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Abstract

The alternating direction method of multipliers (ADMM) algorithm is a powerful and flex-
ible tool for complex optimization problems of the form min{f(x) + g(y) : Ax+ By = c}.
ADMM exhibits robust empirical performance across a range of challenging settings in-
cluding nonsmoothness and nonconvexity of the objective functions f and g, and provides
a simple and natural approach to the inverse problem of image reconstruction for com-
puted tomography (CT) imaging. From the theoretical point of view, existing results for
convergence in the nonconvex setting generally assume smoothness in at least one of the
component functions in the objective. In this work, our new theoretical results provide
convergence guarantees under a restricted strong convexity assumption without requiring
smoothness or differentiability, while still allowing differentiable terms to be treated ap-
proximately if needed. We validate these theoretical results empirically, with a simulated
example where both f and g are nondifferentiable—and thus outside the scope of existing
theory—as well as a simulated CT image reconstruction problem.
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1. Introduction

In this work, we consider optimization problems of the form

Minimize f(x) + g(y) subject to the constraint that Ax+By = c. (1)

Problems of this form arise in many applications throughout the physical and biological
sciences. In particular, we are interested in optimization problems pertaining to computed
tomography (CT) imaging, which, as we will see later on, can often be expressed in this
type of formulation.

Solving the optimization problem (1) can be computationally challenging even when
the functions f and g are both convex. Challenges in the convex setting may include
high dimensionality of the variables x and y, nondifferentiability of f and/or g, or poor
conditioning of the linear transformations A,B or the functions f, g. If one or both functions
are nonconvex, this brings an additional level of difficulty to the optimization problem.
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In this work, we study a linearized form of the alternating directions method of mul-
tipliers (ADMM) algorithm, in the setting where f and g may both be nonconvex and
nonsmooth. While variants of this algorithm are very well known in the literature, existing
theoretical results have typically been restricted to narrower settings (e.g., assuming that
at least one of the two functions f , g must be smooth), and thus cannot be applied to
guarantee convergence for many settings arising in modern high dimensional optimization
and data analysis.

Outline In Section 2, we describe the method of nonconvex ADMM with linear approx-
imations, and review known results in the literature on the convergence properties of this
type of algorithm in various settings. In Section 3 we present our new convergence result,
which addresses a more flexible setting allowing both f and g to be potentially nonconvex
and nonsmooth. We demonstrate the performance of the algorithm on a simple simulated
quantile regression problem in Section 4, and present an application to computed tomog-
raphy (CT) imaging in Section 5. Finally, some future directions and implications of this
work are discussed in Section 6. Some proofs and additional technical details are deferred
to the Appendix.

2. Setting and background

Consider the optimization problem

Minimize f(x) + g(y) : x ∈ Rd, y ∈ Rm such that Ax+By = c (2)

where the functions f on Rd and g on Rm are potentially nonconvex and/or nondifferen-
tiable, while A ∈ Rk×d, B ∈ Rk×m, and c ∈ Rk define linear constraints on the variables.
In this work, we will consider functions f and g that can be decomposed as

f(x) = fc(x) + fd(x), g(y) = gc(y) + gd(y)

where fc is convex (possibly nondifferentiable) and fd is twice differentiable (possibly non-
convex), and similarly for gc and gd. This decomposition allows us to take linear approxi-
mations to the differentiable terms fd and gd, where needed, to ensure simple calculations
for each update step of our iterative algorithm.

We will assume that fc and gc are proper functions. Formally, this means that we can
write

fc : Rd → R ∪ {+∞},
with nonempty domain dom(fc) := {x ∈ Rd : f(x) < +∞} (and similarly for gc). We
also assume that fc and gc are lower semi-continuous. The differentiable component fd is
assumed to be defined on all of Rd, i.e.,

fd : Rd → R,

and similarly for gd on Rm. Putting these assumptions together, we see that f and g are
also proper functions, with domains dom(f) = dom(fc) and dom(g) = dom(gc) (note that
convexity of fc, gc ensures that these domains are also convex). Finally, we assume that the
feasible set (

dom(f)× dom(g)
)
∩
{

(x, y) ∈ Rd × Rm : Ax+By = c
}

2



Convergence for nonconvex ADMM, with applications to CT imaging

is nonempty. We will say that a point (x, y) is feasible for this optimization problem if it
lies in this feasible set, i.e., x ∈ dom(f), y ∈ dom(g), and the constraint Ax + By = c is
satisfied.

2.1 Background and prior work

2.1.1 ADMM for convex optimization problems

The alternating directions method of multipliers (ADMM) algorithm is a method for solving
problems of the form (2). It was developed initially for the setting where f and g are both
convex, and operates by reformulating the optimization problem (2) with an augmented
Lagrangian,

min
x,y

max
u
{LΣ(x, y, u)} ,

where the augmented Lagrangian is defined as

LΣ(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉+
1

2
‖Ax+By − c‖2Σ, (3)

for some positive definite penalty matrix Σ � 0. (Most commonly, Σ is taken to be a multiple
of the identity.) See Boyd et al. (2011) for a review of the motivation and performance of
ADMM for the convex setting, including the long history of this algorithm and many of its
variants.

The ADMM algorithm solves this optimization problem as follows: initializing at some
x0, u0, y0, for all t ≥ 0 we run the steps:

xt+1 = arg minx {LΣ(x, yt, ut)} ,
yt+1 = arg miny {LΣ(xt+1, y, ut)} ,
ut+1 = ut + Σ(Axt+1 +Byt+1 − c).

(4)

Adding step size matrices In some cases, adding step size matrices Hf � 0 for the x
update and Hg � 0 for the y update can improve the convergence behavior and/or may
allow for easier calculation of the update steps:

xt+1 = arg minx

{
LΣ(x, yt, ut) + 1

2‖x− xt‖
2
Hf

}
,

yt+1 = arg miny

{
LΣ(xt+1, y, ut) + 1

2‖y − yt‖
2
Hg

}
,

ut+1 = ut + Σ(Axt+1 +Byt+1 − c).

(5)

(Here � denotes the positive semidefinite ordering on matrices, i.e., Hf � 0 means that Hf

is positive semidefinite.)
In many cases, choosing Hf so that Df := Hf +A>ΣA is diagonal, or is a multiple of the

identity, may be convenient for calculating the x update step—this is because the x update
step is a minimization problem of the form arg minx

{
f(x) + 1

2x
>Dfx− x>vt

}
, where vt is

a vector that depends on the previous iteration. Specifically, this type of choice for Hf can
be helpful when the function f separates over the entries of x, f(x) =

∑
i fi(xi), so that now

the x update step separates completely over the entries of x. Another setting where this
type of modification is commonly used is when f is equipped with an inexpensive proximal
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map (the map z 7→ arg min{f(x) + 1
2‖x− z‖

2
2})—for example, the `1 norm, f(x) = ‖x‖1,

or the (squared) `2 norm, f(x) = ‖x‖22, are both commonly used regularization functions
that have simple proximal maps. (Without the matrix Hf , the x update step is of the
form arg minx

{
f(x) + 1

2x
>A>ΣAx− x>vt

}
, which may be substantially more challenging

to compute if A>ΣA is a dense matrix.) Similarly we may choose Hg with these types of
considerations in mind for the y update step. For further details, see Wang and Banerjee
(2014, Eqn. (17)), where this type of modification is referred to as a “linearization” of the
quadratic penalty term.

This type of modification of ADMM is closely linked to related algorithms for composite
optimization problems of the form f(Ax) + g(x), studied via primal-dual methods by, e.g.,
Chen and Teboulle (1994); Chambolle and Pock (2011); He and Yuan (2012); Valkonen
(2014), among many others, and has been applied to convex versions of the CT image
reconstruction problem (see, e.g., Nien and Fessler (2014)).

Linear approximations For many optimization problems, even with the modification of
a step size matrix as in (5) above, it may still be challenging to compute the x update step
if the function f is difficult to minimize (and similarly, the y step with the function g). In
particular, if the x update step itself can only be solved with an iterative procedure, this
type of “inner loop” will drastically slow down the convergence of ADMM.

An alternative is to replace the function f with an approximation at each step. In
particular, consider our earlier decomposition, f = fc + fd, where fc is convex while fd is
twice differentiable. Taking a linear approximation to fd, at the current iteration xt, we
can approximate the function f as

f(x) ≈ fc(x) +
(
fd(xt) + 〈∇fd(xt), x− xt〉

)
.

Although this inexact calculation of the x update may lead to slower convergence in terms
of the total number of iterations, this may be outweighed if this approximation allows
the cost of each single iteration to be substantially reduced. We can make the analogous
modification for the y update step. This type of modification has been commonly used
in both the convex and nonconvex settings, particularly in settings where f itself is twice
differentiable so we can take fd = f and fc ≡ 0. For instance, Wang and Banerjee (2014,
Eqn. (21)) study this modification for the convex setting, where this type of approach is
referred to as “linearization” of the target function; see also the references described below
for the nonconvex setting.

For completeness, Algorithm 1 presents this modified form of ADMM (combining both
linear approximations to fd and gd, and the addition of step size matrices described above).
This is the version of the algorithm that we will study in our work.

2.1.2 Nonconvex ADMM

Next we turn to the nonconvex setting, where the functions f and/or g are no longer
required to be convex. In many optimization problems, the ADMM algorithm (possibly
with the addition of step size matrices Hf , Hg and/or linear approximations to fd, gd) has
been observed to perform well, converging successfully and avoiding issues such as saddle
points or local minima. The convergence properties in a nonconvex setting have been studied
extensively. For example, Wang et al. (2014); Magnússon et al. (2015); Hong et al. (2016);

4



Convergence for nonconvex ADMM, with applications to CT imaging

Algorithm 1 ADMM with linear approximations

Input: Functions f = fc+fd and g = gc+gd, with fc, gc convex, fd, gd twice differentiable;
matrices A,B; vector c; penalty matrix Σ � 0; step size matrices Hf , Hg � 0.

Initialize: x0, y0, u0.
for t = 0, 1, 2, . . . do

Update x: xt+1 = arg min
x

{
fc(x) + 〈x,∇fd(xt) +A>ut〉

+
1

2
‖Ax+Byt − c‖2Σ +

1

2
‖x− xt‖2Hf

}
.

Update y: yt+1 = arg min
y

{
gc(y) + 〈y,∇gd(yt) +B>ut〉

+
1

2
‖Axt+1 +By − c‖2Σ +

1

2
‖y − yt‖2Hg

}
.

Update u: ut+1 = ut + Σ(Axt+1 +Byt+1 − c).

until some convergence criterion is reached.

Guo et al. (2017); Wang et al. (2018, 2019); Themelis et al. (2020) study the performance
of ADMM with f and g update steps calculated exactly (in some cases, extending the
algorithm to handle more than two variable blocks), while Li and Pong (2015); Lanza et al.
(2017); Jiang et al. (2019); Liu et al. (2019) study the algorithm with linear approximations
to (parts of) f and/or g. All of these works prove results of one of the two following types:

• Assume that either f or g is differentiable and has a Lipschitz gradient, and establish
convergence guarantees;

• Assume that the algorithm converges (or, more weakly, assume only that the dual
variable ut converges), and establish optimality properties of the limit point.

It is important to note that neither type of existing result verifies that convergence is
guaranteed in a nonconvex setting where both f and g are nondifferentiable.

A different type of nonconvexity that is studied in the literature is where f and g are
both convex, but the constraint on (x, y) is nonconvex (e.g., y = A(x) for a nonlinear
operator A); this type of problem is studied by Valkonen (2014); Ochs et al. (2015), among
others. Bolte et al. (2018) allow for nonconvexity both in the functions (f and/or g) and
in the constraint on (x, y); as with many of the methods above, the results of this paper
require that either f or g is differentiable and has a Lipschitz gradient.

2.1.3 The MOCCA algorithm

Our own earlier work on this problem (Barber and Sidky, 2016) proposed the Mirrored
Convex/Concave algorithm (MOCCA), which solves problems of the form (1). At a high
level, the MOCCA algorithm can be viewed as a version of Algorithm 1 with a key modifi-
cation: rather than taking a new linear approximation to fd and gd at each iteration t (i.e.,
computing the gradients ∇fd(xt) and ∇gd(yt)), the MOCCA algorithm requires an “inner
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loop”, where we cycle Lt many times through the variable update steps before re-calculating
the linear approximations to fd and gd.

In (Barber and Sidky, 2016), two versions of the MOCCA algorithm are proposed:

• The “stable” version (Barber and Sidky, 2016, Algorithm 2), where at each iteration
t of the outer loop, we run Lt � 1 many iterations of the inner loop, and require
Lt →∞.

• The “simple” version (Barber and Sidky, 2016, Algorithm 1), with no inner loop (or
equivalently, with Lt = 1 for each t).

