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Abstract

This paper presents a new optimization approach to causal estimation. Given data
that contains covariates and an outcome, which covariates are causes of the outcome, and
what is the strength of the causality? In classical machine learning (ML), the goal of
optimization is to maximize predictive accuracy. However, some covariates might exhibit
a non-causal association with the outcome. Such spurious associations provide predictive
power for classical ML, but they prevent us from causally interpreting the result. This paper
proposes CoCo, an optimization algorithm that bridges the gap between pure prediction and
causal inference. CoCo leverages the recently-proposed idea of environments (Peters et al.,
2016; Arjovsky et al., 2019), datasets of covariates/response where the causal relationships
remain invariant but where the distribution of the covariates changes from environment to
environment. Given datasets from multiple environments—and ones that exhibit sufficient
heterogeneity—CoCo maximizes an objective for which the only solution is the causal
solution. We describe the theoretical foundations of this approach and demonstrate its
effectiveness on simulated and real datasets. Compared to classical ML and existing methods,
CoCo provides more accurate estimates of the causal model and more accurate predictions
under interventions.

Keywords: Causal estimation, Robust prediction, Constrained optimization, Directional
derivative, Interventional data

1. Introduction

We consider the problem posed in Peters et al. (2016). An outcome y is generated according
to a linear structural equation model (SEM) based on a set of covariates x∗ (Pearl, 2009),

y ← (β∗)>x∗ + ε, x∗⊥⊥ ε. (1)
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Here, x∗ are the causal parents of the outcome y, which are independent of the unobserved
noise ε, and the causal coefficient β∗ represents the direct causal effects of x∗. In practice,
we might measure a potentially large set of covariates x = {x1, · · · , xp}, such that the causes
x∗ are a subset of x. More precisely, there is a subset S ⊂ {1, 2, · · · , p} with x∗ = xS , but
we do not know this set of causes S. Our goal is to infer the causal relationship between
each covariate xj and the outcome in the data generating process (DGP), and estimate their
direct causal effects.

The challenge to solving this problem is spurious association. Though the causes xS
are assumed to be exogenous, the other observed covariates might depend on the noise
term with x\S 6⊥⊥ ε. The dependency may arise because of confounding, where there is an
omitted common cause of y and x\S , i.e., y ← ε→ x\S ; the dependency may also arise from
a collider, reverse causality, or selection bias, e.g., y → x\S or y → x1 ← x2, x1, x2 ∈ x\S .
It leads to spurious association because the covariates x\S will not be the genuine causal
parents of the outcome in the DGP, even though they correlate with the outcome. In the
face of spurious association, typical inference methods, such as regression based on empirical
risk minimization (ERM) or maximum likelihood estimation (MLE), will lead to a biased
estimate of the causal effect and an incorrect interpretation of the causal relationships
(Angrist et al., 1996; Peters et al., 2016; Efron, 2020). From the predictive perspective,
a model that captures spurious association will not generalize to non-i.i.d. data under
perturbations of the DGP (Arjovsky et al., 2019; Rothenhäusler et al., 2021).

We will develop constrained causal optimization (CoCo), an optimization-based method
to solve the spurious association problem. The key idea behind CoCo is to leverage datasets
from multiple environments (Peters et al., 2016). The environments are a set of heterogeneous
DGPs. In each, the causal mechanism of the outcome generation remains invariant but the
distribution of the covariates changes from environment to environment. While classical
ML methods cannot distinguish the direct causes from spurious association, simultaneously
analyzing data from multiple environments allows us to triangulate on the correct causal
coefficients. This work builds on recent research about multi-environment estimation,
beginning with the seminal work of Peters et al. (2016) and continuing with the risk-based
algorithms of Arjovsky et al. (2019). The method developed in this paper builds and
improves on the risk-based algorithms.

We will describe the method here and derive it in the subsequent sections. To begin,
consider a single data-generating distribution p(x, y) = p(x)p(y |x). For instance, the
conditional distribution of the outcome could come from Eq. (1). Consider a predictor
ŷ(x;α) with coefficients α and define a non-negative loss function to measure the fidelity of
a prediction, ` : Y × Y → R (e.g., squared loss). Finally, define the risk of the predictor to
be the expectation of the loss relative to the data-generating distribution,

R(α) = Ex,y∼p(x,y)[`(ŷ(x;α), y)]. (2)

Classical machine learning (ML) provides methods that analyze data from p(x, y) to minimize
the risk. The pure prediction methods leverage all information in data, causal and non-causal,
to reduce the predictive error quantified by the risk function. The spurious associations
improve predictions, but they bias the resulting estimates of the coefficients away from the
true causal coefficients.
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We consider distributions of data from a set of environments E . The data from environ-
ment e form a joint distribution pe(x, y) = pe(x)p(y |x). In this joint, the distribution of
covariates pe(x) changes from environment to environment, but the conditional expectation
of the outcome given its causal parents E(y |Pa(y)) is the same across environments, governed
by the same SEM. Notice each environment is associated with its own risk Re(α), since the
risk is an expectation with respect to the per-environment distribution.

Given a set of datasets from multiple environments, the CoCo algorithm solves the
following optimization,

αcoco = arg min
α

1

|E|
∑
e∈E

(
‖∇Re(α) ◦α‖2

)
, (3)

where ◦ is the Hadamard product and each environment’s risk Re(α) can be approximated
by its empirical estimate.

As we describe below, this objective stems from the idea of the directional deriva-
tive (Rudin et al., 1964; Marban, 1969), and its role in the first-order conditions for the
optimizer of each environment’s risk function. Under invariance assumptions, the solution
to Eq. (3) is the intersection across environments of all points that minimize each term
‖∇Re(α) ◦α‖2. When the environments are sufficiently heterogenous—that is, when there
is enough variety in different pe(x) and outcome noise—this optimization is solved by the
causal coefficients.

Eq. (3) is the basic optimization problem behind CoCo. The rest of this paper presents
its theoretical foundations, the assumptions under which its solution is the true causal
coefficients, algorithms building on and solving Eq. (3) from multi-environment data, and
studies about the performance of CoCo on several simulated and real datasets, both with
linear predictors and with nonlinear predictors. When compared to classical ML and Invariant
Risk Minimization (IRM) (Arjovsky et al., 2019)-related methods, CoCo improves the
estimation accuracy of causal coefficients and the predictive accuracy in new environments.

Broadly, CoCo represents progress towards multi-environment optimization for causal
estimation, and it helps explain the empirical the success of IRM when data is linear-Gaussian
or linear-Bernoulli. Compared to IRM, CoCo requires fewer environments to identify causal
coefficients and enjoys a more stable training procedure. Practically, CoCo is compatible
with general graph structures, can be used with flexible ML tools such as deep neural
networks, scales well to high-dimensional problems, and is easy to implement.

The paper is organized as follows. § 2 situates this paper in the broader landscape
of the research literature on multi-environment analysis. § 3 describes the methodology
and theoretical basis for CoCo. § 4 presents the connections between CoCo and IRM in
mathematical detail. § 5 studies the identification properties in detail, particularly in the
setting of a linear SEM, and § 6 extends CoCo to nonlinear models. § 7 presents a study of
CoCo with synthetic, semi-synthetic and real-world data.

2. Related work

Formulating the goals of data analysis, and their relationship to optimization, has long
been discussed in the research literature in statistics and machine learning. As early as
Wright (1921), researchers recognized that the goals of prediction and estimation are not
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always aligned in optimization. Shmueli et al. (2010) and Efron (2020) provide insightful
discussions about the differences between prediction problems, association problems, and
causal estimation problems.

This paper builds on the body of research around causal estimation with multiple
environments. Methodologies developed in this area rest on the invariance property of
causality, also known as autonomy (Haavelmo, 1944), modularity (Schölkopf et al., 2012)
and stability (Dawid et al., 2010). In a pioneering work, Peters et al. (2016) uses statistical
hypothesis testing to estimate causal structures by exploiting invariance across multiple
environments. Subsequent research extends this idea, for example, to nonlinear models
(Heinze-Deml et al., 2018) and sequential data (Pfister et al., 2019). See Bühlmann et al.
(2020) for a comprehensive review.

To improve its flexibility and scalability, researchers have begun to use optimization
over multi-environment data for causal estimation (Rothenhäusler et al., 2019, 2021). One
influential paper along these lines is Arjovsky et al. (2019), which introduces invariant risk
minimization (IRM) as a method that adapts modern predictive models to this task. The
objective function of IRM includes an additional penalty term to empirical risk function,
which encourages a predictor to be invariant across environments. The work presented here
provides a contribution to optimization-based causal estimation.

Since its introduction, IRM has been extended in several ways. It has been formulated
as game theory problem (Ahuja et al., 2020), combined with meta-learning methods (Bae
et al., 2021), applied to reinforcement learning (Zhang et al., 2020), and applied to causal
inference (Shi et al., 2020; Lu et al., 2021). Its conditions and limitations have been studied
(Rosenfeld et al., 2020; Kamath et al., 2021; Guo et al., 2021).

Besides IRM, other objectives also aim to improve predictive accuracy by encouraging
invariance of empirical risks across environments. These objectives are often built on equal
noise variance assumption, which is a strong version of invariance (Peters and Bühlmann,
2014). Some objectives regularize the variance of the empirical risks (Xie et al., 2020; Krueger
et al., 2020; Heinze-Deml and Meinshausen, 2021) and control the worst case risk across
training environments (Sagawa et al., 2019). When the condition of equal noise variance is
met, such regularizations can be combined with CoCo.

The idea of invariance and environments has also been adapted to causal discovery (Tian
and Pearl, 2001; Yu et al., 2019a,b; Brouillard et al., 2020; Mooij et al., 2020; Müller et al.,
2020). Invariance enables the discovery of causal structures within Markov equivalence
classes (Ghassami, 2020), which cannot be reconstructed from traditional single environment
data (Spirtes et al., 2000). Nevertheless, existing methods might encounter problems of
limited model flexibility and high computational cost. For example, some methods rely on
linear data generating process (Ghassami et al., 2018; Huang et al., 2019, 2020), require
regression over multiple subsets of covariates (Ghassami et al., 2017), and/or involve multiple
independence testings (Ghassami et al., 2017; Huang et al., 2020; Brouillard et al., 2020).
CoCo provides an optimization-based method to assist causal discovery by identifying direct
causes for observed variables.

Lastly, CoCo is loosely related to the variable selection literature (Hastie et al., 2009).
It can be viewed as selecting causal variables or learning a causal representation from the
observed covariates, but the motivation and the targeted problems are different. Variable
selection methods, such as LASSO (Tibshirani, 1996) and best subset selection (Bertsimas
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et al., 2016; Yin et al., 2020), focus on the situations where the number of data points
is small compared to the number of the observed covariates. The model selection under
the traditional variable selection setting can generally recover the true sparsity pattern
asymptotically (Zhao and Yu, 2006). In contrast, the estimation bias problem due to the
spurious association considered in this paper cannot be solved by increasing the number
of data points even to infinity. Unlike classic regularized regression with the regularizers
often imposing shrinkage on the parameter space (Golub et al., 1999), the proposed method
imposes regularizations in the derivative space with the restricted derivative directions.

3. Causal optimization from heterogeneous environments

We discuss CoCo, a method that estimates causal effects via optimization. In § 3.1, we set
up the problem and assumptions. In § 3.2, we introduce an idealized optimization objective,
which produces causal coefficients as the solution, but is intractable. In § 3.3, we derive a
relaxed objective function; it is tractable with observable data but contains extra solutions
besides the causal coefficients. In § 3.4, we aggregate the relaxed objective over multiple
environments to whittle down the set of optima to the causal coefficients.

3.1 Setup and assumptions

Consider an observed multi-environment dataset. Denote E as a discrete set of environments.
Each environment e ∈ E specifies a DGP similar to Eq. (1),

ye ← β>xe + εe, xe ∼ pe(xe1, · · · , xep). (4)

We absorb the intercept term into xe and β and do not write it explicitly. Comparing to
Eq. (1), here βS = β∗, βj 6= 0 for j ∈ S, and β\S = 0 where S ⊂ {1, 2, · · · , p}. It means
only xeS = x∗ are the true causes for the set S. The SEM in Eq. (4) includes all the observed
covariates to reflect the fact that we do not know the set of causes S a priori. We overload
the notation to denote β as the causal coefficient and call the set S as the causal structure.
There could be potential endogeneity with x 6⊥⊥ ε. For each environment, the observed data
De = (Xe,Ye) consists of ne i.i.d. data points, where Ye ∈ Rne are the outcomes, and
Xe = [Xe

1 , · · · , Xe
p ] ∈ Rne×p are the covariates. Each column Xe

j ∈ Rne , j ∈ {1, 2, · · · , p},
contains the observations of the j-th covariate for ne units.

