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Abstract

Suppose that we have a regression problem with response variable Y ∈ Rd and predictor
X ∈ Rd, for d ≥ 1. In permuted or unlinked regression we have access to separate unordered
data on X and Y , as opposed to data on (X,Y )-pairs in usual regression. So far in the
literature the case d = 1 has received attention, see e.g., the recent papers by Rigollet and
Weed [Information & Inference, 8, 619–717] and Balabdaoui et al. [J. Mach. Learn. Res.,
22(172), 1–60]. In this paper, we consider the general multivariate setting with d ≥ 1.
We show that the notion of cyclical monotonicity of the regression function is sufficient for
identification and estimation in the permuted/unlinked regression model. We study permu-
tation recovery in the permuted regression setting and develop a computationally efficient
and easy-to-use algorithm for denoising based on the Kiefer-Wolfowitz [Ann. Math. Statist.,
27, 887–906] nonparametric maximum likelihood estimator and techniques from the theory
of optimal transport. We provide explicit upper bounds on the associated mean squared
denoising error for Gaussian noise. As in previous work on the case d = 1, the per-
muted/unlinked setting involves slow (logarithmic) rates of convergence rooted in the un-
derlying deconvolution problem. We also provide an extension to a certain class of elliptic
noise distributions that includes a multivariate generalization of the Laplace distribution,
for which polynomial rates can be obtained. Numerical studies complement our theoretical
analysis and show that the proposed approach performs at least on par with the methods
in the aforementioned prior work in the case d = 1 while achieving substantial reductions
in terms of computational complexity.
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Slawski and Sen

1. Introduction

In their seminal paper DeGroot et al. (1971) considered the following problem: given pho-
tographs of n film stars and another set of photographs of the same film stars taken at
a younger age, can we identify corresponding pairs of photographs (i.e., belonging to the
same film star) based on, e.g., d biometric measurements extracted from each photograph?
A specific variant of this problem (illustrated in Figure 1) is studied in the present paper.
Let Xn = {Xi}ni=1 and Yn = {Yi}ni=1 be given Rd-valued (d ≥ 1) samples of data (e.g., Xn
denoting past photographs and Yn recent photographs) pertaining to a common set of n
entities, and suppose that there is a function f∗ : Rd → Rd transforming data in Xn to their
matching counterparts in Yn, modulo additive noise, i.e., for some unknown permutation
π∗ of {1, . . . , n}, we have that

Yi = f∗(Xπ∗(i)) + εi, 1 ≤ i ≤ n, (1)

where the {εi}ni=1 represent i.i.d. zero-mean additive noise. Note that if π∗ was known,
the problem boils down to a standard regression / (non-parametric) function estimation
setup. On the other hand, if f∗ was known, the problem boils down to a standard matching
problem (Burkard et al., 2009; Collier and Dalalyan, 2016). In this paper, both f∗ and π∗

are assumed to be unknown, and the following tasks are considered:

(T1): (Exact) Permutation recovery, i.e., inferring the permutation π∗ without error,

(T2): Denoising, i.e., the construction of estimators {f̂(Xi)}ni=1 for {θ∗i ≡ f∗(Xi)}ni=1.

Task (T2) will also be studied in a slightly more general setup in which samples of different

size, say, Xn and Ym are observed such that samples in the latter are i.i.d. copies of Y
D
=

f∗(X)+ε and samples in Xn are i.i.d. copies of X ∼ µ for some suitable probability measure

µ on Rd, with
D
= denoting equality in distribution. Adopting the terminology in Balabdaoui

et al. (2021), this generalized setup will be referred to as unlinked regression, whereas the
basic setup (1) will be referred to as permuted regression. In the latter case, {Xi}ni=1 will
be considered as fixed, unless stated otherwise.

Applications. The problem outlined above arises in a series of applications in various
domains. In computer vision, a common task is to identify corresponding pairs of images,
with one image arising as a distorted image of the other (Hartley and Zisserman, 2004);
in this context, the function f∗ may represent a specific combination of distortions (e.g.,
scaling, rotations, blur, etc.). Specific instances of (1) that have received considerable at-
tention lately are unlabeled sensing or linear regression with unknown permutation, (e.g.,
Unnikrishnan et al., 2018; Pananjady et al., 2018, 2017; Abid et al., 2017; Hsu et al., 2017;
Slawski and Ben-David, 2019; Tsakiris et al., 2020; Tsakiris and Peng, 2019; Slawski et al.,
2020, 2021; Zhang et al., 2022) in which case f∗ is an affine transformation (albeit not nec-
essarily from Rd to Rd). Among these works, Slawski and Ben-David (2019); Slawski et al.
(2021) discuss applications in record linkage (Herzog et al., 2007; Christen, 2012; Winkler,
2014), specifically post-linkage data analysis (Scheuren and Winkler, 1993, 1997; Lahiri and
Larsen, 2005). Grave et al. (2019); Shi et al. (2021) consider the case in which Xn and Yn
are points on the unit sphere in Rd and f∗ is a unitary map with applications in automated
translation between different word embeddings. As elaborated in more detail in §3.1 below,

2



Permuted & Unlinked Regression in Rd
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Figure 1: Illustration of the film stars correspondence problem described in DeGroot et al.
(1971). In terms of model (1), one can potentially think of {Y1, . . . , Yn} as the
image of {X1, . . . , Xn} under some “morphing” function f∗, modulo unstructured
noise.

the setup (1) also arises in matrix estimation problems, in which a noisy row-permuted
version of a matrix, whose columns exhibit the same ordering pattern (decreasing or in-
creasing), is observed. Flammarion et al. (2019); Ma et al. (2020, 2021) discuss applications
in statistical seriation (Liiv, 2010) and microbiome data analysis. Finally, model (1) bears a
relation to linkage attacks in the literature on data privacy (Sweeney, 2001; Narayanan and
Shmatikov, 2008): here, Yn may represent (anonymized) sensitive data while an adversary
holds auxiliary data Xn along with identifiers (e.g., individuals’ names) and tries to leverage
the functional relationship between the two data sets to guess the values of the sensitive
attributes contained in Yn for each or a subset of the identifiers.

Summary of contributions and related work. In a nutshell, the current paper can
be seen as an extension of the setup in Carpentier and Schlüter (2016); Rigollet and Weed
(2019); Balabdaoui et al. (2021) which consider (variants of) (1) with d = 1 and f∗ mono-
tone with known direction of monotonicity (say, non-decreasing). A fundamental question
associated with (1) asks for what class of functions f∗ it is possible to perform tasks (T1)
and (T2) in a statistically consistent manner. In fact, even in the absence of noise and the
additional requirement that f∗ be smooth, (T1) is generally hopeless already for d = 1 as
can be seen from a simple example (cf. Remark 1 in §2).

In this paper, we establish that (T1) and (T2) can be accomplished if

f∗ = ∇ψf∗

where ψf∗ : Rd → R is a strictly convex function and by ∇ψf∗ we mean the gradient of the
function ψf∗ . Such functions f∗ provide a natural generalization of increasing functions for
d = 1 in view of the property that

〈∇ψf∗(y)−∇ψf∗(x), y − x〉 > 0 for all x, y ∈ Rd.

Note that in particular, functions of the form f∗ = (f∗1 , . . . , f
∗
d ) with f∗j increasing on R,

1 ≤ j ≤ d, as studied in Flammarion et al. (2019); Ma et al. (2020, 2021) are included,
corresponding to component-wise separable additive (strictly) convex functions of the form

ψf∗(x1, . . . , xd) =
∑d

j=1 ψf∗j (xj).

Permutation recovery in the presence of noise based on the solution of a linear assignment
problem associated with Xn and Yn is shown to succeed (see Proposition 4) if a certain
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minimum signal condition similar to conditions in related papers (Flammarion et al., 2019;
Ma et al., 2020, 2021; Zhang et al., 2022) is met. As a byproduct, the result on permutation
recovery herein yields the novel insight that the unlabeled sensing problem in Zhang et al.
(2022) can be solved efficiently whenever the unknown linear transformation is positive
(semi)-definite.

Regarding the task (T2) of denoising, we leverage a connection to the Brenier theorem in
optimal transportation (see e.g., Peyré and Cuturi, 2019; Villani, 2009, 2003; Santambrogio,
2015). According to this connection, the sample Yn is thought of as the image of Xn
under an optimal transport map f∗ = ∇ψf∗ , contaminated by additive noise. Denoising
is achieved via deconvolution of the measure 1

n

∑n
i=1 δYi and subsequent computation of

an optimal coupling γ̂ between the deconvolution estimate and the measure 1
n

∑n
i=1 δXi ;

finally, we take {f̂(Xi)}ni=1 as the so-called barycentric projection of γ̂. Deconvolution is
based on the Kiefer-Wolfowitz NPMLE for location mixtures (Kiefer and Wolfowitz, 1956;
Koenker and Mizera, 2014) and requires knowledge of the noise distribution. The approach
developed herein (cf. Algorithm 1) is free of tuning parameters, and directly generalizes to
the unlinked regression setting with samples Xn and Ym of different sizes described above
at the end of the first paragraph. We provide upper bounds on the mean-square denoising
error 1

n

∑n
i=1‖f∗(Xi) − f̂(Xi)‖22 in terms of the Hellinger distance of the Kiefer-Wolfowitz

NPMLE to the underlying location mixture generating Yn and the rate of decay of the
characteristic function of the noise distribution, the latter being a common ingredient in
deconvolution problems.

Specificially, our results cover (i) Gaussian errors and (ii) errors from a certain class of
elliptic distributions that is characterized by light tails and a polynomial rate of decay of the
characteristic function; in particular, this class includes the generalized multivariate Laplace
distribution (Kozubowski et al., 2013) that generalizes the well-known Laplace distribution
to higher dimensions. Regarding (i), we obtain logarithmic rates of convergence (see The-
orems 6 & 7) in alignment with prior work (Carpentier and Schlüter, 2016; Rigollet and
Weed, 2019; Balabdaoui et al., 2021) on the case d = 1. For (ii), polynomial rates can be
shown (see Theorem 11), in agreement with results in Balabdaoui et al. (2021) on the case
d = 1 concerning distributions whose characteristic functions exhibit polynomial decay. As
an important intermediate step towards obtaining (ii), we derive rates of convergence of the
associated Kiefer-Wolfowitz NPMLE in Hellinger distance (cf. Theorem 10). This result is
considered to be of independent interest.

The main innovations of the present work over Carpentier and Schlüter (2016); Rigollet
and Weed (2019); Balabdaoui et al. (2021) is the generalization to arbitrary dimension d,
whereas the previous papers only consider d = 1. All three works are based on deconvo-
lution, and a connection to optimal transportation, albeit for d = 1, is already made in
Rigollet and Weed (2019). However, even for d = 1, we argue that the approach developed
in this paper is computationally more appealing than those in Carpentier and Schlüter
(2016); Rigollet and Weed (2019); Balabdaoui et al. (2021). The method in Carpentier and
Schlüter (2016) is based on the truncated characteristic function estimator originating in the
deconvolution literature and hence entails a tuning parameter. The method in Rigollet and
Weed (2019) is tuning-free and based on convex optimization; however, their deconvolution
procedure involves Wasserstein distance minimization and in turn a non-smooth optimiza-
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tion problem that is less straightforward to solve than the Kiefer-Wolfowitz NPMLE. The
method in Balabdaoui et al. (2021) is based on a non-convex optimization problem.

The theoretical results presented in Carpentier and Schlüter (2016); Rigollet and Weed
(2019); Balabdaoui et al. (2021) are of different flavors, and hence not directly comparable.
Carpentier and Schlüter (2016) do not provide explicit rates of convergence. The paper
by Balabdaoui et al. (2021) is different from Rigollet and Weed (2019) in the sense that
the former emphasizes on the unlinked regression setting and provides rates for function
estimation in the L1-distance, whereas Rigollet and Weed (2019) study the mean-squared
denoising error in the permuted regression setting (1). For d = 1, the denoising performance
metric in Rigollet and Weed (2019) (mean squared error at the {Xi}ni=1) coincides with what
is considered in the present paper. The rate herein is slightly slower than the minimax rate
shown in Rigollet and Weed (2019), but given that both rates decrease only logarithmically
in n, the gap is not that pronounced. More detailed comparisons are postponed to later
sections in this paper.

The paper by Meis and Mammen (2021) studies the setting in Rigollet and Weed (2019)
under discrete errors. After submitting a first version of our paper, we became aware
of Azadkia and Balabdaoui (2023) that adopts the deconvolution perspective on unlinked
regression for linear regression setups. Parametric rates are obtained in both Meis and
Mammen (2021) and Azadkia and Balabdaoui (2023).

The approach taken in this paper and the techniques used for its analysis bear various
connections to recent developments in the literature on optimal transport, e.g., on the
estimation of (smooth) optimal transport maps (Ghosal and Sen, 2022; Hütter and Rigollet,
2021; Deb et al., 2021; Manole et al., 2024; Chizat et al., 2020). Key steps in our proofs
are based on adaptations of parts of the analysis in Chizat et al. (2020); Deb et al. (2021);
Manole et al. (2024). At a technical level, the main distinction of the present work compared
to these earlier works is the convolution setting considered herein.

Paper outline. This paper is organized as follows. Section §2 provides a more detailed
discussion of the problem sketched in the introduction, and presents an overview of the
technical approach taken. The theoretical properties of that approach are studied in §3 and
corroborated with numerical results in §4. A conclusion is provided in §5. Proofs of our
results and additional technical details can be found in the Appendix.

Notation. For the convenience of the reader, notation that is used frequently in this paper
is summarized in the following table. In addition, we would like to recall model (1) and
that {θ∗i }ni=1 = {f∗(Xi)}ni=1, where f∗ is the function of interest and the {Xi}ni=1 are the
design points.

ν∗n measure 1
n

∑n
i=1 δθ∗i ν̂ mixing measure associated with f̂n

νn measure 1
n

∑n
i=1 δYi ψf∗ convex function associated with f∗

µn measure 1
n

∑n
i=1 δXi ψ?f∗ conjugate of ψf∗

ϕ PDF of ε/σ, Cov(ε) = σ2Id π∗ ground truth permutation of {1, . . . , n}
ϕσ PDF of ε Π∗ permutation matrix corresponding to π∗

? convolution P(n) set of permutation matrices of order n

fn = ϕσ ? ν
∗
n average location mixture PDF π,Π generic elements of P(n)

f̂n NPMLE of fn F Fourier transformation
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We often refer to a permutation via the underlying map π and the corresponding matrix Π
in an interchangeable fashion, and accordingly P(n) may refer to both maps and matrices.

2. Estimation strategy

In this section we describe our estimation procedure for both tasks — (T1) and (T2).
We start with a simple example that illustrates the non-identifiability of f∗ and π∗ in (1)
without further assumptions on the structure of f∗; see Remark 1 below. It turns out
that if f∗ is cyclically monotone (see §2.1 where we formally define this notion along with
other related concepts) then model (1) is identifiable and consistent estimation can be
successfully carried out. To solve the denoising problem (T2) we leverage ideas from the
theory of optimal transport and the Kiefer-Wolfowitz NPMLE for location mixtures which
is discussed in detail in §2.2. We also give our main algorithm (see Algorithm 1) and discuss
the computational approach in §2.2.

Remark 1 (A negative example) To gain some insights into the feasibility of tasks (T1)
and (T2) given the observation model (1), let us first consider a simple example which shows
that recovery of f∗ or π∗ is generally hopeless even in seemingly benign settings (d = 1, no
noise, f∗ smooth). Specifically, suppose that Xi = Yi = i/M , 1 ≤ i ≤ n = M−1 for M ≥ 2.
Then both pairs f∗1 (x) = x with π∗1(i) = i, 1 ≤ i ≤ n, and f∗2 (x) = 1− x with π∗2(i) = n− i,
1 ≤ i ≤ n, satisfy (1). Clearly, additionally requiring that f∗ be increasing rules out this
ambiguity. In fact, estimation of monotone f∗ with known direction of monotonicity under
the permuted regression setup (1) has been shown to be feasible even in the presence of noise
(Carpentier and Schlüter, 2016; Rigollet and Weed, 2019; Balabdaoui et al., 2021). At the
same time, estimation of the direction of monotonicity itself is generally not possible even
if f∗ is linear (DeGroot and Goel, 1980; Bai and Hsing, 2005).

2.1 Monotone operators and linear assignment problems

The example above for d = 1 (and in the absence of noise) provides some useful clues
regarding the generalization to arbitrary dimension d ≥ 1. If f∗ is known to be increasing,
the underlying permutation π∗ is immediately determined by the requirement that Yi must
match the corresponding order statistic in Xn, i.e., Xπ∗(i) = Xrank(i), where rank(i) denotes
the rank of Yi among Yn, 1 ≤ i ≤ n. It can also be shown that π∗ minimizes the optimization
problem

min
π

1

2

n∑
i=1

|Yi −Xπ(i)|22 = −max
π

n∑
i=1

Xπ(i)Yi + c, c :=
1

2

n∑
i=1

(X2
i + Y 2

i ) (2)

over all permutations π of {1, . . . , n}. The above problem is a specifically simple instance
of the class of linear assignment problems (LAPs) that are of the form

min
Π∈P(n)

n∑
i=1

n∑
j=1

ΠijCij = min
Π∈P(n)

tr(C>Π), (3)

where P(n) = {Π ∈ {0, 1}n×n :
∑n

i=1 Πij = 1, 1 ≤ j ≤ n,
∑n

j=1 Πij = 1, 1 ≤ i ≤ n}
denotes the set of permutation matrices of dimension n and C = (cij) is a cost matrix with
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entry (i, j) representing the cost associated with the pairing (i, j), 1 ≤ i, j ≤ n. LAPs
(3) constitute a well-studied class of optimization problems that are known as bipartite
matching problems in the literature on combinatorial optimization (Burkard et al., 2009).
In light of the celebrated Birkhoff-von Neumann theorem (Ziegler, 1995), (3) can be solved
efficiently via linear programming. Tailored algorithms such as the Hungarian Algorithm
(Bertsekas and Castanon, 1992) and the Auction Algorithm (Kuhn, 1955) have runtime
complexity O(n3), and approximate solutions can be obtained via Sinkhorn iterations in
time O(n2 log n) (Cuturi et al., 2019); especially simple instances such as (2) in which C
has rank one reduce to sorting (e.g., Burkard and Cela, 1999, Section 2).