The theoretical guarantee given in (Barber and Sidky, 2016) proves a convergence result
for the “stable” version. To our knowledge, this was a unique result in that it ensured
convergence without requiring either f or g to have a Lipschitz gradient (in comparison to
the literature on ADMM in the nonconvex setting as discussed above), requiring instead a
restricted strong convexity type condition (see Section 3.2 below). However, the theoretical
result has the drawback of requiring the inner loop, with Lt → ∞. This requirement
contradicts the empirical performance of the algorithm: the empirical results in (Barber and
Sidky, 2016) actually implemented the “simple” version of MOCCA, with no inner loop,
and the algorithm typically showed convergence even though no theoretical justification was
known.

The ADMM algorithm studied in the present work, Algorithm 1, is in fact essentially
equivalent to the “simple” version of MOCCA (with a few changes in the details; e.g., in
MOCCA, the matrix B was required to be the identity). The novelty of the present work,
then, is not in the algorithm itself, but rather in the fact that the theoretical guarantees
established in this paper apply to the actual algorithm being run in practice (Algorithm 1,
or equivalently, the “simple” version of MOCCA), rather than applying only to a more
computationally inefficient version of this algorithm (the “stable” version of MOCCA, as in
the theoretical results of (Barber and Sidky, 2016)).

2.2 Preview of new results

In the present work, we establish a convergence guarantee for Algorithm 1 in the nonconvex
setting, with no “inner loop” needed in the theory, substantially closing the gap between
the theoretical results and our empirical observations for this algorithm. As byproducts
of this new analysis, we uncover an additional interesting finding that better explains the
dependence of performance on step size parameters. Moreover, our new work allows for
a more direct connection to CT imaging—we are able to apply our algorithm, exactly
as defined and with no modifications, to simulated CT image reconstruction problems,
obtaining very clean results. (For real CT data, issues of scanner calibration, non-random
noise, etc., require a more careful application of the algorithm, which we address in separate
work, but we mention here that this algorithm has been very successful on real CT data,
e.g., Rizzo et al. (2022); Schmidt et al. (2023); Rizzo et al. (2023).)
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3. Convergence guarantee

We will prove a convergence result under an additional condition requiring approximate
convexity of the problem. If the optimization problem were strongly convex, we would
expect that our optimization algorithm would converge to the unique minimizer—which,
under strong convexity, would be a point satisfying first-order optimality conditions. In
more challenging settings, however, strong convexity may not hold and we will need to
relax our goal for convergence.

In this work, we will consider a setting where there is a feasible point (x̃, ỹ) that is ap-
proximately first-order optimal, around which the optimization problem satisfies a relaxed
version of strong convexity. Since these conditions will only be required to hold approxi-
mately, the point (x̃, ỹ) may in general be nonunique; feasible points (x̃′, ỹ′) sufficiently close
to (x̃, ỹ) might also satisfy the conditions. This is not a contradiction, however, since our
theoretical results will only guarantee convergence to within some neighborhood of (x̃, ỹ).

In the remainder of this section, we will define our assumptions more formally and will
state the theoretical guarantee, but we first need to review the definition of the subdiffer-
ential in this nonconvex setting.

3.1 Subdifferentials of f and g

Since f and g are not necessarily convex, we pause here to define the notation ∂f(x) and
∂g(y), which is a generalization of the usual subdifferential for convex functions. Here, for
any x ∈ dom(f), we will use the definition

∂f(x) =

{
ξ : lim

t→0

f(x+ tw)− f(x)

t
≥ 〈ξ, w〉 for all w ∈ Rd

}
and similarly for g. This definition is illustrated in Figure 3.1.

In particular, given the convex-plus-differentiable decomposition f = fc + fd, we can
write

∂f(x) = {ξ +∇fd(x) : ξ ∈ ∂fc(x)} and ∂g(y) = {ζ +∇gd(y) : ζ ∈ ∂gc(y)},

where ∂fc(x) and ∂gc(y) are the usual subdifferentials of the convex functions fc and gc,
i.e., for all x ∈ dom(f) we define

∂fc(x) =
{
ξ : f(x+ w)− f(x) ≥ 〈ξ, w〉 for all w ∈ Rd

}
,

and similarly for gc.
From this point on, for any x ∈ dom(f) and any y ∈ dom(g), ξx always denotes an

element of ∂f(x), and ζy always denotes an element of ∂g(y).

3.2 Restricted strong convexity

We will assume a restricted strong convexity (RSC) condition, which at a high level is a
relaxation of imposing a strong convexity condition on the constrained optimization prob-
lem. This type of convexity condition has been extensively studied in the high-dimensional
statistics literature. For background, the condition was proposed initially by Negahban
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Figure 1: Illustration of the subdifferential ∂f(t), for the function f(t) = log(1 + |t|). For
any t 6= 0, the function is differentiable at t, and the subdifferential is a singleton
set containing only this derivative, ∂f(t) = {f ′(t)} = {sign(t)/(1 + |t|)}. This
is illustrated in the figure for two nonzero values of t. At t = 0, the function
is nondifferentiable, and the subdifferential is given by ∂f(0) = [−1, 1]. This is
illustrated in the figure by showing several elements of ∂f(0).

et al. (2012), and was studied by Loh and Wainwright (2015) in the setting of nonconvex
loss functions. This type of condition is known to characterize many settings where accurate
signal recovery is possible in spite of the “curse of dimensionality”, and over recent years
has been studied in many settings, e.g., (Jain et al., 2014; Gunasekar et al., 2015; Elenberg
et al., 2018).

We will assume the following condition, for some constants ε ≥ 0, αf , αg ≥ 0, and
cf , cg ∈ (0,+∞], and some positive definite matrix Σ � 0:

Assumption 1 (Restricted Strong Convexity) There exists a feasible point (x̃, ỹ) and
subgradients ξỹ ∈ ∂f(x̃), ζỹ ∈ ∂g(ỹ), such that〈(

x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
≥ αf min{‖x− x̃‖22, cf‖x− x̃‖2}+ αg min{‖y − ỹ‖22, cg‖y − ỹ‖2}

− 1

2
‖Ax+By − c‖2Σ − ε2, (6)

for all x ∈ dom(f), y ∈ dom(g), ξx ∈ ∂f(x), and ζy ∈ ∂g(y).

Motivation To motivate this condition, consider a first-order optimal point (x̃, ỹ). We
first observe that if the functions f and g were αf -strongly convex and αg-strongly convex,
respectively, then we would have〈(

x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
≥ αf‖x− x̃‖22 + αg‖y − ỹ‖22 ∀x ∈ dom(f), y ∈ dom(g), ∀ξx, ζy.

If instead f and/or g does not satisfy strong convexity (or may even be nonconvex) but
strong convexity is regained once we impose the constraint Ax+By = c, we might instead
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have a bound of the form〈(
x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
≥ αf‖x− x̃‖22 + αg‖y − ỹ‖22 ∀ feasible (x, y), ∀ξx, ζy.

This is strictly weaker than requiring f and g to each be strongly convex; here, the require-
ment of strong convexity is restricted to the subspace defined by the constraint Ax+By = c.

To accommodate the setting of ADMM, where the constraint Ax + By = c is not
satisfied exactly at finite iterations, we will need to extend the statement above to allow
for points that violate this constraint. This is the motivation for subtracting the term
1
2‖Ax+By − c‖2Σ on the right-hand side of (6), which allows the strong convexity require-
ment to be relaxed outside of the subspace where the constraint holds. Finally, the addi-
tional term ε2 subtracted on the right-hand side is typically a very small positive constant,
allowing for minor violations of the RSC property—we will return to the meaning and
interpretation of this term below.

Parameters for the RSC condition We next examine the choices of constants αf , αg, cf , cg,
the penalty matrix Σ, and the “tolerance” term ε, in this condition.

• Constants αf , αg, cf , cg. As seen earlier, in some cases the objective function may
offer strong convexity in feasible directions (i.e., (x, y) such that Ax + By = c). In
such a case, we would take cf = cg = +∞ (and ε = 0). In other settings, however,
it may not be possible to guarantee this type of strong curvature, but we can ensure
a weaker property by taking finite cf , cg. This would arise if, e.g., f is a logistic
loss function, which is convex globally but is strongly convex only locally; moreover,
in Section 4.2, we will also see this type of weaker convexity guarantee for a sparse
quantile regression problem. It may also be the case that the objective function offers
strong convexity in the x direction but may not be strongly convex in the y direction
(or vice versa), in which case we might have αf > 0 but αg = 0, for example.

• Penalty matrix Σ. The matrix Σ appears in both the RSC assumption and in the
ADMM algorithm, where it enforces the constraint Ax+By = c. In other words, our
assumption is that RSC holds with the same matrix Σ as the one used in ADMM. The
RSC property therefore provides some insight into the role of the ADMM step size
parameter. We can see that, in the presence of nonconvexity—or even if the problem
is convex, but not globally strongly convex—the RSC property may fail if the ADMM
parameter Σ is chosen to be too small.

While for specific problems we may have theoretical results that guide our choice of Σ
(as for the quantile regression example—see Section 4.2), more generally in practice
we may need to tune Σ to achieve good convergence of ADMM. It is common to choose
a multiple of the identity, i.e., Σ = σIk, so that we only have a single scalar parameter
σ > 0 to tune. (In the ADMM literature, this parameter is typically denoted by ρ.)
In our theory, we allow for a general Σ rather than requiring a multiple of the identity,
since in certain settings it may be advantageous to choose a different form for Σ; we
will see an example of this in the CT imaging application, in Section 5.1.

• Tolerance level ε. Finally we discuss the role of the scalar ε ≥ 0. This parameter
allows for the condition to hold up to a small tolerance level, and is typically taken
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to be vanishing, or even zero. We will see in our theoretical convergence guarantee
below, that the RSC property with a nonzero ε only guarantees convergence to within
distance � ε of (x̃, ỹ).

For example, if the optimization problem arises from a statistical question where we
would like to estimate some true distribution parameters based on a sample of size n,
then often the function f or g reflects an empirical loss that is a random perturbation
of some underlying “true” loss function. Allowing for ε � n−1/2 means that the RSC
property can hold even if the strong convexity properties of the underlying true loss
are not preserved exactly by the empirical loss. The fact that the RSC property only
guarantees convergence to within distance ε of the true parameters, is not worrisome
in this statistical setting, because convergence beyond the accuracy level ε � n−1/2 is
not informative—this is because a sample of size n can only recover parameters up to
errors of order n−1/2 even with limitless computational resources (see, e.g., Loh and
Wainwright (2015, Section 4.1) for further discussion of the role of the ε term in RSC
type results for high-dimensional statistics). As an example, the scaling ε � n−1/2

arises in the sparse quantile regression application, for which the RSC property is
studied in Section 4.2.

In Appendix A.1, we give some additional intuition and interpretations for the RSC
property, for the Σ in particular, showing how RSC relates to the convexity of the augmented
Lagrangian LΣ defined in (3).

3.3 First-order conditions

A first-order stationary point (FOSP) of the optimization problem is a feasible point (x, y)
such that, for any feasible (x′, y′), it holds that〈(

x′ − x
y′ − y

)
,

(
ξx
ζy

)〉
≥ 0 (7)

for some ξx ∈ ∂f(x) and some ζy ∈ ∂g(y). In particular, for any triple (x, y, u) ∈ dom(f)×
dom(g)× Rk, if it holds that 

Ax+By = c,

−A>u ∈ ∂f(x),

−B>u ∈ ∂g(y),

(8)

then we can verify that (x, y) is a FOSP (by taking ξx = −A>u and ζy = −B>u in (7)).
To prove (approximate) convergence to the target (x̃, ỹ), we will need to assume that

this point is (approximately) first-order optimal.

Assumption 2 For some εFOSP ≥ 0, the point (x̃, ỹ) satisfies
Ax̃+Bỹ = c,

‖−A>ũ− ξx̃‖2 ≤ min
{αf cf

2 ,
√
αf · εFOSP

}
,

‖−B>ũ− ζỹ‖2 ≤ min
{αgcg

2 ,
√
αg · εFOSP

}
,

(9)

for some ũ ∈ Rk, where constants αf , αg, cf , cg and subgradients ξx̃, ζỹ are the same as the
ones appearing in Assumption 1.
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For intuition, we can see that if (x̃, ỹ, ũ) were to satisfy the conditions (8) exactly, then this
assumption would hold with εFOSP = 0.

Analogous to the role of ε in the restricted strong convexity condition, here εFOSP is a
tolerance level, allowing the first-order optimality conditions to hold only approximately.
We will see that convergence is then guaranteed only up to an accuracy level that scales
with these tolerance parameters ε and εFOSP.

A key motivation can again be found by considering a statistical setting, where we are
minimizing a loss derived from a finite sample of size n (e.g., empirical risk minimization),
then we would expect the true parameters (x̃, ỹ) to be approximately first-order optimal
with εFOSP � n−1/2, reflecting the usual error rates obtained with a sample size n.

