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Abstract

The performance of A/B testing in both online and offline experimental settings hinges
on mitigating network interference and achieving covariate balancing. These experiments
often involve an observable network with identifiable clusters, and measurable cluster-level
and individual-level attributes. Exploiting these inherent characteristics holds potential
for refining experimental design and subsequent statistical analyses. In this article, we
propose a novel cluster-adaptive network A/B testing procedure, which contains a cluster-
adaptive randomization (CLAR) and a cluster-adjusted estimator (CAE) to facilitate the
design of the experiment and enhance the performance of ATE estimation. The CLAR
sequentially assigns clusters to minimize the Mahalanobis distance, which further leads to
the balance of the cluster-level covariates and the within-cluster-averaged individual-level
covariates. The cluster-adjusted estimator (CAE) is tailored to offset biases caused by
network interference. The proposed procedure has the following two folds of the desirable
properties. First, we show that the Malanobis distance calculated for the two levels of
covariates is Op(m−1), where m represents the number of clusters. This result justifies
the simultaneous balance of the cluster-level and individual-level covariates. Under mild
conditions, we derive the asymptotic normality of CAE and demonstrate the benefit of
covariate balancing on improving the precision for estimating ATE. The proposed A/B
testing procedure is easy to calculate, consistent, and achieves higher accuracy. Extensive
numerical studies are conducted to demonstrate the finite sample property of the proposed
network A/B testing procedure.
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1. Introduction

Network A/B testing (Gui et al., 2015) refers to the problem of conducting randomized
controlled experiments in the presence of network interference (Manski, 2000), particu-
larly when units are parts of a network. While A/B testing serves as a prominent tool in
decision-making within IT industries (Kohavi et al., 2013; Larsen et al., 2024), the pres-
ence of network-induced interference challenges the fundamental assumption of Stable Unit
Treatment Value (SUTVA) inherent in conventional A/B testing (Imbens and Rubin, 2015;
Rubin, 1974), rendering the estimation of average treatment effects (ATE) more intricate.
This phenomenon, known as peer effect or network interference, poses significant challenges
for network A/B testing.

In various applications, networks often display distinctive cluster structures (Gui et al.,
2015; Holtz et al., 2020; Ugander et al., 2011, 2013), which can be leveraged to mitigate
the bias stemming from interference and to enhance efficiency in estimating ATE. These
clusters typically comprise subsets of units exhibiting denser internal connections than ex-
ternal ones. When interference is localized, cluster formation can be facilitated through
community detection algorithms (Fortunato, 2010; Newman, 2006) offering the perspec-
tive of cluster-level randomization to counteract the effects of interference and increase the
comparability of the results (Eckles et al., 2017; Gui et al., 2015; Ugander and Yin, 2023;
Ugander et al., 2013). This strategy, referred to as graph-cluster randomization (Ugander
and Yin, 2023; Ugander et al., 2013), emerges as a promising approach to deal with network
interference. After the implementation of graph-cluster randomization, the local interfer-
ence approximated by the neighborhood treatment response assumption (NTRA, see Eckles,
Karrer, and Ugander, 2017; Leung, 2022a; Ugander, Karrer, Backstrom, and Kleinberg,
2013) can be used to construct a Horvitz-Thompson estimator for an unbiased ATE esti-
mation. These three key elements, i.e., the graph cluster randomization, the neighborhood
treatment assumption, and the Horivitz-Thompson’s estimator, establish a basis for the
consistent and efficient estimation of the ATE in the presence of network interference. For
additional recent development of the research on the experiments involving with networks,
see Yu et al. (2022), Biswas and Airoldi (2018), Karwa and Airoldi (2018), Pouget-Abadie
et al. (2019), Shi et al. (2023), Chen et al. (2023), Ogburn et al. (2024), Gao and Ding
(2023), Imai et al. (2021), Forastiere et al. (2022) and the references therein.

Notwithstanding the strengths of the aforementioned approach, effective exploitation of
cluster information has the potential to enhance the performance of network A/B testing.
For instance, cluster-level covariates and individual-level covariates can be included in the
randomization to enhance the balance of treatment arms. The covariate balance is crucial
to ensure the credibility of the experiment (Fisher, 1935; Kohavi et al., 2013), particularly
when connected units within a cluster demonstrate similar treatment responses due to
shared covariate attributes, such as hobbies and education status. Additionally, network
features of a cluster, such as the average degree, and the number of nodes, may also influence
the evaluation of ATE. Relying solely on randomization for balancing covariates may result
in substantial covariate imbalance, ultimately affecting the performance of A/B testing
procedure in ATE estimation (Hu and Hu, 2012; Morgan and Rubin, 2012; Rosenberger
and Sverdlov, 2008).
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Regarding the estimation stage, the weights used by the Horvitz-Thompson estimator
are contingent on the cluster structure determined by the treated neighbor and the chosen
randomization scheme. Certain cluster network configurations, for instance, units connect-
ing multiple clusters, may yield exceedingly large weights (small probabilities) for specific
units, regardless of randomization, while allocating relatively small weights (large proba-
bilities) to units solely connected within their own cluster. This situation can make the
Horvitz-Thompson estimator sensitive to the outcome values, introducing challenges for
ATE estimation. Therefore, it is essential to have alternatively consistent estimator in the
presence of network interference.

In this paper, we present a refined A/B testing procedure that effectively leverages clus-
ter information in both randomization and estimation phases. In the randomization step,
we introduce a cluster-adaptive randomization (CLAR) that sequentially minimizes the Ma-
halanobis distance, improving the balance of the treatment arms. Furthermore, we consider
using both cluster-level covariates and within-cluster averages of individual-level covariates
to obtain a finer covariate balancing. In the estimation step, we introduce a concept of in-
formative units to identify appropriate units for the inclusion in the estimation step based
on NTRA criteria and network information. Based on the informative units, we propose
a cluster-adjusted estimator (CAE) to achieve consistent ATE estimation. Given that our
approach integrates cluster information across randomization and estimation phases, we
term it the cluster-adaptive network A/B testing procedure.

Our main contribution can be summarized in the following three folds. First, the pro-
posed CLAR endeavors to achieve finer multisourced covariates balancing. The implications
of using distinct sources of covariates are explored theoretically and numerically, underscor-
ing the important role of cluster-level covariate balance in enhancing the efficiency for
estimating ATE. Second, the proposed CAE is computationally straightforward and does
not rely on weights to obtain the consistency for estimating ATE. Third, we integrate the
frameworks of network interference (Aronow and Samii, 2017; Athey et al., 2018; Basse
and Airoldi, 2018b; Eckles et al., 2017; Forastiere et al., 2021; Leung, 2022b; Liu et al.,
2022; Ugander et al., 2013; Wang et al., 2023; Zhou et al., 2024) and covariate-adaptive
randomization (Hu et al., 2023; Hu and Hu, 2012; Ma et al., 2024) to theoretically analyze
our cluster-adaptive network A/B testing procedure. Techniques such as Markov chain
theory (Meyn and Tweedie, 2013) and Stein’s lemma (Chen et al., 2010; Chin, 2018; Ross,
2011) are used to investigate the theoretical property of our proposed procedure. The de-
rived results under a general outcome model and a simple additive model indicate that the
proposed A/B testing procedure delivers not only consistent but also more precise ATE
estimation. These findings further emphasize the importance of covariate balancing within
the context of network A/B testing.

The rest of this paper is organized as follows. In Section 2, we present the framework
of network A/B testing. The cluster-adaptive network A/B testing procedure is presented
in Section 3. The theoretical properties of our proposed procedure are studied in Section 4.
Numerical studies with a hypothetical network and a real data example are conducted
in Section 5 and Section 6 to demonstrate the finite sample properties of our proposed
procedure, respectively. The conclusion remarks are given in Section 7. Proofs of main
results, additional numerical studies, and detailed explanations of numerical studies are
relegated to the Appendices A, B and C, respectively.
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2. Network Interference in A/B testing

Consider a network consisting of n interconnected units (nodes), represented by an undi-
rected graph G = (V,E) with a symmetric n × n adjacency matrix A, where the (i, j)-th
element is denoted by Aij . Let Ni = {i′ : Aii′ = 1 and i′ 6= i} be the index set of the neigh-
bors of the i-th unit and let di denote the size of Ni, i.e., the degree of the i-th node.
Suppose the n units are partitioned into m disjoint clusters (sets of nodes), C1, · · · ,Cm,
with cj denoting the number of nodes in the j-th cluster. Let C̃ = σ(C1, . . . ,Cm) represent
the sigma algebra generated by the index sets of the clusters and A = σ(A). In some ap-
plications, the cluster may correspond to specific covariate information, such as the units’
current education institution or their geographical location. In other examples, the label
of the clusters may arise from applying community detection algorithms to the adjacency
matrix A (Leung, 2023; Newman and Girvan, 2004; Raghavan et al., 2007; Ugander et al.,
2013). These algorithms, including label propagation and modularity maximization, can
identify units that are more densely connected within a cluster than with those outside
it. For a more comprehensive review of the community detection algorithms, we refer the
readers to Newman (2006) and Fortunato (2010) as well as the references therein. Given
that cluster labels can emerge from either of these scenarios, we assume the clusters are
known and observed prior to the experiment design.

Consider an experiment with two treatments, treatment 1 and treatment 2. For 1 ≤ i ≤
n, let Ti denote the treatment assignment for the i-th unit, such that Ti = 1 indicates the
assignment to treatment 1, while Ti = 0 represents the assignment to treatment 2. Define
T = (T1, · · · , Tn)> as the n-vector of the individual-level treatment assignments and T as
the domain of T , respectively. Following the potential outcome framework (Aronow and
Samii, 2017; Athey et al., 2018; Forastiere et al., 2021; Rubin, 1974), let Yi(T ) denote the
potential outcome of the i-th subject given T and Yi =

∑
t∈T I(T = t)Yi(t) represent the

observed outcome of the i-th unit, respectively.

The objective of A/B testing often involves determining whether all units should be
assigned the new treatment (Gui et al., 2015; Larsen et al., 2024). In other words, it aims
to compare the outcomes with T = 1 and T = 0, where 1 and 0 denote the n-vectors of
ones and zeros, respectively. The estimand of interest in this context is the global average
treatment effect (ATE), i.e.,

τ(1,0) =
1

n

n∑
i=1

E[Yi(1)− Yi(0)].

In practice, assigning all units to a single treatment is often unfeasible, making it impossible
to directly observe both Yi(1) and Yi(0) simultaneously. However, careful design of A/B
testing can yield an observed outcome Yi that approximates either Yi(1) or Yi(0). Units
providing sufficient information to estimate τ(1,0) are referred to informative units, defined
as follows:

Definition 2.1 (Informative Units) Given a treatment assignment t ∈ T , the i-th unit
is an informative unit , if either Yi = Yi(1) or Yi = Yi(0); and the i-th unit is noninfor-
mative, if Yi 6= Yi(1) and Yi 6= Yi(0). The set of informative units in Cj is denoted by
Infj.
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When no interference is assumed, the established Stable Unit Treatment Value Assump-
tion (SUTVA) describes a scenario where all n units in the experiment are informative (Im-
bens and Rubin, 2015).

Assumption 2.1 (SUTVA) For any t, t′ ∈ T , if the i-th elements of t and t′ satisfy
ti = t′i, then Yi(t) = Yi(t

′).

SUTVA posits that Yi will remain unaffected by Ti′ for i′ 6= i. This can be interpreted as
Yi = TiYi(1) + (1− Ti)Yi(0), forming the basis for the estimation of τ(1,0).

However, in cases involving interference, a unit’s outcome may be influenced by treat-
ment assignments of other units within the network. In the absence of interference as-
sumptions, estimating τ(1,0) might be impossible (Basse and Airoldi, 2018a). To address
this problem, the Neighborhood Treatment Response Assumption (NTRA) has been intro-
duced (Eckles et al., 2017; Forastiere et al., 2021; Gui et al., 2015; Hong and Raudenbush,
2006; Ugander et al., 2013). The subsequent NTRA expands SUTVA by accounting for a
specific form of local interference.

Assumption 2.2 (NTRA) For any t, t′ ∈ T , if the k-th elements of t and t′ satisfy that

if tk = t′k for all k ∈ Ni ∪ {i}, then Yi(t) = Yi(t
′).

Under NTRA, network interference solely affects a unit’s outcome through its connected
neighbors. Therefore, the outcome of a unit remains unaffected by treatment changes for
units not in its neighborhood. Consequently, Yi = Yi(1) if tk = 1 for all k ∈ Ni ∪ {i},
and Yi = Yi(0) if tk = 0 for all k ∈ Ni ∪ {i}. NTRA implies that Yi is informative for
estimating τ(1,0) when the i-th unit, along with its neighbors, is uniformly assigned to the
same treatment group.

NTRA captures the mechanism of interference observed in numerous networks. In the
experiment described in Section 6, students tend to be influenced more by their connected
peers than by those they are unfamiliar with. Consequently, a student might experience
a spillover effect if their peers belong to different treatment groups, a situation consistent
with NTRA. In addition to the social networks similar to the one presented in Section 6,
spatial experiments offer another example where NTRA is applicable (Leung, 2022b). In
experiments related to food delivery apps, randomization is often performed on geographical
units. The food delivery services are usually localized, which may not be influenced by
distant businesses; however, they could be affected by nearby stores or customers, reflecting
the principles of NTRA. If it is necessary to take into account a high-order spillover effect,
the NTRA considered here can be extended to the high-order NTRA discussed in Athey
et al. (2018). Assumption 2.2 is presented for the sake of simplicity.

Even when NTRA is applicable, the method used for randomization remains crucial,
as it may help increase the number of informative units. In numerous real-world networks,
nodes within the same cluster tend to be more densely connected than those in different
clusters (Newman, 2006). This observation together with NTRA highlights the benefits of
the graph cluster randomization, i.e., applying complete randomization at the cluster-level,
to estimate τ(1,0), because it increases the probabilities that the units are informative (Eck-
les et al., 2017). For example, let Inj = {i ∈ Cj : if for all i′ satisfying Aii′ = 1, i′ ∈ Cj}
represent the set of units in the j-th cluster whose neighbors also belong to the j-th cluster.
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If all units in a cluster are assigned the same treatment, NTRA dictates that all units in
Inj are informative with probability one. If the units are connected with fewer numbers

of different clusters, their probability of being informative will also increase. However, it
may be inevitable to rely on randomization to determine whether the units in Cj ∩ Incj are
informative.