The crucial insight here is that knowing f∗ is monotone increasing immediately allows
us to recover π∗ in the absence of noise via the optimization problem (2). This observation
prompts the following generalization. Let Xn ⊂ Rd × . . . × Rd be a domain containing all
possible samples Xn. We require that for all Xn ⊂ Xn and all n ≥ 1, f∗ has the property
that

min
π

1

2

n∑
i=1

‖Yi −Xπ(i)‖22, (4)

is (uniquely) minimized by π = π∗, where Yi = f∗(Xπ∗(i)), 1 ≤ i ≤ n. This requirement can
be expressed more succinctly via the notion of (strict) cyclical monotonicity, a notion that
arises in the study of monotone operators in convex analysis (Bauschke and Combettes,
2011) as well as in optimal transportation (e.g., McCann and Guillen, 2011, Definition 2.1),
a connection that plays a fundamental role in the developments further below.

Proposition 2 Suppose Yi = f∗(Xπ∗(i)), 1 ≤ i ≤ n, for some function f∗ : Rd → Rd.
Without loss of generality, suppose that π∗ equals the identity id permutation. The optimiza-
tion problem (4) is uniquely minimized by π = id iff Γf∗ := {(x, f∗(x)) : x ∈ X} ⊂ Rd ×Rd
is a (strictly) cyclically monotone set (with respect to the Euclidean norm), i.e., if for all
k ≥ 1 and all {(xi, yi)}ki=1 ⊂ Γf∗, it holds that

−
k∑
i=1

〈xi, yi〉 <
k∑
i=1

−〈xi+1, yi〉, xk+1 := x1. (5)

Proposition 2 is obtained by omitting the square terms in the objective as in (2) and
decomposing permutations into their disjoint cycles; a formal proof is omitted for the sake
of brevity. The following result, due to Rockafellar, precisely characterizes the class of
functions f : Rd → Rd whose graphs are cyclically monotone.

Theorem 3 (Rockafellar, 1966) The graph of the sub-differential ∂ψ of a convex function
ψ : Rd → Rd, i.e., Γ∂ψ := {(x, y) ∈ Rd × Rd : ψ(z) ≥ ψ(x) + 〈z − x, y〉 ∀z ∈ Rd}
is a cyclically monotone subset of Rd × Rd. Moreover, any cyclically monotone subset of
Rd × Rd is contained in such a set.

The subdifferential of a convex function ψ is a monotone operator in the sense that the
relation {(x, ∂ψ(x)) : x ∈ Rd} has the property that 〈x − z, gx − gz〉 ≥ 0 for all x, z ∈ Rd
and all gx ∈ ∂ψ(x), gz ∈ ∂ψ(z), which is in analogy to the fact monotone functions on the
real line arise as derivatives of convex functions.
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In combination, Proposition 2 and Rockafellar’s theorem above prompt the requirement

f∗ = ∇ψf∗

for a convex function ψf∗ : Rd → Rd. Working with gradients instead of subdifferentials
is needed in order to ensure that f∗ is actually a map from Rd to Rd even though the
distinction is somewhat minor in light of the fact that convex functions are differentiable
(Lebesgue) almost everywhere.

For the purpose of permutation recovery (T1) and in turn for strict cyclical monotonicity
to hold, we need to impose the additional requirement that ψf∗ be strictly convex, i.e., the
strengthened first-order convexity condition

ψf∗(z) > ψf∗(x) + 〈∇ψf∗(x), z − x〉 ∀ x, z ∈ Rd, x 6= z. (6)

Note that ∇ψf∗ : Rd → Rd is injective if and only if (6) holds. In the presence of noise,
strict convexity will further be strengthened to strong convexity (cf. Proposition 4 in §3
below).

2.2 A path towards denoising (T2) via optimal transportation

Gradients of convex functions are also known as Brenier maps in the field of optimal (mea-
sure) transportation (e.g., Villani, 2009, 2003; Santambrogio, 2015). Specifically, for random
variables U ∼ ρ and V ∼ τ with ρ and τ absolutely continuous with respect to the Lebesgue
measure on Rd such that EU∼ρ[‖U‖22],EV∼τ [‖V ‖22] are both finite, Brenier’s theorem (in
short) states that the minimization problem

inf
T

1

2
EU∼ρ[‖U − T (U)‖22],

over all measurable functions T such that T (U) ∼ τ has a solution T ∗ = ∇ψT ∗ for a convex
function ψT ∗ with T ∗ being uniquely determined almost everywhere. Moreover, the solution
of the reverse problem in which τ is optimally transported to ρ in the above sense is the
optimal transport map given by ∇ψ?T ∗ with ψ?T ∗ denoting the Legendre-Fenchel conjugate
of ψT ∗ ; we refer to Appendix H for a more detailed background and references.

Linear assignment problems of the form (2) and (4) can be interpreted as specific discrete
optimal transport problems between the atomic measures

µn := 1
n

∑n
i=1 δXi , and νn := 1

n

∑n
i=1 δYi .

The requirement that µn(T−1(Yi)) = 1/n, 1 ≤ i ≤ n, immediately implies that the resulting
optimal transport problem seeks for an optimal pairing {(Xπ(i), Yi)}ni=1 over all permutations
π of {1, . . . , n}.

The connection to optimal transportation turns out to be fruitful since it suggests a nat-
ural approach for the task of denoising (T2), i.e., the construction of estimators {f̂(Xi)}ni=1

of {f∗(Xi)}ni=1 under the permuted regression model (1). Note that solving the linear as-
signment problem (4) to find an optimal collection of (X,Y )-pairs is not suitable for this
task in general since all noise inherent in the {Yi}ni=1 is retained (cf. Figure 2). In fact, we
are interested in the pairings {(Xi, θ

∗
i )}ni=1 with θ∗i = f(X∗i ), 1 ≤ i ≤ n, which corresponds
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Figure 2: Left: Shuffled Data {(Xi, Yi)}ni=1. Middle: Sorted Data (X(i), Y(i))
n
i=1 in case of

negligible noise; underlying function x 7→ f∗(x) := 2
√
x in red. Right: Sorted

Data (X(i), Y(i))
n
i=1 in case of substantial noise. The results indicates a serious

amount of bias, particularly near the boundaries.

to the optimal transportation problem between µn and ν∗n := 1
n

∑n
i=1 δθ∗i . The fact that the

latter is not given — in fact, it corresponds to the target to be recovered — suggests the
need for its estimation. Below, we shall present an atomic estimator ν̂ of ν∗n of the form

ν̂ :=
∑p

j=1 α̂jδθ̂j

with atoms {θ̂j}pj=1 ⊂ Rd and masses (i.e., positive numbers summing to one) {α̂j}pj=1.

Since p 6= n in general, there does not exist a transport map between µn and ν̂1. However,
the Kantorovich problem, a relaxation of the optimal transportation problem (cf. Appendix
H), can be used to obtain a proxy as follows. The Kantorovich problem is given by the
optimization problem

min
γ∈Π(µn,ν̂)

∫ ∫
1

2
‖x− θ‖22 dγ(x, θ), (7)

where the minimum is over all couplings γ of µn and ν̂, i.e., all probability measures on the
set {Xi}ni=1 × {θ̂j}

p
j=1 whose marginal distributions are given by µn and ν̂, respectively.

Let γ̂ denote a minimizer of (7). We then use the estimator

f̂(Xi) := E(θ,X)∼γ̂ [θ|X = Xi] =

∫
θ θ dγ̂(θ,Xi)∫
θ dγ̂(θ,Xi)

=

∫
θ θ dγ̂(θ,Xi)

µn({Xi})
, 1 ≤ i ≤ n, (8)

i.e., the conditional expectation of θ given X = Xi, 1 ≤ i ≤ n, resulting from the optimal
coupling γ̂. The map x 7→ E(X,θ)∼γ̂ [θ|X = x], x ∈ Xn, is usually referred to as the
barycentric projection of γ̂ in the optimal transport literature (Paty et al., 2020, Defn. 2).

In order to finalize the outline of our approach for task (T2), which is summarized in
Algorithm 1, it remains to present a specific estimator ν̂ of ν∗n. Let ϕ denote the density of
the i.i.d. standardized noise terms {εi/σ}ni=1, where we assume that E[ε1] = 0 and Cov(ε1) =
σ2Id, for σ > 0. Then the average density of the {Yi}ni=1 is given by the location mixture
density fn := ϕσ ? ν

∗
n with ? denoting convolution and ϕσ(·) := σ−dϕ(·/σ), i.e.,

fn(y) :=

∫
ϕσ(y − θ) dν∗n(θ) =

1

n

n∑
i=1

ϕσ(y − θ∗i ), y ∈ Rd.

1. The measure preservation property µn(T−1(θ̂j)) = 1/n, 1 ≤ j ≤ p, cannot hold since in general n 6= p.

9
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Algorithm 1 Denoising for Permuted or Unlinked Regression

Inputs: Xn, Ym, ϕσ,G.

1. Solve problem (10):

; ν̂ =
∑p

j=1 α̂jδθ̂j
2. Compute an optimal coupling

between µn and ν̂ via the
linear program (12).

; Γ̂ ∈ Rn×p+ .

Return f̂(Xi) = n
∑

j Γ̂ij θ̂j ,

1 ≤ i ≤ n.

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

µn

ν n∗

* * * * * * * *
*

*

*

*
*
*
*
*

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

µn

ν̂

* * * * * * * *
*

*

*

*

*

*

●

●

●

● ●

● ●

● ●

Left figure: ν∗n = 1
n

∑n
i=1 δθ∗i with θ∗i = 2

√
Xi−0.5, 1 ≤ i ≤ n, with Xn = {0.1, 0.2, . . . , 0.8}.

The solid black line drawn over the vertical axis represents the mixture density fn = ν∗n ?ϕσ.
Right figure: Estimated mixture density f̂n and mixing measure ν̂ (blue). The resulting
optimal coupling Γ̂ between µn and ν̂ is represented by purple dots (with sizes proportional
to the corresponding entry of Γ̂. Solid black line: Function estimate f̂ obtained by constant
interpolation based on {(Xi, f̂(Xi))}ni=1.

We propose to estimate fn via the Kiefer-Wolfowitz nonparametric maximum likelihood
estimator2 (NPMLE, cf., Kiefer and Wolfowitz, 1956; Koenker and Mizera, 2014) given by

inf
f∈Fϕ,σ

−
n∑
i=1

log f(Yi), Fϕ,σ :=

{
f =

∫
ϕσ(y − θ)dν(θ) : ν distribution on Rd

}
. (9)

Even though the optimization problem (9) is infinite-dimensional, it can be shown to be
convex and that a solution f̂n exists, and that the associated mixing measure ν̂ is atomic
with a finite number of atoms (Koenker and Mizera, 2014; Lindsay, 1983). We shall use ν̂
as an estimator of ν∗n that is then plugged into the Kantorovich problem (7). Note that the
Kiefer-Wolfowitz problem assumes knowledge of the density ϕσ, i.e., the noise distribution.
This assumption is common in deconvolution problems (Meister, 2009) as encountered here;
in fact, without any knowledge about the noise distribution, deconvolution problems are
generally ill-defined. The assumption of known σ can potentially be relaxed (cf. §5).

Unlinked Regression. The estimator (8) remains applicable in the unlinked regression
setting in which Xn and Ym are of different sizes n 6= m as described in the Introduction

with the elements of Ym being i.i.d. as Y
D
= f∗(X) + ε with X ∼ µ for some absolutely

continuous probability measure µ supported on a compact subset of Rd and f∗ = ∇ψf∗ for
ψf∗ convex. In fact, Ym can be used to obtain an estimator ν̂ of 1

n

∑n
i=1 δf∗(Xi) as before

via (9), and all subsequent steps in Algorithm 1 can be executed. The rates of convergence
for the denoising error are almost identical to the permuted regression setting with n = m
as long as n � m, cf. §3.2.

2. Terminology varies in the literature; Zhang (2009) uses the term “generalized MLE”.

10
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Computation. Algorithm 1 requires computation of the Kiefer-Wolfowitz NPMLE, the
Kantorovich problem (7), and finally the barycentric projections (8). The Kiefer-Wolfowitz
problem can be reformulated as a (non-convex) finite mixture likelihood optimization prob-
lem, and then solved via the EM algorithm (Jiang and Zhang, 2009). Instead, in order to
preserve convexity, we approximate the solution of (9) via the finite-dimensional optimiza-
tion problem

inf
f∈FG

ϕ,σ

−
n∑
i=1

log f(Yi), FG
ϕ,σ :=

{
f =

∫
ϕσ(y − θ)dν(θ) : ν distribution on G

}
, (10)

where G is a finite set of points in Rd. Problem (10) can be rewritten as

inf
α∈∆|G|

−
n∑
i=1

log

 |G|∑
j=1

αjϕσ(Yi − θj)

 , (11)

where ∆r := {x ∈ Rr+ :
∑r

j=1 xj = 1} denotes the probability simplex in Rr, r ≥ 1. There is
a variety of convex optimization algorithms that can be used to solve (11). Our experiments
are based on a primal-dual interior point method (Boyd and Vandenberghe, 2004) that yields
fast and highly accurate results even if |G| includes several thousand points. Regarding G,
our default choice is G = Yn for d ≥ 2 and G being a set of gn linearly spaced points in the
interval [mini Yi,maxi Yi] with gn = n or gn = n1/2 for d = 1. In Dicker and Zhao (2016) it
is shown that the latter choice suffices to ensure comparable statistical performance to the
solution of the infinite-dimensional problem (9).

Solving (10) yields the estimator ν̂ =
∑p

j=1 α̂jδθ̂j , where {α̂j}pj=1 represent the non-zero

entries of the resulting minimizer of (11) and {θ̂j}pj=1 ⊆ G represent the corresponding
atoms. Computing an optimal coupling between the two finitely supported measures µn
and ν̂ according to problem (7) amounts to solving the linear program

min
Γ∈Rn×p+

tr(C>Γ) subject to
n∑
i=1

Γij = α̂j , 1 ≤ j ≤ p,
p∑
j=1

Γij =
1

n
, 1 ≤ i ≤ n, (12)

where C = (‖Xi−θ̂j‖22/2)1≤i≤n,1≤j≤p, and the row and column sum constraints represent the
requirements on the two marginal distributions. Solving (12) exhibits similar computational
complexity to the linear assignment problem (3). For the numerical examples presented in
this paper, we used the routine cplexlp in CPLEX (IBM, 2016). Fast approximate solution
can be obtained via Sinkhorn iterations (Cuturi et al., 2019). For d = 1, problem (12)
becomes considerably simpler due to the natural ordering of the real line, and can be solved
in time O(n+p) via the so-called “Northwest Corner Rule” (Peyré and Cuturi, 2019, §3.4.2)
after sorting the {Xi}ni=1 and {θ̂j}pj=1.

Finally, given a minimizer Γ̂ of (12), the barycentric projections (8) can be computed
as

f̂(Xi) :=

p∑
j=1

Γ̂ij θ̂j

/ p∑
j=1

Γ̂ij = n

p∑
j=1

Γ̂ij θ̂j , 1 ≤ i ≤ n.

11
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3. Main results

In this section, we first analyze permutation recovery (T1) based on the linear assignment
problem in (4) with the distinction that {Yi}ni=1 may be contaminated by Gaussian additive
noise, i.e., Yi = f(Xπ∗(i)) + εi, 1 ≤ i ≤ n, with {εi}ni=1 being i.i.d. N(0, σ2Id)-distributed
random variables. The Gaussianity assumption is not essential; generalizations to the non-
isotropic case or other noise distributions satisfying various tail conditions (sub-Gaussian,
sub-Exponential, . . .) appear rather straightforward, and are not pursued in this paper
to simplify the exposition and to facilitate the comparison to related results in previous
literature, specifically Ma et al. (2020); Zhang et al. (2022); Flammarion et al. (2019).

The main technical contribution of this paper is the analysis of Algorithm 1 for the
purpose of denoising (T2), which is presented subsequently.

3.1 Permutation recovery

Consider the following linear assignment problem under the permuted regression setup (1):

min
π

1

2

n∑
i=1

‖Yi −Xπ(i)‖22, (13)

where the minimization is over all permutations π of {1, . . . , n}. Let π̂ denote the minimizer
of (13). Assuming i.i.d. Gaussian errors, the following result (Proposition 4) states sufficient
conditions for exact permutation recovery, i.e., the event {π̂ = π∗}, to occur with high
probability. Comparison to existing results will indicate that the required conditions cannot
substantially be relaxed.

The discussion below Theorem 3 in §2 has indicated the necessity of the requirement
that ψf∗ be strictly convex already in the absence of noise. A further strengthening to
strong convexity, i.e.,

ψf∗(z) ≥ ψf∗(x) + 〈∇ψf∗(x), z − x〉+
λ

2
‖x− z‖22 ∀x, z ∈ Rd (14)

becomes necessary to counteract noise3. Equipped with strong convexity, we are in position
to state the following result (proved in Appendix A).

Proposition 4 Suppose that Yi = f∗(Xπ∗(i)) + εi, 1 ≤ i ≤ n with f∗ = ∇ψf∗ being the

gradient of a λ-strongly convex function ψf∗, for fixed vectors {Xi}ni=1 ⊂ Rd and i.i.d. errors
{εi}ni=1 ∼ N(0, σ2Id). Let π̂ denote the minimizer of the optimization problem (13). If
mini<j‖Xi −Xj‖2 > λ−1σ

√
6 log n, it holds with probability at least 1− 1/n that π̂ = π∗.

