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Abstract

Approximate inference methods like the Laplace method, Laplace approximations and vari-
ational methods, amongst others, are popular methods when exact inference is not feasible
due to the complexity of the model or the abundance of data. In this paper we propose
a hybrid approximate method called Low-Rank Variational Bayes correction (VBC), that
uses the Laplace method and subsequently a Variational Bayes correction in a lower di-
mension, to the joint posterior mean. The cost is essentially that of the Laplace method
which ensures scalability of the method, in both model complexity and data size. Models
with fixed and unknown hyperparameters are considered, for simulated and real examples,
for small and large data sets.
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1. Introduction

Bayesian methods involve a prior belief about a model and learning from the data to arrive
at a new belief, which is termed the posterior belief. Mathematically, the posterior belief
can be derived from the prior belief and the empirical evidence presented by the data using
Bayes’ rule. In this way Bayesian analysis is a natural statistical machine learning method
(see Theodoridis (2015); Chen et al. (2016); Polson and Sokolov (2017); Rehman et al.
(2019); Sambasivan et al. (2020); Vehtari et al. (2020); Moss et al. (2021); Richardson and
Weiss (2021) amongst many others), and especially powerful for small data sets, missing data
or complex models. Suppose we observe data y for which we formulate a data generating
model, F. Suppose we have unknown parameters 9 in F for which we can define priors.
Then we want to find the posterior inference of 9, denoted as 7(1|y). The question of how
to calculate 7(%|y) now arises.

From a computational viewpoint, various approaches have been proposed to perform
Bayesian analysis, mainly exact (analytical or sampling-based) or approximate inferential
approaches. Sampling-based methods like Markov Chain Monte Carlo (MCMC) sampling
with its extensions (see Metropolis et al. (1953); Geman and Geman (1984); Casella and
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George (1992); Andrieu et al. (2003), amongst others) gained popularity in the 1990’s but
suffers from slow speed and convergence issues exacerbated by large data and/or complex
models. Hamiltonian Monte Carlo (HMC) methods (Betancourt and Girolami, 2015), as
implemented in the STAN software, are showing promise for more efficient sampling-based
inference. Partly motivated by the inefficency of sampling-based methods, approximate
methods were developed to approrimate the posterior density as a more efficient means of
inference. Not all approximate methods are equally accurate or efficient. Some approxi-
mate methods are essentially sampling-based like the Monte Carlo Adjusted Langevin Algo-
rithm (MALA) (Rossky et al., 1978; Roberts and Tweedie, 1996), pseudo- marginal MCMC
(Andrieu and Roberts, 2009) and Approximate Bayesian Computation (ABC) (Beaumont
et al., 2002; Tavaré et al., 1997), and thus still slow. Asymptotic approximate methods are
not sampling-based and propose a specific form of the posterior like the Laplace method
(Van der Vaart, 2000; Laplace, 1986; Tierney et al., 1989) and the Integrated Nested Laplace
Approximation (INLA) (Rue et al., 2009; Bakka et al., 2018; Van Niekerk et al., 2021) for
Latent Gaussian models. Optimization-based approximate methods like Variational Bayes
(VB) (Attias, 1999; Jordan et al., 1999; Blei et al., 2017; Hoffman et al., 2013), Expectation
Propagation (EP) (Opper and Winther, 2000; Minka, 2001; Dehaene and Barthelmé, 2016)
and discrete distributions approximations by Liu and Wang (2016); Nitanda and Suzuki
(2017) are also popular.

The Laplace method using a second-order series expansion around the mode (Tierney
et al., 1989; Laplace, 1986), is a common approach to calculate an approximate Gaussian
density to an unknown function. Its popularity can be assigned to its simplicity and low
computational cost. It is mostly used to approximate marginal likelihoods, or marginal
posteriors in a Bayesian framework. The Hessian of the unknown function, evaluated at the
mode provides a quantification of the uncertainty, and under some regularity assumptions
is a consistent estimator (Newey and McFadden, 1994). From the Laplace method we can
thus approximate m(9|y) as

#(ly) ox exp (—3(«/; wTQu - u)) ,
such that —@Q is the Hessian matrix of log 7(9]y) evaluated at p, the mode of log 7 (¢|y).
When the function is not uni-modal or exhibit heavy-tail behavior, the Laplace method
does not provide an accurate approximation to the function and other families besides the
Gaussian could be considered. The Gaussian assumption is often too strict for marginal
posteriors and more flexible families should be considered that would allow for some skew-
ness or heavier tails. Variational Bayes (VB) methods are based on the optimization of a
certain objective function (variational energy resulting in the evidence lower bound) for a
specific family of distributions. As such, any family can be considered and the Gaussian
assumption of the marginal posteriors is not needed.
Suppose we posit that the approximate posterior of ¥ comes from family G, with mem-
bers g, then the VB approximation of 7(¥|y) is 7(¥|y) = g(¥), such that

T(Yly) = argrglleigKLD(g(w)Hﬂ(d)ly)% (1)

where KLD(g||h) is the Kullback-Leibler divergence from probability distribution g to prob-
ability distribution h. Now since 7(¥|y) is unknown, it is shown that the minimizer is also



VBC FOR LAPLACE METHOD

the maximizer of the evidence lower bound (ELBO), such that
($ly) = argmax By (log g(¢) — log 7(¥,y)). (2)

For a specific choice of G, specialized optimization techniques can be developed and applied.
Some works for G being the Gaussian family are the Gaussian flow or Gaussian particle flow
techniques (Galy-Fajou et al., 2021), Stein Variational Gradient Descent (Zhuo et al., 2018;
Korba et al., 2020; Lu et al., 2019), recursive VGI (Lambert et al., 2020) and exactly
sparse VGA (Barfoot et al., 2020), amongst others. If the selected family includes the
true posterior, then the variational Bayes approximation could recover the true posterior.
Variational frameworks, however, are known to suffer from severe underestimation of the
uncertainty of the point estimate, due to the non-availability of a consistent estimator of
the variance of the variational estimate for an often simple form of G (see for example
the Appendix of Rue et al. (2009) for more details). This underestimation will produce
poor credible intervals and could result in incorrect decision-making. Furthermore, the
parameters of the chosen family in (2) should all be estimated and the optimization problem
should be solved in the dimension of the parameter space, which can be very large in
for example spatial models. Even if scalable (in some sense) approaches are proposed to
optimize (2), all unknown parameters will have to be solved for.