3. Cluster-Adaptive Network A/B Testing

3.1 Cluster-Adaptive Randomization

Let Xi,IN represent the p-individual-level covariates of the i-th unit and Xj,CL denote the
q-cluster-level covariates of the j-th cluster. In the randomization step, we can use the
information of the baseline covariates to enhance the performance of the randomization
procedure. We designate ξj as the covariates used in randomization. For instance, to
incorporate both the cluster-level and individual-level covariates in randomization, we might
consider ξj = (X>j,CL, X̄

>
j,IN), where X̄j,IN = c−1

j

∑
i∈Cj

Xi,IN represents the within cluster
average of the individual-level covariates. If only the cluster-level covariates are considered,
it suffices to set ξj = Xj,CL.

An important component of cluster-adaptive randomization (CLAR) is the imbalance
measure, reflecting the differences in covariates between the two treatment arms. Let Zj
denote the treatment assignment for the j-th cluster, that is, if Zj = t then Ti = t for all
i ∈ Cj and t ∈ {0, 1}. In addition, let m1 =

∑m
j=1 Zj and m2 = m − m1 represent the

numbers of clusters assigned to treatments 1 and 2, respectively. We denote the sample
averages of the baseline covariates for treatment 1, treatment 2, and all clusters as ξ̄1,m =
m−1

1

∑m
j=1 Zjξj , ξ̄2,m = m−1

2

∑m
j=1(1 − Zj)ξj , and ξ̄m = m−1

∑m
i=1 ξj , respectively. We

adopt the Mahalanobis distance as the imbalance measure, which can be calculated as
follows:

M2j = (ξ̄1,2j − ξ̄0,2j)
>cov

[
ξ̄1,2j − ξ̄0,2j

]−1
(ξ̄1,2j − ξ̄0,2j)

∝ j

2
· (ξ̄1,2j − ξ̄0,2j)

>S−1
m (ξ̄1,2j − ξ̄0,2j), (1)

where Sm = (m− 1)−1
∑m

j=1(ξj − ξ̄m)(ξj − ξ̄m)> represents the sample covariance matrix
calculated for the m clusters. Using the Mahalanobis distance offers various advantages:
First, it is an affine invariant measure that standardizes and encapsulates the imbalance
for each covariate. Consequently, a lower value of the imbalance measure suggests balanced
covariates across the two treatment arms. Moreover, minimizing the Mahalanobis distance
increases the comparability of the two treatment arms, thus enhancing the accuracy of the
estimation of ATE (Ma et al., 2024; Morgan and Rubin, 2012; Qin et al., 2024).

The CLAR is described in Algorithm 1. This procedure sequentially assigns a pair of
clusters, ensuring that only one of the two clusters is allocated to treatment 1. This pairwise
assignment results in two possible assigned outcomes and, consequently, two corresponding

imbalance score values: M
(1)
2j and M

(2)
2j . The procedure assigns a higher probability to

the assignment that leads to the smaller imbalance value, thereby maintaining the scale of
the imbalance measure. To maintain randomness and mitigate imbalance, it is generally
recommended to opt for a sufficiently large value of ρ but avoid values that are very close
to 1, for example, within the range of [0.7, 0.9].
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Algorithm 1 Cluster-Adaptive Randomization (CLAR)

1: Input: baseline covariates {ξj}mj=1; probability of the biased coin 1/2 < ρ < 1;
2: Compute Sm based on {ξj}mj=1;
3: Assign Z1 ∼ Bernoulli(1/2) and set Z2 = 1− Z1;
4: for j = 2 to dm/2e do
5: if 2j ≤ m then

6: Let M
(1)
2j and M

(2)
2j be the pseudo imbalance scores computed by {ξl}2jl=1;

7: Compute M
(1)
2j from (1) by assuming (Z2j−1, Z2j) = (0, 1);

8: Compute M
(2)
2j from (1) by assuming (Z2j−1, Z2j) = (1, 0);

9: if M
(1)
2j = M

(2)
2j then

10: Assign Z2j−1 ∼ Bernoulli(1/2) and set Z2j = 1− Z2j−1;
11: else
12: if M

(1)
2j < M

(2)
2j then

13: Assign Z2j−1 ∼ Bernoulli(1− ρ) and set Z2j = 1− Z2j−1;
14: else
15: Assign Z2j−1 ∼ Bernoulli(ρ) and set Z2j = 1− Z2j−1;

16: else
17: Assign Z2j−1 ∼ Bernoulli(1/2).

It is worth noting that CLAR is a sequential randomization procedure, which may be
potentially useful for real-world A/B testing problems. The random component of CLAR
ensures a valid comparison of the two treatment arms (Imbens and Rubin, 2015; Rosenberger
and Lachin, 2015; Rosenberger et al., 2019), which prohibits the deliberate assignment
of the treatment by the experimenter. Second, the sequential nature of this procedure
enables the integration of CLAR with the ramping process that monitors the validity of the
experiment (Kohavi et al., 2020; Xu et al., 2015). This may also be useful for extending
the proposed cluster-adpative network A/B testing procedure for sequential monitoring
purposes (Lan and DeMets, 1989; Zhu and Hu, 2019).

Remark 3.1 As demonstrated in Section 4, using the Mahalanobis distance as the imbal-
ance measure, stems from the linear relationship between Yi and ξj. If the relationship
between Yi and Xj,CL is known and is not linear, we have room for a further improvement
by adapting the Mahalanobis distance. For instance, if E[Yi(0)|Xj,CL] = µ0 +X2

j,1,CLβ1 + εi
and E[Yi(1)|Xj,CL] = E[Yi(0)|Xj,CL] + µ1 − µ0 for i ∈ Cj, then we can modify (1) by using
the difference-in-quadratic-covariate-means instead of the difference-in-covariate-means.

3.2 Cluster-Adjusted Estimator

When randomization is implemented at the cluster-level, NTRA highlights that whether
a unit is informative depends on its position in the network and the observed network
structure. For instance, if NTRA holds and the i-th unit satisfies ({i}∪Ni) ⊂ Cj , then the
i-th unit is informative with probability 1. However, if i ∈ Cj and ({i} ∪Ni) 6⊂ Cj , the i-th
unit is informative only if Zj′ = Zj for all j′ where i′ ∈ Cj′ ∩ Ni; in other words, when all
neighbors of the i-th unit are assigned to the same treatment as the i-th unit. The inherent
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cluster structure may result in denser connections within clusters, leading to a majority of
units falling into the first category (being informative with probability 1), while fewer units
fall into the second category (being informative with probability smaller than 1), thereby
ensuring an adequate number of informative units. To maintain clarity, we refer to the first
type of nodes as the inner nodes and the second type as the outer nodes.

The Horvitz-Thompson estimator is commonly used to achieve an unbiased estimate for
τ(1,0). It is important to note that the weights used by the Horvitz-Thompson estimator
are partially determined by the network positioning of the nodes. Due to their lower like-
lihood of being informative, the outer nodes tend to carry larger weights compared to the
inner nodes. However, practical scenarios might involve a smaller proportion of outer nodes,
leading to a large variance of the Horivtz-Thompson estimate, affected by the higher weight
values of the outer nodes. Therefore, it would be advantageous to develop an estimator
that is less influenced by network exposure and is simpler to calculate.

Let nj denote the number of units in Infj andM = {j : nj > 0} denote the set of clusters
with a positive number of informative units. Furthermore, denote the sample average of
the observed outcomes in Infj by Ŷj = n−1

j

∑
i∈Infj

Yi. We propose the cluster-adjusted

estimator (CAE) as follows:

τ̂CAE =
1

m∗1

∑
j∈M

Zj Ŷj −
1

m∗0

∑
j∈M

(1− Zj)Ŷj ,

where m∗1 =
∑

j∈M Zj and m∗0 =
∑

j∈M(1 − Zj). The proposed CAE is a difference in
two-steps means estimator that averages the outcomes on both the individual-level and
the cluster-level. The two steps averages can effectively reduce both bias and variance,
especially when units within the same cluster share common characteristics.

4. Theoretical Properties of Cluster-Adaptive Network A/B Testing

In this section, we investigate the theoretical properties of the proposed cluster-adaptive
network A/B testing procedure. We also demonstrate the efficiency gain from improving
the covariate balancing and the potential impact of the network structure on the subsequent
estimation.

4.1 The Balance Property of Cluster-Adaptive Randomization

To derive the theoretical properties of CLAR, we introduce the following assumption.

Assumption 4.1 1. Given A and C̃, there exists λIN, λ̃IN ≥ 0 such that m−1
∑m

j=1 c
−1
j =

λIN + o(1), and m−1
∑m

j=1 n
−1
j = λ̃IN + o(1).

2. Given A and C̃, {Xj,CL}mj=1 and {Xi,IN}ni=1 are i.i.d. copies of XCL and XIN with
means µCL and µIN and positive definite variance-covariance matrices ΣCL and ΣIN,
respectively. In addition, XCL and XIN are independent and there exists a well de-
fined random vector ξ, such that ξj = (X>j,CL, X̄

>
j,IN)> is i.i.d. ξ with mean µξ =

(µ>CL,µ
>
IN)> and variance-covariance matrix

Σξξ =

(
ΣCL 0
0 λINΣIN

)
.
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3. Let η = Σ
−1/2
ξξ (ξ − µξ) satisfying E[‖η‖a] <∞ for a given a > 2, where Σ

−1/2
ξξ is the

Cholesky square root of Σ−1
ξξ .

4. Let η′ be a i.i.d. copy of η. Denote Γη(y) as the joint distribution function of (η,η′)
and suppose there exists kc ∈ Z+ and 0 ≤ cγ ≤ 1 such that

Γkc∗η (A) ≥ cγ
∫
A γ

kc∗(y)dy for any Borel set A,

where Γk∗η (·) is the k-th convolution of Γη(·), γ(·) is a density function with infy∈O γ(y) >

0 for an open set O, and γk∗(·) is the k-th convolution of γ(·).

Assumption 4.1 requires that the cluster covariates {ξj}mj=1 are independent and iden-
tically distributed, which is in a similar manner to the assumptions made for random ge-
ometric graphs (Penrose, 2003). The moment condition, i.e., Assumption 4.1.3, serves the
purpose to facilitate the study of the convergence rate of Mm. Assumption 4.1.4 is further
introduced to ensure the Markov chain induced byMm is positive Harris recurrent (Ma et al.,
2024; Meyn and Tweedie, 2013). This particular property aids in deriving the asymptotic
normality of CAE under CLAR. It is important to note that if {ξj}mj=1 is dependent but
stationary, Assumption 4.1.2 may be adapted as the assumption used in Kojevnikov et al.
(2021). In addition, Assumption 4.1.4 may be extended for the convolution of the joint den-
sity kernel of the stationary process. We defer the elaboration of these extended theoretical
results as potential avenues for future research.

Theorem 4.1 Suppose Assumption 4.1 holds. If {ξj}mj=1 are used in CLAR, then Mm =

Op(m
−1).

The proof of Theorem 4.1 utilizes the drift condition (Meyn and Tweedie, 2013) for the
Markov chain. See Appendix A.1 for technical details. Theorem 4.1 justifies the usage of
CLAR for balancing covariates, since it establishes the order of Mm. In particular, when
using complete randomization at the cluster-level, Mm follows a χ2

p+q distribution (Morgan
and Rubin, 2012; Qin et al., 2024). On the contrary, under CLAR, Mm converges to zero
in probability at the rate of m−1. Consequently, CLAR exhibits superior performance in
contrast to complete randomization, ensuring a simultaneous balance for both cluster-level
and individual-level covariates when ξj = (X>j,CL, X̄

>
j,IN).

4.2 Theoretical Properties of Cluster-Adjusted Estimator

For t ∈ {1,0}, let µ̂j(t) = n−1
j

∑
i∈Infj

E[Ŷj(t)|Xj , C̃,A], Xj = (Xj,CL, X̂j,IN), and X̂j,IN =

n−1
j

∑
i∈Infj

Xi,IN. We introduce the following decomposition for the cluster-level potential
outcomes:

Ŷj(t)− µ̂j(t) = f̂j(t,Xj) + ε̂j(t), (2)

where f̂j(t,Xj) = n−1
j

∑
i∈Infj

{E[Yi(t)|Xj , C̃,A]−E[Yi(t)]} represents the cluster-level con-

ditional mean, ε̂j(t) = n−1
j

∑
i∈Infj

{Yi(t)−E[Ŷj(t)|Xj , C̃,A]} corresponds to the cluster-level
average of the errors.
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Furthermore, consider the i-th unit being an outer nodes, whether it is informative de-
pends on its connected clusters’ treatment assignment. This form of dependency makes the
derivation of the theoretical properties of CAE notably intricate. However, Assumption 2.2
(NTRA) indicates that

YiI{i ∈ Infj} = [ZjYi(1) + (1− Zj)Yi(0)] I{i ∈ Infj},

and Ŷj = n−1
j

∑n
i YiI{i ∈ Infj} = Zj Ŷj(1) + (1 − Zj)Ŷj(0). As a result, conditioning on

{I{i ∈ Infj}, i ∈ Cj}, the values of {Ŷj(1), Ŷj(0)} do not rely on Zj′ for j′ 6= j. This insight
enables us to work with the filtrations F̃0 = A⊗C̃⊗I and F̃k = A⊗C̃⊗I⊗Ξ2k⊗Z2k⊗Y2k,
where I = σ(Infj , 1 ≤ j ≤ m) encapsulates the information of the informative units by
hypothetically assuming that such information was available before randomization.

Assumption 4.2 Given A and C̃, nj = |Infj | > 0 for all 1 ≤ j ≤ m.

We introduce Assumption 4.2 to simplify the theoretical derivations. As shown in Section 5,
the proposed cluster-adaptive network A/B testing still offers advanced performance when
this assumption does not hold.

Assumption 4.3 Under Assumptions 4.1, the following hold.

1. (a) E[Yi(1)|F̃0] = E[Yi(1)] and E[Yi(0)|F̃0] = E[Yi(0)] for 1 ≤ i ≤ n; and (b) µ̄j(1) =
c−1
j

∑
i∈Cj E[Yi(1)] = µ(1) and µ̄j(0) = c−1

j

∑
i∈Cj E[Yi(0)] = µ(0), for 1 ≤ j ≤ m.