Assumptions for each environment. First, we specify the assumptions for the data in
each environment. For notational simplicity, we suppress the superscript e for now and state
the assumptions for any environment e ∈ E . The support set and magnitude of the causal
coefficients β are unknown. For the covariates x, we do not specify the DGP and allow
an arbitrary functional form of the joint distribution p(x). We will specify the additional
assumptions on the joint distribution for identification in § 5.

We assume the noise ε is zero-mean, and the covariates and noise have finite variance.
The noise term is assumed to be independent of the observed direct causes xS . To summarize,
the assumptions for each environment are

Assumption 1 (i) Linear DGP as Eq. (4); (ii) Moment conditions: E[ε] = 0, Var[ε],Var[xj ]
<∞ for all j ∈ {1, 2, · · · , p}; (iii) Independence: the observed direct causes xS⊥⊥ ε.
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Remark. Assumption 1 (i) assumes linearity; we will study the nonlinear causal models
in § 6. Assumption 1 (ii) is a standard regularity assumption. Assumption 1 (iii) assumes
xS ⊥⊥ ε, where the noise ε incorporates the unobserved causes of y as long as they are
independent of the observed direct causes xS . The noise and the observed covariates x\S ,
however, can be dependent, i.e., x\S 6⊥⊥ ε. Hence, Assumption 1 (iii) does not imply that the
covariates x as a whole satisfy the back-door criterion (Pearl, 2009). Accordingly, standard
inference strategies, such as regression adjustment for all covariates, may produce biased
causal estimates (Elwert and Winship, 2014). Our goal is to develop a method that can
automatically identify the set S as the causal structure, estimate the causal coefficient β,
and make prediction based on the causes of the outcome.

Assumption 1 (iii) distinguishes the setting of this paper from that of instrumental
variables (IV) which allows the dependency between xS and ε (Angrist et al., 1996). However,
we allow the index of endogenous covariates in x to be unknown; such information is usually
required by the IV methods such as the two-stage least square. Assumption 1 (iii) is a
common assumption in the invariance-based causal inference (Arjovsky et al., 2019, Theorem
9) (Rojas-Carulla et al., 2018; Pfister et al., 2019; Krueger et al., 2020), and causal discovery
literature (Peters et al., 2016, Assumption 1)(Ghassami et al., 2017; Yu et al., 2019a;
Brouillard et al., 2020).

Assumptions across environments. Now, we consider the assumption across envi-
ronments. The key property of causality we exploit from multi-environment data is the
invariance (Peters et al., 2016; Arjovsky et al., 2019). Invariance means that conditional
on the same value of the direct causes, the expectation of the outcome is the same across
environments.

Assumption 2 (Invariance) The index set of direct causes of ye is the same across
environments. And given a possible value c of the direct causes,

E[ye|Pa(ye) = c] = E[ye
′ |Pa(ye

′
) = c], (5)

for all e, e′ ∈ E.

The invariance condition in Eq. (5) is weaker than that in Peters et al. (2016), which requires
strong invariance over the conditional outcome distribution

p(ye|Pa(ye) = c) = p(ye
′ |Pa(ye

′
) = c). (6)

When the distributions of covariates xe and noise εe change across environments, we call
environments E heterogeneous. The heterogeneity will be important to the method we derive.

3.2 Idealized causal optimization

We start by considering the data set of a single environment, such as one that is generated
by Eq. (1). Suppose for the moment that we do not know the causal coefficients β, but we
do know which covariates are direct causes of the outcome, i.e., the set S. A key observation
is that among the models that share the true causal structure (i.e. the support set of
coefficients as S), the causal model (i.e. the model with causal coefficients) is the best
predictive model. This observation, though conceptually straightforward, makes the goals of
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causal estimation and optimization consistent. We can then obtain the causal coefficients by
solving a constrained optimization problem.

Lemma 1 (Causal Optimality) Under Assumptions 1, for the squared risk function
R(α) = E[(1/2)(ŷ(x;α)−y)2], and linear predictor ŷ(x;α) = α>x, the following constrained
optimization problem

min
α

R(α)

s.t. αj = 0, j /∈ S
(7)

has the causal coefficients α = β as the unique solution.

The proof is in Appendix A.

Lemma 1 is the ideal situation where the set of causes S in Eq. (7) is known. Of course,
in practice, we do not know which covariates are causal and which are not. This paper aims
to build on this idealized optimization problem in Eq. (7) to construct a tractable objective
for causal estimation. We first introduce a tractable objective with observed data. Then we
aggregate this objective over multiple environments to isolate the causal coefficients.

3.3 Derivation of a tractable objective

In this section, we derive an optimization objective for causal estimation. It only involves
the observable data and is a relaxation of the idealized optimization in Eq. (7). In this
relaxation, the causal coefficient β is one of the optima, though it is not the only one.

We will first review directional derivatives and feasible directions, which are used to
characterize the extreme points of the idealized optimization in Eq. (7). We then relax the
optimization problem to a practical one and characterize its extreme points.

Directional derivatives and feasible directions. The directional derivative Dv in the
direction of a unit-length vector v is defined as the change rate of a function in that direction
(Rudin et al., 1964). It can be computed as the inner product of the gradient and the
direction vector DvR(α) := limt→0(R(α+ tv)−R(α))/t = 〈∇R(α),v〉, where 〈·, ·〉 denotes
an inner product.

Directional derivatives provide the first-order condition for the optima of a constrained
optimization. Denote the constraints in Eq. (7) as gj(α) = αj = 0 for j /∈ S. (Recall S is the
support set of β, the indices of the non-zero causal coefficients.) The points that satisfy these
constraints form a surface in Rp. To find a stationary point while obeying to the constraints,
an algorithm should search the parameters in the directions tangent to this surface rather
than an arbitrary direction. Hence, the tangent directions are called the feasible direction.
The first-order condition for optimality is that the directional derivative in all feasible
directions vanishes (Marban, 1969). Intuitively, satisfying the condition means the algorithm
cannot improve the objective value, at least locally, without violating the constraints.

Optimality condition for causal optimization. We derive the feasible directions for
the optimization problem in Eq. (7). We then derive an important property of the causal
coefficients from the first-order condition of the directional derivative.
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Geometrically, the feasible directions are perpendicular to the normal vectors of the
surface defined by the constraints. The normal vectors point in the directions that violate
the constraints at the maximum rate, which can be computed by taking the gradient of the
constraints

dgj(α)/dα = ej , j /∈ S. (8)

The feasible directions are perpendicular to the vector space spanned by the basis vectors in
Eq. (8). Therefore, all the feasible directions form a linear space U = span{ej : j ∈ S}.

The first-order condition for the causal optimization in Eq. (7) requires the directional
derivative vanishing in all the feasible directions, that is, Dv = 0 for each v ∈ U . This
condition can be equivalently stated using the basis vectors of U as

DejR(α) = 〈∇R(α), ej〉 = 0, for j ∈ S. (9)

This is because any v ∈ U is a linear combination of the basis {ej}j∈S . More compactly,
since βj 6= 0 for j ∈ S, Eq. (9) can be written equivalently as

‖∇R(α) ◦ β‖2 = 0 (10)

where ◦ is the Hadamard product.

Traditional empirical risk minimization (ERM) searches for α with ∇R(α) = 0, or
equivalently ‖∇R(α) ◦ 1‖2 = 0. A problem of the gradient-based ERM is its greedy nature:
the optimization follows a derivative pointing at the steepest descent direction. Such greedy
optimization may leverage the spurious associations and fails to converge to the causal
coefficient. In comparison, Eq. (10) reveals that the key to establish the optimality for the
causal model is to regularize the derivative’s direction by restricting it to the subspace U .
The regularization of the derivative direction distinguishes CoCo from the classic regression
regularizations that often control the parameter magnitudes.

The first order condition in Eq. (10) is an explicit condition that the causal coefficients
β satisfy. That’s to say, solving minα ‖∇R(α) ◦ β‖2 would return the causal coefficients
for convex risk functions. However, there is no free lunch. Similar to the idealized causal
optimization in Eq. (7) with an unknown set S, the condition in Eq. (10) includes β, the
unknown causal coefficients. Hence Eq. (10) is not a tractable objective yet.

Relaxing the first-order condition. Lemma 1 states that α = β is an optimum of the
problem in Eq. (7). Therefore, the vector β must satisfy the first-order condition of Eq. (10).
Plugging α = β into Eq. (10), we have ‖∇R(β) ◦ β‖2 = 0. This fact reveals that the causal
coefficient β is an optimum of the following optimization problem,

min
α
‖∇R(α) ◦α‖2 . (11)

Notice that Eq. (11) is an optimization problem based entirely on the observational data. It
states that the causal coefficient β satisfies

β ∈ arg min
α

‖∇R(α) ◦α‖2 . (12)
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Eq. (11) is an important step towards an optimization-based causal estimation. The
derivation based on the directional derivative theory also reveals an intrinsic connection
and distinction between the CoCo objective and the invariance risk minimization (IRM)
objective (Arjovsky et al., 2019), which we will discuss in § 4.

We call the set of points that minimizes Eq. (11) the plausible set F . We have shown
that causal coefficients belong to it. What other points are in F?

For each j ∈ {1, 2, . . . , p} the objective of Eq. (11) is minimized when either αj = 0 or
∇R(α)j = 0. Accordingly, two additional points are the all-zero vector 0 and the ERM
solution for which ∇R(α) = 0. Finally, the plausible set contains the points “in-between”
these solutions, those that set the parameters to zero at a subset of indices, and set the
elements of the gradient vector to zero at the remaining indices. For convex risk functions,
there are at most 2p such solutions, one for each subset; note that the causal coefficient β is
one of them.

In summary, we began with a constrained optimization in Eq. (7). Its single optimum
is the causal coefficient, but it requires the knowledge of which covariates are causal. We
relaxed that optimization to Eq. (11), which only relies on the observable data. The causal
coefficient remains to be an optimum of Eq. (11), but there are other solutions too, those
between (and including) the 0-vector and the ERM solution. Hence, solving Eq. (11) alone
does not identify the causal coefficient yet.

In the next section, we will restore identifiability by appealing to the invariance property
of causality under interventions (Peters et al., 2016; Arjovsky et al., 2019; Schölkopf et al.,
2021). With data from multiple environments—each one coming from a different intervention
on the DGP—we can define an optimization problem that whittles down the plausible set to
one that only contains the causal coefficient.

3.4 Optimization with multiple environments

In this section, we leverage multi-environment data to restore the uniqueness of the causal
coefficient as the solution of an optimization problem.

Narrowing down the optima set by environments. As discussed in § 3.3, the causal
coefficient is nonidentifiable by optimizing Eq. (11) with i.i.d. data. We turn to the setting
where we observe data from multiple environments to achieve identifiability.

We assume the invariance property as in Eq. (5) across environments and that the
environments are heterogeneous. Heterogeneous environments can be constructed by (hard)
interventions which actively fix a variable at a specific value during the data generation.
They can also be constructed by (soft) interventions where the changes in the DGP are
passively observed rather than actively executed (Eberhardt and Scheines, 2007). For
example, the heterogeneity might come from varied physical factors such as space and time.
When studying the effect of health measurements on the chance of cancer, the environments
can be different hospitals from which the data are collected (Winkler et al., 2019).

Consider the relaxed causal optimization problem in Eq. (11). Due to the invariance of
the conditional E(Y |Pa(Y )), for each environment, its feasible set include the same causal
coefficient β. But the other optima that utilize the spurious associations will be different
across environments because the joint distribution of the covariates pe(x) is not invariant.
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(a) IRM optima (Env.#1) (b) IRM optima (Env.#2) (c) IRM optima (Two envs.)

(d) CoCo optima (Two envs.) (e) IRM & CoCo optima (Two envs.)

