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Abstract

We consider the task of evaluating a policy for a Markov decision process (MDP). The
standard unbiased technique for evaluating a policy is to deploy the policy and observe its
performance. We show that the data collected from deploying a different policy, commonly
called the behavior policy, can be used to produce unbiased estimates with lower mean
squared error than this standard technique. We derive an analytic expression for a minimal
variance behavior policy – a behavior policy that minimizes the mean squared error of the
resulting estimates. Because this expression depends on terms that are unknown in practice,
we propose a novel policy evaluation sub-problem, behavior policy search: searching for a
behavior policy that reduces mean squared error. We present two behavior policy search
algorithms and empirically demonstrate their effectiveness in lowering the mean squared
error of policy performance estimates.1
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1. Introduction

Many sequential decision problems, including diabetes treatment (Bastani, 2014), digital
marketing (Theocharous et al., 2015), and robot control (Lillicrap et al., 2015), are modeled
as Markov decision processes and solved using reinforcement learning (RL) algorithms. One
important problem when applying RL to real problems is policy evaluation. The goal in
policy evaluation is to estimate the expected return (sum of rewards) produced by a policy.
We refer to this policy as the evaluation policy, πe. The standard policy evaluation approach
is to repeatedly deploy πe and average the resulting returns. While this näıve Monte Carlo
estimator is unbiased (Hammersley and Handscomb, 1964), it may have high variance.

Methods that evaluate πe while selecting actions according to πe are termed on-policy.
Previous work has addressed variance reduction for methods that collect data on-policy
(e.g., Zinkevich et al. (2006); White and Bowling (2009); Veness et al. (2011); Hanna et al.
(2021)). An alternative approach is to estimate the performance of πe while following a
different, behavior policy, πb. Methods that evaluate πe with data generated from πb are
termed off-policy. Importance sampling (IS) is one standard approach for using off-policy
data in RL. IS re-weights returns observed while executing πb such that they are unbiased
estimates of the performance of πe (Thomas, 2015).

Presently, IS is usually used when off-policy data is already available or when executing πe
is impractical. In such circumstances, IS often has high variance (Thomas et al., 2015a; Jiang
and Li, 2016; Guo et al., 2017). For this reason, an implicit assumption in the RL community
has generally been that on-policy evaluation is more accurate when it is feasible. However, IS
can also be used for variance reduction when done with an appropriately selected distribution
of returns (Hammersley and Handscomb, 1964). While IS-based variance reduction has
been explored in RL, this prior work has required knowledge of the environment’s transition
probabilities and remains on-policy (Desai and Glynn, 2001; Frank et al., 2008; Ciosek and
Whiteson, 2017). In contrast to this earlier work, we show how careful selection of the
behavior policy can lead to lower variance batch policy evaluation than using the evaluation
policy without requiring knowledge of the environment’s transition probabilities.

In this work, we formalize the selection of πb as the behavior policy search problem.
After formalizing this problem, we introduce two algorithms for this problem that adapt the
policy parameters of πb to find a behavior policy that provides lower variance importance
sampling estimates. The first method directly minimizes the variance of the importance
sampling estimator using gradient descent on the parameters of πb. The second method
uses gradient descent to minimize the KL-divergence between the behavior policy and a
derived minimal-variance behavior policy. Empirically we demonstrate that behavior policy
search with both of our methods lowers the mean squared error of estimates compared to
on-policy estimates. To the best of our knowledge, this work is the first to propose adapting
the behavior policy to obtain lower mean squared error policy evaluation in RL. Furthermore
we present the first methods to address this problem.

This article builds upon and includes work first presented at the 34th International
Conference on Machine Learning (ICML) (Hanna et al., 2017). Going beyond this earlier
work, we formally derive a condition that a minimal-variance behavior policy must satisfy,
we introduce a second behavior policy search algorithm, derive formal convergence and
convexity results, prove statistical properties of our algorithms, and we extend the empirical
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study contained in the original work. Taken together, these contributions and the earlier
work comprise a complete study of behavior policy search for data-efficient policy evaluation.

2. Background

We first present the notation used throughout this work. We then formalize the batch policy
evaluation problem for Markov decision processes and discuss two common approaches to
this problem. Finally we survey literature related to batch policy evaluation and the use of
adaptive importance sampling in reinforcement learning.

2.1 Notation

We assume the environment is a finite-horizon, episodic Markov decision process (MDP)
with state set S, action set A, transition function, P : S ×A× S → [0, 1], bounded reward
function r : S × A → [rmin, rmax], horizon l, discount factor γ ∈ [0, 1], and initial state
distribution d0 : S → [0, 1] (Puterman, 2014). We use P (s′|s, a) = P (s, a, s′) to denote
the conditional probability of transitioning to state s′ after taking action a in state s. We
assume that S and A are finite though our empirical analysis is conducted in both finite and
infinite S and A MDPs. We assume that the transition and reward functions are unknown
and that the maximum episode length, l, is a finite constant.

A policy, π : S → ∆(A), is a function mapping states to probability distributions over
A. Let Π be the set of all such policies. We use π(a|s) = π(s, a) to denote the conditional
probability of action a given state s In this work, we consider parameterized policies, πθ,
where the distribution over actions given a state is determined by a vector θ ∈ Θ, where
Θ ⊆ Rd for some dimension d. Furthermore, we require πθ(a|s) to be twice-differentiable

with respect to θ at every state-action pair and for ∂
∂θπθ(a|s) and ∂2

∂2θ
πθ(a|s) to be bounded

by a finite constant for all states, actions, and values of θ.

The agent interacts with the environment MDP as follows: The agent begins in initial
state S0 ∼ d0. At discrete time-step t the agents takes action At ∼ π(A|St). The environment
responds with Rt := r(St, At) and St+1 ∼ P (·|St, At) according to the reward function and
transition function. The agent’s interaction with the environment terminates after l steps
regardless of the agent’s current state or action. We allow the possibility of termination
before l steps by including a special terminal state, s∞. If the agent enters the terminal
state, s∞, it remains there and receives zero reward until step l is reached. Note that the
finite-horizon assumption implies that the current time-step of interaction must be included
as part of the current state.

Let h := (s0, a0, r0, s1, . . . , sl−1, al−1, rl−1) be a trajectory and g(h) :=
∑l−1

t=0 γ
trt be the

discounted return of h. Note that g(h) is bounded since the per-time-step reward is bounded.
Any policy defines a distribution over trajectories, Pr(H = h|π), where H is a random
variable denoting a trajectory. We will write H ∼ π to denote sampling a trajectory by
following π as described in the preceding paragraph and H := S l×Al×Rl to denote the set
of all possible trajectories. Finally, we define the value of a policy, v(π) := E[g(H)|H ∼ π],
as the expected discounted return when sampling a trajectory with policy π.
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2.2 Batch Policy Evaluation

In the batch policy evaluation problem, we are given an evaluation policy, πe, for which we
would like to estimate v(πe). We assume there exists a policy parameter vector θe such
that πe = πθe and that this vector is known. We consider an incremental setting where,
at iteration i, we sample a single trajectory Hi with a policy πθi and add (Hi,θi) to a set
D. We use Di to denote the set at iteration i (including (Hi,θi)) where D0 = ∅. We use
superscripts on states, actions, and rewards to denote the trajectory in which they occur:
Hi := (Si0, A

i
0, R

i
0, ..., S

i
l−1, A

i
l−1, R

i
l−1).

A batch policy evaluation method, PE, uses all trajectories in Di to estimate v(πe).
Methods that always (i.e., ∀i) choose θi = θe are on-policy; otherwise, the method is
off-policy. Our goal is to design a batch policy evaluation algorithm that produces estimates
of v(πe) that have low mean squared error (MSE). Formally, we express this goal as selecting
PE to minimize:

MSE

[
PE

]
:= E

[(
PE(Di)− v(πe)

)2]
,

where Di is a random variable representing the data set at iteration i. While other measures
of policy evaluation accuracy could be considered, we follow earlier work in using MSE (e.g.,
Thomas and Brunskill (2016); Precup et al. (2000)).

In this work, we focus on unbiased estimators. An unbiased estimator is an estimator
whose estimates have expected value equal to v(πe). For unbiased estimators, minimizing
variance is equivalent to minimizing MSE. While biased estimators (like bootstrapping
methods (Sutton and Barto, 2018, Chapter 6) and approximate models (Kearns and Singh,
2002)) can sometimes produce lower MSE estimates, some applications may call for unbiased
estimators.

The algorithms we introduce only consider the problem of selecting θi and estimating
v(πe) to minimize the MSE at iteration i. That is, they do not consider how the selection of
θi will impact our future ability to select an appropriate θj for j > i and thus to produce
more accurate estimates in the future.

2.3 Monte Carlo Batch Policy Evaluation

Perhaps the simplest batch policy evaluation method is the on-policy Monte-Carlo (MC)
estimator. As an on-policy method, the Monte Carlo estimator requires θi = θe for all
iterations i. The estimate of v(πe) at iteration i is the mean return:

MC(πe, Di) :=
1

i

i∑
j=1

l−1∑
t=0

γtRjt =
1

i

i∑
j=1

g(Hj).

This estimator is unbiased and strongly consistent given mild assumptions.2 However, this
method can have high variance (Sutton and Barto, 2018, Chapter 5).

2. Being a strongly consistent estimator of v(πe) means that Pr
(

lim
i→∞

MC(πe, Di) = v(πe)
)

= 1. If v(πe)

exists, the Monte Carlo estimator is strongly consistent (Sen and Singer, 1993).
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2.4 Importance Sampling Policy Evaluation

The Monte Carlo estimator requires that all trajectories are collected on-policy by running
πe. It can be generalized to the off-policy setting by re-weighting returns from any behavior
policy, πb, such that they are unbiased estimates of the expected return of the evaluation
policy (Sutton and Barto, 2018, Chapter 5). The off-policy Monte Carlo estimator is known
in the RL literature as the importance sampling (IS) estimator. Notice that if trajectories
under the behavior policy πb are not informative for evaluating πe, then this re-weighting
procedure may not be feasible. Therefore, to avoid such problems we make a standard
assumption that is needed for importance sampling.

Assumption 1 The quotient πe(a|s)
πθ(a|s) exists and is bounded above by (an unknown) c <∞,

∀s ∈ S,∀a ∈ A,∀θ ∈ Θ.

Intuitively, Assumption 1 says that any outcome that is possible under the evaluation
policy πe is also possible under any of the behavior policies. Assumption 1 can be trivially
satisfied by ensuring πθ is bounded away from zero. Under this assumption, the re-weighted
IS return of a trajectory, H, sampled from behavior policy πb is:

IS(πe, H, πb) := g(H)
l−1∏
t=0

πe(At|St)
πb(At|St)

. (1)

Intuitively, the IS return up-weights returns that were more likely under πe than πb and
down-weights returns that were less likely under πe compared to πb. The IS estimator at
iteration i is then:

IS(πe, Di) :=
1

i

i∑
j=1

IS(πe, Hj , πθi).

Note that when πθi and πe are the same for all i, the IS estimator is identical to the Monte
Carlo estimator.

In RL, importance sampling allows off-policy data to be used as if it were on-policy.
Importance sampling is both unbiased and consistent, however, like the Monte Carlo
estimator, it may suffer from high variance (Thomas, 2015). The variance of IS may in fact
be worse than that of on-policy Monte Carlo because the importance weights themselves
can contribute to the variance (Sutton and Barto, 2018, Chapter 5). In many uses of IS in
reinforcement learning, the variance of the IS estimate is often much worse than the variance
of on-policy MC estimates because the behavior policy is not chosen to minimize variance,
but is a policy that is dictated by circumstance.

3. Related Work

The methods we will introduce can be classified as adaptive importance sampling methods.
This section surveys the related literature of adaptive importance sampling for reinforcement
learning. We also discuss additional literature on lowering variance for policy evaluation.
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3.1 Adaptive Importance Sampling

In this work we introduce algorithms that lower the variance of batch policy evaluation by
adapting the behavior policy and then importance sampling to correct for the distribution
shift. Such algorithms are closely related to existing work on adaptive importance-sampling.
While adaptive IS has been studied in the Monte Carlo simulation literature, we focus here
on adaptive IS for MDPs and Markov reward processes (MRPs), i.e., Markov chains with
rewards at each state. Existing work on adaptive IS in RL has considered changing the
transition probabilities of the MDP to lower the variance of policy evaluation. Since the
transition probabilities are typically uncontrollable in RL, adapting the behavior policy is a
more general approach to adaptive IS in RL.

Desai and Glynn (2001) and Ahamed et al. (2006) consider adaptive importance sampling
for estimating the expected cost until termination in an MRP. They introduce algorithms
that perform adaptive importance sampling by modifying the state transition matrix of the
Markov chain. In contrast to these works, we focus on policy evaluation in MDPs.

Frank et al. (2008) consider adaptive importance sampling for TD-learning (Sutton,
1988) in MDPs. They assume a known probability of a rare event taking place and assume
learning occurs in a simulator where this probability can be changed. They propose two
algorithms that adapt the probability of a rare event and use importance sampling to remove
bias from the distribution shift. These algorithms lead to faster convergence of TD-learning
algorithms. In contrast to this work, we only assume that we know the evaluation policy
and adapt the behavior policy for low variance importance sampling estimates. We also
only consider estimating v(πe) instead of the expected return from all states, i.e., the state
value-function.

Ciosek and Whiteson (2017) adapt the environment transition probabilities to minimize
the variance of each component of an on-policy policy gradient estimate. This work assumes
a known environment transition function and that learning is done in a simulator where the
transition function can be modified. In contrast, we focus on the problem of batch policy
evaluation in an unknown environment and lower variance through off-policy data collection.

The one prior work we know of that adapts the behavior policy is the work of Bouchard
et al. (2016) who adapt the behavior policy to lower the variance of batch policy gradient
estimates. Their algorithm adapts the behavior policy to lower the variance of each component
of the vector-valued off-policy policy gradient estimate for a different, target policy. This
approach is shown to lead to faster learning on a Grid World domain compared to on-policy
batch policy gradient learning. In contrast to this work, we study the problem of batch
policy evaluation of a fixed policy. While this work was in submission, additional related
work has considered the use of offline data for behavior policy search (Liu and Zhang, 2024),
safety constraints in behavior policy search (Mukherjee et al., 2024a; Wan et al., 2022), and
data collection for biased estimators of policy value (Zhong et al., 2022; Mukherjee et al.,
2022, 2024b; Corrado and Hanna, 2023; Mutný et al., 2023; Arnold et al., 2022).

3.2 Variance Reduction for Policy Evaluation

Aside from adaptive importance sampling, other methods exist for lowering the variance
of on-policy estimates. Control variates (Zinkevich et al., 2006; White and Bowling, 2009;
Jiang and Li, 2016; Thomas and Brunskill, 2016) are a widely used technique for variance
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reduction in RL. As we show in Section 9.3, this technique can be used in conjunction with
adaptive importance sampling.

