1

σn
(x+ (2k + j)∆)

󰀖󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏

∞󰁛

k=−∞
φ

󰀕
1

σn
(z + 2k∆)

󰀖
−

∞󰁛

k=−∞
φ

󰀕
1

σn
(z + (2k − 1)∆)

󰀖󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏

󰀕
φ

󰀕
z

σn

󰀖
− φ

󰀕
1

σn
(z +∆)

󰀖
− φ

󰀕
1

σn
(z −∆)

󰀖󰀖

+

∞󰁛

k=1

󰀕
φ

󰀕
1

σn
(z + 2k∆)

󰀖
− φ

󰀕
1

σn
(z + (2k + 1)∆)

󰀖󰀖
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+

∞󰁛

k=1

󰀕
φ

󰀕
1

σn
(z − 2k∆)

󰀖
− φ

󰀕
1

σn
(z − (2k + 1)∆)

󰀖󰀖 󰀏󰀏󰀏󰀏.

Note that |z| ≤ 3
4 · 2−(⌊log 1

σn
⌋−6) = 3

8∆, so for any k ≥ 1 we have

φ

󰀕
1

σn
(z + 2k∆)

󰀖
− φ

󰀕
1

σn
(z + (2k + 1)∆)

󰀖
> 0

φ

󰀕
1

σn
(z − 2k∆)

󰀖
− φ

󰀕
1

σn
(z − (2k + 1)∆)

󰀖
> 0.

Moreover, by the bound

27

σn
≤ 2−(log 1

σn
−7) ≤ ∆ ≤ 2−(log 1

σn
−8) ≤ 28

σn
,

we have

φ

󰀕
z

σn

󰀖
− φ

󰀕
1

σn
(z +∆)

󰀖
− φ

󰀕
1

σn
(z −∆)

󰀖
=

1√
2πσn

e
− z2

2σ2
n

󰀕
1− e

−∆(2z+∆)

2σ2
n − e

−∆(−2z+∆)

2σ2
n

󰀖

≥ 1√
2πσn

e
− (3∆/8)2

2σ2
n

󰀕
1− 2e

− ∆2

8σ2
n

󰀖

≥ 1√
2πσn

e−9·29
󰀓
1− 2e−211

󰀔
.

Therefore we can conclude that
󰀏󰀏󰀏dΦh(x)

dx

󰀏󰀏󰀏 is lower bounded by c1
σn

with a positive constant

c1 =
1√
2π
e−9·29

󰀓
1− 2e−211

󰀔
, when x ∈ [(2j − 3

4) · 2
−(⌊log 1

σn
⌋−6), (2j + 3

4) · 2
−(⌊log 1

σn
⌋−6)] for

some j ∈ Z.
Finally, dΦh(x)

dx is a continuous function of x, so
󰀏󰀏󰀏dΦh(x)

dx

󰀏󰀏󰀏 is lower bounded by a positive

constant means that dΦh(x)
dx has the same sign for all x ∈ [(2j − 3

4) · 2
−(⌊log 1

σn
⌋−6), (2j + 3

4) ·
2−(⌊log 1

σn
⌋−6)]. Therefore Φh(x) is a strictly monotone function on this interval.

Proof of Lemma 22: Now we are ready to prove Lemma 22. Here we only prove the

case I2 ⊆ [(2j − 3
4) · 2

−(⌊log 1
σn

⌋−6), (2j + 3
4) · 2

−(⌊log 1
σn

⌋−6)] for some j ∈ Z because the other
case can be proved by a similar way.

From now on we assume I2 ⊆ [(2j− 3
4)·2

−(⌊log 1
σn

⌋−6), (2j+ 3
4)·2

−(⌊log 1
σn

⌋−6)] for some j ∈
Z. Now V1, V2, ..., Vn are i.i.d Bernoulli variables with mean

EVi = EX∼N(θ,σ2
n)
h(X) = Φh(θ) i = 1, 2, ..., n.