We consider the case where a Gaussian approximation is opted for (not necessarily
for the marginals). Our assumption is that the unknown density is uni-modal, and thus
the Hessian matrix provides a reasonable estimate of the curvature at the mode. In this
paper we present a novel approach to approximate an unknown density function with a
Gaussian density function, that provides reasonable first and second order properties. We
achieve this by employing the Laplace method, and then we formulate a low-rank variational
correction to the mode of this Gaussian approximation. The variational correction to the
Laplace method’s mode, is defined in dimension p, that is much smaller than the latent field
dimension m. This is possible since we learn the graph of connectedness from the Laplace
method, and we use that to propagate any change in the lower dimension to all elements in
the higher dimensional latent field.

Although our proposal can be used in various ways, we show the impact it has in the
Bayesian inference of latent Gaussian models by applying the proposal not to the latent
marginal posteriors, but to the latent conditional posteriors, since the latent conditional
posteriors are in fact more Gaussian-like as shown by Rue et al. (2009). This provides an
accurate and very efficient approximate Bayesian inference tool for latent Gaussian models
that include generalized additive mixed models, spatial models, temporal models, lifetime
analysis models and many more.

2. Proposal

Based on data y of size n, and unknown latent set ¥ € R, we formulate a data generating
model, 7(y[¥) that depends on %, such that the data is conditionally independent given
%. The goal is to infer 9 based on the data y and elective external information (prior
information) 7(¢). The joint density then is m(¢,y). From this we can use Bayes’ theorem
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to formulate the posterior density of @ as

n(yl)m (%)

T(Yly) = )

The Gaussian approximation of 7(t|y) from the Laplace method is then derived from

In(m(¥ly)) = In(m(oly) — %("p - ¢0)TH\¢:¢O (¥ — o) + higher order terms,

where % is the mode of In(7(¢]y)) and H is the negative Hessian matrix. Then

0ly) o exp 506 —¥0) Hlomy 6~ b)) Q

so that $|y~N (o, H '|_y,) (approximately distributed as). To find the mode we solve
for g in the system

H y—po%0 = VIp=po + Hly=y, %o, (4)

where 7|y—yp, is the gradient of In(m(¢|y)) evaluated at 1 = 1po. Now let Qo = H|y—_y, and
bo = Y|p=yp, + H|p=yp,%0, then the system can be written as

Qoo = bo. (5)

The precision matrix Qg, relates information about the conditional dependence amongst the
elements in 9. Since the approximation in (3) is an approximation to the joint posterior, we
still need to calculate the marginal posteriors. It is well-known that the marginal posteriors
based on a joint Gaussian distribution can be computed as univariate Gaussian densities
based on the elements of the joint mean and the diagonal elements of the inverse precision
matrix, making the multivariate Gaussian assumption attractive.

We want to correct the mean of the Gaussian approximation to have a more accurate
mean that is not necessarily the MAP (maximum a posteriori) estimator. As such we
propose an updated mean,

%1 =1 + 0, (6)

where d can be viewed as corrections to the MAP estimator, such that the approximate
posterior of % is then

0ly) = (20) "AQl 2 oxp (50~ 1) Qo ~ ) . wER”
where 91 = 1% + 8. Now the question arises: how can we estimate § in a fast and accurate
way?

Since the dimension of ¥ is m, we would need to find m values that produce a more
accurate joint posterior mean. If the model is complex or contains many random effects,
this dimension can be very large. For efficiency, we can use a variational framework since
we only want to find a more accurate mean, while fixing the precision matrix based on the

calculated Hessian. The ELBO for this problem is
E¢NN(¢O+5’Q61)(10g Pl + 9, Qo_l) —log (¥, y)), (7)

4
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where ¢(.) is the Gaussian density function. This optimization can be done in various ways
using specialized techniques proposed in literature.

Rather than working with the ELBO, we revert back to the fundamental idea of Varia-
tional Bayes as introduced by Zellner (1988) (for more details see the Appendix) and more
recently posed as an optimization view of Bayes’ rule by Knoblauch et al. (2022). Based on
the available information from the prior of the unknown parameters m(¢) and the condi-
tional likelihood of the data w(y[¥), we can derive two outputs: the marginal likelihood of
the data 7(y) and the posterior of the unknown parameters 7w(¢|y). If we want to use the
input information optimally, then we find the approximate posterior 7(¥|y), such that

T (ly) = argmin [Eyl—log 7 (yl)] + KLD(g||7(%))] . (8)

In the work of Zellner (1988), it was shown that this variational framework produces the
true posterior, from the appropriate family, as calculated from Bayes’ theorem and thus
implying that Bayes’ theorem is an optimal rule for processing of information. Note that
(8) does not contain the unknown true posterior w(¢|y) as in (1), and can be directly
optimized if the expected log-likelihood can be calculated in closed form. Thus to use (8)
for the mean correction, we need to calculate

6 = argmin | By _y (.50~ 08 mWY)] + KLD (6Whbo +8.Q5lIx®))|  (9)

Whichever method is used to solve (9), the optimization is over an m-dimensional vector,
thus the computational and memory cost will be based on m, which can be large.

