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Abstract

Network lasso (NL for short) is a technique for estimating models by simultaneously clus-
tering data samples and fitting the models to them. It often succeeds in forming clusters
thanks to the geometry of the sum of `2 norm employed therein, but there may be limita-
tions due to the convexity of the regularizer. This paper focuses on clustering generated by
NL and strengthens it by creating a non-convex extension, called network trimmed lasso
(NTL for short). Specifically, we initially investigate a sufficient condition that guaran-
tees the recovery of the latent cluster structure of NL on the basis of the result of Sun
et al. (2021) for convex clustering, which is a special case of NL for ordinary clustering.
Second, we extend NL to NTL to incorporate a cardinality (or, `0-)constraint and rewrite
the constrained optimization problem defined with the `0 norm, a discontinuous function,
into an equivalent unconstrained continuous optimization problem. We develop ADMM
algorithms to solve NTL and show their convergence results. Numerical illustrations indi-
cate that the non-convex extension provides a more clear-cut cluster structure when NL
fails to form clusters without incorporating prior knowledge of the associated parameters.

Keywords: sparse modeling, clustering, network lasso, network trimmed lasso, alternat-
ing direction method of multipliers (ADMM)

1. Introduction

In data analysis, fundamental methodologies such as regression and clustering can be en-
hanced by coupling with side information concerning the underlying structure of the data
set. For instance, consider a scenario where a batch of data samples comprises outcomes
from multiple sources, and their relationship is (partially or fully) understood. In such a
context, multiple models can be estimated to fit the data set and identify sample clusters.
To tackle such tasks, network lasso (NL for short) has recently been proposed by Hallac
et al. (2015) and is considered effective.

Let ai ∈ Rp and bi ∈ R denote p inputs and a real-valued output, respectively, of the
i-th sample, i ∈ [n] := {1, ..., n}, and let us suppose that certain samples are known to
be similar. If such similarity for i, j ∈ [n] is given by non-negative weights, w̃{i,j}, the NL
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version of the ordinary least squares regression can be formulated as the following convex
optimization:

minimize
x1,...,xn∈Rp

1

2

∑
i∈[n]

(bi − a>i xi)2 + γ
∑

i,j∈[n]:i<j

w̃{i,j}‖xi − xj‖2, (1)

where ‖z‖2 :=
√∑p

j=1 z
2
j denotes the `2 norm of a vector z ∈ Rp, and γ > 0 is a parameter

to be tuned so as to strike a balance between the first and second terms of (1). Intuitively,
minimizing the first term encourages the model (b = a>xi) to adjust to each sample (ai, bi),
while minimizing the second term accelerates the merging of alike samples, as weight w̃{i,j}
is substantial when samples i and j have similarities. Especially, the second term is the
sum of `2 norms and, for large γ, an optimal solution (x?1, ..., x

?
n) is expected to satisfy

‖x?i − x?j‖2 = 0 for many pairs {i, j} ∈ E , which implies samples satisfying the equation
collapse into one point x̂ such that x̂ = x?i = x?j . The `2 norm plays a similar role in this
contraction to that in the group lasso (Yuan and Lin, 2006).

In general, we introduce a weighted undirected graph G = (V, E ,W ), where the node set
V = [n] denotes the index set of samples, the edge set E ⊂ {{i, j} : i, j ∈ [n]; i 6= j} indicates

the pairwise adjacency or similarity, and W = (w{i,j}){i,j}∈E ∈ R|E|≥0 denotes non-negative
weights on all the edges to represent the pairwise similarity. (The higher w{i,j}, the closer
the vertices i and j.) Let fi : Rp → R be a loss function for sample i ∈ [n]. NL (Hallac
et al., 2015) is then formulated as the following optimization problem:

minimize
x1,...,xn∈Rp

∑
i∈V

fi(xi) + γ
∑
{i,j}∈E

w{i,j}‖xi − xj‖2. (2)

Obviously, (1) is an example of NL (2), where the sum of squared residuals, fi(xi) =
1
2(bi − a>i xi)2, i ∈ [n], are employed as the loss functions. NL includes other methods as
special cases. If only the input vectors ai ∈ Rp, i ∈ [n], are given and we employ

fi(xi) =
1

2
‖xi − ai‖22, (3)

and set E = {{i, j} : i, j ∈ [n]; i 6= j} and w{i,j} = 1, NL (2) is reduced to convex clustering
(Pelckmans et al., 2005). Lindsten et al. (2011) and Hocking et al. (2011) considered
extensions where w{i,j} were not necessarily equal to 1. With an optimal solution (x∗1, ..., x

∗
n),

nodes i and j are assigned to the same cluster if and only if x∗i = x∗j . We call x∗i the
centroid of node i. Namely, samples that share the same centroid form a cluster. The exact
contraction property of the second term of (2) enables obtaining a clustering result of the
data set a1, ..., an for sufficiently large γ. Recent studies show that NL numerically performs
well in various tasks when information about node similarity (i.e., W ) is appropriately given
in advance (e.g., Hallac et al., 2015; Jung et al., 2018; Hocking et al., 2011; Chi and Lange,
2015; Sun et al., 2021).

In this paper, we further investigate and extend NL with a focus on its clustering
capabilities. First, we study whether NL can recover true latent clusters. For convex
clustering, Zhu et al. (2014), Panahi et al. (2017), and Sun et al. (2021) have established
sufficient conditions for recovering the set of the latent clusters. Sun et al. (2021) have led to
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the result including the results of Zhu et al. (2014) and Panahi et al. (2017) as special cases.
For NL (not limited to convex clustering), Jung et al. (2018) and Jung and Tran (2019) have
analyzed the gap between the optimal solution of NL and true parameter values. However,
their conditions do not guarantee the recovery of the true clusters. In contrast, we provide
sufficient conditions to recover the latent clusters for NL. The ease of the recovery will be
given by ranges of the parameter γ, for which NL (2) recovers the (unseen) true clusters if
they exist.

Besides, since (under a suitable assumption) the optimal solution to convex clustering is
unique and independent of initial solutions whereas the k-means approach depends on initial
solutions, it is almost certain that there is a gap between convex clustering and the usual
k-means approach (or its non-convex optimization version). The second part of this paper
aims to establish a bridge between the two realms: convex vs. non-convex. It is important
to note that the performance of (2) highly depends on how the prior information is given
by the weights W (and/or E). The left panel of Figure 1 shows the regularization paths,
i.e., the loci of the centroids obtained by convex clustering without prior information (i.e.,
w{i,j} = 1 for all {i, j} ∈ E and E = {{i, j} | i 6= j, i, j ∈ V}). While there are two latent
clusters (red and blue), all the centroids shrink to the middle point in an equal manner
and we cannot obtain the two clusters even with a large γ. For a practical use of convex
clustering, it is often suggested to set the weights w{i,j}, as w{i,j} = exp(−α‖ai − aj‖22),
where α > 0 is a parameter. The right panel of Figure 1 shows that convex clustering with
this technique resulted in a clear-cut clustering. We should note that how to provide such
prior information depends on the task at hand, and there are no general tips for NL (2)
(e.g., for regression).

To address this issue, we consider introducing a cardinality constraint instead of the
group l2-penalty in NL (2). We show that the cardinality-constrained problem can be
equivalently rewritten by a non-convex but continuous unconstrained optimization problem,
which we call network trimmed lasso (NTL for short). This reformulation is parallel to that
of the trimmed lasso, which is studied by, for example, Gotoh et al. (2018), Bertsimas
et al. (2017), and Amir et al. (2021). We also propose algorithms based on the alternating
direction method of multipliers (ADMM) to solve NTL. For a non-convex subproblem in
the proposed algorithms, a closed-form solution is derived. Additionally, we show the
convergence of proximal ADMM, an extension of ADMM, to a locally optimal solution
of NTL, which is a non-convex optimization problem. Advantages of NTL over ordinary
NL or clustered federated learning algorithms (Ghosh et al., 2020; Sattler et al., 2020) are
demonstrated through numerical experiments.

Contributions of the paper are summarized as follows:

• We provide sufficient conditions under which NL can recover a latent cluster structure
(Theorem 2). While a similar guarantee is known for convex clustering (Sun et al.,
2021), our result is the first for a general framework of NL applicable beyond convex
clustering (e.g., Equation 1).

• We propose NTL to improve the cluster structure detection ability of NL (Section
3). NTL is a continuous unconstrained optimization reformulation (12) where the
objective function includes a nonconvex continuous penalty term called NTL penalty,
and we show that any local optimum of NTL satisfies the cardinality constraint on
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(a) Without prior information (b) With prior information

Figure 1: Failed cluster path of centroids via convex clustering without prior information
(left panel) and successful cluster path with prior information, where w{i,j} =

e−0.1‖ai−aj‖22 (right panel).

As the regularization parameter γ grows, all the centroids are reduced to the mean of n points, i.e., 1
n

∑
i∈V ai,

which is located near the origin in each picture. The left-hand side panel shows the result of convex clustering with
w{i,j} = 1, failing to form clusters even for large γ’s. On the other hand, the right-hand side panel shows the case
where the distance of points is used and succeeded in providing a clear-cut cluster structure even with small γ’s.

the number of unmerged node pairs in a given network (Theorem 6 for general case;
Corollary 8 for clustering; Corollary 10 for general convex quadratic case).

• To obtain a local optimum of NTL (12), we introduce ADMM-based algorithms to
solve a problem (15) that involves a generalized version of NTL penalty. We show
that, under mild conditions, any sequence of points generated by (proximal) ADMM
converges to a local optimum (Proposition 13 and Theorem 14). Combining this
with the propositions stated in the preceding bullet point ensures that NTL can form
clear-cut clusters.

The rest of this paper is organized as follows. The next section is devoted to show-
ing sufficient conditions that NL recovers a latent cluster structure. Section 3 presents a
cardinality-constrained version of NL to get a more distinguishing cluster structure than
NL does, and shows the equivalence between the cardinality-constrained problem and NTL.
In Section 4, we develop algorithms for NTL and provide its convergence results. Section 5
reports numerical examples, demonstrating the effectiveness of NTL. The paper concludes
with Section 6. All proofs of propositions are included in Appendix A.

1.1 Notation and Preliminaries

A continuous differentiable function f : Rp → R is said to be L-smooth (or have a Lipschitz
continuous gradient with modulus L) if there exists L > 0 such that

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2
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for any x, y ∈ Rp. If f is L-smooth, then the inequality

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖x− y‖22 (4)

holds for all x, y ∈ Rp, which implies L
2 ‖·‖

2
2−f is convex (see, e.g., Beck, 2017, Lemma 5.7).

For a differentiable convex function f : Rp → R, the following statements are equivalent
(Beck, 2017, Theorem 5.8):

• f is L-smooth.

• The inequality (4) holds for all x, y ∈ Rp.

• L
2 ‖ · ‖

2
2 − f is convex.

For a convex function f : Rp → R, the subdifferential of f at x ∈ Rp is defined by

∂f(x) := {z ∈ Rp | f(y) ≥ f(x) + z>(y − x) ∀y ∈ Rp}.

Note that ∂f(x) 6= ∅ (Beck, 2017, Theorem 3.14). We call f : Rp → R strongly convex with
a positive constant α (or simply, α-strongly convex ) if f− α

2 ‖·‖
2
2 is a convex function. If f is

α-strongly convex, by using Theorems 3.63 and 5.24 of Beck (2017) and the Cauchy-Schwarz
inequality, we obtain

‖z‖2 ≥ α‖x− x‖2, (5)

for all x ∈ Rp, z ∈ ∂f(x), where x ∈ argmin
x∈Rp

f(x) and its existence and uniqueness are

guaranteed by strong convexity of f (Beck, 2017, Theorem 5.25). It is also known (e.g.,
Beck, 2017, Theorem 5.25) that if f is α-strongly convex and x ∈ argmin

x∈Rp
f(x), the inequality

α

2
‖x− x‖22 ≤ f(x)− f(x), (6)

holds for all x ∈ Rp. The directional derivative of f : Rp → R at a point x ∈ Rp in the
direction v ∈ Rp is defined by

df(x; v) := lim
η↘0

f(x+ ηv)− f(x)

η
.

A point x∗ ∈ Rp is called a (directional-)stationary point of an optimization problem
min
x
f(x) if the directional derivative df(x∗; v) exists and is non-negative for any v ∈ Rp.

The maximum and minimum eigenvalues of a symmetric matrix A are denoted by λmax(A)
and λmin(A), respectively.