Discussion. Comparison to previous work indicates that the separation condition

min
i<j
‖Xi −Xj‖2 ≥ λ−1σ

√
6 log n (15)

3. To obtain more intuition, note that (14) is equivalent to 〈∇ψf∗(z)−∇ψf∗(x), z − x〉 ≥ λ‖x − z‖22; the
left hand side of this expression is obtained when evaluating the difference of the objectives of the LAP
(13) in the absence of noise for n = 2 at π1 = id and π2 = (2 1), respectively, with (X1, Y1) corresponding
(x,∇ψf∗(x)) and with (X2, Y2) corresponding to (z,∇ψf∗(z)).

12
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cannot be substantially relaxed. Zhang et al. (2022) consider the case in which f∗(x) = B∗x
is a linear transformation, which corresponds to ψf∗(x) = 1

2x
>B∗x (up to an additive

constant). Under the assumption of Gaussian noise as in Proposition 4 and Gaussian design,

i.e., {Xi}ni=1
i.i.d.∼ N(0, Id), it is shown that permutation recovery fails for any estimator with

probability at least 1/2 whenever

d∑
j=1

log

(
1 +

λ2
j

σ2

)
≤ log n, (16)

where {λj}dj=1 are the singular values of B∗. In the setting of this paper, B∗ is required to
be symmetric positive semidefinite. Suppose that B∗ has bounded condition number, i.e.,
λId � B∗ � C λId for some constant C ≥ 1. In this case, the left hand side of (16) becomes

proportional to d log(1 + λ2

σ2 ) ≤ dλ
2

σ2 , and hence in summary, permutation recovery cannot

succeed if d . λ−2σ2 log n. On the other hand, for {Xi}ni=1
i.i.d.∼ N(0, Id), concentration

results for Gaussian random vectors and the union bound yields that mini<j‖Xi −Xj‖2 &√
d −
√

log n &
√
d for d & log n with high probability, which, when substituted into (15),

implies that the condition d & λ−2σ2 log n suffices for permutation recovery to succeed.
The above example shows that the condition in Proposition 4 is generally sharp, up to a

constant factor. Moreover, the example reveals a “blessing of dimensionality” phenomenon
in the sense that permutation recovery can typically (only) be hoped for in the regime
d & log n. Indeed, for sub-Gaussian random designs, in that regime the scaling of the
minimum separation mini<j‖Xi −Xj‖2 begins to outweigh the

√
log n factor on the right

hand side of the sufficient condition (15), (cf., Slawski et al., 2020, Lemma B.1). By contrast,
for d = O(1), mini<j‖Xi −Xj‖2 may exhibit polynomial decay in n (Slawski et al., 2020,
Lemma 2).

Finally, the specialization of Proposition 4 to a linear map shows that so-called unlabeled
sensing problems (Unnikrishnan et al., 2018) (i.e., permuted regression problems with f∗

linear) can be solved efficiently via the linear assignment problem (13) if the underlying
linear map is positive definite and the noise level is small enough. So far, no computationally
efficient approach to unlabeled sensing problems with provable recovery guarantees was
known except for the case of “sparse shuffling” in which π∗ is known to permute only a
somewhat small fraction of {1, . . . , n} (Slawski et al., 2020, 2019; Zhang et al., 2022; Zhang
and Li, 2020; Peng et al., 2021).

Connection to recovery results in the “permuted monotone matrix model”. Ma
et al. (2020) consider the model

Y = Π∗Θ∗ + Z, (17)

where Π∗ and Θ∗ are unknown permutation and “signal” matrices of dimension n-by-n and
n-by-d, respectively, and the entries of the noise matrix Z are i.i.d. N(0, σ2)-distributed.
Moreover, the entries of each of the columns of Θ∗ are arranged in increasing order, i.e., for
all 1 ≤ j ≤ d, it holds that Θ∗ij < Θ∗(i+1)j , for 1 ≤ i ≤ n− 1.

Ma et al. (2020) study the problem of recovering Π∗ from Y. One can think of the
entries (Θ∗ij) as evaluations of monotone increasing functions {f∗j }dj=1 at (unknown) design
points Xij , i.e., Θ∗ij = f∗j (Xij), 1 ≤ i ≤ n, 1 ≤ j ≤ d. Observe that functions of the form

13



Slawski and Sen

f∗(x) ≡ f∗(x1, . . . , xd) = (f∗1 (x1), . . . , f∗d (xd)) with {f∗j }dj=1 monotone increasing equal the
gradient of a sum of univariate convex functions, i.e., f∗(x) = ∇(ψf∗1 (x1) + . . . + ψf∗d (xd))

with {ψf∗j }
d
j=1 convex, which constitutes an important special case of the class of functions

that are gradients of convex functions. As opposed to the setup under consideration in this
paper, the setting in Ma et al. (2020) does not involve any design points {Xi}ni=1. However,
specific (user-designed) choices of those points in conjunction with the linear assignment
problem (13) with Yi (the i-th row of Y), 1 ≤ i ≤ n, can lead to specific approaches for
recovering Π∗. Perhaps the most straightforward choice is given by Xi = xi1d, 1 ≤ i ≤ n,
for any increasing sequence of scalars {xi}ni=1 ⊂ R; in this case, the LAP (13) reduces to
sorting the rows of Y according to their row sums, which is also a rather intuitive strategy.
In Ma et al. (2020) the leading right singular vector of Y is used instead of 1d, which yields
improved recovery results.

Remark 5 (Comparison to results in Flammarion et al. (2019); Ma et al. (2020))
The conditions for permutation recovery in Ma et al. (2020) very much align with our
condition (15). The agreement can be seen best if {f∗j }dj=1 are linear functions with non-

negative slopes {ηj}dj=1 and Θ∗ij ≡ f∗j (Xij) = f∗j (xi), 1 ≤ i ≤ n, 1 ≤ j ≤ d, for scalars

x1 < . . . < xn, in which case Θ∗ = xη> with x = (x1, . . . , xn)> and η = (η1, . . . , ηd)
>. It is

shown in Ma et al. (2020) that the condition ‖η‖2 & σ
√

log n is necessary (in a minimax
sense) for exact permutation recovery. Observe that ‖η‖2 �

√
dmin1≤j≤d ηj as long as the

slopes are of the same order, which agrees with the recovery condition (15) up to constant
factors noting that here λ = min1≤j≤d ηj and assuming the scaling mini<j‖Xi − Xj‖2 �√
d as explained above. In particular, the requirement d & log n becomes manifest once

more, and also appears as a crucial condition in Flammarion et al. (2019) even though
the latter paper studies model (17) with the goal of estimating the signal Θ∗ rather than
the permutation Π∗. Flammarion et al. (2019) show that the excess error in estimating Θ∗

relative to an oracle that is equipped with knowledge of Π∗ is proportional to log(n)/d.

3.2 Denoising

In this subsection, we present our main results on the denoising task (T2) based on Algo-
rithm 1. In particular, we provide upper bounds on the mean squared error that indicate
that this task can indeed be accomplished, albeit at slow rates.

The subsection is organized as follows: (i) we first present a result under the assumption
of Gaussian errors for the permuted regression setting (1), which is readily extended to (ii)
the unlinked regression setting with samples Xn and Ym of different size; (iii) the univariate
case d = 1 admits relaxed assumptions and a considerably simpler proof.

The following theorem addresses item (i). We first list the key assumptions on f∗ =
∇ψf∗ .

(A1) The function ψf∗ is λ-strongly convex, i.e., (14) holds.

(A2) The function ψf∗ is L-smooth, i.e.,

ψf∗(z) ≤ ψf∗(x) + 〈∇ψf∗(x), z − x〉+
L

2
‖x− z‖22 ∀x, z ∈ Rd. (18)

14
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(A3) Boundedness, i.e., PX∼µ(‖f∗(X)‖2 ≤ B) = 1 with µ denoting the distribution gener-
ating the {Xi}ni=1.

Theorem 6 Consider the permuted regression problem (1) with {Xi}ni=1
i.i.d.∼ µ with µ being

an absolutely continuous distribution on Rd. Moreover, suppose that {εi}ni=1 are i.i.d. Gaus-

sian errors with zero mean and covariance σ2Id independent of {Xi}ni=1. Let {f̂(Xi)}ni=1 be
the output of Algorithm 1. Suppose further that assumptions (A1), (A2) and (A3) hold.
Then if n ≥ C0(d,B), with probability at least 1− 5/n, it holds that

1

n

n∑
i=1

‖f̂(Xi)− f∗(Xi)‖22 .σ,d,B
L

λ

1

log n
,

where .[...] indicates the presence of a positive multiplicative constant depending only on the
quantities [. . .] given in the subscripts, and C0(. . .) is a positive constant depending only on
the quantities in the parentheses.

The above theorem (proved in Appendix B) indicates a rather slow rate of convergence
proportional to 1/ log n. For ease of exposition, we refrain from elaborating on the constants
in terms of σ, d, and B; details can be found in the Appendix containing the proofs.

Even though this paper does not present a (minimax) lower bound, rates faster than
logarithmic decay generally appear implausible in view of results in the deconvolution liter-
ature (e.g., Hall and Lahiri, 2008; Fan, 1991; Dattner et al., 2011). Our simulation results
in §4 in part corroborate the rate in Theorem 6.

In the following Theorem 7, we obtain a result (albeit a bit weaker one) similar to Theo-
rem 6 without assumption (A1), i.e., without requiring strong convexity of ψf∗ . Note that
there are several popular examples of convex functions that are not strongly convex, e.g.,
the maps x 7→ ‖x‖2 (Euclidean norm) and x 7→ log

(∑d
j=1 exp(xj)

)
(“log-sum-exp”, the

conjugate of the negative entropy). We observe that both these examples satisfy assump-
tion (A2) with L = 1 each.

Theorem 7 Consider the permuted regression problem (1) with {Xi}ni=1
i.i.d.∼ µ with µ being

an absolutely continuous distribution on Rd. Further suppose that {εi}ni=1 are i.i.d. Gaussian

errors with zero mean and covariance σ2Id independent of {Xi}ni=1. Let {f̂(Xi)}ni=1 be the
output of Algorithm 1. Suppose that assumptions (A2) and (A3) hold. Moreover, assume
that there exists a BX > 0 so that the support of µ is contained in the Euclidean ball of
radius BX centered at zero. Then if n ≥ C0(d,B), with probability at least 1− 5/n, it holds
that

1

n

n∑
i=1

‖f̂(Xi)− f∗(Xi)‖22 .σ,d,B,BX ,L
1√

log n
.

Note that the upper bound in the above display is of the order 1/
√

log n, i.e., the rate is
slower compared to Theorem 6. The slower rate is a consequence of employing deconvo-
lution rates in Wasserstein-1 distance instead of the squared Wasserstein-2 distance. To
avoid cluttering, all subsequent results (with the exception of Proposition 9) will require
assumptions (A1) through (A3).

15



Slawski and Sen

Unlinked Regression. Our next result (proved in Appendix B) constitutes a counterpart
to Theorem 6 in the unlinked regression setting.

Theorem 8 Consider random variables X ∼ µ with µ being an absolutely continuous dis-

tribution on Rd and Y
D
= f∗(X) + ε with f∗ = ∇ψf∗ such that (A1), (A2) and (A3) hold

true, and ε ∼ N(0, σ2Id) independent of X. Let {f̂(Xi)}ni=1 denote the output of Algorithm
1 given samples Xn = {Xi}ni=1 and Ym = {Yi}mi=1 consisting of i.i.d. copies of X and Y ,
respectively. Then if m ≥ C1(d,B), with probability at least 1 − 5/m − C(n−c + m−c), it
holds that

1

n

n∑
i=1

‖f̂(Xi)− f∗(Xi)‖22 ≤
2L

λ

(
C2(σ, d,B)

logm
+ 2

√
log n

n
∨
( log n

n

)2/d
+ 2

√
logm

m
∨
( logm

m

)2/d)

for absolute constants C, c > 0 and constants C1 > 0 and C2 > 0 depending only on the
quantities in the parentheses.

The above statement indicates that the unlinked regression case does not behave fundamen-
tally differently from the permuted regression setting. Specifically, as long as n � m the
extra terms in Theorem 8 incurred in distinction to Theorem 6 are lower order terms; they
reflect the Wasserstein distance between the two measures 1

n

∑n
i=1 δf∗(Xi) and 1

m

∑m
i=1 δθ∗i

with θ∗i
D
= f∗(X1), 1 ≤ i ≤ n. This Wasserstein distance decays more rapidly than the

Wasserstein deconvolution rate of the NPMLE, which reflects the error incurred in step 1
in Algorithm 1.

We now state a separate result for the case d = 1; see Appendix B.7 for a proof. Even
though the rates remain unchanged, it is noteworthy that assumptions (A1) and (A2) are
no longer required.

Proposition 9 Suppose that d = 1. Then in the situation of Theorem 6 (without requiring
(A1) and (A2) to hold),

1

n

n∑
i=1

|f̂(Xi)− f∗(Xi)|2 .σ,B
1

log n
.

Furthermore, in the situation of Theorem 8 (without requiring (A1) and (A2) to hold),

1

n

n∑
i=1

|f̂(Xi)− f∗(Xi)|2 ≤ C(σ,B)
1

logm
+ 4

(√
log n

n
+

√
logm

m

)

where C(σ,B) is a constant depending only on σ and B.

At this point, it is worth comparing the rates in Proposition 9, in the case d = 1, to
previous results in the literature. Regarding the permuted regression setting, the rate in
Proposition 9 falls slightly short of the minimax rate {log log n/ log n}2 in Rigollet and
Weed (2019). At the same time, the approach taken herein yields slightly faster rates in the
unlinked regression setting than Balabdaoui et al. (2021) who bound the mean absolute error
rather than the mean squared error; for Gaussian errors, they obtain the rate 1/(log n)1/4,
whereas a minor adaptation of the proof of Proposition 9 yields the rate 1/(log n)1/2 for the
mean absolute error for the proposed estimator.

16



Permuted & Unlinked Regression in Rd

3.3 Extension to other noise distributions

Note that the statements in the preceding subsection were based on the assumption of
Gaussian noise. It is of interest whether comparable results can be established for other
noise distributions. In this subsection, we develop results for a specific class of elliptic
distributions that are characterized by a polynomial decay of the associated characteristic
functions and an exponential-type tail condition. In particular, this class contains a sub-
family of the generalized multivariate Laplace distribution, a generalization of the Laplace
distribution for d ≥ 1 (Kozubowski et al., 2013). The main effort in deriving results similar
to those above goes into the analysis of the Kiefer-Wolfowitz NPMLE for the class of
distributions under consideration. To our knowledge, the associated result is novel and of
independent interest.

Consider model (1) where the scaled noise variables {εi/σ}ni=1 are now assumed to have
a density ϕ satisfying the following conditions:

(D1) ϕ(z) = ψ(‖z‖2), z ∈ Rd, where ψ : R+ → R+ is decreasing, bounded at the origin,
and Lipschitz continuous.

(D2) Decay in the Fourier domain: there exists α ≥ d+ 1 such that

F[ϕ](ω) := EZ∼ϕ[exp(iω>Z)] . ‖ω‖−α2 , ω ∈ Rd.

(D3) Tail behavior: there exist constants β > 0 and u∗ > 0 such that for all u ≥ u∗
PZ∼ϕ(‖Z‖2 ≥ Cd,α u) . exp(−cuβ),

where c > 0 is a universal constant and Cd,α > 0 is a constant that may depend on d
and α.

Conditions (D1) through (D3) are satisfied, for example, by the generalized multivariate
Laplace distribution with parameter κ ≥ d+1

2 whose Fourier transform is given by

F[ϕ](ω) =

(
1

1 + 1
2‖ω‖

2
2

)κ
, ω ∈ Rd. (19)

Note that for κ = 1 and d = 1, this expression equals the characteristic function of the
(usual) Laplace distribution. In light of the above requirement on κ, property (D2) imme-
diately follows. Properties (D1) and (D3) are verified in Appendix J.

As an intermediate result that we consider of independent interest, we provide an upper
bound on the rate of convergence of the Kiefer-Wolfowitz NPMLE (9) in Hellinger distance
(denoted by the symbol H), i.e., for two densities g1, g2 on Rd, H2(g1, g2) :=

∫
(
√
g1−
√
g2)2.

Theorem 10 Let {(Yi, ζi)}ni=1 be independent pairs of random vectors such that the {ζi}ni=1

are distributed according to a probability measure Pn supported in the Euclidean ball of
radius R around the origin, and Yi|ζi ∼ ϕσ(· − ζi), 1 ≤ i ≤ n, with ϕ satisfying properties
(D1) through (D3). Let f̂n denote the Kiefer-Wolfowitz NPMLE of fn = ϕσ ? Pn given

data {Yi}ni=1, and let further rn := (logn)(d/β+1)/2 n−
1
6
α−d
α−1 . Then there exists a constant

t∗ = t∗(R, d, α, β) such that, for all t ≥ t∗,

P(H(fn, f̂n) ≥ 2t · rn) ≤ 2 exp

(
−nt

2r2
n

20

)
+

1

n
.
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Compared with the rate of the NPMLE in the Gaussian case in Saha and Guntuboyina
(2020) (cf. Appendix D) the rate in Theorem 10 is substantially slower, dropping from
n−1/2 to a rate slower than n−1/6 (modulo logarithmic factors).

Theorem 10 paves the way for establishing results similar to Theorems 6 through 8. We
here only state a counterpart to Theorem 6 and note that counterparts to Theorems 7 and
8 can be shown similarly.

Theorem 11 Consider the permuted regression problem (1) with {Xi}ni=1
i.i.d.∼ µ with µ

being an absolutely continuous distribution on Rd. Moreover, suppose that {εi}ni=1 are
i.i.d. errors independent of {Xi}ni=1 with density ϕσ so that ϕ satisfies (D1) through (D3)

with associated constants α ≥ d + 1, β > 0. Let {f̂(Xi)}ni=1 be the output of Algorithm 1.
Suppose further that assumptions (A1), (A2) and (A3) hold. Then if n ≥ C0(d, α, β,B),
with probability at least 1− 7/n, it holds that

1

n

n∑
i=1

‖f̂(Xi)− f∗(Xi)‖22 .α,β,σ,d,B
L

λ
(log n)

d
β(d+6)(2α+d)n

− 1
3(d+6)(2α+d)

α−d
α−1 ,

where .[...] indicates the presence of a positive multiplicative constants depending only on
the quantities [. . .] given in the subscripts and C0(. . .) is a positive constant depending only
on the quantities in the parentheses.