2.1 Low-rank variational correction

Rather than an explicit correction to the MAP, we propose an implicit correction, by explic-
itly correcting the estimated gradient such that the improved posterior mean 1, satisfies
the new system,

Qo1 =by + A =b;. (10)

Now, if A € R™ then we would not gain any computational advantage over the proposal in
(9), but because of the system, a change to any element in b; will propagate changes to all
the elements in 9. For a non-zero value of the j* element of A i.e. Aj # 0, the change this
value causes to the i*" element of 91, Y1 s

O 01, Oby 4 ij
YL ’ Iy — . 11
OA; A Ib1; O A= Qo (1

where Q% denotes the element in the i*® row and j* column of the inverse of Q. Thus, in
vector notation,

N1 .

o Aj=Qi N (12)
where Q7 denotes the j'™ column of the inverse of Q. This enables us to propose a low-
rank Variational Bayes correction (VBC) since the dimension of A is p, which can be much
smaller than m and n, and p does not have to grow with m or n.
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Suppose we have a set of indices i € I C {1,2,...,m} for which we want to correct by ;,
then we extract the relevant columns of Qg 1 and denote it by Ql_l The improved mean is
thus

Y1 =10 +Q; A

Now we can optimize (9), but for A in dimension p instead of § in dimension m as follows

A =arg rn)in E¢NN(¢O+Q;1,\,Q31)[_ log m(yl4)] + KLD (¢(¢|¢0 + Qj_l)\yQ(;l)HW("p))] :
(13)
This proposal allows us to correct an m-dimensional MAP estimator with a rank p update
with p < m, resulting in a computational cost of about O(mp?), since we do not need to
calculate the entire inverse of Qg but only the selected elements based on I. Moreover, from
Zellner (1988), this optimization is optimally information efficient and converges to the true
posterior when the true family is selected. We illustrate this convergence using simulated
and real examples, and we compare the posterior from a Gaussian approximation with the
VB correction, to the posterior from MCMC samples in Section 3.
Our proposal to approximate the joint posterior can be summarized as follows:

1. Calculate the gradient 4, and the negative Hessian matrix H, of log 7 (¢|y).

2. Find the MAP estimator by solving for ¥ such that

Hy—ypyto = Ylp=po + Hlp=ypo%o,
and define Qo = H |y—y, and by = ¥|yp=y, + H|p=y,Y0-

3. Decide on the set of indices for correction, I, construct the p x m matrix Q;l from
the columns of the inverse of Qo, Qg ! and solve for A such that

A= arg min | By n o+ i@yt~ 108 T(yl#)] + KLD (¢(Wlpo + QII/\,le)HW(?/J))] :

4. The approximate posterior of ¥ is Gaussian with mean ¥, = ¥ —{—Q;l;\ and precision
matrix Q.

Now we consider the choice of the index set I. Since a change in any one element of by
is propagated to the posterior mean of the entire latent field, similar choices of the index
set I, will result in a similar improved joint posterior mean, since the proposal is based
on an improved joint Gaussian approximation for the entire field. We are thus not solving
for element-wise corrections, and from the work of Zellner (1988) we are assured of a joint
improvement. From our experience, we want to mainly correct the Gaussian approximation
for those elements in 9 that are most influential and connected to many datapoints. Hence,
we explicitly correct the posterior means of the fixed effects, and those random effects that
are connected to many datapoints (short length random effects). We return to this in
Sections 3, 4.3 and 5.

Even though the proposal looks basic and simple, various computational details are
intricate and complicated to ensure a low computational cost while maintaining accuracy.
Some of these details are presented in the next section.



VBC FOR LAPLACE METHOD

2.2 Computational aspects

In this section we focus on computational aspects regarding the proposed variation Bayes
correction to the Laplace method. The gradient and Hessian matrix, can be calculated
numerically and we can use various gradient descent or Newton-Raphson type algorithms.
In our approach we use the smart gradient proposed by Fattah et al. (2022). The efficient
calculation of the expected log-likelihood in (13) requires some attention and we present
our approach in this section.

2.2.1 SMART GRADIENT

Numerical gradients are important in various optimization techniques (as in our proposal)
such as stochastic gradient descent, trust region and Newton-type methods, to name a
few. The smart gradient approach can be used to calculate the gradient (and Hessian)
numerically, more accurately by using previous descent directions and a transformed coor-
dinate basis. Instead of using the canonical basis at each step, a new orthonormal basis
is constructed based on the previous direction using the Modified Gram-Schmidt orthogo-
nalization (see for example Picheny et al. (2013)). This transformed basis results in more
accurate numeric gradients, which could lead to finding optimums more accurately and
more efficiently. For more details see Fattah et al. (2022).

2.2.2 EXPECTED LOG-LIKELIHOOD

For some likelihoods (as in Section 3), the expectation can be calculated analytically, but
for others we have to numerically approximate this expectation. Note that as previously
stated, the data is assumed conditionally independent given the latent set %, and hence
the log-likelihood can be constructed by a simple sum of the log-likelihoods from each
datapoint. The expected log-likelihood of each datapoint can then be approximated using
Gauss-Hermite quadrature, since the integral is with respect to a Gaussian kernel. The
expected log-likelihood with respect to the approximate posterior of 9 is,

Bynigosarnar C B0 = [ =S logr(ub)ohin + Qr'A.Q5 v (14
=1

Now if we consider a generalized linear model, with the design matrix A that links the data
to the parameter 1, then the linear predictors can be calculated as

such that the posterior mean for the i*® linear predictor for y;, n; is A;. (Yo + Ql_l)\), where
A,. is the i*" row of A. Then,

E¢NN(¢O+Q;1>\,QO*1) [—log m(yl)] = Ef,NN(A(q/,OJrQ;l,\),AleAT) [—log 7 (yln)], (16)

7
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since 7(y[¥) only depends on 1 through 7. Since the data are conditionally independent,
By nawor@ 3,405 a7y [ 108 TWIM] = By nawo+Q;'3),4Q574T) [ Z el ]

= EpoN(A@e+Q71),4Q; 1 AT) [ Zlogﬂ yz!m]
n

= = Eyflogm(yiln)].