So we have

E

󰀣
1

u

u󰁛

i=1

Vi − Φh(θ)

󰀤2

≤ 1

4u
.

From Claim 6 we can further know Φh is invertible on I2, and its inverse function
Φ−1
h : [LI , RI ] → I2 is a σn

c1
-Lipschitz function. Based on this, it is also easy to show that

Φ−1
h (τ[LI ,RI ](·)) is a

σn
c1
-Lipschitz function on [0, 1]. Note that when θ ∈ I2 we have

Φ−1
h

󰀃
τ[LI ,RI ](Φh(θ))

󰀄
= Φ−1

h (Φh(θ)) = θ.
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Therefore, we have

E(θ̂D − θ)2I{θ∈I2} = E

󰀣
Φ−1
h

󰀣
τ[LI ,RI ](

1

u

u󰁛

i=1

Vi)

󰀤
− Φ−1

h

󰀃
τ[LI ,RI ](Φh(θ))

󰀄
󰀤2

I{θ∈I2}

≤ E

󰀣
Φ−1
h

󰀣
τ[LI ,RI ](

1

u

u󰁛

i=1

Vi)

󰀤
− Φ−1

h

󰀃
τ[LI ,RI ](Φh(θ))

󰀄
󰀤2

≤ σ2
n

c21
E

󰀣
1

u

u󰁛

i=1

Vi − Φh(θ)

󰀤2

≤ σ2
n

4c21 · u
.

Appendix M. Proof of Lemma 16

Denote s ≜ E|A−D| and r(s) ≜
√
1+s2−1

s . Let

R(s) ≜ −s log r(s) + log(1 + r(s))− log(1− r(s)).

We are going to prove a stronger result:

H(A|D) ≤ R(s). (66)

If inequality (66) holds, then H(A|D) ≥ 1
2 implies R(s) ≥ 1

2 . Because R(s) is an strictly
increasing function with R(0) = 0, this suggests that s is lower bounded by some positive
constant c2 = R−1(12). The prove can be completed by

E(A−D)2 ≥ E|A−D| ≥ c2.

So it remains to show the inequality (66). For any d ∈ Z, denote sd ≜ E
󰀓
|A−D|

󰀏󰀏󰀏D = d
󰀔

and rd ≜
√

1+s2d−1

sd
. Let

pk ≜ P(A = k|D = d), α ≜ log(
1 + rd

e(1− rd)
), β ≜ − log rd,

here we omit their dependence on d for simplicity of notations.

From equations
∞󰁛

k=−∞
pk = 1

and
∞󰁛

k=−∞
|k − d|pk = E

󰀓
|A−D|

󰀏󰀏󰀏D = d
󰀔
= sd
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we can get

H(A|D = d) =

∞󰁛

k=−∞
−pk log pk

=

∞󰁛

k=−∞
(−pk log pk − αpk − β|k − d|pk) + α+ βsd

≤
∞󰁛

k=−∞

󰀕
log e

e
2−α−β|k−d|

󰀖
+ α+ βsd

= log e+ α+ βsd = R(sd)

where the inequality is due to −x log x− tx ≤ log e
e 2−t for all t.

Note that R′′(x) = − log e

s
√
1+s2

so R(x) is a concave function on [0,∞). Therefore, by

Jensen’s inequality, we have

H(A|D) =

∞󰁛

d=−∞
P(D = d)H(A|D = d)

≤
∞󰁛

d=−∞
P(D = d)R(sd)

≤ R

󰀣 ∞󰁛

d=−∞
P(D = d)R(sd)

󰀤

= R(s).