The rate in Theorem 11 is faster than in the Gaussian case, with a polynomial (modulo
log factors) rather than a logarithmic decay (as in Theorem 6). This is unsurprising since
it is well-known (Nguyen, 2013; Gao and van der Vaart, 2016) that deconvolution rates
are faster if the characteristic function of the errors exhibits polynomial decay according to
(D2).

4. Numerical Results

In this section, we study key aspects of our rationale and analysis in the preceding sections
via numerical examples. The empirical performance of the proposed approach with regard to
denoising (T2) will also be investigated in detail, and compared to two competing methods
(Balabdaoui et al., 2021; Rigollet and Weed, 2019) proposed previously for the case d = 1.

4.1 Permutation Recovery

This subsection is intended as an illustration of Proposition 4 concerning task (T1), i.e.,
exact permutation recovery. Three different settings are considered:

psd: f∗(x) = Bx, where B is a symmetric positive definite matrix, corresponding to
the gradient of the convex function x 7→ 1

2x
>Bx. In each replication, we generate B ∼

df−1Wishart(Id,df = 2 · d), where “df” is short for “degrees of freedom”, {Xi}ni=1
i.i.d.∼

N(0, Id), and finally Yi = f∗(Xi) +
√

3/2 εi, 1 ≤ i ≤ n.

sep: f∗(x) = (3/2) · (√x1, . . . ,
√
xd), corresponding to the gradient of the separable con-

vex function x ≡ (x1, . . . , xd) 7→
∑d

j=1 x
3/2
j on Rd+. In each replication, we generate

{Xi}ni=1
i.i.d.∼ U([0, 1]d) and Yi = f∗(Xi) +

√
2/7 εi, 1 ≤ i ≤ n, where U(. . .) denotes the

uniform distribution.
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Figure 3: Boxplots of the scaled Hamming distance 1
n

∑n
i=1 I(π̂(i) 6= π∗(i)) between π̂ (from

(13)) and the ground truth π∗ based on 100 replications for each setting (plot)
and each value of d (horizontal axis).

exp-norm: f∗(x) = 1
2

x
‖x‖2 · exp(‖x‖2/2), corresponding to the gradient of the convex func-

tion x 7→ exp(‖x‖2/2); convexity follows from the composition rules given in Boyd and

Vandenberghe (2004), §3.2.4. In each replication, we generate {Xi}ni=1
i.i.d.∼ N(0, Id), and

Yi = f∗(Xi) + 4εi, 1 ≤ i ≤ n.

In all three settings, we fix n = 1, 000 and the noise terms {εi}ni=1 are drawn i.i.d. from the
N(0, Id)-distribution. The noise variance is chosen specifically for each setting, to ensure
comparable signal-to-noise ratios4 across the three settings. The dimension d is varied
between 10 and 70 in steps of 10. For each setting and each value of d, we perform 100
independent replications. In each replication, we solve the linear assignment problem (13),
and obtain the scaled Hamming distance 1

n

∑n
i=1 I(π̂(i) 6= i) (note that here π∗(i) = i,

1 ≤ i ≤ n). The results are shown in Figure 3, and confirm the central insight that results
from Proposition 4, namely that permutation recovery becomes considerably easier as the
dimension d increases in view of the scaling of mini<j‖Xi − Xj‖2. Ultimately, for d large
enough, permutation recovery succeeds in all replications for all three settings.

4.2 Denoising, d = 1

In this subsection, we compare the performance of the proposed approach with regard
to denoising (T2) to two methods proposed in earlier work (Rigollet and Weed, 2019;
Balabdaoui et al., 2021). These two competing methods only discuss the case d = 1, hence
our comparison is confined to this case. For our comparison, we adopt the five settings
for the function f∗ considered in Balabdaoui et al. (2021) and depicted in the left panel of
Figure 4. Specifically, these five setting are given by

1. linear: f∗(x) = x, x ∈ [0, 10], 2. constant: f∗(x) = 0, x ∈ [0, 10],

3. step2: f∗(x) = 2I(x ∈ [0, 5)) + 8I(x ∈ [0, 10]),

4. step3: f∗(x) = 5I(x ∈ [10/3, 20/3)) + 10I(x ∈ [20/3, 10]),

5. power: f∗(x) = −(x− 5)4I(x ∈ (0, 5]) + (x− 5)4I(x ∈ [5, 10]).

4. Defined as the ratio of the left and right hand side in the recovery condition of Proposition 4.
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The design points {Xi}ni=1 are sampled i.i.d. uniformly from the interval [0, 10], and Yi =
f∗(Xi) + εi, 1 ≤ i ≤ n (without loss of generality, we choose the permutation π∗ as the
identity). For the errors, we consider both Gaussian noise with zero mean and unit variance
as well as Laplacian noise with zero mean and scale parameter equal to one. We consider
n = 100 and n = 1000; comparison for larger n were not considered since the approach in
Balabdaoui et al. (2021) does not scale favorably with n, incurring a runtime complexity
of O(n2) per gradient iteration. Hundred independent replications are performed for each
configuration in terms of the setting for f∗, noise distribution, and sample size.

The proposed approach (Slawski & Sen, short SS) is run by solving the approximate
NPMLE problem (10) with G chosen as a linearly spaced grid of size 2dn1/2e between
mini Yi and maxi Yi, and the resulting deconvolution estimate ν̂ =

∑p
j=1 α̂jδθ̂j is used for

the Kantorovich problem (12). The competitor BDD (initials of the last names of the
authors of Balabdaoui et al. (2021)) is run based on an in-house implementation of the
gradient descent method in that paper, using the starting values f̂(X(i)) = Y(i), 1 ≤ i ≤ n.
Gradient descent is performed with constant step size; for the sake of fair comparison,
six different values for the step size between 0.01 and 0.5 are considered, and for each
configuration we report the result of the specific step size achieving minimum average error
over the respective replications. The competitor RW (Rigollet and Weed, 2019) is run based
on an in-house implementation of a subgradient descent method to solve the (discretized)
Wasserstein deconvolution problem considered in that paper (cf. §2.2 therein). The size of
the quantization alphabet is taken as d2

√
ne, linearly spaced between mini Yi and maxi Yi.

Each optimal transport problem required for subgradient computation is approximated via
Sinkhorn’s algorithm (Peyré and Cuturi, 2019, §4) with regularization parameter ε = 0.1.
As for BDD, we consider six different values for the step size between 5 · 10−5 and 2 · 10−3,
and select the results achieving minimum average error over these six choices.

Results. The results of our comparison are visualized in Figure 4 via boxplots showing
the mean squared denoising errors over 100 replications. The general picture is that BDD
achieves the best empirical performance (with optimized step size), while the performance
of the proposed approach SS is often on par with BDD. In our comparison, the relative
performance of SS is worse for “smooth” f∗ (settings linear and power). By contrast, RW
performs rather poorly for the settings constant, step2, and step3. Somewhat surpris-
ingly, RW does not exhibit any noticeable decrease in error as the sample size is increased
from 100 to 1000 with the exception of setting linear and Gaussian errors. Despite care-
ful monitoring of convergence and inspection of potential computational issues, it is quite
well possible that the performance of RW can be improved substantially with a refined
implementation5 since in fact all three approaches compared herein follow rather similar
rationales, and gaps in performance are thus not expected.

4.3 Denoising, d > 1

This subsection is intended to corroborate and complement aspects of our theoretical results
in §3.2 regarding task (T2) for general dimension. The competitors in the preceding section
were developed for the case d = 1, hence we confine ourselves to the proposed method.

5. The authors of that method did not publish their implementation/code.
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Figure 4: Results of the comparison of the three approaches under consideration for the de-
noising problem (T2). Left: underlying function f∗. Middle and right: Boxplots
of mean squared errors for Gaussian and Laplace errors, respectively.
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cluster linear separable sphere radial

ψf∗(x) max
1≤j≤k

〈aj , x〉 1
2x
>∑k

j=1 vjv
>
j x

2
3

∑d
j=1(xj + 1)3/2 ‖x‖2 exp(‖x‖22/2)

f∗(x) ax
∑k

j=1〈x, vj〉vj
∑d

j=1(xj + 1)1/2 x
‖x‖2 x · exp(‖x‖22/2)

Table 1: Summary of the simulation settings considered in §4.3. In the 2nd column from
the left, ax is short for {aj : 〈x, aj〉 = ψf∗(x)}.

We generate data following the permuted regression setup (1). The sample {Xi}ni=1

is sampled uniformly from the unit Euclidean ball in Rd (d = 2, 4), and subsequently we
generate Yi = f∗(Xi)+σεi, 1 ≤ i ≤ n, where σ = 1/16 and the {εi}ni=1 are sampled i.i.d. from
the N(0, Id)-distribution and alternatively from the multivariate Laplace distribution6. The
settings considered for f∗ are summarized in Table 1. For the sample size, we consider
n = 28, 29, . . . , 212 = 4096 (and in some selected settings 213) in anticipation of slow rates
as indicated by the results in §3.2.

The proposed approach is run as follows: we solve the approximate NPMLE problem
(11) with G = {Yi}ni=1 equipped with knowledge of ϕσ, and use the resulting deconvolution

estimate ν̂ in the Kantorovich problem (12) to obtain {f̂(Xi)}ni=1. We then report the

normalized MSE 1
nσ2

∑n
i=1‖f̂(Xi) − f∗(Xi)‖22. The results depicted in Figure 5 represent

averages over 100 independent replications, with bars indicating ± standard error.

Results. First, the results shown in Figure 5 confirm that the rates are indeed slow as
expected in light of the results in §3.2, with an error decay that is linear on a log-log scale
for some instances (corresponding to a polynomial rate in n) and noticeably sublinear for
others. While the discussion at the end of §3.2 suggests that Laplacian errors will yield
faster rates, this is not confirmed by our simulations; the observed denoising error is often
comparable if not higher than for Gaussian errors. Moreover, while the analysis in §3.2
suggests faster rates given strong convexity of ψf∗ , the empirical results for several of the
settings considered here (cluster, linear with k < d and sphere) do not indicate that the
lack of strong convexity generally prompts a substantially different scaling of the denoising
error. In fact, the setting cluster corresponds to a clustering problem with a finite number
of clusters, i.e., the underlying problem is parametric rather than non-parametric, and one
would hence intuitively expect even faster rates. This intuition is confirmed by our results
and is further supported by a recent result in Soloff et al. (2024) (cf. Theorem 12 therein).
In a similar vein, we also observe smaller errors if the “intrinsic dimension” of the problem
is smaller than the ambient dimension: in the setting linear, the parameter k reflects the
intrinsic dimension, and Figure 5 indeed shows that the denoising error drops as k is reduced.
For several settings with d = 4 (in particular sphere and radial) the denoising error is
essentially flat and starts decreasing only after n becomes rather large. This behavior is
not understood at this point; one possible explanation for the setting sphere might be the
lack of strong convexity in conjunction with the absence of additional structure such as in
the setting cluster.

6. Specifically, we generate εi = gi · ξi, where gi ∼ N(0, Id)-distribution and ξi ∼ Exp(1), 1 ≤ i ≤ n, where
Exp(1) denotes the exponential distribution with unit scale.
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Figure 5: Denoising results for d = 2, 4; “MSE” refers to 1
nσ2

∑n
i=1‖f̂(Xi)− f∗(Xi)‖22. The results

shown represent averages ±1 standard error (the error bars are hardly visible for most

instances) over 100 independent replications for the respective setting given in the plot

captions (unless specified otherwise, the noise distribution is Gaussian).
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5. Conclusion

In this paper, we have considered permuted and uncoupled regression for maps f∗ : Rd → Rd
that are gradients of convex functions, the multi-dimensional analog of monotone non-
decreasing functions. This paper has studied exact permutation recovery and denoising,
and has established several connections to several recent works involving related permuted
data problems. The task of denoising is tackled via deconvolution based on the Kiefer-
Wolfowitz NPMLE and optimal transport. The rich literature and the recently surging
interest regarding the latter topic facilitates the analysis of the proposed approach. Com-
pared to prior work on one-dimensional permuted regression problems, the implementation
of our approach is particularly convenient since the underlying convex optimization prob-
lems are straightforward to solve and do not require careful tuning; currently, the only
parameter to be specified is the grid for the approximate Kiefer-Wolfowitz problem, for
which straightforward default options are available that yield reasonable results empirically
(cf. §4). Note that the finer the grid the more accurate the result, so the approach is
constrained only by the available computing power.

Despite the advances made in the current paper, there are several open problems and
possible extensions from both practical and theoretical viewpoints as discussed below.

(I)Towards deconvolution with unknown distribution of the errors. Even though this objec-
tive appears not to be achievable in general, it is of great practical importance to relax the
somewhat unrealistic assumption that the distribution of the error terms is fully known. As
first steps, the following directions can be pursued: (i) the scale parameter σ is not known,
and needs to be selected in a data-driven manner, and (ii) the model used for the errors is
(mildly) misspecified.

(II) Beyond denoising. In this paper, we focus on denoising, i.e., the estimation of the
values of the unknown function f∗ at the sample points {Xi}ni=1. A next step is to develop
an approach that provides a (smooth) estimate of f∗ over, say, a compact domain.

(III) Minimaxity and adaptation. Concerning our results obtained for denoising, the min-
imax rate is yet unknown except for d = 1 (Rigollet and Weed, 2019). While slow rates
appear inevitable in general, parts of our simulation results indicate that faster rates can
be obtained for instances with additional structure such as piecewise affine functions and
functions with low intrinsic dimensionality. In this context, it is of interest to study whether
the proposed approach adapts to such underlying low-complexity structure.

(IV) Wasserstein vs. maximum likelihood (ML) deconvolution. The approach presented
in this paper is based on the Kiefer-Wolfowitz problem and thus ML deconvolution. Our
analysis, however, is based on bounding the distance to the underlying mixing measure in
Wasserstein distance. This raises the question whether the use of the Wasserstein distance
(as done in Rigollet and Weed (2019) for d = 1) instead of the Kullback-Leibler divergence is
more suitable for the problem at hand. At the same time, ML deconvolution is considerably
more convenient from a computational perspective. An interesting connection between ML
deconvolution and entropic optimal transport is made in Rigollet and Weed (2018). It is of
interest to study whether that connection can be leveraged to facilitate the analysis of the
proposed approach.
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(V) Beyond equal dimensions. The route taken in this paper requires f∗ to be a map from
Rd to Rd. This requirement can be limiting in applications in which the two samples Xn
and Yn live in different dimensions.
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Organization of the proofs. This appendix contains proofs of our main results and addi-
tional technical background and discussion. The proofs of Theorems 6, 7, 8 and Proposition
9 are decomposed into several key pieces which are presented in dedicated sections. The
specific constituents and their dependencies are outlined in Figure 6.

Theorem 6 Theorem 7

Theorem 12

Theorem 8 Prop. 9 Theorem 11

Theorem 15

Theorem 13 Theorem 14

Theorem 10Lemma 16, 17

Lemma 19, 24

Lemma 18

Lemma 22

Lemma 20, 21

Lemma 23

Figure 6: Chart summarizing the organization of the proofs of our main results on denois-
ing (T2). Boxed statements are provided in the body of the paper and circled
statements are provided in the appendix.

Appendix A. Proof of Proposition 4

Without loss of generality, we may assume that π∗ is the identity permutation, i.e., π∗(i) = i,
1 ≤ i ≤ n. It then suffices to show that the set {(Xi, Yi)}ni=1 is cyclically monotone
with respect to the cost function c0(x, y) := ‖x − y‖22, or equivalently the cost function
c(x, y) = −〈x, y〉, under the conditions stated in the proposition. For this purpose, we need
to show that for any subset {(Xij , Yij )}kj=1 of {(Xi, Yi)}ni=1 of size k ≥ 2, it holds that

−
k∑
j=1

〈
Xij , Yij

〉
≤ −

k∑
j=1

〈
Xij+1 , Yij

〉
, ik+1 = i1. (20)

Expanding Yij = f∗(Xij ) + εij , 1 ≤ j ≤ k + 1, the above inequality becomes

−
k∑
j=1

〈
Xij , f

∗(Xij ) + εij
〉
≤ −

k∑
j=1

〈
Xij+1 , f

∗(Xij ) + εij
〉
.

Re-arranging in order to single out the contributions of the noise yields the following con-
dition equivalent to (20)

k∑
j=1

〈
Xij+1 −Xij , f

∗(Xij )
〉

+

k∑
j=1

〈
Xij+1 −Xij , εij

〉
≤ 0. (21)
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By λ-strong convexity of ψf∗ , we have

ψf∗(Xij+1)− ψf∗(Xij )− 〈∇ψf∗(Xij )︸ ︷︷ ︸
f∗(Xij )

, Xij+1 −Xij 〉 ≥ λ‖Xij+1 −Xij‖22, 1 ≤ j ≤ k.

Summation of the above inequality over j and using the cyclicity condition ik+1 = i1 yields

k∑
j=1

〈
Xij+1 −Xij , f

∗(Xij )
〉
≤ −λ

k∑
j=1

‖Xij+1 −Xij‖22. (22)

We now upper bound the second term in (21). Conditional on the {Xi}ni=1 and using the
independence of the errors, we have

k∑
j=1

〈
Xij+1 −Xij , εij

〉
∼ N

(
0, σ2

k∑
j=1

‖Xij+1 −Xij‖22
)
.

Now define the quantity

Mk := max
{i1,...,ik}⊆{1,...,n}

1√∑k
j=1‖Xij+1 −Xij‖22

k∑
j=1

〈
Xij+1 −Xij , εij

〉
. (23)

The standard Gaussian tail bound P(Z > z) ≤ exp(−z2/2) for z ≥ 0, Z ∼ N(0, 1),

combined with the union bound and the inequality
(
n
k

)
≤
(
en
k

)k
yields

P(Mk ≥ t) ≤ exp

(
− t2

2σ2
+ k log(en/k)

)
, t ≥ 0.