2. Recovery Conditions for Network Lasso

In this section, we show recovery conditions for NL (2) to identify a latent cluster structure
on the basis of Sun et al. (2021), which develops sufficient conditions for the recovery of a
latent cluster structure for convex clustering.

Let C1, ..., CN denote (unseen) N clusters, which satisfy that Ci ∩ Cj = ∅ if i 6= j, and
C1 ∪ · · · ∪ CN = V. We assume that each sample i ∈ V belongs to one of C1, ..., CN .

To define the recovery of the cluster structure, we introduce a couple of notions, as
below, following Sun et al. (2021).
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Definition 1 Let P := {C1, . . . , CN} and P := {C1, . . . , CM} be partitionings of V.

1. When P = P, we say that P perfectly recovers P.

2. We call P a coarsening of P if for any C ∈ P there exists I ⊂ {1, . . . , N}
such that C = ∪l∈ICl. Moreover, P is called the trivial coarsening if P =
{V}. Otherwise, it is called a non-trivial coarsening.

A partitioning represents a cluster structure of the data set V. In the remainder of this pa-
per, we use P to refer to the partitioning corresponding to the true (usually, unseen) cluster
structure. For the partitioning P = {C1, . . . , CN}, we introduce the following notation:

nk := |Ck|, k ∈ [N ], (size of Cluster k)

w
(k)
i :=

∑
j∈Ck

w{i,j}, i ∈ V, k ∈ [N ], (sum of weights of Sample i adjacent to Cluster k)

w(k,k′) :=
∑
i∈Ck

∑
j∈Ck′

w{i,j}, k, k′ ∈ [N ]. (sum of weights between Clusters k and k′)

For the sake of simplicity, we set w{i,j} = 0 for {i, j} /∈ E in this section. Note that w
(k)
i can

be viewed as the sample i’s connectivity to the cluster Ck, and w(k,k′) as the inter-cluster
connectivity between two clusters Ck and Ck′ .

Theorem 2 Suppose that fi is strictly convex and Li-smooth, i ∈ V. Let P = {C1, . . . , CN}
be the (unseen) true partitioning of V, and let f (k)(x) :=

∑
i∈Ck fi(x), k ∈ [N ]. Assume

that for each k ∈ [N ], f (k) is αk-strongly convex, and let x(k) = argmin
x∈Rp

f (k)(x). Suppose

that x(k) 6= x(k′) for k 6= k′. Let

µ
(k)
ij :=

∑
l 6=k

∣∣∣w(l)
i − w

(l)
j

∣∣∣+
Li + Lj
αk

∑
l 6=k

w(k,l), i, j ∈ Ck, k ∈ [N ],

and suppose that nkw{i,j} > µ
(k)
ij for all i, j ∈ Ck, k ∈ [N ] s.t. i 6= j. Let

γmax := min
k 6=k′

 ‖x(k) − x(k′)‖2
1
αk

∑
l 6=k

w(k,l) + 1
αk′

∑
l 6=k′

w(k′,l)

 ,

γmin := max
k

max
i,j∈Ck
i 6=j

{∥∥∇fj(x(k))−∇fi(x(k))
∥∥

2

nkw{i,j} − µ
(k)
ij

}
,

where we set a
0 =∞ for a > 0.

Let (x∗1, ..., x
∗
n) be an optimal solution to (2), and P be the quotient set of V by equivalence

relation x∗i = x∗j .

1. If γmin ≤ γ < γmax, P perfectly recovers P.
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2. If γmin ≤ γ < max
k

‖∇f (k)(x)‖2∑
l 6=k

w(k,l)
, P is a non-trivial coarsening of P, where

x := argmin
x∈Rp

∑
k∈[N ]

f (k)(x) = argmin
x∈Rp

∑
i∈V

fi(x).

This theorem implies that if a problem instance satisfies the condition γmin < γmax, NL
recovers the true clusters at some point on the cluster path, γ ∈ [γmin, γmax), as demon-
strated in Figure 1(b). Unfortunately, however, it is practically difficult to know whether
an instance of NL meets the condition in advance. Therefore, let us derive implications of
the condition, γmin ≤ γ < γmax, to understand what kind of information contributes toward
fulfilling the condition.

Note first that the condition is more likely to be met as γmin is smaller and γmax is
larger. (Note also that we can construct an example where γmin > γmax holds.) By the

definition of γmin, a smaller µ
(k)
ij is preferable. The first term of µ

(k)
ij gauges a within-cluster

dissimilarity since
∣∣w(l)

i −w
(l)
j

∣∣ represents the difference of connectivity of the two samples,
i, j ∈ Ck, to the other clusters Cl, (l 6= k), whereas the second term gauges an inter-cluster
similarity since

∑
l 6=k w

(k,l) represents the connectivity between Ck and different clusters
Cl, (l 6= k), so the smaller the two terms, the more they contribute to the reduction of

µ
(k)
ij . Besides, the coefficient, (Li + Lj)/αk, of the second term of µ

(k)
ij can be smaller

when the number of samples in the same cluster is larger since, roughly speaking, the
denominator αk is the sum of the (lower bounds of) curvature of all fi’s within the cluster
Ck while the numerator is the sum of (two upper bounds, Li and Lj , of) curvature of fi

and fj . Also, the denominator, nkw{i,j}− µ
(k)
ij , in the definition of γmin shows that a larger

number nk of samples in a cluster and larger weights w{i,j} between samples in the same

cluster contribute to a decrease in γmin. The numerator, ‖∇fj(x(k)) − ∇fi(x(k))‖, in the
definition of γmin reflects a within-cluster dissimilarity based on the gradient of fi’s at the
centroid x(k). On the other hand, the numerator, ‖x(k) − x(k′)‖2, in the definition of γmax

denotes the inter-cluster dissimilarity of the centroids x(k), x(k′), whereas the denominator,
1
αk

∑
l 6=k w

(k,l) + 1
αk′

∑
l 6=k′ w

(k′,l), represents the inter-cluster similarity based on the weights

on the inter-cluster edges.

Overall, Theorem 2 suggests that the situation where the weights on the inter-cluster
edges are smaller and those on the within-cluster edges are larger is preferable for NL.
Although it is difficult to feed informative weights to NL in general, the popular choice
w{i,j} = exp(−α‖ai − aj‖22) for the convex clustering seems to be appropriate if the cluster
structure is considered to be determined by the Euclidean distance of the data points
{ai}i∈V , as demonstrated in Figure 1. The importance of w{i,j} will be further discussed in
the following remark.

Remark 3 Theorem 2 implies that if the weights (w{i,j}){i,j}∈E are chosen adequately, NL
is guaranteed to return the true cluster structure {C1, ..., CN} at some point on the cluster
path. To see this through an example, let us suppose that G is a complete graph E = {{i, j} |
i 6= j, i, j ∈ V}, {fi}i∈V satisfies the assumption of Theorem 2, and the weights are defined
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as

w{i,j}

{
≤ w, (i ∈ Ck, j ∈ Ck′ , k 6= k′),
= 1, (i, j ∈ Ck, i 6= j),

for a constant w ∈ [0, 1]. Note that when w is equal to 1, we can say the weights have
no information; as w gets closer to 0, the weights more reflect the true cluster structure.
Observing that ∑

l 6=k
w(k,l) ≤

∑
l 6=k

nknlw ≤ n2w → 0 (w → 0)

for all k ∈ [N ] and ∑
l 6=k

∣∣∣w(l)
i − w

(l)
j

∣∣∣ ≤∑
l 6=k

nlw ≤ nw → 0 (w → 0)

for all i, j ∈ Ck, k ∈ [N ], we have

γmax →∞,

γmin → max
k

max
i,j∈Ck
i 6=j

{∥∥∇fj(x(k))−∇fi(x(k))
∥∥

2

nk

}
,

as w → 0. This implies that for sufficiently small w the interval [γmin, γmax) becomes wider
so that we can find a value of γ in the range in an easier manner. This example indicates
that if (w{i,j}){i,j}∈E are given so that they reflect the true cluster structure sufficiently, NL
returns the true clusters with some γ ∈ [γmin, γmax).

Remark 4 Since fi(xi) = 1
2(bi − a>i xi)2 is not strictly convex for p ≥ 2, Theorem 2 does

not apply to optimization problem (1). However, the condition is fulfilled if we modify
fi(xi) by adding, for example, an `2-regularizer ε

2‖xi‖
2
2 for a small ε > 0 (that is, fi(xi) =

1
2(bi − a>i xi)2 + ε

2‖xi‖
2
2), as is often done to stabilize the estimation. In fact, fi is clearly

strictly convex and has a Lipschitz continuous gradient with modulus ‖ai‖22 + ε, and f (k) is
strongly convex with modulus λmin(

∑
i∈Ck aia

>
i )+nkε from ∇2f (k)(x) =

∑
i∈Ck aia

>
i +nkεIp,

where Ip is the p-dimensional identity matrix.

Remark 5 While our result covers the case where fi(xi) = 1
2‖xi − ai‖

2
2 for all i ∈ V, i.e.,

convex clustering, Theorem 2 is slightly weaker than the result of Sun et al. (2021) for
convex clustering because of the generalization beyond convex clustering. In their result,
the thresholds corresponding to γmax and γmin, between which recovery of true clusters is
guaranteed, are given, respectively, by

γ′max = min
k 6=k′

 ‖a(k) − a(k′)‖2
1
nk

∑
l 6=k

w(k,l) + 1
nk′

∑
l 6=k′

w(k′,l)

 ,

γ′min = max
k

max
i,j∈Ck
i 6=j


‖ai − aj‖2

nkw{i,j} −
∑
l 6=k

∣∣∣w(l)
i − w

(l)
j

∣∣∣
 ,
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where a(k) = 1
nk

∑
i∈Ck ai. Applying Theorem 2 and from

∑
l 6=k

∣∣∣w(l)
i − w

(l)
j

∣∣∣ ≤ µ(k)
ij , we have

γmax = min
k 6=k′

 ‖a(k) − a(k′)‖2
1
nk

∑
l 6=k

w(k,l) + 1
nk′

∑
l 6=k′

w(k′,l)

 = γ′max,

γmin = max
k

max
i,j∈Ck
i 6=j

{
‖ai − aj‖2

nkw{i,j} − µ
(k)
ij

}
≥ γ′min.

This shows that [γ′min, γ
′
max) ⊃ [γmin, γmax) holds, namely, the result of Sun et al. (2021)

admits a wider interval than Theorem 2 for convex clustering.

3. Network Trimmed Lasso

In the previous section, we see that when the prior information (w{i,j}){i,j}∈E is given
adequately, we can use NL for clustering. However, in the absence of the prior information,
clustering by NL does not work well, as seen in Figure 1. Rather than not forming reasonable
clusters, NL might not even form clusters, resulting in P = {V}. Furthermore, it might not
be easy to adequately define prior information for other tasks such as regression, as will be
demonstrated in Section 5. In this section, we consider an extension of NL that forces data
samples, i ∈ V, to form clusters by incorporating a non-convex constraint.

3.1 Cardinality-Constrained Formulation and Its Equivalent Continuous
Penalty Reformulation

In NL (2), the cluster structure is captured by the number of non-zero components of the
vectors (‖xi − xj‖2){i,j}∈E . In light of this, we consider a minimization problem (7)–(8),
where the fitting of the data set to models is optimized under a designated cardinality of
non-zero components of the vector:

minimize
x1,...,xn

∑
i∈V

fi(xi) (7)

subject to
∣∣∣{{i, j} ∈ E : ‖xi − xj‖2 > 0

}∣∣∣ ≤ K, (8)

where K is a non-negative integer such that K ≤ |E|. As K decreases, the nodes agglomerate
and form clusters. Hocking et al. (2011) treats convex clustering as a convex relaxation of
problem (7)–(8).

While it is easier to interpret the hyperparameter K in (7)–(8) than γ in NL (2), the
left-hand side of (8) is a discontinuous function in (x1, ..., xn) and is known to be difficult
to attain the global optimality of (7)–(8) in general. Therefore, we approach the problem
by rewriting the cardinality constraint with an equivalent continuous counterpart.