3.4 Main result: convergence guarantee

Our main result proves that the ADMM iterates (xt, yt, ut) converge to (x̃, ỹ, ũ) (up to a
tolerance level determined by ε and εFOSP), as long as we choose the step size matrices
Hf , Hg to satisfy{

Hf � 0, Hf +A>ΣA � 0, and Hf � ∇2fd(x) for all x ∈ dom(f),

Hg � 0, Hg +B>ΣB � 0, and Hg � ∇2gd(y) for all y ∈ dom(g).
(10)

We note that, if fd (respectively gd) is concave and A>ΣA (respectively B>ΣB) is full-
rank, then the corresponding step size matrix Hf (respectively Hg), can be chosen to be
zero. However, even in such a setting, we may prefer to take a nonzero step size matrix for
easier update step calculations, as discussed above. We can also observe that the condition
Hf + A>ΣA � 0, together with the assumption that fc is convex, proper, and lower semi-
continuous, ensures that xt+1 is unique and well-defined (i.e., the subproblem for the x
update step has a unique minimum), and similarly the condition Hg + B>ΣB � 0 ensures
the same for the y update step.

Theorem 1 Suppose that the point (x̃, ỹ) is feasible, satisfies Assumption 1 (restricted
strong convexity), and satisfies Assumption 2 (approximate first-order optimality) for some
ũ ∈ Rk. Suppose that the nonconvex ADMM algorithm given in Algorithm 1 is run with
the penalty matrix Σ chosen according to the restricted strong convexity property (6), with
step size matrices Hf , Hg satisfying (10), and initialized at an arbitrary point (x0, y0, u0) ∈
dom(f)× dom(g)× Rk.

Define

x̄T =
1

T

T∑
t=1

xt and ȳT =
1

T

T∑
t=1

yt,

where xt, yt are the iterates of the nonconvex ADMM algorithm. Then for all T ≥ 1,

αf min
{
‖x̄T − x̃‖22, cf‖x̄T − x̃‖2

}
+ αg min

{
‖ȳT − ỹ‖22, cg‖ȳT − ỹ‖2

}
≤ C(x̃, ỹ, ũ;x0, y0, u0)

T
+ 4(ε2 + ε2

FOSP).

The function C appearing in the upper bound is defined explicitly in the proof, and does
not depend on the iteration number T .

11
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An important observation is that convergence is guaranteed only up to the error level
scaling as ε2 + ε2

FOSP—these terms do not vanish as T → ∞. To understand why this is
exactly as expected, we can again consider a statistical setting, where the true parameters
(x̃, ỹ) are estimated by minimizing a loss derived from a finite sample of size n; in this type
of setting, convergence can only be expected to recover (x̃, ỹ) up to some accuracy level.
Indeed, even if we were able to compute the global minimizer of the optimization problem,
we would still expect nonzero error in recovering (x̃, ỹ). In particular, as described above,
in such settings we expect the RSC property and the approximate first-order optimality
property to hold with ε, εFOSP � n−1/2; this then implies that, for sufficiently large T , we
have ‖x̄T − x̃‖2 . n−1/2. As discussed earlier, since this is the expected rate for parameter
estimation based on a sample of size n (in particular, even the global minimizer of the
optimization problem will have this same error rate), we cannot hope for a better guarantee.

Comparison to related work In Section 2.1.2, we discussed prior work on different
variants of the nonconvex ADMM algorithm (with or without linear approximations to the
differentiable components fd and gd of the objective function). These existing results all
require that at least one of the two functions (f or g) must be smooth, or alternatively
proves a weaker convergence result, establishing properties of the limit point under the
assumption that the algorithm converges (without proving that convergence must occur).
The related MOCCA algorithm, discussed in Section 2.1.3, does allow for both f and g to
be nonsmooth, but the convergence guarantee comes at the cost of an “inner loop” in the
algorithm that increases in length with every iteration, which would be extremely inefficient
in practice. The contribution of Theorem 1 is that we can be assured that, with the RSC
assumption, the nonconvex ADMM algorithm will converge even when both f and g are
nonsmooth.

3.5 Proof of Theorem 1

Fix any point (x, y, u) satisfying Ax + By = c. In Appendix A.2, we will prove that the
assumption (10) on the step size matrices Hf , Hg ensures that, for all T ≥ 1, there exist
some ξx2 , . . . , ξxT+1 and some ζy1 , . . . , ζyT such that

T−1∑
t=0

〈(
xt+2 − x
yt+1 − y

)
,

(
ξxt+2 +A>u
ζyt+1 +B>u

)〉
+

1

2

T−1∑
t=0

‖Axt+2 +Byt+1 − c‖2Σ

≤ C1(x, y, u;x0, y0, u0). (11)

The function C1 will be defined in the Appendix (see (27)).
Moreover, applying the restricted strong convexity assumption (Assumption 1), we have〈(

xt+2 − x̃
yt+1 − ỹ

)
,

(
ξxt+2 − ξx̃
ζyt+1 − ζỹ

)〉
≥ αf min{‖xt+2 − x̃‖22, cf‖xt+2 − x̃‖2}+ αg min{‖yt+1 − ỹ‖22, cg‖yt+1 − ỹ‖2}

− 1

2
‖Axt+2 +Byt+1 − c‖2Σ − ε2 (12)

for each t = 0, . . . , T − 1.

12
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Combining all of these calculations with the bound (11) above applied to (x, y, u) =
(x̃, ỹ, ũ), and rearranging terms, we obtain

T−1∑
t=0

(
αf min{‖xt+2 − x̃‖22, cf‖xt+2 − x̃‖2}+ αg min{‖yt+1 − ỹ‖22, cg‖yt+1 − ỹ‖2})

)
≤

T−1∑
t=0

〈(
xt+2 − x̃
yt+1 − ỹ

)
,

(
−A>ũ− ξx̃
−B>ũ− ζỹ

)〉
+ C1(x̃, ỹ, ũ;x0, y0, u0) + Tε2.

Next for each t, we apply Assumption 2 to calculate

〈xt+2 − x̃,−A>ũ− ξx̃〉 ≤ ‖xt+2 − x̃‖2 · ‖−A>ũ− ξx̃‖2

≤ min
{αfcf

2
· ‖xt+2 − x̃‖2,

√
αf · εFOSP · ‖xt+2 − x̃‖2

}
≤ min

{
αfcf

2
· ‖xt+2 − x̃‖2,

αf
2
‖xt+2 − x̃‖22 +

ε2
FOSP

2

}
,

and similarly for the y term. Therefore, we can rearrange the above to

T−1∑
t=0

(αf
2

min{‖xt+2 − x̃‖22, cf‖xt+2 − x̃‖2}+
αg
2

min{‖yt+1 − ỹ‖22, cg‖yt+1 − ỹ‖2})
)

≤ C1(x̃, ỹ, ũ;x0, y0, u0) + Tε2 + Tε2
FOSP.

Next, noting that x1 is a deterministic function of (x0, y0, u0), we define

C(x, y, u;x0, y0, u0) = 4C1(x, y, u;x0, y0, u0) + 2αf min{‖x1 − x̃‖22, cf‖x1 − x̃‖2}.

We can then relax the bound above to

T−1∑
t=0

(αf
2

min{‖xt+1 − x̃‖22, cf‖xt+1 − x̃‖2}+
αg
2

min{‖yt+1 − ỹ‖22, cg‖yt+1 − ỹ‖2})
)

≤ 1

4
C(x̃, ỹ, ũ;x0, y0, u0) + Tε2 + Tε2

FOSP. (13)

Next we will use the following elementary fact: for any nonnegative c, r1, . . . , rn,

n∑
i=1

min{r2
i , cri} ≥

n

2
min


(

1

n

n∑
i=1

ri

)2

, c

(
1

n

n∑
i=1

ri

) .

Therefore, applying this with ‖xt+1 − x̃‖2 in place of the ri terms, we have

T−1∑
t=0

αf
2

min{‖xt+1 − x̃‖22, cf‖xt+1 − x̃‖2} ≥
Tαf

4
min

{
‖x̄T − x̃‖22, cf‖x̄T − x̃‖2

}
,

where the last step holds since 1
T

∑T−1
t=0 ‖xt+1 − x̃‖2 ≥ ‖x̄T − x̃‖2 by convexity. An analogous

bound holds for the y term. Combining this with (13) completes the proof.
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4. Example: sparse high-dimensional quantile regression

In this section, we will develop a concrete example of our framework, to illustrate the
empirical performance and convergence properties of our method. Consider a regression
setting where

wi = φ>i x̃+ (noise), i = 1, . . . , n,

for a sparse true signal x̃ ∈ Rd. The response variables wi ∈ R and the sensing matrix
Φ = (φ1, . . . , φn)> ∈ Rn×d are observed, and our goal is to recover x̃. If the noise is heavy-
tailed, then a standard least-squares regression may perform poorly, and we may prefer
the more robust properties of a quantile regression. Specifically, for any desired quantile
q ∈ (0, 1), consider the quantile loss

`q(t) = q ·max{t, 0}+ (1− q) ·max{−t, 0}.

Then if we seek to minimize
1

n

n∑
i=1

`q
(
wi − φ>i x

)
over x ∈ Rd, this loss corresponds to aiming for φ>i x to equal the q-th quantile of wi. (Note
that for the special case q = 0.5, i.e., median regression, this loss is equal to the `1 norm,
up to rescaling.)

In the high-dimensional setting where n < d, minimizing this loss is not meaningful (in
general, we can always find a vector x ∈ Rd that interpolates the data, i.e., φ>i x = wi for
all i, which clearly leads to overfitting). We will therefore consider a penalized version of
this loss:

arg min
x∈Rd

{
Loss(x)

}
where Loss(x) =

1

n

n∑
i=1

`q
(
wi − φ>i x

)
+ λ

d∑
j=1

β log(1 + |xj |/β). (14)

The last term is a nonconvex regularizer that encourages a sparse solution; see Fazel et al.
(2003); Candès et al. (2008) for background. For β = +∞, the regularizer is equal to the
`1 norm, a standard convex penalty for recovering sparse signals, while β < +∞ leads to a
nonconvex penalty. Smaller values of β correspond to greater nonconvexity, which makes
the optimization problem more challenging but comes with the benefit of less shrinkage on
the nonzero values in the signal vector x (see Figure 4).

To enable theoretical guarantees, we will add one small modification to this optimization
problem, and will instead solve

arg min
x∈Rd:‖x‖2≤R

{
Loss(x)

}
(15)

for a large radius R, where this constraint is added to ensure that the iterations x do not
diverge to infinity. We will see in our theoretical results that we can set R to be extremely
large without compromising the convergence guarantee; in practice, therefore, we would
expect that iteratively solving (15) would be indistinguishable from iteratively solving the
unconstrained version (14), since the constraint ‖x‖2 ≤ R would likely never be active.
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Figure 2: Illustration of the nonconvex sparsity-promoting penalty
∑

j β log(1+|xj |/β) that
appears in the objective function (14) for the sparse high-dimensional quantile
regression example. The figure plots the function t 7→ β log(1+ |t|/β), for a range
of values of β. The functions are all nondifferentiable at t = 0, and are similar
to the absolute value function for t ≈ 0, but smaller values of β correspond to
greater nonconvexity as |t| increases.

4.1 Implementing nonconvex ADMM

For the sparse quantile regression problem (15), we will introduce an additional variable y
(with the constraint y = Φx) so that the optimization problem can be solved with Algo-
rithm 1—we will minimize

arg min
x∈Rd,y∈Rn

 1

n

n∑
i=1

`q
(
wi − yi

)
+ λ

d∑
j=1

β log(1 + |xj |/β) : y = Φx, ‖x‖2 ≤ R

 .

To solve (15), we define A = Φ, B = −In, and c = 0, and run Algorithm 1 with parameters
Σ = σIn (for a chosen value of the tuning parameter σ > 0), Hf = σ(γId − Φ>Φ) (with
γ = ‖Φ‖2 so that Hf � 0), and Hg = 0, and with functions

fc(x) = λ‖x‖1 + δ‖x‖2≤R, fd(x) = λ
d∑
j=1

(β log(1 + |xj |/β)− |xj |) ,

where δ‖x‖2≤R is the convex indicator function (i.e., δ‖x‖2≤R = 0 if ‖x‖2 ≤ R, and δ‖x‖2≤R =
+∞ otherwise), and with

gc(y) =
1

n

n∑
i=1

`q
(
wi − yi

)
, gd(y) ≡ 0.

The update steps for Algorithm 1 can be calculated in closed form (details are given in
Appendix A.4). We note that the function fd is concave and twice differentiable, with
∇2fd(x) � −λβ−1Id for all x, so its concavity is bounded.
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4.2 Theoretical results

Our theoretical results guarantee convergence for the nonconvex ADMM algorithm as long
as the RSC property (6) and the the approximate first-order optimality property (9) both
hold, to verify the assumptions of Theorem 1. In particular, RSC-type properties for sparse
high-dimensional quantile regression have been studied in the literature, e.g., see Zhao et al.
(2014, Lemma C.3) or Belloni and Chernozhukov (2011, Lemma 4). The conditions proved
in the literature appear in a different form than the RSC property studied here, so we verify
that the property (6) holds under some mild assumptions. The following result is proved
in Appendix A.5.