=1

The univariate expectations are calculate using Gauss-Hermite quadrature with m, weights
w, and roots £, such that,

By Npo+@AQ; y[—log w(yl)] Z [wTZIng (yi|mi(x ))] . (17)

To optimize (13) numerically, we expand (17) around A = 0 using a second order Taylor
series expansion such that,

E¢~N(¢0+QI_1)\,Q51)[ log W(y”tﬁ)] ~ constant + BTAQI 1/\ 4= (AQI 1)\)Td1ag( )AQ;lA,
(18)

where the i*" entries of B and C, respectively, are,

’LU

B; Z T log 7 (yilmi = &¥S; + Asgpo)

and
Mg wy [ (x? 2_1
Ci= 3 = Miogm (ko = S; + Auo),
r=1 i

with S; = 4/ (ATQJ 1A) ;i - Thus, for a generalized linear model the expected log-likelihood
can be calculated in closed form.

3. Illustrative example - low-count Poisson regression model

Here we provide the details for a generalized linear model for count data, where we use a
Poisson response model.

Suppose we have data y, of size n with covariates X and random effect covariates u
then

YilBo, B, f ~ Poisson(exp(n;))

K
nio= Bot+XiB+ > fFlu).

k=1
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3.1 Expected log-likelihood

For the Poisson likelihood, we can obtain a closed-form expression of the expected log-
likelihood and no numerical integration is required. Note that

E¢|9NN(¢17Q51) [—logm(¥ly)] = /m —10g7r(1/)‘y)¢(¢‘1/)1,Q61)d1/)

= /Rm Z (exp(Aitp) — Ainby; + log(yi!)) ¢(¢W17Q51)d¢
=1

n

TA—14 .
= Z (exp (Ai-¢1 + W) —yi(Air) + IOg(yi!)> .
i=1
Now, from (13), we find A, where
n AT flA i
ZZ; <exp (Ai-("/)O + Ql_l)\) + (Q;)

+KLD (o(lpo + Q1A Q)7 (%))] -

A = arg min
& A

) - Auton + @)

3.2 Simulation results

In this section we present an example of the proposed method. We focus on count data with
low counts since this is usually a challenging case because the likelihood is maximized at
—00, and the second-order expansion of the log-likelihood is less accurate. We use MCMC,
a Gibbs sampler (using the runjags library) and HMC (using Stan) with a burn-in of 10
and a sample of size 10°, as the gold standard, and compare VBC to the Laplace method
in terms of computational efficiency and accuracy.
We consider the following over-dispersed count model defined as follows for a data set
of size n:
yi ~ Poisson(exp(n:)), mi = Bo + Brxi + wi, (19)

with a sum-to-zero constraint on u, to ensure identifiability of fy. We use 5y = —1,51 =
—0.5 and a continuous covariate z, simulated as © ~ N(0,1). The overdispersion is simu-
lated as u; ~ N(0,0.25). We design the study with the intent of having mostly low counts.
We want to perform full Bayesian inference for the latent field ¥ = {fo, 51,4}, and the
linear predictors n = {n1,n2, ..., nn}. We assume the following illustrative priors,

Bo~t(5), Bi~U(=3,3) and u~ N(0,0.25I)

i.e. Bp follows a Student’s t prior with 5 degrees of freedom, [; follows a uniform dis-
tribution in (—3,3) and the random effects are independent and identically distributed
with a fixed marginal precision of 4. The vector of estimable parameters is thus 9 =
{Bo, B1,u1,ua, ..., up } of dimension n + 2.

To illustrate the effect of the low-rank correction we apply the VBC only to £y, 81 and
then propagate the induced corrections to the n random intercepts, 4 and the n linear
predictors, n. We thus perform a two-dimensional optimization instead of an (n + 2)-
dimensional optimization, as would be necessary with other variational Bayes approaches.
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We simulate two samples from the proposed model, one of size n = 20 and another of size
n = 100, and the data are presented in Figure 1 (left). The posterior means for the Laplace
method, MCMC, HMC and the VBC methods are presented in Table 1 for the latent field
and selected linear predictors. We can clearly see the improved accuracy in the mean of the
VBC to the Laplace method when compared with the MCMC and HMC output, from Table
1 and Figure 1 (center and right), especially for the smaller data set. In the case of a larger
data set, we note that the Gaussian approximation performs well and the VBC applies only
a slight correction. With the VBC we can achieve similar posterior inference for the latent
field and linear predictors, to the MCMC and HMC approaches, more efficiently. Note that
for a small data set the computational time is small for all the methods, as expected due
to the small dimension of the latent field ¥ = {f, 51, u1,ug, ...,uz0} and linear predictors
n = {m,n2,...,n20}, although for a larger data set like n = 100 the excessive computational
time for MCMC and HMC is clear, even with this simple model, because the parameter
space is of dimension 102. With the VBC, the correction space is of dimension 2 and thus
the cost of VBC compared to any other inferential framework based on the entire parameter
space of dimension 102, will be much less. The time comparison can be misleading since
neither the VBC, MCMC or HMC code has been optimized for this specific model and priors.
Nonetheless, the VBC scales well with increasing data size as shown in this example, since
the size of the correction space for the optimization stays 2, while the parameter space size
grows from 22 to 102. This fictitious example illustrates the stability and scalability of the
VBC, for a fixed hyperparameter, which is an unrealistic scenario. In the next Section we
provide a hybrid method using the VBC and the integrated nested Laplace approximation
(INLA) methodology to address Bayesian inference for more realistic models, including
those with hyperparameters, in order to perform Bayesian inference for the latent field and
hyperparameters simultaneously.