Figure 1: Geometry of the analytic optima sets for the IRM regularization and CoCo
objectives in the 3D space. The causal coefficient is β = (3, 2, 0). (a),(b): the
optima of the IRM regularization for each environment form a 3D quadric surface;
(c): the optima of the IRM regularization with two environments is the intersection
of the two surfaces, which forms two elliptic curves; (d): The optima of CoCo
objective is a discrete finite set for each environment. The CoCo optima over
two environments is the intersection consisting of the zero point and the causal
coefficient (the overlap of the black triangle and blue star points); (e): The top
view of the IRM regularization and CoCo optima for the two environments. The
optima set by CoCo (α ∈ {(0, 0, 0), (3, 2, 0)}) is a strict subset of that by the IRM
regularization (the dashed orange elliptic curves). Better viewed in color.
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Algorithm 1 CoCo with known exogenous variables

input : Data De = {Ye,Xe}, Xe ∈ Rne×p; the risk function Re for each environment e ∈ E ; the
set of known non-descendant variables C; the predictor f(·).

output : Coefficient estimation α with causal interpretation.
Initialize α randomly
while not converged do

for e in E do
Compute the gradient of the empirical risk:

ge(α) =
1

ne

∂

∂α

ne∑
i=1

Re(α; yei , ŷ
e
i ), ŷei = f(xe

i ;α)

Set α̃ = α ◦ (1− 1C) + 1C
Compute the optimization objective:

Le(α) = ‖ge(α) ◦ α̃‖2

end

Update α← α− η ∂
∂α

∑
e∈E Le(α) with step size η

end

The invariance property motivates us to aggregate the optimization problems across
environments,

min
α
fE(α) :=

1

|E|
∑
e∈E

(
‖∇Re(α) ◦α‖2

)
. (13)

Eq. (13) is the CoCo objective.

Denote the optima of each single environment objective as Fe := arg minα ‖∇Re(α) ◦α‖2.
The optima of the CoCo objective Eq. (13) consist of the intersection of all Fes,

FE := arg min
α

fE(α) =
⋂
e∈E
Fe,

as long as the intersection is not empty. Assumption 1,2 guarantee the nonemptiness because
the causal coefficient β ∈ Fe for all e.

Because FE is expressed as an intersection, its size shrinks with an increasing number of
environments, i.e., |FE1 | ≤ |FE2 | if E2 ⊂ E1. The multiple environments and heterogeneity
therein induce differences between the optima sets of each environment and, as a result,
narrow down the optima set FE of the CoCo objective. For instance, the sets Fe and FE
are visualized with an example DGP in Fig. 1. Fig. 1 (d) illustrates how two environments
and the intersection of single-environment optima sets help with the identification of the
CoCo objective.

Removing the non-informative solution from the optima set. While the environ-
ments help remove the points except for the causal coefficient from the optima of CoCo
objective, the zero vector remains a solution. We propose two modifications of the objective
to avoid the zero vector being an optimum.

11
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We first consider the scenario when certain covariate Xj∗ is known as an exogenous
variable independent of the random noise of the outcome, i.e., Xj∗⊥⊥ ε. Under Assumption 1,
any ancestor variable of the outcome is a proper exogenous variable. With such information,
we can modify the CoCo objective Eq. (13) to be

min
α

1

|E|
∑
e∈E
‖∇Re(α) ◦ α̃]‖2 , (14)

where α̃j∗ = 1 and α̃j = αj for j 6= j∗. In other words, the elements in α̃ corresponding to
the known exogenous variables are fixed as one. The following lemma demonstrates the
properties of Eq. (14)’s optima set.

Lemma 2 The optima set of Eq. (14) contains the causal coefficient and is a subset of
Eq. (13)’s optima set. If βj∗ 6= 0, The vector 0 is not an optimum of Eq. (14) almost surely.

The proof of Lemma 2 is in Appendix A.

When there is more than one known exogenous variable, we generalize α̃ as α̃ =
α ◦ (1− 1C) + 1C where C is the set of known exogenous variables. It further reduces the
number of non-causal optima for Eq. (14). The algorithm is summarized in Alg. 1. We will
discuss what conditions guarantee its output to be the causal coefficients in § 5 when the
environments are sufficiently heterogeneous. We find in theory (§ 5) and simulation (§ 7)
that the optima set of Eq. (14) can shrink to the causal coefficient.

In the scenarios when no variables are known as exogenous, an alternative method is to
use the risk function as an additive regularization of Eq. (13),

min
α

1

|E|
∑
e∈E

{
‖∇Re(α) ◦α‖2 + λrR

e(α)
}
, (15)

where λr ≥ 0 controls the regularization strength. Note that when there is only a single
environment |E| = 1, the ERM solution minimizes both terms in Eq. (15), so the minimizers
of Eq. (15) are identical to the minimizers of the ERM.

The mechanism behind the regularizer in Eq. (15) is that, though the causal coefficient
and the 0 vector both minimize Eq. (13), the risk of the 0 vector is higher than that of the
causal coefficient. So the risk function introduces inductive bias to disfavor the 0 vector.
To see this, for the DGP in Eq. (4) and the squared risk, under Assumption 1, the risk
Re(0) = β>E[xx>]β + E[ε2] + 2E[x>βε], and E[x>βε] = E[x>SβSε] = 0 since β\S = 0 and

xS⊥⊥ ε; and we have Re(β) = E[ε2]. Thus, Re(0) ≥ Re(β), which means the risk regularizer
in Eq. (15) would encourage the convergence to the causal coefficient β rather than the
0 vector. Optimizing Eq. (15) with the risk regularizer yields a predictive model that is
robust to perturbations of spurious associations. However, the risk regularizer may introduce
potential estimation bias when the focus is causal estimation. In practice, this bias can be
reduced by annealing the strength parameter λr during the optimization. We summarize
the complete algorithm in Alg. 2.

4. Connections to invariant risk minimization

Arjovsky et al. (2019) introduces IRM that can learn robust representation in the presence
of spurious associations between the covariates and outcome. In particular, IRM considers a

12
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predictor f(x;α) : Rp 7→ R with parameter α. In a setting similar to CoCo , it considers
a set of heterogeneous environments E and a risk function Re(α; ŷ) for each e ∈ E (for
notational clarity, we explicitly write the prediction ŷ in the notation of the risk function).
Based on the intuition that invariant predictor induces invariant features, IRM proposes the
following objective to find an invariant model

min
α,w

∑
e∈E

Re(α;w(f(xei ;α))) (16)

s.t. w ∈ arg min
w̄

Re(α; w̄(f(xei ;α))), for all e ∈ E ,

where w(·) is a mapping from the range of f(·) to ŷ. For tractable computation, Arjovsky
et al. (2019) further introduces the IRMv1 objective:

min
α

∑
e∈E

[
Re(α; f(xei ;α))︸ ︷︷ ︸

Empirical risk

+λ
(
∇w|w=1.0R

e(α;w · f(xei ;α))
)2︸ ︷︷ ︸

IRM regularization

]
,

(17)

where λ > 0 and w is simplified as a dummy scalar variable. The IRMv1 objective in
Eq. (17) consists of an empirical risk term and an IRM regularization term that encourages
invariance. Since the empirical risk does not produce the correct causal estimate, we focus
on analyzing the IRM regularization term.

Analytic and geometric connections. The IRM regularization and CoCo are connected
by the constrained optimization problem in Eq. (7). Specifically, the IRM regularization
can be derived from optimization in Eq. (7) for several common models. In § 3.3, we use
the directional derivative to obtain the set of feasible directions U = span{ej : j ∈ S} of
the idealized causal optimization and the first-order optimality condition in Eq. (10). An
interesting observation is that the causal parameter itself is a feasible direction with β ∈ U .
Since β is a feasible direction and is also an optimum of the optimization in Eq. (7), Lemma 1
implies that the directional derivative with direction β vanishes at the causal coefficient β,
which leads to the following lemma.

Lemma 3 For any partition P of the set {1, 2, · · · , p}, the optimality of the causal coefficient
β is an optimum of

min
α

∑
A∈P

(〈∇R(α)A,αA〉)2. (18)

Specifically, β is an optimum of

min
α

(〈∇R(α),α〉)2. (19)

Lemma 3 gives the general form of optimization that admits causal optimality. The proof of
Lemma 3 is in Appendix A.

When the outcome model is Linear-Gaussian or Linear-Bernoulli, minimizing the IRM
regularization is equivalent to solving Eq. (19). To see this, suppose a linear DGP as in
Eq. (4), linear predictor ŷe = α>xe, and a squared risk function, then(

∇w|w=1.0R
e(α;wα>xe)

)2
= (E[(ye − ŷe)α>xe])2

= (〈∇Re(α; ŷ),α〉)2. (20)
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ERM IRM regularization CoCo

minα ‖∇αRe(α) ◦ 1‖2 minα(∇αRe(α) ·α)2 minα ‖∇αRe(α) ◦α‖2

Table 1: Comparison of the ERM (by gradient methods), IRM regularization (for the linear
Gaussian and Bernoulli models), and CoCo objectives for one environment.

The left side of Eq. (20) is the invariant regularization term and the right side is Eq. (19).
Similarly, suppose the outcome is generated by ye ← Bernoulli(σ(β>xe)), the predictor

is ŷe = σ(α>xe) where σ(x) = 1/(1+exp(−x)) is the sigmoid function, and the risk function
is the cross entropy loss Re(α; ŷe) = −E[ye log(ŷe) + (1− ye) log(1− ŷe)]. Then1(

∇w|w=1.0R
e(α;σ(wα>xe))

)2
= (E[(ŷe − ye)α>xe])2

= (〈∇Re(α; ŷ),α〉)2. (21)

The comparison is summarized in Table 1.
The connections in Eqs. (19) to (21) reveal that IRM regularization implicitly imposes a

first order condition based on the directional derivative with the direction α, which offers
an explanation to the mechanism behind IRMv1. Lemma 3 and Eqs. (19) to (21) can
prove that, for linear Gaussian or Bernoulli models, the causal coefficient β is a minimizer
of the IRM regularization for one environment. The data from multiple environments
narrow down the optima set to the causal coefficient under the invariance assumption. The
additional empirical risk term in the IRMv1 objective plays the role of further regularization
by encouraging the solutions with high predictive performance.

The connection also illustrates the sub-optimality of the IRM regularization. Geomet-
rically, the IRM regularization, rewritten as the inner product between the gradient and
parameter vectors, only considers a single feasible direction β for the constrained optimiza-
tion problem Eq. (7). In contrast, CoCo finds the optimum across all the feasible directions
that form a (p−|S|) dimensional space U . The spectrum in Eq. (18) shows that the objective
of CoCo corresponds to the finest partition, imposing the strongest constraint, and has
the smallest optima set. Algebraically, we have p ‖∇R(α) ◦α‖22 ≥ (〈∇R(α),α〉)2 by the
Cauchy–Schwarz inequality. The inequality indicates that IRMv1 potentially minimizes a
loose lower bound. The following proposition shows that the CoCo objective is guaranteed
to have a better identification result than the IRM regularization.

Proposition 4 For linear-Gaussian or linear-Bernoulli outcome generating distribution, if
minimizing the IRM regularization in Eq. (19) identifies the causal coefficient (excluding
point 0) over environments E, then minimizing the CoCo objective Eq. (11) will identify the
causal coefficient (excluding point 0). The inverse statement does not hold.

Because of an excessive number of optima in the IRM regularization for a single en-
vironment, it has a high requirement on the number of environments and the type of

1. The form Re(α;σ(wα>xe)) follows the IRM implementation of binary classification “loss = mean nll(logits
* scale, y)” at https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/
colored_mnist/main.py.
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heterogeneity to sieve out the causal coefficient, or relies on the causal model to have the
lowest empirical risk among all the optima. These requirements are especially challenging
for high-dimensional problems. In a nutshell, connecting IRM regularization with causal
optimization in Eq. (7) indicates the potential looseness of IRMv1 objective in the linear-
Gaussian and linear-Bernoulli DGPs. Another potential issue with the IRM regularization
is that it might not optimize in a feasible direction for other types of DGPs, for example,
with a categorical outcome.

A case study. We present a brief case study to illustrate the connections. We consider
a linear-Gaussian DGP as the Case 1 of Table 3. The two environments correspond to

parameters (m
(1)
1 ,m

(1)
2 , γ(1)) = (2, 0.5, 2), (m

(2)
1 ,m

(2)
2 , γ(2)) = (3,−1, 0.5) in the DGP. The

invariant causal coefficient is β = (3, 2, 0). Fig. 1 visualizes the optima set of CoCo and the
IRM regularization where all the optima are computed analytically.