2. Let Inf j denote the set of all possible values of Infj. Denote the i-th element of Inf j by

Inf
(i)
j , and the associated sample averages of the mean outcomes in Infj and Infcj ∩Cj

by µ̂
j,Inf

(i)
j

(1), µ̂c
j,Inf

(i)
j

(1), µ̂
j,Inf

(i)
j

(0), µ̂c
j,Inf

(i)
j

(0), respectively. Then

ΨDiff, Inf = max
j

c−1
j (cj − nj) max

Inf
(i)
j ∈Inf j ,t∈{1,0}

[∣∣∣∣µ̂j,Inf
(i)
j

(t)− µ̂c
j,Inf

(i)
j

(t)

∣∣∣∣]


= o
(

max
{
m−1/2,m−(2−λ2)/2

})
.

3. Given A and C̃, {f̂j(t,Xj)}mj=1 are independent and satisfy E[f̂j(t,Xj)
4] <∞. There

exist σ2
f , σ̃

2
f > 0 such that

m−1
m∑
j=1

V
[
f̂j(1,Xj)− f̂j(0,Xj)

∣∣∣ F̃0

]
= σ2

f + op(1),

and m−1
m∑
j=1

V
[
f̂j(1,Xj) + f̂j(0,Xj)

∣∣∣ F̃0

]
= σ̃2

f + op(1).

4. εi1(t) and εi2(t) are independent conditional on A and the event Ai1i2 = maxAi1jAji2 =
0 for i1 6= i2 and 1 ≤ i1, i2 ≤ n.
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5. There exists λ1 > 0 such that

m∑
j=1

E
[
|ε̂j(1)|3 + |ε̂j(0)|3

∣∣ F̃0,Zm,Ξm
]
� mλ1

and
m∑
j=1

E
[
ε̂4j (1) + ε̂4j (0)

∣∣ F̃0,Zm,Ξm
]
� mλ1 .

6. Define

σ2
m,Ind =

m∑
j=1

{
ZjV[ε̂j(1)|F̃0,Zm,Ξm] + (1− Zj)V[ε̂j(0)|F̃0,Zm,Ξm]

}
,

σ2
m,Bet =

∑
j1 6=j2

{
Zj1Zj2Cov

[
ε̂j(1), ε̂j(0)| F̃0,Zm,Ξm

]

+ (1− Zj1)(1− Zj2)Cov
[
ε̂j(0), ε̂j(0)| F̃0,Zm,Ξm

]}
,

and σ2
m,ε = σ2

m,Ind + σ2
m,Bet. Then, there exist σ2

ε > 0 and 2/3λ1 < λ2 < 2 such that

E
[(
m−λ2σ2

m,ε − σ2
ε

)2 |F̃0,Zm,Ξm
]

= o(1).

7. Let N(j) denote the index set of the clusters that are connected to Cj and assigned
with the same treatment as Cj. Given F̃0, there exists λ4 > 0, such that Ψmax,CL =
maxj #{N(j)} = O(mλ3), where λ3 = {[4−1(3λ2 − 2λ1)] ∧ [3−1(2λ2 − λ1)]} − λ4.

Assumption 4.3.1 ensures the consistency of the CAE. First, Assumption 4.3.1.(a) re-
quires that once all units are assigned with the same treatment, the outcome of one unit
will not be affected by the network and thus ensures the consistency of CAE. Further-
more, the ATE can also be written as τ(1,0) = n−1

∑m
j=1 cj [µ̄j(1) − µ̄j(0)], Assump-

tion 4.3.1.(b) is introduced to ensure the identification of the mean effects n−1
∑n

i=1 E[Yi(1)]
and n−1

∑n
i=1 E[Yi(0)], which is analogous to the usual random effect model that treats the

between-cluster heterogeneity as a zero-mean random effect.
Assumption 4.3.2 is introduced to restrict the impact of network interference on the

estimation of CAE. The size of the bias depends both on the within cluster heterogeneity
and cj − nj . This indicates that if the network has within cluster homogeneous structures,
such properties may improve the performance of the CAE in reducing the bias caused by
network interference.

Assumptions 4.3.3–4.3.7 are similar to the conditions considered in Leung (2020), except
that our focuses on demonstrating the impact of {Xj}mj=1. Because Assumption 4.1 assumes

that {Xj}mj=1 are independent and f̂j(t,Xj) is a function of Xj , we also assume that

{f̂j(t,Xj)}mj=1 are independent, but allowing f̂j(t,Xj) to be not identically distributed.

Assumption 4.3.3 further characterizes the behavior of {f̂j(1,Xj), f̂j(0,Xj)}mj=1. Finally,
Assumption 4.3.5–4.3.7 are introduced to demonstrate the impact of the rate of network
dependency on the asymptotic normality of CAE.
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Theorem 4.2 Suppose Assumptions 2.2, 4.1, 4.2, and 4.3 hold. τ̂CAE is consistent, i.e.,

τ̂CAE − τ(1,0) = m−1

{
m∑
j=1

(2Zj − 1)
[
f̂j(1,Xj) + f̂j(0,Xj)

]

+
m∑
j=1

[
f̂j(1,Xj)− f̂j(0,Xj)

]
+ 2

m∑
j=1

[Zj ε̂j(1)− (1− Zj)ε̂j(0)]

}
+ ΨDiff,Inf

= op(1). (3)

Furthermore, there exists σ2
m,CAE = m−1(σ2

Design +σ2
f +4mλ2−1σ2

ε ) with σ2
Design ≥ 0 such that

σ−1
m,CAE {τ̂CAE − τ(1,0)} D−→ N (0, 1) .

If complete randomization is used, then σ2
Design = σ̃2

f .

Remark 4.1 λ2 describes the impact of the network structure on the asymptotic behavior
of the error term in (3). Let Edj1,j2 denote the number of edges connecting clusters Cj1 and
Cj2, and let Ψmax,IN = maxi #Ni represent the maximum size of the neighborhood Ni. If
we assume Cov[εi(t), εi′(t)] <∞, then

σ2
m,Ind . O

(1 + Ψmax,IN)
m∑
j=1

n−1
j

 (4)

and σ2
m,Bet . O

∑
j1 6=j2

n−1
j1
n−1
j2

I{Zj1 = Zj2}Edj1,j2

 . (5)

Here, Ψmax,IN captures the level of inter-dependency within the clusters. The number of
correlated clusters considered in (5) is bounded by mΨmax,CL. If Ψmax,IN, Ψmax,CL, and
maxj1,j2(Edj1, j2) are all bounded, then a larger value of nj implies smaller values of σ2

m,Ind

and σ2
m,Bet. This further highlights the efficiency gained through the proposed CAE.

In practice, the rates of Ψmax,IN, Ψmax,CL, and maxj1,j2(Edj1,j2) could depend on n and
m. Assumptions 4.3.4–4.3.6 establish the conditions under which the rate of this dependency
does not affect the asymptotic normality of the third term in (3).

σ2
Design defined in Theorem 4.2 reflects the impact of the chosen randomization scheme

on the subsequent estimation of ATE with CAE. The difference σ̃2
f − σ2

Design illustrates the
efficiency gain resulting from the improved covariate balancing. In the general case where
the form of f̂j(t,X) is not explicitly assumed, σ2

Design may not have a close form. To unveil
the impact of CLAR on the theoretical properties of CAE, we study a specific scenario in
which the outcome follows a linear-in-means model.
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Corollary 4.1 Under the conditions of Theorem 4.2, consider the following outcome model:

Yi(t) = tiµ1 + (1− ti)µ0 + d−1
i

α1

∑
k∈Ni

tk + α0

∑
k∈Ni

(1− tk)


+X>j,CLβCLI{i ∈ Cj}+X>i,INβIN + εi,

where εi are i.i.d. N (0, σ2
e). Then f̂j(Xj) = f̂j(1,Xj) = f̂j(0,Xj) = (Xj,CL −µCL)>βCL +

(X̂j,IN−µIN)>βIN, ε̂j = ε̂j(1) = ε̂j(0) = n−1
j

∑
i∈Infj

εi, σ
2
f = 0, λ2 = 1, σ2

ε = λ̃INσ
2
e and the

following hold.

1. Under complete randomization, σ2
Design = 4

{
V[X>CLβCL] + λ̃INV[X>INβIN]

}
and

σ2
m,CAE = 4m−1

{
λ̃INσ

2
e + V[X>CLβCL] + λ̃INV[X>INβIN]

}
.

2. Suppose CLAR is implemented with ξj = Xj,CL, then σ2
Design = 4λ̃INV[X>INβIN], and

σ2
m,CAE = 4m−1

{
λ̃INσ

2
e + λ̃INV[X>INβIN]

}
.

3. Suppose CLAR is implemented with ξj = X̄j,IN. Let ζm = m−1/2
∑m

j=1(2Zj −
1)(X̂j,IN− X̄j,IN)>βIN and there exists σ2

diff > 0, such that V[ζm] = σ2
diff + o(1). Then,

σ2
Design = 4{V[X>CLβCL] + σ2

diff}, and

σ2
m,CAE = 4m−1

{
λ̃INσ

2
e + σ2

diff + V[X>CLβCL]
}
.

4. Suppose CLAR is implemented with ξj = Xj = (X>j,CL, X̄
>
j,IN)>, then σ2

Design = 4σ2
diff ,

and

σ2
m,CAE = 4m−1

{
λ̃INσ

2
e + σ2

diff

}
,

where σ2
diff is defined in 3.

Remark 4.2 We give the explicit expressions for σ2
m,CAE in Corollary 4.1 when f̂j(t,Xj)

is linear in Xj. This corollary reveals that σ2
Design depends on the chosen randomization

procedure and the selected covariates in the implementation of CLAR. The reduced values
of σ2

m,CAE when comparing the three randomization schemes underscore the efficiency gains

achieved from balancing covariates with CLAR. Moreover, including {X̄j,IN}mj=1 might not
entirely mitigate the variance of CAE associated with individual-level covariates due to
disparities between X̄j,IN and X̂j,IN. The effectiveness of balancing {X̄j,IN}mj=1 in enhancing

the efficiency of CAE could depend on the value of λ̃IN, which is related with the fractions
of the informative units {nj/cj}mj=1.
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5. Numerical Studies

In this section, we evaluate the finite sample properties of our proposed procedure with
hypothetical networks. The cluster sizes {cj}mj=1 are generated from a discrete power-law
distribution, with a parameter 4, and the parameter representing the minimum value of a
cluster, 12 (Kolaczyk, 2009). The clusters are generated from the small-world model (Watts
and Strogatz, 1998) to mimic the cluster structure in real applications. Finally, we generate
the edges that connect different clusters from a Rényi random graph with r×n edges, where
r ∈ {0.2, 0.4, ..., 2} represents the pre-specified reconnecting probability characterizing the
portion of edges that connects different clusters. Therefore, when the value of r increases,
the magnitude of the interference increases, resulting in more difficult situations to evaluate
the ATE.

The following model is assumed to generate the outcome:

Yi = Tiµ1 + (1− Ti)µ0 + α1d
−1
i

∑
k∈Ni

Tk + α0d
−1
i

∑
k∈Ni

(1− Tk)

+

m∑
j=1

X>j,CLβCLI{i ∈ Cj}+X>i,INβIN + ε∗i , (6)

ε∗i = εi +

m∑
j=1

Aijεj ,

where µ1 = 2 and µ0 = 1 are the direct effects and α1 = 2 and α0 = 1 are the spillover effects.
Therefore, the ATE is τ(1,0) = µ1−µ0 +α1−α0 = 2. The cluster-level covariates Xj,CL =
(Xj,1,CL, Xj,2,CL)> and the individual-level covariates Xi,IN = (Xi,1,IN, Xi,2,IN, Xi,3,IN)> are
generated as follows: Xj,1,CL, the scaled cluster size cj/E[cj ]; Xj,2,CL, the density of the j-th
cluster; Xi,1,IN, the indicator of being an outer node; Xi,2,IN, the number of edges connecting
with nodes in Cj′ if i ∈ Cj and j 6= j′; and Xi,3,IN, the number of edges connecting nodes in
Cj if i ∈ Cj . The associated effects of the cluster-level and individual-level covariates are
βCL = (1, 0.8)> and βIN = (1, 0.5, 0.5)>. The random errors εi are i.i.d. N(0, 22) and are
independent of {Xj,CL}mj=1 and {Xi,IN}ni=1.

We conduct 100 experiments with 100 networks, each containing m clusters, for m ∈
{50, 100, 200}. In the randomization step, we compare the following four design schemes: 1)
complete randomization (CR); 2) cluster-adaptive randomization (CLAR) with cluster-level
covariates (CL), ξj = Xj,CL (CLAR-CL); 3) CLAR with individual-level covariates (Ind),
ξj = X̄j,IN (CLAR-Ind); and 4) CLAR with both cluster and individual-levels covariates
(Both), ξj = (X>j,CL, X̄

>
j,IN)> (CLAR-Both). In the estimation step, we compare the cluster-

adaptive estimator (CAE) with the difference-in-means (DIM) estimator.

5.1 Evaluation of Covariates Balance under the Four Randomization Schemes

We first evaluate the performance of the four randomization schemes on balancing covari-
ates. Figure 1 indicates that the inclusion of the covariates in CLAR makes the distribution
of the Mahalanobis distance concentrated at zero. The performance in the balance of the
covariates improves as m increases and as more covariates are included in CLAR. There-
fore, the use of CLAR generally improves the balance of the covariates in terms of the
Mahalanobis distance.
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Figure 1: Histograms of the Mahalanobis distance Mm under different randomization
schemes and r ∈ {0.2, 1.0, 2.0}.
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The performance of CAE may be affected by the balance of covariates with respect to
Xj,CL and X̂j,IN. We then assess the finite sample properties of the four randomization

schemes on balancing (Xj,1,CL, Xj,2,CL, X̂j,1,IN, X̂j,2,IN) in Figure 2. The distributions of the
difference-in-covariates mean of the cluster-level covariates are more concentrated at zero
when these covariates are included in CLAR. On the other hand, the distributions under
CR or CLAR-Ind are more spread out. Note that X̂j,1,IN and X̂j,2,IN cannot be directly
balanced by CLAR, because their values still depend on the treatment assignments of other
clusters. Figure 2 shows that CLAR-Both and CLAR-CL have better balancing performance
for X̂j,IN than CLAR-Ind. It suggests that the inclusion of XCL in CLAR is necessary to

achieve the performance for balancing Xj,CL and X̂j,IN.