Veness et al. (2011) use common random numbers and antithetic variates to lower
the variance of policy evaluation in Monte Carlo tree search (MCTS). These techniques
require the environment to be known and appear to be inapplicable to the general RL policy
evaluation problem. We note that the algorithms we introduce could potentially be applied,
in combination with the methods of Veness et al. (2011), to lower the variance of value
estimates in MCTS.

In this work we focus on unbiased batch policy evaluation. When the goal is to minimize
MSE it is often permissible to use biased methods such as temporal difference learning
(Sutton, 1988), model-based policy evaluation (Kearns and Singh, 2002; Strehl et al., 2009),
variants of weighted importance sampling (Precup et al., 2000), stationary distribution
corrections (Hallak and Mannor, 2017; Liu et al., 2018; Gelada and Bellemare, 2019; Yang
et al., 2020), or tree back-ups (Precup et al., 2000; Asis et al., 2017). It may be possible to
use adaptive importance sampling to reduce bias and variance although the methods we
introduce are not directly extensible to accomplish bias and variance reduction. We leave
behavior policy search with biased off-policy methods to future work.

4. The Behavior Policy Search Problem

The importance sampling estimator (1) is often viewed as a high variance technique for using
off-policy data – in fact the standard RL textbook states, in reference to methods using
importance sampling, that “off-policy learning is inherently of greater variance than on-
policy learning” (Sutton and Barto, 2018, Chapter 5). However, outside of RL, importance
sampling was originally intended as a variance reduction technique for Monte Carlo evaluation
(Hammersley and Handscomb, 1964). In this section we first provide intuition for how
importance sampling with a behavior policy different than πe can reduce the variance of
importance sampling. This intuition motivates us to propose a policy evaluation sub-problem
– the behavior policy search problem – solutions to which are policies that provide lower
MSE off-policy batch policy evaluation than on-policy estimators. We then prove statistical
properties on the off-policy estimates that are produced as we adapt the behavior policy,
showing that such estimates are unbiased and consistent and that we can construct confidence
intervals on the estimates. To the best of our knowledge, we are the first to propose behavior
policy adaptation for lower variance policy evaluation.

4.1 Motivating Off-Policy Sampling for Lower Variance Importance Sampling

To gain intuition for how importance sampling can lower the variance of Monte Carlo returns,
we first examine why importance sampling often increases variance in RL. First, we make
the straightforward observation that any particular behavior policy will induce a particular
distribution over weighted returns and the weighted returns will have some variance under
this distribution. In the case of on-policy sampling, this distribution is just the distribution
of unweighted returns since πe(a|s) = πb(a|s) and all importance weights are equal to one.
Since choosing πb 6= πe means the importance weights themselves have non-zero variance, it
is natural to assume that the variance of the weighted returns can only increase when we
multiply non-zero variance unweighted returns with non-zero variance weights. In fact, this
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case often does arise in RL when the behavior policy is dictated by circumstance (e.g., when
using historical logged data) (Thomas et al., 2015a).

Looking closer at why the variance can be magnified under off-policy sampling, we can
see that some importance weights are greater than 1 while others are less than 1. Weights
greater than 1 will magnify the magnitude of the associated return while weights less than
1 will lessen this magnitude. As a consequence, we can see that if we could select πb such
that the largest magnitude unweighted returns receive weights less than 1 and the smallest
magnitude returns received weights greater than 1 then the overall variance of the weighted
returns would decrease relative to the variance of the unweighted returns. In effect, the
spread of possible return values would decrease and hence the variance would decrease as
well.

In fact, there is even a special case in which a well-chosen behavior policy could decrease
the variance of an importance sampling estimate to zero. Consider the case when d0 and P
are deterministic, all rewards are positive and imagine we have a behavior policy πb

? such
that for all h ∈ H:

v(πe) = IS(πe, h, πb
?) = g(h)

Pr(H = h|πe)
Pr(H = h|πb?)

.

Rearranging the terms of this expression yields:

Pr(H = h|πb?) = g(h)
Pr(H = h|πe)

v(πe)
. (2)

Thus, if we could select πb
? such that the probability of observing any H ∼ πb? is g(H)

v(πe)
times

the likelihood of observing H ∼ πe, then the IS estimate has zero variance with only a single
sampled trajectory! Regardless of the value of g(H), the importance weight under πb

? will
scale g(H) exactly to v(πe) for all possible realizations of H and the importance-sampled
return will equal v(πe).

While in principle importance weights can be used to decrease the variance of the
unweighted returns under πe, we have yet to show that one should expect there to exist a
behavior policy that yields the necessary importance weights for any MDP and evaluation
policy pair. We consider this question with a small scale empirical study on randomly
generated MDP-πe pairs. Specifically, we randomly generate MDPs from the class of Garnet
MDPs (Archibald et al., 1995; Piot et al., 2014) with 10 states, 2 actions, a branching factor
of 2 (each state-action pair leads to at most 2 possible next states), and a maximum horizon
of 3. The transition probabilities are given by a softmax distribution with temperature
τP . Both rewards and πe’s action probabilities are given by a softmax distribution over
actions in each state. These distributions use temperature parameter τR and τπ respectively.
Logits for all softmax distributions are sampled uniformly from [0, 1]. The small size of these
randomly generated MDPs allows us to analytically compute the variance of an importance
sampling estimate with a particular behavior policy. Furthermore, we can analytically
compute the gradient of the variance with respect to the softmax parameters of the policy.3

For a randomly generated MDP-πe pair, we first compute the variance with πb ← πe. We
then compute the gradient, g, of the variance and create a new behavior policy with a single
step of gradient descent, θb ← θe − α g

||g||2 where α = 0.001 is a scalar step-size parameter.

3. We will elaborate on the derivation of this gradient in Section 5.
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Finally, we compute the variance with πb ← πθb and measure the difference between the
initial variance and new variance.

The parameters τP , τR, τπ allow us to vary the transition entropy, per-state reward
variance, and evaluation policy entropy respectively of the randomly generated MDP-πe
pairs. Our objective is to see under what settings there exists a behavior policy that lowers
the variance of importance sampling compared to using πb = πe. Figure 2 plots variance
reduction as a function of the three task parameters that we vary. In all settings that we
consider we find that adapting the behavior policy leads to no worse variance than using
πe though the degree of possible variance reduction varies across settings. In particular,
the three cases where adapting the behavior policy leads to minimal variance reduction
are 1) when the reward function has low variance across actions (high τR), 2) when πe is
near uniform random (higher τπ), and 3) when πe is deterministic. The last case sometimes
occurs for the smaller tested τπ and explains the wider confidence interval see in Figure 2.
While this experiment does not establish there will always be a πb 6= πe that decreases the
variance of importance sampling, it shows that it is in principle possible in some cases to
lower variance by adapting the behavior policy. This finding motivates the behavior policy
search problem which we introduce in the next subsection.

4.2 The Behavior Policy Search Problem

With the potential to lower the variance of importance sampling via off-policy sampling in
mind, we now introduce the behavior policy search (BPS) problem for finding πb that lowers
the MSE of estimates of v(πe). While the previous subsection focused on the IS-estimator,
this subsection considers the more general class of unbiased off-policy value estimators.

A BPS problem is defined by the inputs:

1. An evaluation policy πe with policy parameters θe.

2. An initial behavior policy, πθ0 , with policy parameters θ0. We assume from here on
that θ0 = θe.

3. An off-policy policy evaluation estimator, OPE(πe, H, πθ), that takes a trajectory,
H ∼ πθ and returns an estimate of v(πe).

A BPS solution is a policy, πθb , that generates trajectories, H, such that OPE(πe, H, πθb)
has lower MSE than OPE(πe, H, πe). Algorithms for this problem are BPS algorithms.

Recall that we consider an incremental batch policy evaluation setting where at each
iteration i we can select a behavior policy to collect a trajectory and add this trajectory
to a dataset containing trajectories collected at earlier iterations. At the ith iteration, a
BPS algorithm selects a behavior policy that will be used to generate a trajectory, Hi. We
then add trajectory Hi to dataset Di−1 to form dataset Di. Finally, we estimate v(πe) as
the mean value of OPE across all trajectories in D. Naturally, the selection of the behavior
policy depends on how the estimator estimates v(πe).

In a BPS problem, the ith iteration proceeds as follows. First, given all of the past
behavior policies, {πθj}

i−1
j=1, and the resulting trajectories, {Hj}i−1

j=1, the BPS algorithm must
select θi. The policy πθi is run for one episode to generate the trajectory Hi. Then the BPS
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Figure 1: Variance Improvement

Figure 2: Reduction of variance on random MDPs with varying properties. The vertical axis
shows change in the variance of importance sampling after adapting the behavior policy’s
parameters with a single step of gradient descent on the variance. The horizontal axis is
the MDP parameter that is varied. Higher indicates a larger reduction in variance and the
shaded region indicates a 95% confidence interval.

algorithm estimates v(πe) as the mean of OPE in the available data, Di:

OPE(πe, Di) :=
1

i

i∑
j=1

OPE(πe, Hj , πθj ).

At the final iteration, the algorithm returns the final policy parameters and the estimate
of v(πe) using all trajectories collected while running the algorithm. If for all iterations,
the variance of OPE with H ∼ πθi is less than that of OPE with H ∼ πe (i.e., on-policy
policy evaluation) then a BPS algorithm will have lower variance than an on-policy policy
evaluation. Thus adapting the behavior policy is statistically more efficient than simply
collecting all trajectories with πe.

It is worth noting that adapting the behavior policy increases the computational com-
plexity of estimating v(πe). The exact increase will depend on the behavior policy search
algorithm used and the dimension of θ, however, it seems unlikely that a behavior policy
search algorithm will match the computational simplicity of simply running the evaluation
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policy. Thus practitioners must decide whether computational or statistical efficiency is
more appropriate for a particular application.

4.3 Statistical Properties of Behavior Policy Search Estimates

To enable better statistical efficiency, so far we have focused on reducing variance while
evaluating πe by adequately adjusting πb. Before we present concrete algorithms for behavior
policy search, it is important to ensure that any such search procedure does not give up other
desired statistical properties like unbiasedness, consistency, and finite sample rates. These
properties when using unbiased estimates are typically established under the assumption
that the trajectories {Hj}ij=1 are independent (Thomas, 2015). However, notice that when

using a behavior policy search algorithm the policy parameters (θj)
i
j=1 will be iteratively

obtained and hence need not be independent of each other, and thus even the trajectories
{Hj}ii=j in Di need not be independent of each other either. Moreover, the distribution
of the random variable OPE(πe, Hj , πθj ) can vary when θj is different for different values
of j ∈ {1, ..., i} as well. These two factors combined violate both the independence and
identical distribution assumptions that are often required to establish statistical guarantees
on estimators. Figure 3 presents a graphical depiction of the concern.

Figure 3: Graphical depiction of the dependencies between the
variables. Here, Xk is the random variable corresponding to
the estimate OPE(πe, Hk, πθk) using the trajectory Hk generated
using the behavior policy πθk . Red arrows correspond to any
learning algorithm that looks at the sampled trajectories and
updates policy πθk−1

to πθk , thereby introducing the dependency
between X’s. Further, the distribution of Xk−1 and Xk can vary
as θk−1 and θk can be different. These factors combined violate
both the independence and identical distribution assumptions.

This problem occurs even in settings beyond the behavior policy search problem. For
instance, many reinforcement learning methods leverage off-policy trajectories to update
policy parameters, which are consequently used to generate new trajectories. Therefore,
OPE estimates using these trajectories violate the i.i.d. assumption as well. This raises the
question:

Can we obtain statistical properties for the OPE estimate, similar to what is possible
under the i.i.d. setting, in the above settings where the i.i.d. assumptions are violated?

In what follows, we answer this question positively and show that despite the violation of
the i.i.d. assumption, strong guarantees on unbiasedness, consistency, and concentration rates
can still be obtained. First, we present these results in a generic form that applies regardless
of how the behavior policy is updated. As trajectories may not be i.i.d. in other applications
of off-policy evaluation, these results are of independent interest apart from behavior policy
search. In the context of this article, these results establish unbiasedness, consistency, and
concentration rates for the specific behavior policy search algorithms that we introduce. For
simplicity, we will only consider the case that any algorithm (stochastically) selects πθj+1

given only the previous parameter θj and the corresponding trajectory Hj .
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For our results to hold for estimates computed as the mean of a set of unbiased estimates,
{OPE(πe, H, πθj )}ij=1, we require the following assumption.

Assumption 2 The unbiased, off-policy policy evaluation estimator OPE(πe, H, πθ) is
bounded in the range [min, max] for finite constants min and max for all trajectories and
choices of πθ.

For the IS-estimator, Assumption 1 and bounded rewards imply that Assumption 2 is
satisfied.

Proposition 1 Under Assumption 2, OPE(πe, Dn) is an unbiased estimator of v(πe) for
any n ∈ N,

E
[
OPE(πe, Dn)

]
= v(πe).

Proof The proof is presented in Appendix A.

An important consequence of Proposition 1 is that, despite lacking independence from each
other, the (OPE(πe, Hj , πθj ))

i
j=1 estimates are uncorrelated. We formalize this statement

below and then use it to establish other properties of the OPE(πe, Di) estimate.

Lemma 1 Under Assumption 2, ∀j ∈ N, and ∀k ∈ N, where j 6= k, OPE(πe, Hj , πθj ) and
OPE(πe, Hk, πθk) are uncorrelated. That is,

∀j 6= k, Cov
(
OPE(πe, Hj , πθj ),OPE(πe, Hk, πθk)

)
= 0.

Proof The proof is presented in Appendix A.

Remark 1 While Lemma 1 implies that the expected value (first moment) of OPE(πe, Hj , πθj )
is independent of OPE(πe, Hk, πθk), the higher moments of OPE(πe, Hj , πθj ) may still depend
on OPE(πe, Hk, πθk).

A desired property for any estimator is that it provides a more accurate estimate as
the amount of data increases. Typically, Kolmogorov’s strong law (Sen and Singer, 1993,
Theorem 2.3.10) is used to show consistency of estimators, however, it requires random
variables to be independent. While the independence (and identical distribution) assumption
is violated in our setting, we show below that asymptotic consistency can still be established.

Proposition 2 Under Assumption 2, OPE(πe, Di) converges to v(πe) in probability. That
is, for ε > 0,

lim
i→∞

Pr
(
|OPE(πe, Di)− v(πe)| > ε

)
= 0.

12
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Proof The core idea of the proof relies upon results from Proposition 1 and Lemma 1 to
show that mean-squared-error of OPE(πe, Di) asymtotically converges to 0. The complete
proof is presented in Appendix A.

While asymptotic consistency is desirable, it is often also essential to quantify finite sample
rates to understand the dependency on the sample size, construct confidence intervals, etc.
Because i.i.d. assumptions are violated in our setup, it is not immediately clear if existing
methods that make the i.i.d. assumption can be leveraged as-is to provide finite sample rates.
To resolve this difficulty, we use a common technique based on Martingales to obtain finite
sample rates for the specific setting of our interest.

