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Abstract

We introduce a formulation of regularized optimal transport problem for distributions on
function spaces, where the stochastic map between functional domains can be approximated
in terms of an (infinite-dimensional) Hilbert-Schmidt operator mapping a Hilbert space of
functions to another. For numerous machine learning applications, data can be naturally
viewed as samples drawn from spaces of functions, such as curves and surfaces, in high
dimensions. Optimal transport for functional data analysis provides a useful framework
of treatment for such domains. Since probability measures in infinite dimensional spaces
generally lack absolute continuity (i.e., with respect to non-degenerate Gaussian measures),
the Monge map in the standard optimal transport theory for finite dimensional spaces
typically does not exist in the functional settings arising in such machine learning applications.
This necessitates a suitable notion of approximation for the best pushforward measure to
be obtained via a transport map. Indeed, our approach to the transportation problem in
functional spaces is by a suitable regularization technique — we restrict the class of transport
maps to be a Hilbert-Schmidt space of operators. Within this regularization framework, we
develop an efficient algorithm for finding the stochastic transport map between functional
domains and provide theoretical guarantees on the existence, uniqueness, and consistency
of our estimate for the Hilbert-Schmidt space of compact linear operators. We validate
our method on synthetic datasets and examine the functional properties of the transport
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map. Experiments on real-world datasets of robot arm trajectories further demonstrate the
effectiveness of our method on applications in domain adaptation.
Keywords: Optimal transport, Optimal transport map estimation, Functional data
analysis, Hilbert Schmidt operator, Domain adaptation

1. Introduction

Optimal transport (OT) is a formalism for finding and quantifying the movement of mass
from one probability distribution to another (Villani, 2008). In recent years, it has been
instrumental in the development of various new machine learning methods, including deep
generative modeling (Arjovsky et al., 2017; Salimans et al., 2018), unsupervised learning (Ho
et al., 2017; Mallasto and Feragen, 2017) and domain adaptation (Ganin and Lempitsky, 2015;
Bhushan Damodaran et al., 2018). As statistical machine learning algorithms are applied to
increasingly complex domains, it is of interest to develop optimal transport-based methods
for complex data structures. A particularly common form of such structures arises from
functional data — data that may be viewed as random samples of smooth functions, curves,
or surfaces in high dimension spaces (Ferraty and Vieu, 2006; Ramsay and Silverman, 2005;
Hsing and Eubank, 2015; Mirshani et al., 2019; Dupont et al., 2021). Examples of real-world
applications involving functional data are numerous, ranging from robotics (Deisenroth et al.,
2013) and natural language processing (Rodrigues et al., 2014) to economics (Horváth and
Kokoszka, 2012) and healthcare (Cheng et al., 2020). Therefore, it is of interest to extend
and develop a suitable optimal transport formulation to the functional data domains.

The goal of this paper is to provide a novel formulation of the optimal transport problem
in function spaces, to develop an efficient learning algorithm for estimating a suitable notion
of optimal stochastic mapping that transports samples from one functional domain to another,
to provide theoretical guarantees regarding the existence, uniqueness, and consistency of our
estimates, and to demonstrate the effectiveness of our approach to several application domains
where the functional optimal transport (FOT) viewpoint proves natural and useful. There
are several formidable challenges: both the source and the target function spaces can be quite
complex and in general of infinite dimensions. One needs to deal with probability distributions
over such spaces, which is difficult if one is to model them with data. Moreover, optimal
coupling or optimal transport map between the two distributions on infinite dimensional
spaces is generally hard to characterize and compute efficiently, except for very few specific
cases. Yet, to be useful in practice, one must find an explicit transport map that can
approximate the optimal coupling well, i.e., to find an approximate solution to the original
Monge problem (Villani, 2008).

The primary technical challenge here, more specifically, is that the optimal Monge map
may not exist in general. By a Brenier-type theorem, a sufficient condition for the existence
of the Monge map under a suitable convex cost function is that the source distribution be
absolutely continuous with respect to non-degenerate Gaussian measures in the source domain
(see Ambrosio et al. (2005), Sec. 6.2). In finite dimensional (Euclidean) domains, absolute
continuity with respect to non-degenerate Gaussian measures is equivalent to absolute
continuity with respect to the Lebesgue measure. However, in infinite dimensional domains,
probability measures tend to lack the requisite absolute continuity. In fact, distributions in
infinite-dimensional space can be discrete and tend to be singular to each other (Kakutani,
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1948). Historically, the lack of existence of the Monge map was a key motivation for
Kantorovich’s optimal coupling formulation, which is well-posed for probability distributions
in Polish spaces, and the discovery of Brenier-type theorems linking the optimal coupling
to that of Monge map helped to ignite renewed interest and fresh new developments in the
field of optimal transport in the past several decades. Since we work in a setting where the
Monge map is not expected to exist in general, and moreover, a direct application of the
Kantorovich’s optimal coupling formulation seems difficult, we shall take a rather natural
approach based on regularization: we seek to find the best deterministic map within a class
of operators acting on the space of functions in the source domain. As we shall see shortly,
this approach can be viewed as a regularized form of the optimal coupling problem as well.