Let ξ := (‖xi−xj‖2){i,j}∈E ∈ R|E|, and denote the sum of the |E|−K smallest components
of the vector ξ by

τK(x1, ..., xn) := ξ(K+1) + · · ·+ ξ(|E|) with ξ = (‖xi − xj‖2){i,j}∈E , (9)

9
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where ξ(i) denotes the i-th largest component of ξ. Note that τK(x1, ..., xn) ≥ 0 for any
(x1, ..., xn). It is easy to see that the problem (7)–(8) is equivalent to the following problem:

minimize
x1,...,xn

∑
i∈V

fi(xi) (10)

subject to τK(x1, ..., xn) = 0, (11)

by noting that (8) and (11) are equivalent (see Gotoh et al., 2018, Subsection 5.2). Note
that (10)–(11) is a continuous optimization problem if fi are continuous, whereas (7)–(8) is
not because the left-hand side of constraint (8) is a discontinuous function. Now consider
the following penalty form of the constrained problem (10)–(11):

minimize
x1,...,xn

∑
i∈V

fi(xi) + γτK(x1, ..., xn), (12)

where γ > 0. The second term of the objective function of (12) plays a role of a penalty
function of the cardinality constraint (8) in that (i) τK(x1, ..., xn) ≥ 0 for all (x1, ..., xn),
and (ii) τK(x1, ..., xn) > 0 if and only if

∣∣{{i, j} ∈ E : ξ{i,j} > 0
}∣∣ > K.

We call the problem (12) network trimmed lasso (NTL for short). If we set K = 0,
τK(x1, ..., xn) =

∑
{i,j}∈E ‖xi−xj‖2, so the problem (12) is reduced to NL (2) with w{i,j} = 1

for all {i, j} ∈ E .
While (12) is now an unconstrained problem, another parameter γ is introduced instead.

We will show below that if we take γ large enough, (12) is guaranteed to be equivalent to
the constrained problem (10)–(11), and accordingly, to the cardinality-constrained problem
(7)–(8).

Theorem 6 1. Suppose that fi is Li-smooth for each i ∈ V, and let xγ := (xγ1 , ..., x
γ
n) be

an optimal solution of (12). Suppose that there exists C > 0 such that ‖xγi ‖2 ≤ C for all
i ∈ V and any γ > 0. Then xγ is optimal to (10)–(11) if

γ >
∑
i∈V

(‖∇fi(0)‖2 + 2LiC). (13)

2. In addition to the Li-smoothness, suppose that fi is convex for each i ∈ V, and let
xγ := (xγ1 , ..., x

γ
n) be a locally optimal solution of (12). Suppose that there exists C > 0 such

that ‖xγi ‖2 ≤ C for all i ∈ V and any γ > 0. Then xγ is locally optimal to (10)–(11) if the
inequality (13) holds.

By Statement 1. of Theorem 6, we are motivated to solve NTL (12) instead of the
cardinality-constrained problem (7)–(8) since NTL (12) is an unconstrained minimization
of a continuous function while (7)–(8) involves a constraint defined by a discontinuous
function. Despite the continuity of the objective function, developing a global optimization
algorithm for (12) is not easy especially when the number of variables is large. On the other
hand, Statement 2. of Theorem 6 yields conditions under which a locally optimal solution
to (7)–(8) is obtained by a locally optimal solution to NTL (12), which is attainable by, for
example, proximal ADMM (Li and Pong, 2015) as shown in the next section. As a result,

10
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we can obtain non-trivial clusters since the solution returned by the algorithm satisfies the
cardinality constraint (8).

Both statements of Theorem 6 suppose that the size of the solution set is bounded by a
constant C. In the following, we will see a few examples where values of C can be explicitly
given.

Example 1 (Network trimmed lasso for ordinary clustering) Consider the cluster-
ing problem of a data set ai ∈ Rp, i ∈ V with fi(xi) = 1

2‖xi − ai‖
2
2, i ∈ V. (Note that we do

not limit to the case where E = {{i, j} | i 6= j, i, j ∈ V}.) NTL then becomes

minimize
x1,...,xn∈Rp

1

2

∑
i∈V
‖xi − ai‖22 + γτK(x1, ..., xn). (14)

For this clustering problem, we can find a threshold value of γ of Theorem 6 explicitly in a
simple manner. To see this, first observe the following lemma, which shows the boundedness
of locally optimal solutions to (14).

Lemma 7 Let C = maxi∈V ‖ai‖2. For any γ > 0, any locally optimal solution x∗ of (14)
satisfies ‖x∗i ‖2 ≤ C for all i ∈ V.

From Theorem 6 and Lemma 7, we obtain the following result, which dictates an explicit
threshold value of the penalty parameter γ for ordinary clustering.

Corollary 8 Let C = maxi∈V ‖ai‖2. If γ > 3nC, then any optimal solution (resp. locally
optimal solution) of (14) is also optimal (resp. locally optimal) to the cardinality-constrained
clustering problem (i.e., Problem (7)–(8) with fi(xi) = 1

2‖xi − ai‖
2
2).

Besides the clustering problem (14), there are further examples where the threshold for
γ can be derived explicitly. Consider a general case where fi is αi-strongly convex for all
i ∈ V. The following lemma claims that any locally optimal solution to NTL (12) is then
bounded.

Lemma 9 Assume that fi is αi-strongly convex for all i ∈ V. Denote an unique optimizer of

min fi(x) by xi. Let C =
(

2
α

∑
j∈V (fj(0)− fj(xj))

) 1
2

+maxi∈V ‖xi‖2, where α = mini∈V αi.

Then for any γ > 0, any locally optimal solution x∗ of (12) satisfies ‖x∗i ‖2 ≤ C for all i ∈ V.

In the case where each fi is a strictly convex quadratic function, by using Lemma 9 a
threshold value of γ can be specified as follows.

Corollary 10 Suppose that for a positive definite matrix Ai ∈ Rp×p and a p-vector Bi ∈ Rp,
fi is given by fi(xi) = 1

2x
>
i Aixi − B>i xi for i ∈ V. Let C =

(
1
α

∑
i∈V B

>
i A
−1
i Bi

) 1
2 +

maxi∈V ‖A−1
i Bi‖2, where we set α = mini∈V λmin(Ai). If γ >

∑
i∈V(‖Bi‖2 + 2λmax(Ai)C),

then any optimal solution (resp. locally optimal solution) to (12) is also optimal (resp.
locally optimal) to (7)–(8).

11
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4. Algorithm

In this section, we develop a proximal ADMM that finds a locally optimal solution for (a
generalized version of) NTL (12) to ensure that the cardinality constraint (8) is satisfied.
Based on the ordinary ADMM (Section 4.1) and the efficient solution to a subproblem of
ADMM (Section 4.2), we describe a proximal ADMM in Section 4.3 and show its conver-
gence results in Section 4.4. We close the section by presenting the procedure of generating
cluster paths with respect to the cardinality parameter K.

4.1 ADMM

As the first algorithm, we consider the alternating direction method of multipliers (ADMM)
(e.g., Boyd et al., 2011). For NL (including convex clustering), Chi and Lange (2015) and
Hallac et al. (2015) propose a method based on ADMM.

In this subsection, we deal with a more general problem, which includes NTL (12) as
a special case. Similar to the trimmed lasso function (9), let us define the function TK on
Rpm by

TK((zk)k∈[m]) = ‖z(K+1)‖2 + · · ·+ ‖z(m)‖2,

where K ∈ {0, 1, . . . ,m}, zk ∈ Rp, and ‖z(k)‖2 denotes the k-th largest component of
(‖z1‖, ..., ‖zm‖) ∈ Rm. Note that TK is a continuous function. With this function, our
target optimization problem is formulated as

minimize
x

f(x) + γTK(Dx), (15)

where γ > 0, f : RN → R, and D is a pm×N matrix. Note that if we set f(x) =
∑

i∈V fi(xi)
and D is a matrix such that z = Dx with z{i,j} = xi−xj for all {i, j} ∈ E , then the problem
(15) is reduced to NTL (12).

To apply ADMM, we rewrite the problem (15) as the following equality-constrained
formulation:

minimize
x,z

f(x) + γTK(z) (16)

subject to z = Dx. (17)

By introducing the dual variables y ∈ Rpm for the equality constraints (17), the aug-
mented Lagrangian function of (16)–(17) is defined as

Lρ(x, z,y) = f(x) + γTK(z) + y>(z −Dx) +
ρ

2
‖z −Dx‖22,

with a positive constant ρ. ADMM is then described as Algorithm 1.

4.2 Closed-Form Solution of Subproblem (18)

We can derive a closed-form solution of Subproblem (18). First, it is easy to see that (18)
is reduced to

zt+1 ∈ prox γ
ρ
TK (Dxt − 1

ρ
yt) = argmin

z

{γ
ρ
TK(z) +

1

2
‖z − (Dxt − 1

ρ
yt)‖22

}
, (21)

12
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Algorithm 1 ADMM for (15)

Input: x0,y0, ρ > 0 and t = 0.
repeat

zt+1 ∈ argmin
z

Lρ(x
t, z,yt), (18)

xt+1 ∈ argmin
x

Lρ(x, z
t+1,yt), (19)

yt+1 = yt + ρ(zt+1 −Dxt+1). (20)

t = t+ 1
until Stopping criterion satisfied.
Output: xt.

where

proxg(x) := argmin
z

{
g(z) +

1

2
‖z − x‖22

}
is the proximal mapping of x with respect to a function g. Note that (21) may not be a
singleton since TK is non-convex.

Though the minimization in (21) is a non-convex optimization, we can derive a closed-
form solution, zt+1, in a similar manner to Lu and Li (2018) and Bertsimas et al. (2017).
For simplicity of notation, let a = Dxt − 1

ρy
t. With this, the minimization in (21) can be

equivalently rewritten as follows.

min
z

γTK(z) +
ρ

2
‖z − a‖22 = min

z
γ

m∑
k=K+1

‖z(k)‖2 +
ρ

2

m∑
k=1

‖zk − ak‖22

= min
z

{
γ min

Ik∈{0,1}
m∑
k=1

Ik=m−K

{ m∑
k=1

‖zk‖2Ik
}

+
ρ

2

m∑
k=1

‖zk − ak‖22
}

= min
Ik∈{0,1}

m∑
k=1

Ik=m−K

{
min
z

{
γ

m∑
k=1

‖zk‖2Ik +
ρ

2

m∑
k=1

‖zk − ak‖22
}}

= min
Ik∈{0,1}

m∑
k=1

Ik=m−K

{ m∑
k=1

min
zk

{
γ‖zk‖2Ik +

ρ

2
‖zk − ak‖22

}
︸ ︷︷ ︸

P(k)

}
,

(22)

where the second equality is obtained by introducing integer variables Ik, which play a role
as an indicator of the smallest m − K components, and the third and fourth equalities
are established by interchanging “min” and “min,” or “min” and “summation,” which is
possible because of the separability with respect to z = (zk)k∈[m]. For fixed Ik, we next
evaluate the term

P(k) := min
zk

{
γ‖zk‖2Ik +

ρ

2
‖zk − ak‖22

}
.

13
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To this end, let

P := min
z

{
π(z) := γ‖z‖2ι+

ρ

2
‖z − a‖22

}
for simplicity. Observe that when ι = 0, we have argmin

z
π(z) = {a} and P = 0; when ι = 1,

we have

argmin
z

π(z) = prox γ
ρ
‖·‖2(a) =

{
0, ‖a‖2 ≤

γ
ρ ,(

1− γ
ρ‖a‖2

)
a, ‖a‖2 >

γ
ρ ,

and P = φ(‖a‖2), where

φ(t) :=


1
2 t

2, 0 ≤ t ≤ γ
ρ ,

γ
ρ t−

1
2

(
γ
ρ

)2
, t > γ

ρ .

Accordingly, with a = ak, the problem (22) can be reduced to

min
Ik∈{0,1}

m∑
k=1

Ik=m−K

m∑
k=1

P(k) = min
Ik∈{0,1}

m∑
k=1

Ik=m−K

m∑
k=1

Ikφ(‖ak‖2).

Since φ(t) is increasing on (0,∞), an optimal solution of (21) is given by

zt+1
k =

{
ak, if ‖ak‖2 is in the largest K components of (‖ak‖2)k∈[m],

prox γ
ρ
‖·‖2(ak), if ‖ak‖2 is in the smallest m−K components of (‖ak‖2)k∈[m].

(23)

4.3 Proximal ADMM

As for subproblem (19), it is possible to derive a closed-form solution under restrictive
assumptions (e.g., that of f being a strictly convex quadratic function). However, it can be
hard to obtain a closed-form solution to (19) for some f .