Proposition 2 Suppose that the observations are given by

wi = φ>i x̃+ zi, i = 1, . . . , n

for some sample size n ≥ 4, and let ỹ = Φx̃. Assume that:

• The feature vectors φi ∈ Rd are i.i.d. with distribution Dφ, where for φ ∼ Dφ, it holds
that ‖φ‖∞ ≤ Bφ almost surely, and that E

[
|φ>u|2

]
≥ aφ and E

[
|φ>u|3

]
≤ bφ for any

fixed unit vector u ∈ Rd;

• The noise terms zi ∈ R are drawn independently from the feature vectors φi, and
moreover are i.i.d. with density hz, for which z = 0 is the q-th quantile, and which
satisfies hz(t) ≥ cz for all |t| ≤ tz, for some cz, tz > 0;

• The true vector x̃ has at most s∗ nonzero entries, where

1 ≤ s∗ ≤ C0 ·
n

log(nd)

for a constant C0 > 0 that depends only on cz, tz, aφ, bφ, Bφ;

• The parameters λ, β,R are chosen to satisfy

λ = Cλ

√
log(nd)

n
for some Cλ ∈

C1, C1

√
C0 · n

log(nd)

s∗


and

R ≥ ‖x̃‖2 and β ≥ Cλ max{1, R} · C2

√
log(nd)

n
,

for constants C1, C2 > 0 that depend only on cz, tz, aφ, bφ, Bφ.

Then, for any σ > 0, with probability at least 1 − (nd)−1, the RSC property (6) holds
with

αf = C3, αg = 0, cf = cg = 1, Σ = σIn, ε2 = C4 max{1, σ−1} · s∗ log(nd)

n
,

and the approximate first-order optimality property (9) holds with

ε2
FOSP = C5 ·

s∗ log(nd)

n
,

where C3, C4, C5 > 0 are constants that depend only on cz, tz, aφ, bφ, Bφ and on Cλ.
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With this result in place, if λ, β,R are chosen appropriately, then Theorem 1 ensures that,
after T iterations of ADMM, the estimate x̄T will satisfy

min{‖x̄T − x̃‖22, ‖x̄T − x̃‖2} ≤ O
(

1

T
+
s∗ log(nd)

n

)
,

which we can simplify to

‖x̄T − x̃‖2 ≤ O

(√
1

T
+
s∗ log(nd)

n

)
.

In contrast, the minimax error rate for estimating x̃, in this high-dimensional sparse regres-

sion setting, is O
(√

s∗ log(d/s∗)
n

)
(Raskutti et al., 2011, Theorem 1(b)). This shows that,

up to a slightly different log factor, the error of x̄T matches the minimax rate once T is
sufficiently large.

Comparing to existing theory As discussed in Section 2.1.2, previous results estab-
lishing convergence for nonconvex ADMM assume, at minimum, that either f or g is differ-
entiable and has a Lipschitz gradient. We can see immediately that this property is violated
for the sparse quantile regression problem (14) (or for its constrained version (15)), since
the functions f and g are both nondifferentiable. In contrast, our new RSC-based frame-
work is able to provide a guarantee, and so this example illustrates the flexibility and broad
applicability of RSC type assumptions, as compared to other assumptions in the literature.

4.3 Empirical results

We next demonstrate the performance of our algorithm on the sparse quantile regression
problem. Code reproducing the simulation and all figures is available at https://github.
com/rinafb/ADMM_CT.

We choose dimension d = 2500 and sample size n = 2000 for a challenging high-
dimensional setting. The matrix Φ ∈ Rn×d is constructed with i.i.d. N (0, 1) entries. We
define

wi = φ>i x̃+ zi,

where φi is the ith row of Φ, and the true signal is given by x̃ = (1, . . . , 1, 0, . . . , 0), with
s∗ = 10 nonzero entries. The noise terms zi are drawn i.i.d. from t5, the standard t
distribution with 5 degrees of freedom, which is a heavy-tailed distribution. We choose the
quantile q = 0.5 (i.e., a median regression). For the penalty term, we choose λ = 0.1 and
β = 0.5; this small value of β means that the penalty has substantial nonconvexity (see
Figure 4). The parameter σ controlling the enforcement of the constraint in ADMM (i.e.,
with Σ = σId in Algorithm 1) is varied as σ ∈ {0.00005, 0.0001, 0.0002, 0.0005}.

The results after running Algorithm 1 for 1000 iterations are displayed in Figure 3. The
plot displays the loss, Loss(xt) at each iteration t, where Loss(·) is the objective function
defined in (14), as well as the root-mean-square-error (RMSE), 1√

d
‖xt − x̃‖2. (We do not

impose a constraint ‖x‖2 ≤ R, since as mentioned above, the theory allows for R to be
extremely large, and the iterations xt do not violate this constraint in practice.) The plot
also shows Loss(x̄t) and 1√

d
‖x̄t − x̃‖2, the loss and RMSE of the running average of the
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Figure 3: Results for the sparse quantile regression example (see Section 4.3). The figure
shows the value of the objective function (14) over iteration t = 1, . . . , 500 of
the algorithm, run with various values of the parameter σ as shown. The top
row shows the loss function value for xt (the estimate at time t), as well as its
root-mean-square-error (RMSE) 1√

d
‖xt − x̃‖2, while the bottom plot shows the

loss and the RMSE for x̄t (the running average). All axes are on the log scale.
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estimates, x̄t = 1
t

∑t
t′=1 xt′ . The convergence of the loss and RMSE for x̄t across all σ

values is supported by our theoretical result, Proposition 2, which shows that the RSC
property holds (with high probability) for any σ > 0, as long as the tolerance term ε is
adjusted accordingly. Note that the RMSE (for both xt and x̄t) does not converge to zero,
but instead appears to be converging to a small but positive value; this is due to the noise
in the data.

Interestingly, we see that overly small values of σ lead to some instability in the conver-
gence of the loss and the RMSE, suggesting that the RSC property may not be sufficient
to ensure convergence of the iterates themselves (the xt’s) rather than the running aver-
ages (the x̄t’s).

1 On the other hand, overly large values of σ may lead to somewhat slower
convergence; intuitively, enforcing the constraint y = Φx with too strong of a penalty will
make it difficult for the algorithm to make fast progress with alternating updates of x and
y.

5. Application: CT imaging

We next apply our algorithm and convergence results to the problem of image reconstruction
in computed tomography (CT) imaging, which is the motivating application for this work.
In CT, we would like to reconstruct an image of an unknown object x (e.g., produce a
3D image of a patient’s head or abdomen, in the setting of medical CT). The available
measurements obtained from the CT scanner consist of measuring the intensity of an X-ray
beam passing through the unknown object. A lower intensity of the beam when it reaches
the detector indicates higher density in the unknown object along that ray.

We now introduce some notation to make this problem more precise. We will begin
with a simple version of the problem, and then will add additional components step by step
to build intuition. Let x = (xk) ∈ Rnk denote the unknown image, where k = 1, . . . , nk
indexes pixels (or voxels), after we have discretized to a 2D (or 3D) grid—for example, in
two dimensions, nk = Nx ·Ny for an Nx ×Ny grid.

To obtain an image, the scanner sends an X-ray beam along n` many rays. For example,
for many clinical scanners in a medical setting, the device rotates around the patient, taking
images from Nimg many angles; for each of these images, there are Ncell many detector cells
measuring the intensity of the beam after it passes through the patient’s body. This leads
to n` = Nimg ·Ncell many rays ` = 1, . . . , n` along which measurements are taken.

Now let P = (P`k) ∈ Rn`×nk be the projection matrix, with P`k measuring the length of
the intersection between ray ` and pixel k. The product Px ∈ Rn` measures the projection
of the object x, where (Px)` measures the total amount of material that lies along ray `
(see Figure 4 for a schematic). The attenuation (i.e., the loss of intensity) of the X-ray
beam that travels along ray ` depends on (Px)`. In particular, ignoring photon scattering
and other sources of noise, the measurements follow a model of the form

Intensity of the beam after passing through the object along ray `

Intensity of the beam entering the object along ray `
≈ e−µ·(Px)` ,

1. An alternative explanation for this empirical result is simply that the parameter ε in the RSC property (6)
is larger, when σ is chosen to be smaller, as in Proposition 2; since convergence is only guaranteed up to
the tolerance level ε in Theorem 1, this may explain the apparent lack of convergence for xt when σ is
chosen to be very small.
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Figure 4: Left: schematic of the projection operator. Here xkm is the amount of material m
present at pixel k, while y`m = (Px)`m is the total amount of material m present
along ray ` of the scan. Right: attenuation curves for several common materials.

where µ > 0 is called the linear attenuation coefficient. While most clinical scanners measure
the total energy of the beam when it reaches the detector, here we consider a different type
of hardware, photon counting CT, where the measurement is a count of the number of
photons reaching the detector. In this case, we can model this count as

C` ∼ Poisson (S · exp{−µ · (Px)`}) ,

where S is the number of photons incident on the detector pixel (characterizing the intensity
of the X-ray beam for a fixed time-duration scan), and C` is the number of photons reaching
detector after passing through the object along ray `.

In fact, since different detector cells may have slightly different sensitivities, a more
accurate model is

C` ∼ Poisson (S` · exp{−µ · (Px)`}) , (16)

where the scalar term S` combines beam intensity with detector sensitivity for ray `.

Multiple materials In practice, the unknown object can consist of multiple materials,
which each behave differently in terms of the attenuation of the beam. Let m = 1, . . . , nm
index the materials that make up the object—for example, in a simple medical setting we
might have nm = 3 with bone, soft tissue, and an injected contrast material such as a
gadolinium or iodine compound. The goal is now to reconstruct the image x = (xkm) ∈
Rnk×nm , where, for each pixel k, xkm is the proportion of that pixel that is occupied by
each material. We can update our model (16) above to

C` ∼ Poisson

(
S` · exp

{
−
∑
m

µm · (Px)`m

})
, (17)

where now µm > 0 is the (known) linear attenuation coefficient for material m.
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A non-monochromatic beam Thus far, the Poisson model for CT image reconstruction
does not introduce nonconvexity—maximizing the log-likelihood of the Poisson model given
in (17) is a convex problem. However, this model ignores the nature of the X-ray beam
used in practice, for which the photons are distributed across a spectrum of energies. The
attenuation coefficient for a material m in fact depends on the energy of the photon, with
each material exhibiting its own attenuation curve across the range of energies—see Figure 4
for an example. In particular, in medical applications, contrast materials such as gadolinium
or iodine are used for their unique attenuation curves, which make these materials easier to
distinguish from surrounding soft tissue in a CT scan.

Our model can now be updated to the following:

C` ∼ Poisson

(∑
i

S`i · exp

{
−
∑
m

µmi(Px)`m

})
, (18)

where i = 1, . . . , ni is the index over a discretized grid of the range of energies in the X-ray
beam, while S`i is the intensity of the X-ray beam (combined with detector sensitivity) for
energy level i and ray `, and µmi is the attenuation coefficient for material m at energy level
i. The photons measured by the detector may come from any energy level in the spectrum
(i.e., the measurements C` are a combination of photons from each energy level i). The
resulting log-likelihood maximization problem is no longer a convex function, which is a
core challenge of CT image reconstruction.

Spectral CT In spectral CT, the hardware of the scanner allows partial identification
of the photon energies, making the reconstruction problem somewhat easier. Specifically,
the detectors are programmed with several thresholds, separating the range of energies of
the beam into “windows” w = 1, . . . , nw (for example, 2 windows in some current clinical
scanners, or 3–5 windows in current research prototypes). The measurements are now
indexed by Cw`, the number of photons in energy window w measured along ray `. In
theory, the windows form a partition of the energy range, but in practice there is some
noise at the boundaries between windows (that is, a photon with energy near the chosen
threshold has some chance of being detected in either window). To quantify this, let Sw`i
incident photon spectral density at energy i, multiplied by the probability of a photon at
energy i being detected in window w (for the detector sensitivity corresponding to ray `).
These values are typically estimated ahead of time with a calibration process. Then the
model for our measurements Cw` is given by

Cw` ∼ Poisson

(∑
i

Sw`i · exp

{
−
∑
m

µmi(Px)`m

})
. (19)

We can estimate the image x by maximum likelihood estimation, but as before in (18),
maximizing the log-likelihood is a non-convex problem. (See Barber et al. (2016) for more
details on this model.)
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5.1 Image reconstruction with nonconvex ADMM

We now consider the image reconstruction problem: given observations (photon counts)
Cw`, we would like to solve

x̃ = arg min
x∈Rnk×nm

Loss(Px), (20)

where Loss(y) is the negative log-likelihood of the Poisson model for spectral CT (19) given
the projected object y = Px ∈ Rn`×nm :

Loss(y) =
∑
w`

[∑
i

Sw`i exp

{
−
∑
m

µmiy`m

}
− Cw` log

(∑
i

Sw`i exp

{
−
∑
m

µmiy`m

})]
.

We note that the first term of this loss is convex in y (and therefore, in x), while the second
term is concave.

