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Abstract
The importance of inference in Machine Learning (ML) has led to an explosive number of different
proposals, particularly in Deep Learning. In an attempt to reduce the complexity of Convolutional
Neural Networks, we propose a Volterra filter-inspired Network architecture. This architecture in-
troduces controlled non-linearities in the form of interactions between the delayed input samples
of data. We propose a cascaded implementation of Volterra Filtering so as to significantly reduce
the number of parameters required to carry out the same classification task as that of a conven-
tional Neural Network. We demonstrate an efficient parallel implementation of this Volterra Neural
Network (VNN), along with its remarkable performance while retaining a relatively simpler and
potentially more tractable structure. Furthermore, we show a rather sophisticated adaptation of
this network to nonlinearly fuse the RGB (spatial) information and the Optical Flow (temporal)
information of a video sequence for action recognition. The proposed approach is evaluated on
UCF-101 and HMDB-51 datasets for action recognition, and is shown to outperform state of the
art CNN approaches. The code-base for our paper is available on github ( https://github.com/sid-
roheda/Volterra-Neural-Networks).
Keywords: Volterra Filter, Activity Recognition, Activation Free Learning

1. Introduction

Human action recognition is an important research topic in Computer Vision, and may be useful
in surveillance, video retrieval, and man-machine interaction to name a few. The survey on Action
Recognition approaches Kong and Fu (2018) provides a good progress overview. Video classifica-
tion usually involves three stages (Wang et al., 2009; Liu et al., 2009; Niebles et al., 2010; Sivic
and Zisserman, 2003; Karpathy et al., 2014), namely, visual feature extraction (local features like
Histograms of Oriented Gradients (HoG) introduced in Dalal and Triggs (2005), or global features
like Hue, Saturation, etc.), feature fusion/concatenation, and lastly classification. In Yi et al. (2011),
an intrinsic stochastic modeling of human activity on a shape manifold is proposed and an accurate
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analysis of the non-linear feature space of activity models is provided. The emergence of Convolu-
tional Neural Networks (CNNs) by LeCun et al. (1998), along with the availability of large training
datasets and computational resources have come a long way to obtaining the various steps by a
single neural network. This approach has led to remarkable progress in action recognition in video
sequences, as well as in other vision applications like object detection (Sermanet et al., 2013), scene
labeling (Farabet et al., 2012), image generation (Goodfellow et al., 2014), image translation (Isola
et al., 2017), information distillation (Roheda et al., 2018b; Hoffman et al., 2016), etc. In the Action
Recognition domain, datasets like the UCF-101 (Soomro et al., 2012), Kinetics (Kay et al., 2017),
HMDB-51 (Kuehne et al., 2011), and Sports-1M (Karpathy et al., 2014) have served as benchmarks
for evaluating various solution performances. In action recognition applications the proposed CNN
solutions generally align along two themes: 1. One Stream CNN (only use either spatial or tem-
poral information), 2. Two Stream CNN (integrate both spatial and temporal information). Many
implementations (Carreira and Zisserman, 2017; Diba et al., 2017b; Feichtenhofer et al., 2016; Si-
monyan and Zisserman, 2014) have shown that integrating both streams leads to a significant boost
in recognition performance. In Deep Temporal Linear Encoding (Diba et al., 2017b), the authors
propose to use 2D CNNs (pre-trained on ImageNet (Deng et al., 2009)) to extract features from RGB
frames (spatial information) and the associated optical flow (temporal information). The video is
first divided into smaller segments for feature extraction via 2D CNNs. The extracted features are
subsequently combined into a single feature map via a bilinear model. This approach, when using
both streams, is shown to achieve a 95.6 % accuracy on the UCF-101 dataset, while only achieving
86.3 % when only relying on the RGB stream. Carreira and Zisserman (2017) adopt the GoogLeNet
architecture which was developed for image classification in ImageNet (Deng et al., 2009), and use
3D convolutions (instead of 2D ones) to classify videos. This implementation is referred to as the
Inflated 3D CNN (I3D), and is shown to achieve a performance of 88.8 % on UCF-101 when trained
from scratch, while achieving a 98.0 % accuracy when a larger dataset (Kinetics) was used for pre-
training the entire network (except for the classification layer). While these approaches achieve near
perfect classification, the models are extremely heavy to train, and have a tremendous number of
parameters (25M in I3D, 22.6M in Deep Temporal Linear Encoding). This in addition, makes the
analysis, including the necessary degree of non-linearity, difficult to understand, and the tractability
elusive. In this paper we explore the idea of introducing controlled non-linearities through interac-
tions between delayed samples of a time series. We will build on the formulations of the widely
known Volterra Series (Volterra, 2005) to accomplish this task. While prior attempts to introduce
non-linearity based on the Volterra Filter have been proposed (Kumar et al., 2011; Zoumpourlis
et al., 2017) , most have limited the development up to a quadratic form on account of the explosive
number of parameters required to learn higher order complexity structure. While quadratic non-
linearity is sufficient for some applications (eg. system identification), it is highly inadequate to
capture all the non-linear information present in videos.

Contributions: In this paper, we propose a Volterra Filter (Volterra, 2005) based architecture
where the non-linearities are introduced via the system response functions and hence by controlled
interactions between delayed frames of the video. The overall model is updated on the basis of
a cross-entropy loss of the labels resulting from a linear classifier of the generated features. An
efficiently cascaded implementation of a Volterra Filter is used in order to explore higher order terms
while avoiding over-parameterization. The Volterra filter principle is also exploited to combine the
RGB and the Optical Flow streams for action recognition, hence yielding a performance driven non-
linear fusion of the two streams. We further show that the number of parameters required to realize
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such a model is significantly lower in comparison to a conventional CNN, hence leading to faster
training and a significant reduction of the required resources to learn, store, or implement such a
model.

2. Background and Related Work

2.1 Volterra Series

A dynamical system, viewed as a black box, is characterized by its input/output relationship yt/xt.
If a non-linear system is time invariant, the input/output relation can be expressed in the following
form (Volterra, 2005; Schetzen, 1980),

yt =
L−1∑
τ1=0

W 1
τ1xt−τ1 +

L−1∑
τ1,τ2=0

W 2
τ1,τ2xt−τ1xt−τ2 + ...+

L−1∑
τ1,τ2,...,τK=0

WK
τ1,τ2,...,τK

xt−τ1xt−τ2 ...xt−τK ,

(1)

where xt, yt ∈ R and W k ∈ Rk, L is the number of terms in the filter memory (also referred to as
the filter length), W k are the weights for the kth order term, and W k

τ1,τ2,...,τk
= 0, for any τj < 0,

j = 1, 2, ..., k, ∀k = 1, 2, ...,K due to causality. This functional form is due to the mathematician
Vito Volterra (Volterra, 2005), and is widely referred to as the Volterra Series. The calculation
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Figure 1: Adaptive Volterra Filter

of the kernels is computationally complex, and a Kth order filter of length L, entails solving LK

equations. The associated adaptive weights are a result of a target energy functional minimization
iteratively adapting the filter taps as shown in Figure 1.