Our formulation is relevant to a growing interest, especially in the machine learning
literature, in finding an explicit optimal transport map linked to the Monge problem, although
such attempts were mainly confined to finite-dimensional domains. For discrete distributions,
map estimation can be tackled by jointly learning the coupling and a transformation map
(Perrot et al., 2016). This basic idea and extensions were shown to be useful for the alignment
of multimodal distributions (Lee et al., 2019) and word embedding (Zhang et al., 2017; Grave
et al., 2019); such joint optimization objective was shown (Alvarez-Melis et al., 2019) to
be related to the softassign Procrustes method (Rangarajan et al., 1997). The learned
map, although usually not the optimal Monge map, is particularly useful for applications
such as domain adaptation and generative modeling. Meanwhile, a different strand of work
focused on scaling up the computation of the approximation of Monge map (Genevay et al.,
2016; Meng et al., 2019), including approximating transport maps with neural networks
(Seguy et al., 2017; Makkuva et al., 2019), deep generative models (Xie et al., 2019), and
flow models (Huang et al., 2020). It is emphasized that all these methods are not quite
suitable for capturing the distributions on the space of functions. Recent developments on
Gromov-Wasserstein distance enable the comparisons of distributions on space of different
dimensions (Mémoli, 2011). An alternative approach to constructing distances between
probability measures on (Euclidean) spaces of different dimensions was recently proposed
by Cai and Lim (2022). These techniques are relevant but not immediately applicable to
the functional domains, which are of infinite dimensions. In addition, a common feature of
functional data analysis is that the function samples are typically observed at the different
and possibly varying number of design points. A naive approach to functional data is to treat
a function as a vector of components sampled at a number of design points in its domain.
Such an approach fails to exploit the fine structures (e.g., continuity, regularity) present
naturally in many functional domains. Moreover, non-functional approaches to functional
data may be highly sensitive to the choice of design points as one moves from one domain to
another.

Most known results and techniques on optimal transport between distributions on function
spaces are related to Gaussian measures and Gaussian processes (Mallasto and Feragen,
2017; Masarotto et al., 2019; Knott and Smith, 1984; Pigoli et al., 2014). These results are
natural generalization from those of the multivariate Gaussian distributions (Dowson and
Landau, 1982; Givens and Shortt, 1984). Specifically, the 2-Wasserstein distance between
Gaussian processes with certain covariance coincides with the Procrustes distance between
the two covariance operators (cf. Section 2 of Masarotto et al. (2019)). Furthermore, there
exists a linear subspace in Hilbert spaces where the optimal map between two centered
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Gaussian processes is well-defined as a linear operator. In practice, the Gaussian distribution
assumption is clearly too restrictive in many domains. Our work may be viewed as a first
step at addressing optimal transport in the domains of functions that go beyond the Gaussian
assumption, and with a particular focus on learning the explicit transport map for sampled
functional data.

In our approach the mathematical machinery of functional data analysis (FDA) (Hsing and
Eubank, 2015; Ramsay and Silverman, 2005), along with recent advances in computational
optimal transport via regularization techniques will be brought to bear on the aforementioned
problems. There are several ingredients in our work. First, we take a probabilistic model-free
approach, by avoiding making assumptions on the source and target distributions of functional
data. Instead, we aim to learn the (stochastic) transport map directly. Second, we follow the
FDA perspective by assuming that both the source and target distributions be supported on
suitable Hilbert spaces of functions H1 and H2, respectively. A map T : H1 → H2 sending
elements of H1 to that of H2 will be represented by a class of linear operators, namely the
integral operators. In fact, we shall restrict ourselves to Hilbert-Schmidt operators, which
are compact, computationally convenient to regularize and amenable to theoretical analysis.
Finally, the optimal deterministic transport mapping between two probability measures on
function spaces may not exist, due to the general lack of absolute continuity discussed earlier.
To overcome this difficulty, we enlarge the space of transport maps by allowing for stochastic
coupling Π between the two domains T (H1) ⊆ H2 and H2, while the complexity of such
coupling can be controlled via the entropic regularization technique (Cuturi, 2013).

It is quite interesting to note that our formulation for optimal transport in the functional
domains has two complementary interpretations: it can be viewed as learning an integral
operator T regularized by a transport plan (a coupling distribution Π) or it can also be
seen as an optimal coupling problem for Π (the Kantorovich problem), which is associated
with a cost matrix parameterized by the integral operator T . In any case, we take a joint
optimization approach for the transport mapT and the coupling distribution Π in functional
domains. Subject to suitable regularization on the space of transport maps, the existence of
the optimal (T,Π) and the uniqueness of T can be established, which leads to a consistency
result of our estimation procedure.

There are several advantages in our choice of bounded linear operators for modeling
the transport map. First, in functional analysis and functional data analysis in particular,
bounded linear operators (including the rich class of integral operators) are the main
workhorse for representing transformation among spaces of functions (Yosida, 1995; Ramsay
and Silverman, 2006; Hsing and Eubank, 2015). Using this class of operators allows us
to draw from the principled machinery and tools from functional analysis to establish a
solid theoretical foundation for optimal transport in infinite-dimensional function spaces.
Second, compact linear operators are easily regularizable, which result in fast computational
procedures for learning from the functional data. The third advantage is the interpretability
of the representation of the transport map T , which can be helpful in applications. In
fact, linearity in the representation space is the desired evaluation protocol for even the
most sophisticated large-scale pre-trained models (Radford et al., 2021), which are powering
applications across both natural language and image generation.

There are several limitations in our approach. First, bounded (or compact) linear
operators may be too restrictive in some domains. Learning nonlinear operators in infinite
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dimensional spaces is an interesting direction, but is beyond the scope of this paper. Moreover,
as discussed earlier, for discrete probability measures in the source domain, even nonlinear
operators are not enough since the Monge map generally does not exist anyway. When this
is the case, a reasonable approach, in our opinion, is to revert to the Kantorovich’s coupling
formulation, where linear operators can still be efficiently utilized as a building block from
a regularization viewpoint for the optimal coupling problem. Indeed, our modeling choice
is sufficiently rich when coupled with the stochastic coupling to obtain the optimal (T,Π),
which ensures both the existence and uniqueness of the solution to our formulation of the
optimal coupling problem. The second limitation is more practical, as it is related to the fact
that the learned linear operator T is represented in terms of its action on the eigenfunction
basis of the function spaces of the source and target domains. This also highlights a key
distinction for the functional optimal transport problem and our corresponding approach
from the linear transformation techniques for fixed-dimensional vector spaces, which are
relatively simpler and do not have to grapple with this issue (see, e.g. Perrot et al. (2016);
Alvarez-Melis et al. (2019)). In many practical domains, the eigenfunction basis may not
be available for certain types of datasets. In that case, we may rely on available methods
to construct data-driven basis functions, such as functional principal component analysis
(FPCA) (Shang, 2014; Liu et al., 2017).