Appendix N. Proof of Lemma 23

Denote u(1:d) be the tuple (u(1), u(2), ..., u(d)) and v(1:d) be the tuple (v(1), v(2), ..., v(d)).
Fix 1 ≤ i ≤ m. For any ũ ∈ {0, 1, ..., ⌊ 1

σn
⌋−1}d, conditional on u(1:d) = ũ, v(1:d) → Xi → Zi

is a Markov chain that satisfies conditions of Lemma 25 with ∆ = δ. Therefore, we have

I(v(1:d);Zi|u(1:d) = ũ) ≤ 64
δ2

σ2
n

I(Xi;Zi|u(1:d) = ũ).

Mimic the summation trick in (54), the above inequality implies

I(v(1:d);Zi|u(1:d)) ≤ 64
δ2

σ2
n

I(Xi;Zi|u(1:d)).

Now we have

H(Zi) = I(u(1:d);Zi) +H(Zi|u(1:d))
≥ I(u(1:d);Zi) + I(Xi;Zi|u(1:d))

≥ I(u(1:d);Zi) +
σ2
n

64δ2
I(v(1:d);Zi|u(1:d))

= I(u(1:d), v(1:d);Zi) +

󰀕
σ2
n

64δ2
− 1

󰀖
I(v(1:d);Zi|u(1:d)).

(67)
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Denote Z1:m be the tuple (Z1, Z2, ..., Zm). Conditional on u(1:d) and v(1:d), Z1, Z2, ..., Zm

are independent, thus we can apply Lemma 26 to get

I(u(1:d), v(1:d);Z1:m) ≤
m󰁛

i=1

I(u(1:d), v(1:d);Zi)

and

I(v(1:d);Z1:m|u(1:d)) ≤
m󰁛

i=1

I(v(1:d);Zi|u(1:d)).

Note that δ < 1
8σn implies σ2

n
64δ2

−1 > 0. Therefore, taking summation over (67) we have

m󰁛

i=1

H(Zi) ≥ I(u(1:d), v(1:d);Z1:m) +

󰀕
σ2
n

64δ2
− 1

󰀖
I(v(1:d);Z1:m|u(1:d))

= I(u(1:d);Z1:m) +
σ2
n

64δ2
I(v(1:d);Z1:m|u(1:d)).

u(1), u(2), ..., u(k) are independent, thus by Lemma 27 and data processing inequality we
have

I(u(1:d);Z1:m) ≥
d󰁛

k=1

I(u(k);Z1:m) ≥
d󰁛

k=1

I(u(k); θ̂).

Similarly, v(1), v(2), ..., v(k), u(1:d) are independent so we have

I(v(1:d);Z1:m|u(1:d)) = I(v(1:d), u(1:d);Z1:m)− I(u(1:d);Z1:m)

≥
d󰁛

k=1

I(v(k);Z1:m) + I(u(1:d);Z1:m)− I(u(1:d);Z1:m)

≥
d󰁛

k=1

I(v(k); θ̂).

So finally we can conclude

d󰁛

k=1

I(u(k); θ̂) +
σ2
n

64δ2

d󰁛

k=1

I(v(k); θ̂) ≤
m󰁛

i=1

H(Zi).

The proof is completed by the bound
󰁓m

i=1H(Zi) ≤
󰁓m

i=1 bi = B.

Appendix O. Proof of Lemma 24

From (66) in the proof of Lemma 16, and the fact R(x) is a concave function on [0,∞),
by Jensen’s inequality we can get

1

d

d󰁛

k=1

H(Ak|Dk) ≤
1

d

d󰁛

k=1

R (E|Ak −Dk|)
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≤ R

󰀣
1

d

d󰁛

k=1

E|Ak −Dk|
󰀤
.

Therefore, 1
d

󰁓d
k=1H(Ak|Dk) ≥ 1

2 implies R
󰀓
1
d

󰁓d
k=1 E|Ak −Dk|

󰀔
≥ 1

2 . Note that R(x)

is a strictly increasing function on [0,∞) with R(0) = 0, so 1
d

󰁓d
k=1 E|Ak − Dk| is lower-

bounded by some positive constant c3 ≜ R−1(12). The proof is completed by the inequality

1

d

d󰁛

k=1

E(Ak −Dk)
2 ≥ 1

d

d󰁛

k=1

E|Ak −Dk| ≥ c3.