It is worth observing from Equation 1 that the linear term is actually similar to a convolutional
layer in CNNs. Non-linearities in CNNs are implicitly introduced via activation functions, following
the convolutional layer, while those in Equation 1 are introduced via higher order convolutions.

2.2 Nested Volterra Filter

A closer inspection of Equation 1 immediately suggests its somewhat simplified form by way of
nesting repeated terms Osowski and Quang (1994), and yield,

yt =

L−1∑
τ1=0

xt−τ1

[
W 1

τ1 +

L−1∑
τ2=0

xt−τ2

[
W 2

τ1,τ2 +

L−1∑
τ3=0

xt−τ3 [W 3
τ1,τ2,τ3 + ...]

]]
. (2)

3



ROHEDA, KRIM, AND JIANG

Each factor contained within brackets can be interpreted as the output of a linear Finite Impulse
Response (FIR) filter, thus allowing a layered representation of the Filter. A nested filter imple-
mentation with L = 2 and K = 2 is shown in Figure 2. The length of the filter is increased by
adding modules in parallel, while the order is increased by additional layers. Much like any multi-
layer network, the weights of the synthesized filter are updated at successive layers according to a
backpropogation scheme. The nested structure of the Volterra Filter, yields much faster learning in
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Figure 2: Nested Volterra Filter

comparison to that based on Equation 1. It, however, does not reduce the number of parameters to
be learned, leading to potential over-parameterization when learning higher order filter approxima-
tions. Such a structure was used for a system identification problem in (Osowski and Quang, 1994).
The mean square error between the desired signal (dt) and the output of the filter (yt) was used as
the cost functional to be minimized,

Et =
1

2
(dt − yt)2, (3)

and the weights for the kth layer are updated per the following equations,

W k
τ1,τ2,...,τk

(t+ 1) = W k
τ1,τ2,...,τk

(t)− η ∂Et
∂W k

τ1,τ2,...,τk

, (4)

∂Et
∂W k

τ1,τ2,...,τk

= xt−τkxt−τk−1
...xt−τ1(yt − dt). (5)

2.3 Relation to Bilinear Convolution Neural Networks

There has been work on introducing 2nd order non-linearities in the network by using a bi-linear
operation on the features extracted by convolutional networks. Bilinear-CNNs (B-CNNs) were in-
troduced in Lin et al. (2015) and were used for image classification. In B-CNNs, a bilinear mapping
is applied to the final features extracted by linear convolutions leading to 2nd order features which
are not well localized. As a result a feature extracted from the lower right corner of a frame/image in
the B-CNN case, may interact with a feature from the upper right corner, and this potential non-real
interaction may introduce erroneous additional characteristics, in contrast to our proposed approach
which highly controls such effects. Compact Bilinear Pooling was introduced in Gao et al. (2016)
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where a bilinear approach to reduce feature dimensions was introduced. This was again performed
after all the features had been extracted via linear convolutions and was limited to quadratic non-
linearities. In our work we will explore non-linearities of much higher orders and also account for
continuity of information between video frames over a given time interval with the immediately
preceding period. This effectively achieves a Recurrent Network-like property which accounts for
a temporal relationship.

2.4 Relation to Long-Short Term Memory

Long-Short Term Memory Networks (LSTMs) (Hochreiter and Schmidhuber, 1997) have been
widely used to capture the long-term trajectory information in temporally evolving data. The se-
quential modeling ability of LSTMs makes them particularly appealing for capturing long-range
temporal dynamics in videos. An LSTM computes a mapping from an input sequence, x =
{x1, ..., xT } to an output sequence h = {h1, ..., hT }. The mapping of the input at time t, xt to
the output, ht entails the following:

1. Forget Gate:
ft = σ(Wf [ht−1, xt]) = σ(W 1

f · ht−1 +W 2
f · xt). (6)

2. Input Gate:

it = σ(Wi[ht−1, xt]) = σ(W 1
i · ht−1 +W 2

i · xt), (7)

C̃t = tanh(Wc[ht−1, xt]), (8)

Ct = ft · Ct−1 + it · C̃t. (9)

3. Output Gate:

ot = σ(Wo[ht−1, xt]) = σ(W 1
o · ht−1 +W 2

o · xt), (10)

ht = ot · tanh(Ct). (11)

Where σ is the sigmoid activation function, tanh is the hyperbolic tangent function, andWf ,Wi,Wc,
and Wo are the weight matrices characterizing the forget gate, input gate, cell state, and output gate
respectively.

3. Problem Statement

Let a set of activities A = {a1, ..., aI}, be of interest following an observed sequence of frames
XT×H×W , where T is the total number of frames, and H and W are the height and width of a
frame. At time t, the features Ft = g(X[t−L+1:t]), will be used for classification of the sequence
of frames X[t−L+1:t] and mapped into one of the actions in A, where L is the number of frames in
the memory of the system/process. A linear classifier with weights W cl = {wcl

i }i=1,...,I , and
biases bcl = {bcli }i=1,...,I will then be central to determining the classification scores for each
activity, followed by a soft-max function (ρ(.)) to convert the scores into a probability measure.
The probability that the sequence of frames be associated to the ith action class is hence the result
of,

Pt(ai) = ρ(wclT

i · Ft + bcli ) =
exp(wclT

i .Ft + bcli )∑I
m=1 exp(w

clT
m .Ft + bclm)

. (12)
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Figure 3: Block diagram for an Overlapping Volterra Neural Network

4. Proposed Solution

4.1 Volterra Filter based Classification

In our approach we propose a Volterra Filter structure to approximate a function g(·). Given that
video data is of interest here, a spatio-temporal Volterra Filter must be applied. As a result, this 3D
version of the Volterra Filter discussed in Section 2 is used to extract the features,

F[ t
s1
s2

] = g

X[
t−L+1:t

s1−p1:s1+p1
s2−p2:s2+p2

]
 =

∑
τ1,σ11,σ21

W 1[ τ1
σ11
σ21

]x[ t−τ1
s1−σ11
s2−σ21

]
+

∑
τ1,σ11,σ21
τ2,σ12,σ22

W 2[ τ1
σ11
σ21

][ τ2
σ12
σ22

]x[ t−τ1
s1−σ11
s2−σ21

]x[ t−τ2
s1−σ12
s2−σ22

] + ... (13)

where, τj ∈ [0, L−1], σ1j ∈ [−p1, p1], and σ2j ∈ [−p2, p2] respectively represent the temporal and
spatial translations (horizontal and vertical directions). Following this formulation, and as discussed
in Section 3, a linear classifier is used to determine the probability of each activity in A. Updating
the filter parameters is pursued by minimizing some measure of discrepancy relative to the ground
truth and the probability determined by the model. Our adopted measure herein is the cross-entropy
loss computed as,

E =
∑
t,I

−dti logPt(ai), (14)

where, t ∈ {1, L+1, 2L+1, ..., T}, i ∈ {1, 2, ..., I}, and dti is the ground truth label for X[t−L+1:t]

belonging to the ith action class. In addition to minimizing the error, we also include a weight decay
in order to ensure generalizability of the model by penalizing large weights. So, the overall cost
functional which serves as a target metric is written as,

min
g

∑
t,I

−dti log ρ(wclT

i · g(X[t−L+1:t]) + bcli ) +
λ

2

[
K∑
k=1

∥∥∥W k
∥∥∥2
2

+
∥∥∥W cl

∥∥∥2
2

]
, (15)

where ρ is the soft-max function, and K is the order of the filter.