Modifying the exp function Under a well-specified model, the true image x and its
projection y = Px must both consist of nonnegative values. However, model misspecifica-
tion, or inaccurate estimates of x and/or y at early stages of the iterative algorithm, can
lead to negative values. Examining the loss function, we can see that this issue may pose
problems for optimization, since t 7→ exp{t} has high curvature at large values of t. To
resolve this, we replace the exp{·} function with the approximation:

qexp{t} =

{
exp{t}, t ≤ 0,

1 + t+ 1
2 t

2, t ≥ 0.

The “q” in the name of this modified function refers to the fact that, for positive values
of t we replace exp{t} with a quadratic approximation, by taking the Taylor expansion at
t = 0. For negative values of t, the function is unchanged. This choice means that the
function qexp{t} is continuously twice differentiable and is equal to exp{t} at all negative
values of t (i.e., for any feasible nonnegative image x), while at the same time ensuring a
bounded second derivative to avoid problems in the optimization. We will therefore work
with a modified loss function,

Loss(y) =
∑
w`

[∑
i

Sw`i qexp

{
−
∑
m

µmiy`m

}
− Cw` log

(∑
i

Sw`i qexp

{
−
∑
m

µmiy`m

})]
.

It is important to note that, for CT imaging, if the model is well specified then the
argument to exp{·} or to qexp{·} should always be nonpositive at the true ỹ = Px̃ (i.e.,∑

m µmiy`m should be nonnegative at the true ỹ), and therefore, qexp{·} should be identical
to exp{·} in the relevant range of values. Empirically, however, the convergence behavior
of the optimization problem is often helped by allowing both positive and negative values,
particularly in early iterations, and this can also provide useful flexibility in the case of
model misspecification.

Running nonconvex ADMM To reformulate the minimization problem (20) into the
setting of nonconvex ADMM, we will solve the equivalent problem

x̃, ỹ = arg min
x∈Rnk×nm
y∈Rn`×nm

{Loss(y) : Px = y} . (21)
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Now define f(x) = fc(x) = fd(x) ≡ 0, and write g(y) = gc(y) + gd(y) where

gc(y) =
∑
w`

∑
i

Sw`i qexp

{
−
∑
m

µmiy`m

}
(22)

and

gd(y) = −
∑
w`

Cw` log

(∑
i

Sw`i qexp

{
−
∑
m

µmiy`m

})
.

Then Loss(y) = g(y), and we have therefore reformulated the spectral CT maximum
likelihood estimation problem into the form of our nonconvex ADMM algorithm, i.e.,
minx,y{f(x) + g(y) : Px = y}, minimizing a composite objective function under a lin-
ear constraint. In particular, converting the matrix variables x ∈ Rnk×nm and y ∈ Rn`×nm
to vectorized variables vec(x) ∈ Rnknm and vec(y) ∈ Rn`nm , the constraint Px = y can be
rewritten as A vec(x) +B vec(y) = c where A = P ⊗ Inm ∈ Rn`nm×nknm , B = −In`nm , and
c = 0 (here ⊗ denotes the matrix Kronecker product).

We can therefore implement Algorithm 1 for solving this optimization problem. To run
Algorithm 1 for the CT image reconstruction problem (21), we need to choose the step size
matrices Hf , Hg and the penalty matrix Σ. Following the construction proposed by Pock
and Chambolle (2011) (for the convex setting), we begin by selecting a parameter σ > 0.
We will choose step size matrix Hg = 0 for y, while for the variable x our step size matrix
Hf will be equal to Hf = (Qf ⊗ Inm)− (P ⊗ Inm)> · (Σ̃⊗ Inm) · (P ⊗ Inm), and the penalty
parameter matrix Σ will be defined as Σ = Σ̃ ⊗ Inm , where Qf ∈ Rnk×nk and Σ̃ ∈ Rn`×n`
are diagonal matrices with entries

(Qf )kk = σ
∑
`

P`k, Σ̃`` =
σ∑
k P`k

.

With these constructions, Hf is positive semidefinite as required (Pock and Chambolle,
2011, Lemma 2). The update steps for the nonconvex ADMM algorithm are computed in
Appendix A.3.

5.2 CT simulation

To demonstrate the algorithm’s performance on the nononvex CT image reconstruction
problem, we carry out a small-scale simulation in Python. (Performance of these methods
on a large scale requires more careful implementation, and is addressed in our applica-
tion specific work in Barber et al. (2016); Schmidt et al. (2020).) Code reproducing the
simulation and all figures is available at https://github.com/rinafb/ADMM_CT.

The ground truth, shown in Figure 6, is a 10cm×10cm two-dimensional image discretized
to a 25 × 25 grid, for a total of nk = 252 = 625 pixels. The image consists of nm = 3
materials—polymethyl methacrylate (PMMA), aluminum, and gadolinium. As shown in
Figure 4, PMMA has low attenuation coefficients as it is a plastic, while aluminum, like
other metals, has higher attenuation coefficients as it is more difficult for the beam to
pass through. Gadolinium is a contrast material used in clinical CT—its non-monotone
attenuation curve allows for it to be easily identified in the presence of other materials. The
simulated CT scanner has 50 detector cells, and takes images from 50 angles spaced evenly
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Figure 5: Left: the X-ray beam spectrum. This figure displays the density of the distri-
bution of energies in the beam, i.e., how the total intensity of the beam is split
across the energy spectrum. Right: for each energy window w, the displayed
curve is proportional to the spectral response parameters Sw`i. These values are
set to be constant across all rays `, and so the figure plots the value across all
energy levels i for each detector window w, rescaled so that the sum of the three
response curves is equal to the density plot of the X-ray beam spectrum on the
left.

around the unit circle, for a total of n` = 502 = 2500 rays along which measurements are
taken. The beam intensity is set to 106 photons, and there are nw = 3 energy windows,
forming a blurry partition of the energy range (see Figure 5).

Figure 6 displays the estimated image (shown at iteration 1000, at each value of the
ADMM parameter σ ∈ {1, 10, 100}). In Figure 7 we show the loss function Loss(Pxt), and
the RMSE 1√

nk
‖xt − x̃‖2, at each iteration t = 1, . . . , 1000. As expected, due to the noise

in the measurements, the RMSE converges to a small but positive value. We can see that
the algorithm converges steadily towards minimizing the loss and reducing the RMSE, and
its performance is reasonably stable and robust across a wide range of values of the tuning
parameter σ.

Extensions The objective function, and accompanying algorithm, that we have presented
here, can easily be modified to incorporate additional components such as regularization or
constraints. In particular, total variation regularization can also be incorporated into the
framework of Algorithm 1.2. Another possible modification is adding a preconditioning step
to improve the conditioning in the nm-dimensional material space—since the attenuation
curves for the three materials are quite similar (see Figure 4), adding a preconditioning step
can improve convergence substantially for the image reconstruction problem (see Sidky
et al. (2018) for more details). The algorithm, together with these extensions, has been
implemented for large-scale CT data, and has achieved promising empirical results for both

2. Details and a demonstration can be found with the code accompanying this paper (https://github.com/
rinafb/ADMM_CT), alongside the basic non-regularized simulation setting presented here. In addition, this
code also shows results from an experiment in a noisier setting, with beam intensity set to 105 rather
than 106 for a lower signal-to-noise ratio
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Figure 6: The true image in the simulation (top), followed by the reconstructed image (at
iteration 1000) with each value of the ADMM parameter σ. Each row of images
displays the values of xkm for each pixel k and each material m, for x = x̃ (for
the ground truth) or x = xt (for the estimates).
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Figure 7: Convergence results for the CT image reconstruction simulation. The top row of
the figure shows the value of the objective function Loss(Pxt), and the RMSE

1√
nk
‖xt − x̃‖2, over iteration t = 1, . . . , 1000 of the algorithm, run with various

values of the parameter σ as shown. The bottom row shows the same for the
running average x̄t in place of xt. All axes are on the log scale.

26



Convergence for nonconvex ADMM, with applications to CT imaging

Figure 8: The figure shows the value of αt (defined in (23)), which empirically validates the
restricted strong convexity property for the CT imaging example. Both axes are
on the log scale.

real CT data and simulation studies, e.g., in Schmidt et al. (2022); Rizzo et al. (2022);
Schmidt et al. (2023); Rizzo et al. (2023).

Checking assumptions For the CT imaging example, it is not clear whether it is possible
to establish the RSC property (6) theoretically. However, since we are in simulated setting
where the target parameters (x̃, ỹ) are known, we can nonetheless validate it empirically.
For this example, since f(x) ≡ 0, it suffices to check that, for some α > 0,

〈y − ỹ,∇g(y)−∇g(ỹ)〉 ≥ α‖vec(y − ỹ)‖22 −
1

2
‖vec(Px− y)‖2Σ

holds for all x, y (here ỹ = Px̃). If this is true, then the RSC property holds with αf = 0,
αg = α, cf = cg = 1, and ε = 0.

However, it is not feasible to verify this over all possible y, so we will instead verify that
this holds for y = yt at each iteration t of the algorithm. (In fact, examining how the RSC
assumption is used in the proof of Theorem 1, we see in (12) that the RSC assumption is only
applied at values of x and y appearing along the iterations of the algorithm—specifically,
at points (x, y) of the form (xt+1, yt) at each time t. In other words, for the proof of
Theorem 1 to hold for the CT example, where we have f(x) ≡ 0, we only need to check
that the inequality above holds at each iteration yt, rather than at all values of y.)

To verify this, we calculate

αt :=
〈yt − ỹ,∇g(yt)−∇g(ỹ)〉+ 1

2‖vec(Pxt+1 − yt‖2Σ
‖vec(yt − ỹ)‖22

, (23)
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where xt+1 and yt denote the iterates of the algorithm, while ỹ = Px̃ is the projection of
the true image. If the RSC property holds as above, then we should see αt ≥ α for all t, for
some constant α > 0. Indeed, for the simulated example, Figure 8 shows that αt remains
bounded away from zero across all iterations of the algorithm. This validates Assumption 1.

Finally, we verify that approximate first-order optimality (9) holds in this setting.
Choosing ũ = 0, we can see that (9) holds as long as ‖∇g(ỹ)‖2 is low. For our simula-
tion, we compare ‖∇g(ỹ)‖2 to ‖∇g(0)‖2 (in order for our calculations to be on a meaningful
scale), and we find that

‖∇g(ỹ)‖2
‖∇g(0)‖2

= 0.000769,

verifying that approximate first-order optimality holds.

6. Discussion

The ADMM algorithm has long been known to perform well in a broad range of chal-
lenging scenarios, but existing theoretical analyses are largely restricted to a much more
constrained range of settings. Our new theoretical results provide a novel understanding
of the performance of ADMM in the presence of nonsmoothness and nonconvexity in the
objective functions, through the lens of a restricted strong convexity property. A key non-
convex application of this algorithm is the CT image reconstruction problem, where many
interesting open questions remain. In particular, for real CT scanner data, it is important
to calibrate the beam intensity and detector sensitivity parameters that characterize the
performance of the detector. In future work, we aim to extend the ADMM formulation of
the image reconstruction problem to allow for simultaneous estimation of the calibration
parameters (a preliminary study of the simultaneous estimation approach can be found in
Ha et al. (2018)). Incorporating more complex aspects of the physical model, such as scat-
ter, poses an additional challenge that we hope to address in future work to provide a more
accurate reconstructed image.

From the theoretical perspective, a key remaining question is whether the RSC property
can be further relaxed to allow for convergence guarantees in an even broader range of
settings. On the other hand, the RSC property does not appear to be sufficient to ensure
convergence of the iterates xt, yt (rather than the running averages x̄t, ȳt), as was seen in
the quantile regression example. An important open question is whether a stronger form
of the RSC property would allow for convergence guarantees without averaging. From the
practical side, another important question is the issue of optimization with a stochastic,
or mini-batch, approach—analogous to stochastic gradient descent, the ADMM algorithm
can be run using stochastic approximations to gradients at each step (see, e.g., Zhong and
Kwok (2014)), leading to computational speedup, and can be immensely helpful for allowing
the method to be applied to large scale applications (including CT imaging, see, e.g., Nien
and Fessler (2014)). Another important open question, therefore, is whether the theoretical
results of this work for convergence in a nonconvex setting can be extended to the stochastic
version of the ADMM algorithm. The empirical performance of the algorithm might also be
improved by incorporating techniques such as adaptive restart (O’Donoghue and Candès,
2015; Kim and Fessler, 2018), to speed up convergence.
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Appendix A. Additional details and proofs

A.1 A closer look at restricted strong convexity

To better understand this condition in the setting of the composite optimization problem (1)
studied in this work, consider the augmented Lagrangian LΣ defined in (3). Since the x
and y update steps of ADMM are performing (approximate) alternating minimization on
this augmented Lagrangian, it is intuitive that convexity of the map (x, y) 7→ LΣ(x, y, u)
(at a fixed u) is generally needed for convergence to be possible.