5.2 Comparison of Different Network A/B Testing Approaches

This section evaluates the impact of balancing cluster-level and individual-level covariates,
and the network interference on the estimation of τ(1,0). Table 1 compares the performance
of the DIM estimator and CAE under the four randomization schemes for selected values
of r. Figures 3 and 4 further evaluate the bias and the standard deviation for different
network A/B testing approaches.

Table 1: Evaluation of treatment effect with different network A/B testing approaches.

m Design
r = 0.2 r = 1.8

τ̂DIM τ̂CAE τ̂DIM τ̂CAE

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

50

CR -0.138 1.472 1.478 -0.011 0.952 0.952 -0.764 1.099 1.339 -0.017 1.407 1.407
CL -0.121 1.303 1.309 0.004 0.679 0.679 -0.755 0.878 1.158 -0.004 1.018 1.018
Ind -0.132 1.337 1.343 -0.013 0.724 0.724 -0.751 0.918 1.186 0.005 1.126 1.126
Both -0.128 1.320 1.327 -0.002 0.663 0.663 -0.750 0.871 1.150 0.003 0.992 0.992

100

CR -0.129 0.806 0.817 -0.005 0.663 0.663 -0.755 0.952 1.215 -0.006 0.983 0.983
CL -0.129 0.609 0.623 -0.002 0.477 0.477 -0.752 0.771 1.077 -0.002 0.713 0.713
Ind -0.122 0.680 0.690 0.001 0.496 0.496 -0.757 0.842 1.132 -0.006 0.789 0.789
Both -0.126 0.625 0.637 0.001 0.440 0.440 -0.751 0.786 1.087 -0.006 0.683 0.683

200

CR -0.127 1.174 1.181 0.001 0.471 0.471 -0.748 1.177 1.395 0.002 0.698 0.698
CL -0.131 1.107 1.115 -0.003 0.343 0.343 -0.742 1.099 1.326 0.004 0.504 0.504
Ind -0.125 1.130 1.137 -0.000 0.347 0.347 -0.749 1.135 1.360 -0.001 0.556 0.556
Both -0.128 1.121 1.128 -0.003 0.301 0.301 -0.749 1.115 1.343 0.001 0.477 0.477

Figure 3 shows that the proposed CAE is consistent, whereas the DIM estimator is
generally biased in the presence of interference. The bias for CAE is close to zero under
different values of r. However, the bias for the DIM estimator increases as r increases. It
is worth noting that the degrees of bias under different randomization schemes are close
for the same estimator. This suggests that a proper adjustment in the estimation step is
essential to achieve consistency in the presence of network interference.

Figure 4 demonstrates the impact of balancing covariates on the subsequent estimation
for τ(1,0). Although the standard deviation tends to be larger for the network with a
higher degree of interference, the curves of the standard deviation of CAE under CLAR are
below the curve under CR. This illustrates that the balancing covariates can improve the
efficiency of estimating τ(1,0) with CAE.

16



Cluster-Adaptive Network A/B Testing

m = 50

r

B
ia

s
−

0.
8

−
0.

4
0.

0

0.2 0.8 1.4 2.0

m = 100

r

−
0.

8
−

0.
4

0.
0

0.2 0.8 1.4 2.0

m = 200

r

−
0.

8
−

0.
4

0.
0

0.2 0.8 1.4 2.0

CR−DIM
CR−CAE

CL−DIM
CL−CAE

Ind−DIM
Ind−CAE

Both−DIM
Both−CAE

Bias = 0
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Figure 4: Standard deviations of
√
m∗ (τ̂CAE − τ(1,0)) under the four randomization

schemes.

Figure 5 further evaluates the distribution of CAE under the four randomization schemes.
The distribution of CAE under the design with better balance properties tends to be more
concentrated and has a smaller variance. Moreover, the CAEs under CLAR-CL and CLAR-
Both have similar performance in terms of the standard deviation and RMSE and are better
than the CAE under CLAR-Ind and CR. This may indicate that the balance of cluster-level
covariates is important for improving the efficiency of CAE.

To demonstrate the robust property of the CAE against the value of m∗, we report
different fractions of clusters and units included in CAE in Table 2. The values in Table 2
provides the evidence that Assumption 4.2 can be relaxed. Table 2 shows that m 6= m∗
holds when r ≥ 1.0, indicating the violation of Assumption 4.2. Furthermore, the fraction of
informative units per cluster reduces as r increases. In such situations, we can still observe
that the use of CLAR can reduce the standard deviation of CAE. For instance, as shown
in Table 1, when m = 200 and r = 1.8 the standard deviation of CAE under CLAR-CL,
CLAR-Ind, and CLAR-Both are 0.504, 0.556 and 0.477, respectively, and are smaller than
the value under CR, i.e., 0.698. This further demonstrates the desirable properties of our
proposed procedure.
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Figure 5: Distributions of
√
m∗(τ̂CAE − τ(1,0)) under the four randomization schemes.

Table 2: Average fractions of clusters and samples included in CAE: ρ1 = m−1m∗, ρ2 =
n−1E[

∑
j nj ], and ρ3 =

∑m
j=1 c

−1
j E[nj ].

r
Fraction(%) 0.2 0.6 1.0 1.4 1.8

CR
ρ1 100.00 100.00 99.80 98.13 92.84
ρ2 82.10 55.41 37.46 25.39 17.19
ρ3 82.05 55.29 37.36 25.28 17.11

CL
ρ1 100.00 100.00 99.83 98.33 93.13
ρ2 81.87 54.87 36.77 24.67 16.48
ρ3 81.86 54.84 36.77 24.64 16.47

Ind
ρ1 100.00 100.00 99.81 98.23 92.92
ρ2 81.93 55.06 37.02 24.92 16.74
ρ3 81.88 54.95 36.92 24.82 16.66

Both
ρ1 100.00 100.00 99.83 98.31 93.10
ρ2 81.86 54.89 36.79 24.69 16.51
ρ3 81.84 54.84 36.77 24.65 16.49
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In Appendix B, we present an example to evaluate the performance of our proposed
procedure when the clusters are generated from stochastic block models. These results are
consistent with our findings presented in this section.

6. Real Data Example

In this section, a real-world social network drawn from a large-scale field experiment is
presented to further demonstrate the property of the proposed procedure. The experiment
was designed to study an anti-conflict intervention adjusting the social norm of community
members in 56 US middle schools in New Jersey (Paluck et al., 2016). Through social con-
nections, some of the students may attract more students’ attention and spread perceptions
of conflict as less socially normative. Pre-randomization surveys were conducted to measure
social connections in schools and to map the complete social network. This dataset is avail-
able at https://www.icpsr.umich.edu/web/civicleads/studies/37070/versions/V2.
We redesign and analyze this study to detect the impact of the intervention if all students
receive the treatment, i.e., the “all versus nothing” treatment effect. Since students in the
same grade are more likely to be connected to each other, 146 clusters were formed by
stratifying the schools and grades of the students. Figure 6 presents an illustrative graph
of a school, where students in four grades are labeled with four colors.

Grade

5

6

7

8

Degree

[1,9]
(9,11]

(11,14]

(14,28]

Figure 6: The network graph within one school as a subgraph of the full network dataset.
There are four clusters (grades) in this school represented by four colors.
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The outcome variable is the attitude toward conflict (ATC) score, which summarizes
the questions evaluating the anti-conflict attitude of a student. The formula for calculating
ATC is presented in Appendix C. The synthetic data of 146 clusters and 19, 929 students
are generated according to the following fitted linear model:

ATCi = 3.05Ti + 2.82(1− Ti) + 0.51d−1
i

∑
k∈Ni

Tk + 0.33d−1
i

∑
k∈Ni

(1− Tk)

− 0.31Gradei,1 − 0.78Gradei,2 − 1.23Gradei,3

+

m∑
j=1

X>j,CLβCLI{i ∈ Cj}+X>i,INβIN + εi, (7)

where Xi,IN = (Xi,1,IN, . . . , Xi,5,IN)>, Xj,CL = (Xj,1,CL, . . . , Xi,4,CL)>, βIN = (−0.29,−0.41,
0.09, 0.06,−0.06)>, and βCL = (−0.43, 0.21,−0.18,−3.43)>, and τ(1,0) = 0.41. Detailed
information of the covariates and data are presented in Apprendix C.

To perform network A/B testing, we consider the following four approaches in the
randomization step: 1. complete randomization (CR); 2. CLAR with cluster-level covariates
(CLAR-CL); 3. CLAR with individual-level covariates (CLAR-Ind); and 4. CLAR with
both cluster-level and individual-level covariates (CLAR-Both). For estimating ATE, we
compare the difference-in-means (DIM) estimator with CAE. All of the simulation studies
are based on 10,000 replications.

Xj, 1, CL Xj, 2, CL Xj, 3, CL Xj, 4, CL X̂j, 1, IN X̂j, 2, IN X̂j, 3, IN X̂j, 4, IN X̂j, 5, IN

CR

−
0.

6
−

0.
3

0
0.

3
0.

6

Xj, 1, CL Xj, 2, CL Xj, 3, CL Xj, 4, CL X̂j, 1, IN X̂j, 2, IN X̂j, 3, IN X̂j, 4, IN X̂j, 5, IN

Ind

−
0.

6
−

0.
3

0
0.

3
0.

6

Xj, 1, CL Xj, 2, CL Xj, 3, CL Xj, 4, CL X̂j, 1, IN X̂j, 2, IN X̂j, 3, IN X̂j, 4, IN X̂j, 5, IN

CL

−
0.

6
−

0.
3

0
0.

3
0.

6

Xj, 1, CL Xj, 2, CL Xj, 3, CL Xj, 4, CL X̂j, 1, IN X̂j, 2, IN X̂j, 3, IN X̂j, 4, IN X̂j, 5, IN

Both

−
0.

6
−

0.
3

0
0.

3
0.

6

Figure 7: Distribution of difference-in covariate means for Xj,CL and X̂j,IN under the four
randomization schemes.
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Figure 7 evaluates the balance properties of the four randomization schemes. Compared
to CR, the use of covariates in CLAR generally improves its performance on covariates
balancing. Although CLAR-Ind achieves finer balance for the individual-level covariates, it
may not generate sufficient balance for the cluster-level covariates. Similarly, the balance
of cluster-level covariates may not imply the adequate balance for the individual-level co-
variates. On the other hand, CLAR-Both ensures the balance for both of the two levels of
covariates simultaneously.

Table 3: Bias, standard deviation (SD) and MSE for different A/B testing approaches.

τ̂DIM (10−2) τ̂CAE (10−2)
|Bias/τ(1,0)| Bias SD RMSE |Bias/τ(1,0)| Bias SD RMSE

CR 4.921 -2.018 8.677 8.908 0.844 -0.346 8.308 8.315
CL 5.046 -2.069 7.582 7.859 1.065 -0.437 7.581 7.594
Ind 5.075 -2.081 8.429 8.682 0.741 -0.304 7.866 7.872
Both 5.033 -2.061 7.500 7.778 0.982 -0.403 7.071 7.082

Table 3 investigates the properties of different network A/B testing procedures for es-
timating τ(1,0). The DIM estimator generally has a larger bias than CAE regardless of
randomization schemes. Combining with the conclusion drawn from Figure 7, Table 3 also
indicates that CAE under the randomization scheme with finer covariate balancing prop-
erties achieves higher efficiency, that is, CAE under CLAR-Both has the minimal standard
deviation and the minimal RMSE.

7. Conclusions

In this article, we introduce a novel cluster-adaptive network A/B testing procedure aimed
at enhancing the balance of covariates and improving the efficiency of ATE estimation. Our
approach combines the CLAR for the randomization step and the CAE for the estimation
step. The primary goal is to achieve finer covariate balance, leading to enhanced comparable
treatment arms, with an extra gain of an improved accuracy on the estimation of ATE.
Moreover, we establish the convergence rate of the imbalance measure, which provides
a foundation for understanding the effectiveness of our procedure in achieving covariate
balancing. The asymptotic properties of CAE under CLAR are derived, highlighting the
efficiency gain obtained from the enhanced covariate balance. Our theoretical findings,
together with numerical simulations, underscore the superiority of our approach over purely
relying on complete randomization for the estimation of ATE.

The use of informative units in estimation leads to an inevitable loss of balancing ability
with CLAR as we demonstrated in Section 5 and Corollary 4.1. This issue can be partially
solved with the rerandomized-adaptive randomization proposed in Liu et al. (2022). Conse-
quently, the resulting covariate balancing may lead to a further improved ATE estimation.

Our proposed network A/B testing procedure is particularly suitable for networks char-
acterized by sparsely connected clusters. However, in cases where the observed network
has less densely connected clusters, Assumption 4.3 might not hold. This situation could
also hinder the identifiability of the ”all versus nothing” average treatment effect even with
neighborhood treatment assumptions and graph-cluster randomization. In such instances,
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an alternative estimand, such as the overall treatment effect (Forastiere et al., 2021; Sävje
et al., 2021), might be more appropriate. It would be interesting to study the potential gain
of balancing individual-level network characteristics in estimating the treatment effect for
this type of problem.

Assumption 4.3 depends largely on the assumption of a homogeneous treatment effect,
which may not always hold in practical scenarios. When the covariates of a cluster interact
with the treatment, the effect estimated from different clusters may vary. Moreover, the
outer nodes linked to distinct clusters could experience various spillover effects. An po-
tentially useful approach to address this issue and to estimate such heterogeneous effects
within the context of network interference may involve combining our proposed A/B test-
ing procedure with the tree-based method presented in Bargagli-Stoffi et al. (2020). This
problem is left as an important direction for future research.

Performing statistical inference for the treatment effect is also of great importance in
A/B testing (Ma et al., 2015, 2020). It would be straightforward to conduct the random-
ization test (Athey et al., 2018; Basse et al., 2019; Pouget-Abadie et al., 2019) using our
proposed network A/B testing procedure. Alternatively, a Wald type of inference could
be developed based on the asymptotic properties of the CAE. This approach requires an
accurate estimate of the standard error of the CAE. It would be desirable to extend the
framework proposed in this paper to obtain a valid statistical inference for the network A/B
testing problem.