Appendix P. Proof of Lemma 25

Denote T (1:k) be the tuple {T (1), T (2), ..., T (k)} and denoteX(1:k) be the tuple {X(1), X(2), ..., X(k)}.
Note that for any 1 ≤ k ≤ d, (T (k), X(k)) ⊥ T (1:k−1). So conditional on T (1:k−1), T (k) →
X(k) → Z is a Markov chain where T (k) is always a Bernoulli variable with mean 1

2 , and

X(k) is a normal of mean µ
(k)
0 + T (k)∆. Apply Lemma 28 and mimic the summation trick

in (54), we have

I(T (k);Z|T (1:k−1)) ≤ 64(
∆

σn
)2I(Xk;Z|T (1:k−1)).

Therefore we can get

I(T ;Z) = I
󰀓
(T (1), T (2), ..., T (d));Z

󰀔

=

d󰁛

k=1

I(T (k);Z|T (1:k−1)) ≤ 64(
∆

σn
)2

d󰁛

k=1

I(Xk;Z|T (1:k−1)).

We also have

I(X;Z) = I
󰀓
(X(1), X(2), ..., X(d));Z

󰀔

=

d󰁛

k=1

I(X(k);Z|X(1:k−1)).

So in order to show the inequality (43), it suffices to show that for all k = 1, 2, ..., d,

I(X(k);Z|T (1:k−1)) ≤ I(X(k);Z|X(1:k−1)). (68)

When k = 1 the above inequality is trivial. When k ≥ 2, because X(k) ⊥ T (1:k−1) we
have

I(X(k);Z|T (1:k−1)) = I(X(k); (Z, T (1:k−1)))− I(X(k), T (1:k−1))

= I(X(k);T (1:k−1)|Z) + I(X(k);Z)− I(X(k), T (1:k−1))

= I(X(k);T (1:k−1)|Z) + I(X(k);Z).
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Because X(k) ⊥ X(1:k−1) we have

I(X(k);Z|X(1:k−1)) = I(X(k); (Z,X(1:k−1)))− I(X(k), X(1:k−1))

= I(X(k);X(1:k−1)|Z) + I(X(k);Z)− I(X(k), X(1:k−1))

= I(X(k);X(1:k−1)|Z) + I(X(k);Z).

Note that X(k) ⊥ T (1:k−1)|(Z,X(1:k−1)), this implies the data processing inequality

I(X(k);T (1:k−1)|Z) ≤ I(X(k);X(1:k−1)|Z).

(68) can be proved by the three formulas given above.

Appendix Q. Proof of Lemma 26

Denote Y1:i be the tuple (Y1, Y2, ..., Yi) for 1 ≤ i ≤ m and Y1:0 = ∅, The conditional
independence implies Yi ⊥ Y1:i−1|A,D thus H(Yi|A,D, Y1:i) = H(Yi|A,D). Therefore, we
have

I(Y1:m;A|D) =

m󰁛

i=1

I(Yi;A|D,Y1:i−1)

=

m󰁛

i=1

[H(Yi|D,Y1:i−1)−H(Yi|A,D, Y1:i−1)]

≤
m󰁛

i=1

[H(Yi|D)−H(Yi|A,D)]

=

m󰁛

i=1

I(Yi;A|D).

The inequality is due to the fact that the entropy will not decrease after dropping some
conditions.

If D = ∅, similarly we can prove

I(Y1:m;A) ≤
m󰁛

i=1

I(Yi;A)

by dropping all D in the above derivations.

Appendix R. Proof of Lemma 27

Y1, Y2, ..., Yd are independent so we have

H(Y1, Y2, ..., Yd) =

d󰁛

k=1

H(Yk).