Fig. 1 (a) (b) show the set of optima for IRM regularization in each of the two environ-
ments; each set forms a quadric surface. When considering the two environments together,
the IRMv1 optima are the intersection of two 3D surfaces in Fig. 1 (c). Geometrically, as
shown in Fig. 1 (e), the intersection forms two continuous elliptic curves consisting of an
infinite number of points. The IRMv1 objective cannot identify the causal coefficient unless
β has the lowest empirical risk among all the optima of the IRM regularization, which, as
we will see, is not the case here. In contrast, Fig. 1 (d) shows the optima set of CoCo that
contains only a finite number of points per environment. With two environments, the optima
of CoCo becomes the zero point and the causal coefficient β. The causal coefficient can be
identified by the modified objectives in Eqs. (14) and (15) that remove the zero point.

We examine this case study empirically by implementing CoCo in Eq. (14) and IRMv1
in Eq. (17) with a large sample size N = 105 of each environment. CoCo objective with
j∗ = 1 converges to α̂CoCo = (3.001, 2.004, 0.000) with random initialization. IRMv1 with
λ = 1 converges to α̂IRM

1 = (−0.842,−0.390, 0.621) with initialization by a random seed and
converges to α̂IRM

2 = (2.932, 1.847, 0.017) with an idealized initialization manually set at the
true causal coefficient β = (3, 2, 0). Furthermore, α̂IRM

2 has the empirical risk as 0.97634 and
the IRM regularization as 0.00028, while those of β are 0.99852 and 0.00036, respectively.
Thus, among the optima of the IRM regularization for the two environments, the causal
coefficient β does not have the lowest risk, and the minimizer of the IRMv1 objective is
a biased causal estimate. We provide detailed computation and additional results with
different tuning parameters of IRMv1 for this case study in the Appendix C.1.

5. Identification with heterogeneous environments

Now we establish the causal identification for CoCo with the linear SEM in Eq. (4). Identifi-
cation requires the causal quantity of interest to be expressed as a functional of the observed
data distribution. This functional is also known as the causal identification strategy. In
the context of CoCo, we consider the functional that maps the joint distributions p(xe, ye)
over a set of environments to the risk function, then to the optima of CoCo objective. To
establish identification, we prove that the optimum of the CoCo objective is unique and
equals the causal coefficient of interest. In §§ 5.1 and 5.2, we present two assumptions on
the environment heterogeneity that guarantee the identification. In § 5.3, we provide two
sufficient conditions implying the identification assumption.
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Algorithm 2 CoCo with risk regularization

input : Data De = {Ye,Xe}, Xe ∈ Rne×p, the risk function Re for each environment e ∈ E ;
predictor fα(·); regularizer coefficients λr, λw; annealing scheme ANNEAL(·)

output : Predictor fα(·) that is robust to interventions
Initialize α randomly
while not converged do

for e in E do
Compute the gradient of the empirical risk:

ge(α) =
1

ne

∂

∂α

ne∑
i=1

Re(α; ŷei ), ŷei = f(xe
i ;α)

Compute: Le(α) = ‖ge(α) ◦α‖2
(Optional step:) add weak condition to the objective:

Le(α) += λw(〈ge(α),α〉)2

Add risk function as a regularization term:

Le(α) += λr
1

ne
(

ne∑
i=1

Re(α; ŷei ))

end

Update α← α− η ∂
∂α

∑
e∈E Le(α) with step size η

λr ← ANNEAL(λr)
end

5.1 Identification of the causal coefficients

The causal identification of an optimization-based approach is to demonstrate the existence
and uniqueness of its optimum, and it equals the causal coefficient. By fully characterizing
the optima set of the modified CoCo objective in Eq. (14), we explore the assumption on
the environments that bestows identification.

The optimum of the CoCo objective has a unique characteristic. It is a point α for which
∇Re(α)H = 0 and α\H = 0 with certain H ⊂ {1, 2, · · · , p}. Denote the risk function with

a subset of covariates xeH as the predictor by ReH(αH) = 1
2E[(y − α>HxeH)2]. We have the

following proposition.

Lemma 5 For the linear DGP as Eq. (4), a linear predictor and squared risk, if ∇Re(α)H =
0 and α\H = 0, then ∇ReH(αH) = 0; if ∇ReH(αH) = 0, then α = (αH ,α\H = 0)> satisfies
∇Re(α)H = 0.

Lemma 5 demonstrates that a CoCo optimum is an ERM minimizer over a subset of
covariates. When restricted to this subset of covariates, the ERM minimizer is shared by all
the environments.

Lemma 5 offers an interpretation of CoCo optimum. To keep the notation consistent,
denote C as the set of exogenous covariates and S as the unknown set of direct causes for
the outcome. For any set H with C ⊂ H ⊂ {1, 2, · · · , p}, we fit a regression model on Xe

H in
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each environment, and collect the regression coefficients as {α̂eH}e∈E . We call the set H an
invariant set, if the estimates

α̂eH = α̂e
′
H := α̂H , ∀e, e′ ∈ E . (22)

If H is an invariant set, we define a length p vector as an invariant vector by equating it to
α̂H when restricting to the set H and padding it with zeros at other elements. By Lemma 5,
the optima of the objective Eq. (14) consist of all the invariant vectors.

Based on the interpretation of CoCo optimum, we introduce the following assumption
for sufficiently heterogeneous environments.

Assumption 3 (Effectiveness) There is only one invariant vector (defined in Eq. (22))
for all the sets H with C ⊂ H ⊂ {1, 2, · · · , p}. C is the set of known exogenous variables.

Then we have the following identification result.

Theorem 6 Under Assumptions 1, 2 and 3, assuming the Gram matrix We = E[xe(xe)>] �
0 for all e ∈ E, the causal coefficient β is identifiable, and is given by

β = arg min
α

1

|E|
∑
e∈E
‖∇Re(α) ◦ α̃]‖2 , (23)

which is the optimum of the objective in Eq. (14).

The invariance Assumption 2 ensures the existence of a point that reaches the minimum
value of the objective Eq. (14), and this point is the causal coefficient, while the effectiveness
Assumption 3 induces uniqueness of the solution. The following corollary provides practical
guidance in collecting multi-environment data.

Corollary 7 Assume the environment sets E1 ⊂ E2, then in Theorem 6, (i) if the invariance
Assumption 2 holds for E2, it holds for E1; (ii) if the effectiveness Assumption 3 holds for
E1, it holds for E2.

5.2 Identifying the effects of the exogenous variables

The effectiveness assumption can be checked with the observed data, but it needs regression
over the power sets of covariates across the environments, which can be computationally
expensive. In practice, we might be interested in estimating the causal effect of specific
variables instead of the whole causal coefficient. This motivates us to explore identification
results under a relaxed Assumption 3.

Suppose the goal is to estimate the causal effect of a known exogenous variable xj∗ . For
example, such a variable could be the standard treatment variable under the unconfounded-
ness assumption (Imbens and Rubin, 2015). Though xj∗ is assumed exogenous, i.e.,xj∗⊥⊥ ε,
regressing over xj∗ alone may produce biased estimation because xj∗ may correlate with
other causes xS\j∗ in the DGP.

We adopt the following notations. Recall that S is the set of direct causes, C is the
known exogenous variables, j∗ ∈ C, and H is a set C ⊂ H ⊂ {1, 2, · · · , p}. Denote WAB to
be a sub-matrix of the Gram matrix W = E[xx>] with rows in the index set A and columns

17



Yin, Wang, Blei

in the index set B. For the environments E = {e1, · · · , em}, denote WE
H ∈ R(m·|H|)×|H| as a

stacking matrix that stacks W e
HH by row, i.e. WE

H := [W e1
HH |W

e2
HH | · · · |W

em
HH ]>.

Assumption 3 excludes a non-causal invariant vector when regressing over a set of
covariates xeH . Here, we analyze the property of an invariant vector. By Proposition 5, the
invariant vector can be computed by zeroing out the gradient

∇αHRH(αH) = W e
HH(αH − βH)−W e

HHcβHc − seH , (24)

where Hc is the complement of H in {1, 2, · · · , p} and sej := E[xejε
e] = cov(xejε

e). Denote a

stacking vector θEH ∈ Rm·|H| as θEH := [W e1
HHcβHc + se1H , · · · ,W

em
HHcβHc + semH ]>. By setting

the gradient in Eq. (24) to zero and by Proposition 5, if

WE
Hδ = θEH (25)

holds for δ 6= 0, H is an invariant set with invariant vector α, α̂H = βH + δ, α̂\H = 0. This
violates Assumption 3 because α̂ and β are two different invariant vectors that both minimize
the CoCo objective. We formulate the negating statement as the following assumption.

Assumption 4 (Weak effectiveness) ∀ H 6= S, C ⊂ H ⊂ {1, 2, · · · , p}, if the stacking
vector θEH 6= 0, it is not in the column space of the stacking matrix WE

H , i.e., θEH /∈ C(WE
H).

In sum, we have shown (¬ Assumption 4) ⇒ (¬ Assumption 3), thus the contrapositive
implies (Assumption 3)⇒ (Assumption 4). On the other hand, cases exist when Assumption 4
hold but Assumption 3 doesn’t, so Assumption 4 is a weaker assumption. For example, if
two subsets of causes Si ⊂ S, i = 1, 2, C ⊂ Si, and xeSi ⊥⊥ x

e
\Si , then both S1 and S2 are

invariant sets when E[xe\Si ] = 0. Hence it violates Assumption 3 due to the existence of
multiple invariant sets. But in such a case, Assumption 4 can still hold because setting
H = Si in Eq. (25) makes θEH = 0 and δ = 0. The CoCo optimum might be (βS1

,0) and
(βS2

,0), which share the common unbiased part βC .
With the weak effectiveness assumption, we have the following identification result.

Theorem 8 Under Assumptions 1, 2 and 4, the causal effect of xC on y is identifiable and
is given by the optimum of objective Eq. (14). That is, for

α∗ ∈ arg min
α

1

|E|
∑
e∈E
‖∇Re(α) ◦ α̃]‖2 , (26)

α∗C = βC, where β is the causal coefficient.

Theorem 6 guarantees the identification of the whole causal coefficient vector β. In
comparison, Theorem 8 identifies the effects of the known exogenous variables βC based on
a weaker effectiveness assumption. In the next section, we leverage the explicit analytic
form of Eq. (25) and discuss several scenarios where weak effectiveness can be guaranteed.

5.3 Sufficient conditions for identification

We show two approaches that ensure sufficient heterogeneity of the environments. One is by
actively taking do-interventions, and the other is by passively checking the rank conditions.
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Effectiveness by do-interventions. Consider the do-intervention (Pearl, 2009) as

Xe
j ← aej , aej ∼ p(a), j ∈ Ie,

where e is environment index, e ∈ E , Ie is the index set of intervened variables, and
p(a) is a continuous distribution defined on R. do(Xe

j = aej) means all the samples of Xj

in the environment e are fixed at the constant aej during the data generation. Suppose
the intervention on one variable is independent of other interventions and variables. The
following corollary gives a sufficient condition that guarantees Assumption 4.

Corollary 9 For the linear SEM in Eq. (4) and predictor in Lemma 1, and for do-
interventions, suppose ∀j ∈ {1, 2, · · · , p}, ∃ e, e′ ∈ E s.t. Ie = Ie′ = {j}, and ∃k ∈ C,
E[Xk] 6= 0, then the optimum α∗ of the optimization in Eq. (14) satisfies α∗C = βC, where β
are the causal coefficients.

Corollary 9 is closely related to the identification results of ICP in Peters et al. (2016,
Theorem 2). Comparing to Corollary 9, ICP asks for one less do-intervention on each
covariate, but it crucially relies on the invariance assumption in Eq. (6) that is stronger
than Assumption 2 of CoCo.

Effectiveness by rank checking. In many cases, we collect data from environments
where the heterogeneity is introduced not by the manual interventions but by the natural
factors such as spatial and temporal differences. We propose a checking method to ensure a
sufficient but necessary condition for the Assumption 4, which is easy to compute.