In practice, the presence of influential unobserved covariates poses a persistent challenge,
potentially affecting the estimation of the ATE (Rosenbaum et al., 2010; Rosenberger and
Lachin, 2015). From a design perspective, it is always important to ensure the comparabil-
ity of the treatment arm with respect to both of the observed and unobserved covariates.
Additionally, the impact of unobserved covariates on the subsequent ATE inference are es-
sential for developing robust inference against varied unobserved covariates settings. Recent
work by Liu and Hu (2022) studies the properties of a class of covariate-adaptive random-
ization for balancing unobserved covariates. Liu and Hu (2023) further extends their work
to study the subsequent statistical inference. It is desirable to extend their work to address
the challenges posed by unobserved covariates within the context of network A/B testing.
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Appendix A. Proof of the Main Results

This section provides the proof and supplementary lemmas for our theoretical results. We
prove the balance properties of CLAR in Section A.1. The asymptotic properties of CAE
are investigated in Section A.2.

A.1 Cluster-Adaptive Randomization

When applying CLAR to balance covariates, we consider: (1) using cluster-level covariates
ξj = Xj,CL; (2) using individual-level covariates by setting ξj = X̄j,IN; or (3) using both of
the two levels of covariates ξj = (Xj,CL, X̄

>
j,IN)>. Because (1) and (2) can be understood as

special cases of (3), we will only prove our theoretical results with ξj = (Xj,CL, X̄
>
j,IN)>.

By LLN and Assumption 4.1, it follows that

ξ̄ = m−1
∑m

j=1 ξj = µξ + op(1), and Sm = Σξξ + op(1),

where Σξξ is positive definite. Then, (1) is equivalent to

M̃2k =
k

2

(
ξ̄1,2k − ξ̄0,2k

)>
Σ−1
ξξ

(
ξ̄1,2k − ξ̄0,2k

)
=

1

2k
Λ>k Λk, (8)

where Λk =
∑k

j=1 ∆j =
∑k

j=1(2Z2j−1− 1)(η2j−1−η2j) and ηj = Σ
−1/2
ξξ (ξj − µξ). Further-

more, (8) implies that

M̃
(0)
2k − M̃

(1)
2k =

2

k
(Λk−1 + ∆k)

> (Λk−1 + ∆k)−
2

k
(Λk−1 −∆k)

> (Λk−1 −∆k)

=
8

k
∆>k Λk−1,

and

E[M̃
(0)
2k − M̃

(1)
2k |Λk−1,η2k−1,η2k]

= −8

k
(2ρ− 1)sign

{
(η2k−1 − η2k)

>Λk−1

}
(η2k−1 − η2k)

>Λk−1,

for ρ > 1/2. Analyzing the signs of (η2k−1 − η2k)
>Λk−1 yields that the assignment of a

pair of treatments (Z2k−1, Z2k) by CLAR is always in the direction to minimizing |Λk−1| to
zero. Therefore, {Λk}∞k=1 is a Markov chain under CLAR.

We study the properties of {Λk}∞k=1 in the following lemmas, which are the building
blocks for the proof of Theorem 4.1 and Theorem 4.2.

Lemma A.1 Suppose Assumption 4.1 holds and E [‖η‖a] < ∞ for a given a > 2. Then

E[‖Λm‖2] = O(m
1
a−1 ) and Λm = Op(m

1
2(a−1) ) = op(m

1
2 ).
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Proof We follow Ma et al. (2024) to derive this lemma. For a vector u = (u1, . . . , ud)
> ∈

Rd, let ‖u‖2 = u>u =
∑d

k=1 u
2
k. By Taylor expansion and some calculations, we have

‖u+ v‖a − ‖u‖a ≤ a(u>v)‖u‖a−2 + Ja(‖v‖a + ‖v‖2‖u‖a−2) (9)

for a > 2, u,v ∈ Rp, and Ja is a constant depending on a. Setting u = Λk and v = ∆k =
(2T2k−1 − 1)(η2k−1 − η2k) arrives

‖Λk‖a − ‖Λk−1‖a ≤ a(Λ>k−1∆k)‖Λk−1‖a−2

+ Ja
{
‖η2k−1 − η2k‖a + ‖η2k−1 − η2k‖2‖Λk−1‖a−2

}
.

It follows that

E[‖Λk‖a|Fk−1]− ‖Λk−1‖a ≤ −a(2q − 1)E
[∣∣∣(η2k−1 − η2k)

>Λk−1

∣∣∣∣∣∣Fk−1

]
‖Λk−1‖a−2

+ 2Ja
{
E [‖η‖a] + E

[
‖η‖2

]
‖Λk−1‖a−2

}
. (10)

To derive a sharper bound for (10), set Λ̃k = ‖Λk‖−1Λk, such that Λ̃>k Λ̃k = ‖Λk‖2‖Λk‖−2 =
1. Then, we have

E
[∣∣∣(η2k−1 − η2k)

>Λk−1

∣∣∣∣∣∣Fk−1

]
= ‖Λk‖E

[∣∣∣(η2k−1 − η2k)
>Λ̃k−1

∣∣∣∣∣∣Fk−1

]
≥ ‖Λk‖ inf

Λ̃>k Λ̃k=1
E
[∣∣∣(η2k−1 − η2k)

>Λ̃k−1

∣∣∣∣∣∣Fk−1

]
= 2‖Λk‖

provided that V[η2k−1 − η2k] = 2I and its minimal eigenvalue is 2, where I is the identity
matrix and η2k−1 and η2k are independent. This suggests that

E[‖Λk‖a|Fk−1]− ‖Λk−1‖a ≤ −a2(2q − 1) ‖Λk−1‖a−1

+ 2Ja
{
E [‖η‖a] + E

[
‖η‖2

]
‖Λk−1‖a−2

}
. (11)

Since f(x) = −c1x
a−1 + c2x

a−2 + c3 for x ≥ 0 has a unique upper bound determined by the
constants c1, c2, c3 and ‖Λk‖ ≥ 0, there exists J ′a such that

E[‖Λk‖a|Fk−1]− ‖Λk−1‖a ≤ J ′a,
and hence E[‖Λk‖a] ≤ J ′a + E[‖Λk−1‖a] ≤ kJ ′a.

For a = 2, it follows from (11) that

E
[
‖Λk‖2

]
≤ E

[
‖Λk−1‖2

]
− 4(2ρ− 1)E [‖Λk−1‖] + 2J2E ‖η‖2 ,

and thus E
[
‖Λk‖2

]
≤ E

[
‖Λk−1‖2

]
when E [‖Λk−1‖] > (4(2ρ − 1))−12J2E ‖η‖2 . Conse-

quently, choose k̃ to be the largest j for 1 ≤ j ≤ k satisfying

E [‖Λk−1‖] ≤ (4(2ρ− 1))−12J2E ‖η‖2 ,
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then we have

E
[
‖Λk‖2

]
≤ E

[
‖Λk̃+1‖

2
]
≤ E

[
‖Λk̃‖

2
]

+ 2J2E‖η‖2. (12)

Finally, for a > 2, setting s = a − 1 and t = a−1
a−2 such that s−1 + t−1 = 1, then Hölder

inequality implies that

E
[
‖Λk̃‖

2
]

= E
[
‖Λk̃‖

a−2
a−1 · ‖Λk̃‖

1
a−1

+1
]

≤
{
E
[
‖Λk̃‖

a−2
a−1
·t
]} 1

t
{
E
[∥∥Λk̃

∥∥( 1
a−1

+1)s
]} 1

s

=
(
E‖Λk̃‖

) 1
t
{
E
[
‖Λk̃‖

a
]} 1

s ≤ (k̃)
1
a−1J ′a + 2J2E‖η‖2. (13)

Plugging (13) in (12) gives

E[‖Λm‖2] ≤ m
1
a−1J ′a + 2J2E‖η‖2 = O(m

1
a−1 ).

This completes the proof for this lemma.

We next prove Theorem 4.1 in the following lemma.

Lemma A.2 Under the condition of Lemma A.1, Mm = Op(m
−1).

Proof First, assume m = 2k, and plugging the result of Lemma A.1 in (8), we have

M̃2k =
Λ>k Λk

2k
= op(k

1/2)op(k
1/2) · 1

2k
= op(1).

Next, assume m = 2k + 1, then we have

M̃2k+1 =
2k + 1

4

(
ξ̄1,2k+1 − ξ̄0,2k+1

)
Σ−1
ξξ

(
ξ̄1,2k+1 − ξ̄0,2k+1

)
=

1

2k
{Λk + (2Z2k+1 − 1)η2k+1}> {Λk + (2Z2k+1 − 1)η2k+1}+ op(k

−1)

=
1

2k

(
Λ>k Λk + 2(2Z2k+1 − 1)η>2k+1Λk + η>2k+1η2k+1

)
+ op(1)

=
Λ>k Λk

2k
+Op(k

−1) = op(1),

provided that 2Z2k+1 − 1 equals either 1 or -1 and η2k+1 = Op(1), when k goes to infinity.
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The following lemma ensures that the Poisson equation associated with the chain {Λk}∞k=1

admits a proper root, which provides the foundation for deriving property of CAE under
CLAR.

Lemma A.3 Under Assumption 4.1, {Λk}∞k=1 is a positive Harris recurrent Markov chain.

Proof It is obvious that {Λk}∞k=1 is a Markov chain with period 4. Let Pλ(x,A) denote
the transition probability measure of {Λk}∞k=1. It follows from (11) that

Pλ ‖Λ‖a − ‖Λ‖a ≤ −a(2ρ− 1)‖Λ‖a−1 + 2Ja

{
E[‖η‖a] + E[‖η‖2] ‖Λ‖a−2

}
≤ 1− a(ρ− 1/2)‖Λ‖a−1 + bI{‖Λ‖ ≤ c} (14)

for some b, c > 0. Then {Λk}∞k=1 is a positive Harris recurrent Markov chain, if {Λk}∞k=1

is ψ-irreducible and {‖Λ‖ ≤ c} is petite for every c > 0 by Theorems 11.3.4, 14.2.3 and
14.3.6 of Meyn and Tweedie (2013). To see this, we follow Section 4.2 of Meyn and Tweedie
(2013) and define the resolvent K1/2(x,A) as

K1/2(x,A) =
∞∑
k=0

Pk
λ(x,A)2−(k+1).

The key is to show that there exists φ(·) > 0 such that

K1/2(x,A) ≥
∫
A−x φ(y)dy for any Borel set A, (15)

then {Λk}∞k=1 is a ψ-irreducible T -chain by Proposition 5.5.5 and Theorem 6.0.1 of Meyn
and Tweedie (2013).

To begin with, note that

P {Λk ∈ A|Λk−1 = x,η2k−1,η2k}
= P {Λk + (2Z2k−1 − 1)(η2k−1 − η2k) ∈ A|Λk−1,η2k−1,η2k}
= P {Λk + (η2k−1 − η2k) ∈ A|Λk−1,η2k−1,η2k, Z2k−1 = 1, Z2k = 0}
× P {Z2k−1 = 1, Z2k = 0|Λk−1,η2k−1,η2k}
+ P {Λk − (η2k−1 − η2k) ∈ A|Λk−1,η2k−1,η2k, Z2k−1 = 1, Z2k = 0}
× P {Z2k−1 = 0, Z2k = 1|Λk−1,η2k−1,η2k} ,

let Γη(y) denote the joint distribution of η2k−1,η2k, then it follows from taking the integral
on both sides of the above equation that

P {Λk ∈ A|Λk−1}
≥ q ∧ (1− q)P {Λk + (η2k−1 − η2k) ∈ A|Λk−1 = x,η2k−1,η2k}
= q ∧ (1− q)I{Λk−1 = x}Γη(A− x),

and

P {Λk ∈ A|Λk−1 = x,η2k−1,η2k}
≥ ρ ∧ (1− ρ)P {Λk − (η2k−1 − η2k) ∈ A|Λk−1 = x,η2k−1,η2k}
= ρ ∧ (1− ρ)I{Λk−1 = x}Γ−η(A− x).
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By the Chapman-Kolmogorov equations, for some nc > 0 and n0 > 0, we have

P2nck
λ (x,A) = P {Λ2nck+n0 ∈ A|Λn0 = x}

≥ P {Λnck+n0 ∈ A|Λn0 = x}P {Λ2nck+n0 ∈ A|Λnck+n0 ∈ A}
≥ {ρ ∧ (1− ρ)}2nck Γnckη ∗ Γnck−η (A− x)

≥ {ρ ∧ (1− ρ)}2nck c2k
γ

∫
A−x

γ̃k∗(y)dy

where Γkη(y) is the k-convolution of (η>1 ,η
>
2 )>, Γη ∗Γ−η(y) is the convolution of (η>1 ,η

>
2 )>

and (−η>1 ,−η>2 )>, and γ̃(y) = γ(y) ∗ γ(−y) is convolution of γ(y) and γ(−y). Combining
the above equation with the definition of the resolvent, we have

K1/2(x,A) =
∞∑
k=0

Pk
λ(x,A)2−(k+1)

≥ 2−1
∞∑
k=0

P2nck
λ (x,A)2−2nck

≥
∫
A−x

2−1
∞∑
k=0

{
[ρ ∧ (1− ρ)]2nc c2

γ

}k
γ̃k∗(y)dy =

∫
A−x

φ(y)dy,

by setting φ(y) = 2−1
∑∞

k=0

{
[ρ ∧ (1− ρ)]2nc c2

γ

}k
γ̃k∗(y)dy. This completes the proof for

this lemma.