Proposition 1 A VNN architecture provides any continuous function over a compact Ω ⊂ Rd (in-
cluding so-called activation functions) an approximation up to an error margin defined by the Taylor
Remainder Theorem.
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Figure 4: Approximation of ReLU and Tanh activation via the Volterra series formulation

Proof Based on the Weistrass Approximation Theorem (Stone, 1948) it is known that any continu-
ous non-linear function can be approximated using a polynomial. Specifically, the taylor expansion
of the non-linear function may be used (i.e. a generic so-called activation function) for x ∈ Ω ⊂ R,

σ(x) = c0 + c1x+ c2x2 + ...+ ckxk + ...+ c∞x∞. (16)

In particular, a sigmoid activation can be approximated as,

σsigmoid(x) =
1

1 + e−x
=

1

2
+

1

4
x− 1

48
x3 +

1

480
x5 + ... (17)

As seen from Equation 1 the VNN formulation can specifically learn such an expansion up to a
finite order,

σV NN (x) = w0 + w1x+ w2x
2 + ...+ wkx

k, (18)

which is a kth order approximation of σ(x). Here wk is the kth order weight and is learned during
the training process. In comparison to the coefficients in Equation 17, we get an approximation of
the sigmoid activation function.

A finite order polynomial expansion yields an error which can be expressed via the Taylor
Remainder Theorem (Firey, 1960),

|σ(x)− σV NN (x)| ≤ Rk =

∣∣∣∣σk+1(m)

(k + 1)!
(x− a)k+1

∣∣∣∣ (19)

where the Taylor Expansion is centered around a and m lies between a and x.

Figure 4 shows the approximation of various activation functions via the Volterra series formu-
lation. Note that the w′ks in Equation 18 are actually learnable weights and are updated on the basis
of the classification error when comparing the classifier output with the ground truth. N.B. The
coefficients in Equation 17 are for a generic ”sigmoid” function, and are to be distinguished from
the learnable coefficients when using it as a local approximation of the data.

Proposition 2 A VNN approximation independently achieves optimal weighting of higher order
moments and cross-moments of data, for a more adaptive representation than that possible by acti-
vation functions.
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Proof Consider an input X = [x1, x2]. A standard single layer neural network would take the dot
product of X with the linear weights W = [w1, w2] and apply an activation function σ(.) to get the
output y = σ(W T .X) = σ(w1x1 + w2x2).

As discussed in Proposition 1, the activation function (eg. ReLU, sigmoid, tanh) σ(.) can be
approximated by its Taylor series expansion. Considering a 2nd order approxmation,

y = c0 + c1(w1x1 + w2x2) + c2(w1x1 + w2x2)
2

= c0 + c1w1x1 + c1w2x2 + c2w
2
1x

2
1 + c2w

2
2x

2
2 + 2c2w1w2x1x2. (20)

This can be rewritten as,

y = α0 + α1x1 + α2x2 + α3x
2
1 + α4x

2
2 + α5x1x2. (21)

From Equation 20 and 21,

α0 = c0; α1 = c1w1; (22)

α2 = c1w2; α3 = c2w
2
1; (23)

α4 = c2w
2
2; α5 = c1c2w1w2. (24)

As a result,

y = α0 + α1x1 + α2x2 +
c2
c1
α2
1x

2
1 +

1

c2
α2
2x

2
2 +

2

c1
α1α2x1x2. (25)

It is clear that the moments (monomials) and cross-moments (cross-products) weights are com-
putationally tied. This unavoidable and implicit constraint among the moments and cross-moments
make the adaptive approximation of such features unlikely. This clearly scales to higher oder ap-
proximation highlighting the flexibility of VNN in independently adapting the associated weights.

The additional relative feature preservation limitation (at different scales) of activation functions
is reflected in the allocated weighting of higher order according to the Taylor series evolution. For
an nth order taylor approximation we have,

σ(x) =
N∑
n=0

σ(n)(a)

n!
(x− a)n, (26)

where σ(n)(a) is the nth derivative of σ at a. As seen from this equation the nth coefficient, cn
is given as cn = σ(n)(a)

n! . As a result of the n! in the denominator, cn+1 < cn ∀n. This leads to
decreasing importance of higher order features, and makes it difficult for the model to learn them
with no regards to their potentially discriminative role in inference.

The Volterra series formulation, in contrast, assigns an independent learnable weight to each
term in Equation 21.

4.2 Cascaded Volterra Filters: Managing High Order Complexity

A major challenge in learning the afore-mentioned architecture arises when higher order non-
linearities are sought. The number of required parameters for a Kth order filter is,

K∑
k=1

(L · [2p1 + 1] · [2p2 + 1])k. (27)

8
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This complexity increases exponentially when the order is increased, thus making a higher order
(> 3) Volterra Filter implementation impractical. To alleviate this limitation, we use a cascade of
2nd order Volterra Filters, wherein, the second order filter is repeatedly applied until the desired
order is attained.

A Kth order filter is realized by applying the 2nd order filter Z times, where, K = 22
(Z−1)

.
If the length of the first filter in the cascade is L1, the input video X[t−L+1:t] can be viewed as a
concatenation of a set of shorter videos,

X[tL:t] =

[
X[tL:tL+L1] X[tL+L1:tL+2L1]...X[tL+(M1−1)L1:tL+M1L1]

]
, (28)

whereM1 = L
L1

, and tL = t−L+1. Now, a 2nd order filter g1(.) applied on each of the sub-videos
leads to the features,

F 1
t[1:M1]

=

[
g1(X[tL:tL+L1]) g1(X[tL+L1:tL+2L1])...g1(X[tL+(M1−1)L1:tL+M1L1])

]
. (29)

A second filter g2(.) of length L2 is then applied to the output of the first filter,

F 2
t[1:M2]

=

[
g2(F

1
t[1:L2]

) g2(F
1
t[L2+1:2L2]

)...g2(F
1
t[(M2−1)L2+1:(M2L2)]

)

]
, (30)

where, M2 = M1
L2

. Note that the features in the second layer are generated by taking quadratic
interactions between those generated by the first layer, hence, leading to 4th order terms.

Finally, for a cascade of Z filters, the final set of features is obtained as,

FZt[1:MZ ]
=

[
gZ(FZ−1t[1:LZ ]

) gZ(FZ−1t[LZ+1:2LZ ]
)...gZ(FZ−1t[(MZ−1)LZ+1:(MZLZ )]

)

]
, (31)

where, MZ =
MZ−1

LZ
.