On the other hand, if (x, y) 7→ LΣ/2(x, y, u) is strongly convex (note that we have
replaced the penalty matrix Σ with a smaller penalty, Σ/2), this is sufficient to ensure the
restricted strong convexity condition (6) holds (with ε = 0) at any feasible point (x̃, ỹ). To
see why, for any ξx ∈ ∂f(x) and ζy ∈ ∂g(y), using the fact that Ax̃+Bỹ = c by feasibility,
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an elementary calculation shows that〈(
x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
+

1

2
‖Ax+By − c‖2Σ

=

〈(
x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
+

1

2
‖Ax+By −Ax̃−Bỹ‖2Σ

=

〈(
x− x̃
y − ỹ

)
,

(
ξx + 1

2A
>Σ(Ax+By)− ξx̃ − 1

2A
>Σ(Ax̃+Bỹ)

ζy + 1
2B
>Σ(Ax+By)− ζỹ − 1

2B
>Σ(Ax̃+Bỹ)

)〉
. (24)

We can also calculate(
ξx + 1

2A
>Σ(Ax+By)

ζy + 1
2B
>Σ(Ax+By)

)
∈ ∂(x,y)LΣ/2(x, y, ũ)

and similarly (
ξx̃ + 1

2A
>Σ(Ax̃+Bỹ)

ζỹ + 1
2B
>Σ(Ax̃+Bỹ)

)
∈ ∂(x,y)LΣ/2(x̃, ỹ, ũ).

Therefore, the final expression in (24) will be lower-bounded by strong convexity of LΣ/2.
Thus, we can interpret the RSC condition (6) as only mildly stronger than requiring strong
convexity of the augmented Lagrangian.

A.2 Completing the proof of Theorem 1

To complete the proof of Theorem 1, we only need to prove that the bound (11) holds
under the assumption (10) on the step size matrices Hf , Hg, for any point (x, y, u) with
Ax+By = c.

By definition of xt+2 (i.e., since xt+2 is a minimizer of the subproblem that defines its
update step), we must have

0 ∈ ∂fc(xt+2) +∇fd(xt+1) +A>ut+1 +A>Σ(Axt+2 +Byt+1 − c) +Hf (xt+2 − xt+1)

= ∂fc(xt+2) +∇fd(xt+1) +A>(2ut+1 − ut) +A>ΣA(xt+2 − xt+1) +Hf (xt+2 − xt+1),

since ut+1 = ut + Σ(Axt+1 + Byt+1 − c). Since ∂f(xt+2) = ∂fc(xt+2) + ∇fd(xt+2), this
implies that there exists some ξxt+2 ∈ ∂f(xt+2) such that

ξxt+2 = ∇fd(xt+2)−∇fd(xt+1)−A>(2ut+1 − ut)−A>ΣA(xt+2 − xt+1)−Hf (xt+2 − xt+1)

and therefore

〈xt+2 − x, ξxt+2 +A>u〉 = 〈xt+2 − x,−A>(2ut+1 − ut − u)−A>ΣA(xt+2 − xt+1)〉
+ 〈xt+2 − x,∇fd(xt+2)−∇fd(xt+1)−Hf (xt+2 − xt+1)〉.

We can similarly calculate

0 ∈ ∂gc(yt+1) +∇gd(yt) +B>ut +B>Σ(Axt+1 +Byt+1 − c) +Hg(yt+1 − yt)
= ∂gc(yt+1) +∇gd(yt) +B>ut+1 +Hg(yt+1 − yt),
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and so there exists some ζyt+1 ∈ ∂g(yt+1) satisfying

〈yt+1 − y, ζyt+1 +B>u〉 = 〈yt+1 − y,−B>(ut+1 − u)〉
+ 〈yt+1 − y,∇gd(yt+1)−∇gd(yt)−Hg(yt+1 − yt)〉.

We can further calculate

〈xt+2 − x,−A>(2ut+1 − ut − u)−A>ΣA(xt+2 − xt+1)〉

=

(
xt+2 − x
ut+1 − u

)>(
A>ΣA A>

A Σ−1

)(
xt+1 − xt+2

ut − ut+1

)
− 〈Σ−1(ut − ut+1) +A(xt+1 − x), ut+1 − u〉

=

(
xt+2 − x
ut+1 − u

)>(
A>ΣA A>

A Σ−1

)(
xt+1 − xt+2

ut − ut+1

)
+ 〈B(yt+1 − y), ut+1 − u〉.

Combining our calculations so far, we have

〈(
xt+2 − x
yt+1 − y

)
,

(
ξxt+2 +A>u
ζyt+1 +B>u

)〉
= (zt+1 − z)>M(zt − zt+1)

+ 〈xt+2 − x,∇fd(xt+2)−∇fd(xt+1)〉+ 〈yt+1 − y,∇gd(yt+1)−∇gd(yt)〉, (25)

where we define z = (x, y, u) and zt = (xt+1, yt, ut) for each t, and let

M =

 Hf +A>ΣA 0 A>

0 Hg 0
A 0 Σ−1

 � 0.

Next, defining ‖v‖M =
√
v>Mv, we can use a telescoping sum to calculate

T−1∑
t=0

(zt+1 − z)>M(zt − zt+1) =

T−1∑
t=0

(
1

2
‖z − zt‖2M −

1

2
‖z − zt+1‖2M −

1

2
‖zt − zt+1‖2M

)

=
1

2
‖z − z0‖2M −

1

2
‖z − zT ‖2M −

1

2

T−1∑
t=0

‖zt − zt+1‖2M .

Furthermore,

‖zt − zt+1‖2M − ‖xt+1 − xt+2‖2Hf − ‖yt − yt+1‖2Hg

=

(
xt+1 − xt+2

ut − ut+1

)>(
A>ΣA A>

A Σ−1

)(
xt+1 − xt+2

ut − ut+1

)
= ‖Σ−1(ut − ut+1) +A(xt+1 − xt+2)‖2Σ = ‖Axt+2 +Byt+1 − c‖2Σ,
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where the last step plugs in the update step for ut+1. Combining these calculations with (25),
we obtain

T−1∑
t=0

〈(
xt+2 − x
yt+1 − y

)
,

(
ξxt+2 +A>u
ζyt+1 +B>u

)〉

=
1

2
‖z − z0‖2M −

1

2
‖z − zT ‖2M −

1

2

T−1∑
t=0

‖Axt+2 +Byt+1 − c‖2Σ

+
T−1∑
t=0

[
〈xt+2 − x,∇fd(xt+2)−∇fd(xt+1)〉 − 1

2
‖xt+1 − xt+2‖2Hf

]

+
T−1∑
t=0

[
〈yt+1 − y,∇gd(yt+1)−∇gd(yt)〉 −

1

2
‖yt − yt+1‖2Hg

]
. (26)

Now, since Hf � ∇2fd(x) by the assumption (10), we can write

fd(xt+2) ≤ fd(xt+1) + 〈xt+2 − xt+1,∇fd(xt+1)〉+
1

2
‖xt+1 − xt+2‖2Hf

for each t. Rearranging terms and taking a telescoping sum, this means that

T−1∑
t=0

[
〈xt+2 − x,∇fd(xt+2)−∇fd(xt+1)〉 − 1

2
‖xt+1 − xt+2‖2Hf

]
≤ fd(x1)− fd(xT+1) + 〈x− x1,∇fd(x1)〉 − 〈x− xT+1,∇fd(xT+1)〉.

Again applying Hf � ∇2fd(x), we also have

fd(x) ≤ fd(xT+1) + 〈x− xT+1,∇fd(xT+1)〉+
1

2
‖x− xT+1‖2Hf

and

fd(x1) ≤ fd(x) + 〈x1 − x,∇fd(x)〉+
1

2
‖x− x1‖2Hf ,

which combined with the above yields

T−1∑
t=0

[
〈xt+2 − x,∇fd(xt+2)−∇fd(xt+1)〉 − 1

2
‖xt+1 − xt+2‖2Hf

]
≤ −〈x− x1,∇fd(x)−∇fd(x1)〉+

1

2
‖x− xT+1‖2Hf +

1

2
‖x− x1‖2Hf .

Performing an identical calculation for the y terms, and combining these calculations
with (26) along with the fact that ‖z − zT ‖2M ≥ ‖x− xT+1‖2Hf + ‖y − yT ‖2Hg , we obtain

T−1∑
t=0

〈(
xt+2 − x
yt+1 − y

)
,

(
ξxt+2 +A>u
ζyt+1 +B>u

)〉

≤ C1(x, y, u;x0, y0, u0)− 1

2

T−1∑
t=0

‖Axt+2 +Byt+1 − c‖2Σ,
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where we define

C1(x, y, u;x0, y0, u0) =
1

2
‖z − z0‖2M − 〈x− x1,∇fd(x)−∇fd(x1)〉+

1

2
‖x− x1‖2Hf

− 〈y − y0,∇gd(y)−∇gd(y0)〉+
1

2
‖y − y0‖2Hg . (27)

(Note that x1 is a deterministic function of (x0, y0, u0), and therefore C1 can depend im-
plicitly on x1.) This proves the desired bound (11).

A.3 Details for implementing ADMM for the CT application

To run Algorithm 1 for the CT image reconstruction problem (21), plugging in our choices
of parameters Hf , Hg,Σ and the values of A,B, c and f(x) ≡ 0, our update steps can be
calculated as follows. Note that in our notation below, the x, y, u variables are all treated
as matrices, with nk × nm dimensional x variables and with n` × nm dimensional y and u
variables.

• The x update step is given by

xt+1 = xt +Q−1
f P>

(
Σ̃(yt − Pxt)− ut

)
.

Since Qf and Σ̃ are diagonal while P is sparse, this requires only inexpensive matrix-
vector calculations.

• The y update step is given by solving the minimization problem

yt+1 = arg min
y

{
gc(y) + 〈y,∇gd(yt)− (ut + Σ̃Pxt+1)〉+

1

2
vec(y)>(Σ̃⊗ Inm) vec(y)

}
.

We recall from the definition of gc (22) that this function separates over the n` many
rays—that is, we can write gc(y) =

∑
` gc,`(y`), where y` ∈ Rnm is the portion of y

corresponding to the `-th ray, and where

gc,`(y`) =
∑
w

∑
i

Sw`i qexp

{
−
∑
m

µmiy`m

}
.

Therefore, equivalently, the y update step is given by solving

(yt+1)` = arg min
y`∈Rnm

{
gc,`(y) + 〈y`, (∇gd(yt))` − (ut)` − Σ̃``(Pxt+1)`〉+

Σ̃``

2
‖y`‖22

}
for each ` = 1, . . . , n`. Since we typically work with a small number of materials
(e.g., nm = 3 or nm = 5), solving each one of these convex minimization problems is
computationally very inexpensive. We will use the Newton–Raphson method to solve

the minimization subproblem approximately, in parallel for each `: setting y
(0)
t+1 = yt,

we define

(y
(i+1)
t+1 )` = (y

(i)
t+1)` − (∇2gc,`((y

(i)
t+1)`) + Σ̃``Inm)−1 ·(

∇gc,`((y
(i)
t+1)`) + (∇gd(yt))` + Σ̃``(y

(i)
t+1 − Pxt+1)` − (ut)`

)
,
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for each i = 0, 1, 2, . . . , N − 1, and then set yt+1 = y
(N)
t+1 . In our implementation, at

each iteration t we run N = 10 steps of the Newton–Raphson method to compute the
y update, which is sufficient to obtain a near-exact solution.

• The u update step is given by

ut+1 = ut + Σ̃(Pxt+1 − yt+1).

Since Σ̃ is diagonal while P is sparse, this again requires only inexpensive matrix-
vector calculations.

A.4 Details for implementing ADMM for the sparse quantile regression
example

We now compute the steps of Algorithm 1 for the sparse quantile regression example, i.e.,
for the problem of minimizing (14). Plugging in our choices of the parameters Hf , Hg,Σ
and of A,B, c, the steps of Algorithm 1 are given by

xt+1 = arg min
x∈Rd

{
fc(x) + 〈x,∇fd(xt) + Φ>ut〉+

σ

2
‖Φx− yt‖22 +

σ

2
‖x− xt‖2γId−Φ>Φ

}
,

yt+1 = arg min
y∈Rn

{
gc(y) + 〈y,∇gd(yt)− ut〉+

σ

2
‖Φxt+1 − y‖22

}
,

ut+1 = ut + σ(Φxt+1 − yt+1).

Now we compute the x and y update steps explicitly. First, for x, recall that fc(x) =
λ‖x‖1 + δ‖x‖2≤R and

fd(x) = λ
d∑
j=1

(β log(1 + |xj |/β)− |xj |) .

We can calculate the gradient as [
∇fd(x)

]
j

= − λxj
β + |xj |

.