A.2 Cluster-Adjusted Estimator

We first derive the decomposition of τ̂CAE. First, notice that

τ̂CAE − τ(1,0) = Bm,1 +Bm,2 +Bm,3 +Bm,4,

where

Bm,1 =
1

m1

m∑
j=1

Zj

(
Ŷj(1)− µ̂j(1)

)
− 1

m0

m∑
j=1

(1− Zj)
(
Ŷj(0)− µ̂j(0)

)
,

Bm,2 =
1

m1

m∑
j=1

Zj
(
µ̂j(1)− µ̂cj(1)

) cj − nj
cj

− 1

m0

m∑
j=1

(1− Zj)
(
µ̂j(0)− µ̂cj(0)

) cj − nj
cj

,

Bm,3 =
m∑
j=1

{(
Zj
m1
− 1

m

)
µ̄j(1)−

(
1− Zj
m0

− 1

m

)
µ̄j(0)

}
,

Bm,4 =
m∑
j=1

(
1

m
− cj
n

)
[µ̄j(1)− µ̄j(0)] ,

µ̂j(t) = n−1
j

∑
i∈Infj

E[Yi(t)], and µ̂cj(t) = e−1
j

∑
i∈Infcj∩Cj

E[Yi(t)] for t ∈ {0,1}.
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It is easy to check from Assumption 4.3.1 that Bm,3 = Bm,4 = 0. We next derive the
bias term Bm,2. It follows from the definition of ΨDiff,Inf in Assumption 4.3.2 that

1

m1

m∑
j=1

Zj
(
µ̂j(1)− µ̂cj(1)

) cj − nj
cj

− 1

m0

m∑
j=1

(1− Zj)
(
µ̂j(0)− µ̂cj(0)

) cj − nj
cj

≤ 1

m1

m∑
j=1

∣∣∣∣cj − njcj

∣∣∣∣ · ∣∣µ̂j(1)− µ̂cj(1)
∣∣+

1

m0

m∑
j=1

∣∣∣∣cj − njcj

∣∣∣∣ · ∣∣µ̂j(0)− µ̂cj(0)
∣∣

.
2

m

m∑
j=1

∣∣∣∣cj − njcj

∣∣∣∣ · {∣∣µ̂j(1)− µ̂cj(1)
∣∣+
∣∣µ̂j(0)− µ̂cj(0)

∣∣} ≤ 2ΨDiff,Inf.

We next derive Bm,1 as follows:

Bm,1 =
1

m1

m∑
j=1

Zj

(
Ŷj(1)− µ̂j(1)

)
− 1

m0

m∑
j=1

(1− Zj)
(
Ŷj(0)− µ̂j(0)

)
= m−1

(
1 +

Dm

m

)−1(
1− Dm

m

)−1{
Rm,1 −

Dm

m
·Rm,2

}
, (16)

where Rm,1 =
m∑
j=1

(2Zj − 1)
[(
Ŷj(1) + Ŷj(0)

)
− (µ̂j(1) + µ̂j(0))

]
+

m∑
j=1

[(
Ŷj(1)− Ŷj(0)

)
− (µ̂j(1)− µ̂j(0))

]
,

and Rm,2 =

m∑
j=1

(2Zj − 1)
[(
Ŷj(1)− Ŷj(0)

)
− (µ̂j(1)− µ̂j(0))

]
+

m∑
j=1

[(
Ŷj(1) + Ŷj(0)

)
− (µ̂j(1) + µ̂j(0))

]
.

Note that under either CLAR or CR, m−1/2Dm = Op(1) and thus (1 +m−1Dm)−1(1−
m−1Dm)−1 = 1 + op(1). By Lemmas A.4, A.5 and A.6 derived below, it follows that
(mσm,CAE)−1Rm,2 = Op(1). The above two results combing with (16) give

σ−1
m,CAE (τ̂CAE − τ(1,0)) = (mσm,CAE)−1(Rm,1 +mBm,2) + op(1). (17)

To derive the normality of the CAE, we can further decompose Rm,1 and Rm,2 as follows:

Rm,1 = Rm,1,1 +Rm,1,2 + 2Rm,1,3,

Rm,2 = Rm,2,1 +Rm,2,2 + 2Rm,2,3,

where Rm,1,1 =
∑m

j=1(2Zj − 1)[f̂j(1,Xj) + f̂j(0,Xj)], Rm,2,1 =
∑m

j=1(2Zj − 1)[f̂j(1,Xj)−
f̂j(0,Xj)], Rm,1,2 =

∑m
j=1[f̂j(1,Xj) − f̂j(0,Xj)], Rm,2,2 =

∑m
j=1[f̂j(1,Xj) + f̂j(0,Xj)],

Rm,1,3 =
∑m

j=1[Zj ε̂j(1)− (1− Zj)ε̂j(0)], and Rm,2,3 =
∑m

j=1[Zj ε̂j(1) + (1− Zj)ε̂j(0)].
Based on the decomposition given above, we derive the properties of Rm,1,1, Rm,1,2,

Rm,1,3, Rm,2,1, Rm,2,2, and Rm,2,3 in the following lemmas. Then we prove Theorem 4.2 and
Corollary 4.1 in Sections A.2.1 and A.2.2, respectively.

28



Cluster-Adaptive Network A/B Testing

Lemma A.4 Suppose Assumptions 2.2, 4.1, 4.2, and 4.3 hold. Under CLAR, there exists
σ2

Design > 0 and σ̃2
Design > 0 such that

m−1/2 (Rm,1,1, Rm,1,2)
D−→ (ζ1,1, ζ1,2)> and m−1/2 (Rm,2,1, Rm,2,2)

D−→ (ζ2,1, ζ2,2)> .

Here, ζ1,1 and ζ1,2 are independent and satisfy that ζ1,1 ∼ N (0, σ2
Design) and ζ1,2 ∼ N (0, σ2

f ),

and ζ2,1 and ζ2,2 are independent and satisfy ζ2,1 ∼ N (0, σ̃2
Design) and ζ2,2 ∼ N (0, σ̃2

f ).

Proof
Note that the derivation for the joint distribution of (Rm,2,1, Rm,2,2)> is an analog to that

of (Rm,1,1, Rm,1,2)>. Therefore, we only derive the joint distribution of (Rm,1,1, Rm,1,2)> for
the simplicity of presentation. Without loss of generality, we assume that m is even. Let
rj,1,1 = (2Zj − 1)[f̂j(1,Xj) + f̂j(0,Xj)] and rj,1,2 = f̂j(1,Xj) − f̂j(0,Xj). By Assump-

tion 4.3.1, E[f̂j(t,Xj)|F̃k] = 0 for t ∈ {1,0}, it follows that

E
[
r2k−1,1,1 + r2k,1,1| F̃k−1

]
= −(2ρ− 1)E

[{(
f̂2k−1(1,X2k−1)− f̂2k(1,X2k)

)
+
(
f̂2k−1(0,X2k−1)− f̂2k(0,X2k)

)}
sign

{
(η2k−1 − η2k)

>Λk−1

} ∣∣∣∣∣F̃k−1

]
:= h(Λk−1),

and E
[
r2k−1,1,2 + r2k,1,2| F̃k−1

]
= 0.

Note that h(Λk−1) < maxk E|f̂2k−1(1,X2k−1) − f̂2k(1,X2k)| + maxk E|f̂2k−1(0,X2k−1) −
f̂2k(0,X2k)| ≤ ∞. By Lemma A.3, {Λk}∞k=1 is a positive Harris recurrent Markov chain
satisfying h(−Λ) = −h(Λ). Let πλ(·) and Pλ(x,A) denote the invariant probability measure
and the transition probability measure of {Λk}. Furthermore, let Pλ[h(Λ)] =

∫
h(y)dPλ(Λ, dy)

and consider the following Poisson equation:

ĥ(Λ)−Pλĥ(Λ) = h(Λ)− πλ(Λ). (18)

It follows from (14) and Theorem 14.3.7 of Meyn and Tweedie (2013) that πλ(‖Λ‖a−1) ≤
b/[a(q − 1/2)c0] and thus maxn E[‖Λ‖a−1] < ∞. Take a = 2, and it follows from Theorem
17.4.2 of Meyn and Tweedie (2013) with V = ‖Λ‖2 that the Poisson equation (18) admits

a solution satisfying the bound
∣∣∣ĥ(Λ)

∣∣∣ ≤ K(‖Λ‖2 + 1) for some K > 0.

By the symmetry of Zj and 1−Zj , the transition probabilities for {Λk} equal to that of

{−Λk}. Hence, πλ(·) is symmetric, πλ(h) = 0, ĥ(Λ)−Pλĥ(Λ) = h(Λ), and ĥ(−Λ) = −ĥ(Λ).
Let ∆rk,1,1 = (r2k−1,1,1+r2k,1,1)−E[r2k−1,1,1+r2k,1,1|F̃k−1], ∆rk,1,2 = ĥ(Λk)−E[ĥ(Λk)|F̃k−1],

and ∆rk,1,3 = [f̂2k−1(1, ξ)− f̂2k−1(0, ξ)] + [f̂2k(1, ξ)− f̂2k(0, ξ)], then it follows that

m∑
j=1

rj,1,1 =

m/2∑
k=1

{∆rk,1,1 + ∆rk,1,2}+ ĥ(Λ0)− ĥ(Λm/2),

m∑
j=1

rj,1,2 =

m/2∑
k=1

∆rk,1,3,
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where {∆rk,1,1 + ∆rk,1,2 + ∆rk,1,3}
m/2
k=1 is a sequence of zero-mean martingale differences.

Since πλ(V 2) = πλ(‖Λ‖4) <∞, it follows from Theorem 17.5.3 of Meyn and Tweedie (2013)
and the ergodic theorem that there exists σ2

Design > 0 such that

1

m

m/2∑
k=1

E
[
(∆rk,1,1 + ∆rk,1,2)2|F̃k−1

]
:= σ2

Design + op(1),

and
1

m

m/2∑
k=1

E
[
∆r2

k,1,3|F̃k−1

]
=

1

m

m∑
j=1

V[f̂j(1, ξ)− f̂j(1, ξ)|F̃0] = σ2
f .

It is easy to verify that {2Z2k−1−1), 2Z2k−1,Λk−1, ξ2k−1, ξ2k}
D
= {−(2Z2k−1−1),−(2Z2k−

1),−Λk−1, ξ2k−1, ξ2k} under πλ, so that

Eπλ [(∆rk,1,1 + ∆rk,1,2)∆rk,1,3] = −Eπλ [(∆rk,1,1 + ∆rk,1,2)∆rk,1,3],

and thus Eπλ [(∆rk,1,1 + ∆rk,1,2)∆rk,1,3] = 0 and

1

m

m/2∑
k=1

E[(∆rk,1,1 + ∆rk,1,2)∆rk,1,3|F̃k−1] = 0 + op(1).

Therefore, the Lemma A.4 follows from Theorem 17.5.3 of Meyn and Tweedie (2013) and
the martingale central limit theorem (Hall and Heyde, 1980, Theorem 3.2).

Lemma A.5 Suppose Assumptions 2.2, 4.1, 4.2, and 4.3 hold. Under CR,

m−1/2 (Rm,1,1, Rm,1,2)
D−→ (ζ1,1, ζ1,2)> and m−1/2 (Rm,2,1, Rm,2,2)

D−→ (ζ2,1, ζ2,2)> .

Here ζ1,1 and ζ1,2 are independent and satisfy ζ1,1 ∼ N (0, σ̃2
f ) and ζ1,2 ∼ N (0, σ2

f ), and ζ2,1

and ζ2,2 are independent and satisfy ζ2,1 ∼ N (0, σ2
f ) and ζ2,2 ∼ N (0, σ̃2

f ).

Proof The proof of this lemma simply follows from the proof of the Lemma A.4 and the
fact that {Zj}mj=1 and {Xj}mj=1 are independent.

To deal with the network correlated errors, define the following indicator

Gi1,i2 = I
{
Ai1,i2 + max

i3
Ai1,i3Ai2,i3 + I{i1 6= i2, and Ti1 = Ti2}

}
,

for 1 ≤ i1, i2 ≤ n. The properties of Rm,1,3 and Rm,2,3 are studied in the following lemma.

Lemma A.6 Suppose Assumptions 2.2, 4.1, 4.2, and 4.3 hold. There exists a > 0 such
that conditioning on Zm, Ξm and F̃0, for k = 1, 2,

dw

(
R̃m,k,3,N (0, 1)

)
≤

Ψ2
max,CL

σ3
m,ε

m∑
j=1

{
E |ε̂j(1)|3 + E |ε̂j(0)|3

}

+

√
26Ψ

3/2
max,CL√

πσ2
m,ε

√√√√ m∑
j=1

{
E[ε̂4j (1)] + E[ε̂4j (0)]

}
= O(m−a), (19)
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where R̃m,k,3 = σ−1
m,εRm,k,3 and dw(X,Y ) represents the Wasserstein distance between X

and Y . Then, conditioning on Zm, Ξm and F̃0, R̃m,k,3
D−→ N (0, 1) for k = 1, 2.

Proof The proof contains two steps. In the first step, we show that V[R̃m,k,3|F̃0,Zm,Ξm] =
σ2
m,ε, for k = 1, 2. Then we apply Steins’ method (Ross, 2011) to derive the bound of the

Wasserstein distance between R̃m,k,3 and N (0, 1).
We shall first calculate the variance ofRm,1,3 andRm,2,3. Denote Em[·] = E[·|F̃0,Zm,Ξm],

Vm[·] = V[·|F̃0,Zm,Ξm], and Covm[·] = V[·|F̃0,Zm,Ξm]. It follows from Assumption 4.3.4
that

Em

 m∑
j=1

Zj ε̂j(1)

 = Em

 m∑
j=1

(1− Zj)ε̂j(0)

 = 0,

Vm

 m∑
j=1

Zj ε̂j(1)

 =

m∑
j=1

ZjEm
[
ε̂2j (1)

]
+
∑
j1 6=j2

Zj1Zj2Em
[
ε̂2j1(1)ε̂2j2(1)

]
,

Vm

 m∑
j=1

(1− Zj)ε̂j(0)

 =
m∑
j=1

(1− Zj)Em
[
ε̂2j (0)

]
+
∑
j1 6=j2

(1− Zj1)(1− Zj2)Em
[
ε̂2j1(0)ε̂2j2(0)

]
,

and

Covm

 m∑
j=1

Zj ε̂j(1),

m∑
j=1

(1− Zj)ε̂j(0)

 =

m∑
j=1

Zj(1− Zj)Covm [ε̂j(1), ε̂j(0)]

+
∑
j1 6=j2

Zj1(1− Zj2)n−1
j1
n−1
j2

∑
i1∈Infj1

∑
i2∈Infj2∩Ni1

Covm [εi1(1), εi2(0)]Gi1,i2 = 0,

provided that Zj(1 − Zj) = 0, the exclusion of the nodes in {i ∈ Cj : ∀i′ ∈ Cj′ with j′ 6=
j, Ai,i′ = 1, Zj 6= Zj′}, and Gi1,i2 = 0 for i1 ∈ Infj1 and i2 ∈ Infj2 by Assumption 2.2. By
Assumption 4.3.6, the conditional variance of Rm,1,3 and Rm,2,3 are

Vm [Rm,1,3] = Vm [Rm,2,3]

=

m∑
j=1

ZjEm
[
ε̂2j (1)

]
+

m∑
j=1

(1− Zj)Em
[
ε̂2j (0)

]
+
∑
j1 6=j2

Zj1Zj2Em [ε̂j1(1)ε̂j2(1)] +
∑
j1 6=j2

(1− Zj1)(1− Zj2)Em [ε̂j1(0)ε̂j2(0)]

= σ2
m,Ind + σ2

m,Bet = σ2
m,ε.