Proposition 3 Under Assumption 2, let c̃ be the range of OPE(πe, Hj , πθj ) for any j ∈
{1, 2, ..., i}, then ∀δ ∈ [0, 1],

Pr

(∣∣OPE(πe, Di)− v(πe)
∣∣ > c̃

√
ln(2/δ)

2|Di|

)
≤ δ,

Proof The core idea of the proof relies upon modeling the sequence (
(
OPE(πe, Dj , πθj )

)i
j=1

as Martingales and then using concentration inequalities for the Martingales. The complete
proof is provided in Appendix A.

Remark 2 Note that Proposition 3 reduces to naively applying Hoeffding’s inequality on the
OPE estimates (OPE(πe, Hj , πθj ))

i
j=1, even though neither independence nor the identical

distribution assumption holds.

Remark 3 The concentration bound given in Proposition 3 depends upon the range of the
OPE(πe, Hj , πθj ) estimates. Taking importance sampling as an example and assuming the
returns g(h) are bounded, we can observe that for any πθj 6= πe the range of IS(πe, Hj , πθj )
increases and so the bound becomes looser (see Thomas et al. (2015a) for additional dis-
cussion). Thus, even if a behavior policy search algorithm lowers variance (and thus MSE)
compared to on-policy sampling, Proposition 3 still assigns the estimate a looser finite-sample
bound than the estimate from on-policy sampling. An alternative to Hoeffding-style bounds
are Student’s t-Test bounds which depend on the sample variance. We would expect t-Test
bounds to return a tighter error bound for behavior policy search algorithms that compute
behavior policies that lower the variance of off-policy evaluation. However, t-Test bounds
require the assumption that OPE(πe, Di) is normally distributed and this assumption is typi-
cally false for small data sets. While this requirement invalidates the error bound, Thomas
et al. (2015b) note that in certain cases t-Test bounds are overly conservative which makes
them suitable for applications of high-confidence off-policy evaluation.

Propositions 1, 2, and 3 ensure that the statistical guarantees on unbiasedness, consistency,
and finite sample rates can still be achieved even if any behavior policy search algorithm
results in non i.i.d. returns. In the following sections, we now introduce concrete solution
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algorithms for the behavior policy search problem. We will first introduce an algorithm that
optimizes the behavior policy to minimize the variance of an importance sampling estimate.
We then introduce an algorithm that optimizes the behavior policy to minimize a measure of
divergence between a minimal-variance behavior policy and the current behavior policy. We
will also introduce behavior policy search algorithms for extensions to the basic importance
sampling estimator.

5. Behavior Policy Gradient on the Variance

Our first behavior policy search algorithm is derived from the perspective of selecting
the behavior policy that minimizes the MSE of the importance sampling estimator. As
importance sampling is unbiased, minimizing the MSE is equivalent to minimizing variance.
We introduce an analytic expression for the gradient of the MSE of the importance sampling
estimator and a stochastic gradient descent algorithm that adapts πθ to minimize the MSE
between the importance sampling estimate and v(πe). Our algorithm – behavior policy
gradient on the variance (BPG-V) – begins with on-policy estimates (sets θ0 = θe) and
adapts the behavior policy with gradient descent on the MSE with respect to θ. The gradient
of the MSE is given by the following theorem:

Theorem 1 (Behavior Policy Gradient of the Variance)

∂

∂θ
MSE

[
IS(πe, H, πθ)

]
= E

[
− IS(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

Proof See Appendix B for full proof. The proof of Theorem 1 relies on the fact that the
MSE of an estimator is the sum of its variance and the square of its bias. Since importance
sampling is unbiased, its MSE is equal to its variance. Thus, the gradient of the MSE given
by Theorem 1 is also the gradient of the variance which can be estimated without knowledge
of v(πe). Importantly, this gradient can be estimated with trajectories sampled from πθ,
even though the MSE is defined using v(πe).

BPG-V uses stochastic gradient descent in place of exact gradient descent: replacing the
expectation in Theorem 1 with an unbiased estimate. While in theory, the single trajectory
Hi is sufficient for an unbiased estimate of this gradient, in practice, we can obtain a more
accurate descent direction by sampling a batch, Bi, of k trajectories with πθi . In the BPS
setting, sampling a batch of trajectories is equivalent to holding θ fixed for k iterations and
then updating θ with the k most recent trajectories used to compute the gradient estimate.4

Full details of BPG-V are given in Algorithm 1. At iteration i, BPG-V samples a batch,
Bi, of k trajectories with πθi and adds {(Hi·k+j , πθi)

k
j=1} to Di−1 to yield data set Di (Lines

4 – 5). Then BPG-V updates θi with an empirical estimate of the expectation in Theorem 1

4. In principle, we could also re-use trajectories from earlier iterations in our gradient estimate after applying
a second importance sampling correction. Informal experiments on a Gridworld domain showed some
benefit (i.e., faster variance reduction) from including trajectories from recent batches but an increase in
variance when including trajectories from older batches.
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(Line 6). After n iterations, BPG-V returns an estimate of v(πe) (Line 8) given as:

IS(πe, Dn) =
1

nk

n∑
i=1

k∑
j=1

IS(πe, Hi·k+j , πθi).

As a behavior policy search algorithm, these BPG-V estimates inherit all the results shown
in Section 4.2: unbiasedness, consistency, finite-sample rates, and independence between
IS(πe, Hi, πθi) and IS(πe, Hj , πθj ) for any two iterations i and j.

Algorithm 1 Behavior Policy Gradient on the Variance
Input: Evaluation policy parameters, θe, batch size k, a step-size for each iteration, αi,
and number of iterations n.
Output: Final behavior policy parameters θn and the IS estimate of v(πe) using all sampled
trajectories.

1: θ0 ← θe
2: D0 = {}
3: for all i ∈ 0...n do
4: Bi = Sample k trajectories H ∼ πθi
5: Di+1 = Di ∪Bi

6: θi+1 = θi + αi
k

k∑
j=1

IS(πe, Hj , πθi)
2
l−1∑
t=0

∂

∂θ
log πθi(A

j
t |S

j
t )

7: end for
8: Return θn, IS(πe, Dn)

Since BPG-V requires collecting trajectories to estimate the variance-gradient, a natural
question is whether this gradient can be estimated more efficiently than v(πe). The key
insight is that we do not require perfect gradient estimation; the gradient only must be
estimated well enough to provide a reliable descent direction. Thus we can improve the
behavior policy with lower accuracy gradient estimates to obtain a more accurate policy
value estimate.

Convergence of BPG-V

We now discuss the theoretical convergence of the BPG-V algorithm. We make the following
assumption on the step-size parameter, αi, at each iteration:

Assumption 3 The step-size αi is chosen such that:

∞∑
i=0

αi =∞
∞∑
i=0

α2
i <∞.

This assumption is also known as the Robbins and Monroe condition (Robbins and Monro,
1951) and is widely used in convergence results in stochastic approximation.

Proposition 4 Under Assumption 1 and Assumption 3, BPG-V converges. That is,
MSE[IS(πe, Hi, πθi)] converges to a finite value and limi→∞

∂
∂θ MSE[IS(πe, Hi, πθi)] = 0.
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Proof See Appendix C for a full proof. The result is an application of Proposition 3 in
(Bertsekas and Tsitsiklis, 2000). In Appendix C we show that the MSE objective satisfies
the assumptions needed to apply this result.

With further assumptions on the policy class of πθ we can derive stronger convergence
guarantees. In particular, if θ is the parameters of a linear-softmax policy than the MSE
objective is convex with respect to θ and local minima of the MSE are also global minima.
A linear-softmax policy is a policy over a finite set of actions where the probability of each
action is defined as a softmax distribution with logits from a linear combination of state
features. Formally, let φ : S → Rq for integer q be a state feature function that maps
states to feature vectors. For each action, a ∈ A, we have a vector θa ∈ Rq and θ is the
concatenation of all θa. A linear-softmax policy defines the probability of action a in state s
as:

πθ(a|s) =
eθ

T
a φ(s)∑

b∈A e
θTb φ(s)

.

Theorem 2 Assume πθ is a linear-softmax policy. Then, MSE[IS(πe, H,θ)] is a convex
function w.r.t. θ.

Proof See Appendix D.

Remark 4 The result that the MSE of the importance-sampled return is a convex function
of θ is somewhat surprising given that the mean return is a non-convex function under the
same assumption of linear-softmax policies (Agarwal et al., 2019).

Proposition 4 and Theorem 2 imply that BPG-V converges to the globally minimal
variance behavior policy in the family of linear-softmax policies Zinkevich (2003). Since we
have assumed that πe belongs to the same parameterized family of policies that we optimize
over, BPG-V converges to a behavior policy that will have no higher variance than πe. In
addition to having lower variance, the estimate remains unbiased by Proposition 1, consistent
by Proposition 2, and has finite-sample error given by Proposition 3.

6. Behavior Policy Gradient on the KL-Divergence

The preceding section derived an algorithm that searches for a lower variance behavior
policy by incrementally decreasing the variance with stochastic gradient descent. In this
section, we explore an alternative approach to finding a behavior policy that minimizes
variance. Specifically, we first derive a sufficient condition for a behavior policy to minimize
the variance of the importance sampling estimator. We then introduce an algorithm that
searches for a behavior policy πθ that comes closest to satisfying this condition.

We first define a minimal variance behavior policy and then provide a condition that is
sufficient for a behavior policy to be a minimal variance behavior policy.
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Definition 1 (Minimal-Variance Behavior Policy) A minimal-variance behavior pol-
icy is a policy, πb

?, such that Var[IS(πe, H, πb
?)] ≤ Var[IS(πe, H, π)], ∀π ∈ Π. Since the

variance is lower bounded by zero, such a policy trivially exists.

Proposition 5 Let wπ(h) :=
∏l−1
t=0 π(at|st). Assume ∃h̃ ∈ H such that g(h̃) · Pr(H =

h̃|πe) 6= 0, i.e., there is non-zero probability that πe generates a trajectory with non-zero
return. If ∃π ∈ Π s.t.

∀h ∈ H, wπ(h) = |g(h)| wπe(h)

E

[
|g(H)|

∣∣∣∣ H ∼ πe] .
then π is a minimal-variance behavior policy.

Proof See Appendix E for a full proof.

We now introduce a second algorithm that attempts to find πθ that comes closest to
satisfying the condition given in Proposition 5. Note that a policy, πb

?, that satisfies this
expression will induce the following distribution over trajectories:

Pr(H = h|πb?) ∝ Pr(H = h|πe) · |g(h)|.

Though a Markovian policy πb
? that induces this distribution may not necessarily exists

within a given parameterized policy class, we can still attempt to find πθ that induces
a similar trajectory distribution. Thus, our second algorithm attempts to minimize the
Kullback-Leibler (KL) divergence between Pr(H = h|πb?) and Pr(H = h|πθ). To do so,
we first introduce an analytic expression for the gradient of the KL divergence between
these trajectory distributions and then use unbiased estimates of this gradient to perform
stochastic gradient descent on the behavior policy parameters. We call this second algorithm
behavior policy gradient on the KL-Divergence (BPG-KL). While BPG-V minimizes our
ultimate objective (MSE), BPG-KL minimizes divergence from a minimal-variance solution,
given by Proposition 5. We note that this objective has been used before for adaptive IS
outside of RL (Rubinstein and Kroese, 2016).

The gradient of the KL-divergence with respect to the policy parameters is proportional
to the expression given by the following theorem:

Theorem 3 (Behavior Policy Gradient of the KL-Divergence)

∂

∂θ
DKL(Pr(H|πb?)||Pr(H|πθ)) ∝ E

[
−
∣∣∣∣IS(πe, H, πθ)

∣∣∣∣ l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Proof See Appendix F for full proof.

Theorem 3 gives a similar gradient to that in Theorem 1, except it takes the absolute
value of IS(πe, H, πθ) instead of squaring it. Like BPG-V, BPG-KL begins with on-policy
estimates and adapts the behavior policy with gradient descent on the KL-divergence with
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respect to θ. Pseudo-code for the BPG-KL algorithm is given in Algorithm 2. The only
difference between BPG-V and BPG-KL is the method of adapting the behavior policy (Line
6); both algorithms still use importance sampling as the underlying off-policy estimator
to return estimates of v(πe). As a behavior policy search algorithm, BPG-KL inherits the
unbiasedness, consistency, and finite-sample rates given by Proposition 1, Proposition 2, and
Proposition 3 respectively.

Algorithm 2 Behavior Policy Gradient on the KL-Divergence
Input: Evaluation policy parameters, θe, batch size k, a step-size for each iteration, αi,
and number of iterations n.
Output: Final behavior policy parameters θn and the IS estimate of v(πe) using all sampled
trajectories.

1: θ0 ← θe
2: D0 = {}
3: for all i ∈ 0...n do
4: Bi = Sample k trajectories H ∼ πθi
5: Di+1 = Di ∪Bi

6: θi+1 = θi + αi
k

k∑
j=1

| IS(πe, Hj , πθi)|
l−1∑
t=0

∂

∂θ
log πθi(A

j
t |S

j
t )

7: end for
8: Return θn, IS(πe, Dn)

Convergence of BPG-KL

Like BPG-V, we can show that BPG-KL converges and that, under a linear-softmax policy
assumption, the objective optimized by BPG-KL is convex.

Proposition 6 Under Assumption 1 and Assumption 3, BPG-KL converges. That is,
DKL(Pr(H|πb?)||Pr(H|πθ)) converges to a finite value and limi→∞

∂
∂θDKL(Pr(H|πb?)||Pr(H|πθ)) =

0.

Proof See Appendix G for a full proof. The result is an application of Proposition 3 in
(Bertsekas and Tsitsiklis, 2000). In Appendix G we show that the KL-objective satisfies the
assumptions needed to apply this result.

Additionally, we can show convexity of the KL-objective under an assumption of linear-
softmax policies.

Theorem 4 Assume πθ is a linear-softmax policy. Then, DKL(Pr(H|πb?)||Pr(H|πθ)) is a
convex function w.r.t. θ.

Proof See Appendix H.

Proposition 6 and Theorem 4 jointly imply convergence to a global minimum (Zinkevich,
2003). A counterintuitive observation is that global minimization of the KL-objective does
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not necessarily imply that BPG-KL converges to lower variance importance-sampled returns
compared to on-policy sampling. First, observe that, since we minimize the KL between the
minimal-variance behavior policy and a policy within a specific family of behavior policies,
we may not converge to a minimal-variance behavior policy (which may be unrepresentable in
the family of linear soft-max policies). While the policy at BPG-KL’s convergence would be
closer in terms of KL to a minimal-variance behavior policy than any other linear soft-max
policy, we have not ruled out the possibility that the policy would yield sub-optimal variance
for the importance sampling returns. While this case may be theoretically possible, our
experimental results (in Section 9) show that BPG-V and BPG-KL perform similarly in
practice, suggesting that minimizing the KL also minimizes variance compared to on-policy
sampling in practice.