Therefore,

fc(x) + 〈x,∇fd(xt) + Φ>ut〉+
σ

2
‖Φx− yt‖22 +

σ

2
‖x− xt‖2γId−Φ>Φ

=

d∑
j=1

(
σγ

2
x2
j − xj ·

[
λ(xt)j

β + |(xt)j |
+ σ(γxt − Φ>(Φxt − yt + ut/σ))j

])
+ λ‖x‖1 + δ‖x‖2≤R

=
σγ

2

d∑
j=1

(
x2
j − 2xj · (x̃t+1)j

)
+ λ‖x‖1 + δ‖x‖2≤R,

where we define a vector x̃t+1 with entries

(x̃t+1)j = (xt)j −

(
Φ>(Φxt − yt + ut/σ)

)
j

γ
+

λ

σγ
· (xt)j
β + |(xt)j |

.
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Then we can verify that the objective function above is minimized by defining

xt+1 = SoftThresh λ
σγ

(x̃t+1) ·min

{
1,

R

‖SoftThresh λ
σγ

(x̃t+1)‖2

}
,

where the soft thresholding function, SoftThreshλ : Rd → Rd, is defined elementwise as

[
SoftThreshλ(x)

]
j

=


xj − λ, if xj > λ,

0, if |xj | ≤ λ,
xj + λ, if xj < −λ.

Next, for the y update step, recall gd(y) ≡ 0 and

gc(y) =
1

n

n∑
i=1

qmax{wi − yi, 0}+ (1− q) max{yi − wi, 0}.

Then the optimization problem for the y update step separates over the n entries of y:

gc(y) + 〈y,∇gd(yt)− ut〉+
σ

2
‖Φxt+1 − y‖22

=
n∑
i=1

(
1

n
[qmax{wi − yi, 0}+ (1− q) max{yi − wi, 0}] +

σ

2
y2
i − yi · (σ(Φxt+1)i + (ut)i)

)
.

This is minimized by setting yt+1 to have entries

(yt+1)i =


(Φxt+1)i + (ut)i

σ + q
nσ , if (Φxt+1)i + (ut)i

σ + q
nσ < wi,

(Φxt+1)i + (ut)i
σ − 1−q

nσ , if (Φxt+1)i + (ut)i
σ − 1−q

nσ > wi,

wi, if (Φxt+1)i + (ut)i
σ − 1−q

nσ ≤ wi ≤ (Φxt+1)i + (ut)i
σ + q

nσ .

A.5 Proof of Proposition 2 (verifying assumptions for the sparse quantile
regression example)

To prove the result, we need to check that, with probability at least 1 − (nd)−1, the
RSC bound (6) and the approximate first-order optimality condition (9) both at the point
(x̃, ỹ, ũ), with parameters defined as in the statement of the proposition. Concretely, let
ũ ∈ Rn have entries

ũi =
1

n
(−q · 1 {zi > 0}+ (1− q) · 1 {zi < 0}).

Then we can verify ζỹ = ũ ∈ ∂g(ỹ). Define also ξx̃ to have entries

(ξx̃)j =

{
λβ sign(x̃j)
β+|x̃j | , x̃j 6= 0,

(−Φ>ũ)j , x̃j = 0.
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We will show that, with the desired probability,〈(
x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
≥ C3 min

{
‖x− x̃‖22, ‖x− x̃‖2

}
− σ

2
‖y − Φx‖22 − C4 max{1, σ−1} · s∗ log(nd)

n
(28)

for all x ∈ dom(f) y ∈ dom(g), ξx ∈ ∂f(x), ζy ∈ ∂g(y), and that

ξx̃ ∈ ∂f(x̃) and ‖−Φ>ũ− ξx̃‖2 ≤ min

{
C3

2
,
√
C3C5

√
s∗ log(nd)

n

}
, (29)

where C3, C4, C5 > 0 are constants that depend only on cz, tz, aφ, bφ, Bφ and on Cλ. These
bounds are sufficient to verify Assumptions 1 and 2, as desired.

A.5.1 Verifying approximate first-order optimality

First we check that ξx̃ ∈ ∂f(x̃). Recall that we can write f(x) = fc(x) + fd(x) where, for
any x ∈ dom(f) (i.e., ‖x‖2 ≤ R), we have

f(x) = λ

d∑
j=1

β log(1 + |xj |/β).

Now fix any x ∈ dom(f). Then we can calculate that a subgradient ξx ∈ ∂f(x) must have
entries satisfying {

(ξx)j =
λβ sign(xj)
β+|xj | , xj 6= 0,

(ξx)j ∈ [−λ, λ], xj = 0.
(30)

From this calculation, we can see that to verify ξx̃ ∈ ∂f(x̃), we only need to check that
|(ξx̃)j | ≤ λ for all j with x̃j = 0. Since ‖Φ‖∞ ≤ Bφ with probability 1, while ũ is a
1
n -bounded zero-mean vector, Hoeffding’s inequality shows that

P

{
‖Φ>ũ‖∞ ≤ 2Bφ

√
log(nd)

n

}
≥ 1− (2nd)−1. (31)

From this point on, we will assume that this event holds. Since λ = Cλ

√
log(nd)
n ≥

C1

√
log(nd)
n ≥ 2Bφ

√
log(nd)
n (as long as we take C1 ≥ 2Bφ, as we will do below), this

verifies that |(ξx̃)j | ≤ λ for j such that x̃j = 0, and thus ξx̃ ∈ ∂f(x̃), as desired.
Next we check that (29) holds, to complete our verification of the approximate first-order

optimality assumption. Writing S∗ ⊆ {1, . . . , d} to denote the support of x̃, we have

‖(ξx̃)S∗‖2 =

√√√√ ∑
j:x̃j 6=0

(
λβ sign(x̃j)

β + |x̃j |

)2

≤
√ ∑
j:x̃j 6=0

λ2 ≤
√
s∗λ,

and also,

‖(Φ>ũ)S∗‖2 ≤
√
s∗‖(Φ>ũ)S∗‖∞ ≤

√
s∗ · 2Bφ

√
log(nd)

n
.
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Then

‖−Φ>ũ− ξx̃‖2 ≤ ‖(−Φ>ũ− ξx̃)S∗‖2 + ‖(−Φ>ũ− ξx̃)Sc∗‖2
≤ ‖(Φ>ũ)S∗‖2 + ‖(ξx̃)S∗‖2 + ‖(−Φ>ũ− ξx̃)Sc∗‖2.

Since ‖(−Φ>ũ− ξx̃)Sc∗‖2 = 0 by definition, this establishes that

‖−Φ>ũ− ξx̃‖2 ≤
√
s∗

(
λ+ 2Bφ

√
log(nd)

n

)
= (Cλ + 2Bφ)

√
s∗ log(nd)

n
.

Recall s∗ log(nd)
n ≤ C0 by assumption, and furthermore,

λ
√
s∗ = Cλ

√
log(nd)

n
· s1/2
∗ ≤ C1

√
C0

n
log(nd)

s∗

√
log(nd)

n
· s1/2
∗ = C1

√
C0. (32)

We therefore have

‖−Φ>ũ− ξx̃‖2 ≤ min

{√
C0(C1 + 2Bφ), (Cλ + 2Bφ)

√
s∗ log(nd)

n

}
.

Finally, choosing the constants as C3 = 2
√
C0(C1 + 2Bφ) and C5 = (Cλ + 2Bφ)2/C3, we

have proved (29).

A.5.2 Verifying restricted strong convexity

Next we will verify that (28) holds, to validate the restricted strong convexity property.

Bounding the x term Recall our earlier calculation (30) of the subgradient ∂f(x).
Writing S∗ ⊆ {1, . . . , d} to denote the support of x̃ as before, for each j ∈ Sc∗ we have

(x− x̃)j · (ξx)j = xj · (ξx)j =
λβ|xj |
β + |xj |

≥ λ|xj | − λβ−1x2
j

if xj 6= 0, or if xj = 0 then (x− x̃)j · (ξx)j = 0 = λ|xj | − λβ−1x2
j holds trivially. Thus

〈(x− x̃)Sc∗ , (ξx)Sc∗〉 ≥ λ‖xSc∗‖1 − λβ
−1‖xSc∗‖

2
2 = λ‖(x− x̃)Sc∗‖1 − λβ

−1‖(x− x̃)Sc∗‖
2
2.

Next, since (ξx̃)Sc∗ = (−Φ>ũ)Sc∗ and we know that ‖Φ>ũ‖∞ ≤ 2Bφ

√
log(nd)
n by (31), we have

〈(x− x̃)Sc∗ , (ξx − ξx̃)Sc∗〉 ≥

(
λ− 2Bφ

√
log(nd)

n

)
‖xSc∗‖1 − λβ

−1‖xSc∗‖
2
2.

Next, the function t 7→ β log(1 + |t|/β) can be decomposed as

β log(1 + |t|/β) = |t|+ (β log(1 + |t|/β)− |t|) ,

40



Convergence for nonconvex ADMM, with applications to CT imaging

where the first term is convex while the second term is concave and twice differentiable with
second derivative ≥ −β−1, which proves that

〈(x− x̃)S∗ , (ξx − ξx̃)S∗〉 ≥ −λβ−1‖(x− x̃)S∗‖22.

Putting all our calculations together, we have established that

〈x− x̃, ξx − ξx̃〉 ≥

(
λ− 2Bφ

√
log(nd)

n

)
‖xSc∗‖1 − λβ

−1‖x− x̃‖22

≥

(
λ− 2Bφ

√
log(nd)

n

)
‖x− x̃‖1 − λβ−1‖x− x̃‖22 − λ‖(x− x̃)S∗‖1

≥ (C1 − 2Bφ)

√
log(nd)

n
‖x− x̃‖1 − λβ−1‖x− x̃‖22 − λs

1/2
∗ ‖x− x̃‖2,

where the last step holds since |S∗| ≤ s∗, and by definition of λ. Finally, if ‖x− x̃‖2 ≤ 1,
then we have

λβ−1‖x− x̃‖22 + λs
1/2
∗ ‖x− x̃‖2 ≤ C−1

2 ‖x− x̃‖
2
2 + Cλ

√
s∗ log(nd)

n
‖x− x̃‖2

≤ 2C−1
2 ‖x− x̃‖

2
2 +

C2C
2
λ

4
· s∗ log(nd)

n
,

by our bound on β along with the fact that ab ≤ ca2/2 + b2/2c for all a, b, c > 0. If instead
‖x− x̃‖2 > 1, then ‖x− x̃‖2 ≤ 2R since x, x̃ ∈ dom(f), and so

λβ−1‖x− x̃‖22 + λs
1/2
∗ ‖x− x̃‖2 ≤

(
2λβ−1R+ λs

1/2
∗

)
‖x− x̃‖2

≤
(

2C−1
2 + C1

√
C0

)
‖x− x̃‖2

since 2λβ−1R ≤ 2C−1
2 by our bound on β, and since λs

1/2
∗ ≤ C1

√
C0 as calculated in (32)

above. Therefore, combining everything,

〈x− x̃, ξx − ξx̃〉 ≥ (C1 − 2Bφ)

√
log(nd)

n
· ‖x− x̃‖1

−
(

2C−1
2 + C1

√
C0

)
·min{‖x− x̃‖22, ‖x− x̃‖2} −

C2C
2
λ

4
· s∗ log(nd)

n
.

Bounding the y term First, we compute the subgradient of t 7→ `q(s− t):

∂t`q(s− t) =


{−q}, t < s,

[−q, 1− q], t = s,

{1− q}, t > s.

Therefore any ζy ∈ ∂g(y) must have entries satisfying
n(ζy)i = −q, yi < ỹi + zi,

n(ζy)i ∈ [−q, 1− q], yi = ỹi + zi,

n(ζy)i = 1− q, yi > ỹi + zi.
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By definition of ζỹ from above, we can therefore calculate

n
(
(ζy)i − (ζỹ)i

)
= 0, if zi > 0 and zi > yi − ỹi, or zi < 0 and zi < yi − ỹi,

n
(
(ζy)i − (ζỹ)i

)
∈ [0, 1], if zi > 0 and zi = yi − ỹi,

n
(
(ζy)i − (ζỹ)i

)
∈ [−1, 0], if zi < 0 and zi = yi − ỹi,

n
(
(ζy)i − (ζỹ)i

)
= −1, if zi < 0 and zi > yi − ỹi,

n
(
(ζy)i − (ζỹ)i

)
= 1, if zi > 0 and zi < yi − ỹi.

(Note that zi 6= 0 almost surely, so we can ignore the case zi = 0.) We can therefore
calculate

〈y − ỹ, ζy − ζỹ〉 ≥
1

n
·

Term 1︷ ︸︸ ︷∑
i

(yi − ỹi) · 1 {yi − ỹi > zi > 0}

+
1

n
·
∑
i

(ỹi − yi) · 1 {ỹi − yi > −zi > 0}︸ ︷︷ ︸
Term 2

.

Writing (t)+ = max{t, 0} for any t ∈ R, we then have

Term 1 =
∑
i

(yi − ỹi) · 1 {yi − ỹi > zi > 0}

≥
∑
i

(yi − ỹi − zi)+ · 1 {zi > 0}

≥
∑
i

(φ>i (x− x̃)− 2/(σn)− zi)+ · 1 {zi > 0}

−
∑
i

|yi − φ>i x| · 1 {zi > 0} · 1
{
|yi − φ>i x| > 2/(σn)

}
≥
∑
i

(φ>i (x− x̃)− zi)+ · 1 {zi > 0} − 2

σn

∑
i

1 {zi > 0} − σn

2

∑
i

(yi − φ>i x)2 · 1 {zi > 0}

and similarly,

Term 2 ≥
∑
i

(−φ>i (x−x̃)+zi)+·1 {zi < 0}− 2

σn

∑
i

1 {zi < 0}−σn
2

∑
i

(yi−φ>i x)2·1 {zi < 0} .