To make the x-update (19) at each iteration efficient, we consider proximal ADMM (Li
and Pong, 2015). Suppose that f is L-smooth, so that the objective function of (19) is
bounded above as

Lρ(x, z
t+1,yt)

≤ f(xt) +∇f(xt)>(x− xt) +
L

2
‖x− xt‖22 + (yt)>(zt+1 −Dx) +

ρ

2
‖zt+1 −Dx‖22

by the inequality (4). The minimizer of the right-hand side is given by

xt+1 =
(
IN +

ρ

L
D>D

)−1
(
xt − 1

L
∇f(xt) +

1

L
D>(yt + ρzt+1)

)
, (24)

where IN is the N -dimensional identity matrix. Note that the formula (24) can be efficiently
computed by a matrix-vector multiplication once the inverse on the right-hand side is fixed
at the beginning of the algorithm.
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Proximal ADMM can be defined with a more general update rule that would include
(24) as a special case. For a continuously differentiable function φ on RN , we define the
Bregman distance of x and x′ by

Bφ(x,x′) = φ(x)− φ(x′)−∇φ(x′)>(x− x′).

In proximal ADMM, xt+1 is updated by

xt+1 ∈ argmin
x

{
Lρ(x, z

t+1,yt) +Bφ(x,xt)
}

(25)

in place of (19). If we employ φ(x) = L
2 ‖x‖

2
2−f(x), (25) can be reduced to (24). Algorithm

2 is the description of proximal ADMM, where the subroutine (25) is employed for x-update
as well as the proximal mapping (23) of TK for z-update.

Algorithm 2 Proximal ADMM for (15)

Input: x0,y0, ρ > 0, and t = 0.
repeat

Let at := Dxt − 1
ρy

t, then zt+1 is determined by (23) (i.e., Equation 18).

xt+1 is determined by (25).
yt+1 is determined by (20).
t = t+ 1

until Stopping criterion satisfied.
Output: xt.

Note that when we set φ(x) = 0, proximal ADMM is reduced to the ordinary ADMM
(Algorithm 1).

4.4 Convergence of Proximal ADMM

The main goal of this subsection is to show that under practical assumptions proximal
ADMM converges to a local minimum of (15) where the matrix D is assumed to be arbitrary
pm × N real matrix. To show the convergence, we first give a formula of the directional
derivative of TK , which is a generalization of the result for the case where p = 1, given by
Amir et al. (2021).

Lemma 11 Let Λ1 = {k | ‖zk‖2 < ‖z(K)‖2} and Λ2 = {k | ‖zk‖2 = ‖z(K)‖2}. The
directional derivative of TK at z ∈ Rpm in the direction v ∈ Rpm is given by

dTK(z;v) =
∑
k∈Λ1

δ(zk, vk)
>vk + min

Λ⊂Λ2
|Λ|=m−K−|Λ1|

∑
k∈Λ

δ(zk, vk)
>vk,

where

δ(z, v) :=


z
‖z‖2 , z 6= 0,
v
‖v‖2 , z = 0, v 6= 0,

0, z = 0, v = 0

and ‖z(0)‖2 =∞.
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The following result claims that stationary points and local minima are equivalent in
(15) when f is differentiable convex.

Proposition 12 Suppose that f is a differentiable convex function. If x∗ is a directional-
stationary point of (15), then it is locally optimal to (15).

The rest of this subsection is devoted to convergence results of proximal ADMM, for
which proofs are based on ideas of Li and Pong (2015). The differences between their results
and ours are summarized as follows:

• To apply Proposition 12, we will prove the convergence to a directional-stationary
point. On the other hand, they prove convergence to a limiting-stationary point,
which is a weaker stationary point than a directional-stationary point (see e.g., Cui
et al., 2018, pp.3350–3351).

• They assume the second-order differentiability of f , while we only assume the first-
order differentiability of f .

Let us start with results under the slightly stronger assumption that (‖xt+1−xt‖2, ‖zt+1−
zt‖2, ‖yt+1 − yt‖2) converges to (0, 0, 0).

Proposition 13 Suppose that f is convex, and f and φ are continuously differentiable. If
the sequence {(xt, zt,yt)} generated from proximal ADMM has a partial limit (x∗, z∗,y∗)
and (‖xt+1 − xt‖2, ‖zt+1 − zt‖2, ‖yt+1 − yt‖2) converges to (0, 0, 0), then x∗ is a local
minimum of (15).

Note that Proposition 13 ensures that if the whole sequence {(xt, zt,yt)} converges to
a point (x∗, z∗,y∗), then x∗ is a local minimum of (15).

By modifying the assumptions, we have a stronger convergence result than Proposition
13.

Theorem 14 Suppose that the following assumptions hold:

(A1) D is surjective, that is, σ := λmin(DD>) > 0;

(A2) f is convex;

(A3) f + φ is L1-smooth;

(A4) f + φ+ ρ
2‖D · ‖

2
2 is α1-strongly convex;

(A5) φ is L2-smooth and α2-strongly convex;

(A6) There exists 0 < r < 1 such that ρ > 2
σ(α1+α2)

(
L2
1
r +

L2
2

1−r

)
,

where we allow L1, L2, α1, α2 to be 0, but we must have α1 + α2 > 0. If the sequence
{(xt, zt,yt)} generated from proximal ADMM has a partial limit (x∗, z∗,y∗), then x∗ is a
local minimum of (15).
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In the concrete examples of NTL considered in this paper, the assumption (A1) holds
only for the piecewise constant fitting problem in Subsection 5.4. However, Proposition 13
is still valid for all the problems, although it is a weaker convergence result than Theorem
14. At first glance, the assumption (A4) may appear redundant because the assumptions
(A2) and (A5) seem to imply (A4) with α1 ≥ α2. However, this is not the case, as the
assumption (A4) admits the condition α1 > α2 = 0, which will be satisfied in Examples 2
and 3 below.

We will note below how to choose φ and ρ based on Theorem 14.

Example 2 Consider the case where D is surjective, f is L-smooth and α-strongly convex,
and φ = 0. The assumptions (A3)–(A5) are then fulfilled with L1 = L, L2 = 0, α1 = α,

and α2 = 0. By choosing ρ > 2L2

σαr for some 0 < r < 1, the assumption (A6) is also fulfilled.

Example 3 Consider the case where D is surjective and f is L-smooth and convex, and
φ = L

2 ‖·‖
2
2−f . In this case, φ is L-smooth since φ is differentiable convex and L

2 ‖·‖
2
2−φ = f

is convex. Accordingly, the assumptions (A3)–(A5) are then fulfilled with L1 = L2 = α1 = L

and α2 = 0. By choosing ρ > 2L
σ

(
1
r + 1

1−r

)
for some 0 < r < 1, the assumption (A6) also

holds.

Example 4 When D is not surjective, we cannot apply Theorem 14 because of the equation

σ = λmin(DD>) = 0. In this case, we interpret ρ > 2
σ(α1+α2)

(
L2
1
r +

L2
2

1−r

)
= ∞ as a for-

mality. In the computational examples of Section 5, we choose φ such that the assumptions
(A3)–(A5) hold and take a large ρ to mitigate the inconsistency.

While Theorem 14 assumes that proximal ADMM has a partial limit, the existence of
a partial limit is guaranteed by the following theorem.

Theorem 15 In addition to the assumptions (A1), (A3)–(A6), suppose that f is coercive,
i.e., lim‖x‖2→∞ f(x) =∞, and that there exists 0 < ζ < σρr such that

finf := inf
x

{
f(x)− 1

2ζ
‖∇f(x)‖22

}
> −∞.

Then the sequence {(xt, zt,yt)} generated from proximal ADMM is bounded.

Example 5 If f is L-smooth and bounded below, then the inequality

inf
x

{
f(x)− 1

2L
‖∇f(x)‖22

}
> −∞

holds (see Li and Pong, 2015, Remark 3). Note that a continuous and coercive function is
bounded below. If f is L-smooth and coercive, we choose ρ so that it satisfies not only the
inequality in Example 2 or 3, but also the condition ρ > L

σr .

Combining the above convergence results with Theorem 6 (or its corollaries) ensures
that we can obtain a local minimum of (7)–(8) by applying proximal ADMM to (12) for a
sufficiently large γ. Since the obtained solution satisfies the cardinality constraint (8), it is
guaranteed that NTL can always provide a distinct cluster structure, even when no prior
information is available, unlike NL.
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4.5 Computation of Cluster Path

To get a cluster path of NTL (12) on the basis of proximal ADMM, we use a warm start.
Let {Kt}Tt=1 ⊂ {0, 1, . . . , |E|} be a decreasing sequence of the cardinality parameter K.

Algorithm 3 Cluster Path

Input: x0,y0 = 0, ρ > 0, {Kt}Tt=1.
for t = 1 to T do

Get xt by using proximal ADMM to solve (12) with Kt, x
t−1, and y0.

end for
Output: {xt}Tt=0.

Note that when fi is convex for all i ∈ V, NL is a convex optimization problem and
a global optimum is attained by any local search method, but NTL is a non-convex opti-
mization, and the output of proximal ADMM is expected to be very sensitive to the initial
point (x0,y0) (and K). The choice of the initial point of cluster path is discussed through
numerical experiments in Section 5.

5. Numerical Examples

This section presents several numerical examples to demonstrate how NTL behaves in com-
parison with NL (Subsections 5.1, 5.3, 5.4) or clustered federated learning algorithms (Sub-
section 5.2). We used ADMM (Algorithm 1) to solve NTL and Algorithm 3 to generate
a cluster path. For ADMM to solve NTL, we used the following termination condition:
‖zt+1−Dxt+1‖2 ≤

√
p|E|εabs +εrel max{‖zt+1‖2, ‖Dxt+1‖2} and ‖xt+1−xt‖2 ≤

√
pnεabs +

εrel‖xt+1‖2 are satisfied with εabs = εrel = 10−5, or the number of iterations reaches 1000.
For NL, we also used ADMM and increased γ when generating a cluster path. ADMM for
NL was terminated either when ‖zt+1−Dxt+1‖2 ≤

√
p|E|εabs+εrel max{‖zt+1‖2, ‖Dxt+1‖2}

and ρ‖D(xt+1−xt)‖2 ≤
√
p|E|εabs + εrel‖yt+1‖2 were satisfied (as appeared in Boyd et al.,

2011) for εabs = εrel = 10−5, or when the number of iterations reached 1000.

5.1 Ridge Regression under Two Latent Clusters

We first address a regression problem. Unlike convex clustering, regression often lacks hints
on how to provide prior information, so we consider the complete graph E and w{i,j} = 1 for
all {i, j} ∈ E . We solved NL (2) and NTL (12), respectively, for simple regression models
using two data sets, each consisting of n = 100 data points, (a1, b1), ..., (a100, b100), which
are plotted in the top row of Figure 2, where the red and blue points correspond to two
latent clusters. Obviously, the left-hand side panel is the case where the regression lines
have different slopes and the data set has a clear cluster. In contrast, in the right-hand side
panel, the two regression lines have similar slopes while keeping the linear separability of
the two clouds. For each data point (ai, bi) ∈ R2, we consider the loss function of the form:

fi(xi,1, xi,2) =
1

2
‖bi − xi,1 − aixi,2‖22 +

ε

2
x2
i,2, i = 1, ..., 100,

where xi,1 and xi,2 are the intercept and the slope, respectively, of the model corresponding
to data point i, and ε > 0 is a parameter to trade-off between the squared residual and
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the `2-regularizer. In this experiment we set ε = 10−2 and consider a complete graph, i.e.,
E = {{i, j} | i 6= j, i, j ∈ V}, and uniform weights w{i,j} = 1 for all i, j ∈ V. Initial points
of cluster path are defined by y0 = 0, x0

i = argmin
x∈R2

fi(x).

For NL, let (xi,1(γ), xi,2(γ)) denote the centroid of data point i, obtained by ADMM
under parameter γ. The second row of Figure 2 shows the cluster paths of centroids,
{(xi,1(γ), xi,2(γ)) : γ = 10−3 × (1.2)t−1, t = 1, ..., 50}, generated by NL (via ADMM) with
γ increasing. Starting with the initial points, (xi,1(0), xi,2(0)) = (bi, 0) = x0

i , which are
highlighted in red or blue, they converge to a single black point in the middle as γ grows.
We can see, however, from these two panels that NL failed to capture the cluster structure
well for either data set in that the loci of centroids kept separated until only one cluster
was formed at the center point with a sufficiently large γ.

The third row of Figure 2 shows cluster paths generated by Algorithm 3. We employed
the same initial points as in NL. From Example 4, we set ρ = 104 and set γ to be larger
than the threshold presented in Corollary 10. We generated the cluster path with K =
4500, 4450, ..., 50, 0 in decreasing order. We can see from the third row of Figure 2 that
NTL recovers true clusters for data set 1, but not fully for data set 2, in that we can see
that some points joined in the opposite clusters for several small K’s.