From the basic entropy inequality

H(Y1, Y2, ..., Yd|A) ≤
d󰁛

k=1

H(Yk|A)
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we have

I (A; (Y1, Y2, ..., Yd)) = H(Y1, Y2, ..., Yd)−H(Y1, Y2, ..., Yd|A)

≥
d󰁛

k=1

H(Yk)−
d󰁛

k=1

H(Yk|A)

=

d󰁛

k=1

I(A;Yk).

Appendix S. Proof of Lemma 28

The proof of this lemma is based on Theorem 3.7 in Raginsky (2016). We specialize
their proof to the Gaussian channels.

When µ1 − µ0 > σn, data processing inequality implies I(T ;Z) ≤ I(X;Z) so (53) holds
automatically. Thus from now on we assume µ1 − µ0 < σn.

Let PT , PX , PZ denote the marginal distributions for T , X, Z respectively, and denote
P·|· be conditional distributions. Denote the support of Z as {z1, z2, ...zn}. Define the
likelihood ratio

at(x) ≜
dPX|T=t

dPX
(x) t = 0, 1

fi(x) ≜
dPX|Z=zi

dPX
(x) i = 1, 2, 3, ..., n.

Step 1: In this step we are going to show that at(X) is 32(µ1−µ0

σn
)2 - subgaussian for

both t = 0, 1, i.e.

E exp[s(at(X)− 1)] ≤ exp
󰀃
32σ−2

n (µ1 − µ0)
2s2/2

󰀄
∀s. (69)

By symmetry we only need to show a0(X) is (µ1−µ0

σn
)2 - subgaussian. Note that Ea0(X) =

1, direct calculation yields

a0(X)− Ea0(X) =
1− exp(σ−2

n (µ1 − µ0)(X − µ0+µ1

2 ))

1 + exp(σ−2
n (µ1 − µ0)(X − µ0+µ1

2 ))
.

Note that |a0(x)− Ea0(x)| < 1 for all x. For any 0 < s < 1 we have

P(|a0(X)− Ea0(X)| ≥ s) = P
󰀕
|σ−2

n (µ1 − µ0)(X − µ0 + µ1

2
))| ≥ log(

1 + s

1− s
)

󰀖

≤ P
󰀕
|σ−2

n (µ1 − µ0)(X − µ0 + µ1

2
))| ≥ s

󰀖

≤ 2 exp

󰀕
− 1

8σ2
n

· σ4
ns

2

(µ1 − µ0)2

󰀖
= 2 exp

󰀕
− s2

2 · 4σ−2
n (µ1 − µ0)2

󰀖
.

(70)
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The second inequality is due to the tail bound on the Gaussian mixture X:

P(|X − µ0 + µ1

2
| ≥ s) ≤ 2 exp

󰀕
− s2

8σ2
n

󰀖
.

for all s > 0 when µ1 − µ0 ≤ σn.
Subgaussian tail bound (70) implies the subgaussian bound on moment generating func-

tion:
E exp[s(a0(X)− 1)] ≤ exp

󰀃
32σ−2

n (µ1 − µ0)
2s2/2

󰀄
∀s.

Step 2: In this step we are going to show that for all i = 1, 2, ..., n,

DKL(PT |Z=zi󰀂PT ) ≤ 64(
µ1 − µ0

σn
)2DKL(PX|Z=zi󰀂PX). (71)

Note that Z ⊥ T |X implies

dPT |Z=zi

dPT
(t) =

󰁝
dPX|T=t

dPX
(x) ·

dPX|Z=zi

dPX
(x) · dPX(x) = E (at(X)fi(X)) .

So

DKL(PT |Z=zi󰀂PT ) = E
󰀕
dPT |Z=zi

dPT
(T ) log

dPT |Z=zi

dPT
(T )

󰀖

=
1

2
E (a0(X)fi(X)) logE (a0(X)fi(X)) +

1

2
E (a1(X)fi(X)) logE (a1(X)fi(X))

≤ (E (a0(X)fi(X))− 1)2 = Cov [a0(X), fi(X)]2 .
(72)

The inequality is due to the facts E (a0(X)fi(X))+E (a1(X)fi(X)) = 2 and the general
inequality

1

2
w logw +

1

2
(2− w) log(2− w) ≤ (w − 1)2 ∀0 ≤ w ≤ 2.