Choosing t = σ
√

4 log n+ 2k log(en/k), we obtain that

P
(
Mk ≥ σ

√
4 log n+ 2k log(en/k)

)
≤ 1

n2
. (24)

Combining (21), (22), (23), we note that the desired condition (20) is implied by the con-
dition

∀k = 2, . . . , n : λ
√
kmin
i<j
‖Xi −Xj‖ ≥Mk.

Using (24) along with the observation that the function k 7→ σ
√

4 log(n)/k + 2 log(en/k) is
decreasing in k, a union bound over k = 2, . . . , n, yields that if

min
i<j
‖Xi −Xj‖2 ≥

σ
√

6 log n

λ
,

the required inequality (20) for cyclic monotonicity holds with probability at least 1− 1/n.

31



Slawski and Sen

Appendix B. Proof of Theorems 6, 7, 8 and 11 and Proposition 9

The proofs of these two theorems involve a few other results, which we first state in the
following subsections. These results may be of independent interest.

Let ν∗n := 1
n

∑n
i=1 δθ∗i = 1

n

∑n
i=1 δf∗(Xi), and let ν̂ denote the mixing measure associated

with the NPMLE (9). Theorem 12 below provides an upper bound on the empirical L2-
loss of the barycentric projection estimator {f̂(Xi)}ni=1, obtained from an optimal coupling
between ν∗n and ν̂ (see (8)), in terms of the 2-Wasserstein distance between ν∗n and ν̂.

B.1 Analysis of the Kantorovich problem (12) for general d

The result below is the central technical component in proving Theorem 6; see Appendix C.1
for its proof, cf. also Deb et al. (2021); Manole et al. (2024).

Theorem 12 Consider the atomic measure ν∗n := 1
n

∑n
i=1 δθ∗i , θ∗i = f∗(Xi), 1 ≤ i ≤ n,

with f∗ = ∇ψf∗ such that assumptions (A1)-(A3) in §3.2 are satisfied, and let ν̂ :=∑p
j=1 α̂jδθ̂j be another atomic measure on Rd. Let further µn := 1

n

∑n
i=1 δXi, and consider

the barycentric projection (8) based on an optimal coupling (7) between µn and ν̂. We then
have

1

n

n∑
i=1

‖f̂(Xi)− f∗(Xi)‖22 ≤
L

λ
W2

2(ν∗n, ν̂). (25)

We next upper bound W2
2(ν∗n, ν̂).

B.2 Wasserstein deconvolution rates

The following result provides an upper bound on the 2-Wasserstein distance between an
underlying atomic mixing measure ν∗n = 1

n

∑n
i=1 δθ∗i with uniformly bounded support and a

deconvolution estimator ν̂ in terms of the Hellinger distance between the convolved measures
ν∗n ? ϕσ and ν̂ ? ϕσ, along the route of the proof of Theorem 2 in Nguyen (2013); see
Appendix C.3 for a proof.

Theorem 13 Let f̂n denote the NPMLE (9) given {Yi}ni=1 such that {(Yi, θ∗i )}ni=1 are in-
dependent random vectors and Yi|θ∗i ∼ ϕσ(· − θ∗i ) with ϕ(z) = (2π)−d/2 exp(−‖z‖22) and θ∗i
contained in the Euclidean ball of radius B centered at the origin almost surely, 1 ≤ i ≤ n.
Let ν∗n = 1

n

∑n
i=1 δθ∗i and let further ν̂ be the mixing measure associated with the NPMLE,

i.e., ν̂ ? ϕσ = f̂n. Choose s > k ≥ 1, and suppose that n ≥ C0(d,B). It then holds with
probability at least 1− 5/n,

Wk
k(ν
∗
n, ν̂) ≤ C(s, k, d, σ,B)

(
1

log n

)k/2
,

where C0 and C are positive constants depending only on the quantities in the parentheses.

Theorem 14 Let f̂n denote the NPMLE (9) given {Yi}ni=1 such that {(Yi, θ∗i )}ni=1 are inde-
pendent random vectors and Yi|θ∗i ∼ ϕσ(· − θ∗i ) with ϕ satisfying conditions (D1)–(D3) in
§3 and θ∗i contained in the Euclidean ball of radius B centered at the origin almost surely,
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1 ≤ i ≤ n. Let ν∗n = 1
n

∑n
i=1 δθ∗i and let further ν̂ be the mixing measure associated with the

NPMLE, i.e., ν̂ ? ϕσ = f̂n. Suppose that n ≥ C0(d, α, β,B). It then holds with probability
at least 1− 7/n

Wk
k(ν
∗
n, ν̂) ≤ C(k, α, β, d, σ,B)(log n)

d
β(d+6)(2α+d)n

− 1
3(d+6)(2α+d)

α−d
α−1 ,

where C0 and C are positive constants depending only on the quantities in the parentheses.

B.3 Analysis of the Kantorovich problem (12) for general d when m 6= n

The next result (proved in Appendix C.2) extends Theorem 12 to the unlinked setting
based on samples Xn = {X1, . . . , Xn} and Ym = {Y1, . . . , Ym}. The proof requires only one
additional ingredient (Lemma 22) to the preceding proof.

Theorem 15 Let X1, . . . , Xn
i.i.d.∼ µ and θ∗1, . . . , θ

∗
m

i.i.d.∼ ν, where the support of ν is con-
tained in the Euclidean ball of radius B centered at the origin, and let f∗ = ∇ψf∗ be the
Brenier map (cf. Theorem 28) transporting µ to ν with f∗ satisfying (A1) and (A2).
Consider the atomic measures ν∗n = 1

n

∑n
i=1 δf∗(Xi), ν

∗
m = 1

m

∑m
i=1 δθ∗i , and ν̂ =

∑p
j=1 α̂jδθ̂j .

Let further µn = 1
n

∑n
i=1 δXi, and consider the barycentric projection (8) based on an op-

timal coupling (7) between µn and ν̂. For positive constants C, c > 0, we then have, with
probability at least 1− C(n−c +m−c),

1

n

n∑
i=1

‖f̂(Xi)− f∗(Xi)‖22 ≤
2L

λ

(
W2

2(ν̂, ν∗m) + 2

√
log n

n
∨
( log n

n

)2/d
+ 2

√
logm

m
∨
( logm

m

)2/d)
.

B.4 Proof of Theorem 6

Recall that ν∗n = 1
n

∑n
i=1 δθ∗i = 1

n

∑n
i=1 δf∗(Xi), and note that ν̂ denotes the mixing measure

associated with the NPMLE (9). Theorem 12 above then yields that the barycentric projec-
tion estimator {f̂(Xi)}ni=1, obtained from an optimal coupling between ν∗n and ν̂ (see (8)),
obeys the bound (25).

Next, note that under the stated condition on n, the squared 2-Wasserstein distance
between ν∗n and ν̂ can be bounded as W2

2(ν∗n, ν̂) .d,σ,B
1

logn according to Theorem 13 with
the stated probability. This completes the proof of the theorem.

B.5 Proof of Theorem 7

The proof is very similar to that of Theorem 6 in Appendix C.1 which proceeds via Theo-
rem 12. We only point out the main differences. We argue as in the proof of Theorem 12
to obtain (29). Now observe that∫

x>f̂(x) dµn(x) =

∫
x>
{ p∑
j=1

πj(x)θ̂j

}
dµn(x) =

∫
x>θ dγ̂(x, θ)

= sup
γ∈Π(µn,ν̂)

∫
x>θ dγ(x, θ) = inf

ψ

{∫
ψ dµn +

∫
ψ? dν̂

}
=

∫
ψ̂ dµn +

∫
ψ̂? dν̂ (26)
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where we have used Kantorovich duality (see e.g., Villani (2003, Chapter 2.1)). Similarly,
as f∗ pushes forward µn to ν∗n, we have∫

x>f∗(x) dµn(x) = inf
ψ

{∫
ψ dµn +

∫
ψ? dν∗n

}
=

∫
ψf∗ dµn +

∫
ψ?f∗ dν

∗
n

≤
∫
ψ̂ dµn +

∫
ψ̂? dν∗n. (27)

Combining (26) and (27), we obtain that

−
∫
x>(f̂(x)− f∗(x)) dµn(x) ≤

∫
ψ̂? d(ν∗n − ν̂).

Now, using (29) in Appendix C.1 below, we obtain

1

2L

∫
‖f̂(x)− f∗(x)‖22 dµn(x) ≤

∫
(ψ̂? − ψ?f∗) d(ν∗n − ν̂). (28)

Note that as ∇ψ?f∗#ν∗n = µn and µn has bounded support, we see that ψ?f∗ is Lipschitz.

Next we show that ψ̂? can also be taken as a Lipschitz function. From Kantorovich
duality (see e.g., Villani (2009, Theorem 5.10)) and (26) we know that

ψ̂(x) + ψ̂?(θ) ≥ x>θ for all (x, θ) with equality γ̂-a.s.

Thus, for θ0 ∈ supp(ν̂) ⊂ Rd, there exists x0 ∈ supp(µn) ⊂ Rd such that

ψ̂(x0) + ψ̂?(θ0) = x>0 θ0.

Then, for any θ ∈ supp(ν̂) ⊂ Rd, as ψ̂(x0) + ψ̂?(θ) ≥ x>0 θ, we have:

ψ̂?(θ0)− ψ̂?(θ) ≤ x>0 (θ0 − θ) ≤
(

max
i=1,...,n

‖Xi‖2
)
‖θ0 − θ‖2 ≤ BX ‖θ0 − θ‖2.

Reversing the roles of θ0 and θ, we can similarly show that

ψ̂?(θ)− ψ̂?(θ0) ≤
(

max
i=1,...,n

‖Xi‖2
)
‖θ0 − θ‖2 ≤ BX ‖θ0 − θ‖2.

Combining, we get

|ψ̂?(θ0)− ψ̂?(θ)| ≤
(

max
i=1,...,n

‖Xi‖2
)
‖θ0 − θ‖2 ≤ BX ‖θ0 − θ‖2.

As θ0, θ are arbitrary points in supp(ν̂), we see that ψ̂? can be taken as a Lipschitz
function.

Thus, using Kantorovich-Rubinstein duality for the Wasserstein-1 distance (e.g., Villani
(2009, Remark 6.5)) and (28), we have∫

‖f̂(x)− f∗(x)‖22 dµn(x) ≤ C(BX )W1(ν∗n, ν̂).
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B.6 Proof of Theorem 8

The main modification relative to the proof of Theorem 6 is to consider both ν∗n :=
1
n

∑n
i=1 δf∗(Xi) and ν∗m := 1

m

∑m
i=1 δθ∗i , where {θ∗i }mi=1

i.i.d.∼ ν. Theorem 15 bounds the

mean squared denoising error in terms of the Wasserstein distance W2
2(ν∗m, ν̂) and addi-

tional lower-order terms, where ν̂ denotes the mixing measure associated with the NPMLE
(9) based on the sample {Yi}mi=1. We finally invoke Theorem 13 to bound W2

2(ν∗m, ν̂), with
ν∗n and {θ∗i }ni=1 replaced by ν∗m and {θ∗i }mi=1, respectively.

B.7 Proof of Proposition 9

Let us consider the permuted regression setup (1), and consider the two Kantorovich prob-
lems

(i) min
γ∈Π(µn,ν̂)

∫
(x− θ)2 dγ(x, θ), (ii) min

γ∈Π(ν∗n,ν̂)

∫
(ζ − θ)2 dγ(ζ, θ).

Let γ̂1 denote the so-called Northwest-corner solution of (i), cf. (Peyré and Cuturi, 2019,
§3.4.2), and let γ̃1 = (f∗, id)#γ̂1 the push-forward (cf. Definition 1 in Appendix H) of γ̂1

under the transformation that pushes forward its two marginals to f∗#µn = ν∗n and and
id#ν̂ = ν̂, where id denotes the identity map. Since the {Xi}ni=1 and {θ∗i }ni=1 associated
with µn and ν∗n are related by the non-decreasing transformation f∗, γ̃1 is a minimizer
of (ii) as follows, e.g., from Proposition 1 in Cuturi et al. (2019). Consequently, letting
θ̃i = E(θ,ζ)∼γ̃1 [θ|ζ = θ∗i ], 1 ≤ i ≤ n, denote the barycentric projections, we have

θ̃i =

∫
θ θ dγ̃

1(θ∗i , θ)∫
θ dγ̃

1(θ∗i , θ)
=

∫
θ θ dγ̂

1(Xi, θ)∫
θ dγ̂

1(Xi, θ)
= f̂(Xi), 1 ≤ i ≤ n,

where the last equality is simply the definition of the {f̂(Xi)}ni=1 (cf. (8)). On the other

hand, by Lemma 23, 1
n

∑n
i=1(θ̃i − θ∗i )2 ≤W2

2(ν∗n, ν̂), which concludes the proof.
The proof for the uncoupled regression setup is analogous to the proof of Theorem 8 (cf. The-
orem 15 and its proof) and is hence omitted.

B.8 Proof of Theorem 11

The proof parallels the proof of Theorem 6, the only difference being a change in the bound
on W2

2(ν∗n, ν̂) according to Theorem 14

Appendix C. Proof of Theorems 12, 13, 14 and 15

C.1 Proof of Theorem 12

Proof Consider an optimal coupling γ̂ between ν̂ and µn minimizing (7), and let γ̂ij denote

the resulting probability mass that is assigned to Xi and θ̂j , 1 ≤ i ≤ n, 1 ≤ j ≤ p. Define

further πj(Xi) = Γ̂ijn, 1 ≤ i ≤ n, 1 ≤ j ≤ p. Accordingly, we have α̂j = 1
n

∑n
i=1 πj(Xi) =
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∫
πj(x) dµn(x), 1 ≤ j ≤ p. Recall that ψ?f∗ denotes the Legendre-Fenchel conjugate of ψf∗ .

We first bound
∫
ψ?f∗(θ) dν̂(θ)−

∫
ψ?f∗(θ) dν

∗
n(θ) as

p∑
j=1

ψ?f∗(θ̂j) α̂j −
∫
ψ?f∗(θ) dν

∗
n(θ)

=

∫ p∑
j=1

πj(x)ψ?f∗(θ̂j) dµn(x)−
∫
ψ?f∗(f

∗(x)) dµn(x)

≥
∫
ψ?f∗

 p∑
j=1

πj(x)θ̂j

 dµn(x)−
∫
ψ?f∗(f

∗(x)) dµn(x)

=

∫
ψ?f∗(f̂(x)) dµn(x)−

∫
ψ?f∗(f

∗(x)) dµn(x)

≥
∫
∇ψ?f∗(f∗(x))>(f̂(x)− f∗(x)) dµn(x) +

1

2L

∫
‖f̂(x)− f∗(x)‖22 dµn(x),

=

∫
x>(f̂(x)− f∗(x)) dµn(x) +

1

2L

∫
‖f̂(x)− f∗(x)‖22 dµn(x) (29)

where the two inequalities follow from convexity and L-smoothness of ψf∗ in virtue of (A2),
which implies 1

L -strong convexity of its conjugate ψ?f∗ (Kakade et al., 2009); in the same
vein, the last equality uses that ∇ψ?f∗ is the inverse map of f∗ = ∇ψf∗ .

Moreover, the squared 2-Wasserstein distance between ν̂ and µn, i.e., W2
2(ν̂, µn), can be

expressed as

n∑
i=1

p∑
j=1

‖θ̂j −Xi‖22Γ̂ij =

p∑
j=1

α̂j‖θ̂j‖22 +
1

n

n∑
i=1

‖Xi‖22 − 2

n∑
i=1

p∑
j=1

〈θ̂j , Xi〉Γ̂ij

=

∫
‖θ‖22 dν̂(θ) +

∫
‖x‖22 dµn(x)− 2

n

n∑
i=1

〈
Xi,

p∑
j=1

nΓ̂ij θ̂j

〉

=

∫
‖θ‖22 dν̂(θ) +

∫
‖x‖22 dµn(x)− 2

∫
x>f̂(x) dµn(x). (30)

Similarly,

W2
2(ν∗n, µn) =

∫
‖θ‖22 dν∗n(θ) +

∫
‖x‖22 dµn(x)− 2

∫
x>f∗(x) dµn(x) (31)

where we note that f∗ is the optimal transport map from ν∗n to µn (as f∗#µn = ν∗n and f∗

is the gradient of a convex function). Combining (29), (30), (31), we obtain that∫
‖f̂(x)− f∗(x)‖22 dµn(x) ≤ L

[
W2

2(ν̂, µn)−W2
2(ν∗n, µn) + 2

∫
ψ?f∗(θ) d(ν̂ − ν∗n)(θ)

+

∫
‖θ‖22 d(ν∗n − ν̂)(θ)

]
. (32)

Let η̂ be an optimal coupling between ν∗n and ν̂, and let further η = (∇ψ?f∗ , id)#η̂ be the
push-forward (cf. Definition 25) of the coupling η̂ under the transformation that pushes
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forward its two marginals to ∇ψ?f∗#ν∗n = µn and id#ν̂ = ν̂, where we have used that
∇ψ?f∗(θ∗i ) = Xi, 1 ≤ i ≤ n, by Brenier’s theorem, with id denoting the identity map.
Accordingly, by the definition of the 2-Wasserstein distance in terms of optimal couplings
(cf. Appendix H), we obtain that

W2
2(µn, ν̂) ≤

∫
‖x− θ‖22 dη(x, θ) =

∫
‖∇ψ?f∗(ζ)− θ‖22 dη̂(ζ, θ).

Adding and subtracting ζ inside the norm on the right hand side and expanding the square,
it follows that

W2
2(µn, ν̂) ≤

∫
‖∇ψ?f∗(ζ)− ζ‖22 dν∗n(ζ) +

∫
‖θ − ζ‖22 dη̂(ζ, θ) + 2

∫
〈∇ψ?f∗(ζ)− ζ, ζ − θ〉 dη̂(ζ, θ)

= W2
2(ν∗n, µn) + W2

2(ν∗n, ν̂) + 2

∫
〈∇ψ?f∗(ζ)− ζ, ζ − θ〉 dη̂(ζ, θ), (33)

where we have used that ψ?f∗ is the optimal transport map pushing forward ν∗n to µn, the
definition of the 2-Wasserstein distance in terms of optimal transport and optimal couplings,
and the definition of η̂ as optimal coupling between ν∗n and ν̂.