Finally, we consider using NL to improve NTL. The bottom row of Figure 2 shows cluster
paths generated by NTL starting with the initial point generated by NL. The midpoint in
the cluster path of NL, denoted by small black points in the bottom row of Figure 2, was
employed as the initial point for NTL.1 The choice of this initial point is motivated by the
fact that samples belonging to the same true cluster are still likely to be closer to each other
even if NL does not work well, as shown in the second row of Figure 2. In contrast with the
case where NTL is only applied, we can see that it is better classified for both data sets.
These results support the use of NTL when no prior information is available.

5.2 Comparison with Clustered Federated Learning Algorithms

In this section, we compare NTL with two clustered federated learning (CFL for short)
algorithms proposed by Ghosh et al. (2020) and Sattler et al. (2020) in terms of clustering
performance. CFL is a form of federated learning (FL for short) that aims to cluster
distributed nodes called clients, each having data samples that are not shared with the
other clients. The main purpose of FL is to better estimate a single model that is to be
shared by clients without sharing data each client owns. Different from FL, CFL allows
clusters of clients to have different models. Although their original motivations are different,
NTL and CFL have the same task of finding clusters (of nodes and clients, respectively),
and we here compare the quality of recovery of latent clusters obtained by NTL with that
obtained by the two existing CFL algorithms. In order to adapt NTL to CFL, let each node
i ∈ [n] correspond to a client of CFL, and suppose νi data samples are assigned to estimate
a model at each client (or node). For our numerical comparison, we consider n = 100
clients and four cases where each client equally has ν = 1, 10, 100, or 1000 data samples,(
(a

(i)
hj )j∈[p], b

(i)
h

)
, h ∈ [ν]. To test the recovering ability, we also assumed that each client was

implicitly driven by N = 4 or N = 8 linear models, each corresponding to a latent cluster.

1. More precisely, the midpoint was defined among the points of centroids {(x1(γ), ..., xn(γ)) : γ = 10−3 ×
(1.2)t−1, t = 1, ..., 50} where at least one centroid was different from one of the others.
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Case 1 Case 2

(a) plot of data set (ai, bi), i ∈ [100] (b) plot of data set (ai, bi), i ∈ [100]

(c) NL (d) NL

(e) NTL (f) NTL

(g) NL + NTL (h) NL + NTL

Figure 2: Two data sets (a),(b) for simple regression and cluster paths of centroids (c)–(h)
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Each linear model k ∈ [N ] is defined by p = 10 coefficients (x
(k)
j )j∈[10], and each x

(k)
i was

drawn from the Bernoulli distribution with probability 0.5. The index of the latent cluster

of client i, denoted by ki ∈ [N ], was uniformly randomly determined. Each element a
(i)
hj

was independently drawn from the uniform distribution on (0, 1) and b
(i)
h was determined

by b
(i)
h =

∑
j∈[10] a

(i)
hjx

(ki)
j + e

(i)
h where e

(i)
h was independently drawn from N(0, 1). As for the

loss function, we used the squared loss for the two CFL algorithms and the `2-regularized
squared loss

fi(xi) =
1

2
‖bi −Aixi‖22 +

ε

2
‖xi‖22

for NTL to make f strictly convex, where Ai := (a
(i)
hj )h,j ∈ Rν×10 and ε = 10−2. The

complete graph was applied to NTL for the same reason as the previous subsection and γ
was set to be larger than the threshold presented in Corollary 10.

The quality of clusters obtained by the three algorithms is evaluated based on adjusted
Rand index (Hubert and Arabie, 1985) (ARI for short; see, e.g., Vinh et al., 2010, Section 2
for the details). ARI takes a value between 0 and 1, and when it is closer to 1, the clustering
performance is considered to be higher.

As for NTL, a cluster path was generated by Algorithm 3 with ρ = ν × 104, K =
4900, 4880, . . . , 20, 0, where, motivated by the results of the previous subsection, the initial
solution x0 was computed by NL. The performance of NTL was measured by the best ARI
value along the cluster path. As for the algorithm of Ghosh et al. (2020), the number of
clusters must be given in advance, and we considered three values, N − 1, N , and N + 1 for
the number of clusters. Note that the true number of latent clusters is N , so this setting
seems to be favorable for this algorithm. As for the algorithm of Sattler et al. (2020), it
requires a parameter (γmax in their notation) that would affect the number of clusters of
outputs. We set it as 0.1, 0.2, . . . , or 0.9, and show the best results in terms of ARI among
the nine cases.

Tables 1 and 2 show the mean values and standard deviations of the maximum values
of ARI for each method when repeated 50 times for each pair of N and ν with the above
settings. We see from Tables 1 and 2 that as ν increases, NTL outperforms the other
methods in both cases. In particular, a significant margin is found for the case where more
latent clusters exist. These numerical results indicate that NTL is competitive with the
novel clustered federated learning algorithms.

5.3 Ordinary Clustering Problem

This subsection compares (14) in Example 1 with convex clustering (CC for short). Namely,
we set fi(xi) = 1

2‖xi − ai‖
2
2 and E = {{i, j} | i 6= j, i, j ∈ V} in NL (2) and NTL (12). As

mentioned in Section 1, in this case, we have access to prior information.
Firstly, we consider the half moons data set (n = 200, p = 2). In Figure 3, the given

(true) cluster labels of the data points are indicated by different colors (red versus blue).
As for the weights for CC, we consider two cases: (i) uniform weights, w{i,j} = 1 for all
{i, j} ∈ E , and (ii) non-uniform weights. In order to define non-uniform weights for case
(ii), let us denote the k-nearest neighbors of a point i ∈ V by

NN(i, k) := {j ∈ V | aj is one of k nearest neighbors of ai}.
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ν = 1 ν = 10 ν = 100 ν = 1000
method mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.)

CFLA(G) 0.0827 (0.0561) 0.4682 (0.1687) 0.8320 (0.1353) 0.7734 (0.1626)
CFLA(S) 0.0494 (0.0414) 0.0821 (0.1372) 0.3913 (0.3252) 0.9488 (0.0966)
NTL 0.0573 (0.0365) 0.2392 (0.1549) 0.9289 (0.0808) 0.9773 (0.0467)

Table 1: Mean and standard deviation of maximum adjusted Rand index (N = 4).

ν = 1 ν = 10 ν = 100 ν = 1000
method mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.)

CFLA(G) 0.0401 (0.0276) 0.2816 (0.0711) 0.5568 (0.1286) 0.4784 (0.0932)
CFLA(S) 0.0330 (0.0232) 0.0430 (0.0591) 0.2658 (0.1435) 0.8676 (0.1016)
NTL 0.0298 (0.0169) 0.1330 (0.0816) 0.8189 (0.1167) 0.9698 (0.0165)

Table 2: Mean and standard deviation of maximum adjusted Rand index (N = 8).

The algorithms proposed by Ghosh et al. (2020) and Sattler et al. (2020) are denoted by CFLA(G) and
CFLA(S), respectively. The best value for each setting is shown in boldface.

With this, we define

w{i,j} =

{
exp(−0.5‖ai − aj‖22), if i ∈ NN(j, 20) or j ∈ NN(i, 20),
0, otherwise,

for {i, j} ∈ E .

For CC, a cluster path of centroids for γ ∈ {10−3 × 2t−1}50
t=1 is computed with initial

points y0 = 0, x0
i = ai (i ∈ V).2 As for NTL, we used ρ = 104 and started from the same

initial points, computing a cluster path of centroids for K ∈ {19900, 19800, ..., 100, 0}. From
Corollary 8, the penalty parameter γ is set to be γ = 3nmaxi ‖ai‖2 × 1.001. For k-means,
the number of clusters is set to 2.

We can see from Figure 3 that the CC with uniform weight failed to form clusters until it
degenerated to a single point. Although the k-means formed two clusters, it failed to recover
two halfmoons. On the other hand, the weighted CC and NTL succeeded in recovering them
along the cluster paths. Comparing with the two methods, NTL generates small clusters at
the beginning of the cluster path, which is more informative than CC about the closeness
of data points.

Next, using several real data sets,3 we quantitatively compared the quality of clustering
on the basis of ARI.

For weights for CC, we consider the following two cases:

w1
{i,j} =

{
exp(−0.5‖ai − aj‖22), if i ∈ NN(j,

⌈
n
2

⌉
) or j ∈ NN(i,

⌈
n
2

⌉
),

0, otherwise

2. When all centroids degenerate at a single point, the computation of the path was stopped.
3. Data sets from scikit-learn https://scikit-learn.org/stable/datasets/index.html. The digit data set was

resampled so that n = 500, 100, 50.
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(a) k-means (b) CC with uniform weight

(c) CC with Gaussian weight (d) NTL

Figure 3: Data sets and cluster path of centroids for half moons.

23



Yagishita and Gotoh

iris wine digits digits digits
method (n = 500) (n = 100) (n = 50)

CC (uniform) 0.0015 0.0000 0.0082 0.0014 0.0013
CC (w1) 0.5681 0.7577 0.5302 0.4577 0.3812
CC (w2) 0.5681 0.7994 0.5346 0.5101 0.4443
NTL 0.5778 0.8260 0.3967 0.4134 0.4207

Table 3: Maximum adjusted Rand index through the cluster path.

The best value for each data set is shown in boldface. The range of the cardinality parameter K for NTL is
set to {11000, 10900, ..., 100, 0}, {15500, 15400, ..., 100, 0}, {124000, 123900, ..., 100, 0}, {4900, 4880, ..., 20, 0},
and {1220, 1210, ..., 10, 0} for iris, wine, digits (n = 500), digits (n = 100), and digits (n = 50), respectively.

and

w2
{i,j} =

{
exp(−0.5‖ai − aj‖22), if i ∈ NN(j,

⌈
n
10

⌉
) or j ∈ NN(i,

⌈
n
10

⌉
),

0, otherwise,

where dle denotes the smallest integer no less than l. Note that (w2
{i,j}){i,j}∈E put more

zeros on edges than (w1
{i,j}){i,j}∈E . The range of the NTL cardinality parameter K is set

as shown under Table 3. The other settings are the same as in the previous (half-moon)
example.

Table 3 summarizes the largest values of ARI along the cluster paths. We see from
the table that the weighted CC with w2 performed best for three data sets, as Theorem 2
implies. On the other hand, NTL recorded the best performance with the two data sets.
We cannot say which one is better, but from this experiment, CC performs poorly in the
absence of prior knowledge. In contrast, it is worth noting that NTL performed as well as
weighted CC even without prior information.

5.4 Piecewise Constant Fitting

As the final example, we consider the problem of recovering a piecewise constant signal
from a noisy signal (Calafiore and El Ghaoui, 2014, Example 9.16) by using NL and NTL.
Specifically, we consider a situation where n = 1000 noisy signals x̂1, ..., x̂1000 ∈ R are
generated as x̂i = xo

i +ei with xo being given as the original signal given as the black stepwise
function in Figure 4 and ei being independently drawn from a normal distribution N(0, 0.22).
Given the time series structure, we set V = {1, ..., 1000}, E = {{i, i+ 1} | i, i+ 1 ∈ V},
fi(xi) = 1

2(xi − x̂i)2, and

D :=


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1

 .

It is known that σ := λmin(DD>) = 2(1− cos( π
1000)) ≈ 9.87× 10−6 (Kulkarni et al., 1999,

Theorem 2.2). In this example, we consider not only the perspective of the cluster recovery
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(a) plot of data set (b) NTL

(c) NL (best in terms of quality) (d) NL (best in terms of cluster recovery)

Figure 4: Noisy signal and recovered signals.

but also the quality of the solution. The quality of the solution here means the closeness of
the recovered signal and the original signal, measured by ‖x∗ − xo‖2.

For NL, we computed the cluster path of centroids for γ ∈ {10−3× (1.2)t−1}100
t=1 with the

initial points y0 = 0, x0
i = x̂i and the prior information w{i,i+1} = exp(−0.5‖x̂i − x̂i+1‖22).

As for NTL, we applied ADMM from the same initial point, using K = 5 and γ =
3nmaxi ‖x̂i‖2 × 1.001. As for the parameter ρ for ADMM, we here employ a heuristics
similar to Li and Pong (2015) so as not to excessively restrict the movement of xt and
zt at early iterations of ADMM. Specifically, starting with the initial value ρ ← 1, it was
updated by the formula ρ← min{10ρ, 2

0.99σ} every 100 iterations. Noting that Examples 2
and 5 suggest ρ > max{ 2

σ ,
1
σ} = 2

σ > 2 × 105 to fulfill the assumption of Theorem 14, the
employed heuristics aims to increase the value gradually until the assumption is fulfilled.