Note that these filters can also be implemented in an overlapped structure yielding the following
features for the zth layer, z ∈ {1, ...,Z},

F z
t[1:Mz ]

=

[
gz(F

z−1
t[1:Lz ]

) gz(F
z−1
t[2:Lz+1]

)...gz(F
z−1
t[(Mz−1)−Lz+1:Mz−1]

)

]
, (32)

where Mz = Mz−1 − Lz + 1. The implementation of an Overlapping Volterra Neural Network
(O-VNN) to find the corresponding feature maps, for an input video is shown in Figure 3.

Proposition 3 If Z 2nd order filters are cascaded following the noted overlapped structure (as in
Figure 3), the resulting Volterra Network has an effective order of KZ = 22

Z−1
.

Proof Since each layer of the O-VNN is a 2nd order Volterra Filter, the order at the Zth layer can
be written in terms of the order of the previous layer,

KZ = K2
Z−1, (33)

where, KZ−1 is the order of the (Z − 1)th layer. Since, the O-VNN only consists of 2nd order
layers, there exists some p such that,

KZ = 2p. (34)

9
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From Equations (33) and (34),

2p = K2
Z−1 (35)

Taking log2 on both sides,

log2 2p = log2K
2
Z−1

=⇒ p = 2 log2KZ−1

=⇒ p = 2 log2K
2
Z−2

=⇒ p = 22 log2KZ−2

=⇒ p = 2(Z−1) log2K1 (36)

Since K1 = 2 and log2 2 = 1,

p = 2Z−1. (37)

Putting this in Equation (34), we get,

KZ = 22
Z−1

. (38)

A natural question which arises about the resulting relative complexity of our proposed strategy,
is addressed next.

Proposition 4 The complexity of a Kth order cascaded Volterra filter will consist of,

Z∑
z=1

[
(Lz · [2p1z + 1] · [2p2z + 1]) + (Lz · [2p1z + 1] · [2p2z + 1])2

]
(39)

parameters.

Proof For a 2nd order filter (K = 2), the number of parameters required is
[
(L · [2p1 + 1] · [2p2 +

1]) + (L · [2p1 + 1] · [2p2 + 1])2
]

(from equation 27). When such a filter is repeatedly applied Z

times, it will lead to
∑Z

z=1

[
(Lz · [2p1z + 1] · [2p2z + 1]) + (Lz · [2p1z + 1] · [2p2z + 1])2

]
parameters

with order K = 22
(Z−1)

.

Furthermore, if a multi-channel input/output is considered, the number of parameters is,

Z∑
z=1

(nz−1ch · n
z
ch)

[
(Lz · [2p1z + 1] · [2p2z + 1]) + (Lz · [2p1z + 1] · [2p2z + 1])2

]
, (40)

where nzch is the number of channels in the output of the zth layer.

10
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4.3 System Stability and Convergence

The discussed system can be shown to be stable when the input is bounded, i.e. the system is
Bounded Input Bounded Output (BIBO) stable.

Proposition 5 An O-VNN with Z layers is BIBO stable if ∀z ∈ {1, ...,Z},

∑
τ1,σ11,σ21

∣∣∣∣∣∣W z1[ τ1
σ11
σ21

]
∣∣∣∣∣∣+

∑
τ1,σ11,σ21
τ2,σ12,σ22

∣∣∣∣∣∣W z2[ τ1
σ11
σ21

][ τ2
σ12
σ22

]
∣∣∣∣∣∣ <∞. (41)

Proof Consider the zth layer in the Cascaded implementation of the Volterra Filter,

F z
[1:Mz ]

=

[
gz(F

z−1
t[1:Lz ]

) gz(F
z−1
t[2:Lz+1]

)...gz(F
z−1
t[(Mz−1)−Lz+1:(Mz−1)]

)

]
, (42)

where, Mz = Mz−1 − Lz + 1. Then for mz ∈ {1, ...,Mz},∣∣∣∣∣∣F z[mz
s1
s2

]
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣gz
F z−1[

mz−1−Lz+1:mz
s1−p1:s1+p1
s2−p2:s2:p2

]

∣∣∣∣∣∣∣ (43)

=

∣∣∣∣∣ ∑
τ1,σ11,σ21

W z1[ τ1
σ11
σ21

]fz−1[
(Lz+mz−1)−τ1

s1−σ11
s2−σ21

]

+
∑

τ1,σ11,σ21
τ2,σ12,σ22

W z2[ τ1
σ11
σ21

][ τ2
σ12
σ22

]fz−1[
(Lz+mz−1)−τ1

s1−σ11
s2−σ21

]fz−1[
(Lz+mz−1)−τ2

s1−σ12
s2−σ22

]
∣∣∣∣∣ (44)

≤
∑

τ1,σ11,σ21

∣∣∣∣∣∣W z1[ τ1
σ11
σ21

]
∣∣∣∣∣∣
∣∣∣∣∣∣∣fz−1[

(Lz+mz−1)−τ1
s1−σ11
s2−σ21

]
∣∣∣∣∣∣∣

+
∑
τ1,τ2
σ11,σ12
σ21,σ22

∣∣∣∣∣∣W z2[ τ1
σ11
σ21

][ τ2
σ12
σ22

]
∣∣∣∣∣∣
∣∣∣∣∣∣∣fz−1[

(Lz+mz−1)−τ1
s1−σ11
s2−σ21

]
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣fz−1[

(Lz+mz−1)−τ2
s1−σ12
s2−σ22

]
∣∣∣∣∣∣∣ (45)

≤ A
∑

τ1,σ11,σ21

∣∣∣∣∣∣W z1[ τ1
σ11
σ21

]
∣∣∣∣∣∣+A2

∑
τ1,σ11,σ21
τ2,σ12,σ22

∣∣∣∣∣∣W z2[ τ1
σ11
σ21

][ τ2
σ12
σ22

]
∣∣∣∣∣∣ . (46)

Note that Equation 46 states that a bounded input yields
∑

τ1,σ11,σ21

∣∣∣∣∣∣∣fz−1[
(Lz+mz−1)−τ1

s1−σ11
s2−σ21

]
∣∣∣∣∣∣∣ ≤ A, for

some A <∞. Hence, the sufficient condition for the system to be BIBO stable is,

∑
τ1,σ11,σ21

∣∣∣∣∣∣W z1[ τ1
σ11
σ21

]
∣∣∣∣∣∣+

∑
τ1,σ11,σ21
τ2,σ12,σ22

∣∣∣∣∣∣W z2[ τ1
σ11
σ21

][ τ2
σ12
σ22

]
∣∣∣∣∣∣ <∞. (47)

11
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If the input data (i.e. video frames) is bounded, so is the output of each layer provided that Equation
47 is satisfied ∀z ∈ {1, ..., Z}, making the entire system BIBO stable.

Proposition 6 An O-VNN is stable and convergent under the condition |xt| < ρ <∞, where xt is
the input to the filter, and ρ is the radius of convergence for the proposed Volterra Filter.