As § 5.2, denote C ⊂ P = {1, 2, · · · , p} as the known exogenous variables. For each
environment e ∈ E , the Gram matrix using the observed data is We = E[(Xe)TXe] ∈ Rp×p
and the submatrix We

CP is the rows of We with index in C. Let WE
CP ∈ R(|E|·|C|)×p be a

matrix that stacks We
CP by the rows for all e ∈ E .

Assumption 4 assumes the linear system WE
Hδ 6= θEH for any δ 6= 0. A key observation

is that for j ∈ C, E[Xjε] = 0 due to exogeneity, so seC = 0 for the gradient computed in
Eq. (24). Therefore, Assumption 4 is guaranteed if ∀δ 6= 0,WE

CHδ 6= WE
CHcβHc , which can

be further guaranteed if the homogeneous linear system WE
CPv = 0 only has trivial solution

for the variable v. This linear system only depends on observed data. Then we have the
following corollary.

Corollary 10 Assumption 4 is guaranteed if the linear system WE
CPv = 0 only has the

trivial solution v = 0.

In practice, we first collect data from environments E where the heterogeneity may come from
do-interventions or soft interventions that change the distribution of the covariates (Eberhardt
and Scheines, 2007). Then we check Corollary 10 by equivalently checking if the matrix WE

CP
has full column rank. If the rank is full, we proceed to Algorithm 1 with environment set E ;
otherwise, we collect data from a new environment. The algorithm is summarized in Alg. 3.

6. Extensions to the nonlinear model

So far, we focus on the linear SEMs. Here we generalize these results to a nonlinear SEM and
a predictor that maps linear combinations of covariates to the outcome, i.e. y = f(Ax). For
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Algorithm 3 CoCo with heterogeneity checking
input : The environmental set E , the set of known non-descendant variable C
output : Coefficients α with causal interpretation
Initial E = ∅
repeat

Randomly choose a valid intervention
Let E ← E ∪ {e} with e as the index of new environment
Collect data in environment e, De = {yei ,xe

i}
ne
i=1

Update WE
CP

until rank(WE
CP) = p;

Run Algorithm 1 with {E , C, {De}e∈E , {Re(·)}e∈E} where Re(·) is the risk function.

example, the fully connected neural network is a special case in such a functional form. The
generalization of the algorithm to the nonlinear model closely follows the derivation in § 3.
The first step is to build a constrained optimization problem similar to causal optimality in
Lemma 1 and show that it admits the causal coefficient as a solution. The analysis presented
in § 3.3 based on the directional derivative can then be applied to nonlinear models.

Suppose we have a collection of environments E , and for each e ∈ E , we observe i.i.d.
data for variables (xe, ye), xe ∈ Rp, ye ∈ R. Suppose the underlying DGP is

ye ← f(B̃∗xeS ;γ∗) + εe (27)

where S ⊂ {1, 2, · · · , p}, εe ⊥⊥ xeS and E[εe] = 0. f : RK → R is an arbitrary function
mapping with causal parameters β∗ = (B̃∗,γ∗) where B̃∗ ∈ RK×|S| and γ∗ ∈ RM . When
K = 1 and f(·) is an identity mapping, Eq. (27) reduces to the linear SEM. Eq. (27) can
represent a flexible DGP that generates the outcome by a fully-connected neural network,
where K and B̃∗ are the width and weights of the first hidden layer, respectively.

Assume the nonlinear predictor is

ŷe = f(Bxe;γ), (28)

where B ∈ RK×p, γ ∈ RM and α = (B,γ) are the parameters to optimize. We can re-write
B̃∗xeS = B̃∗Λxe where Λ ∈ R|S|×p has the i-th row as e>i if i ∈ S and as 0>p if i /∈ S. Let

B∗ = B̃∗Λ where the j-th column of B∗ is 0K if j /∈ S. Then for square error Re(α) we
have the following proposition.

Proposition 11 (Causal Optimality, Nonlinear) With the DGP in Eq. (27) and with
Assumptions 1 (ii) (iii), the causal coefficient α = (B,γ) = (B∗,γ∗) is an optima of the
following problem

min
B,γ

R(B,γ), ŷ = f(Bx;γ)

s.t. Bkj = 0 if B∗kj = 0, 1 ≤ k ≤ K, 1 ≤ j ≤ p
γm = 0 if γ∗m = 0, 1 ≤ m ≤M.

(29)

20



Optimization-based Causal Estimation

Proposition 11 greenlights the analysis in § 3. The CoCo objective in Eq. (15) can then
be used for nonlinear models in Eqs. (27) and (28),

min
B,γ

1

|E|
∑
e∈E

{
‖∇Re(α) ◦α‖2 + λrR

e(α)
}
, (30)

where α = (B,γ). When B = B∗, the multiplication Bx zeros out the non-causal covariates
x\S so that the prediction ŷ is independent of the spurious covariates.

In situations when the causes and non-causes are not disentangled in the covariate space,
there could be a representation z(x) of the covariates where zS(x) are the causes of the
outcome and z\S(x) are the non-causes. Based on the representation z, the DGP becomes

ye ← f(B̃∗zS(xe);γ∗) + εe, and the predictor is ŷe = f(Bz(xe;γ1);γ2) with parameters
α = (B,γ1,γ2). As will be shown in §§ 7.3 and 7.4, empirically we find CoCo in such
situations can produce predictions not depending on the spurious associations. For example,
§ 7.3 studies the Color-MNIST data set where the input is a digit image x ∈ R14×14×2 with
14× 14 pixels and 2 color channels. Across the data points, the causal variables (the digit
pixels) change their positions in the image and color channels. The position change makes
the selection of causes infeasible in the covariate space but possible in the representation
space. We find that for such cases, CoCo can still learn a robust predictor relying on the
causal information such as the digit pixels. We leave the theoretical analysis of causal
representation learning by CoCo as an interesting future direction.

In the nonlinear regime, due to the high flexibility of the predictor, identification in the
high-dimensional parameter space can be difficult. Different parameterizations can represent
a similar mapping from the input to the output. Thus the same data generation might
correspond to an equivalent class of points in the parameter space (Heinze-Deml et al., 2018;
Christiansen et al., 2020). Consequently, the optima of CoCo may not be unique. However,
the optima points enjoy robust predictive properties.

Proposition 12 (Local optimality) Suppose α′ minimizes CoCo objective Eq. (13) with
fE(α

′) = 0. Suppose a new environment ι satisfies pι(x, y) =
∑

e∈E wep
e(x, y),

∑
e∈E we = 1,

then ∂
∂απ

Rι(α)|α=α′ = 0, π = supp(α′).

Proposition 11 and Assumption 2 guarantee that the causal coefficient β satisfies fE(β) =
0 in Eq. (13). Therefore, if there exists another global optima α′ under these assumptions,
it satisfies the condition fE(α

′) = 0 in Proposition 12. Proposition 12 shows that if the data
distribution of a new environment is a mixture of those for the training environments, the
optimum by CoCo already minimizes the predictive risk of this new environment locally
for its nonzero elements. This means CoCo optima can transfer the predictive accuracy,
quantified by the risk value, from the training environments to their mixtures. As we will
show in empirical studies, a predictor optimized by CoCo generalizes the predictive accuracy
to non-i.i.d. data in the new environments where the spurious associations change.

7. Empirical studies

In the empirical study, we aim to answer the following questions: (1) Can CoCo accurately
estimate causal effects when some covariates are spuriously associated with the outcome?
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Figure 2: The graphs for the simulation studies in § 7.1. The case ID of each graph is in the
rectangle box. The blue arrow represents a path whose parameter varies across
environments, the blue circle of a covariate means its distribution given parents
varies across environments, and the blue circle of outcome means the variance of
its additive noise varies across environments. Invariance Eq. (5) holds in all cases.
The shaded nodes are the variables that are observed.

(2) Can CoCo make an accurate prediction in new environments by relying on causal
information? (3) How sensitive is CoCo to its assumptions and tuning parameter? (4)
Are the empirical results aligned with theoretical analysis? To answer these questions, we
study CoCo and its comparable methods on simulated data, semi-synthetic data, and real
data. Code implementations for the empirical studies are available at https://github.

com/mingzhang-yin/CoCo.

7.1 Causal inference on the synthetic data

In this section, we apply CoCo for causal inference with linear synthetic data. Consider the
scenario where we know one exogenous variable, but the other variables are of unknown
status; some might be spurious variables, some might be direct causes, some might be neither.
As discussed in § 3, running ERM with such data will end up with biased estimates of the
causal coefficients. But if we have data from multiple environments, we can use CoCo to
estimate the causal coefficients.

We generate data from five different graphs in Fig. 2 with SEMs in Table 3. In cases 1 to
5, variables x3, x4, x4, x4, x2 are spuriously associated with the outcome, respectively. The
mapping from the causes to the outcome is linear with additive noise. We specify x1 as a
known exogenous variable (for the use of the method in Alg. 1) and run CoCo, IRM, and ERM
to estimate the causal coefficients. To generate data from different environments, we set the
parameter γe in SEMs of Table 3 with environment-specific parameters me

1,m
e
2 ∼ Unif(0, 1),

me ∼ Unif(1, 2). We generate two environments with γe ∈ {0.5, 2.0}, each environment with
10,000 data points. As required, the DGPs leave the causal coefficient invariant.
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Table 2: The mean absolute error of the estimations for causal parameters β (lower the
better). The estimate by CoCo (this paper) is close to the true causal coefficients
across the DGPs. CoCo has a more accurate estimation comparing to RVP (Xie
et al., 2020), V-REx (Krueger et al., 2020), Causal Dantzig (Rothenhäusler et al.,
2019), IRM (Arjovsky et al., 2019) and ERM. The reported mean and the standard
deviation in the parentheses are computed across ten independent trials.

Case 1 2 3 4 5

ERM 0.31 (0.06) 0.16 (0.00) 0.32 (0.00) 0.19 (0.03) 0.38 (0.01)

V-REx 0.16 (0.06) 0.11 (0.01) 0.44 (0.01) 0.13 (0.04) 0.06 (0.10)

RVP 0.10 (0.04) 0.10 (0.01) 0.43 (0.01) 0.11 (0.04) 0.05 (0.04)

Dantzig 0.54 (0.62) 3.23 (2.64) 4.95 (3.06) 0.43 (0.05) 0.20 (0.01)

IRMv1 2.12 (0.70) 0.01 (0.00) 0.02 (0.01) 2.17 (0.65) 0.72 (0.35)

CoCo 0.01 (0.00) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.00)

The five graphs test different scenarios: (1) independent causes; (2) observed mediator;
(3) observed confounder and mediator; (4) observed confounder and unobserved mediator;
(5) unobserved confounding with an omitted common cause. The data generation covers the
following circumstances: variables except the outcome might be generated from nonlinear
models (Case 2, 3); the distribution of the causes of the outcome might shift across environ-
ments (Case 1, 4); the variance of the outcome distribution conditional on its causes might
vary across environments (Case 3). Whether a method can produce accurate estimation
in all of these situations reflects its generalizability. We evaluate with the mean absolute
error (MAE) between the estimation α and the true coefficients β. We compare CoCo with
ERM, IRM (Arjovsky et al., 2019), V-REx (Krueger et al., 2020), RVP (Xie et al., 2020)
and Causal Dantzig (Rothenhäusler et al., 2019). The properties and assumptions of these
methods are summarized in Table 5 in Appendix B for comparison. For the algorithms with
tuning parameter λ, we report the best result for IRM with λ ∈ {2, 20, 200}, for V-REx
and RVP with λ ∈ {10, 102, 103, 104}. We choose stepsize from {0.01, 0.1} that produces the
lowest objective for each method. For all methods, the algorithm is considered to converge
if the mean absolute difference between the parameters in consecutive iterations is less than
10−3 and the total iterations are over 104.

The results are presented in Table 2. The mean MAE shows that the estimates of
pure prediction ERM are biased when the covariates have spurious associations with the
outcome. IRMv1 with proper hyper-parameter performs well in cases 2, 3, while it has large
MAEs in other cases. It suggests the IRMv1 performance is affected by a limited number of
environments and the type of intervention. The MAE by IRM has a high standard deviation
across random trials, indicating IRM converges to different global optima. This echoes the
discussion in § 4 that the IRMv1 objective is over-relaxed and has excessive non-causal
optima. V-REx and RVP perform better than ERM except in Case 3 when the variance of
the exogenous noise of outcome is not invariant. This means their performance largely relies
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on whether a strong assumption of invariance in Eq. (6) is satisfied. Causal Dantzig has
large MAE in these cases which might be because the DGPs do not satisfy the inner-product
invariance it requires (Rothenhäusler et al., 2019). In comparison to these methods, CoCo
estimates have the lowest or equally lowest error uniformly over all the cases. The MAEs
with four environments are presented in Fig. 8 in Appendix.