In summary, the contributions presented in this paper are the following.

• We propose functional optimal transport (FOT), a formulation of regularized optimal
transport in infinite-dimensional functional spaces. We take a probabilistic model-free
approach, by avoiding making assumptions on the source and target distributions of
functional data.

• An approximate optimization algorithm is developed to estimate the transport map
from data. We follow the FDA perspective by assuming that both the source and
target distributions be supported on suitable Hilbert spaces of functions H1 and H2,
respectively. A mapT : H1 → H2 sending elements of H1 to that of H2 will be
represented by a class of linear operators, namely the integral operators. Despite the
infinite-dimensional nature of this problem, we propose an approximate estimator and
solve it with an alternative minimization algorithm.

• We establish the existence and uniqueness for such a transport mapon empirical
samples of functional data from both source and target domains, as well as consistency
theorems providing the support for our estimator. Specifically, we show the asymptotic
convergence in terms of the number of basis functions K, the number of observed
sample functions n, and the number of design points d. To the best of our knowledge,
this is the first work in which a rigorous statistical theory for optimal transport in the
domains of functions is established.

• Simulation studies and experiments are conducted to validate our method and the
associated theory. First, the convergence properties of our map estimation when the
samples are synthesized with known basis functions are verified via simulations. In
the task of estimating an explicit transport map for two sets of functional data, our
proposed method displayed superior performance from both qualitative and quantitative
perspectives in comparison to non-functional techniques. Next, our method is applied
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to several real-world datasets. We conduct the optimal transport domain adaptation
for predicting robot-arm motion from two different datasets.

1.1 Organization

The remainder of the paper is organized as follows. Section 2 contains some preliminary
background of optimal transport and functional data analysis. Section 3 presents the
formulation of functional optimal transport based on Hilbert-Schmidt operators, followed by
theoretical results on the existence, uniqueness, and consistency of our map estimator. In
Section 4, we describe an implementation of our estimation procedure by solving a block
coordinate-wise convex optimization problem. The result is an efficient algorithm for finding
explicit transport maps that can be applied on sampled functions. Then, in Section 5, the
effectiveness of our approach is validated first on synthetic datasets of smooth functional
data and then applied in a suite of experiments for mapping real-world 3D trajectories
between robotic arms with different configurations. All proofs are given in Section 6. Finally,
Section 7 provides further discussions of related work, as well as several directions for future
work.

2. Preliminaries

This section provides some basic background of optimal transport and functional data analysis.

2.1 Optimal transport

The basic problem in optimal transport, also known as the Kantorovich problem (Villani,
2008; Kantorovitch, 1958), is to find an optimal coupling π of given measures µ on space X
and ν on space Y to minimize

inf
π∈Π

∫
X×Y

c(x, y)dπ(x, y), subject to Π = {π : γX#π = µ, γY#π = ν}. (1)

In the above display, c : X × Y 7→ R+ is a cost function and γX , γY denote projections
from X × Y onto X and Y respectively, and hence the corresponding pushforward measures
denoted by γX#π, γ

Y
#π of π are its the marginal distributions on X and Y . This optimization

is well-defined and the optimal π exists under mild conditions (in particular, X ,Y are both
separable and complete metric spaces, c is lower semi-continuous (Villani, 2008)). When
X = Y are metric spaces, c(x, y) is the square of the distance between x and y, then the
square root of the optimal cost given by (1) defines the Wasserstein metric W2(µ, ν) on the
space of square integrable probability measures on X . A related problem is Monge problem,
where one finds a Borel map T : X → Y that realizes the infimum

inf
T

∫
X
c(x, T (x))dµ(x) subject to T#µ = ν. (2)

Here the image T#π denotes the pushforward measure of π by T . (Although T is tradi-
tionally referred to as a mapping, and the image T#π as a map, here we use the two terms
interchangably, following Villani (2008)).
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By Brenier’s theorem, the existence of the optimal deterministic map T is guaranteed
when µ is an absolute continuous measure with respect to, say the Lebesgue measure on X
for finite-dimensional source domain(Ambrosio et al., 2005; Villani, 2008), but T clearly does
not exist in general when µ and ν are discrete probability measures . However, in various
applications, it is of interest to find a deterministic map that approximates the optimal
coupling to the Kantorovich problem. In many recent work, T is typically restricted to a
family of maps F followed by joint optimization of T and π (Perrot et al., 2016; Alvarez-Melis
et al., 2019; Grave et al., 2019; Seguy et al., 2017; Alvarez-Melis et al., 2020):

inf
π∈Π,T∈F

∫
X×Y

c(T (x), y)dπ(x, y), (3)

where c : Y × Y 7→ R+ is a cost function on Y. On the one hand, the class of maps F may
be chosen to be sufficiently rich to approximate the optimal transport maps for the measures
µ and ν of interest defined on the respective spaces X , Y. On the other hand, F may be
chosen to ease up the computational burden and facilitate meaningful interpretations. For
instance, F may be a class of linear functions (e.g. rigid transformations) (Perrot et al., 2016;
Alvarez-Melis et al., 2020), neural networks (Seguy et al., 2017).

At a high level, our approach will be analogous to (3), except that X and Y are taken to
be spaces of functions, as we are motivated by applications in functional domains. As an
illustration for a toy example, Figure 1 depicts a transport map that sends sample paths
from the famous Swiss-roll curve data set to that of the target Wave curve data set. In a
real-world application considered later in Section 5, X and Y represent the space of (smooth)
trajectories of robot motions. A natural and powerful approach to such data domains is
the framework of functional data analysis. In this framework, the data may be viewed as
samples of random functions. In particular, we will be working with distributions on Hilbert
spaces of functions, while F is a suitable class of operators acting on such Hilbert spaces.
We proceed to a brief background of FDA in the sequel.