Proof A Volterra Filter can be viewed as a power series,

yt =
K∑
k=1

gk[axt] =
K∑
k=1

akgk[xt], (48)

where a is an amplification factor and,

gk[xt] =
∑

τ1,...,τk

W k
[τ1,...,τk]

xt−τ1xt−τ2 ...xt−τk . (49)

In general, for a power series
∑∞

k=1 ckx
k, converges only for |x| < ρ, where ρ = (limk→∞

sup|ck|1/k)−1 (Rudin et al., 1964). Setting a = 1 in Equation 48, and replacing the coefficients ck
with the kth order Volterra Kernel W k,

ρ = (limk→∞sup|W k|1/k)−1. (50)

Furthermore, since the system must also satisfy the BIBO stablity condition,

|xt| < (limk→∞sup|W k|1/k)−1 <∞. (51)

4.4 Synthesis and Efficient Implementation of Volterra Kernels

As noted earlier, the linear kernel (1st order) of the Volterra filter is similar to the convolutional
layer in the conventional CNNs. As a result, it can easily be implemented using the 3D convolution
function in Tensorflow (Abadi et al., 2016). The second order kernel may be approximated as a
product of two 3-dimensional matrices (i.e. a seperable operator),

W 2
L×P1×P2×L×P1×P2

=

Q∑
q=1

W 2
aqL×P1×P2×1

W 2
bq1×L×P1×P2

, (52)

12
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where, P1 = 2p1 + 1, and P2 = 2p2 + 1, and p1, p2 specify the spatial translations (horizontal and
vertical). Accounting for Equation 13 yields,

g

X[
t−L+1:t

s1−p1:s1+p1
s2−p2:s2+p2

]
 =

∑
τ1,σ11,σ21

W 1[ τ1
σ11
σ21

]x[ t−τ1
s1−σ11
s2−σ21

]

+
∑

τ1,σ11,σ21
τ2,σ12,σ22

Q∑
q=1

W 2
aq[ τ1

σ11
σ21

]W 2
bq[ τ2

σ12
σ22

]x[ t−τ1
s1−σ11
s2−σ21

]x[ t−τ2
s1−σ12
s2−σ22

] (53)

=
∑

τ1,σ11,σ21

W 1[ τ1
σ11
σ21

]x[ t−τ1
s1−σ11
s2−σ21

]

+

Q∑
q=1

∑
τ1,σ11,σ21
τ2,σ12,σ22

(
W 2

aq[ τ1
σ11
σ21

]x[ t−τ1
s1−σ11
s2−σ21

])(W 2
bq[ τ2

σ12
σ22

]x[ t−τ2
s1−σ12
s2−σ22

]). (54)

A larger Q will provide a better approximation of the 2nd order kernel. The advantage of this
class of approximation is two-fold. Firstly, the number of parameters can further be reduced, if
for the zth layer, (Lz · [2p1z + 1] · [2p2z + 1])2 > 2Q(Lz · [2p1z + 1] · [2p2z + 1]). A trade-
off between performance and acceptable computational complexity must be accounted for when
adopting such an approximation. Additionally, this makes it easier to implement the higher order
kernels in Tensorflow (Abadi et al., 2016) by using the built in convolutional operator.

The complexity of the approximate quadratic layers in the Cascaded Volterra Filter (see Figure
3) is reflected by the number of parameters as

Z∑
z=1

[
(Lz · [2p1z + 1] · [2p2z + 1]) + 2Q(Lz · [2p1z + 1] · [2p2z + 1])

]
. (55)

Proposition 7 The VNN second order kernel approximation in Equation 52 is a Qth rank approxi-
mation of the exact quadratic kernel W 2.

Proof For simplicity, consider a 1-D Volterra Filter with memory L. The quadratic weight matrix,
W 2 in such a case is of size L×L, and Equation (52) becomes, W 2(Q)

L×L =
∑Q

q=1W
2
aqL×1

W 2
bq1×L

.

Consider the Singular Value Decomposition of the quadratic weight matrix, W 2,

W 2 = UΣV T , (56)

where, U and V areL×Lmatrices, and Σ is a diagonal matrix with singular values on the diagonal.
Equation (56) can be re-written as,

W 2 =
L∑
q=1

uqσqv
T
q , (57)

13
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where, uq and vq are the qth column of U and V respectively, and σq is the qth diagonal element of
Σ. A Qth rank approximation is then given as,

W 2(Q) =

Q∑
q=1

uqσqv
T
q

=

Q∑
q=1

ûqv
T
q , (58)

where, ûq = uq.σq. If W 2
aq = ûq and W 2

bq
= vTq ,

W 2(Q) =

Q∑
q=1

W 2
aqW

2
bq , (59)

hence, confirming the approximation given in Equation 52 as a Qth rank approximation of the exact
quadratic kernel.

The matrices W 2
aq and W 2

bq
are unknown beforehand, and will be learned as part of the training

process driven by the classification performance of the system. We will evaluate and compare both
approaches when implementing the second order kernel (i.e. approximation and exact method) in
Section 6. Figure 5 illustrates the implementation of a 2nd order filter using a Qth rank approxima-
tion.

𝑾𝒂𝟏
𝟐

𝑾𝟏

𝒇𝒕

𝒇𝒕
𝟐

𝒇𝒕
𝟏

𝒙𝒕

𝑾𝒃𝟏
𝟐

𝑾𝒂𝟐
𝟐

𝑾𝒃𝟐
𝟐

𝑾𝒂𝑸
𝟐

𝑾𝒃𝑸
𝟐

Figure 5: Implementation of a second order Volterra Filter using Qth rank approximation

4.5 Relation to LSTM Networks

In this section we compare the proposed Volterra Neural Networks with LSTMs, which are fre-
quently used for processing/analyzing temporal data. An LSTM Network cell implemented as dis-
cussed in Section 2.4, can be shown to be a special case of the Volterra Filter.
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CASE-1: No Activation Functions

Proposition 8 The cell state of an LSTM network at time t, Ct is a special case of a 2nd order
Volterra Filter, where the 2nd order filter is approximated usingQ = 1 in Equation 52, and weighed
by the cell state at time t− 1, Ct−1, i.e.

Ct = Ct−1(
2∑
j=1

W j
f sj) +

2∑
j,k=1

W jk
ic sjsk, (60)

where, s = [ht−1, xt], and Wic = Wi ·Wc.