e |‘ II
< ’—‘ . s | e
I 1 o Lo ||\ )N
J [ ] 0 ] s El
T T ] T T ]

Figure 1: Poisson counts simulated from (19) (left) and the marginal posterior of 5y (center)
and S (right) from MCMC (blue histogram), HMC (red histogram), the Laplace method
(dashed line) and VBC (solid line) based on the prior (broken line) for n = 20 (top) and
n = 100 (bottom)

10
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n=20 n=100
LM |VBC |MCMC|HMC [LM [VBC |MCMC |HMC |

Bo —0.579 | —0.706 | —0.715 [ —0.657 | —1.073 | —1.199 [ —1.196 | —1.180
B —0.222 [ —0.224 | —0.218 | —0.226 || —0.538 | —0.567 | —0.552 | —0.552
u —0.158 | —0.148 | —0.152 [ —0.159 | 0.177 [0.174 [ 0.175 | 0.174
ug 0.098 [0.098 ]0.099 |0.099 [ —0.046 | —0.052 | —0.049 | —0.044
s 0122 [0.115 [0.118 |0.121 [ —0.074 | —0.079 | —0.077 | —0.073
Time(s) | 221 | 5.78 22537 [12438 [ 948 [17.36 | 384.12 | 169.57

Table 1: Posterior means from the Laplace method, VBC, MCMC and HMC

4. Application to latent Gaussian models

The proposal in Section 2 can be used to accurately and efficiently calculate the joint
posterior for the latent field, only. Many problems, however, include hyperparameters
and as such we can embed our proposal into another framework to perform full Bayesian
inference for the latent field and the hyperparameter set. We use the INLA methodology as
proposed by Rue et al. (2009) and propose an INLA-VBC methodology. Various strategies,
with varying accuracy and efficiency, are available in the INLA framework. The most
accurate strategy is the Laplace strategy which involves nested use of the Laplace method,
while the least accurate strategy is the Gaussian strategy where the Laplace method is used
only once. Naturally, the Gaussian strategy is most efficient while the Laplace strategy is
least efficient. Details of these two strategies are presented in the next section. We aim to
achieve accuracy similar to that of the Laplace strategy, with a similar cost than that of
the Gaussian strategy. We focus our attention to latent Gaussian models (LGMs) for which
INLA is developed and show how our proposal can be used.

A latent Gaussian model appears naturally in statistical modeling since it is a hierar-
chical Bayesian model with a Gaussian Markov random field as the latent prior. We define
an LGM based on data y of size n, a latent field ¥ of size m and n linear predictors

K
n=168+XB+> fFw), (20)
k=1

such that {f} are unknown functions (random effects) of u, and B contains the coefficients
for the linear effects of X on 1. The latent field is defined as ¥ = {5y, B, f}. Often,
hyperparameters either from the likelihood or the prior of the latent field, form part of the
LGM and we denote these by 8 and assume a moderate dimension ¢ (usually ¢ < 30). In an
LGM the latent field is assumed to follow a Gaussian prior with a sparse precision matrix.
The sparseness is often satisfied as most generalized additive mixed models exhibit a sparse
precision matrix by construction. Thus an LGM can be summarized as follows:

.00 ~ [[r(vile.61)
i1

Ps ~ N©0.Q-'(6))
6= (0,0, ~ =) (21)

11



VAN NIEKERK AND RUE

The aim is thus to estimate the latent posteriors w(¢;|y),j = 1,2,...,m, and the hyperpa-
rameter posteriors 7w(0;ly), k =1,2,...,q.

A specialized methodology called the integrated nested Laplace approximation (INLA)
was introduced by Rue et al. (2009), to accurately and efficiently approximate the marginal
posteriors of ¥ and @ for an LGM. This methodology is based on a series of Gaussian
approximations to conditional posteriors, using the Laplace method. There is no parametric
assumption on the form of the marginal posteriors.

4.1 INLA
The INLA methodology from Rue et al. (2009) can be summarized as follows,

n

©(,0,y) = w(O)m®|02) [ 7(wile,61)

=1
N 7(,0,y)
"lly) o mm(¥)0,y) »=1h0(0)
#6ily) = / #(6ly)ds_,
Fsly) = / 7 (1516, y)7(Bly) db, (22)

where (9|60, y) is the approximation based on the Laplace method at the mode ()
with precision matrix Qo (@) from (5), and f(.) denotes an approximation to f(.). Note that
the Laplace method is used for the approximation based on a fixed 8. For convenience we
will use ¥y and Qg, to denote (@) and Q(@), respectively.

The approximate conditional posterior of 1;, 7(1;|6,y), can be calculated in one of two
ways, extracted from 7r\(¥]0,y) (Gaussian strategy) as

7(1510,y) ~ o (t;lv0;, QF), (23)
or subsequent Gaussian approximations (Laplace strategy) as follows,
- (.0
7(0,18,) x — P00 , (24)

mem(¥—j1;,0,y) Y_j=p_;(6)

where p_;(@) is the mode from the Gaussian approximation to m(%_;|;,8,y) based on
the Laplace method, and _; is 9 without the 4 element. As the dimension of the
latent field grow it is clear that the Laplace strategy will become costly due to the multiple
Gaussian approximations. It was shown by Rue et al. (2009) and multiple works there after
that the posteriors from INLA using the Laplace strategy is accurate when compared with
those obtained from MCMC sampling, while being much more time and memory efficient
than MCMC sampling, even for a large hyperparameter set due to parallel integration
strategies (Gaedke-Merzhéuser et al., 2023). The Gaussian strategy is more efficient, but
the resulting marginal posteriors are not accurate enough for some cases. Our proposal
in Section 2 thus fits naturally into this framework, where we can find a more accurate
Gaussian approximation based on the Laplace method and the VBC, by correcting the
mode of (23).
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4.2 INLA-VBC