Table 3: SEMs for the simulation study in § 7.1. The environments are indexed by e.
γe,me

1,m
e
2,m

e are fixed scalars in an environment.

Case 1 Case 2 Case 3

xe2 ←N (me
2, (γ

e)2)

xe1 ←N (me
1, (γ

e)2)

ye ←3xe1 + 2xe2 +N (0, 1)

xe3 ←γeye +N (0, (γe)2)

xe2 ←N (1, (
1

2
)2)

xe1 ←xe2 + Unif(−1, 1)

xe3 ← sin(xe1) +N (0, (
1

2
)2)

ye ←2xe1 + 1.5xe3 +N (0, 1)

xe4 ←γeye +N (0, 1)

xe2 ←N (1, (
1

2
)2)

xe1 ←xe2 + Unif(−1, 1)

xe3 ← sin(xe1) +N (0, (
1

2
)2)

ye ←2xe1 + xe2 + 1.5xe3 +N (0, (γe)2)

xe4 ←γeye +N (0, 1)

Case 4 Case 5

xe2 ←N (1, (
1

2
)2)

xe1 ←xe2 + Unif(0,me)

xe3 ←xe1 + xe2 +N (0, (
1

2
)2)

ye ←xe2 + 2xe3 +N (0, 1)

xe4 ←γeye +N (0, 1)

εe ←N (0, 1)

xe1 ←N (1,
1

2
)

ye ←2xe1 + εe

xe2 ←0.5γeεe + (0.5 + γe)xe1 +N (0, 1)

As an ablation study, we replace the elementwise produce in CoCo objective by the inner
product and minimize

∑
e∈E(〈∇Re(α), α̃〉)2. We call this method Naive-CoCo, which is an

intermediate between the CoCo objective Eq. (14) and the IRMv1 objective in Eq. (20). Naive-
CoCo has high MAEs 1.17, 0.53, 0.51, 1.31, 0.03 across the five cases, respectively. It means
the key element for the CoCo objective is the Hadamard product and the norm derived from
optimizing in all the feasible directions (§ 3.3), instead of knowing a variable is exogenous.

To test the model checking method proposed in § 5.3, we generate heterogeneous data with
γe ∼ Unif(0, 5) for each environment. When the set of known non-descendant of outcome
is C = {1}, Cases 1, 4, 5 pass the checking condition with the number of environments 3,
3, 2 respectively, while cases 2, 3 do not pass. We further check the nonidentifiable case
in Appendix C.2. It cannot pass the checking step with any number of environments. In
practice, CoCo can accurately estimate the causal coefficients with two environments, as
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shown in Table 2. It validates our analysis in § 5.3 that the checking step is a sufficient
condition for identification but is not a necessary condition.

Model Mismatch. Using data from Case 5, we further study the performance of ERM
and CoCo when the predictive model does not exactly match the data-generating model.
The data in Case 5 is generated from a linear model. We compare two predictors, one is
a linear model that matches the DGP, and the other is a nonlinear neural network. Both
models are trained with ERM and CoCo. In Case 5, X1 is the cause, and X2 is a predictive
but non-causal covariate.

As shown in Fig. 3, when the model is specified correctly as linear, the predictor trained
by ERM fail to generalize to new values of X2, but the model trained by CoCo can generalize
to any input (X1, X2). When the predictor is nonlinear, differing from the DGP, ERM
prediction is only accurate for the data interpolating the training points. In contrast, CoCo
can make accurate predictions for the inputs with new values of spurious covariate X2. From
the robust prediction view, CoCo prediction can generalize to new environments by avoiding
the spurious association for both linear and nonlinear predictors.

(a) ERM, linear (b) CoCo, linear (c) ERM, nonlinear (d) CoCo, nonlinear

Figure 3: Prediction accuracy for CoCo and ERM with linear and nonlinear predictors. The
heatmap is the prediction error (ŷ − E[y|x])2, the x-axis, y-axis are the values of
input x1 and x2. The orange points are training data from two environments.
CoCo has better out-of-sample generalization with a wider region of low error
(blue region) than ERM for both linear and nonlinear predictors.

7.2 Gaussian mixture example

We study a multi-class classification problem with a categorical outcome when the inputs
contain non-causal covariates. We modify a Gaussian mixture model (GMM) to simulate
the data set. The observed covariates are (xe1,x

e
2) and the outcome is ye, where e is the

environment index. For each environment e, the data are generated with SEM

xe1 ←
∑K

k=1
1
KN (µk, I)

ye ← Categorical(p1, · · · , pK)

xe2 ← (1− pe)δueye + peδuek1
,

(31)
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where pk = N (xe1;µk, I)/
∑K

k′=1N (xe1;µk′ , I), k1 ∼ Multinomial(1/K, · · · , 1/K). Among
the covariates, the mapping from the causes xe1 to label ye is invariant across all e, whereas
xe2 is predictive to ye due to spurious associations.
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Figure 4: The change of test predictive error of CoCo with different levels of invariance,
number of environments, and the hyperparameter. The dashed line is the ERM
error rate for reference. The error bar is the standard deviation over 5 trials.
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Figure 5: Trace plot of training and testing accuracy for CoCo, IRM and ERM on GMM and
Colored MNIST data. In panel (b), the accuracy is measured on predicting the
noised label ye. CoCo has the highest prediction accuracy in a new environment.

The observed data are generated from Eq. (31). The GMM component centers µk =√
1.5Kek ∈ RK . To generate the non-causal covariates xe2, we first generate K random

vectors {uek}Kk=1 with uek ∼
∏[k/2]
i=1 U(0, 1) for environment e. Then for a data point in

the component ye, xe2 equals ueye with probability 1 − pe and equals a random vector

from {uek}Kk=1 otherwise. By doing so, xe2 is associated with ye, but the association varies
across environments when ue1:K changes with environment e. The DGPs that generate
the environments are characterized by the values of ue1:K and pe. We set the training
environments with K = 5 and pe ∈ {0.01, 0.02, · · · , 0.05} in Eq. (31). For a validation/test

environment f we generate a new set of {ufk}
K
k=1 and set pf = 0.
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We evaluate the test performance by averaging the accuracy over ten testing environments.
If the predictor learns to predict based on the causes xe1 instead of the spurious covariates
xe2, it can accurately predict ye in training and testing environments.

We use a fully connected neural network with two hidden layers as the predictor and
train the model with Alg. 2. For both CoCo and IRM, the penalty weight is chosen from
ten values equally spaced from 1 to 100 on a log-scale using the validation environments.
The weight on the empirical risk term is reduced to 0 after 5k iterations.

The results are shown in Figs. 4 to 6 and Table 4. Fig. 5 is the trace plot for the
predictive accuracy. The testing accuracy increases for all the methods in the early stage
of training but drops in the later stage for ERM and IRM. We hypothesize that ERM and
IRM first improve the prediction by utilizing all the covariates, including the causal ones.
But in the later stage of training, it relies more heavily on the spurious associations to boost
the training accuracy, which harms the accuracy at the test time. Fig. 6 shows the weight
matrix that connects the input and the first hidden layer. The model trained by CoCo zeros
out the weights associated with the spurious covariates x2 (the right block), aligned with
the analysis in Proposition 11. In comparison, the weights obtained by IRM and ERM are
mostly nonzero, passing the spurious association from the input to the subsequent hidden
layers and outputs.

Table 4 summarizes the numerical results. CoCo and V-REx have the highest prediction
accuracy in the test environments. In this example, the strong invariance Eq. (6) is satisfied
due to the DGP in Eq. (31), which meets V-REx assumption. Hence, V-REx has a high
accuracy close to CoCo. When the data satisfies the strong invariance, it is potentially
beneficial to add the V-REx regularization of equal noise variance to the CoCo objective.
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Figure 6: The heatmap for the first layer weight matrix of the neural networks trained by
CoCo, IRM and ERM on the GMM data. The matrix dimension is 10× 8 where
the input dimension is 8, and the first hidden layer dimension is 10. In the input,
the first five elements are x1, and the last three elements are x2. Comparing to
IRM and ERM, CoCo solution has the weights related to non-causal input x2

(the right block) close to 0.

Sensitivity to the assumption and hyper-parameter. In Fig. 4, we study how CoCo
performs if the invariance assumption is violated and the hyperparameters change. In

27



Yin, Wang, Blei

panel (a), we construct the training environments by changing the cluster centers {µk}Kk=1

in Eq. (31) to {µk + εek}Kk=1, εek ∼ N (0, σ2IK). The noise εek changes the mapping from
the covariates xe1 to the label ye across the environments, deviating from the invariance
assumption. The noise scale σ2 reflects the magnitude of deviation. Panel (a) shows
that the testing predictive accuracy increases as the invariance tends to hold. Under a
moderate deviation from the invariance assumption, the test prediction by CoCo remains
more accurate than that by ERM. In panel (b), we study how the test accuracy varies with
the number of environments M in training. Training environments are constructed by setting

the vectors uek ∼
∏[k/2]
i=1 U(0, 1) for all k and pe ∈ {0.01, 0.02, · · · , 0.01M} in Eq. (31). We

find a growing number of environments reduces the testing error monotonically due to the
increased environments heterogeneity. In panel (c), we study how the testing error changes
with the penalty weight λr in CoCo objective Eq. (15). When λr is large, the objective is
close to the empirical risk, and the test error is high; when λr is small, the parameters might
collapse to the point 0. Between the two extremes, CoCo can learn a model that makes
robust predictions in new environments.

7.3 Colored MNIST (CMNIST)

CMNIST is a semi-synthetic data set for binary classification introduced in Arjovsky et al.
(2019). Based on the MNIST data set, the image of hand-written digits 0-4 and 5-9 are
labeled as ỹ = 0 and ỹ = 1, respectively. For each environment, the outcome ye is generated
with probability 0.75 as ỹ and with probability 0.25 as 1 − ỹ. We call ỹ the clean labels
and ye the noised labels. The digit is colored green with probability pe if ye = 1 and with
probability 1 − pe if ye = 0; if not colored green, it is colored red. The DGPs across the
environments differ in the value of pe. Environments are constructed for the training with
pe ∈ {0.1, 0.2}, for the validation with pe = 0.5 and for the testing with pe = 0.9.

The predictor takes the colored digit image as the input and the noised label ye as
the target. The input x ∈ R14×14×2 where the image has 14 × 14 pixels and two color
channels. The relationship between the digit shape and ye is genuinely causal, while the
relationship between the color and ye is spurious. The goal is to learn a predictor that
makes the predictions based on the digit shape rather than the color. A predictor using
color information cannot accurately predict the noised label ye at the test time and the
clean label ỹ during training and testing.

Empirical results. We optimize the predictor, a fully connected neural network with two
hidden layers, by Alg. 2. For the algorithms in § 7.1, we compare with ERM, IRM (Arjovsky
et al., 2019), and V-REx (Krueger et al., 2020) that can generalize to nonlinear models.
More baseline results are reported in Table 7 in Appendix.

The weight of the risk term for CoCo and V-REx objectives is chosen on the validation
environment from 2×{10−1, · · · , 10−5}, and is reduced by a factor of 10 after 15k iterations
(half of the total iterations). We use Adam optimizer (Kingma and Ba, 2014) with learning
rate 10−4. For IRM, we reduce the learning rate of the public code to 10−4 to ensure stability
over long iterations, and we use all the other hyperparameters and annealing strategies
provided in the author’s code 2.

2. https://github.com/facebookresearch/InvariantRiskMinimization
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Table 4: Predictive accuracy in training and testing environments on the GMM, CMNIST,
and Wildlife data. For GMM, the Oracle results are the predictions with causes xe1
instead of (xe1,x

e
2). For CMNIST, the prediction accuracy is reported for both clean

label ỹ and noised labels ye; the Oracle is the same function fitted on grey-scale
images by ERM.