2.2 Functional data analysis

Functional data analysis adopts the perspective that certain types of data may be viewed
as samples of random functions, which are viewed as random elements taking value in
Hilbert spaces of functions (Hsing and Eubank, 2015). The data analysis techniques on
functional data involve operators acting on Hilbert spaces. Let A : H1 → H2 be a bounded
linear operator, where H1 (respectively, H2) is a Hilbert space equipped with scalar product
〈·, ·〉H1 (respectively, 〈·, ·〉H2) and {Ui}i≥1({Vj}j≥1) is the Hilbert basis in H1 (H2). We will
focus on a class of compact integral operators, namely Hilbert-Schmidt operators, that are
sufficiently rich for many applications and yet amenable to analysis and computation. A
is said to be Hilbert-Schmidt if

∑
i≥1 ‖AUi‖2H2

< ∞ for any Hilbert basis {Ui}i≥1. The
space of Hilbert-Schmidt operators between H1 and H2, to be denoted by BHS(H1, H2), is
also a Hilbert space endowed with the scalar product 〈A,B〉HS =

∑
i〈AUi, BUi〉H2 and the

corresponding Hilbert-Schmidt norm is denoted by ‖ · ‖HS .
Denote the outer product operator between two elements ei ∈ Hi for i = 1, 2 by

e1 ⊗ e2 : H1 → H2, which is defined by (e1 ⊗ e2)f = 〈e1, f〉H1e2 for f ∈ H1. An important
fact of Hilbert-Schmidt operators is given as follows (see, e.g., Theorem 4.4.5 of (Hsing and
Eubank, 2015)).
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(a) samples paths (b) mapping of individual sample paths (c) the pushforward

(d) the geodesic parameterized by t ∈ [0, 1] connecting the source and target domains.

Figure 1: Illustration of an estimated pushforward map that sends sample paths from the
source of Swiss-roll curves to the target of Wave curves. (a) Datasets are a collection of
continuous sample paths. (b) Three individual samples are mapped from source to target.
(c) Resulting curves obtained by applying the pushforward map to the source’s samples. (d)
Illustration of the resulting geodesic between source and target distributions.

Theorem 1 The linear space BHS(H1, H2) is a separable Hilbert space when equipped with
the HS inner product. For any choice of complete orthonormal basis system (CONS) {Ui}
and {Vj} for H1 and H2 respectively, {Ui ⊗ Vj} forms a CONS for BHS(H1, H2).

As a result, the following representation of Hilbert-Schmidt operators and their norm
will be useful.

Lemma 2 Let {Ui}∞i=1, {Vj}∞j=1 be a CONS for H1, H2, respectively. Then any Hilbert-
Schmidt operator T ∈ BHS(H1, H2) can be decomposed as

T =
∑
i,j

λjiUi ⊗ Vj , where ‖T‖2HS =
∑
i,j

λ2
ji. (4)

3. Functional optimal transport: optimization and convergence analysis

We are ready to introduce a formulation for the functional optimal transport (FOT) problem,
by reposing on the foundation of functional data analysis described earlier. Then we shall
introduce estimators for solving the functional optimal transport problem from empirical
data. Since we are formulating an infinite dimensional optimization problem, care must be
taken to ensure the existence, uniqueness, and consistency of our proposed estimators, given
sampled functions from source and target domains.

Given Hilbert spaces of functions H1 and H2, which are endowed with Borel probability
measures µ and ν, respectively, we wish to find a Borel map Γ : H1 7→ H2 such that ν is
the pushforward measure of µ by Γ. Expressing this statement probabilistically, if f ∼ µ
represents a random element of H1, then Γf is a random element of H2 and Γf ∼ ν. As
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noted in Section 2, such a map may not always exist, especially in the infinite-dimensional
settings. Thus one is interested in finding a map by which the resulting pushforward measure
approximates as well as possible the target distribution, although it is not necessarily a
Monge map (Amos et al., 2022; Liu et al., 2022). This motivates the following formulation:

Γ := arg inf
T∈BHS(H1,H2)

W2(T#µ, ν), (5)

where T#µ is the pushforward of µ by T , and W2 is the 2-Wasserstein distance of probability
measures on the metric space (H2, ‖ ·‖H2) (we suppress the dependence on H2 of the notation
W2 for ease of notations because we only consider 2-Wasserstein distance on H2 in this work).
The space of solutions of Eq. (5) may still be large and the problem itself might be ill-posed
(the infimum is not achievable). Thus we consider imposing a shrinkage penalty, which leads
to the problem of finding the infimum of the following objective function J : BHS → R+:

inf
T∈BHS

J(T ), J(T ) := W 2
2 (T#µ, ν) + η‖T‖2HS , (6)

where η > 0 is a regularized hyperparameter. While regularization further reduces
the approximation capabilities of the push-forward measure, it significantly enhances the
robustness of estimating the map T . A contribution of this paper is to show that under
suitably mild conditions, the aforementioned regularization technique ensures the existence
and uniqueness of this map, and is amenable to an efficient computational procedure for the
estimation problem.

To characterize this problem precisely, we shall place a mild condition on the moments of
µ and ν, which are typically assumed for probability measures on Hilbert spaces (Lei, 2020).

(A.1) Assume
Ef1∼µ‖f1‖2H1

<∞, Ef2∼ν‖f2‖2H2
<∞. (7)

Several key properties of objective function (6) can be established as follows.

Lemma 3 Under assumption (A.1), the following statements hold.

(i) W2(T#µ, ν) is a Lipschitz continuous function of T ∈ BHS(H1, H2), which implies
that J : BHS(H1, H2)→ R+ is also continuous.

(ii) J is a strictly convex function.
(iii) There are constants C1, C2 > 0 such that J(T ) ≤ C1‖T‖2HS + C2 ∀T ∈ BHS(H1, H2).
(iv) lim‖T‖HS→∞ J(T ) =∞.

Thanks to Lemma 3, the existence and uniqueness properties can be established.

Theorem 4 Given (A.1), there exists a unique minimizer T0 for problem (6).