The INLA methodology provides a deterministic framework to approximate the posteriors
of the hyperparameters as well as the latent field elements. We apply the proposal from
Section 2 to the INLA methodology with the hope of achieving more efficient yet accurate
approximations of the latent posteriors. Conditional on the hyperparameters, 6, define the
corrected posterior mean of the joint conditional as 91 = g + 8, where we calculate &
implicitly from the correction to by such that by = by + A, where A is non-zero, only for
those elements in I, the set of p indices to which we formulate the explicit correction. Note
that the latent prior m(%|02) is Gaussian by construction of the LGM as in (21), so the
KLD term simplifies to the KLD between two multivariate Gaussian densities. Then from
(13) and (18), we solve for A (conditionally on 8) as

X = argmin[Eyp v urar agn - loxn()] + KLD (6o + Q7 "\ @5 [6650.Q.)]
= arg In)‘in [E¢.9NN(¢O+QI—1>‘7Q51)[_ log (yl¥)] + %(’tpo +Q1 ') Qx (o + Q[l)‘)] , (29)

where QI_1 is constructed from specific columns of Qg ! Thus the improved Gaussian
approximation to m(¢|0,y) is

P10,y ~ N@1,Qy ). (26)
Now we can use this improved Gaussian approximation to the conditional joint posterior,
to extract the conditional posteriors for the latent field elements as

7(1;10,) ~ ¢(j]n, Q) (27)

instead of the more cumbersome series of Gaussian approximations as in (24). Finally,
using the INLA methodology (22), the marginal posteriors of the latent field elements can

be calculated as
K

7(Wyly) =D 7(1510,9)7 Ok ly) A,
k=1
where {01,609, ...,0} is a set of values calculated from the joint posterior 7(8|y) using a
central composite design (CCD) (Box and Wilson, 1951), and Ay is the step size. Thus,
the proposed INLA-VBC methodology can be summarized as

n

ﬂ(¢707y) = W(o)ﬂ(l‘/)w?)nﬂ(yl’d)?ol)

=1
5 m(1,0,y)
W) @00 |y
#Oily) = / #(0ly)ds_,
Fily) = / Fype(;18,9)7 (Bly)do. (28)

where Tyvpc(j]0,y) is the VB corrected Gaussian approximation from (27). Next we show
how accurate and efficient this proposal is for approximate Bayesian inference of latent
Gaussian models, based on a simulated sample from an overdispersed Poisson model.

13
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4.3 Simulation results

We use an overdispersed Poisson regression model with Gaussian priors for the latent field
such that

y; ~ Poisson(exp(n;)), 1 = Bo + Bixi + i, (29)

for i =1,2,...,n, where u;|7 ~ N(0,771), log T ~ loggamma(1,5 x 1075), By ~ N(0,1) and
B1 ~ N(0,1). The data is simulated based on Sy = —1,8; = —0.5,7 = 1 and a continuous
covariate x, simulated as x ~ N(0,1). We want to perform Bayesian inference for the
latent field ¥ = {po, 51, u1,u2, ..., un}, the linear predictors {ni,n2,...,m,} and the set of
hyperparameters 8 = {7}.

We simulate a sample of n = 1000 counts and the data is presented in Figure 2 (left). In
this case we apply the VBC only to the fixed effects 5y and (1, and the associated changes
are then propagated to the posterior means of u and the linear predictors n, we thus have
a two-dimensional optimization instead of a 1002-dimensional optimization as with other
variational Bayes approaches, conditional on the hyperparameter 7.

The posterior means for the Gaussian strategy (GA), Laplace strategy (INLA), MCMC
and the INLA-VBC methods are presented in Table 2. We can clearly see the improved
accuracy of the INLA-VBC to the Gaussian strategy when compared with the MCMC out-
put, from Table 2 and Figure 2 (center and right), without much additional computational
cost based on the time. With the INLA-VBC we can achieve similar results to that of the
MCMC approach, more efficiently, while inferring the hyperparameters as well. For the
MCMC we used a Gibbs sampler with a burn-in of 103 and a sample of size 10°.

| | GA' [INLA |INLA-VBC | MCMC |

Bo —-0.972 | —0.664 | —0.972 —0.934
51 —0.484 | —0.532 | —0.531 —0.529
T 1.056 1.056 1.056 1.037

Time(s) || 5.067 18.299 | 5.718 207.445

Table 2: Posterior means from the Gaussian strategy (GA), Laplace strategy (INLA), INLA-
VBC and MCMC

5. Real data examples

We consider two real data examples of different sized data sets. The first example includes
a stochastic spline model while the second example is a time to event model based on a
continuously-indexed spatial field. Both these models are latent Gaussian models and both
involve hyperparameters. We thus use the proposed INLA-VBC methodology from Section
4.2 for full Bayesian inference of these models. Due to the complexity of these models
we only compare the results with that of MCMC for the small scale example. Instead,
we compare the results based on the Gaussian strategy and the Laplace strategy within
the INLA framework of Rue et al. (2009), with those of the INLA-VBC proposal. These
examples illustrate the gain in accuracy, without an increased computational cost when
using INLA-VBC.
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Figure 2: Poisson counts simulated from (19) (top left) and the marginal posterior of [
(top right), 81 (bottom left) and 7 (bottom right) from the Gaussian strategy (points),
Laplace strategy (dashed line), INLA-VBC (solid line) and MCMC

5.1 Cyclic second order random walk - small scale

The Tokyo data set (Rue and Held, 2005) in the R-INLA library contains information on
the number of times the daily rainfall measurements in Tokyo was more than 1mm on a
specific day t for two consecutive years. In order to model the annual rainfall pattern, a
stochastic spline model with fixed precision is used to smooth the data. In this example we
use a cyclic random walk order two model defined as follows:

. eXp(ai)
1 ~ B P =
yz| m (Tbl,pz 1 o ( 1)>

iid —
(Oéi+1 —20&1'—|-Oéi71)|7' ~ N(O,T 1),

where ¢ = 1,2,...,366, a is a stochastic spline second order random walk model on a circle
(Rue and Held, 2005), and ngyp = 1 else n; = 2. The latent field is ¥ = {a} and we fix
the hyperparameter 7 = 1. Here we apply the correction to e, so that I = {1,2,...,n}. In
Figure 3 we present the posterior mean of the spline, estimated with each of the methods
and also the posterior marginal for one specific element, to illustrate the uncertainty in
the different posteriors. We can see clearly that the approximate posterior mean of the
spline with INLA-VBC is significantly improved from the Laplace method, while it is very
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Figure 3: Posterior mean of a (left) (zoomed for the first two months (center)) and the
marginal posterior of assg (right) from the Gaussian strategy (points), INLA-VBC (solid
blue line), INLA (broken line) and MCMC (solid purple line and histogram)

close to the posterior mean from INLA and MCMC. All methods estimate similar posterior
uncertainty as shown in Figure 3.

As a measure of error consolidation, we note that the mean of the absolute errors
produced between the Gaussian strategy and INLA is 0.0358 while for INLA-VBC it is
0.0009, underpinning the findings as illustrated in Figure 1. The time for all methods were
less than 6 seconds, as expected due to the small dimension of the data and latent field,
although the time for MCMC was 87.63 seconds. In this real example, the INLA-VBC does
not offer much computational gain over the Laplace strategy, although we have a larger
difference in computational cost for an increase in data size or model complexity, as shown
in the next example.

5.2 Leukemia data set - large scale

Consider the R data set Leuk that features the survival times of 1043 patients with acute
myeloid leukemia (AML) in Northwest England between 1982 to 1998, for more details see
Henderson et al. (2002). Exact residential locations and districts of the patients are known
and indicated by the dots in Figure 4. The aim is to model the survival time based on
various covariates X and space s, with a Cox proportional hazards model,

h(t,s) = ho(t) exp(BX +u(s)),

where the baseline hazard function hg(¢) is modeled with a stochastic spline as in Section
5.1, with hyperparameter 7. The baseline hazard is modeled using 100 time intervals and
we use the data augmented Poisson regression technique as proposed by Holford (1980);
Laird and Olivier (1981). This then implies an augmented data set of size 11738.

As fixed effects we use scaled age (Age), scaled white blood cell count at diagnosis
(WBC) and the scaled Townsend score (TPI) as prognostic factors. Then to account
for spatial variation we use a Gaussian effect u with a Matérn covariance structure with
hyperparameters, marginal variance o2 and nominal range r = 2/x (Lindgren et al., 2011).
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Figure 4: Exact residential locations of patients with AML (dots) and the triangulated
mesh for the finite element method estimation of the SPDE of the spatial field

The model for the linear predictor is
ni(s) = Po + P1Age; + BoWBC; + B3 TPI; + u(s). (30)

The model for u is continuously indexed in space and we use the finite element method
and the mesh presented in Figure 4 to estimate this model (for more details regarding the
SPDE approach to continuous spatial modeling see Lindgren et al. (2011); Lindgren and
Rue (2015); Krainski et al. (2018)). The mesh contains 2032 triangles, and through the
mapping of the data to the mesh, we get an augmented latent field of size m = 39158.
The hyperparameters to be estimated is § = {r, ag,r}. Here we apply the correction to
the fixed effects only, hence p = 4, while the other m = 39154 corrections implicitly follow.
We present the fixed effects posterior means for this example in Table 3, as well as the
computational time (which includes the time to estimate @). It is clear that we can achieve
the same accuracy as the Laplace strategy (INLA), at a fraction of the computational cost
with the INLA-VBC.

The marginal posteriors of 8y, 81, 82 and B3 are presented in Figure 5 and the accuracy
of the correction is clear. Note that for 81, S and B3, the posterior means from the Gaussian
strategy are already very close to those from INLA. In this case we see that the correction
from INLA-VBC is stable by estimating only a slight correction. The posterior mean and
95% credible interval of the baseline hazard ho(t) is presented in Figure 5 and we see
that even though we only explicitly correct the four fixed effects, the posterior mean of
the baseline hazard is also corrected. Additionally, the posterior mean of the Gaussian
field, u(s) is presented in Figure 6 for INLA-VBC (left), as well as the posterior standard
deviation (center). Based on the posterior mean of u(s) we can clearly identify areas which
have increased risk (red) of death due to AML and also areas where the risk is lower (blue).
These areas can be used to inform public health interventions to be targeted towards those
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| [ GA [INLA |INLA-VBC |

Bo —2.023 | —2.189 | —2.189
51 0.596 0.597 0.597
Bo 0.242 0.241 0.241
B3 0.108 | 0.108 | 0.108
T 0.340 | 0.340 | 0.340
Oy 0.223 0.223 0.223
T 0.202 0.202 0.202
Time(s) || 25.9 1276 26.3

Table 3: Posterior means from the Gaussian strategy, INLA and INLA-VBC - all fixed
effects are significant (see Figure 5)
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Figure 5: Marginal posteriors from the Gaussian strategy (points), INLA-VBC (solid line)
and INLA (broken line) for the fixed effects and posterior mean and 95% credible interval
for the baseline hazard hg(t)

areas in need. Since we propagated the explicit correction of the fixed effects to the spatial
field as well, we see that corrections were made to the Gaussian field based on the INLA-
VBC strategy for most locations (see Figure 6 (right)).