GMM CMNIST Wildlife

Train Test Train (ỹ) Test (ỹ) Test (ye) Train Test

ERM 99.4 51.0 75.8 44.4 31.1 99.6 58.4

IRM 95.9 75.9 81.4 70.3 46.5 83.4 84.9

V-REx 92.6 91.4 75.2 49.5 31.8 96.2 67.3

CoCo (this paper) 91.9 91.6 93.0 92.9 74.7 86.1 85.2

Random Guess 20 20 50 50 50 50 50

Oracle 92.3 91.8 99.3 97.9 74.8 - -

Fig. 9 in Appendix D visualizes the weight matrix that connects the input x and the first
hidden layer. The weight learned by ERM connects the hidden layer to all the inputs, hence
encoding non-causal information in the latent representation. In contrast, the weight learned
by CoCo sets multiple columns close to zero and is symmetric over the two color channels,
potentially removing the dependence of the hidden layer on some non-causal pixels.

The numerical results are shown in Table 4. The trace plot for the noised label is in
Fig. 5 (b) and the trace plot for the clean label is in Fig. 7 (a) of Appendix D. The results
show that ERM predicts labels with accuracy close to 1 in the training but has the lowest
accuracy at the testing. The reason might be that its prediction largely depends on the color
information rather than the digit shape, whereas the association between color and label ye

changes from training to testing environments. The testing accuracy of IRM increases in the
early stage of training but drops in the later stage. We hypothesize that the model at first
improves the prediction by utilizing all the information including that of digit shape, but
later it relies more on the color information, which reduces the accuracy at the test time.
Similar patterns appear in the prediction of clean label ỹ, as shown in Fig. 7.

7.4 Natural image classification

In this example, following Cloudera (2020), we adapt the iWildCam 2019 dataset (Beery et al.,
2019) that contains wildlife images taken in the wild. The images are collected from different
cameras, each at one of 143 locations. The goal is to classify coyotes and raccoons in images.
The data collected in different locations and time usually follow different distributions due
to varying physical factors such as landscape, season, vegetation, illumination conditions,
etc. Therefore, the images taken from different cameras can be considered data from
heterogeneous environments. The physical factors reflected in the image background might
be predictive of the species but due to spurious association. Our goal is to learn a predictor
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that can make accurate predictions in a new environment by training on the data from a
limited number of environments. This goal can be achieved if the predictor manages to
recognize coyotes and raccoons based on animal pixels instead of using spurious associations
from the backgrounds.

Based on the setting of Cloudera (2020), we use images from two locations as the training
data and images from another location as the test data. We use images from an additional
location as the validation data. The inputs are 512-dimensional features extracted from
ResNet18 (He et al., 2016), a pre-trained model on the ImageNet dataset (Deng et al., 2009).
The predictor is a fully connected neural network with one hidden layer of size 10. CoCo is
trained by Alg. 2. In this example, we find that adding the weak condition (19) in Alg. 2 with
weight λw improves convergence stability with random initialization3. The hyperparameters
are selected on the validation environment. We set the weak condition weight λw = 10−4

and the risk regularizer weight λr = 1. λr is reduced to 10−5 after 100 epochs. The risk
regularizer is an inductive bias to encourage nonzero solutions. After the optimizer is
sufficiently away from the zero point, annealing the risk regularizer prevents the algorithm
from minimizing the objective by reducing the risk function, hence preventing it from using
the spurious association. CoCo is compared with ERM, IRM (Arjovsky et al., 2019), and
V-REx (Krueger et al., 2020). All methods are trained by ADAM with a learning rate 10−3.

The result is summarized in Table 4 and Fig. 7 (b) in Appendix D. It demonstrates that
ERM has high accuracy in the training but low accuracy during testing. CoCo accuracy is
slightly higher than IRM and is much higher than V-REx and ERM. Compared to ERM,
prediction by CoCo has a slight drop in training accuracy but has significantly higher testing
accuracy. CoCo has the smallest performance gap between training and testing, indicating
that it largely avoids predicting animal labels via information from image backgrounds, i.e.,
information that varies across environments.

8. Conclusion

This paper formulates causal estimation as a constrained optimization problem. Applying
directional derivative methods to this optimization problem, we propose the CoCo objective,
a computationally tractable optimization method for estimating causal coefficients with
datasets from multiple environments. Theoretically, we discussed the necessary and sufficient
conditions by which the causal coefficients are identified by optimizing the CoCo objective.
We discuss the mathematical connection between CoCo and IRM. In empirical studies, we
find that CoCo produces accurate causal estimation and distributionally robust predictions.
CoCo is applicable to high-dimensional data and to linear and nonlinear models.

Looking ahead, we think several problems are worthy of further exploration. One
direction is to consider the situations when there is an unobserved confounder as a direct
cause. In this case, a potential approach is to connect environments and instrumental
variables. Another direction is to further understand the interplay between the type of
interventions, the number of environments, and the identification of causal coefficients,
especially for nonlinear models. Such understanding can enable causal estimation with a
minimal number of environments by methods like active learning.

3. Adding a general condition in Eq. (18) to the strong condition of Eq. (11) does not change the optima
set, but it may improve the smoothness of the optimization landscape.
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Appendix A. Proofs

In this section, we present proofs for the results in the main paper. First, we prove the
causal optimality results of the proposed optimization problems.

Proof [Lemma 1] Let the random vector x = (x1, · · · , xp)> denote the covariates. The
expected mean square error is

E[(y − ŷ)2]

=E[(α>x− β>x− ε)2]

=(α− β)>E[xx>](α− β)− 2E[(α− β)>xε] + E[ε2].

Since supp(α) ⊂ supp(β), the (α − β)>x is a linear combination of the true causes as∑
j∈supp(β)(αj −βj)xj which is independent of ε by the SEM, thus E[(α−β)>xε] = 0. Since

E[xx>] is assumed to be positive definite, the unique optima of the square error is α = β.

Proof [Lemma 2] Recall that Xj∗ is a known exogenous variable with Xj∗ ⊥⊥ ε. We first
prove that the optima set of the modified Eq. (14) is a subset of that for the non-modified
Eq. (13), but it still keeps the causal coefficient. This is because ∇Re(α)j∗ = 0 implies
∇Re(α)j∗αj∗ = 0, hence a minimizer of Eq. (14) must be a minimizer of Eq. (13).

Next we prove that the causal coefficient β minimizes Eq. (14) to zero. It is sufficient to
show that ∇Re(β)j∗ = 0 since we already know ‖∇Re(β) ◦ β‖2 = 0. It is true because for
the DGP in Eq. (4), ∇Re(β)j∗ = −E[xj∗ε] = 0.

Finally, we show that the vector 0 is not an optimum of Eq. (14) almost surely when
βj∗ 6= 0. The zero vector minimizes Eq. (14) if and only if ∇Re(0)j∗ = 0. For the linear
model, it requires

∑
j∈S E[xejx

e
j∗ ]βj = 0 for all e ∈ E . By the independent causal mechanisms

principle (Schölkopf, 2019; Schölkopf et al., 2021), the causal coefficients β (the mechanism)
are independent of the distribution of causes xS . It means for the zero vector to be an
optimum, βS has to fall in the intersection of |E| hyperplanes in R|S| which has measure
zero, hence the probability is zero.

Proof [Lemma 3] § 3.3 shows the feasible directions U = span{ej : j ∈ S}. Therefore, the
causal parameter β itself is a feasible direction with β ∈ U .

The first order condition implies the optima of the Eq. (7) sets the directional derivative
to zero in the direction of β, i.e., 〈∇R(α),β〉 = 0. By Lemma 1, plugging β into α produces
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〈∇R(β),β〉 = 0, which means

β ∈ arg min
α

(〈∇R(α),α〉)2. (32)

Similarly, any partition P of the set {1, 2, · · · , p} gives a necessary condition that admits

β ∈ arg min
α

∑
A∈P

(〈∇R(α)A,αA〉)2. (33)

Proof [Proposition 4] The statement follows directly from the Cauchy–Schwarz inequality∑
e∈E

p ‖∇Re(α) ◦α‖22 ≥
∑
e∈E

(〈∇Re(α),α〉)2 ≥ 0

.

Proof [Lemma 5] By Eq. (37), the sub-vector of the gradient is

∇R(α)H = WH(α− β)− sH (34)

By Eq. (24),

∇αHRH(αH) = WHH(αH − βH)−WHHcβHc − sH . (35)

By Eq. (34), suppose α is a CoCo objective optima with ∇R(α)H = 0 and α\H = 0, α also
satisfies ∇αHRH(αH), so its nonzero elements are the ERM solution when regressing with
input xH . On the other hand, suppose xH is ERM solution with input xH , α = (αH ,0)
will be a CoCo objective optima by Eq. (35).

The following proofs are for the identification results in main paper § 5.

Proof [Theorem 6] Let sej = E[Xe
j ε] = cov(Xe

j , ε), se = (se1, · · · , sep)T . By the data generating
process, sej = 0 for j ∈ {1, · · · ,K}. Let

ge(α) = ‖∇Re(α) ◦ α̃]‖2 , f(α) =
1

|E|
∑
e∈E

ge(α). (36)

where f(α) is CoCo objective. Direct computation shows

∇Re(α) = W e(α− β)− se (37)

Notice f(α) ≥ 0 and by the structual equation model, due to independence of the exogenous
noise ε and causes Pa(Y ), we have se ◦β = 0. Hence for α∗ = β, f(α∗) = 0. This guarantees
the existence of a solution as causal coefficient β. To prove the identification, it is sufficient
to prove that for all α 6= α∗, f(α) > 0. We use proof by contradiction.
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Let H = supp(α̃) and Hc as its compoment set in {1, 2, · · · , p}. We assume f(α) = 0
and α 6= β and deduce a contradiction. Since f(α) = 0, for all e, ‖ge(α)‖ = 0. Since
ge(α) = ∇Re(α) ◦ α̃, it means ∇Re(α)H = 0, for all e. However, by the characterization of
the feasible set in Section 3.3, Assumption A2) implies that there does not exist α ∈ Rp,
α 6= β, such that ∇Re(α)H = 0, ∀ e ∈ E . Otherwise, the set H is an invariant set and both
α and β are invariant estimations, which violates Assumption A2). Hence for α 6= β, there
exists an environment e′ ∈ E with ∇Re′(α)H 6= 0. This yields a contradiction.

Proof [Corollary 7] The claim i) is trivial. To see why the claim ii) holds, we prove its
equivalent contrapositive statement. If assumption (A2) does not hold for E2, it means there
exists α, ∇Re(α)H = 0 for all e ∈ E2, which also applies to all e ∈ E1 since E1 ⊂ E2. Hence
the assumption (A2) does not hold for E1.

Proof [Theorem 8] We prove the statement by contradiction. Using notations in Eq. (36),
suppose for α∗, f(α∗) = 0 and α∗C 6= βC . Then let set H = supp(α∗) ∪ C. Since f(α∗) = 0,
we have ∇Re(α∗)H = 0, for all e. By Eq. (24), this means

W e
HH(α∗H − βH) = W e

HHcβHc + seH , ∀ e (38)

Denoting δ = α∗H − βH , we have δ 6= 0. Then Eq. (38) contradicts with the assumption
(A2’).

Proof [Corollary 9] Since the do intervention satisfies validity assumption (A1), to prove
the identification of the treatment effect for the variable of interest, say xj∗ , by Theorem 8
it is sufficient to show that it satisfies the weak effectiveness assumption (A2’). We suppose
the environments E violate assumption (A2’), that is ∃ H ⊂ {1, 2, · · · , p}, δ ∈ R|H|, δ 6= 0
such that WE

Hδ = θEH , and yield a contradiction.

By For notation convenience, denote δσ(j) as the element of δ associated with the column

of WE
H that consists of the elements {W e

ij ; e ∈ E , i ∈ H}; here σ : H 7→ {1, 2, · · · , |H|} is a
bijection by definition. Suppose E[Xj∗ ] 6= 0.