Proof From Equations (6), (9), (11), At time t=0,

C0 = h0 = W0x0. (61)

At time t=1,

C1 = (W 1
f h0 +W 2

f x1)(h0) + (W 1
i h0 +W 2

i x1)(W
1
c h0 +W 2

c x1) (62)

= W 1
f h

2
0 +W 2

f x1h0 +W 1
i h0.W

1
c h0 +W 1

i h0.W
2
c x1 +W 2

i x1.W
1
c h0 +W 2

i x1.W
2
c x1. (63)

Define the matrix Wic such that, Wic = Wi ·Wc. This leads to,

C1 = W 1
f h

2
0 +W 2

f x1h0 +W 11
ic h

2
0 +W 12

ic h0x1 +W 21
ic x1h0 +W 22

ic x
2
1 (64)

= (W 1
f +W 11

ic )h20 + (W 2
f +W 21

ic )x1h0 +W 21
ic h0x1 +W 22

ic x
2
1. (65)

Note that the filter Wic is equivalent to a 1st rank approximation (Q=1) of the second order kernel
of a Volterra Filter (W 2 =

∑Q
q=1W

2
qaL×1

W 2
qb1×L

). This means that the LSTM can be considered
to be a special case of the Volterra Filter where a 1st rank approximation of the 2nd order kernel is
used.

At time t,

Ct = W 1
f ht−1Ct−1 +W 2

f xtCt−1 +W 11
ic h

2
t−1 +W 12

ic ht−1xt +W 21
ic xtht−1 +W 22

ic x
2
t (66)

= Ct−1(

2∑
j=1

W j
f sj) +

2∑
j,k=1

W jk
ic sjsk, (67)

where, s = [ht−1, xt], and Wic = Wi ·Wc. This formulation is equivalent to a 2nd order Volterra
Filter applied on the input s, with the linear kernel Wf and quadratic kernel Wic.

Proposition 9 The output ht of the LSTM network at time t, is a special case of the 3rd order
Volterra Filter, where the 2nd and 3rd order filters are approximated using Q = 1 in Equation (52),
and weighed by the cell state at time t− 1, Ct−1, i.e.

ht = Ct−1(

2∑
j,k=1

W jk
of sjsk) +

2∑
j,k,l=1

W jkl
oic sjsksl, (68)

where, s = [ht−1, xt], Wof = Wo ·Wf , and Woic = Wo ·Wi ·Wc.
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Proof Based on Equation (11), the LSTM network output, ht can be written as,

ht = (W 1
o ht−1 +W 2

o xt)Ct. (69)

Replacing Ct by its expression in Equation (60), and using Wof = Wo ·Wf and Woic = Wo ·
Wi ·Wc,

ht = W 11
of h

2
t−1Ct−1 +W 12

of ht−1xtCt−1 +W 21
of xtht−1Ct−1 +W 22

of x
2
tCt−1 +W 111

oic h
3
t−1 +W 112

oic h
2
t−1xt

+W 121
oic h

2
t−1 +W 122

oic ht−1x
2
t +W 211

oic h
2
t−1xt +W 212

oic ht−1x
2
t +W 221

oic ht−1x
2
t +W 222

oic x
3
t .

(70)

The above expression can be re-written as,

ht = Ct−1(
2∑

j,k=1

W jk
of sjsk) +

2∑
j,k,l=1

W jkl
oic sjsksl, (71)

where, s = [ht−1, xt].

On the other hand, for an O-VNN with Z layers,

hZtmZ
=

LZ∑
j=0

WZ1j hZ−1(mZ+LZ)−j +

LZ∑
j,k=0

WZ2j,k h
Z−1
(mz+Lz)−jh

Z−1
(mz+Lz)−k, (72)

where, mZ ∈ [1 : MZ ], MZ = MZ−1 − LZ + 1, and M1 = t − L1 + 1. In both scenarios,
the system uses higher order relations between current and previous samples. In case of an LSTM
network the cell state at t−1, Ct−1 is used in order to select features from previous frames that may
be relevant to current frames. On the other hand the Volterra filter formulation explicitly selects the
interactions between the frames and weighs them accordingly.

CASE-2: With Activation Functions The sigmoid activation function can be approximated as a
taylor series,

σ(x) =
1

1 + e−x
=

1

2
+

1

4
x− 1

48
x3 +

1

480
x5 − ... (73)

This can be learned by a Volterra Network if required as it is a polynomial expression. Furthermore
as long as the condition in Proposition 6 is satisfied, the series is convergent. Similarly, a tanh
activation is also approximated by using a Taylor Series,

tanh(x) = x− 1

3
x3 +

2

15
x5 − 17

315
x7 + ... (74)

This means there is no longer a need to explicitly define the activation function, as the Volterra
Neural Network will learn the required activation function as part of the learning/training process.

5. Min-Norm Solution and Risk Analysis of a 2nd Order Filter

Given the vectorized ith data sample, xi1×d
= {x1i , x2i , ..., xdi }, with its associated second order

terms found by xTi xi, provide a relevant data sample rewritten as,

x̂i(d+d2)×1
= [xi, {vec(xTi xi)}]. (75)
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Consider N such samples, i.e. i ∈ {1, ..., N}, which will be used for training of the system, this
leads to the data matrix, X̂N×(d+d2) = {x̂Ti }i∈{1,...,N}.

Now consider, Ŵ(d+d2)×1 = [W 1
1×d,W

2
1×d2 ]T where, W 1 and W 2 are the Volterra Filter

weights.
If YN×1 is the ground truth, we wish to find Ŵ such that,

X̂N×(d+d2)Ŵ(d+d2)×1 = YN×1. (76)

The min-norm solution to the filter weights in this case turns out to be,

Ŵ = X̂T (X̂X̂T )−1Y , (77)

where, X̂T (X̂X̂T )−1 is the pseudo-inverse of X̂ , and X̂X̂T is assumed to have a full rank so that
it is invertible.

Risk Analysis The risk of the min-norm estimate, Ŵ can be computed as discussed in Bartlett
et al. (2019),

R(Ŵ ) = IEx̂,y(y − x̂TŴ )2 − IE(y − x̂TŴ ?)2 (78)

= IEx̂,y(y − x̂TŴ ? + x̂T (Ŵ ? − Ŵ ))2 − IE(y − x̂TŴ ?)2 (79)

= IEx̂(x̂T (Ŵ ? − Ŵ ))2, (80)

where Ŵ ? is the least squares estimate, and IE is the expectation operator with respect to the
observed data and the ground truth. Since Ŵ = X̂T (X̂X̂T )−1Y ,

R(Ŵ ) = IEx̂(x̂T (Ŵ ? − X̂T (X̂X̂T )−1Y )) (81)

Furthermore, considering distortion due to noise, ε = Y − X̂Ŵ ?,

R(Ŵ ) = IEx̂(x̂T (I − X̂T (X̂X̂T )−1))Ŵ ?−x̂T X̂T (X̂X̂T )−1ε)
2

(82)

≤ 2IEx̂(x̂T (I − X̂T (X̂X̂T )−1))Ŵ ?)2 + 2IEx̂(x̂T X̂T (X̂X̂T )−1ε)2 (83)

= 2Ŵ ?TBŴ ? + 2εTCε, (84)

where, B = (I−X̂T (X̂X̂T )−1)Σ̂(I−X̂T (X̂X̂T )−1), Σ̂ = x̂x̂T and C = (X̂X̂T )−1X̂Σ̂X̂T (X̂X̂T )−1.