In order to bound the rightmost term in the preceding display, we invoke (A1) which
implies (Kakade et al., 2009) that the function ψ?f∗ is (1/λ)-smooth in the sense of (18).
This yields

2

∫
〈∇ψ?f∗(ζ), ζ − θ〉 dη̂(ζ, θ) ≤ 2

∫ {
ψ?f∗(ζ)− ψ?f∗(θ) +

1

2λ
‖ζ − θ‖22

}
dη̂(ζ, θ)

= 2

∫
ψ?f∗(ζ) dν∗n(ζ)− 2

∫
ψ?f∗(θ) dν̂(θ) +

1

λ
W2

2(ν∗n, ν̂), (34)

using the same argument as for the preceding display to obtain the rightmost term.
Finally, we note that

2

∫
〈−ζ, ζ − θ〉 dη̂(ζ, θ) =

∫ {
‖θ‖22 − ‖θ − ζ‖22 − ‖ζ‖22

}
dη̂(ζ, θ)

=

∫
‖θ‖22 dν̂(θ)−

∫
‖ζ‖22 dν∗n(ζ)−W2

2(ν∗n, ν̂). (35)

Combining (33), (34), and (35), we obtain that

W2
2(µn, ν̂) ≤W2

2(ν∗n, µn) +
1

λ
W2

2(ν∗n, ν̂) + 2

∫
ψ?f∗(ζ) dν∗n(ζ)− 2

∫
ψ?f∗(θ) dν̂(θ)

+

∫
‖θ‖22 dν̂(θ)−

∫
‖ζ‖22 dν∗n(ζ).

Substituting this bound back into (32), we observe that all but the term L
λW

2
2(ν∗n, ν̂) cancel,

yielding the assertion of the theorem.
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C.2 Proof of Theorem 15

Proof We first note that the argument in the previous proof continues to apply with
ν∗n = 1

n

∑n
i=1 δf∗(Xi), which yields

1

n

n∑
i=1

‖f̂(Xi)− f∗(Xi)‖22 ≤
L

λ
W2

2(ν̂, ν∗n)

We then use the triangle inequality

W2(ν̂, ν∗n) ≤W2(ν̂, ν∗m) + W2(ν∗m, ν
∗
n) ≤W2(ν̂, ν∗m) + W2(ν∗n, ν) + W2(ν∗m, ν),

and accordingly

W2
2(ν̂, ν∗n) ≤ 2W2

2(ν̂, ν∗m) + 4(W2
2(ν∗n, ν) + W2

2(ν∗m, ν)).

The proof of the result now follows by invoking Lemma 22 with the choices t =
√

log n/n∨
n−2/d(log n)2/d and t =

√
logm/m ∨m−2/d(logm)2/d to control the second and the third

term of the above display, respectively, with the stated probability; for the second term, we

use that {f∗(Xi)}ni=1
i.i.d.∼ ν since f∗ pushes forward µ to ν (cf. Definition 25 and Theorem

28).

C.3 Proof of Theorem 13

Proof The proof is along the lines of the proof of Theorem 2 in Nguyen (2013) combined
with an additional truncation argument to address that the support ν̂ is not assumed to be
uniformly bounded.

For a Lebesgue density h on Rd and q > 0, let Mq
h :=

∫
‖x‖q2 h(x) dx denote the q-th

moment associated with h.
Let s > k be arbitrary and let K : Rd → (0,∞) be a symmetric PDF such that

Ms
K :=

∫
Rd‖x‖

s
2K(x) dx < ∞ and such that its Fourier transform F[K] is continuous

with support contained in [−1, 1]d, and for δ > 0, let Kδ(·) := 1
δd
K(·/δ). By the triangle

inequality, we have

Wk
k(ν
∗
n, ν̂) ≤ 22(k−1)

{
Wk
k(ν
∗
n, ν
∗
n ? Kδ) + Wk

k(ν̂, ν̂ ? Kδ) + Wk
k(ν
∗
n ? Kδ, ν̂ ? Kδ)

}
. (36)

The first two terms inside the curly brackets are of order O(δk). To see this, consider
couplings defined by the pairs of random variables (X,X + ε) and (X̂, X̂ + ε) with X ∼ ν∗n,
X̂ ∼ ν̂, and ε (independent of X and X̂) distributed according to the PDF Kδ, and note
that E[‖X − (X + ε)‖k2] = E[‖X̂ − (X̂ + ε)‖k2] = O(δk).

In the sequel, the third term Wk
k(ν
∗
n ? Kδ, ν̂ ? Kδ) will be controlled. By Lemma 20 in

Appendix G, we have

Wk
k(ν
∗
n ? Kδ, ν̂ ? Kδ) ≤ 2k−1

∫
Rd
‖x‖k2 d|ν∗n ? Kδ − ν̂ ? Kδ|(x). (37)
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Next, we aim to bound the right hand side of (37) by invoking Lemma 21 in Appendix G.
For this purpose, we need to establish first that the s-th moment of ν∗n ?Kδ and ν̂ ? Kδ are
finite. For ν∗n ? Kδ, this follows from∫

Rd
‖x‖s2 d(ν∗n ? Kδ)(x) =

∫
Rd

∫
Rd
‖x‖s2 Kδ(x− θ) dx dν∗n(θ)

=

∫
Rd

∫
Rd
‖x+ θ‖s2 Kδ(x) dx dν∗n(θ)

≤ 2s−1

(
δs
∫
Rd
‖x‖s2K(x) dx+

∫
Rd
‖θ‖s2 dν∗n(θ)

)
<∞.

Above, we have used that the s-th moment of K is finite by construction and that the
support of ν∗n is uniformly bounded.

Showing that the s-th moment of ν̂ ?Kδ is finite is more intricate since the support of ν̂
cannot be assumed to be uniformly bounded a priori. A careful truncation argument that
relies on tail bounds and the Hellinger rates of the NPMLE is presented in Appendix E.
Specifically, consider the two events H and M given by

H :=

{
H(fn, f̂n) ≤ C(d,B)

(log n)(d+1)/2

√
n

}
, (38)

M :=

{∫
Rd
‖x‖s2 dν̂(x) ≤ C ′(d, s, σ,B) + C ′′(d, σ, s,B)

(log n)(s+d+1)/2

√
n

≤ C ′′′(d, σ, s,B)

}
,

where the constants C(. . .), C ′(. . .) etc. are specified in the lemmas referenced below. We
bound the probability of the complementary event of H ∩M as follows:

P(Hc ∪Mc) ≤ P(Hc) + P(Mc) ≤ 2 P(Hc) + P(Mc|H) P(H).

By Lemma 17, we have
P(Mc|H) ≤ (1/n)

/
P(H).

Substituting this into the previous display yields that

P(M) ≥ P(M∩H) ≥ 1− 2 P(Hc)− 1/n ≥ 1− 5/n,

where the last inequality is obtained by using the definition of the event H and Lemma 16
with Pn = ν∗n and the choice t = 1.

With these arguments in place, we apply Lemma 21 to the right hand side of (37), which
yields

Wk
k(ν
∗
n ? Kδ, ν̂ ? Kδ) ≤ C(s, k, d) (Ms

ν∗n?Kδ
+ Ms

ν̂?Kδ
)
(s−t)d+k
s(d+2s) ‖ν∗n ? Kδ − ν̂ ? Kδ‖

2(s−k)
d+2s

L2

≤ C ′(s, k, d, σ,B,K) ‖ν∗n ? Kδ − ν̂ ? Kδ‖
2(s−k)
d+2s

L2
(39)

where C and C ′ are positive quantities depending only on the quantities in parentheses,
assuming for now that δ is uniformly bounded from above.
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Consider the Fourier transforms F[Kδ] and F[ϕσ] of Kδ and ϕσ, respectively, and let
gδ := F−1

[
F[Kδ]/F[ϕσ]

]
be the inverse Fourier transform of g̃δ := F[Kδ]/F[ϕσ], which is

well-defined since F[Kδ] has bounded support by construction and thus so has g̃δ. Further-
more, by the convolution theorem we have F[Kδ] = g̃δ · F[ϕσ] = F[gδ ? ϕσ] and in turn
Kδ = gδ ? ϕσ (cf. Appendix I). It follows that Kδ ? ν

∗
n = gδ ? fn and Kδ ? ν̂ = gδ ? f̂n. This

yields the following with regard to the term in (39):

‖ν∗n ? Kδ − ν̂ ? Kδ‖L2 = ‖gδ ? (̂fn − fn)‖L2

≤ ‖̂fn − fn‖L1‖gδ‖L2

≤ 2H(̂fn, fn)‖gδ‖L2 (40)

by the distributivity of convolution, Young’s inequality, and the fact that ‖̂fn − fn‖L1 =

2TV(̂fn, fn) ≤ 2H(̂fn, fn). It remains to upper bound ‖gδ‖L2 . The Plancherel theorem
(cf. Appendix I) yields

‖gδ‖2L2
=

1

(2π)d

∫
Rd

{F[Kδ](ω)}2

{F[ϕσ](ω)}2
dω =

1

(2π)d

∫
Rd

{F[K](ωδ)}2

{F[ϕσ](ω)}2
dω

≤ C(K)
1

(2π)d

∫
[−δ−1, δ−1]d

1

{F[ϕσ](ω)}2
dω.

For the second equality, we have used the definition of the Fourier transformation as integral
transform and have a made a change of variables. For the inequality, we have used that
F[K] is supported on [−1, 1]d and bounded by a positive constant C(K). It is well known
that

F[ϕσ](ω) = exp

(
−σ

2

2
‖ω‖22

)
.

Combining this with the previous display yields

‖gδ‖2L2
≤ C(K, d)

∫
[−δ−1,δ−1]d

exp
(
σ2‖ω‖22

)
dω

≤ C(K, d) (2/δ)d exp
(
σ2dδ−2

)
≤ C(K, d) exp

(
2σ2dδ−2

)
. (41)

Combining (36), (39), (40) and (41) then yields

Wk
k(ν
∗
n, ν̂) ≤ C(s, k, d, σ,K,B)

{
δk + H(̂fn, fn)

2(s−k)
d+2s exp

(
2(s− k)

d+ 2s
σ2dδ−2

)}

≤ C ′(s, k, d, σ,K,B)


 dσ2

log
(

1

H(̂fn,fn)

)

k/2

+ H(̂fn, fn)
(s−k)
d+2s

 (42)

by choosing δ−2 = − 1
2dσ2 logH(̂fn, fn). Conditional on the event event H in (38) and the

stated condition on the sample size n ≥ C0(d,B), it holds that H(̂fn, fn) < 1, and thus
the above choice of δ is valid in the sense that δ > 0. Substituting the bound on H(̂fn, fn)
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under event H in (38) into (42), absorbing terms depending only on s, k, d, σ and B into a
constant, and absorbing the second summand inside the curly brackets in (42) into the first
summand at the expense of modified constants yields the assertion (the dependence on the
function K can be absorbed into the dependence on d).

C.4 Proof of Theorem 14

The proof of Theorem 14 proceeds as the proof of Theorem 13. We here only work out the
differences.

The events in display (38) are modified as follows.

H :=
{
H(fn, f̂n) ≤ C(d, α, β,B) (log n)(d/β+1)/2 n−

1
6
α−d
α−1

}
, (43)

M :=

{∫
Rd
‖x‖s2 dν̂(x) ≤ C ′(d, α, β, σ, s, B) + C ′′(d, α, β, σ, s, B)

(log n)
d+2s
2β + 1

2

n
1
6
α−d
α−1

≤ C ′′′(d, α, β, σ, s, B)

}
.

Note that according to Theorem 10 with Pn = ν∗n, for n ≥ C0(d, α, β), it holds that P(H) ≥
1− 3/n. Accordingly, we have that P(M) ≥ 1− 7/n by using Lemma 18 and following the
reasoning given below display (38) in the proof of Theorem 13.

We then proceed as in the proof of Theorem 13 until (40) and subsequently modify the
bound on ‖gδ‖2L2

. Specifically, in place of (41), we obtain according to condition (D2) in
§3 that

‖gδ‖2L2
≤ C(K, d, σ)δ−(2α+d),

and thus

Wk
k(ν
∗
n, ν̂) ≤ C(s, k, α, β, d, σ,K,B)

{
δk + H(̂fn, fn)

2(s−k)
d+2s δ−(2α+d)(s−k)/(d+2s)

}
≤ C(s, k, α, β, d, σ,K,B)H(̂fn, fn)

2k(s−k)
k(d+2s)+(2α+d)(s−k)

= C(s, k, α, β, d, σ,K,B)H(̂fn, fn)c(k,s,d,α),

where 0 < c(k, s, d, α) := 2k(s−k)
k(d+2s)+(2α+d)(s−k) < 1. Now choosing s = k + 1 and bounding

H(̂fn, fn) according to Theorem 10, we obtain c(k, s, d, α) = 2k
k(d+2k+2)+(2α+d) and thus the

assertion of the theorem.

Appendix D. Rates of convergence of the NPMLE for Gaussian location
mixtures

Rates of convergence of the NPMLE for Gaussian location mixtures in Hellinger distance
for general dimension d ≥ 1 were established in Saha and Guntuboyina (2020), generalizing
earlier results in Zhang (2009) concerning the case d = 1.

Lemma 16 (Theorem 2.1 and Corollary 2.2 in Saha and Guntuboyina (2020)) Let
{(Yi, ζi)}ni=1 be independent pairs of random vectors such that the {ζi}ni=1 are distributed ac-
cording to a probability measure Pn supported in the Euclidean ball of radius R around the
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origin, and Yi|ζi ∼ ϕσ(· − ζi), 1 ≤ i ≤ n, with ϕ(z) := (2π)−d/2 exp(−‖z‖22) . Let f̂n denote
the Kiefer-Wolfowitz NPMLE (9) of fn = ϕσ ? Pn given data {Yi}ni=1. Then for all t ≥ 1

P(H(fn, f̂n) > rnt) ≤ 2n−t
2
, rn �

(log n)(d+1)/2

√
n

,

where � involves hidden constants depending (only) on d and R.

Appendix E. Truncation argument

Lemma 17 Consider the setup of Lemma 16 with Pn = ν∗n, and denote by ν̂ the mixing
measure associated with the NPMLE f̂n. Consider the event E = {H(fn, f̂n) ≤ h} for
some h > 0. Conditional on E, for any s ≥ 1, we have

∫
Rd‖x‖

s
2 dν̂(x) ≤ C1(d, s, σ,B) +

C2(d, s, σ,B)(log n)s/2 · h with probability at least 1 − 1/{n · P(E)}, where C1 and C2 are
positive constants depending only on the quantities in the parentheses.

Proof We first note that in order to show that the s-th moment of ν̂ is finite it suffices to
show that the s-th moment of ν̂ ? ϕσ is finite. In fact, consider random variables X̂, ε such
that X̂ ∼ ν̂ and ε ∼ ϕσ where X̂ and ε are independent. We then have

E[‖X̂‖s2] = E[‖X̂ − ε+ ε‖s2] ≤ 2s−1(E[‖X̂ + ε‖s2] + E[‖ε‖s2]).

In order to show that the s-th moment of ν̂ ? ϕσ is finite, we will use Lemma 16 regarding
the Hellinger rates of convergence between ν∗n ?ϕσ and ν̂ ? ϕσ and the fact that the support
of ν∗n is contained in an Euclidean ball of radius B by assumption.

First note that according to established properties of the NPMLE (e.g., Lindsay (1983);
Koenker and Mizera (2014)), ν̂ is an atomic measure, i.e., it can be written as ν̂ =∑p

j=1 α̂jδθ̂j for non-negative coefficients {α̂j}pj=1 ⊂ R+ summing to one and atoms {θ̂j}pj=1 ⊂
Rd. Let

B̂ = max
1≤j≤p

‖θ̂j‖2, ρ = B̂ + σR, R = Bd2(ρ), R0 =

p⋃
j=1

(Bd2(σR) + θ̂j) (44)

for R > 0 to be chosen later. Observe that R0 ⊂ R and hence Rc ⊂ Rc
0. We have∫

Rd
‖x‖s2 d(ϕσ ? ν̂)(x) =

∫
R
‖x‖s2 d(ϕσ ? ν̂)(x) +

∫
Rc

‖x‖s2 d(ϕσ ? ν̂)(x)

≤
∫
R
‖x‖s2 d(ϕσ ? ν

∗
n)(x) +

∫
R
‖x‖s2 d|ϕσ ? ν̂ − ϕσ ? ν∗n|(x)

+

∫
Rc

‖x‖s2 d(ϕσ ? ν̂)(x)

≤ C1(d, s,B, σ) + 2ρsH(ϕσ ? ν̂, ϕσ ? ν
∗
n)︸ ︷︷ ︸

=H(̂fn,fn)≤h on E

+

∫
Rc

‖x‖s2 d(ϕσ ? ν̂)(x) (45)

for some constant C1 > 0 depending only on the quantities given in parentheses. In order
to obtain the bound on the middle term, we use that the integral is over Bd2(ρ) and that
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the total variation distance can be bounded by twice the Hellinger distance. We now turn
our attention to the third term in (45). We have∫

Rc

‖x‖s2(ϕσ ? ν̂)(x) dx ≤
∫
Rc

0

‖x‖s2(ϕσ ? ν̂)(x) dx

=

p∑
j=1

α̂j

∫
σ−1(Rc

0−θ̂j)
‖σz + θ̂j‖s2 ϕ(z) dz

≤
p∑
j=1

α̂j2
s−1

{
σs
∫
Rd
‖z‖s2 ϕ(z) dz + ‖θ̂j‖s2

∫
σ−1(Rc

0−θ̂j)
ϕ(z) dz

}

≤ 2s−1

{
σs
∫
Rd
‖z‖s2 ϕ(z) dz + max

1≤j≤p
‖θ̂j‖s2

∫
Rd\Bd2(R)

ϕ(z) dz

}
≤ C2(d, s, σ) + B̂s P(‖Z‖2 ≥ R), Z ∼ N(0, Id)

≤ C2(d, s, σ) + (B̂/n)s (46)

by choosing R =
√

2s log n, as follows from standard concentration of measure results. In
the third inequality from the bottom, we have used that for any j

σ−1(Rc
0−θ̂j) = σ−1

 p⋂
j=1

{Bd2(σR) + θ̂k}c − θ̂j

 ⊆ σ−1
[
{Bd2(σR) + θ̂j}c − θ̂j

]
= Rd\Bd2(R).