Consider the set of variables Sδ = {j : j ∈ H,xσ(j) 6= 0} ∪ {j : j ∈ Hc, βj 6= 0}. Since
δ 6= 0, the set Sδ is non-empty. We consider the youngest node Xj , j ∈ Sδ that there is
no direct path from Xj to any other node with index in Sδ. There are two possible cases.
When j ∈ H ∩ Sδ, for e, e′ ∈ E with Ie = Ie′ = {j}, we have the linear equation W e

jHδ = θej
in the linear system WE

Hδ = θEH as∑
k∈H

δσ(k)E[Xe
jX

e
k] =

∑
t∈Hc

βtE[Xe
jX

e
t ] + E[Xe

j ε
e]. (39)

For the do intervention Xe
j ← aej , we have E[Xe

jX
e
k] = aejE[Xe

k] = aejµ
e
k, and since Xj is the

youngest node, Eq. (39) becomes

δσ(j)a
e
j +

∑
k∈H,k 6=j

δσ(k)µk =
∑
t∈Hc

βtµt (40)
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for environment e′, we have

δσ(j)a
e′
j +

∑
k∈H,k 6=j

δσ(k)µk =
∑
t∈Hc

βtµt (41)

Since aej 6= ae
′
j , Eqs. (40), (41) are inconsistent and yield a contradiction. When j ∈ Hc ∩Sδ,

analogously we have the linear equation W e
j∗Hδ = θej∗ as∑

k∈H
δσ(k)Wj∗k =

∑
t∈Hc,t6=j

βtWj∗t + βjµj∗a
e
j (42)

and equation W e′
j∗Hδ = θe

′
j∗ as∑
k∈H

δσ(k)Wj∗k =
∑

t∈Hc,t 6=j
βtWj∗t + βjµ

∗
ja
e′
j (43)

Since aej 6= ae
′
j , Eqs. (42), (43) yield a contradiction.

Proof [Corollary 10] Suppose Assumption 4 does not hold, then by Eq. (25) there exists
H ⊂ {1, 2, · · · , p}, C ⊂ H and δ ∈ R|H|, δ 6= 0, such that We

HHδ + We
HHc(−βHc) = seH for

all e ∈ E . Since xi⊥⊥ ε, for i ∈ C, we know sei = 0. Letting vH = δ, vHc = −βHc , we have

WE
CPv = WE

CHvH + WE
CHcvHc = sEC = 0, (44)

which cannot pass the checking step since v 6= 0.

Proof [Proposition 11] By the construction of Λ, B∗ = AΛ is a matrix where the j-th
column B∗j = 0 if j /∈ S. Similar to the proof of Lemma 1, we can compute the L2 risk as

E[(y − ŷ)2]

=E[(fγ(Bx)− fγ∗(B∗x)− ε)2]

=E[(fγ(Bx)− fγ∗(B∗x))2]− 2E[((fγ(Bx)− fγ∗(B∗x))ε] + E[ε2].

Due to the constraints, Bj = B∗j = 0, Bx⊥⊥ ε, B∗x⊥⊥ ε, therefore the second term is zero.

Then the L2 risk reaches its minimum as E[ε2] when B = B∗, γ = γ∗.

Proof [Proposition 12] Since fE(α
′) = 0, ∀e ∈ E

||∇Re(α′) ◦α′||2 = 0.

Let π = supp(α′), we have (∇Re(α′))π = 0. This means for j ∈ π,

0 =
∂

∂αj
Re(α′) =

∫
pe(x, y)

∂

∂αj
L(y, ŷ(x;α))|α=α′dxdy
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For j ∈ π,

∂

∂αj
Rγ(α) =

∂

∂αj
Ex,y∼pγ(x,y)L(y, ŷ(x;α))

=
∑
e∈E

we

∫
pe(x, y)

∂

∂αj
L(y, ŷ(x;α))dxdy.

Plug in α = α′ we have ∂
∂αj

Rγ(α)|α=α′ = 0.

Appendix B. A Summary of algorithms on multiple environments

We summarize the properties of CoCo and several representative causal algorithms that
leverage data from multiple environments in Table 5.

Table 5: Comparing causal algorithms with multiple environments. Gnr. interv.: allow
a general type of intervention as long as the invariance in Eq. (5) or Eq. (6)
is satisfied. nl. model : has been applied to the nonlinear predictive function.
scalability : computational efficiency in scaling up to high dimensional problems.
uneq. variance: allow the variance of exogenous noise of the outcome to vary across
environments. unm. cf.: allow unmeasured confounding between the true causes
and the outcome.

gnr. interv. nl. model scalability uneq. variance unm. cf.

CoCo (this paper) 3 3 Ú 3 7

IRM (Arjovsky et al., 2019) 3 3 Ú 3 7

V-REx (Krueger et al., 2020) 3 3 Ú 7 7

RVP (Xie et al., 2020) 3 3 Ú 7 7

group-DRO (Sagawa et al., 2019) 3 3 Ú 7 7

ICP (Peters et al., 2016) 3 7 Ø 7 7

Causal Dantzig (Rothenhäusler et al., 2019) 7 7 Ú 3 3

LRE (Ghassami et al., 2017) 3 7 Ø 3 7

MC (Ghassami et al., 2018) 3 7 Ø 3 7

Appendix C. Analytic case studies

This section include two concrete cases. One analytically demonstrate how optimization-
based methods can estimate causal coefficients, and compare CoCo, IRM and ERM. The
other case is an instance for ineffective interventions.
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C.1 An example of optimization-based estimation

To illustrative the discussion in § 4, we study ERM, IRM and CoCo on a specific example.
The DGP follows the Case 1 of Table 3,

xe2 ←N (me
2, (γ

e)2)

xe1 ←N (me
1, (γ

e)2)

ye ←3xe1 + 2xe2 +N (0, 1)

xe3 ←γeye +N (0, (γe)2).

We consider the DGP of two environments corresponding to parameters (m
(1)
1 ,m

(1)
2 , γ(1)) =

(2, 0.5, 2), (m
(2)
1 ,m

(2)
2 , γ(2)) = (3,−1, 0.5).

Consider the predictor ŷ = α>xe and the risk function Re(α) = 1
2E[(ye −α>xe)2]. The

gradient of the risk function is

∇αRe(α) =
(

(α1 − 3)E[x2
1] + (α2 − 2)E[x1x2] + α3E[x1x3],

(α2 − 2)E[x2
2] + (α1 − 3)E[x1x2] + α3E[x2x3],

α3E[x2
3] + (α1 − 3)E[x1x3] + (α2 − 2)E[x2x3]− γ

)
.

And the moments are

E[x1x3] = 3γ(m2
1 + γ2) + 2γ(m1m2),

E[x2x3] = 3γ(m1m2) + 2γ(m2
2 + γ2),

E[x2
1] = m2

1 + γ2,

E[x2
2] = m2

2 + γ2,

E[x1x2] = m1m2,

E[y2] = 9E[x2
1] + 12E[x1x2] + 4E[x2

2] + 1,

E[x2
3] = γ2(E[y2] + 1).

The CoCo optima for each environment is given by solving α with the system of equations

α1(α1 − 3)E[x2
1] + α1(α2 − 2)E[x1x2] + α1α3E[x1x3] = 0,

α2(α2 − 2)E[x2
2] + α2(α1 − 3)E[x1x2] + α2α3E[x2x3] = 0,

α2
3E[x2

3] + α3(α1 − 3)E[x1x3] + α3(α2 − 2)E[x2x3]− γα3 = 0.

The optima of the IRM regularization for each environment forms the quadric surface

α1(α1 − 3)E[x2
1] + α1(α2 − 2)E[x1x2] + α1α3E[x1x3] + α2(α2 − 2)E[x2

2] + α2(α1 − 3)E[x1x2]

+ α2α3E[x2x3] + α2
3E[x2

3] + α3(α1 − 3)E[x1x3] + α3(α2 − 2)E[x2x3]− γα3 = 0.

Empirically, we sample 105 data points of each environment. The ERM solution for the
two environments is αERM = (2.815, 1.778, 0.043). The empirical solutions of IRMv1 with
various λ values are in Table 6, which is obtained with a fixed random seed. The stepsize is
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λ Random initialization Idealized initialization at β

0.1 (-0.372, -0.104, 0.547) (2.923, 1.842, 0.019)

1 (-0.842, -0.390, 0.621) (2.932, 1.847, 0.017)

10 (-0.877, -0.411, 0.626) (2.933, 1.848, 0.017)

1000 (-0.830, -0.300, 0.613) (2.954, 1.896, 0.012)

Table 6: The convergence points of IRMv1 for the case study.

0.01. We consider random initialization or an idealized initialization at the causal coefficient
β. For λ ∈ {0.1, 1, 10}, both initializations converges within 3× 104 iterations. For a large
λ = 1000, the convergence is slow with 8.8 × 105 iterations for the random initialization
and 1.7× 105 iterations for the initialization at β, likely due to the weak regularization of
the empirical risk and the identification issue as discussed in § 4. The observation that the
idealized initialization does not stay at β indicates β does not have the lowest empirical
risk among the optima set of the IRM regularization. For λ = +∞, the optimization will
stay at β for the idealized initialization since β belongs to the optima set of the IRM
regularization, but such initialization is not feasible in practice. The empirical solution of
CoCo is (3.001, 2.004, 0.000) which is close to the true causal coefficient (3, 2, 0).

C.2 An example of the ineffective intervention

Consider environments indexed by γe ∈ {1, 2, 3}, and SEM as:

xe2 ← N (0, (γe/2)2)

xe1 ← xe2 + U(−γe, γe) + 1

ye ← 2x1 + 1.5x2 +N (0, 1)

xe3 ← 0.5 · ye +N (0, 1).

(45)

The predictor is linear as:

ŷe(α) = α1x
e
1 + α2x

e
2 + α3x

e
3. (46)

Ideally, we want to identify the causal coefficients β = (2, 1.5, 0). However, in this example,
a straightforward calculation shows the point α̂ = (1.6, 1.2, 0.4) minimizes the risk function
E[(1/2)(ye − ŷe)2] for each environment. This means ∇Re(α)|α=α̂ = 0, and hence α̂
minimizes the objective Eq. (14). Both β and α̂ belong to the set of optima of objective (14),
which cannot be distinguished under given interventions. Loosely speaking, β and α̂ are
equally invariant over these three environments.

Appendix D. Additional simulation results

This section contains experimental results additional to § 7 in the main paper. Fig. 8 contain
the MAEs for the linear synthetic data (§ 7.1). It shows the mean and minimal MAEs over
ten random trials for two and four environments. Fig. 9 shows the weight parameters learned
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Table 7: Test accuracy (percent) for noised label ye on the ColoredMNIST. Results are
reported from the original papers. The baseline methods compared with CoCo
(this paper) are V-IRMG, F-IRMG (Ahuja et al., 2020), ReBias (Bahng et al.,
2020), DecAug (Bai et al., 2021), MM-REx (Krueger et al., 2020), PAIR (Chen
et al., 2022), Fishr (Rame et al., 2022).

V-IRMG F-IRMG ReBias DecAug MM-REx PAIR Fishr CoCo

Test accu. 49.06(3.4) 59.91(2.7) 29.40(0.3) 69.60(2.0) 66.1(1.5) 68.4(1.1) 73.8(1.0) 74.7(0.3)

by CoCo and ERM on CMNIST (§ 7.3), which provides explanations of why CoCo could
learn a causal representation. Table 7 contains more baseline results for comparison on the
ColorMNIST data. Fig. 7 shows the trace plot of the predictive accuracy for the clean label ỹ
prediction on the CMNIST data (§ 7.3) and for the prediction on the iWildCam data (§ 7.4).
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Figure 7: Trace plot of training and testing accuracy for CoCo, IRM and ERM on Color-
MNIST and Wildlife data. In panel (a), the accuracy is measured on predicting the
clean label ỹ. CoCo has high accuracy in both training and testing environments.
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(a) Two environments (b) Four environments

Figure 8: The boxplot for the mean absolute error (MAE) of the estimations for causal
parameters β (lower the better) over two (left) and four environments (right).
CoCo estimation is close to the true causal coefficients across all settings. CoCo
has a more accurate estimation comparing to RVP (Xie et al., 2020), V-REx
(Krueger et al., 2020), IRM (Arjovsky et al., 2019) and ERM. Each case is run
with ten independent trials.

(a) Weights by CoCo (b) Weights by CoCo
(stacked color channels)

(c) Weights by ERM

Figure 9: The weight matrix that connects the input and the first hidden layer for the
CMNIST data. (a) The weights learned by CoCo set multiple columns close to
zero, removing the dependence of the hidden layer on a set of pixels. (b) Stacking
the weights corresponding to the two image channels (the left and right half of (a)).
CoCo selects the same pixels over two color channels hence removing the color
information from the hidden layer. (c) The weights by ERM connect the hidden
layer to all the inputs, so the prediction depends on the spurious association.
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