Equation (84) provides an upper bound for the excess risk when using the min-norm estimate
Ŵ , in terms of the observed data, the optimal least-squares estimate Ŵ ? and the distortion due to
noise, ε, thus, showing the generalizability of this strategy.

5.1 Two-Stream Volterra Networks

Most previous studies in action recognition in videos have noted the importance of using both the
spatial and the temporal information for an improved recognition accuracy. As a result, we also
propose the use of Volterra filtering in combining the two information streams, exploring a potential
non-linear relationship between them. In Section 6 we will verify that this actually boosts the
performance, thereby indicating some inherent non-linear relation between the two information
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streams. Independent Cascaded Volterra Filters are first used in order to extract features from each
modality,

FZ
RGB

[1:MZ ]
= gRGBZ (...gRGB2 (gRGB1 (XRGB

[t−L+1:t]))) (85)

FZ
OF

[1:MZ ]
= gOFZ (...gOF2 (gOF1 (XOF

[t−L+1:t]))). (86)

Upon gleaning features from the two streams, an additional Volterra Filter is solely used for com-
bining the generated feature maps from both modalities,

F
(RGB+OF )
t =

∑
τ1,σ11,σ21,u1

W 1[ τ1
σ11
σ21
u1

]fZu1[
MZ−τ1
s1−σ11
s2−σ21

]

+
∑

τ1,σ11,σ21,u1
τ2,σ12,σ22,u2

W 2[ τ1
σ11
σ21

][ τ2
σ12
σ22

]fZu1[
MZ−τ1
s1−σ11
s2−σ21

]fZu2[
MZ−τ2
s1−σ12
s2−σ22

], (87)

where τj ∈ [0, LZ+1], σ1j ∈ [−p1, p1], σ2j ∈ [−p2, p2], and uj ∈ [RGB,OF ]. Figure 6-(c) shows
the block diagram for fusing the two information streams.

6. Experiments and Results

6.1 Action Recognition

We proceed to evaluate the performance of this approach on three action recognition datasets,
namely, Kinetics-400 (Carreira and Zisserman, 2017), UCF-101 (Soomro et al., 2012) and HMDB-
51 (Kuehne et al., 2011). We present two versions of the VNN, a heavier complex version: O-VNN-
H and a lighter, device friendly version: O-VNN-L. The performance comparison of the results with
recent state of the art implementations on Kinetics-400 is presented in Table 1, and the comparisons
on UCF-101 and HMDB-51 are presented in Tables 2 and 3. Table 2 shows the comparison with
techniques that only exploit the RGB stream, while Table 3 shows the comparison when both infor-
mation streams are used. Note that our comparable performance to the state of the art is achieved
with a significantly lower number of parameters (see Table 1). Furthermore, a significant boost in
performance is achieved by allowing non-linear interaction between the two information streams.
The Optical Flow is computed using the TV-L1 algorithm (Zach et al., 2007). Note that we train the
network from scratch on both datasets, and do not use a larger dataset for pre-training, in contrast
to some of the previous implementations. The implementations that take advantage of a different
dataset for pre-training are indicated by a ‘Y’ in the pre-training column, while those that do not, are
indicated by ‘N’. When training from scratch the proposed solution is able to achieve best perfor-
mance for both scenarios: one stream networks (RGB frames only) and two-stream networks (RGB
frames & Optical Flow). To fuse the two information streams (spatial and temporal), we evaluate
the following techniques:

1. Decision Level Fusion (Figure 6-(a)): The decision probabilities PRGBt (ai) and POFt (ai) are
independently computed and are combined to determine the fused probability P ft (ai) using
(a) Weighted Averaging: P ft (ai) = βRGBPRGBt (ai)+βOFPOFt (ai), where βRGB+βOF =
1, which control the importance/contribution of the RGB and Optical Flow streams towards
making a final decision, or (b) Event Driven Fusion (Roheda et al., 2018a, 2019): P ft (ai) =
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Decision 
Fusion

O-VNNRGB

O-VNNOF

𝑿𝒕
𝑹𝑮𝑩

𝑿𝒕
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Figure 6: (a): Decision Level Fusion, (b): Feature Concatenation, (c): Two-Stream Volterra Filter-
ing

γPMAX MI
t (aRGBi , aOFi ) + (1 − γ)PMIN MI

t (aRGBi , aOFi ), where γ is a pseudo measure of
correlation between the two information streams, PMAX MI

t (.) is the joint distribution with
maximal mutual information, and PMIN MI

t (.) is the joint distribution with minimal mutual
information.

2. Feature Level Fusion: Features are extracted from each stream independently, and are sub-
sequently merged before making a decision. For this level of fusion we consider a simple
Feature Concatenation (see Figure 6-(b)), and Two-Stream Volterra Filtering (see Section
5.1, Figure 6-(c)).
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Figure 7: (a): Input Video, (b): Features extracted by only RGB stream, (c): Features extracted by
Two-Stream Volterra Filtering
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Figure 8: (a): Input Video, (b): Features extracted by only RGB stream, (c): Features extracted by
Two-Stream Volterra Filtering

The techniques are summarized in Figure 6. The complex version of the proposed approach
(O-VNN-H) comprises of 7 2nd order layers in both the RGB and the Optical stream. Each layer
uses Lz = 2 and p1z , p2z ∈ {0, 1, 2}. The outputs of the RGB filter and the Optical Flow filter
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Method Avg Accuracy
Kinetics-400

Number of
Parameters GFLOPs

Temporal 3D ConvNets (Diba et al., 2017a) 69.8 % 56M 63.34
SpatioTemporal Convolution (Tran et al., 2018) 71.3 % 34M 43.72

Two-Stream Inflated 3D CNN (Carreira and
Zisserman, 2017)

74.2 % 25M 37.43

Slowfast ResNet-50 (Feichtenhofer et al., 2019) 77.0 % 34M 50.58
Slowfast ResNet-101 (Feichtenhofer et al., 2019) 78.5 % 62M 96.79

Two Stream O-VNN-L 75.9 % 10M 12.30
Two Stream O-VNN-H 78.8 % 26M 29.85

Table 1: Performance Evaluation for Two-Stream networks (RGB & Optical Flow) on Kinetics-400

Method Pre-Training
Avg

Accuracy
UCF-101

Avg
Accuracy
HMDB-51

Slow Fusion (Karpathy et al., 2014) Y (Sports-1M) 64.1 % -
Deep Temporal Linear Encoding Networks (Diba

et al., 2017b)
Y (Sports-1M) 86.3 % 60.3 %

Inflated 3D CNN (Carreira and Zisserman, 2017) Y (ImageNet + Kinetics) 95.1 % 74.3 %
O-VNN-H Y (Kinetics) 95.3 % 75.1 %

Soomro et al, 2012 N 43.9 % -
Single Frame CNN (Karpathy et al., 2014;

Krizhevsky et al., 2012)
N 36.9 % -

Slow Fusion (Karpathy et al.; Baccouche et al.; Ji
et al.)