Next we derive the bound for the Wasserstein distance. Let

R̃
(−j)
m,1,3 = σ−1

m,ε

∑
j′ /∈N(j)

{Zj ε̂j(1) + (1− Zj)ε̂j(0)}

and gh(x) be the solution of the differential equation:

g′h(x)− xgh(x) = h(x)− Φ(h),
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where Φ(x) is the cumulative distribution function of a standard normal random variable.

By Assumption 4.3.4, it follows that R̃
(−j)
m,1,3 and {ε̂j(1), ε̂j(0)} are conditionally independent

given Zm and thus

Em
[
σ−1
m,εrj,1,3 · g

(
R̃

(−j)
m,1,3

)]
= Em

[
σ−1
m,ε {Zj ε̂j(1) + (1− Zj)ε̂j(0)} g

(
R̃

(−j)
m,1,3

)]
= σ−1

m,ε {ZjEm [ε̂j(1)] + (1− Zj)Em [ε̂j(0)]}Em
[
g
(
R̃

(−j)
m,1,3

)]
= 0.

It immediately follows that

Em [Rm,1,3 · g (Rm,1,3)]

= Em

σ−1
m,ε

m∑
j=1

rj,1,3

{
g(R̃m,1,3)− g(R̃

(−j)
m,1,3)−

(
R̃m,1,3 − R̃(−j)

m,1,3

)
g′(R̃m,1,3)

}
+ Em

σ−1
m,ε

m∑
j=1

rj,1,3

(
R̃m,1,3 − R̃(−j)

m,1,3

)
g′(R̃m,1,3)

 ,
and

Em
[∣∣∣g′ (R̃m,1,3)− R̃m,1,3g (R̃m,1,3)∣∣∣]

≤

∣∣∣∣∣∣Em
 1

σm,ε

m∑
j=1

rj,1,3

{
g(R̃m,1,3)− g(R̃

(−j)
m,1,3)−

(
R̃m,1,3 − R̃(−j)

m,1,3

)
g′(R̃m,1,3)

}∣∣∣∣∣∣ (20)

+

∣∣∣∣∣∣E
g′ (R̃m,1,3)

1− 1

σm,ε

m∑
j=1

rj,1,3

(
R̃m,1,3 − R̃(−j)

m,1,3

)∣∣∣∣∣∣ (21)

By Taylor expansion, Assumption 4.3.5, the triangle inequality, and the arithmetic-geometric
mean inequality, (20) can be bounded above by

‖g′′‖
2σm,ε

m∑
j=1

Em
[∣∣∣rj,1,3 (R̃m,1,3 − R̃(−j)

m,1,3

)∣∣∣]
≤ 1

σ3
m,ε

m∑
j1=1

∑
j2,j3∈N(j1)

Em |rj1,1,3rj2,1,3rj3,1,3|

≤
Ψ2

max,CL

σ3
m,ε

m∑
j=1

Em
[
|Zj ε̂j(1) + (1− Zj)ε̂j(0)|3

]
≤

Ψ2
max,CL

σ3
m,ε

m∑
j=1

Em
[
|ε̂j(1)|3 + |ε̂j(0)|3

]
. (22)
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Following the same derivation of the proof of Theorem 3.5 of Ross (2011), (21) can be
bounded above by

‖g′‖
σ2
m,ε

Em

∣∣∣∣∣∣σ2
m,ε −

m∑
j1=1

rj1,1,3
∑

j2∈N(j1)

rj2,1,3

∣∣∣∣∣∣ ≤
√

26Ψ
3/2
max,CL√

πσ2
m,ε

√√√√ m∑
j=1

E
[
r4
j,1,3

]

≤
√

26Ψ
3/2
max,CL√

πσ2
m,ε

√√√√ m∑
j=1

E
[
ε̂4j (1) + ε̂4j (0)

]
, (23)

where the last inequality follows from the fact that Zj(1 − Zj) = 0. Then, plugging (22)
and (23) into (20) and (21), respectively, yields the first part of (19).

Moreover, Assumption 4.3.4–4.3.7 imply that

Ψ2
max

σ3
m,ε

m∑
j=1

Em
[
|ε̂j(1)|3 + |ε̂j(0)|3

]
� m2λ3+λ1− 3λ2

2 ,

√
26Ψ

3/2
max√

πσ2
m,ε

√√√√ m∑
j=1

Em
[
ε̂4j (1) + ε̂4j (0)

]
� m

3λ3
2

+
λ1
2
−λ2 .

Based on Assumption 4.3.7, when λ2 < 2λ1, λ3 = 3λ2−2λ1
4 − λ4, and

m2λ3+λ1− 3λ2
2 +m

3λ3
2

+
λ1
2
−λ2 = m−2λ4 +m−

3λ4
2
− 2λ1−λ2

8 ;

when λ2 > 2λ1, λ3 = 2λ2−λ1
3 − λ4, and

m2λ3+λ1− 3λ2
2 +m

3λ3
2

+
λ1
2
−λ2 = m−

λ2−2λ1
6
−2λ4 +m−

3λ4
2 ;

and when λ2 = 2λ1, λ3 = λ1 − λ4, and

m2λ3+λ1− 3λ2
2 +m

3λ3
2

+
λ1
2
−λ2 = m−2λ4 +m−

3λ4
2 .

Then there exists a > 0 such that (19) holds for R̃m,1,3. In a similar manner, we can
also show that (19) holds for R̃m,2,3. Finally, the asymptotic distribution of R̃m,k,3 is an
immediate consequence of (19). This completes the proof for this lemma.

Note that the above lemma is not affected by the randomization procedure, it holds for
both CR, and CLAR. Based on the above lemmas, we derive the asymptotic independence
of (Rm,1,1, Rm,1,2, Rm,1,3) and the asymptotic independence of (Rm,2,1, Rm,2,2, Rm,2,3) as
follows.

Lemma A.7 Suppose the Assumptions of Lemmas A.4 and A.5 hold, then

(m−1/2Rm,1,1,m
−1/2Rm,1,2,m

−λ2/2Rm,1,3)>
D−→ (ζ1,1, ζ1,2, ζ1,3)>

and (m−1/2Rm,2,1,m
−1/2Rm,2,2,m

−λ2/2Rm,2,3)>
D−→ (ζ2,1, ζ2,2, ζ2,3)>,

where ζ1,1, ζ1,2, and ζ1,3 are independent satisfying ζ1,1 ∼ N (0, σ2
CLAR), ζ1,2 ∼ N (0, σ2

f )
and ζ1,3 ∼ N (0, σ2

ε ); and ζ2,1, ζ2,2, and ζ2,3 are independent satisfying ζ2,1 ∼ N (0, σ̃2
CLAR),

ζ2,2 ∼ N (0, σ̃2
f ) and ζ2,3 ∼ N (0, σ2

ε ).
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Proof The derivation for (m−1/2Rm,2,1,m
−1/2Rm,2,2,m

−λ2/2Rm,2,3)> is analogous to that
for (m−1/2Rm,1,1, m−1/2Rm,1,2, m−λ2/2Rm,1,3)>, and is omitted. For simplicity of no-

tation, let R†m,1,1 = m−1/2Rm,1,1, R†m,1,2 = m−1/2Rm,1,2, and R†m,1,3 = m−λ2/2Rm,1,3.

In Lemmas A.4, A.5, and A.6, we have derived the marginal normality of m−1/2Rm,1,1,
m−1/2Rm,1,2, and m−λ2/2Rm,1,3, for CR and CLAR. It suffices to show that the three com-

ponents are asymptotically independent. Recall that Em [·] = E
[
·| F̃0,Zm,Ξm

]
, then for

a1, a2, a3 ∈ R3, we have

P
(
R†m,1,1 ≤ a1, R

†
m,1,2 ≤ a2, R

†
m,1,3 ≤ a3

)
= E

[
I
{
R†m,1,1 ≤ a1

}
I
{
R†m,1,2 ≤ a2

}
×
(
Em
[
I
{
R†m,1,3 ≤ a3

}]
−Pm

(
ζ3 ≤ σ−1

m,εm
λ2
2 · a3

))]
(24)

+ E

[
I
{
R†m,1,1 ≤ a1

}
I
{
R†m,1,2 ≤ a2

}
×Pm

(
ζ3 ≤ σ−1

m,εm
λ2
2 · a3

)
I
{∣∣∣m−λ2σ2

m,ε − σ2
ε

∣∣∣ > ε
}]

(25)

+ E

[
I
{
R†m,1,1 ≤ a1

}
I
{
R†m,1,2 ≤ a2

}{
Pm

(
ζ3 ≤ σ−1

m,εm
λ2
2 · a3

)
−P (σεξ3 ≤ a3)

}

× I
{∣∣∣m−λ2σ2

m,ε − σ2
ε

∣∣∣ ≤ ε}] (26)

+ E

[
I
{
R†m,1,1 ≤ a1

}
I
{
R†m,1,2 ≤ a2

}
I
{∣∣∣m−λ2σ2

m,ε − σ2
ε

∣∣∣ ≤ ε}]P (σεξ3 ≤ a3) (27)

→ P (ξ1,1 ≤ a1) P (ξ1,2 ≤ a2) P (ξ1,3 ≤ a3) , (28)

where ξ3 ∼ N (0, 1) and Pm (· < a) is the conditional CDF given F̃0,Zm,Ξm. Conditioning

on F̃0, Zm, Ξm, I
{
R†m,1,1 ≤ a1

}
and I

{
R†m,1,2 ≤ a2

}
are fixed. (24) converges to zero by

dominated convergence theorem and Lemma A.6. In addition, Pm

(
|m−λ2σ2

m,ε − σ2
ε | > ε

)
converges to zero and Pm

(
|m−λ2σ2

m,ε − σ2
ε | ≤ ε

)
converges to one by 6. of Assumption 4.3.

Therefore, (25) also converges to zero. Furthermore, because m−λ2σ2
m,ε converges to σ2

ε in

probability given F̃0,Zm,Ξm, it follows that

Pm

(
ζ3 ≤ σ−1

m,εm
λ2
2 a3

)
→ P (σεξ3 ≤ a3) .

Then (26) converges to zero by the dominated convergence theorem. Finally, (27) converges

to (28) by Lemma A.4 or Lemma A.5 and Pm

(
|m−λ2σ2

m,ε−σ2
ε | ≤ ε

)
converges to one. The

proof of this lemma is now complete.
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Lemma A.8 Under the Assumptions of Lemmas A.4 and A.5, (mσm,CAE)−1Rm,1
D−→

N (0, 1), and (mσ̃m,CAE)−1Rm,2
D−→ N (0, 1), where σ̃2

m,CAE = m−1(σ2
Design +σ2

f̃
+4mλ2−1σ2

ε ).

Proof We prove Lemma A.8 by taking the value of λ2 into consideration for Rm,1. The
proof for Rm,2 is similar and is omitted.

First, when λ2 = 1, it follows from Lemmas A.4, A.5, and A.6 that

(mσm,CAE)−1Rm,1 = (σ2
Design + σ2

f + 4σ2
ε )
−1/2m−1/2Rm,1

D−→ N (0, 1).

Second, if λ2 < 1, Lemmas A.4, A.5, and A.6 imply that

σ2
Design + σ2

f

σ2
Design + σ2

f + 4mλ2−1σ2
ε

a.s.−→ 1,

Rm,1,1 +Rm,1,2√
m(σ2

Design + σ2
f )

D−→ N (0, 1),

and
Rm,1,3√

m(σ2
Design + σ2

f )
= op(1).

since V[m−1/2Rm,1,3] = o(1). These results further imply that

(mσm,CAE)−1Rm,1 = (σ2
Design + σ2

f + 4mλ2−1σ2
ε )
−1m−1/2(Rm,1,1 +Rm,1,2 +Rm,1,3)

=

√√√√ σ2
Design + σ2

f

σ2
Design + σ2

f + 4mλ2−1σ2
ε

Rm,1,1 +Rm,1,2 + 2Rm,1,3√
m(σ2

Design + σ2
f )

D−→ N (0, 1).

Finally, when 1 < λ2 < 2, we have

4mλ2−1σ2
ε

σ2
Design + σ2

f + 4mλ2−1σ2
ε

a.s.−→ 1,

Rm,1,1 +Rm,1,2√
4mλ2σ2

ε

= op(1)

and
Rm,1,3√
mλ2σ2

ε

D−→ N (0, 1).

It follows that

(mσm,CAE)−1Rm,1 = (σ2
Design + σ2

f + 4mλ2−1σ2
ε )
−1m−1/2(Rm,1,1 +Rm,1,2 +Rm,1,3)

=

√
4mλ2−1σ2

ε

σ2
Design + σ2

f + 4mλ2−1σ2
ε

Rm,1,1 +Rm,1,2 + 2Rm,1,3√
4mλ2σ2

ε

D−→ N (0, 1).

The proof for Lemma A.8 is completed.
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A.2.1 Proof for Theorem 4.2

We first derive the consistency of CAE. Notice that λ2 < 2 by 6. of Assumption 4.3, it
follows that

σ2
m,CAE = m−1{σ2

Design + σ2
f }+mλ2−2σ2

ε → 0,

and thus m−1Rm,1 converges to zero in L2. Furthermore, 7. of Assumption 4.3 indicates
that Bm,2 . ΨDiff,Inf = o(1). Putting the two pieces together yields

τ̂CAE − τ(1,0) = m−1Rm,1 +Bm,2 + op(1) = op(1).

Moreover, it follows from Lemma A.7 that

σ−1
m,CAEBm,2 . σ−1

m,CAEΨDiff,Inf

= (σ2
Design + σ2

f + 4mλ2−1σ2
ε )
−1/2m1/2ΨDiff,Inf.