In order to wrap up this proof, it remains to control B̂ (with high probability). With the
same concentration result as used before in combination with the union bound, one shows
that

P(B̂ ≥ B + σ(
√
d+ 2

√
log n)) ≤ P

(
max

1≤i≤n
‖Yi‖2 ≥ B + σ(

√
d+ 2

√
log n)

)
(47)

≤ P

(
max

1≤i≤n
‖θ∗i ‖2 + max

1≤i≤n
‖εi‖2 ≥ B + σ(

√
d+ 2

√
log n

)
= P

(
max

1≤i≤n
‖εi‖2 ≥ σ(

√
d+ 2

√
log n

)
≤ 1/n.

LetA denote the event inside P(. . .) in the last line, and observe that P(A|E) ≤ P(A)/P(E).
Combining this with (45), (46), and the above choice of R then yields the assertion.

Note that in the first inequality (47), we have used that B̂ = max1≤j≤p‖θ̂j‖2 ≤ max1≤i≤n‖Yi‖2 =:

Q since ϕ(z) is radial and decreasing in ‖z‖2. Accordingly, we have

n∑
i=1

− log

 p∑
j=1

α̂jϕσ

(
Yi − PBd2(Q)(θ̂j)

) ≤ n∑
i=1

− log

 p∑
j=1

α̂jϕσ

(
Yi − θ̂j

) ,

where P denotes the Euclidean projection, which is a non-expansive operator for convex
sets. The latter property implies that for 1 ≤ i ≤ n and 1 ≤ j ≤ p, it holds that

‖Yi − PBd2(Q)(θ̂j)‖2 = ‖PBd2(Q)(Yi)− PBd2(Q)(θ̂j)‖2 ≤ ‖Yi − θ̂j‖2.
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Lemma 18 Consider the setup of Theorem 10 with Pn = ν∗n, and denote by ν̂ the mixing
measure associated with the NPMLE f̂n. Consider the event E = {H(fn, f̂n) ≤ h} for some
h > 0. Conditional on E, for any s ≥ 1, we have

∫
Rd‖x‖

s
2 dν̂(x) ≤ C1(d, α, β, σ, s, B) +

+C2(d, α, β, σ, s, B)(log n)s/β · h with probability at least 1− 1/{n ·P(E)}, where C1 and C2

are positive constants depending only on the quantities in the parentheses.

Proof The proof proceeds as the proof of the previous lemma. We only sketch the main dif-
ferences, which result from different tail bounds that are here obtained according to (D3) in
§3. Specifically, the radius B̂ of the ball containing the support of ν̂ can be chosen such that
B̂ .d,α,B (log n)1/β. Similarly, R as appearing in (46) can be chosen as R .s,α,β (log n)1/β

so that failure probabilities for the events of interest remain unchanged. The final result is
then obtained by combining the pieces corresponding to those in display (45).

Appendix F. Proof of Theorem 10

Overview. The proof is a based on a combination of techniques developed in Zhang (2009),
Saha and Guntuboyina (2020), Ignatiadis and Sen (2023), and Gao and van der Vaart
(2016). The original analysis of the NPMLE for Gaussian location mixtures for d = 1
was developed in Zhang (2009) and adapted/simplified in Ignatiadis and Sen (2023) in
their analysis of the NPMLE for scale mixtures of χ2-distributions. Saha and Guntuboyina
(2020) extend the approach in Zhang (2009) to general dimension d ≥ 1. As an important
ingredient, we adopt methods from Gao and van der Vaart (2016) to obtain bounds on the
‖·‖∞-covering numbers for the class of location mixtures ΦR := {ϕ ? P : P ∈PR}, where
PR denotes the class of probability measures supported on a Euclidean ball Bd2(R) with
radius R > 0 around the origin.

Proof

Preliminaries.
1) Without loss of generality, we may assume that σ = 1. As noted in Zhang (2009), with σ
assumed known, it suffices to operate in terms of rescaled data {Yi/σ}ni=1 and then invoke
the invariance of the Hellinger distance with respect to scale transformations.
2) Observe that f̂n ∈ ΦRn with probability 1 − 1/n provided Rn is chosen as Rn &d,α,R

log1/β(n) so that the event {max1≤i≤n‖Yi‖2 ≤ Rn} occurs with the stated probability (as a
consequence of (D3)). To avoid complications that would arise from conditioning on this
event, we instead analyze the constrained NPMLE f̃n whose mixing measure is required to
be contained in Bd2(Rn); note that {̂fn = f̃n} with high probability, therefore the triangle
inequality yields that

P(H(̂fn, fn) > δ) ≤ P(H(̃fn, fn) > δ/2) + P(H(̂fn, f̃n) > δ/2), δ > 0.

The main effort will go into bounding the first term on the right hand side. Since {̂fn =
f̃n} ⊂ {H(̂fn, f̃n) < δ/2} and {̂fn = f̃n} is a high probability event, the second term is
controlled.
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Main steps of the proof.
(I) For g, h ∈ ΦRn , consider the likelihood ratio

Ln(g, h) =
n∏
i=1

g(Yi)

h(Yi)
.

Let ΦRn := {f ∈ ΦRn : H(f, fn) > t · rn}. We will bound the probability

P

(
sup

f∈ΦRn

Ln(f, fn) > exp
(
−2t2nr2

n/15
))

. (48)

By showing that this probability is small, it is implied that any approximate MLE (as
defined in terms of the lower bound on the likelihood ratio in the display) and thus f̃n in
particular must be contained in {f ∈ ΦRn : H(f, fn) ≤ t · rn} with the stated probability.

(II) In order to establish (48), a crucial ingredient is a covering of ΦRn with respect to
‖·‖∞, which is developed separately in Lemma 19. Note that an η-covering of ΦRn can be
transformed into a 2η-covering (of at most the same cardinality) of the subset ΦRn using
standard arguments (e.g. Vershynin, 2018, §4.2). Denote the resulting covering of ΦRn by
{fj0}Nj=1, and for M > Rn to be chosen later, define the function η : Rd → R+ by

η(y) = ηI(‖y‖2 ≤M) + η

(
M

‖y‖2

)d+1

I(‖y‖2 > M), (49)

where the η’s on the right hand side of (49) represent the number associated with the
covering. Observe that for any f ∈ ΦRn there exists j ∈ {1, . . . , N} such that the following
holds:

f(y) ≤

{
fj0(y) + 2η = fj0(y) + 2η(y), ‖y‖2 ≤M,

ϕ(0), ‖y‖2 > M.

Consequently, for any f ∈ ΦRn we can upper bound Ln(f, fn) as follows:

Ln(f, fn) =
n∏
i=1

{
f(Yi)

fn(Yi)

}
=

∏
i: ‖Yi‖2≤M

{
f(Yi)

fn(Yi)

}
×

∏
i: ‖Yi‖2>M

{
f(Yi)

fn(Yi)

}

≤
n∏
i=1

{
fj0(Yi) + 2η(Yi)

fn(Yi)

}
×

∏
i: ‖Yi‖2>M

{
f(Yi)

fj0(Yi) + 2η(Yi)

}

≤
n∏
i=1

{
fj0(Yi) + 2η(Yi)

fn(Yi)

}
×

∏
i: ‖Yi‖2>M

ϕ(0)

2η(Yi)

≤ sup
1≤j≤N

Ln(fj0 + 2η, fn)×
∏

i: ‖Yi‖2>M

ϕ(0)

2η(Yi)
= T1 × T2. (50)
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In the sequel, the terms T1 and T2 are controlled separately according to the argument

P(T1 · T2 > δ) ≤ P(T1 > δ1) + P(T2 > δ2)

for any choice of δ1 > 0, δ2 > 0 such that δ1 · δ2 = δ. Specifically, we will choose

δ = exp
(
−2t2nr2

n/15
)
, δ1 = exp(−4t2nr2

n/5), δ2 = exp(2t2nr2
n/3).

Regarding the first term T1, denote Ln,j,i := (fj0(Yi) + 2η(Yi))/fn(Yi). We obtain that

P

(∏
i

Ln,j,i ≥ δ1

)
= P

√∏
i

Ln,j,i ≥ δ1/2
1


= P

(∏
i

√
Ln,j,i ≥ δ1/2

1

)

≤ δ−1/2
1 E

[∏
i

√
Ln,j,i

]
= δ
−1/2
1

∏
i

E[
√
Ln,j,i]

≤ exp

(
2t2nr2

n

5
+

n∑
i=1

E[
√
Ln,j,i − 1]

)
, (51)

where we have used Markov’s inequality and the elementary inequality z ≤ exp(z − 1).
Using that the terms inside the summation are i.i.d., we obtain

n∑
i=1

E[
√
Ln,j,i − 1] = nE[

√
Ln,j,1 − 1] = nE[

√
Ln,j − 1],

say, after dropping the third subscript in L.... We now have

E[
√
Ln,j − 1] =

∫ √
fj0 + 2η

fn
fn − 1

=

∫ √
(fj0 + 2η) · fn − 1

≤
(∫ √

fj0fn − 1

)
+

∫ √
2ηfn.

By the definition of the Hellinger distance, we have for any pair of two densities g and h:

H2(g, h) =

∫
(
√
g −
√
h)2 = 2

(
1−

∫ √
g · h

)
.
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Inserting this relationship into the preceding display, we thus obtain the bound

E[
√
Ln,j − 1] ≤ −1

2
H2(fn, f

j
0) +

∫ √
2ηfn

≤ −1

2
H2(fn, f

j
0) +

(
2

∫
η

)1/2

·
(∫

fn

)1/2

︸ ︷︷ ︸
=1

= −1

2
H2(fn, f

j
0) + CdηM

d

≤ −1

2
t2r2

n +
√
Cd · η ·Md, (52)

where the first inequality is Cauchy-Schwarz and the last inequality results from {H(fn, f
j
0) >

t · rn} for all j. The third line from the top is obtained by evaluating the following integral
(cf. the definition of the function η in (49)) using polar coordinates:∫

Rd
η(y) dy = ηMd · vold(Bd2) + ηMd+1

∫
Rd\MBd2

‖y‖−(d+1)
2 dy

= ηMd · vold(Bd2) + ηMdvold−1(Sd) = CdηM
d,

with Sd denoting the d-dimensional unit sphere. Combining (51), (52) and the union bound,
we obtain

P

(
sup

1≤j≤N
Ln(fj0 + 2η, fn) > δ1

)
≤ exp

(
−nt

2r2
n

10
+ n

√
CdηMd + log(N)

)
(53)

Now choose M �d Rn �B,d log1/β(n), η = n−
2
3
α−d
d , and rn = log(n)(d/β+1)/2 n−

1
6
α−d
α−1 .

Invoking Lemma 19 with R = Rn and ε � η, these choices yield the following for the
exponent in (53):

logN + n
√
CdηMd − nt2r2

n

10

.B,d (1/η)
d

α−d log(1/η) logd/β(n) + nη1/2 logd/(2β)(n)− logd/β+1(n)n1− 1
3
α−d
α−1 t2

10

. n2/3 logd/β+1(n) + n1− 1
3
α−d
d logd/(2β)(n)− logd/β+1(n)n1− 1

3
α−d
α−1 t2

10

≤ exp

(
−nt

2r2
n

20

)
for all t ≥ t∗ large enough, noting that 1− 1

3
α−d
α−1 ≥ max{1− 1

3
α−d
d , 2/3} since α ≥ d+ 1.
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The above concludes the analysis associated with the term T1 in (50). We now turn to
term T2. We have

P

 ∏
i: ‖Yi‖2>M

ϕ(0)

2η(Yi)
> δ2

 ≤ δ−1
2

n∏
i=1

E

[{
ϕ(0)

2η(yi)

}I(‖Yi‖2>M)
]

≤ δ−1
2

n∏
i=1

E

[(
1 + I(‖Yi‖2 > M)

ϕ(0)

2η(Yi)

)]

= δ−1
2

n∏
i=1

E

[(
1 + I(‖Yi‖2 > M)

ϕ(0)

2

‖Yi‖d+1
2

Md+1η

)]

≤ δ−1
2 exp

[
ϕ(0)

2Md+1η

n∑
i=1

E[I(‖Yi‖2 > M)‖Yi‖d+1
2 ]

]
, (54)

where the last inequality results from the elementary inequality z + 1 ≤ exp(z) applied to

z = E

[
I(‖Yi‖2 > M)ϕ(0)

2
‖Yi‖d+1

2

Md+1η

]
, 1 ≤ i ≤ n. In the sequel, we bound the expectation

E[I(‖Y ‖2 > M)‖Y ‖d+1
2 ], where Y has the same distribution as the {Yi}ni=1. We have

E[I(‖Y ‖2 > M)‖Y ‖d+1
2 ] =

∫ ∞
0

P(I(‖Y ‖2 > M)‖Y ‖d+1
2 > t) dt

= (d+ 1)

∫ ∞
0

ud P(I(‖Y ‖2 > M)‖Y ‖2 ≥ u) du

by a change of variables. We now split the integral as follows:∫ ∞
0

ud P(I(‖Y ‖2 > M)‖Y ‖2 ≥ u) du

=

∫ M

0
ud P(‖Y ‖2 > M) du+

∫ ∞
M

ud P(‖Y ‖2 ≥ u) du

≤Md+1 P(‖Y ‖2 > M) +

∫ ∞
M

ud exp(−(u−Rn)β) du

.β,d M
d+1 exp(−c(M −Rn)β) +Md+(1−β) exp(−c(M −Rn)β),

where the first term on the right hand side follows from the assumptions in ϕ given an
appropriate choice of M �d,α Rn �B,d,α (log n)1/β (as above), and the second term on the
right hand side follows from Lemma 24. Inserting the above into (54), we obtain

exp

(
−2t2nr2

n

3
+ (1/η)Cβ,d n exp(−c(M −Rn)β)

)
= exp

(
−2t2nr2

n

3
+ Cβ,dn

1+ 2
3
α−d
d exp(−c(M −Rn)β)

)
≤ exp

(
− t

2nr2
n

3

)
for all t ≥ t∗ large enough by choosing M �B,α,β,d (log n)1/β large enough.
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F.1 Covering Numbers

In this subsection, we obtain bounds on the ‖·‖∞-covering numbers of the class of location
mixtures ΦR := {ϕ?P : P ∈PR} with ϕ satisfying (D1)–(D3) in §3, where we recall that
PR denotes the class of probability measures supported on Bd2(R) for R > 0. Our bounds
are obtained by transferring Fourier-based techniques (cf. Appendix I) in Gao and van der
Vaart (2016) to general dimension.

Lemma 19 Fix ε ∈ (0, 1) and suppose that R & 1. There exists {f10, . . . , fN0 } ⊂ ΦR such
that min1≤j≤N‖f− fj0‖∞ .d,α ε and logN .d R

dε−d·(α−d)−1
log(R/ε).

Proof Consider a mixing measure P so that f = ϕ ? P ∈ ΦR. Given P , we first choose
another mixing measure P ′ so that all its moments up to order k (to be chosen below) agree
with those of P , i.e., ∫

Rd
zjd(P − P ′)(z) = 0, (55)

where j = (j1, . . . , jd) is a multi-index such that
∑d

l=1 jl ≤ k. It is easy to check that the
cardinality of the set of such multi-indices is bounded by kd. By Caratheodory’s theorem
(e.g. Ziegler, 1995, §1.6), P ′ can be chosen such that it is supported on kd+1 atoms (indeed,
stack all moments under consideration into a long vector and express this vector as a convex
combination of points).

Let f′ = ϕ?P ′. By the convolution theorem, we have F−1[f− f′] = (2π)dF−1[ϕ] ·F−1[P −
P ′]. Application of the Fourier inversion theorem and the Hausdorff-Young inequality yields

‖f− f′‖L∞ ≤ (2π)d‖F−1[ϕ] · F−1[P − P ′]‖L1

= (2π)d
∫
Rd
|F−1[ϕ](ω)| · |F−1[P − P ′](ω)| dω

. (2π)d

(∫
Rd\Bd2(L)

|F−1[ϕ](ω)| dω +

∫
Bd2(L)

|F−1[P − P ′](ω)| dω

)
, (56)

for L > 0 to be chosen later, where the last inequality follows from the fact that F−1[ϕ]
and F−1[P − P ′] are uniformly bounded (by the Riemann-Lebesgue lemma).
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In the sequel, we will bound the two terms on the right hand separately. In order to
bound the second term, we invoke (55) and then use the following:

|F−1[P ](ω)− F−1[P ′](ω)| = (2π)−d
∣∣∣∣∫ exp(i 〈ω, z〉)d(P − P ′)(z)

∣∣∣∣
≤ (2π)−d

∫ k∑
j=0

(i 〈ω, z〉)j

j!
d(P − P ′)(z)+

+

∫ ∣∣∣∣∣∣exp(i〈ω, z〉)−
k∑
j=0

(i 〈ω, z〉)j

j!

∣∣∣∣∣∣ d(P + P ′)(z)

≤ (2π)−d
∫
|〈ω, z〉|k+1

(k + 1)!
d(P + P ′)(z)

≤ (2π)−d 2

(
e‖ω‖2R
k + 1

)k+1

, ω ∈ Rd.

The first inequality uses the triangle inequality. The second inequality results from the fact
that | exp(ix)−

∑∞
j=k+1(ix)j/j!| ≤ |x|k+1/((k + 1)!) for all x ∈ R (Gao and van der Vaart,

2016, p. 614). For the third inequality, we have used that |〈ω, z〉| ≤ ‖ω‖2R for all z in the
support of P and P ′ and the basic inequality (k + 1)! ≥ ((k + 1)/e)k+1 for all integers k.