7. Interpreting BPG-V and BPG-KL Updates

We can gain intuition for how BPG-V and BPG-KL update the behavior policy by comparing
their updates to existing algorithms in policy gradient RL (cf. Sutton et al. (2000)). Here,
we draw a connection between one such family of algorithms and our new behavior policy
search methods to illustrate how these methods change the distribution of trajectories. The
REINFORCE family of algorithms (Williams, 1992) attempts to maximize v(πθ) through
gradient ascent on v(πθ) using unbiased estimates of the gradient of v(πθ):

∂

∂θ
v(πθ) = E

[
g(H)

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Intuitively, REINFORCE methods increase the probability of all actions taken during H
as a function of g(H). This update increases the probability of actions that lead to high
return trajectories. BPG-V can be interpreted as a REINFORCE method where the return
of a trajectory is the square of its importance-sampled return. Thus BPG-V increases the
probability of all actions taken along H as a function of IS(πe, H,θ)2. BPG-KL can be
interpreted as a REINFORCE method where the return of a trajectory is the absolute value
of its importance-sampled return. Thus BPG-KL increases the probability of all actions
taken along H as a function of |IS(πe, H,θ)|. Recall that IS(πe, H,θ) = g(H)

∏l−1
t=0

πe(At|St)
πθ(At|St) .

Thus, the magnitude of both IS(πe, H,θ)2 and |IS(πe, H,θ)| depends on two qualities of H:

1. The magnitude of g(H) (whether positive or negative).

2. The relative likelihood of H under πe compared to πθ (i.e.,
∏l−1
t=0

πe(At|St)
πθ(At|St)).

These two qualities demonstrate a balance in how BPG-V and BPG-KL change trajectory
probabilities. Increasing the probability of a trajectory under πθ will decrease the magnitude
of IS(πe, H,θ) and so BPG-V and BPG-KL increase the probability of a trajectory when
the magnitude of g(H) is large enough to offset the decrease in the magnitude of IS(πe, H,θ)
caused by decreasing the importance weight.

The main difference between the two algorithms is that BPG-V puts more emphasis on
increasing the probability of high magnitude return trajectories. For example if one return
has double the return of another then it has quadruple the emphasis under BPG-V whereas
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with BPG-KL doubling the return only doubles the emphasis. BPG-V is minimizing our
target objective (low MSE) while BPG-KL attempts to find a policy that is close (in terms
of KL-divergence) to the optimal solution to our target objective.

8. Behavior Policy Search for Importance Sampling Extensions

The behavior policy search algorithms introduced in Sections 5 and 6 both use the basic
importance sampling estimator for estimating v(πe). In this section we introduce behavior
policy search algorithms that use other unbiased off-policy estimators: doubly robust and
per-decision estimators. We also discuss behavior policy search for weighted importance
sampling.

8.1 Baselined Importance Sampling

Instead of using importance sampling to evaluate v(πe), we can instead estimate

E

[
g(H)− b

∣∣∣∣ H ∼ πe]+ b (3)

for some constant b. With a constant baseline, the baselined importance sampling estimate
of v(πe) after n iterations becomes:

IS(πe, Di, b) := b+
1

n

n∑
j=1

l−1∏
t=0

πe(A
j
t |S

j
t )

πθi(A
j
t |S

j
t )

(g(Hj)− b).

While the on-policy Monte Carlo estimate of (3) is identical to the Monte Carlo estimate
of v(πe), an off-policy importance sampling estimate benefits from a baseline if b is closer

to v(πe) than v(πe) is to 0. The lower variance is due to b ·
∏l−1
t=0

πe(A
j
t |S

j
t )

πθi (A
j
t |S

j
t )

serving as a

control variate for the importance sampled g(H) (Thomas and Brunskill, 2017). BPG-V
and BPG-KL only require a small modification to use a constant baseline: we replace all
occurrences of g(H) with g(H)− b in the algorithms and then add b to the final estimate
returned.

8.2 Doubly Robust and Per-Decision Importance Sampling

In cases where an approximate model of the environment is available, the doubly robust
(DR) estimator (Jiang and Li, 2016; Thomas and Brunskill, 2016) lowers the variance of
importance sampling using the control variate technique (Lemieux, 2014). In this section,
we introduce a behavior policy search algorithm that uses the DR estimator for estimates of
v(πe).

The DR estimator computes the average difference between the observed importance-
sampled rewards and the predicted expected reward under a model of the environment’s
transition and reward function. Provided the expected reward predictions are correlated
with the true rewards, DR has lower variance than using the importance-sampled rewards
alone. The DR estimate for a single trajectory, H, is given by:

DR(πe, H, πθ, q̂
πe , v̂πe) := v̂(S0) +

l−1∑
t=0

wπe,t
wπθ ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))
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where wπ,t(H) =
∏t
i=0 π(At|St) and v̂πe and q̂πe be the state and action value functions of

πe in the approximate model.
We show here that we can adapt the behavior policy to lower the MSE of DR estimates.

As of this writing, it is an open problem whether there exists a form for a minimal-variance
behavior policy for DR. Therefore we only introduce a method that adapts the behavior
policy from the perspective of minimizing variance. We denote this new method DR-BPG
for doubly robust behavior policy gradient.

The MSE gradient for the DR estimator is given by the following corollary to Theorem 1:

Corollary 1

∂

∂θ
MSE

[
DR(πe, H, πθ, q̂

πe , v̂πe)

]
= E

[
DR(πe, H,θ, q̂

πe , v̂πe)2
l−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ, q̂
πe , v̂πe)

( l−1∑
t=0

γtδt
wπe,t
wθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si)

)]
where δt = Rt − q̂πe(St, At) + v̂πe(St+1) and the expectation is taken over H ∼ πθ.

Proof See Appendix B.3 for the full proof.

The first term of ∂
∂θ MSE is analogous to the gradient of the importance-sampling estimate

with IS(πe, H,θ) replaced by DR(πe, H,θ, q̂
πe , v̂πe). The second term accounts for the

covariance of the DR terms over time.
In practice, DR has been noted to perform best when all available trajectories are used

to estimate the approximate model and then also used to estimate v(πe) (Thomas and
Brunskill, 2016). However, for DR-BPG, updating the model as πθ is learned will change the
the surface of the MSE objective we seek to minimize and thus DR-BPG will only converge
once the model stops changing. Computing the model from the same data used in the DR
estimate also violates assumptions made for the theoretical analysis of DR (Thomas and
Brunskill, 2016). In our experiments, we consider both a changing and a fixed model.

Finally, as a special case of Corollary 1, we obtain the variance gradient for the per-
decision importance sampling estimator (Precup et al., 2000).

Corollary 2

∂

∂θ
MSE

[
PDIS(πe, H, πθ)

]
= E

[
PDIS(πe, H,θ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 PDIS(πe, H, πθ)

( l−1∑
t=0

γtRt
wπe,t
wθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si)

)]
where the expectation is taken over H ∼ πθ.

Proof Set q̂πe and vπe to 0 for all states, actions, and time-steps and the DR estimator
reduces to the per-decision estimator and then Corollary 2 follows from 1.
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8.3 Weighted Importance Sampling

Another common variance reduction technique for importance sampling is to use weighted
(also known as self-normalized) importance sampling (Precup et al., 2000; Swaminathan and
Joachims, 2015). The weighted importance sampling estimator for a set of m trajectory-
behavior-policy pairs is defined as:

WIS(πe, D) :=
1

Z

m∑
j=1

IS(πe, Hj , πj),

where the normalization factor, Z =
∑m

j=1
wπe (Hj)
wπj (Hj)

, is the sum of all importance weights.

For finite sample sizes, weighted importance sampling is a biased estimator, however,
it lowers variance due to the importance weights themselves. Though often noted to lower
variance compared to the basic importance sampling estimator (Thomas et al., 2015b;
Mahmood et al., 2014), if the behavior policy is optimized for basic importance sampling,
then it may harm the efficiency of policy evaluation. We illustrate this fact with an example.
Consider a two-armed bandit problem in which the policy selects arm 1 with probability θ
and arm 2 with probability 1− θ. Let the outcome of pulling arm 1 be a reward of 100 and
the outcome of arm 2 be a reward of 1. The evaluation policy is defined as θe := 0.1. The
minimal-variance behavior policy for the basic importance sampling estimator (computed
with Equation (2)) is θ?b ≈ 0.917.

Figure 4 shows the MSE of weighted importance sampling compared to the basic
importance sampling estimator for different values of θ. Estimates are computed with data
sets of size 50 and the squared error is averaged over 500 different data sets. For values of θ
greater than 0.5, the MSE of weighted importance sampling increases even while the MSE
of the basic importance sampling estimator continues to decrease. This example illustrates
that weighted importance sampling can harm the accuracy of policy evaluation estimates
when using a behavior policy chosen to lower the variance of the basic importance sampling
estimator. Since we focus on unbiased policy evaluation estimators, we leave how to best
determine the behavior policy for a weighted importance sampling estimate as an open
question.

9. Empirical Study

This section presents an empirical study of variance reduction through behavior policy search.
We design our experiments to answer the following questions:

• Can behavior policy search with BPG-V and BPG-KL reduce the MSE of batch policy
evaluation compared to on-policy estimates in both tabular and continuous domains?

• Does adapting the behavior policy of the doubly robust estimator with DR-BPG lower
MSE compared to the on-policy doubly robust estimator?

• Does the rareness of actions that cause high magnitude rewards affect the performance
gap between BPG-V and Monte Carlo estimates?
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Figure 4: An example where optimizing the behavior policy for the MSE of the basic IS
estimator increases the MSE of WIS. For 100 values of θ evenly spaced between 0.01 and 0.99,
a data set of size 50 is collected and both the IS estimate and WIS estimate are computed
and the squared error calculated. The process is repeated 500 times and the mean squared
error reported with 95% confidence intervals shown. The horizontal axis gives the parameter
value and the vertical axis gives mean squared error.

9.1 Empirical Set-up

We address our first experimental question by evaluating BPG-V and BPG-KL on several
policy evaluation tasks.

Figure 5: Grid World Domain

Grid World The first domain is the Grid World
domain showed in Figure 5. All grid locations without
a reward shown have a reward of −1. The action
set contains the four cardinal directions and actions
move the agent in its intended direction (except when
moving into a wall, which produces no movement).
The agent begins in (0, 0), γ = 1, and l = 100. Each
state-action pair, (s, a), has a parameter θs,a and the
probability of taking action a in state s is given by
the softmax distribution:

π(a|s) =
eθs,a∑
a′ e

θs,a′
.

In this domain it is unnecessary to represent the policy with function approximation and
we can study BPG-V and BPG-KL without concern of whether our class of function
approximator includes a lower variance behavior policy. We obtain two evaluation policies
by applying a simple REINFORCE algorithm to maximize the expected return, starting
from a policy that selects actions uniformly at random. We then select one evaluation policy
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from the early stages of learning – an improved policy but still far from converged –, π1,
and one after learning has converged, π2. We run our set of experiments once with πe := π1

and a second time with πe := π2. The ground truth value of v(πe) is computed with value
iteration for both choices of πe.

Control Tasks We also study BPG-V and BPG-KL on four tasks with real-valued state
variables. The first two of these are the continuous control Cart Pole Swing Up and Acrobot
tasks implemented within RLLAB (Duan et al., 2016), the third task is the Cart Pole task
from OpenAI Gym (Brockman et al., 2016), and the final task is the PyBullet (Coumans
and Bai, 2016–2019) variant of the Hopper domain from OpenAI gym (Brockman et al.,
2016). In contrast to the tabular Grid World domain, these domains require that BPG-V
and BPG-KL optimize the behavior policy within a given class of function approximator.
For Cart Pole Swing Up and Acrobot, πe is a two layer neural network with 32 tanh units
per layer that maps the state to the mean of a Gaussian distribution over the continuous
action space. For Cart Pole Swing Up, πe was learned using 10 iterations of the TRPO
algorithm (Schulman et al., 2015) applied to a randomly initialized policy. For Acrobot, πe
was learned using 60 iterations. For Cart Pole and Hopper, πe is a neural network with two
layers of 64 tanh hidden units in each layer and is trained using 200 iterations of proximal
policy optimization (Schulman et al., 2017). For Cart Pole the network maps the state to a
softmax distribution over actions while in Hopper the network maps the state to a Gaussian
distribution over the continuous-valued actions. For Cart Pole Swing Up and Acrobot we use
l = 50 and γ = 1; CartPole and Hopper use l = 200 (with early termination possible) and
γ = 1. For step-size selection at each iteration BPG-V and BPG-KL use the largest possible
step-size subject to a constraint on the KL-divergence between the old and new policy. This
type of update has been shown to be more stable than constant step-size updates in the
policy gradient RL literature (Kakade, 2001; Peters and Schaal, 2008; Schulman et al., 2015).
The ground truth value of v(πe) in all domains is computed with 1,000,000 Monte Carlo
roll-outs.

In all experiments, for both BPG-V and BPG-KL, we use a constant control variate (or
baseline) when estimating the gradient. For BPG-V, the baseline, bi, is an estimate of:

E

[
− IS(πe, H, πθi−1

)2

∣∣∣∣ H ∼ πθi−1

]
and for BPG-KL, the baseline, bi, is an estimate of

E

[
−| IS(πe, H, πθi−1

)|
∣∣∣∣ H ∼ πθi−1

]
.

The baseline bi is estimated with trajectories from iteration i− 1 where for the first iteration
bi = 0. The gradient with baseline for BPG-V is an estimate of:

E

[(
− IS(πe, H, πθ)2 − bi

) l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

and the gradient with baseline for BPG-KL is an estimate of:

E

[(
−| IS(πe, H, πθ)| − bi

) l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.
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Adding or subtracting a constant leaves the gradient unchanged in expectation since

biE
[∑l−1

t=0
∂
∂θ log πθ(At|St)

]
= 0. However, the baseline variants of BPG-V and BPG-KL

have lower variance gradient estimates so that the estimated gradient is closer in direction
to the true gradient. Note that this baseline is for gradient estimation and is different than
using a constant baseline for importance sampling.

In all domains we run multiple trials where each trial consists of a fixed number of
iterations. At each iteration, each algorithm collects a batch of trajectories and computes a
new estimate of v(πe). We use batch sizes of 100 trajectories per iteration for Grid World
experiments and size 500 for the continuous control tasks. All algorithms have access to the
same number of trajectories at the same iteration across trials.

9.2 Main Results

In this section we present our empirical results to address the questions outlined at the
beginning of Section 9.

9.2.1 Grid World

Figure 6 compares BPG-V, BPG-KL, and the on-policy Monte Carlo estimator for both Grid
World policies, π1 and π2. At each iteration, each method collects 100 additional trajectories.
BPG-V gradient estimates will tend to have a different magnitude than BPG-KL gradient
estimates because the importance-sampled return is squared instead of its absolute value
taken. We normalize the gradient estimates to have magnitude one and use a step-size of
0.1 for both methods in order to have similar magnitude behavior policy changes for each
method.

Our main point of comparison is the MSE of both estimates at iteration i over 100 trials.
For π1, BPG-V and BPG-KL reduce the MSE of on-policy estimates (Figure 6a) by up to an
order of magnitude. For π2, BPG-V and BPG-KL also reduce MSE, however, it is a more
marginal improvement. In both cases, BPG-V and BPG-KL perform almost identically.