When λ2 ≤ 1, max{m−1/2,m−(2−λ2)/2} = m−1/2 and 6. of Assumption 4.3 yields σ−1
m,CAEBm,2 .

m1/2ΨDiff,Inf = op(1). When λ2 > 1, max{m−1/2,m−(2−λ2)/2} = m−(2−λ2)/2 and similarly
σ−1
m,CAEBm,2 . [m−(λ2−1)(σ2

Design + σ2
f ) + 4σ2

ε ]
−1/2m(2−λ2)/2ΨDiff,Inf = op(1). It follows from

(17) and Lemma A.8 that

σ−1
m,CAE {τ̂CAE − τ(1,0)} = (mσm,CAE)−1Rm,1 + op(1)

D−→ N (0, 1).

This completes the proof for Theorem 4.2.

A.2.2 Proof For Corollary 4.1

Notice that the model considered in Corollary 4.1 satisfies Assumption 4.3. Moreover,
Rm,1,1, Rm,1,2, and Rm,1,3 can be written as

Rm,1,1 = 2
m∑
j=1

(2Zj − 1)f̂j(Xj)

= 2
m∑
j=1

(2Zj − 1)
{

(Xj,CL − µCL)>βCL + (X̂j,IN − µIN)>βIN

}
,

Rm,1,3 =
∑m

j=1(2Zj − 1)ε̂j , and Rm,1,2 = 0.
Under CR, simple calculations and 1. and 2. of Assumption 4.1 yield

V[m−1/2Rm,1,1|A, C̃] = 4

V[X>CLβCL] +

m∑
j=1

n−1
j V[X>INβIN]


= 4

{
V[X>CLβCL] + λ̃INV[X>INβIN]

}
+ o(1),

V[m−1/2Rm,1,3|A, C̃] = σ2
e

m∑
j=1

n−1
j = λ̃INσ

2
e + o(1),
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provided that {Zj}mj=1 and {Xj,CL, X̂j,IN, ε̂j}mj=1 are independent. It then follows from The-

orem 4.2 that σ2
f = 0,

σ2
Design = 4

{
V[X>CLβCL] + λ̃INV[X>INβIN]

}
,

σ2
m,ε = mλ̃INσ

2
e ,

and hence λ2 = 1 and σ2
ε = λ̃INσ

2
e . Note that in all the randomization schemes, the

convergence rate of Rm,1,3 is the same. Therefore, the rate of convergence of CAE under
the outcome model assumed in Corollary 4.1 is m1/2.

Next, suppose ξj = Xj,CL is used in CLAR. It follows from Lemma A.1 that

m−1/2
m∑
j=1

(2Zj − 1)(ξj − µξ) = m−1/2
m∑
j=1

(2Zj − 1)(Xj,CL − µCL)

= Op(m
−1/2) = op(1),

and hence

m−1/2Rm,1 = m−1/2(R̃1
m,1,1 +Rm,1,3) + op(1),

where R̃1
m,1,1 = 2

∑m
j=1(2Zj − 1)(X̂j,IN − µIN)>βIN. When ξj = Xj,CL, because {Xj,CL}mj=1

and {Xi,IN}ni=1 are independent, {Xi,IN}ni=1 and {Zj}mj=1 are also independent. This implies
that

V[m−1/2R̃m,1,1|C̃,A] = λ̃INV[X>INβIN] + o(1),

and hence σ2
Design = 4λ̃INV[X>INβIN] and σ2

m,ε = mλ̃INσ
2
e .

Assume that ξj = X̄j,IN is used in CLAR, then Lemma A.1 implies that

m−1/2
m∑
j=1

(2Zj − 1)(ξj − µξ) = m−1/2
m∑
j=1

(2Zj − 1)(X̄j,IN − µIN)

= Op(m
−1/2) = op(1),

and

m−1/2Rm,1 = m−1/2(R̃2
m,1,1 +Rm,1,3) + op(1),

where R̃2
m,1,1 = 2

∑m
j=1(2Zj − 1)

{
(Xj,CL −µCL)>βCL + (X̂j,IN − X̄j,IN)>βIN

}
. By the proof

of Lemma A.4, there exists σ2
diff > 0 such that

V

 m∑
j=1

(2Zj − 1)(X̂j,IN − X̄j,IN)>βIN

∣∣∣∣∣∣ C̃,A
 = mσ2

diff + o(1).

The independence between {Xj,CL}mj=1 and {Xi,IN}ni=1 implies that under CLAR with ξj =

X̄j,IN, we have

V

 m∑
j=1

(2Zj − 1)
{

(Xj,CL − µCL)>βCL

∣∣∣∣∣∣ C̃,A
 = mV[X>CLβCL].

37



Liu, Zhou, Li and Hu

Therefore, σ2
Design = 4

{
V[X>CLβCL] + σ2

diff

}
and σ2

m,ε = mλ̃INσ
2
e .

Finally, when ξj = (X>j,CL, X̄
>
j,IN)> are used in CLAR, Lemma A.1 implies that

m−1/2
m∑
j=1

(2Zj − 1)(Xj,CL − µCL) = op(1),

and m−1/2
m∑
j=1

(2Zj − 1)(Xj,IN − µIN) = op(1),

hold simultaneously. This further implies that

m−1/2Rm,1 = m−1/2(R̃3
m,1,1 +Rm,1,3),

where R3
m,1,1 =

∑m
j=1(2Zj − 1)(X̂j,IN − X̄j,IN)>βIN. Then it follows from Lemma A.4 that

σ2
Design = 4σ2

diff and σ2
m,ε = mλ̃INσ

2
e . This completes the proof for this corollary.

Appendix B. Additional Results for Stochastic Block Model

In this section, we present additional simulation studies to further demonstrate the property
of our proposed procedure with the stochastic block model. The cluster sizes {cj}mj=1 are also
generated from the discrete power-law distribution, with a parameter 4, and the parameter
representing the minimum value of a cluster, 12. Then, we generate Rényi random graphs
with 0.4 × n edges for the within cluster edges and r × n edges for the between cluster
edges. Here, r ∈ {0.2, 0.4, ..., 2} is the prespecified reconnecting probability characterizing
the portion of edges that connects different clusters.

The outcome model (6) and the parameter setting used in Section 5 are also considered
in this section. In the randomization step, we also compare the four randomization schemes:
1) complete randomization (CR); 2) CLAR with the cluster-level covariates (CLAR-CL),
ξj = Xj,CL (CL); 3) CLAR with the individual-level covariates (CLAR-Ind), ξj = X̄j,IN (IN);
and 4) CLAR with both cluster-level and individual-level covariates, ξj = (Xj,CL, X̄

>
j,IN)>

(Both). In the estimation step, CAE is compared with the difference-in-means (DIM) esti-
mator.

The performance of the four randomization schemes on the balance of covariates is
evaluated in Section B.1. We further compare the performance of different network A/B
testing approaches in Section B.2.

B.1 Evaluation of Covariates Balance under the Four Randomization Schemes

The balance properties of the four randomization schemes are evaluated from the following
two aspects. We first assess the Mahalanobis distance in Figure 8. The marginal covariate
balance represented by the difference in covariate means is presented in Figure 9.
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Figure 8: Histogram of the Mahalanobis distance Mm under different randomization
schemes and r ∈ {0.2, 1.0, 2.0}.
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Figure 9: Violin plots of the difference-in-covariate-means for Xj,1,CL, Xj,2,CL, X̂j,1,CL, and

X̂j,3,IN under m = 200.
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The conclusions drawn from Figures 8 and 9 are consistent with Section 5.1. The Maha-
lanobis distance under CLAR-Both is the most concentrated around zero. The distributions
of the Mahalanobis distance under CLAR-CL and CLAR-Ind are more spread out than the
distribution under CLAR-both but are more concentrated around zero than the distribution
under CR. Furthermore, the use of CLAR generally improves the covariate imbalance of
(Xj,1,CL, Xj,2,CL, X̂j,1,IN, X̂j,1,IN)>. The distributions of the difference in covariate means of
the four random variables are more concentrated at zero under CLAR.

B.2 Comparison of Different Network A/B Testing Approaches

Table 4: Evaluation of treatment effect with different network A/B testing approaches.

m Design
r = 0.2 r = 1.8

τ̂DIM τ̂CAE τ̂DIM τ̂CAE

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

50

CR -0.105 8.110 8.111 0.001 1.509 1.509 -0.692 4.746 4.797 -0.007 1.805 1.806
CL -0.209 7.768 7.771 -0.012 0.950 0.951 -0.697 4.306 4.363 0.001 1.165 1.165
Ind -0.131 7.888 7.889 -0.001 1.136 1.136 -0.706 4.383 4.440 -0.003 1.306 1.306
Both -0.177 7.738 7.740 -0.008 1.061 1.061 -0.654 4.362 4.411 0.006 1.242 1.242

100

CR -0.107 5.756 5.757 -0.001 0.989 0.989 -0.669 4.803 4.849 -0.000 1.323 1.323
CL -0.116 5.497 5.499 -0.004 0.533 0.533 -0.669 4.366 4.417 -0.002 0.789 0.789
Ind -0.123 5.554 5.555 -0.003 0.659 0.659 -0.691 4.451 4.504 -0.001 0.920 0.920
Both -0.163 5.491 5.493 -0.005 0.587 0.587 -0.675 4.370 4.422 -0.001 0.826 0.826

200

CR -0.075 5.300 5.300 -0.001 0.709 0.709 -0.661 4.942 4.986 -0.006 0.944 0.944
CL -0.132 5.044 5.046 -0.003 0.339 0.339 -0.634 4.610 4.653 0.001 0.531 0.531
Ind -0.110 5.060 5.061 -0.002 0.449 0.449 -0.650 4.677 4.722 -0.003 0.630 0.630
Both -0.098 4.998 4.999 -0.000 0.363 0.363 -0.694 4.587 4.639 -0.003 0.546 0.546

The finite sample properties of different A/B testing approaches are evaluated in Ta-
ble 4. In particular, we evaluate the biases of DIM estimator and CAE in Figure 10. The
standard deviation and the distribution of CAE are further evaluated in Figures 11 and 12,
respectively. We also report the average fraction of the samples included in CAE in Table 5.
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Figure 10: Bias for evaluating the ATE under different network A/B testing approaches.
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Figure 11: Standard deviation of
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m∗ (τ̂CAE − τ(1,0)) under four randomization schemes.
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Table 5: Average fractions of clusters and samples included in CAE: ρ1 = m−1m∗, ρ2 =
n−1E[

∑
j nj ], and

∑m
j=1 c

−1
j E[nj ].

r
Fraction(%) 0.2 0.6 1.0 1.4 1.8

CR
ρ1 100.00 100.00 99.79 98.11 92.87
ρ2 82.10 55.42 37.43 25.35 17.22
ρ3 82.06 55.34 37.32 25.25 17.14

CL
ρ1 100.00 100.00 99.83 98.28 93.17
ρ2 81.88 54.90 36.74 24.63 16.51
ρ3 81.88 54.90 36.72 24.61 16.50

IND
ρ1 100.00 100.00 99.81 98.24 93.09
ρ2 81.91 55.01 36.87 24.77 16.67
ρ3 81.89 54.98 36.83 24.73 16.64

Both
ρ1 100.00 100.00 99.82 98.27 93.14
ρ2 81.87 54.90 36.75 24.64 16.52
ρ3 81.86 54.89 36.72 24.62 16.50

The performance of different network A/B testing approaches is also consistent with our
findings presented in Section 5.2. The conclusion can be drawn in the following four folds.
First, the CAE is consistent, whereas the DIM estimator suffers from the bias caused by
network interference. Second, the standard deviation of the CAE is smaller than that of
the DIM estimator, resulting in a higher efficiency. Third, the covariate balance generally
improves the performance of the CAE. For instance, the CAE under CLAR has a higher
efficiency than the CAE under CR in terms of a smaller standard deviation. Finally, Table 5
further supports the usage of our proposed cluster-adaptive network A/B testing procedure.
It indicates that the advanced performance of the proposed procedure is not affected by the
violation of the Assumption 4.2.

Appendix C. Experimental Details for Paluck et al. (2016)

This section provides the experimental details for Paluck et al. (2016). The attitude toward
conflict score (ATC) is calculated by summarizing the survey questions presented in Table 6.
The answers to these questions are all “yes” or “no”, which are labeled as dummy variables
with values zero and one. Then ATC can be calculated via the following formula,

ATC =
{
− CILW2− CFLW2 + CSCAW2 + CLHCW2− CBNPW2− CMOSW2

+ FLIBW2− FLSHW2− FLSDW2 + ADSCW2 + ADNPW2 + ADTSW2
}

−
{
− CIL− CFL + CSCA + CIHC− CBNP− CMOS

+ FLIB− FLSH− FLSD + ADSC + ADNP + ADTS
}
.

The covariates considered in the outcome model are listed as follows: 1) Xi,1,IN: HOSN0,
that is, the indicator for the question that friends say I have a really nice house, if the value
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Table 6: Questions and variable names in the surveys.

Question
Variable name

Wave 1 Wave 2

I have a lot of conflict CIL CILW2
My friends have a lot of conflict CFL CFLW2
We can change the conflict CSCA CSCAW2
I would be interested in invitation to change CIHC CLHCW2
Bullying is not a problem CBNP CBNPW2
Sometimes you have to be mean CMOS CMOSW2
I feel I belong FLIB FLIBW2
I have stayed home from school FLSH FLSHW2
I have been bothered by feeling sad and down FLSD FLSDW2
Teachers and rules help solve student conflicts ADSC ADSCW2
Teachers don’t let kids get picked on ADNP ADNPW2
I can talk to an adult at this school ADTS ADTSW2

is yes; 2) Xi,2,IN: HOSN0-NA, the indicator for the question that friends say I have a really
nice house, if the value is NA; 3) Xi,3,IN: ETHW, that is, the indicator of the ethnicity
of the respondent, if the value is white; 4) Xi,4,IN: the indicator of outer node; 5) Xi,5,IN

the number of edges connecting other clusters; 6) Xj,1,CL: the cluster size cj ; 7) Xj,2,CL:
the portion of white students in Cj ; 8) Xi,3,CL: the portion of male students in Cj ; and 9)
Xi,CL,4: the density of Cj .
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