Figure 4 shows how well NL and NTL recover the original signal, which is denoted by
the black solid line, from the noisy signal, which is shown by the red solid line in the upper
left panel. Since there is a degree of freedom in the evaluation criteria, two best-case results
are given for NL. The panel (c) is the best in solution quality in the sense that the smallest
value of ‖x∗ − xo‖2 was attained out of 100 values of γ. On the other hand, the panel (d)
is the best in the cardinality in the sense that the employed γ is the smallest out of the
100 values such that the number of jumped points is less than 5, which is the number of
jumps in the original signal. We see from the panel (d) of Figure 4 that NL detected the
jump points almost exactly as Theorem 2 implies, but the levels of the piecewise constants
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iris wine digits digits digits
method (n = 500) (n = 100) (n = 50)

CC (uniform) 7.9790 15.2130 216.0687 5.4037 0.6222
CC (w1) 5.8021 16.5441 735.3687 9.9490 1.2041
CC (w2) 1.3671 1.4319 59.0054 0.7677 0.1367
NTL 3.8742 10.0048 81.8792 4.0477 1.1689

Table 4: Average CPU time (sec.) of one ADMM run for the experiment in Subsection 5.3.

The algorithms were implemented in MATLAB2021a and all the computations were conducted on a PC
with OS: Windows 10 Pro for Workstations, CPU: Intel Xeon W-10885M 2.80 GHz, and 16.0 GB memory.
The table shows that the computation time of the ADMM run increased at a faster rate than linearly in n
for all problems.

are far from the original signal. We think this is due to the fact that the degree of each
node is at most 2, so prior information was not given enough to recover the signal by NL.
Employing more zeros as the edge weights worked better in the experiment of the previous
subsection, but this example indicates that that is not always true. This indicates that it is
not easy to give weights adequately for NL in advance. On the other hand, NTL not only
detects the jumps/drops accurately but also estimates the levels of the piecewise constants
more accurately than the best case of NL (lower left panel).

6. Concluding Remarks

This paper investigates the cluster structure of network lasso (NL) from multiple perspec-
tives. Firstly, we establish a condition under which NL can recover (unseen) true clusters.
Secondly, to obtain clusters that might not be attained by NL, we consider a cardinality
constraint on the number of unmerged pairs of centroids and present an equivalent un-
constrained reformulation called network trimmed lasso (NTL). We additionally show the
convergence of ADMM to a locally optimal solution of NTL and the cardinality-constrained
problem. Consequently, NTL can form distinct clusters even in the absence of prior infor-
mation. Numerical examples illustrate how NTL outperforms the ordinary NL, partic-
ularly when no prior information is available. Our findings indicate that NL should be
employed when provided with ample prior information and NTL otherwise. While the con-
vergence of the algorithm is guaranteed, using the ADMM approach in situations where
the underlying graph is both dense and large would result in impractical solution times,
as can also be seen from Table 4. For example, when the graph is a complete graph,
i.e., E = {{i, j} | i 6= j, i, j ∈ V}, ADMM would have to handle n(n−1)

2 p-dimension vectors,
which would be prohibitively large, even for a moderately sized n (e.g. n = 1000). The
development of an efficient algorithm to handle such big data sets has been left for future
research.
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Appendix A. Proofs

In this section, we prove the propositions in this paper.

A.1 Proof of Theorem 2

Proof Proof of Statement 1. Let (x(1)∗, . . . , x(N)∗) be an optimal solution of the following
problem,

minimize
x(1),...,x(N)

N∑
k=1

f (k)(x(k)) + γ
∑
k<l

w(k,l)‖x(k) − x(l)‖2, (26)

which is equivalent to NL (3) with the symbols introduced in the statement of the theorem.
We first show that γ < γmax implies x(k)∗ 6= x(k′)∗ for all k 6= k′. The optimality

condition of (26) is then given by

∇f (k)(x(k)∗) + γ
∑
l 6=k

w(k,l)z(k,l) = 0, k ∈ [N ], (27)

where z(k,k′) ∈ ∂‖x(k)∗ − x(k′)∗‖2 and z(k,k′) = −z(k′,k), for any k, k′ ∈ [N ] such that k 6=
k′. Here, ∂‖x(k)∗ − x(k′)∗‖2 denotes the subdifferential of ‖ · ‖2 at x(k)∗ − x(k′)∗, and the
subdifferential of ‖ · ‖2 at x is given by

∂‖x‖2 =

{
{ x
‖x‖2 }, x 6= 0,

{z ∈ Rp | ‖z‖2 ≤ 1}, x = 0.

By noting that ‖z(k,k′)‖2 ≤ 1, and combining it with the triangle inequality and the equation
(27), we obtain

‖∇f (k)(x(k)∗)‖2 ≤ γ
∑
l 6=k

w(k,l)‖z(k,l)‖2

≤ γ
∑
l 6=k

w(k,l)
(28)

for all k ∈ [N ]. Since f (k) is αk-strongly convex, we have for arbitrary k, k′ ∈ [N ] such that
k 6= k′,

‖x(k) − x(k′)‖2 ≤ ‖x
(k) − x(k)∗‖2 + ‖x(k)∗ − x(k′)∗‖2 + ‖x(k′)∗ − x(k′)‖2

≤ ‖x(k)∗ − x(k′)∗‖2 +
1

αk
‖∇f (k)(x(k)∗)‖2 +

1

αk′
‖∇f (k′)(x(k′)∗)‖2

≤ ‖x(k)∗ − x(k′)∗‖2 + γ
( 1

αk

∑
l 6=k

w(k,l) +
1

αk′

∑
l 6=k′

w(k′,l)
)
,

(29)
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where the first inequality is due to the triangle inequality, the second one follows from (5),
and the final one from (28). If the term to the right of γ on the right-hand side of (29)
is equal to zero, then ‖x(k)∗ − x(k′)∗‖2 > 0 holds by the assumption that x(k) 6= x(k′) for
k 6= k′. Otherwise, combining the inequality (29) and the definition of γmax, we obtain

‖x(k)∗ − x(k′)∗‖2

≥ ‖x(k) − x(k′)‖2 − γ
( 1

αk

∑
l 6=k

w(k,l) +
1

αk′

∑
l 6=k′

w(k′,l)
)

=

(
‖x(k) − x(k′)‖2

1
αk

∑
l 6=k w

(k,l) + 1
αk′

∑
l 6=k′ w

(k′,l)
− γ

)( 1

αk

∑
l 6=k

w(k,l) +
1

αk′

∑
l 6=k′

w(k′,l)
)

≥ (γmax − γ)
( 1

αk

∑
l 6=k

w(k,l) +
1

αk′

∑
l 6=k′

w(k′,l)
)

> 0.

Thus, x(k)∗ 6= x(k′)∗ for all k 6= k′.

Next, we show that γmin ≤ γ implies x∗i = x(k)∗ for all i ∈ Ck, k ∈ [N ]. To this end, we
now prove that the optimality condition of (2) is satisfied, that is, there exists (zij)i 6=j such
that zij ∈ ∂‖x∗i − x∗j‖2 and zij = −zji for all i 6= j, i, j ∈ V, and

∇fi(x∗i ) + γ
∑
j 6=i

w{i,j}zij = 0

for all i ∈ V. Let

z∗ij :=

{
z(k,k′), (i ∈ Ck, j ∈ Ck′ , k 6= k′),

1
nkw{i,j}

{
1
γ

(
∇fj(x(k)∗)−∇fi(x(k)∗)

)
+ p

(k)
j − p

(k)
i

}
, (i, j ∈ Ck, i 6= j),

where

p
(k)
i :=

∑
l 6=k

(
w

(l)
i −

1

nk
w(k,l)

)
z(k,l).

Obviously, it holds that z∗ij = −z∗ji for any i 6= j, i, j ∈ V. For all i ∈ Ck, j ∈ Ck′ , k 6= k′,

it is valid z∗ij = z(k,k′) ∈ ∂‖x(k)∗ − x(k′)∗‖2 = ∂‖x∗i − x∗j‖2. For arbitrary i, j ∈ Ck, k ∈ [N ],
we have

‖∇fj(x(k)∗)−∇fi(x(k)∗)‖2
≤ ‖∇fj(x(k)∗)−∇fj(x(k))‖2 + ‖∇fj(x(k))−∇fi(x(k))‖2 + ‖∇fi(x(k))−∇fi(x(k)∗)‖2
≤ ‖∇fj(x(k))−∇fi(x(k))‖2 + (Li + Lj)‖x(k) − x(k)∗‖2

≤ ‖∇fj(x(k))−∇fi(x(k))‖2 +
γ(Li + Lj)

αk

∑
l 6=k

w(k,l),
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where the first inequality follows from the triangle inequality, the second one from the
Li-smoothness of fi, and the third one from (5) and (28). Accordingly, we obtain

‖z∗ij‖2

=
1

nkw{i,j}

∥∥∥∥1

γ

(
∇fj(x(k)∗)−∇fi(x(k)∗)

)
+ p

(k)
j − p

(k)
i

∥∥∥∥
2

≤ 1

nkw{i,j}γ

∥∥∥∇fj(x(k)∗)−∇fi(x(k)∗)
∥∥∥

2
+

1

nkw{i,j}

∥∥∥p(k)
j − p

(k)
i

∥∥∥
2

≤ 1

nkw{i,j}γ

∥∥∥∇fj(x(k))−∇fi(x(k))
∥∥∥

2
+

1

nkw{i,j}

(∑
l 6=k

∣∣∣w(l)
i − w

(l)
j

∣∣∣+
Li + Lj
αk

∑
l 6=k

w(k,l)
)

≤ 1

nkw{i,j}γmin

∥∥∥∇fj(x(k))−∇fi(x(k))
∥∥∥

2
+

µ
(k)
ij

nkw{i,j}

≤
nkw{i,j} − µ

(k)
ij

nkw{i,j}
+

µ
(k)
ij

nkw{i,j}

= 1,

where the first inequality follows from the triangle inequality, the second one from the

definition of p(k) := (p
(k)
i )i∈Ck and the previous inequality, the third and fourth ones from

the definitions of µ
(k)
ij and γmin, respectively. This implies z∗ij ∈ ∂‖0‖2 = ∂‖x∗i − x∗j‖2 for all

i, j ∈ Ck, k ∈ [N ]. On the other hand, we have

∇fi(x∗i ) + γ
∑
j 6=i

w{i,j}z
∗
ij

= ∇fi(x(k)∗) + γ
∑
l 6=k

w
(l)
i z

(k,l)

+ γ
∑
j 6=i
j∈Ck

w{i,j}
1

nkw{i,j}

{
1

γ

(
∇fj(x(k)∗)−∇fi(x(k)∗)

)
+ p

(k)
j − p

(k)
i

}

=
1

nk

∑
j∈Ck

∇fj(x(k)∗) + γ
∑
l 6=k

w
(l)
i z

(k,l) +
1

nk
γ
∑
j 6=i
j∈Ck

∑
l 6=k

(
w

(l)
j − w

(l)
i

)
z(k,l)

=
1

nk

∑
j∈Ck

∇fj(x(k)∗) +
1

nk
γ
∑
l 6=k

∑
j∈Ck

w
(l)
j z

(k,l)

=
1

nk

∇f (k)(x(k)∗) + γ
∑
l 6=k

w(k,l)z(k,l)


= 0,

where the first equality is by the definition of z∗ij , the second one is by the definitions of p(k)

and w(l), and the final equality follows from (27). These results show that (x∗1, ..., x
∗
n) is the

unique optimal solution of (2) because of the strict convexity of the objective function of
(2). Thus we conclude that P perfectly recovers P.
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Proof of Statement 2. Observe that if x(1)∗ = · · · = x(N)∗, then x(k)∗ = x holds for k ∈ [N ]
because of the definition of x and the strict convexity of

∑
i∈V

fi(x). From the inequality (28),

we have

max
k

‖∇f (k)(x)‖2∑
l 6=k w

(k,l)
≤ γ.

Therefore, if γ < maxk
‖∇f (k)(x)‖2∑

l 6=k w
(k,l) , then x(1) = · · · = x(N) does not hold. In addition, if

we take γ ≥ γmin, then x∗i = x(k)(i ∈ Ck) is the optimal solution of (2), as in the proof of
Statement 1. Thus P is a non-trivial coarsening of P.