At the end of each trial we used the final behavior policy to collect 100 more trajectories
and estimate v(πe). For BPG-V, in comparison to a Monte Carlo estimate with 100
trajectories from π1, MSE is 73.52% lower with this improved behavior policy; for π2, the
MSE is 64.6% lower. For BPG-KL and π1, the MSE is 77.78% lower with the final behavior
policy; for π2, the MSE is 46.28% lower. This result demonstrates that BPG-V and BPG-KL
can find behavior policies that substantially lower MSE.

To understand the disparity in performance when πe changes, we plot the variance of the
Monte Carlo return under πe (Figures 7b and 7c). These plots show the variance of π1 is
much higher; it sometimes samples returns with twice the magnitude of any sampled by π2.
To quantify the decrease in variance from behavior policy search, we also measure and plot
the variance of IS(πe, H, πθi) for the BPG-V algorithm (Figure 7a). Figure 7a shows much
higher initial variance for importance sampling evaluation of π1. The high initial variance
means there is much more room for BPG-V and BPG-KL to improve the behavior policy
when θe is the partially optimized policy, π1.

BPG-V and BPG-KL require setting two parameters for the stochastic gradient descent
update: a step-size, α, and a batch-size, k. We ablate these parameters to test the sensitivity
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(a) Results with πe := π1 (b) Results with πe := π2

Figure 6: Grid World experiments when πe is a partially optimized policy, π1, (6a) and a
converged policy, π2, (6b). Results are averaged over 100 trials of 1000 iterations with a
shaded region representing a 95% confidence interval. The vertical axis shows the mean
squared error and the horizontal axis shows the iteration number. Axes are log-scaled. In
both instances, BPG-V and BPG-KL lower MSE more than on-policy Monte Carlo returns
(statistically significant, p < 0.05).

of performance to their values. Again, we use normalized gradient estimates to ensure
comparability of the algorithms given the same step-size.

To ablate step-size, we run each algorithm for 1000 iterations with a batch-size of k = 100
for different settings of α. Our point of comparison is the MSE of the estimate at the final
iteration. Figure 8a shows that both BPG-V and BPG-KL perform as well as or better than
Monte Carlo for a wide range of step-size values. However, for very high values (α = 5 or
α = 10), the estimates may diverge.

To ablate batch-size, we run each algorithm until it has collected 1000 trajectories with
different settings of k. So a trial using k = 500 will collect 500 trajectories, adapt the
behavior policy once, and then collect 500 more trajectories to compute the final estimate.
Both algorithms use a step-size of 0.1. As with step-size, we see that both algorithms
perform as well as or better than Monte Carlo evaluation for most batch-size settings. With
the smallest tested batch (k = 1), BPG-V and BPG-KL perform worse, presumably because
the gradient estimates are poor and so the algorithms fail to improve the behavior policy.

9.2.2 Control Tasks

Figure 9 shows reduction of MSE on the Cart Pole Swing Up Acrobot, Cart Pole, and
Hopper domains. Each method uses a step-size of 5× 10−5. Again we see that both BPG-V
and BPG-KL reduce MSE faster than Monte Carlo value estimation and that both methods
perform similarly to one another. In contrast to the discrete Grid World experiment, these
experiment demonstrates the applicability of BPG-V and BPG-KL to both continuous states
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(a) Variance Reduction (b) π1 return distribution (c) π2 return distribution

Figure 7: Comparison of variance reduction between π1 and π2 in Grid World domain.
Figure 7a shows variance on the vertical axis and iteration number on the horizontal axis.
These axes are log-scaled. Results are plotted for Monte Carlo value estimation with π1 and
π2 and for BPG-V evaluations of π1 and π2. Results are averaged over 100 trials of 1000
iterations. Figures 7b and 7c give the distribution of returns under the two different πe.
Taken together these plots show that the variance of a Monte Carlo evaluation of π1 is much
higher than a Monte Carlo evaluation of π2. Thus a behavior policy search algorithm has
more room for variance reduction when evaluating π1.

(a) Step-size Sensitivity (b) Batch-size Sensitivity

Figure 8: BPG-V and BPG-KL parameter sensitivity. Figure 8a shows performance as a
function of the algorithm step-size, α, and Figure 8b shows performance as a function of
the algorithm batch-size, k. In both figures the vertical axis is mean squared error of the
importance sampling estimate. The horizontal axis is the parameter being ablated. Axes
are log-scaled.

and actions. These results also demonstrates that BPG-V and BPG-KL (and more generally
behavior policy search) can lower the variance of batch policy evaluation when the policy
must generalize across different states and actions.
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(a) Cart Pole Swing Up MSE. (b) Acrobot MSE.

(c) Cart Pole MSE. (d) Hopper MSE.

Figure 9: Mean squared error reduction on the Cart Pole Swing Up Acrobot, Cart Pole,
and Hopper domains. The vertical axis gives MSE and the horizontal axis is the iteration
number. Axes are log-scaled. We adapt the behavior policy for 200 iterations and average
results over 100 trials. Error bars are for 95% confidence intervals.
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9.3 Control Variate Extension Results

In this section, we evaluate the combination of model-based control variates with behavior
policy search. Specifically, we compare doubly robust BPG-V (DR-BPG) with an on-policy
doubly robust estimator that uses θi = θe for all i. We refer to the on-policy doubly
robust estimator as the advantage-sum estimator (ASE) as it has appeared previously in the
literature under this name (Zinkevich et al., 2006; White and Bowling, 2009; Veness et al.,
2011).

In these experiments we use a 10x10 stochastic Grid World where the added stochasticity
and increased size increase the difficulty of building an accurate model from data. The
layout of this Grid World is identical to the deterministic Grid World except the terminal
state is at (9, 9) and the +1 reward state is at (1, 9). When the agent moves, it moves in its
intended direction with probability 0.9, otherwise it goes left or right with equal probability.
Stochasticity in the environment increases the difficulty of building an accurate model from
trajectories.

Since these methods require a model we construct this model in one of two ways. The
first method uses all trajectories in D to build the model and then uses the same set to
estimate v(πe) with ASE or DR. The second method uses trajectories from the first 10
iterations to build the model and then fixes the model for the remaining iterations. For
DR-BPG, behavior policy search starts at iteration 10 under this second condition. We call
the first method “Update” and the second method “Fixed.” The update method invalidates
consistency guarantees of these methods but learns a more accurate model. In both instances,
we build the models with count-based estimates of the transition probabilities.

Figure 10 demonstrates that combining BPG-V with a model-based control variate
(DR-BPG) can lead to further reduction of MSE compared to either the control variate(ASE)
or behavior policy search (BPG) alone. Specifically, with the fixed model, DR-BPG out-
performed all other methods. DR-BPG using the update method for building the model
performed competitively with ASE although not statistically significantly better. We also
evaluate the final learned behavior policy of the fixed model variant of DR-BPG. For a
batch size of 100 trajectories, the DR estimator with this behavior policy improves upon the
ASE estimator with the same model by 56.9%. BPG-V outperforms Monte Carlo but both
methods do significantly worse than the methods using a model-based control-variate.

For DR-BPG, estimating the model with all data still allowed steady progress towards
lower variance. This result is interesting since a changing model changes the surface of our
variance objective and thus gradient descent on the variance has no theoretical guarantees
of convergence. Informally, we observed that setting the step-size, α, for DR-BPG was more
challenging for either model type. Thus while we have shown BPG-V can be combined with
control variates, more work is needed to produce a robust method.

9.4 Rareness of Event Study

Our final experiment aims to understand how the gap between on- and off-policy variance is
affected by the probability of rare events. The intuition for why behavior policy search can
lower the variance of on-policy estimates is that a well selected behavior policy can cause
rare and high magnitude events to occur. We test this intuition by varying the probability
of a rare, high magnitude event and observing how this change affects the performance gap
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Figure 10: Comparison of DR-BPG and ASE (on-policy DR) on a larger stochastic Grid
World. For the fixed model methods, the significant drop in MSE at iteration 10 is due to the
introduction of the model control variate. For visual clarity we omit error bars. The mean
difference between the final estimate of DR-BPG and ASE with the fixed model averaged
over 300 trials is statistically significant (p < 0.05); the difference between the same methods
with a constantly improving model is not.

between on- and off-policy policy evaluation. For this experiment, we use a variant of the
deterministic Grid World where taking the UP action in the initial state (the upper left
corner) causes a transition to the terminal state with a reward of +50. We use π1 from
our earlier Grid World experiments but we vary the probability, p, of choosing UP when in
the initial state, i.e., with probability p the agent will receive a large reward and end the
trajectory. We use BPG-V with a step-size of 10−5 and unnormalized gradient estimates as
the behavior policy search algorithm for all values of p. We plot the relative decrease of the
variance after 500 iterations as a function of p over 100 trials for each value of p. We use
relative variance to normalize across problem instances. Note that under this measure, even
when p is close to 1, the relative variance remains greater than zero because as p approaches
1 the initial variance also goes to zero.

This experiment illustrates that as the initial variance increases, the amount of improve-
ment BPG-V can achieve increases. As p becomes closer to 1, the rare high magnitude
event becomes less rare and the initial variance becomes closer to zero. When this happens,
BPG-V barely improves over the variance of Monte Carlo (in terms of absolute variance
there is no improvement). When πe rarely takes the high rewarding UP action (p close to 0),
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Figure 11: Varying the probability of a high rewarding terminal action in the Grid World
domain. Each point on the horizontal axis is the probability of taking this action. The
vertical axis gives the mean relative decrease in variance after adapting θ for 500 iterations.
Denoting the initial variance as Vi and the final variance as Vf , the relative decrease is

computed as
Vi−Vf
Vi

. Results are averaged over 100 trials. A 95% confidence interval region
is shaded around the mean but is small.

BPG-V lowers the variance of policy evaluation by increasing the probability of this action.
This experiment supports our intuition for why off-policy data collection can be preferable
to on-policy data collection.

10. Discussion

Our experiments demonstrate that behavior policy search with either BPG-V or BPG-KL
can lower the variance of batch policy evaluation. One open question is characterizing the
settings where adapting the behavior policy substantially improves over on-policy estimates.
Towards answering this question, our Gridworld experiment showed that when πe has little
variance, BPG-V or BPG-KL can only offer marginal improvement. BPG-V and BPG-KL
increase the probability of observing rare events with a high magnitude. If the evaluation
policy never sees such events then there is less benefit to using a behavior policy search
algorithm. However, with an appropriately selected step-size, BPG-V and BPG-KL will
never, in expectation, lower the data-efficiency of policy evaluation.

31



Hanna, Chandak, Thomas, White, Stone, and Niekum

It is also necessary that the evaluation policy contributes to the variance of the returns.
If all variance is due to the environment then it seems unlikely that BPG-V or BPG-KL
will offer much improvement. For example, Ciosek and Whiteson (2017) consider a variant
of the Mountain Car task (Singh and Sutton, 1996) where the dynamics can trigger a rare
event – independent of the action – in which rewards are multiplied by 1000. No behavior
policy adaptation can lower the variance due to this event.

One limitation of gradient-based behavior policy search methods is the necessity of good
step-size selection. In expectation, BPG-V and BPG-KL can never lead to worse policy
evaluation compared to on-policy estimates. In practice, a poorly selected step-size may
cause a step to a worse behavior policy at step i which may increase the variance of the
gradient estimate at step i+ 1. Future work could consider methods for adaptive step-sizes,
second order methods, or natural gradients.

When to Perform Behavior Policy Search?

We conclude with a discussion of the question of when should one prefer behavior policy
search to just choosing the evaluation policy as the behavior policy. From our experiments
with random MDPs in Section 4.1, we find that the most potential improvement is when the
evaluation policy is stochastic (but not uniform random) and there is variation in the reward
across the action space. This observation dovetails with the intuition that BPS is most
useful when there are rare trajectories with high magnitude return under the evaluation
policy because such settings are where the variance of on-policy Monte Carlo is highest.
This intuition was demonstrated experimentally in Section 9.4. On the other hand, when πe
is deterministic or uniform random there may be little or no room for improvement.

In settings where πe is already a near optimal behavior policy for itself, the need to
set hyper-parameters for BPG-V and BPG-KL may not be worth any additional variance
reduction that could be gained through behavior policy search. Both methods lack guarantees
that the behavior policy improves at every iteration and if intermediate behavior policies
increase variance (e.g., due to variance in the behavior policy gradient estimate) then the
final estimate may have higher squared error than if πe had just been ran to collect all
trajectories. Thus, we recommend behavior policy search for settings where the variance of
the return under πe is anticipated to be high.

11. Future Work

In this section, we outline directions for future work to further develop the utility of behavior
policy search for reinforcement learning. As an overarching direction, we note that this work
assumed a finite-horizon, episodic, and fully observable environment. Future work should
consider what is the minimal-variance behavior policy and how to perform behavior policy
search in infinite-horizon, continuing, or partially observable environments.

11.1 Evaluating Multiple Evaluation Policies

A common motivation for collecting data in an off-policy fashion is when we want to learn
about multiple evaluation policies with the same stream of data (e.g., (Sutton et al., 2011)).
In this work, we have assumed a single evaluation policy and considered finding a behavior
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policy that provides low variance importance sampling evaluation of that evaluation policy.
An important direction for future work is to develop behavior policy search algorithms that
optimize the behavior policy for a set of evaluation policies. A straightforward way to adapt
either BPG-KL or BPG-V to multiple evaluation policies is to use a linear combination
of the objective they minimize for each evaluation policy. For example, BPG-V minimizes
E[IS(πe, H, πθ)2|H ∼ πθ] for the single evaluation policy πe. If instead, we wished to
minimize the variance of evaluating a set of policies, {π1, ..., πm}, a multi-policy variant of
BPG-V could minimize

∑m
j=1 µ(πj)E[IS(πj , H, πθ)2|H ∼ πθ] where, we define µ(πj) to be

an emphasis factor that provides the relative importance of evaluating each policy in the
set of evaluation policies. This approach would be straightforward, however, it might be
the case that lowering the variance for one evaluation policy might increase the variance of
evaluating another.

11.2 Behavior Policy Search for Value Function Learning

This work has focused on batch policy evaluation in which we collect a set of trajectories and
estimate v(πe). A more general policy evaluation problem is to estimate the value function:
the function that gives the expected return of a policy from any state in the MDP. A first
question for extending behavior policy search to value function learning is, “what is the
minimal-variance behavior policy when learning a value function for a fixed policy?” The
answer to this question may give insight into how to best adapt the behavior policy for low
variance evaluation. One facet of this question is whether the minimal-variance behavior
policy for estimating the expected return from one state is the same as the minimal-variance
behavior policy for another. As with lowering variance for multiple evaluation policies, it
may be necessary to assume a measure of the relative importance of states. Another facet
of the minimal-variance behavior policy question concerns the use of intermediate value
estimates or bootstrapping. The variance of a return estimate that uses an intermediate value
estimate may change as the intermediate value estimate changes. Thus the minimal-variance
behavior policy may be non-stationary as the value function is learned.

11.3 Behavior Policy Search for Policy Improvement

The primary goal of reinforcement learning is policy improvement: learning a policy that
maximizes the expected sum of discounted rewards. A final direction for future work is
to apply behavior policy search to policy improvement. Behavior policy search could aid
policy improvement by lowering the variance of policy gradient estimation or improving
value function learning for value-based methods. Regardless of the underlying approach, one
fundamental difficulty will be balancing finding a behavior policy that lowers variance while
maintaining sufficient exploration to find an optimal policy.