Integration then yields∫
Bd2(L)

(
e‖ω‖2R
k + 1

)k+1

dω =

∫
Sd

∫ L

0

(
erR

k + 1

)k+1

rd−1 dr du

= vold−1(Sd)
(
eRL

k + 1

)k+1

Ld
1

k + d+ 1

.d

(
eRL

k + 1

)k+1

Ld. (57)

For the first term in (56), we obtain∫
Rd\Bd2(L)

|F−1[ϕ](ω)| dω = (2π)−d
∫
Rd\Bd2(L)

|F[ϕ](ω)| dω

≤ (2π)−d
∫
Rd\Bd2(L)

1

‖ω‖α2
dω

.d (2π)−d
∫ ∞
L

1

rα
rd−1 dr = (2π)−d

(
1

L

)α−d
,

since α ≥ d+ 1 by assumption. Consider the choice L = ε−(α−d)−1
so that the above right

hand evaluates to (2π)−dε. At the same, choose k such that k+ 1 = 2eRL = 2eRε−(α−d)−1
.

Evaluating (57) accordingly, we obtain(
1

2

)2eRε−(α−d)−1

· Ld = exp

(1/ε)(α−d)−1
(2e ·R) log(1/2)︸ ︷︷ ︸

<0

+d(α− d)−1 log(1/ε)


.d,α ε.
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In summary, we have thus shown that f can be approximated with the desired accuracy by a
location mixture whose mixing measure is supported on at most K := kd+1 . Rdε−d(α−d)−1

atoms. It thus suffices to provide a covering of the set ΦK
R = {f ? P : P ∈ PK

R }, where
PK
R denote the class of probability measures supported on at most K atoms contained in

Bd2(R). In order to obtain such covering we modify the proof of Proposition 1 in Gao and
van der Vaart (2016) so it becomes applicable to general dimension. Specifically, let now
f(·) =

∑K
i=1 λiϕ(· − µi) and f′ =

∑K
i=1 λ

′
iϕ(· − µ′i) be two elements in ΦK

R , where λ = (λi)

and λ′ = (λ′i) are contained in the probability simplex {w ∈ RK :
∑K

i=1wi = 1, wi ≥ 0, 1 ≤
i ≤ K}. We then have

‖f(·)− f′(·)‖∞ =

∥∥∥∥∥
K∑
i=1

λiϕ(· − µi)−
K∑
i=1

λ′iϕ(· − µ′i)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
K∑
i=1

λi{ϕ(· − µi)− ϕ(· − µ′i)}

∥∥∥∥∥
∞

+

∥∥∥∥∥
K∑
i=1

(λi − λ′i)ϕ(· − µ′i)

∥∥∥∥∥
∞

≤ max
1≤i≤K

‖ϕ(· − µi)− ϕ(· − µ′i)‖∞ + ‖ϕ‖∞‖λ− λ′‖1

.d,α,β max
1≤i≤K

‖µi − µ′i‖2 + ‖λ− λ′‖1,

where in the last line we have used that ϕ is uniformly bounded and Lipschitz by asssump-
tion. We thus obtain a covering of the desired accuracy via an ε-covering with respect to
‖·‖2 for each of the K support points in Bd2(R) and an ε-covering with respect to ‖·‖1 of
the associated probability simplex. Covering numbers for the latter two are well-studied
(Vershynin, 2018, §4); (Gao and van der Vaart, 2016, Proof of Proposition 1). It follows
that the covering number N of interest can be bounded as

N ≤
(

2 +R

ε

)K·d
·
(

5

ε

)K
.

Inserting the expression for K given above, we thus obtain the conclusion of the lemma:

logN . K(d+ 1) log(R/ε) .d R
dε−d·(α−d)−1

log(R/ε).

Appendix G. Miscellaneous technical lemmas

The following result for controlling the p-Wasserstein distance in terms of the total variation
distance can be found in Villani (2009).

Lemma 20 (Theorem 6.15 in Villani (2009)) Let µ and ν be two probability measures
on Rd. Then for any 1 ≤ p <∞, we have

Wp
p(µ, ν) ≤ 2p/q

∫
Rd
‖x‖p2 d|µ− ν|(x),

1

p
+

1

q
= 1.
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The next result, which is taken from Nguyen (2013), in turn bounds the right hand side of
Lemma 20 if µ and ν have densities.

Lemma 21 (Lemma 6 in Nguyen (2013)) Let f and g be probability density functions
on Rd, s > 0, and suppose that Ms

f :=
∫
‖x‖s2 f(x) dx and Ms

g :=
∫
‖x‖s2 g(x)dx are finite.

We then have for any 0 < t < s,∫
Rd
‖x‖s2 |f(x)− g(x)| dx ≤ 4V

s−t
d+2s

d (Ms
f + Ms

g)
(s−t)d+t
s(d+2s) ‖f − g‖

2(s−t)
d+2s

L2
,

where Vd := πd/2/Γ(d/2 + 1) denotes the volume of the unit Euclidean ball in Rd.

The next result, which is a special case of Theorem 2 in Fournier and Guillin (2015),
yields a concentration inequality between the squared 2-Wasserstein distance of a measure
and its empirical counterpart constructed from n i.i.d. samples.

Lemma 22 (Fournier and Guillin (2015)) Let {Xi}ni=1
i.i.d.∼ ν, where ν is a measure in

Rd with compact support. Let νn = 1
n

∑n
i=1 δXi. We then have, for all t > 0,

P(W2
2(νn, ν) ≥ t) ≤ C


exp(−cnt2) if d ≤ 3,

exp(−cn(t/ log(2 + 1/t))2) if d = 4,

exp(−cntd/2) if d > 4.

The following result is a key ingredient in the proof of Proposition 9.

Lemma 23 Let P =
∑n

i=1 αiδxi and Q =
∑m

j=1 βjδx′j be two atomic probability measures

on {xi}ni=1 ⊂ Rd and {x′j}mj=1 ⊂ Rd, and suppose that Γ = (Γij)1≤i≤n, 1≤j≤m specifies an
optimal coupling between P and Q with respect to any cost function c of the form c(x, x′) =

h(‖x− x′‖), for some norm ‖·‖ and h : R→ R convex. Let x̃i :=
∑m

j=1
Γij
αi
x′j, 1 ≤ i ≤ n. It

then holds that

Wc(P,Q) :=
n∑
i=1

m∑
j=1

Γijc(xi, x
′
j) ≥

n∑
i=1

αic(xi, x̃i).

Proof Define λij =
Γij
αi

, and note that by construction
∑m

j=1 λij = 1, for each i. Fur-
thermore, observe that c is convex in either of its arguments. We hence have by Jensen’s
inequality that

n∑
i=1

m∑
j=1

Γijc(xi, x
′
j) =

n∑
i=1

αi

m∑
j=1

λijc(xi, x
′
j) ≥

n∑
i=1

αic
(
xi,

m∑
j=1

λijx
′
j

)
=

n∑
i=1

αic(xi, x̃i).

The result below is an ingredient in the proof of Theorem 10.

Lemma 24 Let d ≥ 1 be an integer, a ≥ 1, β > 0. Then:∫ ∞
a

vd exp(−vβ) .β,d a
d+(1−β) exp(−aβ).
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Proof By a change of variables, we have∫ ∞
a

vd exp(−vβ) dv =
1

β

∫ ∞
aβ

u
d+(1−β)

β exp(−u) du. (58)

For γ ∈ R and δ ≥ 1, consider the function

Iδ(γ) =

∫ ∞
δ

uγ exp(−u) du.

If γ < 0, then Iδ(γ) ≤ exp(−δ) since δ ≥ 1 and the claim of the lemma follows from (58)
after setting δ = aβ. Conversely, suppose γ > 0. Using integration by parts, we find the
recursion

Iδ(γ) = δγ exp(−δ) + γ · Iδ(γ − 1). (59)

Let γ := bγc. The recursion (59) yields

Iδ(γ) = exp(−δ){δγ + γδγ−1 + . . .+ γ · . . . · (γ − γ + 1)δγ−γIδ(γ − γ)}+ γ · . . . · (γ − γ)Iδ(γ − γ − 1)

≤ exp(−δ){δγ + γδγ−1 + . . .+ γ · . . . · (γ − γ + 1)δγ−γIδ(γ − γ)}+ γ · . . . · (γ − γ) exp(−δ)
≤ exp(−δ)δγ(dγe+ 1)!

since there are most dγe+ 1 terms whose to be multiplied by exp(−δ) and varying powers

of δ, with each of these terms being no larger than dγe. Setting δ = aβ and γ = d+(1−β)
β

yields the assertion.

Appendix H. Notions and Results from Optimal Transport

To make this paper self-contained, we here present notions and results from the theory of
optimal transport as far as needed for the purpose of the paper. This material or slight
modifications thereof are accessible from popular monographs and lecture notes on the
subject, e.g., Peyré and Cuturi (2019); Villani (2009, 2003); Santambrogio (2015); McCann
and Guillen (2011).

Definition 25 (Push-forward) Let µ and ν be two Borel probability measures on mea-
surable spaces (X ,BX ) and (Y,BY) respectively, and let T be a measurable map from X
to Y. The map T is said to push forward µ to ν, in symbols T#µ = ν if T#µ(B) ≡
µ(T−1(B)) = ν(B) for all B ∈ BY .

Definition 26 (Optimal transport problem; Monge’s problem) Let µ and ν be as
in the previous definition, and let c : X × Y → [0,∞) be a measurable function (“cost
function”). The optimal transport problem (Monge’s problem) with µ, ν, and c is given by

inf
T

∫
X
c(x, T (x)) dµ(x) subject to T#µ = ν.

Any minimizer of the above problem is called an optimal transport map.
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The following optimization problem is in general a relaxation of the above problem; under
certain conditions, both problems are equivalent.

Definition 27 (Kantorovich problem) Let µ and ν be as in Definition 25, and let c
be a cost function as in Definition 26. Let further Π(µ, ν) denote the set of all couplings
between µ and ν, i.e., probability measures on X × Y whose marginals equal to µ and ν.
The Kantorovich problem is given by the optimization problem

inf
γ∈Π(µ,ν)

∫
X

∫
Y
c(x, y) dγ(x, y).

Any minimizer of the above problem is called an optimal transport plan.

For measures µ and ν on Rd with finite k-th moments (k ≥ 1), i.e.,
∫
‖x‖k2 dµ(x) < ∞ and∫

‖x‖k2 dν(x) < ∞, the k-Wasserstein distance between µ and ν is defined via the above
Kantorovich problem with cost function c(x, y) = ‖x− y‖k2, i.e.,

Wk(µ, ν) :=

(
inf

γ∈Π(µ,ν)

∫ ∫
‖x− y‖k2 dγ(x, y)

)1/k

. (60)

A celebrated result due to Brenier characterizes optimal transport maps in the sense of
Definition 26 for X = Y = Rd and quadratic cost, i.e., c(x, y) = ‖x − y‖22 and µ ab-
solutely continuous with respect to the Lebesgue measure. In the sequel, we let g?(x) :=
supy∈Rd{〈y, x〉−g(y)} denote the Legendre-Fenchel conjugate of a convex function g : Rd →
R ∪ {+∞}.
Theorem 28 (Brenier) Suppose that µ and ν are Borel probability measures on Rd with
finite second moments, and suppose further that µ is absolutely continuous with respect to the
Lebesgue measure. Then the optimal transport problem has a (µ-a.e.) unique minimizer T =
∇ψ for a convex function ψ : Rd → R∪{+∞}. Furthermore, the optimal transport problem
and its Kantorovich relaxation are equivalent in the sense that the optimal coupling in
Definition 27 is of the form (id×T )#µ. Moreover, if in addition ν is absolutely continuous,
then ∇ψ? is the (ν-a.e.) minimizer of the Monge problem transporting ν to µ, and it holds
that ∇ψ? ◦ ∇ψ(x) = x (µ-a.e.), and ∇ψ ◦ ∇ψ?(y) = y (ν-a.e.).

Appendix I. Fourier transform on Rd

For a function g ∈ L1(Rd), we define its Fourier and inverse Fourier transform by

F[g](ω) :=

∫
Rd

exp(−i〈ω, x〉) g(x) dx, F−1[g](x) :=
1

(2π)d

∫
Rd

exp(i〈ω, x〉) g(ω) dω,

for ω, x ∈ Rd. According to the Fourier inversion theorem, we have F−1[F[g]] = g =
F[F−1[g]] if g ∈ L1(Rd) and F[g] ∈ L1(Rd) . Other important properties that are used
herein are as follows:

Plancherel theorem: 〈F[g],F[h]〉 =
1

(2π)d
〈g, h〉,

Convolution theorem: F[(f ? g)] = F[f ] · F[g], F−1[(f ? g)] = (2π)dF−1[f ] · F−1[g]

Haussdorf-Young inequality: ‖F[g]‖Lq ≤ ‖f‖Lp(2π)d(1−1/p), 1 ≤ p ≤ 2,
1

p
+

1

q
= 1,
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where the symbol 〈·, ·〉 here refers to the inner product on L2(Rd) and ? denotes convolution.

Appendix J. Properties of the Generalized Multivariate Laplace
distribution

The PDF of the generalized multivariate Laplace distribution is given by (Kozubowski et al.,
2013)

ϕ(z) =
2

(2π)d/2Γ(κ)
‖z‖κ−d/22 Kκ−d/2(‖z‖2 · C ′),

for certain constants C,C ′ > 0. Here, for η > 0, Kη denotes the modified Bessel function
of the third kind with index η:

Kη(u) =
1

2
(u/2)η

∫ ∞
0

1

tη+1
exp

(
−t− u2

4t

)
dt, u > 0.

In light of the above representation, we have

ϕ(z) ∝ ψ(‖z‖2), ψ(r) = rλKλ(r · C ′), r ≥ 0,

where λ := κ− d/2 ≥ 1/2 given the condition on κ preceding (19).
Verification of Property (D1). Note that in order to show that ϕ is bounded at the

origin, it suffices to show that the following function ψ̃ is bounded:

ψ̃(u) = u2λ

∫ 1

0

1

tλ+1
exp

(
−t− u2

4t

)
dt,

Using the substitution z = 1/t, we obtain that

ψ̃(u) = u2λ

∫ ∞
1

zλ−1 exp

(
−u

2

4
· z − 1/z

)
dz.

Using a second substitution y = (u2/4) · z, we find that

ψ̃(u) =

∫ ∞
u2/4

4λyλ−1 exp
(
−y − (u2/4)(1/y)

)
dy,

which yields that ψ̃ is upper bounded by 4λΓ(λ), which is a finite constant since λ ≥ 1/2.
In order to show that ϕ is Lipschitz, it suffices to show that ψ̃′ is bounded. The Leibniz

integral rule yields

ψ̃′(u) = −2u2λ−1 exp(−u2/4− 1) + 4λ
∫ ∞
u2/4

d

du
yλ−1 exp

(
−y − u2

4
(1/y)

)
dy

= −2u2λ−1 exp(−u2/4− 1) + 4λ
∫ ∞
u2/4

yλ−2

(
−1

2
u

)
exp

(
−y − u2

4
(1/y)

)
dy.

Note that since λ ≥ 1/2, it remains to be shown that the integral on the right hand side
is finite in the limit u → 0. This is obvious whenever λ > 1, hence it suffices to consider

55



Slawski and Sen

1
2 ≤ λ ≤ 1. In that range, we have for any u > 0∫ ∞

u2/4
yλ−2u exp

(
−y − u2

4
(1/y)

)
dy ≤

∫ 1

u2/4
yλ−2u exp

(
−y − u2

4
(1/y)

)
dy+

+

∫ ∞
1

yλ−2u exp

(
−y − u2

4
(1/y)

)
dy

≤
∫ 1

u2/4
y−

3
2u exp

(
−y − u2

4
(1/y)

)
dy+

+ u

∫ ∞
1

exp

(
−y − u2

4
(1/y)

)
dy,

where we have used that 1/2 ≤ λ ≤ 1. The second integral is clearly finite. Regarding the
first integral, we have∫ 1

u2/4
y−

3
2u exp

(
−y − u2

4
(1/y)

)
dy ≤ u

∫ 1

u2/4
y−3/2 dy

= u · (−2)

(
1

y1/2

∣∣∣1
u2/4

)
= 2u(2/u− 1) = (4− 2u),

which shows that the second integral is finite as well, and as a result yields the assertion
that ψ̃′ is bounded.

Verification of Property (D3). Note that a random variable Z with PDF ϕ has the
following characterization (Kozubowski et al., 2013)

Z
D
= G

√
Γκ,

where G ∼ N(0, Id) and Γκ is a random variable having a Gamma distribution with shape
parameter κ and scale parameter one. The moment-generating function of Γκ is given by

MΓκ(t) =

(
1

1− t

)κ
, t ∈ (0, 1).

Therefore, by Markov’s inequality, for any z ≥ 0,

P(Γκ > z) ≤ exp(−z/2) E[exp(Γκ/2)] = 2κ exp

(
−1

2
z

)
= exp

(
κ log(2)− 1

2
z

)
.

In particular,
P(Γκ > 2 log(2)κ+ t) ≤ exp(−t).

Moreover, by Lipschitz concentration of Gaussian random vectors, we have for any δ ≥ 0

P(‖G‖2 ≥
√
d+ δ) ≤ exp(−δ2/2).

Combining the above two concentration inequalities with the elementary inequality P(A ·
B > a · b) ≤ P(A > a) +P(B > b) for non-negative random variables A and B and a, b > 0,
setting δ =

√
2t yields

P
(
‖Z‖2 ≥

√
d
√

2 log 2κ+
√
d
√
t+ 2

√
log(2)κt+

√
2t
)
≤ 2 exp(−t).
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In particular, for any u ≥ 1,

P (‖Z‖2 ≥ Cd,κu) ≤ 2 exp(−u/
√

2),

where Cd,κ =
√
d
√

2 log 2κ+
√
d/2 + 2

√
log(2)κ.
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