A.2 Proof of Theorem 6

Proof Proof of Statement 1. Note that if τK(xγ1 , ..., x
γ
n) = 0 holds, xγ is a minimizer

of (10)–(11). Assume that τK(xγ1 , ..., x
γ
n) > 0. In this case, let E ′ ⊂ E be a set of edges

{i, j} ∈ E whose ‖xγi − xγj ‖2 is in the smallest |E| − K components and divide V into
connected components C1, . . . , Cm of the graph (V, E ′), then we set

x′i :=
∑
j∈Ck

xγj
|Ck|

,

for i ∈ Ck, k ∈ [m]. Obviously, τK(x′1, ..., x
′
n) = 0 and ‖x′i‖2 ≤ C are fulfilled. If i, j ∈

Ck, k ∈ [m] and i 6= j, then there exists a simple path between i and j on (V, E ′), so

‖xγi − x
γ
j ‖2 ≤

∑
{i′,j′}∈E ′

‖xγi′ − x
γ
j′‖2

≤ τK(xγ1 , ..., x
γ
n).

Thus we obtain

‖x′i − x
γ
i ‖2 ≤

∑
j∈Ck

‖xγi − x
γ
j ‖2

|Ck|

≤
∑
j∈Ck

τK(xγ1 , ..., x
γ
n)

|Ck|

≤ τK(xγ1 , ..., x
γ
n),

(30)
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for all i ∈ Ck, k ∈ [m]. From ‖xγi ‖2 ≤ C and fi’s Li-smoothness, we have∑
i∈V

f(xγi ) + γτK(xγ)−

(∑
i∈V

f(x′i) + γτK(x′)

)

≥ γτK(xγ) +
∑
i∈V

(
∇fi(xγi )

>
(xγi − x

′
i)−

Li
2
‖xγi − x

′
i‖22
)

≥ γτK(xγ)−
∑
i∈V
‖xγi − x

′
i‖2

(
‖∇fi(xγi )‖2 +

Li
2
‖xγi − x

′
i‖2

)
≥ γτK(xγ)−

∑
i∈V
‖xγi − x

′
i‖2

(
‖∇fi(0)‖2 + ‖∇fi(xγi )−∇fi(0)‖2 +

Li
2

(
‖xγi ‖2 + ‖x′i‖2

))
≥ γτK(xγ)−

∑
i∈V
‖xγi − x

′
i‖2

(
‖∇fi(0)‖2 + Li‖xγi ‖2 +

Li
2

(
‖xγi ‖2 + ‖x′i‖2

))
≥ γτK(xγ)−

∑
i∈V
‖xγi − x

′
i‖2 (‖∇fi(0)‖2 + 2LiC)

≥ γτK(xγ)−
∑
i∈V

τK(xγ) (‖∇fi(0)‖2 + 2LiC)

= τK(xγ)

(
γ −

∑
i∈V

(‖∇fi(0)‖2 + 2LiC)

)
> 0,

(31)

where the first and fourth inequalities follow from the Li-smoothness of fi, where we apply
the inequality (4) to the first one, the second one from the Cauchy-Schwarz inequality, the
third one from the triangle inequality, the fifth one from the boundedness of xγ and x′, the
sixth one from the inequality (30). The above inequality (31) contradicts the optimality of
xγ .
Proof of Statement 2. Note that if τK(xγ1 , ..., x

γ
n) = 0 is fulfilled, xγ is a local minimizer of

(10)–(11). Assume τK(xγ1 , ..., x
γ
n) > 0. Let us define E ′ as in the proof of the statement 1.,

let

v{i,j} :=

{
1, {i, j} ∈ E ′,
0, otherwise,

and consider the following problem:

minimize
x1,...,xn

∑
i∈V

fi(xi) + γ
∑
{i,j}∈E

v{i,j}‖xi − xj‖2. (32)

Note that
∑
{i,j}∈E v{i,j}‖x

γ
i − x

γ
j ‖2 = τK(xγ1 , ..., x

γ
n). We have

∑
{i,j}∈E v{i,j}‖xi − xj‖2 ≥

τK(x1, ..., xn) for any (x1, ..., xn) by the definition of τK . Since xγ is locally optimal to
(12), xγ is a local minimizer of (32). Because of the convexity of (32), xγ is optimal
to (32). Determining x′ in the same way as in the proof for the statement 1., we have∑
{i,j}∈E v{i,j}‖x′i − x′j‖2 = 0, ‖x′i‖2 ≤ C, and the inequality (30). By the same calculation

as in (31), we reach the contradiction to the fact that xγ is optimal to (32).
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A.3 Proof of Lemma 7

Proof Let E ′ ⊂ E be a set of edges {i, j} ∈ E whose ‖x∗i − x∗j‖2 is in the smallest |E| −K
components out of all the |E| components, then we define

v{i,j} :=

{
1, {i, j} ∈ E ′,
0, otherwise,

and consider the following problem:

minimize
x1,...,xn

1

2

∑
i∈V
‖xi − ai‖22 + γ

∑
{i,j}∈E

v{i,j}‖xi − xj‖2. (33)

From the convexity of 1
2

∑
i∈V ‖xi−ai‖22, as in the proof of the second statement of Theorem

6, x∗ is an optimal solution of (33). Assume that there exists an i ∈ V such that ‖x∗i ‖2 > C.
Let O = {i | ‖x∗i ‖2 > C}, and define

x′i :=

{
R
‖x∗i ‖2

x∗i , i ∈ O,
x∗i , i /∈ O.

Obviously, it is valid that

‖x∗i − ai‖22 = ‖x′i − ai‖22,

for i /∈ O, and

‖x∗i − x∗j‖2 = ‖x′i − x′j‖2,

for i, j /∈ O. Because x′i is the projection of x∗i onto the closed convex set {x ∈ Rp : ‖x‖2 ≤
R}, we obtain

‖x∗i − x∗j‖22 = ‖x∗i − x′j‖22
= ‖x∗i − x′i + x′i − x′j‖22
= ‖x∗i − x′i‖

2
2 + 2(x∗i − x′i)>(x′i − x′j) + ‖x′i − x′j‖22

≥
∥∥(1− R

‖x∗i ‖2

)
x∗i
∥∥2

2
+ ‖x′i − x′j‖22

> ‖x′i − x′j‖22,

for i ∈ O, j /∈ O. In the same way, we have

‖x∗i − x∗j‖22
= ‖x∗i − x′i + x′i − x′j + x′j − x∗j‖22
= ‖x∗i − x′i + x′j − x∗j‖22 + 2(x∗i − x′i)>(x′i − x′j) + 2(x′j − x∗j )>(x′i − x′j) + ‖x′i − x′j‖22
≥ ‖x′i − x′j‖22,
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for i, j ∈ O, and

‖x∗i − ai‖22 = ‖x∗i − x′i + x′i − ai‖22
= ‖x∗i − x′i‖

2
2 + 2(x∗i − x′i)>(x′i − ai) + ‖x′i − ai‖22

≥
∥∥∥∥(1− R

‖x∗i ‖2

)
x∗i

∥∥∥∥2

2

+ ‖x′i − ai‖22

≥ (‖x∗i ‖2 −R)2 + ‖x′i − ai‖22
> ‖x′i − ai‖22,

for i ∈ O. This implies that

1

2

∑
i∈V
‖x∗i − ai‖22 >

1

2

∑
i∈V
‖x′i − ai‖22,∑

{i,j}∈E

v{i,j}‖x∗i − x∗j‖2 ≥
∑
{i,j}∈E

v{i,j}‖x′i − x′j‖2.

Thus we have

1

2

∑
i∈V
‖x∗i − ai‖22 + γ

∑
{i,j}∈E

v{i,j}‖x∗i − x∗j‖2 >
1

2

∑
i∈V
‖x′i − ai‖22 + γ

∑
{i,j}∈E

v{i,j}‖x′i − x′j‖2,

which contradicts the fact that x∗ is optimal to (33). Consequently, we have ‖x∗i ‖2 ≤ C for
all i ∈ V.

A.4 Proof of Corollary 8

Proof Since fi(xi) = 1
2‖xi − ai‖

2
2 is 1-smooth and ‖∇fi(0)‖2 = ‖ − ai‖2 ≤ C, we have∑

i∈V
(‖∇fi(0)‖2 + 2LiC) ≤

∑
i∈V

(C + 2C) = 3nC.

This completes the proof.

A.5 Proof of Lemma 9

Proof From the convexity of
∑

i∈V fi(xi), as in the proof of the second statement of
Theorem 6, x∗ is optimal to

minimize
x1,...,xn

∑
i∈V

fi(xi) + γ
∑
{i,j}∈E

v{i,j}‖xi − xj‖2, (34)

where v{i,j} is defined in the same way. Since x∗ is optimal to (34), we have∑
i∈V

fi(x
∗
i ) ≤

∑
i∈V

fi(xi) + γ
∑
{i,j}∈E

v{i,j}‖xi − xj‖2 ≤
∑
i∈V

fi(0). (35)
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From the strong convexity of fi, combining (35) and (6) yields

α

2
‖x∗i − xi‖22 ≤

∑
j∈V

αj
2
‖x∗j − xj‖22

≤
∑
j∈V

(
fj(x

∗
j )− fj(xj)

)
≤
∑
j∈V

(fj(0)− fj(xj))

for all i ∈ V. Applying the triangle inequality to this, we get

‖x∗i ‖2 ≤ ‖x∗i − xi‖2 + ‖xi‖2

≤

 2

α

∑
j∈V

(fj(0)− fj(xj))

 1
2

+ ‖xi‖2

≤ C.

This completes the proof.

A.6 Proof of Corollary 10

Proof Note that for any i ∈ V, fi is λmin(Ai)-strongly convex and λmax(Ai)-smooth, and
the gradient and minimizer of fi are given by ∇fi(xi) = Aixi−Bi and A−1

i Bi, respectively.
By applying Theorem 6 and Lemma 9, we have the desired result.

A.7 Proof of Lemma 11

Proof First, note that the equation

TK(z) =
∑
k∈Λ1

‖zk‖2 +
∑
k∈Λ

‖zk‖2 (36)

holds for any Λ ⊂ Λ2 such that |Λ| = m−K − |Λ1|. Let

Λη1 := {k | ‖zk + ηvk‖2 < ‖(z + ηv)(K)‖2},
Λη2 := {k | ‖zk + ηvk‖2 = ‖(z + ηv)(K)‖2}.

Observe that there exists a positive number ε such that ‖zk + ηvk‖2 < ‖(z + ηv)(K)‖2 for
all k ∈ Λ1 and ‖zk + ηvk‖2 > ‖(z + ηv)(K)‖2 for all k ∈ (Λ1 ∪ Λ2)c whenever 0 < η < ε
because of the continuity of `2 norm. Hence Λ1 ⊂ Λη1 and Λη1 ∪Λη2 ⊂ Λ1 ∪Λ2 hold whenever
0 < η < ε. From this, we obtain

TK(z + ηv) =
∑
k∈Λ1

‖zk + ηvk‖2 + min
Λ⊂Λ2

|Λ|=m−K−|Λ1|

∑
k∈Λ

‖zk + ηvk‖2, (37)
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for η ∈ (0, ε). Combining (36) and (37) yields

TK(z + ηv) =
∑
k∈Λ1

(‖zk + ηvk‖2 − ‖zk‖2) + min
Λ⊂Λ2

|Λ|=m−K−|Λ1|

∑
k∈Λ

(‖zk + ηvk‖2 − ‖zk‖2).

Furthermore, taking the limit η ↘ 0, for any k ∈ [m], we have

‖zk + ηvk‖2 − ‖zk‖2
η

→


zk
‖zk‖2

>vk, zk 6= 0,

‖vk‖2, zk = 0, vk 6= 0,
0, zk = 0, vk = 0,

that is, ‖zk+ηvk‖2−‖zk‖2
η → δ(zk, vk)

>vk. Thus, we obtain

dTK(z;v) = lim
η↘0

TK(z + ηv)− TK(z)

η

= lim
η↘0

∑
k∈Λ1

(‖zk + ηvk‖2 − ‖zk‖2)

η
+ lim
η↘0

min
Λ⊂Λ2

|Λ|=m−K−|Λ1|

∑
k∈Λ

(‖zk + ηvk‖2 − ‖zk‖2)

η

=
∑
k∈Λ1

lim
η↘0

(‖zk + ηvk‖2 − ‖zk‖2)

η
+ min

Λ⊂Λ2
|Λ|=m−K−|Λ1|

∑
k∈Λ

lim
η↘0

(‖zk + ηvk‖2 − ‖zk‖2)

η

=
∑
k∈Λ1

δ(zk, vk)
>vk + min

Λ⊂Λ2
|Λ|=m−K−|Λ1|

∑
k∈Λ

δ(zk, vk)
>vk,

where the third equality is established by interchanging “min” and “limit,” which is possible
because {Λ ⊂ Λ2 | |Λ| = m−K − |Λ1|} is a finite set.