The challenge of solving (6) is that this is an optimization problem in the infinite-
dimensional space of operators BHS . To alleviate this complexity, we reduce the problem to
a suitable finite-dimensional approximation. We follow techniques in numerical functional
analysis by taking a finite number of basis functions.

In particular, for some finite K1,K2, let BK = Span({Ui ⊗ Vj : i = 1,K1, j = 1,K2}),
where K = (K1,K2). This yields the optimization problem of J(T ) over the space T ∈ BK .
The following result validates the choice of approximate optimization.

9



Zhu, Guha, Do, Xu, Nguyen, Zhao

Lemma 5 For each K = (K1,K2), there exists a unique minimizer TK of J over BK .
Moreover, TK → T0 in ‖ · ‖HS as K1,K2 →∞.

Consistency of M-estimator In practice, we are given i.i.d. samples f11, f12, . . . , f1n1

from µ and f21, f22, . . . , f2n2 from ν, the empirical version of our optimization problem
becomes:

inf
T∈BHS

Ĵn(T ), Ĵn(T ) := W 2
2 (T#µ̂n1 , ν̂n2) + η‖T‖2HS , (8)

where µ̂n1 =
1

n1

∑n1
l=1 δf1,l and ν̂n2 =

1

n2

∑n2
k=1 δf2,k are the empirical measures, and n =

(n1, n2). We proceed to show that the minimizer of this problem exists and provides a
consistent estimate of the minimizer of (6). The common technique to establish consistency
of M-estimators is via the uniform convergence of objective functions Ĵn to J . The technical
challenge here is that BHS(H1, H2) is unbounded and locally non-compact. Thus care must
be taken to ensure that the minimizer of (8) is eventually bounded so that a suitable uniform
convergence behavior can be established, as explicated in the following key lemma:

Lemma 6 Under assumption (A.1), the following hold.

(i) For any fixed C0 > 0,

sup
‖T‖HS≤C0

|Ĵn(T )− J(T )| P−→ 0 (n→∞). (9)

(ii) For any n,K, Ĵn has a unique minimizer T̂K,n over BK . Moreover, there exists a finite
constant D such that P (supK ‖T̂K,n‖HS < D)→ 1 as n→∞.

Building upon the above results, we can establish consistency of our M -estimator when there
are enough samples and the dimensions K1,K2 are allowed to grow with the sample size:

Theorem 7 The minimizer of Eq. (8) for T̂K,n ∈ BK is a consistent estimate for the
minimizer of Eq. (6). Specifically, T̂K,n

P−→ T0 in ‖ · ‖HS as K1,K2, n1, n2 →∞.

It is worth emphasizing that the consistency of estimating T̂K,n is ensured as long as
sample sizes and approximate dimensions are allowed to grow. The specific schedule at which
K1,K2 grows relatively to n1, n2 will determine the rate of convergence to T0, which is also
dependent on the choice of regularization parameter η > 0, the true probability measures
µ, ν, and the choice of CONS. It is of great interest to have a refined understanding on this
matter. In practice, we can choose K1,K2 by a simple cross-validation technique, which we
shall discuss further in the sequel.

Finally, note that in Theorem 7, we assume that the data samples consist of the entire
sample curves {f1,l, f2,k} for l = 1, . . . , n1, k = 1, . . . , n2. In reality, the sampled functions
f1,l and f2,k may be partially given only at selected design points on their domains. A
consistency theorem, Theorem 8, for our estimator in this more realistic setting will be given
in the following section.
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4. Approximation, functional design and optimization

We will now translate the theoretical formulation for functional optimal transport and the
regularized M-estimation framework presented in the preceding section into implementable
algorithms. Recall that our FOT formulation is intrinsically an infinite dimensional problem:
both source and target distributions are supported by infinite dimensional Hilbert spaces of
functions, and so is the space of transport maps that we seek to estimate. On the other hand,
we are given only a finite sample (n1, n2) of the source and target functions, and moreover
such functions are observed only at a finite number of design points on their domains. Thus
our approach is to derive approximate algorithms to approach the original objective of
solving Eq’s (6) and (8) by appropriate finite-dimensional approximations and by taking
into considerations design choices for the space of functions and operators. Moreover, the
consistency of our estimator in such practical forms of approximation is still maintained.

4.1 Approximation of the HS operator

Lemma 5 in the previous section paves the way for us to find an approximate solution to the
original fully continuous infinite-dimensional problem, by utilizing finite sets of basis function,
in the spirit of Galerkin method (Fletcher, 1984), which is justified by the consistency theorem
(Theorem 7). Thus, we can focus on solving the optimization problem given in Eq. (8)
instead of Eq. (6).

Choosing a basis {Ui}∞i=1 of H1 and a basis {Vj}∞j=1 of H2, and fixing K1,K2, we want
to find T based on the K1 × K2 dimensional subspace of BHS(H1, H2) with the basis
{Ui ⊗ Vj}i=1,K1,j=1,K2

. Lemma 2 gives us the following formula for T and its norm

T =

K1∑
i=1

K2∑
j=1

λjiUi ⊗ Vj , ‖T‖2HS =

K1∑
i=1

K2∑
j=1

λ2
ji. (10)

As T is represented by matrix Λ := (λji)
K2,K1
j,i=1 , the cost to move function f1,l in H1 to f2,k

in H2 is

‖Tf1,l − f2,k‖2 =

∥∥∥∥∥∥
K1∑
i=1

K2∑
j=1

λjiVj〈f1,l, Ui〉H1 − f2,k

∥∥∥∥∥∥
2

H2

=: Clk(Λ). (11)

Hence, the optimization problem (8) as restricted to BK can be written as

min
T∈BK

Ĵn(T ) = min
Λ∈RK2×K1 ,π∈Π̂

n1,n2∑
l,k=1

πlkClk(Λ) + η‖Λ‖2F , (12)

where ‖·‖F is the Frobenius norm, and the empirical joint measure Π̂ := {π ∈ (R+)n1×n2 | π1n2 =
1n1/n1, π

T1n1 = 1n2/n2} with 1n a length n vector of ones. Eq.(12) indicates we need to
simultaneously learn the HS operator T and the coupling distribution π.