11.4 Theoretical Variance Reduction

We have shown empirically that behavior policy search methods can produce lower variance
importance sampling estimates than on-policy data collection. Future work should establish
in theory that variance is reduced and at what rate the variance decreases. It is known that
the importance sampling estimator has variance σ2

n where n is the number of trajectories
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and σ is the variance of the importance sampled return under a fixed sampling distribution
(Owen, 2013). Prior work on adaptive IS outside of RL suggests that the rate of 1

n cannot
be improved (Akyildiz and Mı́guez, 2021). Thus future work should focus on analysis of how
σ decreases as the behavior policy changes. Such analysis could provide further guidance
on identifying the settings where behavior policy search is preferable to simply running the
evaluation policy for policy evaluation.

12. Conclusion

In this work we have shown that off-policy importance sampling policy evaluation can have
lower variance than on-policy Monte Carlo policy evaluation. We derived a condition for
the minimal-variance behavior policy. We then introduced the behavior policy search (BPS)
problem in order to improve estimation of v(πe) for an evaluation policy πe. We present two
solution algorithms for this problem: the Behavior Policy Gradient on the Variance algorithm
and the Behavior Policy Gradient on the KL-Divergence algorithm. BPG-V adapts the
behavior policy with stochastic gradient descent on the variance of the importance-sampling
estimator. BPG-KL adapts the behavior policy with stochastic gradient descent on the
KL-divergence between the current behavior policy and the minimal-variance behavior
policy. Experiments demonstrate that both algorithms lower the MSE of estimates of v(πe)
compared to on-policy estimates. We also demonstrate BPS can further decrease the MSE
of estimates in conjunction with a model-based control variate method.
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Appendix A. Statistical Properties of Behavior Policy Search Estimates

In this appendix, we prove that the estimates from behavior policy search algorithms that
are computed as the mean of an unbiased off-policy estimator, OPE, such as IS, are unbiased
and consistent estimates of v(πe) and we provide a theoretical finite-rate bound on the
estimate. Typically, such results rely on i.i.d. sampling of trajectories from a single πθj or at
least independent sampling from a behavior policy that is independent of other behavior
policies. In our case, the difficulty is that the estimate at iteration i depends on all πθj for
i = 1 . . . i and each πθj is not independent of the others. Further, as πθj may be different
from πθk when j 6= k, both the assumptions of independence and identical distribution do
not hold. Nevertheless, we prove here that behavior policy search algorithms still produce
unbiased and consistent estimates of v(πe) at each iteration and have finite-rate bounds
similar to Hoeffding’s bounds.

Proposition 1 Under Assumption 2, OPE(πe, Dn) is an unbiased estimator of v(πe) for
any n ∈ N,

E
[
OPE(πe, Dn)

]
= v(πe).

Proof We begin by expanding E
[
OPE(πe, Dn)

]
,

E
[
OPE(πe, Dn)

]
= E

 1

n

n∑
j=1

OPE(πe, Hj , πθj )

 =
1

n

n∑
j=1

E
[
OPE(πe, Hj , πθj )

]
. (4)

Recall that in OPE(πe, Hj , πθj ) the random variables are the parameters θj under the
(stochastic) algorithm and the trajectory Hj generated using πθj . Therefore,

E
[
OPE(πe, Hj , πθj )

]
=

∫
Θ
p(θj = θ)

(∑
h∈H

p(Hj = h|πθj ) OPE(πe, h, πθj )

)
dθ. (5)

Observe that (5) factors out the probability of observing parameter θj (which depends on
past parameters and trajectories) and the expected value of OPE given the value of θj
(which is independent of past parameters and trajectories given the value of θj). In Figure
3, this idea can be observed from d-separation: conditioned on a specific instance of πθk the
estimates Xk are independent of previous parameters and trajectories.

Therefore, as OPE is an unbiased estimator for any fixed policy πθj under Assumption 2,
(5) can be expressed as,

E[OPE(πe, Hj , πθj )] =

∫
Θ
p(θj = θ)v(πe)dθ

= v(πe). (6)

Therefore, combining (4) and (6),

E
[
OPE(πe, Dn)

]
=

1

n

n∑
j=1

v(πe) = v(πe).
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Lemma 1 Under Assumption 2, ∀j ∈ N, and ∀k ∈ N, where j 6= k, OPE(πe, Hj , πθj ) and
OPE(πe, Hk, πθk) are uncorrelated. That is,

∀j 6= k, Cov
(
OPE(πe, Hj , πθj ),OPE(πe, Hk, πθk)

)
= 0.

Proof We begin by first establishing conditional independence in expectation between
OPE(πe, Hj , πθj ) and OPE(πe, Hk, πθk) for any j 6= k. For brevity, let Zj := OPE(πe, Hj , πθj ).

E
[
OPE(πe, Hj , πθj )|OPE(πe, Hk, πθk)

]
= E [Zj |Zk]

=

∫
Θ
p(θj = θ|Zk)

∑
h∈H

p(Hj = h|πθj , Zk) OPE(πe, h, πθj ) dθ

(a)
=

∫
Θ
p(θj = θ|Zk)

(∑
h∈H

p(Hj = h|πθj ) OPE(πe, h, πθj )

)
dθ

(b)
=

∫
Θ
p(θj = θ|Zk)v(πe) dθ

= v(πe), (7)

where (a) follows from the fact that given the policy πθj , Hj is independent of the Zk (see
Fig 3), and (b) follows from arguments similar to those used in the proof of Proposition 1.
The co-variance between OPE(πe, Hj , πθj ) and OPE(πe, Hk, πθk) can now be expressed as,

Cov
(
OPE(πe, Hj , πθj ),OPE(πe, Hk, πθk)

)
= Cov (Zj , Zk)

= E [ZjZk]− E [Zj ]E [Zk]

(b)
= E [E[Zj |Zk]Zk]− E [Zj ]E [Zk]

(c)
= v(πe)E [Zk]− E [Zj ]E [Zk]

(d)
= v(πe)

2 − v(πe)
2

= 0,

where (b) follows from the law of total expectation, (c) follows from (7), and (d) follows
from (6).
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Proposition 2 Under Assumption 2, OPE(πe, Di) converges to v(πe) in probability. That
is, for ε > 0,

lim
i→∞

Pr
(
|OPE(πe, Di)− v(πe)| > ε

)
= 0.

Proof We begin by expanding the variance of OPE(πe, Di),

Var
[
OPE(πe, Di)

]
= Var

1

i

i∑
j=1

OPE(πe, Hj , θj)


=

1

i2

 i∑
j=1

Var [OPE(πe, Hj , θj)] + 2
i∑

j=1

i∑
k=1

Cov (OPE(πe, Hj , θj),OPE(πe, Hk, θk))



(a)
=

1

i2

 i∑
j=1

Var [OPE(πe, Hj , θj)]

 , (8)

where (a) follows using uncorrelatedness established in Lemma 1. Further, from Assumption 2,
OPE(πe, Hj , θj) is a bounded random variable for all j and thus it follows from Popoviciu’s
inequality (Popoviciu, 1935) that OPE(πe, Hj , πθj ) has variance bounded above by some
finite constant c̃. Therefore, as ∀j,Var[OPE(πe, Hj , πθj )] < ĉ, it follows from (8) that

Var[OPE(πe, Di)]→ 0. As OPE(πe, Di) is unbiased (Proposition 1) and has no variance in
the limit it follows from the bias-variance decomposition of mean-squared error that,

lim
i→∞

E
[(

OPE(πe, Di)− v(πe)
)2]

= lim
i→∞

(
E
[
OPE(πe, Di)

]
− v(πe)

)2
+ Var

[
OPE(πe, Di)

]
= 0. (9)

Now from Markov’s inequality,

Pr(|OPE(πe, Di)− v(πe)| > ε) ≤
E
[(

OPE(πe, Di)− v(πe)
)2]

ε2
(10)

Combining (9) and (10),

lim
i→∞

Pr(|OPE(πe, Di)− v(πe)| > ε) = 0.

Proposition 3 Under Assumption 2, let c̃ be the range of OPE(πe, Hj , πθj ) for any j ∈
{1, 2, ..., i}, then ∀δ ∈ [0, 1],

Pr

(∣∣OPE(πe, Di)− v(πe)
∣∣ > c̃

√
ln(2/δ)

2|Di|

)
≤ δ,
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Proof We begin by observing that since the (OPE(πe, Hj , θj))
i
j=1 are sequentially dependent,

if we can convert them into a Martingale sequence then we can use concentration inequalities
for Martingales to obtain convergence rates for OPE(πe, Di).

Let Y0, Y1, ..., Yi denote the desired Martingale sequence constructed using the OPE
estimates OPE(πe, H1, θ1), ...,OPE(πe, Hi, θn), where

Y0 = 0,

Yj = OPE(πe, Hj , πθj )− v(πe) + Yj−1. (11)

From (11) notice that ∀j ≥ 1,

E [Yj |Yj−1] = E[OPE(πe, Hj , πθj )|Yj−1]− E[v(πe)|Yj−1] + E[Yj−1|Yj−1]

= E[OPE(πe, Hj , πθj )|Yj−1]− v(πe) + Yj−1. (12)

To simplify (12) further, notice that,

E[OPE(πe, Hj , πθj )|Yj−1] =

∫
R
p(OPE(πe, Hj , πθj ) = x|Yj−1)x dx

(a)
=

∫
Θ
p(θj = θ|Yj−1)

(∫
R
p(OPE(πe, Hj , πθj ) = x|πθj )x dx

)
dθ

(b)
=

∫
Θ
p(θj = θ|Yj−1)v(πe)dθ

= v(πe), (13)

where (a) follows from the fact that Yj−1 only contains information from iterates till j − 1
(inclusive) and OPE(πe, Hj , πθj ) is independent of the past conditioned on the value of θj .
Step (b) follows from the fact that OPE(πe, Hj , πθj ) (the OPE estimate) is an unbiased
estimator of v(πe) for any fixed behavior policy πθ under Assumption 1. Combining (13)
and (12), it can be observed that (Yj)

i
j=1 is a Martingale sequence as

E[Yj |Yj−1] = Yj−1.

Since OPE(πe, Hj , πθj ) is bounded (under Assumption 1), Yj is also bounded. Consequently,
the differences between Yj and Yj−1 are also bounded. Applying Azuma’s inequality (Azuma,
1967) for Martingales to the sequence (Yj)

i
j=0,

Pr (|Yi − Y0| > ε) ≤ 2 exp

(
−2ε2

|Di|c̃2

)
. (14)

First, considering |Yi − Y0|:

|Yi − Y0|
(a)
=

∣∣∣∣∣∣
i∑

j=1

(Yj − Yj−1)

∣∣∣∣∣∣ (b)
=

∣∣∣∣∣∣
i∑

j=1

(OPE(πe, Hj , πθj )− v(πe))

∣∣∣∣∣∣ , (15)
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where (a) follows by telescoping the summation and (b) follows from (11). Combining (15)
and (14),

Pr

∣∣∣∣∣∣
i∑

j=1

(OPE(πe, Hj , πθj )− v(πe))

∣∣∣∣∣∣ > ε

 ≤ 2 exp

(
−2ε2

|Di|c̃2

)

Pr

∣∣∣∣∣∣
i∑

j=1

OPE(πe, Hj , πθj )− |Di|v(πe)

∣∣∣∣∣∣ > ε

 ≤ 2 exp

(
−2ε2

|Di|c̃2

)

Pr

∣∣∣∣∣∣ 1

|Di|

i∑
j=1

OPE(πe, Hj , πθj )− v(πe)

∣∣∣∣∣∣ > ε

|Di|

 (c)

≤ 2 exp

(
−2ε2

|Di|c̃2

)

Pr

(∣∣OPE(πe, Di)− v(πe)
∣∣ > ε

|Di|

)
(d)

≤ 2 exp

(
−2ε2

|Di|c̃2

)
Pr
(∣∣OPE(πe, Di)− v(πe)

∣∣ > ε
) (e)

≤ 2 exp

(
−2|Di|ε2

c̃2

)
, (16)

where (c) follows from dividing both sides within the LHS by |Di|, (d) follows from definition
of OPE(πe, Di), and (e) follows from relabeling ε := ε

|Di| . Finally, relabeling the RHS in (16)
to δ, one can obtain,

Pr

(∣∣OPE(πe, Di)− v(πe)
∣∣ > c̃

√
ln(2/δ)

2|Di|

)
≤ δ,

thereby giving the desired error rate of O

(
1√
|Di|

)
.

Appendix B. Behavior Policy Gradient of the Variance

In this section, we derive the gradient of the variance of importance sampling with respect
to the behavior policy parameters. We first derive an analytic expression for the gradient of
the variance of an arbitrary, unbiased off-policy policy evaluation estimator, OPE(πe, H, πθ).
From our general derivation we derive the gradient of the variance of the basic importance
sampling estimator and then extend to the doubly robust and per-decision estimators.

B.1 MSE Gradient for an Unbiased Off-Policy Policy Evaluation Method

Lemma 2 gives the gradient of the MSE for any unbiased off-policy policy evaluation method.
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Lemma 2

∂

∂θ
MSE

[
OPE(πe, H, πθ)

]
= E

[
OPE(πe, H, πθ)2

( l−1∑
t=0

∂

∂θ
log πθ(At|St)

)
+

∂

∂θ
OPE(πe, H, πθ)2

∣∣∣∣ H ∼ πθ].
Proof We begin by decomposing Pr(H = h|π) into two components – one that depends on
π and the other that does not. Recall that we defined:

wπ(h) :=

l−1∏
t=0

π(at|st),

and define
p(h) := Pr(H = h|π)/wπ(h),

for any π such that h is in the support of π (any such π will result in the same value of
p(h)). These two definitions mean that Pr(H = h|π) = p(h)wπ(h).

The MSE of the OPE estimator is given by:

MSE[OPE(πe, H, πθ)] = Var[OPE(πe, H, πθ)] + (E[OPE(πe, H, πθ)]− v(πe))
2︸ ︷︷ ︸

bias2

.

Since the OPE estimator is unbiased, i.e., E[OPE(πe, H, πθ)] = v(πe), the second term is
zero and so:

MSE(OPE(πe, H, πθ)) = Var[OPE(πe, H, πθ)] (17)

=E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]−E[OPE(πe, H, πθ)|H ∼ πθ]2 (18)

=E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]− v(πe)
2 (19)

(18) follows from (17) by the definition of the variance and (19) follows from (18) because
the expectation of an unbiased estimator of v(πe) is v(πe).