N 41.3 % -

3D-ConvNet (Carreira and Zisserman, 2017; Tran
et al., 2015)

N 51.6 % 24.3 %

Volterra Filter N 38.19 % 18.76 %
O-VNN-H N 58.73 % 29.33 %
O-VNN-L N 53.77 % 25.76 %

Table 2: Performance Evaluation for one stream networks (RGB only): The proposed algorithm
achieves best performance when trained from scratch
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Method Pre-Training
Avg

Accuracy
UCF-101

Avg
Accuracy
HMDB-51

Two-Stream CNNs (Simonyan and Zisserman,
2014)

Y (ILSVRC-2012) 88.0 % 72.7 %

Deep Temporal Linear Encoding Networks
(Diba et al., 2017b)

Y (BN-Inception +
ImageNet) 95.6 % 71.1 %

Two Stream Inflated 3D CNN (Carreira and
Zisserman, 2017)

Y (ImageNet + Kinetics) 98.0 % 80.9 %

Two-Stream O-VNN-H Y (Kinetics) 98.49 % 82.63 %
Two Stream Inflated 3D CNN (Carreira and

Zisserman, 2017)
N 88.8 % 62.2 %

Weighted Averaging: O-VNN-H N 85.79 % 59.13 %
Weighted Averaging: O-VNN-L N 81.53 % 55.67 %
Event Driven Fusion: O-VNN-H N 85.21 % 60.36 %
Event Driven Fusion: O-VNN-L N 80.37 % 57.89 %

Feature Concatenation: O-VNN-H N 82.31 % 55.88 %
Feature Concatenation: O-VNN-L N 78.79 % 51.08 %

Two-Stream O-VNN-H N 90.28 % 65.61 %
Two-Stream O-VNN-L N 86.16 % 62.45 %

Table 3: Performance Evaluation for two stream networks (RGB & Optical Flow): The proposed
algorithm achieves best performance on both datasets.
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are then fed to a fusion layer with LFuse = 2 and p1Fuse , p2Fuse ∈ {0, 1, 2}. Similarly, a lighter
version of the proposed method (O-VNN-L) is designed with 5 2nd order layers. It is clear from
Table 3 that performing fusion using Volterra Filters significantly boosts the performance of the
system. This shows that there does exist a non-linear relationship between the two modalities. This
can also be confirmed from the fact that we can see significant values in the weights for the fusion
layer (see Table 4). Figures 7 and 8 show one of the feature maps for an archery video and a

u =
RGB

u = OF u = Fusion

1
2‖W

u‖22 352.15 241.2 341.3

Table 4: Norm of W u, where u ∈ [RGB,OF, Fusion].

Figure 9: Epochs vs Loss for various number of multipliers for a Cascaded Volterra Filter

fencing video. From Figures 7, 8-(b),(c) it can be seen that when only the RGB stream is used, a
lot of the background area has high values, while on the other hand, when both streams are jointly
used, the system is able to concentrate on more relevant features. In 7-(c), the system is seen to
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concentrate on the bow and arrow which are central to recognizing the action, while in 8-(c) the
system is seen to concentrate on the pose of the human which is central to identifying a fencing
action. Figure 9 shows the Epochs vs Loss graph for a Cascaded Volterra Filter when a different
number of multipliers (Q) are used to approximate the 2nd order kernel. The green plot shows the
loss when the exact kernel is learned, and it can be seen that the performance comes closer to the
exact kernel as Q is increased.

Figure 10: GFLOPs vs Accuracy for various Action Recognition methods discussed in Table 1

Figure 10 depicts the plot for GFLOPs vs Accuracy of the various models compared in Table 1
and highlights the reduction in model complexity achieved by the proposed method while achieving
SOTA performance in action recognition.

Figure 11 evaluates the robustness of the proposed model (VNN) in presence of Gaussian noise
and compares it with that of a CNN model (Carreira and Zisserman, 2017) for action recognition.
It is observed that the VNN model is much more robust to Gaussian noise and provides up to 20 %
improvement in classification accuracy. Furthermore,the VNN model experiences a graceful drop in
performance compared to the CNN model which sees a severe drop at Signal to Noise Ratio (SNR)
of 15 dB.

Figure 12 evaluates performance when the number of Frames Per Second (FPS) is reduced.
This illustrates that the VNN is better at modelling long term relationships in the time domain
as compared to a CNN model. While unlike in the case of Gaussian noise, the VNN does see a
significant drop in performance, it comes at a lower frame rate of 5 fps as compared to the 10 fps in
the case of CNN.

6.2 Image Generation

To further demonstrate the capabilities of this VNN-based architecture we proceed to evaluate its
generative capacity in a Generative Adversarial Netowrk (Goodfellow et al., 2014) using our pro-
posed formulation. Furthermore, we also use the VNN architecture jointly with a fixed dictionary
as has been recently demonstrated in Stable GANs (STGANs) (Krim et al.) to stabilize the training
process.
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Figure 11: Performance comparison between VNN and CNN implementations when noise is added
to the input videos

Figure 12: Performance comparison between VNN and CNN implementations for different fps

We design the experiment using the CIFAR10 dataset of 60, 000 32 × 32 color images of ob-
jects from 10 classes by allotting 50,000 images for training and 10,000 images for validation. To
generate a 32 × 32 image, the input noise vector is first transformed into a latent space using a
fixed learned frame Θ?. The generator uses two 2nd order Volterra filter layers as opposed to four
convolutional layers in Krim et al.. The number of channels in the final layer is such that it is equal
to the number of atoms in the fixed dictionary, which in this experiment is 384. The learned fixed
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(a) Im-WGAN (b) SPGAN

(c) Volterra STGAN

Figure 13: Generated images using Cifar10 Dataset

Method Inception
Score

WGAN 5.95
VNN-WGAN 6.20
SPGAN-recon 6.70

STGAN 6.80
Volterra STGAN 7.05

Table 5: Comparison of various GAN based methods with proposed VNN STGAN in terms of
inception score.

dictionary Θ? is then multiplied by the generator output to produce generated image patches. The
size of the dictionary in this experiment was 75×384. Figure 13 (a)-(c) shows the generated cifar10
images in this experiment and compares them with SPGAN (Mahdizadehaghdam et al., 2019) and
Im-WGAN (Gulrajani et al., 2017). The inception score of the proposed approach is compared with
other existing approaches in Table 5 with a rather limited dictionary of Gaussians in one case (the
performance would improve as the diversity of the dictionaries increases).
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7. Conclusion

We proposed a novel network architecture for recognition of actions in videos, where the non-
linearities were introduced by a Volterra Series Formulation. We propose a Cascaded Volterra Filter
which leads to a significant reduction in parameters while exploring the same complexity of non-
linearities in the data and attaining competitive and even better performance than SOA CNN. Such a
Cascaded Volterra Filter was also shown to be a BIBO stable system. In addition, we also proposed
the use of the Volterra Filter to fuse the spatial and temporal streams, hence leading to a non-linear
fusion of the two streams. The combined competitive performance and a significant reduction in
parameter as well as sample complexity make VNN a viable alternative to SOA CNN.
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