For theoretical purposes we proceed to simplify the objective (12) to arrive at a finite-
dimensional formulation specific to the basis {Ui}∞i=1 of H1 and basis {Vj}∞j=1 of H2. For

11
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each l = 1, . . . , n1 and k = 1, . . . , n2, by Parseval’s identity on H2,

Clk(Λ) =

K2∑
j=1

∣∣∣∣∣
K1∑
i=1

λji〈f1,l, Ui〉H1 − 〈f2,k, Vj〉H2

∣∣∣∣∣
2

︸ ︷︷ ︸
Dlk(Λ)

+
∞∑

j=K2+1

|〈f2,k, Vj〉H2 |
2 . (13)

Our optimization problem becomes

∑
l,k

πlkClk(Λ) + η‖Λ‖2F =
∑
l,k

πlkDlk(Λ) +
∞∑

j=K2+1

n2∑
k=1

(

n1∑
l=1

πlk) |〈f2,k, Vj〉H2 |
2 + η‖Λ‖2F

=
∑
l,k

πlkDlk(Λ) +
∞∑

j=K2+1

n2∑
k=1

1

n2
|〈f2,k, Vj〉H2 |

2 + η‖Λ‖2F .

Since the second term in the above display does not depend on Λ and π, it does not affect
the optimization problem. The term Dlk(Λ) can be further written as

Dlk(Λ) = ‖Λal − bk‖22, (14)

where ali = 〈f1,l, Ui〉H1 , and al = (ali)
K1
i=1 are vectors in RK1 (coordinates of f1,l in the first

K1 basis); bkj = 〈f2,k, Vj〉H2 , and bk = (bkj)
K2
j=1 are vectors in RK2 (coordinates of f2,k in the

first K2 basis). This leads to an equivalent presentation for (12)

min
T∈BK

Ĵn(T ) = min
Λ∈RK2×K1 ,π∈Π̂

n1,n2∑
l,k=1

πlkDlk(Λ) + η‖Λ‖2F . (15)

In this way, we easily see a direct connection between a finite-dimensional approximation of
the functional optimal transport relative to a pair of orthonormal bases {Ui}H1 and {Vj}H2

to a corresponding OT problem on fixed (finite) dimensional vectors.

4.2 Functional data computation via design points

In real-world applications with data in the functional domains, one typically does not directly
observe functions (f1,l)

n1
l=1 and (f2,k)

n2
k=1 but only their values (y1,l)

n1
l=1 and (y2,k)

n2
k=1 at

design points (x1,l)
n1
l=1 and (x2,k)

n2
k=1, respectively, where x1,l ∈ X

d1,l
1 ,y1,l ∈ Rd1,l ,x2,k ∈

X
d2,k
2 ,y2,k ∈ Rd2,k ∀ l = 1, . . . , n1; k = 1, . . . , n2, and X1 and X2 denote the space of design

points for the source and the target domain, respectively. In other words, d1,l and d2,k denote
the possibly varying number of design points observed for the sampled function f1,l in the
source and f2,k in the target domain, respectively. In order to evaluate the objective (15),
the relevant inner products in H1 and H2 must be approximated using the observed values
of sampled functions given at the design points.

As a concrete example, suppose that H1 = H2 = L2([0, 1]) so that the ordered design
points x1,l ∈ [0, 1]d1,l and x2,k ∈ [0, 1]d2,k for all l, k. Moreover, assume that the support of µ
and ν are contained in the subsets of continuous functions of L2, and the basis functions {Ui}

12
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and {Vj} are continuous, then a simple numerical strategy that one can use to approximate
〈f1,l, Ui〉H1 is by the Riemann sum approximation

〈f1,l, Ui〉d :=

d1,l∑
j=2

(x1l,j − x1l,j−1)f(x1l,j)Ui(x1l,j). (16)

In the above display, the subindex d is used to signify the fact our estimate of the relevant
inner products for the sampled function is calculated using design points. We also say that
d → ∞ if d1,l, d2,k → ∞∀ l, k. Thanks to the continuity of the sampled functions, for any
functions f1, f2 being in the support of µ, ν respectively, we have as d→∞

〈f1, Ui〉d → 〈f1, Ui〉H1 , 〈f2, Vj〉d → 〈f2, Vj〉H2 ∀i, j ∈ N. (17)

It is clear that the more design points where the function values are observed, the better the
representation of continuous functions via a given orthonormal basis. In fact, this condition
is sufficient for us to establish the consistency of our estimation procedure for the transport
map as the number of design points increases. We formalize this intuition with the following
consistency theorem, where we want to emphasize that this result holds for all approximation
schemes satisfying Eq. (17), not only the approximation (16).

Theorem 8 (i) For every n1, n2,K1,K2 and sequences of design points in source and target
domains, the cost function

Ĵn,K,d(Λ) = min
π∈Π̂

n1,n2∑
l,k=1

πlkDlkd(Λ) + η‖Λ‖2F , (18)

where
Dlkd(Λ) = ‖Λald − bkd‖22,

in which ald = (〈f1,l, Ui〉d)K1
i=1 and bkd = (〈f2,k, Vj〉d)K2

i=1 ∀l, k, has unique minimizer Λn,K,d ∈
RK2×K1 that corresponds to operator Tn,K,d.

(ii) Suppose that for any natural index pair (i, j), there holds

〈f, Ui〉d → 〈f, Ui〉H1 , 〈g, Vj〉d → 〈g, Vj〉H2 , (19)

almost surely as d→∞, where f ∼ µ and g ∼ ν. Then for any sequences of n1, n2,K1,K2 →
∞ and d→∞ with a rate depends on n1, n2,K1,K2, we have Tn,K,d

P−→ T0 in ‖ · ‖HS. Here,
T0 denotes the minimizer of the population version of FOT given in Eq. (6).