This real example illustrates the potential and need of our proposal, to perform more
accurate approximations to the posterior mean (and thus point estimates) for all model
components (in this example we have made m = 39158 improvements to the joint posterior
mean) by calculating an optimization in a very small dimension (in this example we solved

(25) with p = 4).
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Figure 6: Posterior mean (left) and posterior standard deviation (center) of u(s) from INLA-
VBC with the absolute difference between the posterior means of u(s) from the Gaussian
strategy and INLA-VBC (right)

6. Discussion and future directions

In this paper we proposed a method to correct the posterior mean from a Laplace method
using a low-rank correction that propagates to a higher dimensional latent parameter space.
We use a variational framework to calculate this lower-dimensional correction. This proposal
is useful for problems where a Gaussian approximation from the Laplace method is used to
approximate an unknown function, or as an intermediate step in a specific algorithm. We
show that the VBC works well compared to MCMC for unimodal unknown functions, in
terms of location and uncertainty estimation. Moreover, we apply the VBC to the INLA
methodology and construct INLA-VBC that performs full Bayesian inference for latent
Gaussian models in an accurate and efficient manner. INLA-VBC achieves similar accuracy
in the mean than that of more costly procedures (like MCMC and the Laplace strategy of
INLA), without much additional computational cost to that of the Laplace method. INLA-
VBC is implemented in the R-INLA library and available for use with the inla function,
more details are available at www.r-inla.org.

VBC is not merely a different technique to perform optimization for a Variational Bayes
problem, but rather poses a new variational optimization that can be defined on a much
smaller dimension than the dimension of the parameter space, while providing results for
the entire parameter space. As such, VBC is not to be pinned against other VB computa-
tional approaches like inducing point methods, stochastic variational inference, minibatch-
ing, boosting approaches, normalizing flow etc, but rather proposes a new framework within
which these techniques can be applied.

VBC can also be used to do a VB (Bayesian) correction to the maximum likelihood
estimator (MLE) from a generalized linear model. This results in an approximate Bayesian
inference framework, starting from a Frequentist basis. The MLE, u, of 9 is calculated as

n
p = argmax > log f(uilth).
i=1
We can also calculate the precision matrix @, for ¥ from the Hessian of the log-likelihood

at p. We thus infer, ¥ ~ N(u,Q~!). Similar to Section 2 we impose a low-rank implicit
correction to p. We postulate a Gaussian posterior of ¢ with the corrected mean

pr=p+ Qj_l}‘v
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and solve for A using (13). This corrected posterior mean then provides the scientist with a
Bayesian estimator adapted from MLE, without performing a complete Bayesian analysis.

VBC has the potential to be used also for marginal variance correction and possibly
even skewness correction when we move from the Gaussian posterior to a skew-normal
posterior family, with a Gaussian copula. As shown in the simulated and real examples,
often the variance resulting from the Laplace method is quite accurate when compared
with that of MCMC and only a slight correction would be necessary. In the non-latent
Gaussian model example the posteriors did not depart significantly from symmetry and the
Gaussian posterior appears to be sufficient. In the case latent Gaussian models where we
proposed INLA-VBC, the marginal posteriors are not assumed to be symmetric since the
integration over the hyperparameter space induces skewness to the Gaussian conditional
posterior where the VBC was applied, and from the examples considered here the resulting
marginal posteriors compare well with that of MCMC. However, scenarios could arise where
a variance and skewness correction are beneficial and we are currently exploring these
avenues. Initial work in this area is promising, although the task at hand is more demanding.

The work we present herein is based on using the variational concept in an interest-
ing and promising fashion, and we believe that it contributes to the field of approximate
Bayesian inference for a large class of models as well as to approximate methods in general
by producing accurate results with superior computational efficiency and scalability.

The examples presented herein can be reproduced based on the code available at https:
//github.com/JanetVN1201/Code_for_papers/tree/main/Low-rank’20VBY,20correction
20t0%20GA.

7. Appendix: Optimization-based view of Variational Bayes

The Variational Bayes framework as proposed by Zellner (1988) can be summarized as
follows.

Based on prior information Z, data y and parameters 8, define the following;:

1. m(0|Z) is the prior model assumed for § before observing the data

[\)

. q(0|D) is the learned model from the prior information and the data where D = {Z,y}

w

. 1(8ly) = f(y|@) is the likelihood of state § based on the data y
4. p(y|Z) is the model for the data where p(y|Z) = [ f(y|@)=(8|Z)d60

The input information in the learning of 8 is given by m(0|Z) and (fly). An information
processing rule (IPR) then delivers ¢(@|D) and p(y|Z) as output information. A stable and
efficient IPR would provide the same amount of output information than received through
the input information, thus being information conservative. Thus, we learn ¢(@|D) such
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that it minimizes

- / log w(8|Z) + log 1(B]y)] 4(6|D)d8 + / llog ¢(8]D) + log p(y|T)] ¢(61D)d0
_— / log 7(8]Z)¢(6] D)6 — / log 1(6]y)q(61D)d6 + / log ¢(6D)q(6D)d6 + log p(y|T)

< Eygp) [— logl(aly)H/[— log 7(0|Z) + log q(6|D)] q(8|D)d6
= Eqeop) [ 10g1(8ly)] + KLD [¢(8|D)||7(6|7)] (31)

where KLD [a(z)||b(z)] = [log %a(:r)dx is the Kullback-Leibler divergence measure (or
relative entropy).

Zellner (1988) showed that the learned ¢(8|D) corresponds to the posterior density
derived from Bayes’ theorem, and if we define ¢(@|D) to be the true posterior distribution
then the IPR in (31) is 100% efficient. It is optimal in the sense that the amount of the
input and output information is as close to each other as possible (also the negative entropy
of ¢(8|D) is minimized relative to %lz(my)).

Here the Variational concept relates to finding the best candidate based on assumptions
of the analytical form of ¢(#|D), that minimizes (31). This view on variational Bayesian
inference is beneficial since we do not have to assume that ¢(@|D) is decoupled for 8, like

the mean field assumption.
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