To obtain the MSE gradient, we differentiate MSE[OPE(πe, H, πθ)] with respect to θ:

∂

∂θ
MSE[OPE(πe, H, πθ)] =

∂

∂θ

E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]− v(πe)
2︸ ︷︷ ︸

const


=
∂

∂θ
E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]
=
∂

∂θ

∑
h∈H

Pr(H = h|πθ) OPE(πe, h, πθ)2

=
∑
h∈H

Pr(H = h|πθ)
∂

∂θ
OPE(πe, h, πθ)2+

OPE(πe, h, πθ)2 ∂

∂θ
Pr(H = h|πθ)

=
∑
h∈H

Pr(H = h|πθ)
∂

∂θ
OPE(πe, h, πθ)2+

OPE(πe, h, πθ)2p(h)
∂

∂θ
wπθ(h) (20)
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Consider the last factor of the last term in more detail:

∂

∂θ
wπθ(h) =

∂

∂θ

l−1∏
t=0

πθ(at|st)

(a)
=

(
l−1∏
t=0

πθ(at|st)

)(
l−1∑
t=0

∂
∂θπθ(at|st)
πθ(at|st)

)
(b)
=wπθ(h)

l−1∑
t=0

∂

∂θ
log (πθ(at|st)) , (21)

where (a) comes from the product rule of differentiation and (b) comes from the likelihood-

ratio trick (i.e.,
∂
∂θ
πθ(A|S)

πθ(A|S) = log(πθ(A|S))) and the definition of wπθ(h). Continuing from

(20) we have that:

∂

∂θ
MSE(OPE(πe, H, πθ)) = E

[
OPE(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log (πθ(At|St)) +

∂

∂θ
OPE(πe, H, πθ)2

∣∣∣∣ H ∼ πθ].

B.2 Behavior Policy Gradient of the Variance

We now use Lemma 2 to prove the Behavior Policy Gradient of the Variance Theorem.

Theorem 1 (Behavior Policy Gradient of the Variance)

∂

∂θ
MSE

[
IS(πe, H, πθ)

]
= E

[
− IS(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

Proof We first derive ∂
∂θ IS(πe, H, πθ)2. Theorem 1 then follows directly from using

∂
∂θ IS(πe, H, πθ)2 as ∂

∂θ OPE(πe, H, πθ)2 in Lemma 2.

IS(πe, H, πθ)2 =

(
wπe
wπθ

g(H)

)2

∂

∂θ
IS(πe, H, πθ)2 =

∂

∂θ

(
wπe(H)

wπθ(H)
g(H)

)2

= 2g(H)
wπe(H)

wπθ(H)

∂

∂θ

(
g(H)

wπe(H)

wπθ(H)

)
(a)
= −2g(H)

wπe(H)

wπθ(H)

(
g(H)

wπe(H)

wπθ(H)

) l−1∑
t=0

∂

∂θ
log πθ(At|St)

= −2 IS(πe, H, πθ)2
l−1∑
t=0

∂

∂θ
log πθ(At|St),
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where (a) uses (21) to differentiate wπθ(H).

Substituting this expression and IS(πe, H, πθ) for OPE(πe, H, πθ) into Lemma 2 completes
the proof of Theorem 1:

∂

∂θ
MSE[IS(πe, H, πθ)] = E

[
− IS(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

B.3 MSE Gradient for the Doubly Robust Estimator

We also present an extension of the IS MSE gradient to the Doubly Robust (DR) estimator.
Recall that for a single trajectory, H, DR is defined as:

DR(πe, H, πθ) := v̂πe(S0) +
l−1∑
t=0

γt
wπe,t
wπθ ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))

where v̂πe is an approximation of the state-value function of πe, q̂
πe is an approximation of

the action-value function of πe, and wπ,t :=
∏t
j=0 π(Aj |Sj).

The gradient of the MSE of the DR estimator is given by the following corollary to
Theorem 1:

Corollary 1

∂

∂θ
MSE

[
DR(πe, H, πθ, q̂

πe , v̂πe)

]
= E

[
DR(πe, H,θ, q̂

πe , v̂πe)2
l−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ, q̂
πe , v̂πe)

( l−1∑
t=0

γtδt
wπe,t
wθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si)

)]

where δt = Rt − q̂πe(St, At) + v̂πe(St+1) and the expectation is taken over H ∼ πθ.

Proof

As with Theorem 1, we first derive ∂
∂θ DR(πe, H, πθ)2. Corollary 1 then follows directly

from using ∂
∂θ DR(πe, H, πθ)2 as ∂

∂θ OPE(πe, H, πθ)2 in Lemma 2.

Let δt := Rt − q̂πe(St, At) + v̂πe(St+1).

DR(πe, H, πθ)2 =

(
v̂πe(S0) +

l−1∑
t=0

γt
wπe,t
wπθ ,t

δt

)2
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∂

∂θ
DR(πe, H, πθ)2 =

∂

∂θ

(
v̂πe(S0) +

l−1∑
t=0

γt
wπe,t
wπθ ,t

δt

)2

=2 DR(πe, H, πθ)
∂

∂θ

(
v̂πe(S0) +

l−1∑
t=0

γt
wπe,t
wπθ ,t

δt

)

=− 2 DR(πe, H, πθ)(

l−1∑
t=0

γt
wπe,t
wπθ ,t

δt

t∑
i=0

∂

∂θ
log πθ(Ai|Si))

Thus the DR(πe, H, πθ) gradient is:

∂

∂θ
MSE [DR(πe, H, πθ)] = E[DR(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ)(
l−1∑
t=0

γtδt
wπe,t
wπθ ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si))|H ∼ πθ]

The expression for the DR behavior policy gradient is more complex than the expression
for the IS behavior policy gradient. Lowering the variance of DR involves accounting for
the covariance of the sum of terms. Intuitively, accounting for the covariance increases the
complexity of the expression for the gradient.

Appendix C. Convergence of BPG-V

In this section, we prove that BPG-V (Algorithm 1) converges under an appropriately chosen
step-size.

Proposition 4 Under Assumption 1 and Assumption 3, BPG-V converges. That is,
MSE[IS(πe, Hi, πθi)] converges to a finite value and limi→∞

∂
∂θ MSE[IS(πe, Hi, πθi)] = 0.

Proof The proof follows from an application of Proposition 3 in (Bertsekas and Tsitsiklis,
2000). To apply this result, we must show that BPG-V satisfies the following conditions:

1. MSE[IS(πe, H, πθ)] is continuously differentiable w.r.t. θ.

2. The gradient of the MSE objectives, ∂
∂θMSE[IS(πe, H, πθ)], is Lipschitz continuous

w.r.t. θ.

3. The variance of the gradient estimate used by BPG-V is bounded.

Other conditions of Proposition 3 in (Bertsekas and Tsitsiklis, 2000) are satisfied by the
unbiasedness of the gradient estimates used by BPG-VẆe also note that the MSE objective
is bounded below by zero which rules out the case of BPG-V converging to an MSE of −∞
which is technically allowed by Proposition 3 of (Bertsekas and Tsitsiklis, 2000). Theorem 1
gives us ∂

∂θMSE[IS(πe, H, πθ)] which can be seen to be continuously differentiable under
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our assumption that πθ is continuously differentiable and Assumption 1 which implies that
IS(πe, H, πθ) always exists.

We next show that the second derivative of the MSE objective is bounded which implies
the Lipschitz continuity of ∂

∂θMSE[IS(πe, H, πθ)].

∂2

∂2θ
MSE[IS(πe, H, πθ)] =

∂

∂θ
E

−IS(πe, H, πθ)2
l−1∑
t=0

∂

∂θ
log πθ(At|St)︸ ︷︷ ︸

∂
∂θ

logwθ(H)

∣∣∣∣∣∣∣∣∣∣∣
H ∼ πθ


=
∂

∂θ

∑
h∈H

p(h)wθ(h)

(
−IS(πe, h, πθ)2 ∂

∂θ
logwθ(h)

)
(a)
=

∂

∂θ

∑
h∈H

p(h)wθ(h)

(
−IS(πe, h, πθ)2

∂
∂θwθ(h)

wθ(h)

)

=
∂

∂θ

∑
h∈H
−p(h)IS(πe, h, πθ)2 ∂

∂θ
wθ(h)

(b)
=
∑
h∈H
−p(h)

 ∂

∂θ
IS(πe, h, πθ)2︸ ︷︷ ︸

(c)

∂

∂θ
wθ(h)︸ ︷︷ ︸
(d)

+ IS(πe, h, πθ)2 ∂
2

∂2θ
wθ(h)︸ ︷︷ ︸

(e)



where (a) comes from the chain rule of calculus and (b) comes from the product rule of
calculus. We can now show that each term (c, d, and e) is bounded. First, for (c):

∂

∂θ
IS(πe, h, πθ)2 =

−2g(h)2wπe(h)2

wθ(h)3︸ ︷︷ ︸
(c.1)

∂

∂θ
wθ(h)︸ ︷︷ ︸
(c.2)

,

which is bounded because Assumption 1 implies (c.1) is bounded and (c.2) is the same as
(d) which we next show is bounded.

For (d):

∂

∂θ
wθ(h) =

∂

∂θ

l−1∏
t=0

πθ(at|st)

=

l−1∑
t=0

∂

∂θ
πθ(at|st)

l−1∏
t′=0,t′ 6=t

πθ(at′ |st′), (22)

which is bounded because each ∂
∂θπθ(at|st) is bounded by construct, and

∏l−1
t′=0,t′ 6=t πθ(at′ |st′) ≤

1.
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Finally, for (e), we just consider ∂2

∂2θ
wθ(h) since Assumption 1 implies that IS(πe, h, πθ)2

exists and is bounded.

∂2

∂2θ
wθ(h) =

∂

∂θ

l−1∑
t=0

∂

∂θ
πθ(at|st)

l−1∏
t′=0,t′ 6=t

πθ(at|st)

=

l−1∑
t=0

∂2

∂2θ
πθ(at|st)

∏
t′ 6=t

πθ(at′ |st′) +
∂

∂θ
πθ(at|st)

∑
t′ 6=t

∂

∂θ
πθ(at′ |st′)

∏
t′′ 6=t,t′

πθ(at′′ |st′′),

which is bounded under the construct that πθ is twice differentiable with bounded first and
second derivatives. Thus we conclude that the MSE objective is continuosly differentiable
with a Lipschitz derivative.

Finally, we have to show that the variance of the gradient estimate used by BPG-V is
bounded. To do so, we show that the gradient estimate with any single trajectory is bounded
which implies the variance of the estimates used by BPG-V is bounded because the variance
of a bounded random variable is itself bounded.

For any trajectory h, collected by following πθ, an unbiased estimate of the MSE estimate
is given as:

∂

∂θ
MSE[IS(πe, H, πθ] ≈ −IS(πe, h, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(at|st)

(a)
= −wπe(h)2g(h)2

wπθ(h)2

∂

∂θ
logwπθ(h)

(b)
= −wπe(h)2g(h)2

wπθ(h)2

∂
∂θwπθ(h)

wπθ(h)

= −wπe(h)2g(h)2

wπθ(h)3

∂

∂θ
wπθ(h) (23)

where (a) uses wπ(h) =
∏l−1
t=0 π(at|st) and (b) uses the likelihood-ratio trick. On the RHS

of Equation (23), wπe (h)2g(h)2

wπθ (h)3
is bounded under Assumption 1 and ∂

∂θwπθ(h) was shown to

be bounded in Equation (22). Thus we conclude that the variance of the gradient estimate
used by BPG-V is bounded. Proposition 4 now follows from Proposition 3 of Bertsekas and
Tsitsiklis (2000).

Appendix D. Convexity of Variance Objective

In this appendix, we prove that, when πθ is a linear-softmax policy, then the variance
objective minimized by BPG-V is convex in the policy parameters. Thus, BPG-V is
guaranteed to converge to the parameter vector that minimizes the variance of the IS-return
under standard stochastic gradient descent step-size conditions (Bertsekas and Tsitsiklis,
2000).
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A linear-softmax policy is a policy over a finite set of actions where the probability of
each action is defined as a softmax distribution with logits from a linear combination of
state features. Formally, let φ : S → Rq for integer q be a state feature function that maps
states to feature vectors. For each action, a ∈ A, we have a vector θa ∈ Rq and θ is the
concatenation of all θa. A linear-softmax policy defines the probability of action a in state s
as:

πθ(a|s) =
eθ

T
a φ(s)∑

b∈A e
θTb φ(s)

.

Theorem 2 Assume πθ is a linear-softmax policy. Then, MSE[IS(πe, H,θ)] is a convex
function w.r.t. θ.

Proof

Var[IS(πe, H,θ)] =E[IS(πe, H,θ)2|H ∼ πθ]− v(πe)
2

We can ignore v(πe)
2 since it is a constant and only shifts the objective. Recall from

Appendix E, that we can factor trajectory probabilities, Pr(H = h|π), into factors that
depend on π and factors that do not: Pr(H = h|π) = p(h) ∗ wπ(h).

E[IS(πe, H,θ)2|H ∼ πθ] =
∑
h∈H

Pr(H = h|πθ)IS(πe, h,θ)2

=
∑
h∈H

eln(Pr(H=h|πθ)IS(πe,h,θ)2)

=
∑
h∈H

e
ln(wπθ (h)p(h)

wπe (h)
2

wπθ
(h)2

g(h)2)

=
∑
h∈H

elnwπθ (h)+ln p(h)+lnwπe (h)2+ln g(h)2−lnwπθ (h)2

=
∑
h∈H

e

− lnwπθ (h)+ln p(h) + lnwπe(h)2 + ln g(h)2︸ ︷︷ ︸
const w.r.t.θ

(h)

=
∑
h∈H

e− lnwπθ (h)+c1(h)

=
∑
h∈H

c2(h)e− lnwπθ (h) (24)

where c1 and c2 are functions of h that are constant w.r.t. θ. Furthermore, c2(h) = ec1(h)

and therefore must be positive. We next show that e− lnwπθ (h) is convex in θ. We then
have a linear combination of convex functions with positive weights, which is itself a convex
function. Note that we do not have to worry about taking the log of a non-positive
value for the following reasons. For any h such that g(h), wπe(h), or wπθ(h) is zero, then
Pr(H = h|πθ)∗ IS(πe, h,θ)2 is zero and can be ignored in the summation. The only potential
negative value is g(h) but it is squared within the logarithm and can thus be replaced with
its absolute value.
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We next introduce the following lemma that shows that − lnwπθ(h) is a convex function
with respect to θ.

Lemma 2 Assume πθ is a linear-softmax policy. Then for wπθ(h) :=
∏l−1
t=0 πθ(at|st),

− lnwπθ(h) is a convex function w.r.t. θ for any trajectory h = (s0, a0, ..., sl−1, al−1).

Proof

− lnwπθ(h) = − ln

l−1∏
t=0

πθ(at|st)

=
l−1∑
t=0

− lnπθ(at|st). (25)

Next, we show that each − lnπθ(at|st) is convex under the linear-softmax policy param-
eterization:

− lnπθ(a|s) = ln(
∑
b∈A

eθ
T
b φ(s))− θTa φ(s)

The log-sum-exp function is convex (Boyd et al., 2004, Chapter 3, Example 3.13) and
subtracting a linear function does not change convexity. Thus, (25) is a sum of convex
functions which is convex.