We make the following remarks regarding the evaluation of equivalent objectives given in
Eq. (12), (15) and their estimate (18).

• It is worth noting that the objective function (18) can be computed easily from the
sampled function observations. Moreover, our method works even in the case where
different functions are observed at different design points (with possibly different
numbers of design points). It is quite obvious that one cannot treat each function as a
multidimensional vector to apply existing multivariate OT techniques in this case due
to the dimensions mismatch.

13
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• The objectives derived in the foregoing require the selection of basis functions for
the Hilbert space in both the source and target domains. Since our method requires
finite-dimensional approximations, a particular choice of orthonormal bases may have
a substantial impact on the number of basis functions that one ends up using for
approximating the support of the distributions (of the source and the target domain),
and for the representation of the approximate pushforward map going from one domain
to another. Note that increasing K1 and K2 can lower the objective function, but it
may negatively affect the generalization of the estimate as we only observe a finite
number of sampled functions (at a finite number of design points). Cross-validation is a
simple and very effective technique for choosing K1,K2 and regularization parameters
η, γ. This technique will be demonstrated via a simulation study in Section 5.1.

• As an example of the choice of basis functions for H1 and H2, we may take those that
arise from a user-specified kernel via Mercer’s theorem. Recall that if K is a continuous,
symmetric, non-negative definite kernel on a measurable space (E,B, µ) then it admits
the following representation

K(s, t) =

∞∑
j=1

λjφj(s)φj(t), (20)

where the convergence is absolute and uniform, and (φj)
∞
j=1 forms an orthogonal basis

for L2(E,B, µ). Examples of such bases can be found in (Wang, 2008; Zhu et al., 1997).

• When we discretize our objective from infinite-dimensional data, it is worth noting that
the truncation of basis functions and sparse representation is necessary to eliminate
computational challenges. For example, although certain continuous representations,
such as Reproducing Kernel Hilbert Spaces (RKHS), allow for non-asymptotic general-
ization bounds (Maurer, 2008), their application is relatively restrictive. This is due to
the fact that the Gaussian measure places zero probability on the corresponding RKHS,
limiting its practical utility. On the other hand, in the formulation presented in this
work, the support of distributions are general Hilbert spaces of functions, providing a
considerably richer function space.

• A more adaptive approach for estimating basis functions is to use empirical samples.
This can be achieved through the analysis of functional principal components (FPCA).
Since FPCA is employed in some of our numerical experiments, we provide a brief
introduction here. The literature on FPCA is extensive and covers a wide range of
topics, such as incorporating smoothness (Foutz and Jank, 2010; Liu et al., 2017),
robustness (Gervini, 2008), and sparsity (Kayano and Konishi, 2010). For theoretical
perspectives of FPCA, see Dauxois et al. (1982); Yao et al. (2005); Hsing and Eubank
(2015).

A basic starting point of FPCA is a result of Karhunen and Loéve, who developed
the optimal series expansion theory for continuous stochastic processes. Given N real
valued functions y1, . . . , yN ∈ L2 defined on a closed interval T ⊂ R. We would like
to select a collection of weight functions β : T → R that outlines the most significant

14



Functional optimal transport

types of variation, which is captured by

fi = 〈β, yi〉2 =

∫
β(t)yi(t)dt, i = 1, ..., N.

Similar to the multivariate principal component analysis technique, one first finds a
weight function β1 by solving the maximization problem:

max
β

1

N

N∑
i=1

(〈β1, yi〉2)2, ‖β1‖22 = 1.

Then, inductively, for m > 1, one finds the next weight function βm that maximizes
1
N

∑N
i=1(

∫
βmxi)

2 with the normalizing restriction ‖βm‖22 = 1 and the orthogonality
restrictions 〈βk, βm〉2 = 0, k < m. The obtained weight functions are called the principal
components and can serve as the basis functions. In practice, the maximization problem
can be seen as an eigenvalue problem so that we can employ efficient methods (Ramos-
Carreño et al., 2022) such as singular value decomposition (Section 2.5 of (Bie, 2021)).

4.3 Optimization algorithms

We are now ready to describe in detail the optimization algorithm for solving Eq. (12), or
equivalently, Eq. (15). Recall that for functions (f1,l)

n1
l=1 and (f2,k)

n2
k=1 we observe their

values (y1,l)
n1
l=1 and (y2,k)

n2
k=1 at design points (x1,l)

n1
l=1 and (x2,k)

n2
k=1, respectively, where

x1,l,y1,l ∈ Rd1,l ,x2,k,y2,k ∈ Rd2,k ∀ l, k. So the objective function that we use for the
optimization is

arg min
Λ∈RK2×K1 ,π∈Π̂

n1,n2∑
l,k=1

πlkClk(Λ) + η‖Λ‖2F , (21)

where

Clk(Λ) =
∥∥V2kΛUT

1ly1,l − y2,k

∥∥2

2
, (22)

where U1l = [U1(x1,l), . . . , UK1(x1,l)] ∈ Rd1,l×K1 ,V2k = [V1(x2,k), . . . , VK2(x2,k)] ∈ Rd2l×K2

are basis functions that evaluated on the given design points (equivalently, we can work
directly with (18)).

To speed up the computation of the classical optimal transport objective, a useful
technique is to include a negative entropic penalty (Cuturi, 2013) defined as Ωγ(π) =
γh
∑n1,n2

l,k=1 πlk log πlk. However, entropic regularization keeps the probabilistic coupling dense
and causes the lack of sparsity (Blondel et al., 2018). To promote sparsity, we can impose an
`p penalty by taking Ωγ(π) = γp

∑n1,n2

l,k=1 π
p
lk, for some p ≥ 1, γp > 0. This ensures that the

optimal coupling (πlk) has fewer active parameters thereby easing up the computing burden
for large datasets. This can be considered as promoting a robustness criterion in addition
to shrinkage, a similar behavior associated with the Huber loss (Huber, 1964). Hence, by
imposing an additional regularization term to Eq. (21), we have our objective as

arg min
Λ∈RK2×K1 ,π∈Π̂

n1,n2∑
l,k=1

Clk(Λ)πlk + η‖Λ‖2F + Ωγ(π), (23)
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Algorithm 1: Joint Learning of Λ and π
Input: Observed functional data {f1,l = (x1,l,y1,l)}n1

l=1 and {f2,k = (x2,k,y2,k)}n2
k=1,

coefficient γh, γp, η, and learning rate lr, source and target CONS {Ui(·)}K1
i=1, {Vj(·)}

K2
j=1.