Next, we make use of the fact that

E(U logU)− (EU) log(EU) ≥ E(UZ)− EU logEeZ (73)

for any random variable Z jointly distributed with U and satisfying EeZ < ∞. (See
Theorem 4.13 in Boucheron et al. (2013) for more reference.) We apply (73) with U = fi(X)
and Z = s(a0(X)− 1) we have

sCov [a0(X), fi(X)] ≤ logE exp[s(at(X)− 1)] + E(fi(X) log fi(X))

≤ 16(
µ1 − µ0

σn
)2s2 +DKL(PX|Z=zi󰀂PX).

The second inequality is due to subgaussian bound (69) and the factDKL(PX|Z=zi󰀂PX) =
E(fi(X) log fi(X)).

Plug in s =
󰀓
32(µ1−µ0

σn
)2
󰀔−1

Cov [a0(X), fi(X)] we have

Cov [a0(X), fi(X)]2 ≤ 64(
µ1 − µ0

σn
)2DKL(PX|Z=zi󰀂PX).
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Combined with (72) we can conclude

DKL(PT |Z=zi󰀂PT ) ≤ 64(
µ1 − µ0

σn
)2DKL(PX|Z=zi󰀂PX).

Step 3: Finally we are going to conclude the desired strong data processing inequality
(53). Because we already have inequality (71), we can directly conclude

I(T ;Z) =

n󰁛

i=1

PZ(zi)DKL(PT |Z=zi󰀂PT )

≤
n󰁛

i=1

PZ(zi) · 64(
µ1 − µ0

σn
)2DKL(PX|Z=zi󰀂PX)

= 64(
µ1 − µ0

σn
)2I(X;Z).
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Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff. Com-
munication lower bounds for statistical estimation problems via a distributed data pro-
cessing inequality. In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 1011–1020. ACM, 2016.

Xiangyu Chang, Shao-Bo Lin, and Ding-Xuan Zhou. Distributed semi-supervised learning
with kernel ridge regression. The Journal of Machine Learning Research, 18(1):1493–1514,
2017.

Louis HY Chen, Larry Goldstein, and Qi-Man Shao. Normal approximation by Stein?s
method. Springer Science & Business Media, 2010.

Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, Krzysztof Onak, and
Ludwig Schmidt. Communication-efficient distributed learning of discrete distributions.
In Advances in Neural Information Processing Systems, pages 6391–6401, 2017.

61

http://arxiv.org/abs/1902.02890


Cai and Wei

Edgar Dobriban and Yue Sheng. Distributed linear regression by averaging. arXiv preprint
arXiv:1810.00412, 2018.

Jianqing Fan, Dong Wang, Kaizheng Wang, and Ziwei Zhu. Distributed estimation of
principal eigenspaces. The Annals of Statistics, 47(6):3009–3031, 2019.

Ankit Garg, Tengyu Ma, and Huy Nguyen. On communication cost of distributed statistical
estimation and dimensionality. In Advances in Neural Information Processing Systems,
pages 2726–2734, 2014.

Zheng-Chu Guo, Shao-Bo Lin, and Ding-Xuan Zhou. Learning theory of distributed spectral
algorithms. Inverse Problems, 33(7):074009, 2017.

Uri Hadar and Ofer Shayevitz. Distributed estimation of gaussian correlations. IEEE
Transactions on Information Theory, 65(9):5323–5338, 2019.

Y. Han, P. Mukherjee, A. Ozgur, and T. Weissman. Distributed statistical estimation of
high-dimensional and nonparametric distributions. In 2018 IEEE International Sympo-
sium on Information Theory (ISIT), pages 506–510, 2018.
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