A.8 Proof of Proposition 12

Proof To prove the proposition by contradiction, suppose that x∗ is not a locally optimal
solution of (15). Then there exists a sequence {xt} such that xt → x∗ and f(x∗) +
γTK(Dx∗) > f(xt) + γTK(Dxt) for all t. Setting

Λ1 := {k | ‖(Dx∗)k‖2 < ‖(Dx∗)(K)‖2},
Λ2 := {k | ‖(Dx∗)k‖2 = ‖(Dx∗)(K)‖2},
Λt1 := {k | ‖(Dxt)k‖2 < ‖(Dxt)(K)‖2},
Λt2 := {k | ‖(Dxt)k‖2 = ‖(Dxt)(K)‖2},

we have

TK(Dxt)− TK(Dx∗)

=
∑
k∈Λ1

(‖(Dxt)k‖2 − ‖(Dx∗)k‖2) + min
Λ⊂Λ2

|Λ|=m−K−|Λ1|

∑
k∈Λ

(‖(Dxt)k‖2 − ‖(Dx∗)k‖2),
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since Λ1 ⊂ Λt1 and Λt1 ∪ Λt2 ⊂ Λ1 ∪ Λ2 hold for sufficiently large t as in the proof of Lemma
11. Noting that for any z, z′ ∈ Rp,

‖z‖2 − ‖z′‖2 ≥ δ(z′, z − z′)>(z − z′),

we have

TK(Dxt)− TK(Dx∗)

≥
∑
k∈Λ1

δ((Dx∗)k, (Dv)k)
>(Dv)k + min

Λ⊂Λ2
|Λ|=m−K−|Λ1|

∑
k∈Λ

δ((Dx∗)k, (Dv)k)
>(Dv)k,

where v = xt − x∗. This as well as the convexity of f and Lemma 11 yield

0 > f(xt) + γTK(Dxt)− (f(x∗) + γTK(Dx∗))

≥ ∇f(x∗)>v

+ γ
[ ∑
k∈Λ1

δ((Dx∗)k, (Dv)k)
>(Dv)k + min

Λ⊂Λ2
|Λ|=m−K−|Λ1|

∑
k∈Λ

δ((Dx∗)k, (Dv)k)
>(Dv)k

]
= ∇f(x∗)>v + γdTK(Dx∗;Dv)

= d(f + γTK ◦D)(x∗;v),

which contradicts the fact that x∗ is a stationary point of (15).

A.9 Proof of Proposition 13

Proof Let {(xti , zti ,yti)} be a subsequence of {(xt, zt,yt)} that converges to (x∗, z∗,y∗).
From the fact that (‖xt+1 − xt‖2, ‖zt+1 − zt‖2, ‖yt+1 − yt‖2) converges to (0, 0, 0), the
subsequence {(xti+1, zti+1,yti+1)} also converges to (x∗, z∗,y∗). By the relation (20), the
equation

yti+1 = yti + ρ(zti+1 −Dxti+1)

holds. Letting i→∞ yields

z∗ = Dx∗. (38)

Taking the limit of the optimality condition of (25), we have

∇f(xti+1) + ρD>
(
Dxti+1 − zti+1 − 1

ρ
yti
)

+∇φ(xti+1)−∇φ(xti) = 0,

and combining it with (38) and continuity of ∇f and ∇φ, we obtain

∇f(x∗) = D>y∗. (39)

36



Cluster Structure of Network Lasso

Since zti+1 is optimal to (18), the inequality

γTK(zti+1) + (yti)>zti+1 +
ρ

2
‖zti+1 −Dxti‖22

≤ γTK(z∗ + ηDv) + (yti)>(z∗ + ηDv) +
ρ

2
‖z∗ + ηDv −Dxti‖22

holds for any η > 0 and v ∈ RN . By the continuity of TK and (38), letting i→∞ yields

γTK(Dx∗) + (y∗)>Dx∗ ≤ γTK(Dx∗ + ηDv) + (y∗)>(Dx∗ + ηDv) +
ρ

2
‖ηDv‖22.

Combining this with (39), we see that

η∇f(x∗)>v + γTK(D(x∗ + ηv))− γTK(Dx∗) + η2 ρ

2
‖Dv‖22

= η(D>y∗)>v + γTK(Dx∗ + ηDv)− γTK(Dx∗) + η2 ρ

2
‖Dv‖22

= (y∗)>(ηDv) + γTK(Dx∗ + ηDv)− γTK(Dx∗) +
ρ

2
‖ηDv‖22

≥ 0.

By dividing both sides of this inequality by η and taking the limit with η ↘ 0, we obtain

d(f + γTK ◦D)(x∗;v) = ∇f(x∗)>v + γd(TK ◦D)(x∗;v) ≥ 0,

which implies that x∗ is a stationary point of (15). Since f is a differentiable convex func-
tion, x∗ is shown to be locally optimal to (15) by Proposition 12.

A.10 Proof of Theorem 14

Proof From the optimality condition of (25) and the equation (20), we obtain

σ‖yt+1 − yt‖22
≤ ‖D>(yt+1 − yt)‖22
= ‖∇f(xt+1) +∇φ(xt+1)−∇φ(xt)−∇f(xt)−∇φ(xt) +∇φ(xt−1)‖22

≤ 1

r
‖∇f(xt+1) +∇φ(xt+1)−∇f(xt)−∇φ(xt)‖22 +

1

1− r
‖∇φ(xt)−∇φ(xt−1)‖22

≤ L2
1

r
‖xt+1 − xt‖22 +

L2
2

1− r
‖xt − xt−1‖22,

(40)

where the number r satisfies the assumption (A6) and the first inequality follows from the

assumption (A1), the second one from the inequality ‖a+ b‖22 ≤
‖a‖22
r +

‖b‖22
1−r , the third one

from the assumptions (A3) and (A5). On the other hand, combining the equation (20) with
the triangle inequality yields

‖zt+1 − zt‖2 ≤ ‖D(xt+1 − xt)‖2 +
1

ρ
‖yt+1 − yt‖2 +

1

ρ
‖yt − yt−1‖2.
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The above two inequalities imply that if the sequence ‖xt+1 − xt‖2 converges to 0, then
both ‖zt+1−zt‖2 and ‖yt+1−yt‖2 also converge to 0. Thus we next show that ‖xt+1−xt‖2
converges to 0.

From (20) and (40), we obtain

Lρ(x
t+1, zt+1,yt+1)− Lρ(xt+1, zt+1,yt) = (yt+1 − yt)>(zt+1 −Dxt+1)

=
1

ρ
‖yt+1 − yt‖22

≤ L2
1

σρr
‖xt+1 − xt‖22 +

L2
2

σρ(1− r)
‖xt − xt−1‖22.

Since Lρ(x, z
t+1,yt) + Bφ(x,xt) is α1-strongly convex by the assumption (A4), using the

inequality (6), we have

Lρ(x
t+1, zt+1,yt)− Lρ(xt, zt+1,yt) ≤ −α1

2
‖xt+1 − xt‖22 −Dφ(xt+1,xt)

≤ −α1

2
‖xt+1 − xt‖22 −

α2

2
‖xt+1 − xt‖22

= −α1 + α2

2
‖xt+1 − xt‖22,

where we use the α2-strong convexity of φ (the assumption (A5)) in the second inequality.
Furthermore, because zt+1 is a minimizer of (18), the inequality

Lρ(x
t, zt+1,yt)− Lρ(xt, zt,yt) ≤ 0

holds. By adding the above three inequalities together, we have

Lρ(x
t+1, zt+1,yt+1)− Lρ(xt, zt,yt) (41)

≤
(
L2

1

σρr
− α1 + α2

2

)
‖xt+1 − xt‖22 +

L2
2

σρ(1− r)
‖xt − xt−1‖22.

Let {(xti , zti ,yti)} be a subsequence of {(xt, zt,yt)} that converges to a partial limit

(x∗, z∗,y∗). Noting that C := α1+α2
2 − 1

σρ

(
L2
1
r +

L2
2

1−r

)
> 0 from the assumption (A6),

we have

Lρ(x
ti , zti ,yti)− Lρ(x1, z1,y1)

≤

{
ti−1∑
t=1

(
L2

1

σρr
− α1 + α2

2

)
‖xt+1 − xt‖22 +

L2
2

σρ(1− r)
‖xt − xt−1‖22

}

=

ti−1∑
t=1

(
L2

1

σρr
− α1 + α2

2

)
‖xt+1 − xt‖22 +

ti−2∑
t=0

L2
2

σρ(1− r)
‖xt+1 − xt‖22

=
L2

2

σρ(1− r)
‖x1 − x0‖22 −

(
α1 + α2

2
− L2

1

σρr

)
‖xti − xti−1‖22 −

ti−1∑
t=1

C‖xt+1 − xt‖22

≤ L2
2

σρ(1− r)
‖x1 − x0‖22 − C

ti−1∑
t=1

‖xt+1 − xt‖22.

(42)
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By the continuity of Lρ, we have

lim
i→∞

Lρ(x
ti , zti ,yti) = Lρ(x

∗, z∗,y∗) > −∞. (43)

Taking the limit i→∞ in (42) with (43) leads to

∞∑
t=1

‖xt+1 − xt‖22 <∞,

which implies that ‖xt+1 − xt‖2 → 0. Thus, (‖xt+1 − xt‖2, ‖zt+1 − zt‖2, ‖yt+1 − yt‖2) →
(0, 0, 0) holds. Since f and φ are continuously differentiable and f is a convex function by
the assumptions (A2) and (A3), Proposition 13 yields the desired result.

A.11 Proof of Theorem 15

Proof Since the assumptions (A1), (A3)–(A6) are fulfilled, the inequality (41) holds. By
slightly transforming it, we obtain

Lρ(x
t+1, zt+1,yt+1) +

L2
2

σρ(1− r)
‖xt+1 − xt‖22 − Lρ(xt, zt,yt)−

L2
2

σρ(1− r)
‖xt − xt−1‖22

≤
(
L2

1

σρr
+

L2
2

σρ(1− r)
− α1 + α2

2

)
‖xt+1 − xt‖22

≤ 0,

which implies that the sequence Lρ(x
t, zt,yt) +

L2
2

σρ(1−r)‖x
t − xt−1‖22 is monotonically de-

creasing. Hence, we see that

Lρ(x
t, zt,yt) +

L2
2

σρ(1− r)
‖xt − xt−1‖22 ≤ Lρ(x1, z1,y1) +

L2
2

σρ(1− r)
‖x1 − x0‖22. (44)

On the other hand, combining (20) and the optimality condition of (25) yields

∇f(xt)−D>yt +∇φ(xt)−∇φ(xt−1) = 0.

Then, from the assumptions (A1) and (A5), we have

σ‖yt‖22 ≤ ‖D>yt‖22
≤ ‖∇f(xt) +∇φ(xt)−∇φ(xt−1)‖22

≤ 1

r
‖∇f(xt)‖22 +

1

1− r
‖∇φ(xt)−∇φ(xt−1)‖22

≤ 1

r
‖∇f(xt)‖22 +

L2
2

1− r
‖xt − xt−1‖22.

(45)
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Combining (44) with (45) shows that

Lρ(x
1, z1,y1) +

L2
2

σρ(1− r)
‖x1 − x0‖22

≥ f(xt) + γTK(zt) + yt
>

(zt −Dxt) +
ρ

2
‖zt −Dxt‖22 +

L2
2

σρ(1− r)
‖xt − xt−1‖22

= f(xt) + γTK(zt) +
ρ

2

∥∥∥∥zt −Dxt +
1

ρ
yt
∥∥∥∥2

2

− 1

2ρ
‖yt‖22 +

L2
2

σρ(1− r)
‖xt − xt−1‖22

≥ f(xt)− 1

2σρr
‖∇f(xt)‖22 −

L2
2

2σρ(1− r)
‖xt − xt−1‖22 +

L2
2

σρ(1− r)
‖xt − xt−1‖22

≥
(

1− ζ

σρr

)
f(xt) +

ζ

σρr

{
f(xt)− 1

2ζ
‖∇f(xt)‖22

}
≥
(

1− ζ

σρr

)
f(xt) +

ζ

σρr
finf .

Since f is coercive, the above inequality implies that {xt} is bounded. The boundedness of
{yt} and {zt} follows from (45) and (20), respectively.
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