Continuing with the proof of Theorem 4, Lemma 2 implies that e− lnwπθ (h) is the
exponential of a convex function. The exponential of a convex function is convex (Boyd et al.,
2004, Chapter 3, Eq 3.11) and thus e− lnwπθ (h) is convex in θ. Finally, we have that (24) is a
linear combination of convex functions with positive weights. Thus, E[IS(πe, H,θ)2|H ∼ πθ]
is a convex function which concludes the proof.

Appendix E. Minimal-Variance Behavior Policy

In this appendix we prove Proposition 5 that gives a sufficient condition for a minimal-
variance behavior policy:

Proposition 5 Let wπ(h) :=
∏l−1
t=0 π(at|st). Assume ∃h̃ ∈ H such that g(h̃) · Pr(H =

h̃|πe) 6= 0, i.e., there is non-zero probability that πe generates a trajectory with non-zero
return. If ∃π ∈ Π s.t.

∀h ∈ H, wπ(h) = |g(h)| wπe(h)

E

[
|g(H)|

∣∣∣∣ H ∼ πe] .
then π is a minimal-variance behavior policy.

Proof Recall that we defined wπ(h) :=
∏l−1
t=0 π(at|st) and define p(h) := d0(s0)

∏l−1
t=1 P (st|st−1, at−1).

From these definitions, note that Pr(H = h|π) = wπ(h)p(h).
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The variance of the importance sampling estimator is:

Var

[
IS(πe, H, πb)

]
=E

[(
wπe(H)

wπb(H)
g(H)

)2 ∣∣∣∣ H ∼ πb]−E

[(
wπe(H)

wπb(H)
g(H)

) ∣∣∣∣ H ∼ πb]2

(26)

=E

[(
wπe(H)

wπb(H)
g(H)

)2 ∣∣∣∣ H ∼ πb]− v(πe)
2, (27)

where (27) follows from (26) since the IS return is unbiased (Thomas, 2015). To prove
Proposition 5 we need to find wπ(h) for each trajectory, h ∈ H, such that (27) is minimized
subject to the constraints that

∑
h∈H p(h)wπb(h) = 1 and ∀h ∈ H, wπb(h) > 0. These

constraints enforce that the choices for wπb(h) lead to a valid probability distribution over
trajectories.

We ignore v(πe)
2 because it is a constant that does not affect the critical points of the

variance and arrive at the constrained minimization problem:

min
wπb

∑
h∈H

Pr(H = h|πb)
(
g(h)wπe(h)

wπb(h)

)2

s.t.
∑
h∈H

p(h)wπb(h) = 1

∀h ∈ H, wπb(h) ≥ 0

We will consider a relaxed version of this minimization problem that ignores the inequality
constraints; as we show, doing so still leads to a feasible solution to the original problem.
The Lagrangian for the relaxed constrained minimization problem is:

L(wπb , λ) =
∑
h∈H

Pr(h|πb)
(
g(h)wπe(h)

wπb(h)

)2

+ λ

(∑
h∈H

p(h)wπb(h)− 1

)
. (28)

Differentiating with respect to wπb(h̃) for any trajectory h̃, we obtain:

∂

∂wπb(h̃)
L(wπb , λ) = −p(h̃)(

g(h̃)wπe(h̃)

wπb(h̃)
)2 + λp(h̃).

Setting ∂
∂wπb (h̃)

L(wπb , λ) = 0, we obtain:

λ?wπb?(h̃) = |g(h̃)|wπe(h̃). (29)

Observe that Equation (29) holds ∀h̃ ∈ H and thus λ? must be non-zero since |g(h̃)|wπe(h̃) >
0 for at least one h̃ ∈ H by assumption. Thus, we can divide both sides by λ? to obtain the
optimal choice of wπb(h̃):

wπb?(h̃) =
|g(h̃)|wπe(h̃)

λ?
. (30)

The constant λ? can be determined by ensuring the equality constraint is satisfied giving
λ? =

∑
h∈H p(h)wπe(h)|g(h)| = E[|g(H)||H ∼ πe]. Furthermore, this form clearly makes

wπb(h) positive ∀h ∈ H, satisfying the constraint that ∀h ∈ H, wπb(h) > 0. Note that in
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the case that g(h) = 0 for all h ∈ H that Proposition 5 gives an undefined value for wπb? .
However we can ignore this case as, if g(h) = 0 for all h ∈ H, then the variance of the
IS-estimator is trivially zero for any choice of behavior policy.

So far we have found a critical point for the Lagrangian given by (28). In order to
establish that this critical point is indeed a global minimum we show that no other choice
for wπb has lower variance than wπb? .

Var[IS(πe, H, πb
?)] = E

[(
wπe(H)

wπb?(H)
g(H)

)2 ∣∣∣∣ H ∼ πb?]− v(πe)
2 (31)

= E

[
|g(H)|

∣∣∣∣ H ∼ πe]2

E

[(
g(H)

|g(H)|

)2

︸ ︷︷ ︸
=1

∣∣∣∣ H ∼ πb?]− v(πe)
2 (32)

= E

[
|g(H)|

∣∣∣∣ H ∼ πe]2

− v(πe)
2 (33)

= E

[
wπe(H)

wπb(H)
|g(H)|

∣∣∣∣ H ∼ πb]2

− v(πe)
2 (34)

≤ E

[(
wπe(H)

wπb(H)
|g(H)|

)2 ∣∣∣∣ H ∼ πb]− v(πe)
2

= Var[IS(πe, H, πb)] (35)

where (32) follows (31) by plugging in the solution for wπb? given by (30) and factoring
out the constant λ, (33) follows from (32) because the expected value of 1 is 1 under any
distribution, (34) follows (33) by using importance sampling to change the expectation to
be in terms of trajectories from any behavior policy πb instead of πe, and the inequality
follows from Jensen’s inequality. Finally, we can drop the absolute value in (35) because
it is squared. Thus we can conclude that Var[IS(πe, H, πb

?)] ≤ Var[IS(πe, H, πb)] for any
behavior policy πb.

Appendix F. Behavior Policy Gradient of the KL

In this appendix we derive Theorem 3, which gives the gradient, with respect to the policy
parameters, of the KL-divergence between the distribution of trajectories under a minimal-
variance behavior policy, Pr(H|πb?), and the distribution of trajectories under πθ, Pr(H|πθ).
This gradient is:

Theorem 3 (Behavior Policy Gradient of the KL-Divergence)

∂

∂θ
DKL(Pr(H|πb?)||Pr(H|πθ)) ∝ E

[
−
∣∣∣∣IS(πe, H, πθ)

∣∣∣∣ l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Proof From Proposition 5 we know that a minimal-variance behavior policy is any policy,
πb
?, that satisfies the condition:

∀h ∈ H, wπb?(h) = |g(h)| wπe(h)

E[|g(H)||H ∼ πe]
.
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The KL-divergence between two probability distributions p and q with shared support
is defined to be DKL(p, q) := E[log(p(X)

q(X))|X ∼ p]. Thus, the KL-divergence between the
trajectory distribution of any minimal-variance behavior policy and that of the current
behavior policy πθ is given by:

DKL(Pr(H|πb?)||Pr(H|πθ)) = E

[
log

Pr(H|πb?)
Pr(H|πθ)

∣∣∣∣H ∼ πb?]
= E

[
log

wπb?(H)

wθ(H)

∣∣∣∣H ∼ πb?] .
Using Proposition 5 and defining λ := E[|g(H)||H ∼ πe], we can expand the w?πb(H) terms:

DKL(Pr(H|πb?)||Pr(H|πθ)) = E

[
logwπe

(H)− logwπθ
(H) + log |g(H)| − log λ

∣∣∣∣ H ∼ πb?]
=
∑
h∈H

Pr(h|πe)
|g(h)|
λ

(
logwπe

(H)− logwπθ
(H) + log |g(H)| − log λ

)
=

1

λ
E

[
|g(H)|

(
logwπe

(H)− logwπθ
(H) + log |g(H)| − log λ

) ∣∣∣∣ H ∼ πe]
=

1

λ
E

[
−|g(H)| logwπθ

(H)

∣∣∣∣ H ∼ πe]
+

1

λ
E

[
|g(H)|(logwπe

(H) + log |g(H)| − log λ)

∣∣∣∣ H ∼ πe]︸ ︷︷ ︸
const w.r.t. θ

.

Differentiating with respect to θ, we obtain:

∂

∂θ
DKL(Pr(H|πb?)||Pr(H|πθ)) ∝ E

[
−|g(H)| ∂

∂θ
logwπθ(H)

∣∣∣∣H ∼ πe]
= E

[
−|g(H)|

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πe
]

= E

[
−|IS(πe, H, πθ)|

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

where the second step uses the multi-factor product rule and the final step uses importance
sampling to convert from an expectation under πe to one under πθ.

Appendix G. Convergence of BPG-KL

In this section, we prove that BPG-KL (Algorithm 2) converges under an appropriately
chosen step-size.

Proposition 6 Under Assumption 1 and Assumption 3, BPG-KL converges. That is,
DKL(Pr(H|πb?)||Pr(H|πθ)) converges to a finite value and limi→∞

∂
∂θDKL(Pr(H|πb?)||Pr(H|πθ)) =

0.
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Proof Similar to Proposition 4, the proof follows from an application of Proposition 3 in
Bertsekas and Tsitsiklis (2000). A minor nuance for Proposition 6 is that BPG-KL does not
use unbiased estimates of the true KL-gradient but uses unbiased estimates of an expression
that is just proportional to the true KL-gradient. However, the proportionality constant is
fixed with respect to θ and so we can ignore it when showing convergence.

To apply Proposition 3 in Bertsekas and Tsitsiklis (2000), we must show the following
conditions:

1. DKL(Pr(H|πb?)||Pr(H|πθ)) is continuously differentiable w.r.t. θ.

2. The gradient of the KL objective, ∂
∂θDKL(Pr(H|πb?)||Pr(H|πθ)), is Lipschitz continuous

w.r.t. θ.

3. The gradient estimate used by BPG-KL has bounded variance.

Theorem 3 gives us an expression that is proportional to ∂
∂θDKL(Pr(H|πb?)||Pr(H|πθ)) which

can be seen to be continuously differentiable under our assumption that πθ is continuously
differentiable and Assumption 1 which implies that IS(πe, H, πθ) is bounded.

We next show that the KL objective has bounded second derivative which implies the
Lipschitz continuity of ∂

∂θDKL(Pr(H|πb?)||Pr(H|πθ)).

∂2

∂2θ
DKL(Pr(H|πb?)||Pr(H|πθ)) =

∂

∂θ
E

−|IS(πe, H, πθ)|
l−1∑
t=0

∂

∂θ
log πθ(At|St)︸ ︷︷ ︸

∂
∂θ

logwθ(H)

∣∣∣∣∣∣∣∣∣∣∣
H ∼ πθ


=
∂

∂θ

∑
h∈H
−p(h)wπe(h)|g(h)| ∂

∂θ
logwθ(h)

=
∑
h∈H
−p(h)wπe(h)|g(h)| ∂

2

∂2θ
logwθ(h)

=
∑
h∈H
−p(h)wπe(h)|g(h)|

l−1∑
t=0

∂

∂θ

∂
∂θπθ(at|st)
πθ(at|st)

=
∑
h∈H
−p(h)wπe(h)|g(h)|·

·
l−1∑
t=0

πθ(at|st) ∂2

∂2θ
πθ(at|st)− ( ∂

∂θπθ(at|st))2

πθ(at|st)2
(36)

The denominator in (36) cannot be zero as otherwise wθ(h) would be zero and the cor-
responding trajectory could be ignored in the expectation. Furthermore, by construct,
∂
∂θπθ(at|st) and ∂2

∂2θ
πθ(at|st) exist and are bounded. Thus we conclude that the first and

second derivative of the KL objective exist and the first derivative is Lipschitz.

Finally, we have to show that the variance of the gradient estimate used by BPG-KL is
bounded. To do so, we show that the gradient estimate with any single trajectory is bounded

56



Behavior Policy Search

which implies the variance of the estimates used by BPG-KL is bounded. For any trajectory
h, collected by following πθ, an unbiased estimate of the KL gradient estimate is given as:

∂

∂θ
DKL(Pr(H|πb?)||Pr(H|πθ)) ≈ −|IS(πe, h, πθ)|

l−1∑
t=0

∂

∂θ
log πθ(at|st)

(a)
= −wπe(h)|g(h)|

wπθ(h)

∂

∂θ
logwπθ(h)

(b)
= −wπe(h)|g(h)|

wπθ(h)

∂
∂θwπθ(h)

wπθ(h)

= −wπe(h)|g(h)|
wπθ(h)2

∂

∂θ
wπθ(h) (37)

where (a) uses wπ(h) =
∏l−1
t=0 π(at|st) and (b) uses the likelihood-ratio trick. On the RHS

of Equation (37), wπe (h)|g(h)|
wπθ (h)2

is bounded under Assumption 1 and ∂
∂θwπθ(h) was shown to

be bounded in Equation (22). Thus we conclude that the variance of the gradient estimate
used by BPG-KL is bounded. Proposition 6 now follows from Proposition 3 of (Bertsekas
and Tsitsiklis, 2000).

Appendix H. Convexity of KL-Divergence Objective

In this appendix, we prove that, when πθ is a linear-softmax policy, then the objective
minimized by BPG-KL is convex in the policy parameters. Thus, BPG-KL is guaranteed
to converge to the parameter vector that minimizes the KL divergence with the minimal-
variance behavior policy under standard stochastic gradient descent step-size conditions
(Bertsekas and Tsitsiklis, 2000).

Theorem 4 Assume πθ is a linear-softmax policy. Then, DKL(Pr(H|πb?)||Pr(H|πθ)) is a
convex function w.r.t. θ.

Proof

Recall that for the minimal-variance behavior policy we have:

wπb?(h) =
|g(h)|wπe(h)

λ
,

where λ = E[|g(H)||H ∼ πθ].
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The KL-divergence between the minimal-variance behavior policy and policy πθ is given
as:

DKL(Pr(H|πb?)||Pr(H|πθ)) = E

[
log

Pr(H|πb?)
Pr(H|πθ)

∣∣∣∣H ∼ πb?]
= E

[
log

wπb?(H)

wπθ(H)

∣∣∣∣H ∼ πb?] .
=
∑
h∈H

Pr(H = h|πb?) log
|g(h)|wπe(h)

wπθ(h)λ

=
∑
h∈H

p(h)
|g(h)|
λ

wπe(h)︸ ︷︷ ︸
const w.r.t. θ

log
|g(h)|wπe(h)

wπθ(h)λ

=
∑
h∈H

c1(h)(log(
|g(h)|
λ

wπe(h))− logwπθ(h))

=
∑
h∈H
−c3(h) logwπθ(h) + c2(h) (38)

Functions c1, c2, and c3 are positive for any h and constant with respect to θ. Lemma 2
says that − logwπθ(h) is convex w.r.t θ. Thus, (38) is a weighted sum of convex functions
with positive weights which is itself convex. Thus the KL-divergence objective optimized
by BPG-KL is convex with respect to θ. An interesting observation from the proof is that
the KL-divergence between the trajectory distribution of πθ and any trajectory distribution
that does not depend on θ is also a convex function (under the assumption that πθ is a
linear-softmax policy).
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