Therefore, defining

H(x) =
1

n

∑
i

[
(φ>i x− zi)+ · 1 {zi > 0}+ (−φ>i x+ zi)+ · 1 {zi < 0}

]
, (33)

and simplifying, we have

〈y − ỹ, ζy − ζỹ〉 ≥ H(x− x̃)− σ

2
‖y − Φx‖22 −

2

σn
.

We will now use the following lemma (proved in Appendix A.5.3):
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Lemma 3 Suppose that n ≥ 4, and that φ1, . . . , φn ∈ Rd and z1, . . . , zn ∈ R satisfy the
assumptions of Proposition 2. Then, with probability at least 1− (2nd)−1,

H(x) ≥ C∗1 ·min{‖x‖22, ‖x‖2} − C∗2 ·
√

log(nd)

n
· ‖x‖1 − C∗3 ·

√
log(nd)

n
for all x ∈ Rd,

where H(x) is defined as in (33), and where C∗1 , C
∗
2 , C

∗
3 are positive and finite, and depend

only on the constants aφ, bφ, Bφ, cz, tz appearing in the assumptions of Proposition 2.

Returning to our work above we therefore see that, with probability at least 1− (2nd)−1,

〈y − ỹ, ζy − ζỹ〉 ≥ C∗1 min{‖x− x̃‖22, ‖x− x̃‖2}

− C∗2

√
log(nd)

n
· ‖x− x̃‖1 −

σ

2
‖y − Φx‖22 −

(
C∗3
√

log(nd)

n
+

2

σn

)
for all x ∈ dom(f), y ∈ Rn, and ζy ∈ ∂g(y).

Combining the x and y terms Combining our bounds for the x and y terms, we have
shown that, with probability at least 1 − (nd)−1, for all x ∈ dom(f), y ∈ Rn, ξx ∈ ∂f(x),
and ζy ∈ ∂g(y),〈(

x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
≥

[
(C1 − 2Bφ)

√
log(nd)

n
‖x− x̃‖1

−
(

2C−1
2 + C1

√
C0

)
·min{‖x− x̃‖22, ‖x− x̃‖2} −

C2C
2
λ

4
· s∗ log(nd)

n

]

+

[
C∗1 min{‖x− x̃‖22, ‖x− x̃‖2}

− C∗2

√
log(nd)

n
· ‖x− x̃‖1 −

σ

2
‖y − Φx‖22 −

(
C∗3
√

log(nd)

n
+

2

σn

)]
.

We can simplify this to〈(
x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
≥ (C1 − 2Bφ − C∗2 )

√
log(nd)

n
‖x− x̃‖1

+ (C∗1 − 2C−1
2 − C1

√
C0) min{‖x− x̃‖22, ‖x− x̃‖2}

− σ

2
‖y − Φx‖22 −

(
C∗3
√

log(nd)

n
+

2

σn
+
C2C

2
λ

4
· s∗ log(nd)

n

)
.

Choosing C1 = 2Bφ+C∗2 , , C2 = 8/C∗1 , and C4 = C∗3 + 2 +
C2C2

λ
4 , and choosing C0 to satisfy

C0 ≤ (C∗1/4C1)2, this simplifies to〈(
x− x̃
y − ỹ

)
,

(
ξx − ξx̃
ζy − ζỹ

)〉
≥ C∗1

2
min{‖x− x̃‖22, ‖x− x̃‖2}

− σ

2
‖y − Φx‖22 − C4 max{1, σ−1} · s∗ log(nd)

n
.
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To complete our proof that (28) holds, we only need to verify that C∗1/2 ≥ C3. Recall
that we have defined this constant as C3 = 2

√
C0(C1 + 2Bφ). Therefore, by taking C0 =

(C∗1/4(C1 + 2Bφ))2, all the necessary bounds are verified and we have completed the proof.

A.5.3 Proof of Lemma 3

For any fixed x, define

H̃(x) = E [H(x)] = E
[
(φ>x− z)+ · 1 {z > 0}+ (−φ>x+ z)+ · 1 {z < 0}

]
,

where the expectation is taken with respect to φ ∼ Dφ and z ∼ hz, with φ ⊥⊥ z. We can
calculate

E
[
(φ>x− z)+ · 1 {z > 0}

∣∣∣ φ] =

∫ (φ>x)+

t=0

[
(φ>x)+ − t

]
hz(t) dt

≥
∫ min{tz ,(φ>x)+}

t=0

[
(φ>x)+ − t

]
cz dt

=
[
cz min{(φ>x)2

+, tz(φ
>x)+} −

cz
2

min{(φ>x)+, tz}2
]

≥ cz
2

min{(φ>x)2
+, tz(φ

>x)+}.

Similarly,

E
[
(−φ>x+ z)+ · 1 {z < 0}

∣∣∣ φ] ≥ cz
2

min{(−φ>x)2
+, tz(−φ>x)+}.

Therefore, for a fixed x,

H̃(x) = E
[
(φ>x− z)+ · 1 {z > 0}+ (−φ>x+ z)+ · 1 {z < 0}

]
= E

[
E
[
(φ>x− z)+ · 1 {z > 0}+ (−φ>x+ z)+ · 1 {z < 0}

∣∣∣ φ]]
≥ E

[cz
2

min{(φ>x)2, tz|φ>x|}
]
.

Next, for any unit vector u, we can calculate

E
[
|φ>u|2 · 1

{
|φ>u| ≤

2bφ
aφ

}]
= E

[
|φ>u|2

]
− E

[
|φ>u|2 · 1

{
|φ>u| >

2bφ
aφ

}]
≥ E

[
|φ>u|2

]
−

aφ
2bφ

E
[
|φ>u|3

]
≥
aφ
2
,

by our assumptions on Dφ. For any x 6= 0, writing u = x
‖x‖2 ,

min
{

(φ>x)2, tz|φ>x|
}

= min
{
‖x‖22 · (φ>u)2, tz‖x‖2 · |φ>u|

}
≥ min

{
‖x‖22,

tzaφ
2bφ
‖x‖2

}
·min

{
(φ>u)2,

2bφ
aφ
|φ>u|

}
≥ min

{
‖x‖22,

tzaφ
2bφ
‖x‖2

}
· (φ>u)2 · 1

{
|φ>u| ≤

2bφ
aφ

}
,
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and therefore for all x,

E
[
min

{
(φ>x)2, tz|φ>x|

}]
≥ E

[
min

{
‖x‖22,

aφtz
2bφ
‖x‖2

}
· (φ>u)2 · 1

{
|φ>u| ≤

2bφ
aφ

}]
≥
aφ
2

min

{
‖x‖22,

tzaφ
2bφ
‖x‖2

}
.

Combining this with the work above,

H̃(x) ≥
aφcz

4
min

{
‖x‖22,

tzaφ
2bφ
‖x‖2

}
for all x ∈ Rd.

Next, we will use a peeling argument to bound
∣∣∣H(x)− H̃(x)

∣∣∣. First, fixing any B > 0,

E

[
sup

x:‖x‖1≤B

∣∣∣H(x)− H̃(x)
∣∣∣]

≤ 2E

[
sup

x:‖x‖1≤B

∣∣∣∣∣ 1n∑
i

ξi

[
(φ>i x− zi)+ · 1 {zi > 0}+ (−φ>i x+ zi)+ · 1 {zi < 0}

]∣∣∣∣∣
]

by symmetrization (Koltchinskii, 2011, Theorem 2.1), where ξ1, . . . , ξn
iid∼ Unif{±1}. Next,

fixing the zi’s, define ϕi(t) = (t − zi)+ · 1 {zi > 0} + (−t + zi)+ · 1 {zi < 0}. Then ϕi is
1-Lipschitz for all i, and so

E

[
sup

x:‖x‖1≤B

∣∣∣∣∣ 1n∑
i

ξi

[
(φ>i x− zi)+ · 1 {zi > 0}+ (−φ>i x+ zi)+ · 1 {zi < 0}

]∣∣∣∣∣
∣∣∣∣∣ z1:n

]

≤ 2E

[
sup

x:‖x‖1≤B

∣∣∣∣∣ 1n∑
i

ξi · φ>i x

∣∣∣∣∣
∣∣∣∣∣ z1:n

]
= 2E

[
sup

x:‖x‖1≤B

∣∣∣∣∣ 1n∑
i

ξi · φ>i x

∣∣∣∣∣
]

by the Rademacher comparison inequality (Koltchinskii, 2011, Theorem 2.2). Finally,

E

[
sup

x:‖x‖1≤B

∣∣∣∣∣ 1n∑
i

ξi · φ>i x

∣∣∣∣∣
]
≤ E

[
sup

x:‖x‖1≤B
‖ 1

n
Φ>ξ‖∞‖x‖1

]
= BE

[
‖ 1

n
Φ>ξ‖∞

]
.

And, we know that ‖ 1
nΦ>ξ‖∞ ≤ Bφ deterministically (since ‖ξ‖∞ ≤ 1 and ‖Φ‖∞ ≤ Bφ),

and so applying (31), we have

E
[
‖ 1

n
Φ>ξ‖∞

]
≤ 2Bφ

√
log(nd)

n
+
Bφ
2nd

≤ 3Bφ

√
log(nd)

n
,

where the last step holds since 1
2nd ≤

√
log(nd)
n for all n ≥ 4, d ≥ 1. So, we have

E

[
sup

x:‖x‖1≤B

∣∣∣∣∣ 1n∑
i

ξi · φ>i x

∣∣∣∣∣
]
≤ 3BBφ

√
log(nd)

n
.
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Combining our work so far, we have shown that

E

[
sup

x:‖x‖1≤B

∣∣∣H(x)− H̃(x)
∣∣∣] ≤ 4E

[
sup

x:‖x‖1≤B

∣∣∣∣∣ 1n∑
i

ξi · φ>i x

∣∣∣∣∣
]
≤ 12BBφ

√
log(nd)

n
.

Next, if we alter one data point φi, zi, we can see that the value of H(x) changes by at
most 1

nBφ‖x‖1. Therefore, by McDiarmid’s inequality, for any t > 0,

P

{
sup

x:‖x‖1≤B

∣∣∣H(x)− H̃(x)
∣∣∣ > E

[
sup

x:‖x‖1≤B

∣∣∣H(x)− H̃(x)
∣∣∣]+ t

}
≤ exp

{
− 2t2

n−1B2B2
φ

}
.

Setting t = BBφ
√

log(nd)/n and plugging in our calculation for the expected value,

P

{
sup

x:‖x‖1≤B

∣∣∣H(x)− H̃(x)
∣∣∣ > 13BBφ

√
log(nd)

n

}
≤ (nd)−2.

Therefore, applying this result with B =
√
d, 2−1

√
d, . . . , 2−(K−1)

√
d for K = 1 +

d1
2 log2(nd)e (i.e., a peeling argument, with K chosen so that the smallest value of B is

≤ n−1/2), we see that K ≤ nd/2 (this holds for any n ≥ 4, d ≥ 1), and so with probability
at least 1− (2nd)−1,∣∣∣H(x)− H̃(x)

∣∣∣ ≤ max{‖x‖1, n−1/2} · 26Bφ

√
log(nd)

n

for all x with ‖x‖1 ≤
√
d—and therefore, for all x with ‖x‖2 ≤ 1. Combining everything so

far, we have shown that with probability at least 1− (2nd)−1,

H(x) ≥
aφcz

4
min

{
1,
tzaφ
2bφ

}
· ‖x‖22 −max{‖x‖1, n−1/2} · 26Bφ

√
log(nd)

n
(34)

for all x ∈ Rd with ‖x‖2 ≤ 1.
Now we consider x with ‖x‖2 ≥ 1. Let x′ = x

‖x‖2 . Since H(x) is convex, and 1 = ‖x′‖2 ≤
‖x′‖1, if the bound (34) holds (at x = x′) then we have

1

‖x‖2
H(x) +

(
1− 1

‖x‖2

)
H(0) ≥ H(x′) ≥

aφcz
4

min

{
1,
tzaφ
2bφ

}
− ‖x′‖1 · 26Bφ

√
log(nd)

n
.

Clearly H(0) = 0, and since ‖x‖1 = ‖x′‖1 · ‖x‖2, we can simplify this to

H(x) ≥
aφcz

4
min

{
1,
tzaφ
2bφ

}
‖x‖2 − ‖x‖1 · 26Bφ

√
log(nd)

n
.

Combining both cases (i.e., ‖x‖2 ≤ 1 or ‖x‖2 > 1), we have therefore proved that, with
probability at least 1− (2nd)−1,

H(x) ≥
aφcz

4
min

{
1,
tzaφ
2bφ

}
·min{‖x‖22, ‖x‖2} −max{‖x‖1, n−1/2} · 26Bφ

√
log(nd)

n
,

for all x ∈ Rd, which completes the proof.
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