Initial value Λ0 ←− Λini, π0 ←− πini.
U1l = [U1(x1,l), ..., UK1(x1,l)], V2k = [V1(x2,k), ..., VK2(x2,k)] # Evaluate eigenfunctions
for t = 1 to Tmax do

# Step 1. Update πt−1

Clk ←− ‖V2kΛtU
T
1ly1,l − y2,k‖2F # Cost matrix by Eq.(22)

πt ←− argminπL(π, λ; ρ) # Fix Λ update π
# Step 2. Update Λt−1 with gradient descent
Learn Λt, solve Eq. (23) with fixed πt using gradient descent

end for
Output: πTmax , ΛTmax

where η > 0 is the regularization coefficient and Ωγ(π) is the additional regularization term.
We provide a solution for local minima of this objective via an alternative minimization

over Λ and π, whereby the first is fixed while the second is minimized, followed by the
second fixed and the first minimized. The algorithm is described in Algorithm 1 and the
explicit calculations are given below. Note that here we introduce our algorithm following
the most general setting by using Eq. (22) as the transportation cost. Also we use the power
regularization Ωγ(π) = γp

∑n1,n2

l,k=1 π
p
lk in our objective. Later we will show that using the

entropy regularization can let us utilize the Sinkhorn algorithm during the update.
Updating Λ with π fixed: Here we want to solve

Λt = arg min
Λ∈RK2×K1

L(Λ, π) = arg min
Λ∈RK2×K1

n1,n2∑
l,k=1

πlkClk(Λ) + η‖Λ‖2F . (24)

The minimum is achieved by performing gradient descent updates, where the gradient is:

∇ΛL(Λ, π) = 2

n1∑
l=1

n2∑
k=1

πlk
[
(ΛUT

1ly1,l −VT
2ky2,k)y

T
1,lU1l

]
+ 2ηΛ. (25)

Updating π with Λ fixed: Now we want to solve

πt = arg min
π∈Π̂

L(Λ, π) = arg min
π∈Π̂

n1,n2∑
l,k=1

Clk(Λ)πlk + γp

n1,n2∑
l,k=1

πplk. (26)

To optimize for the probabilistic coupling π, we can consider this as a constrained linear
programming problem and solve it through the augmented Lagrangian method (Afonso
et al., 2010).

It is straightforward to extend the optimization framework to accommodate discrete
source and target probability measures given by the (non-uniform) weights ps = (ps1, . . . , p

s
n1

)

and pt = (pt1, . . . , p
t
n2

); the constraints are depicted as π ∈ Π̂ := {
∑n1

l πlk = ptk,∀k;
∑n2

k πlk =
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ptl ,∀l}. Here, we add a slack variable s to enforce the inequality constraints ∀pij ≥ 0. Then
the augmented Lagrangian takes the form

L(π, slk, λ
a, λb, λ) =

n1,n2∑
l,k=1

Clkπlk + γp

n1,n2∑
l,k=1

πplk

+

n2∑
k=1

λak(

n1∑
l=1

πlk − ptk) +

n1∑
l=1

λbl (

n2∑
k=1

πlk − psl ) +
ρk
2

(

n1∑
l=1

πlk − ptk)2 +
ρl
2

(

n2∑
k=1

πlk − psl )2

+

n1,n2∑
l,k=1

λlk(πlk − slk) +

n1,n2∑
l,k=1

ρlk
2

(πlk − slk)2.

(27)

In the above display, λa ∈ Rn1×1, λb ∈ Rn2×1, λ ∈ Rn1×n2 are Lagrange multipliers,
slk ∈ Rn1×n2 are the slack variables. The sub-problem is

πt, slkt = arg min
π,slk

L(π, slk, λ
k, λl, λlk)

λak ← λak + ρk(

n1∑
l=1

πlk − ptk)

λlt = λlt−1 + ρl(

n2∑
k=1

πlk − psl )

λlkt = λlkt−1 + ρlk(

n1,n2∑
l,k=1

πlk − slk).

(28)

Entropic regularization: We may alternatively set the additional regularization term to
be the negative entropy Ωγ(π) = γh

∑n1,n2

l,k=1 πlk log πlk to leverage the computational efficiency
of the Sinkhorn algorithm. In that case, when updating π with Λ fixed, our problem reduces
to an entropic regularized optimal transport problem:

πt = arg min
π∈Π̂

L(Λ, π) = arg min
π∈Π̂

n1,n2∑
l,k=1

Clk(Λ)πlk + γh

n1,n2∑
l,k=1

πlk log πlk. (29)

This formulation reverts to a strictly convex optimization problem and we can efficiently
obtain the solution via the Sinkhorn-Knopp algorithm (Cuturi, 2013). See Algorithm 2.

To summarize our learning scheme, during each iteration, our algorithm performs a
gradient-type update for Λ with π fixed, followed by a step that updates the π. For the
latter step, the algorithm either minimizes π following the Lagrangian multiplier method
when using the power regularization, or invokes the Sinkhorn algorithm when using entropic
regularization.

We end the description of the algorithms with the following additional remarks.

• In its final form in Eq. (23), our optimization formulation has a number of regularization
terms. It is interesting to note how the different penalty terms play complementary
roles in the final estimate of the joint parameter (T,Π) which represents the optimal
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Algorithm 2: Sinkhorn algorithm
Input: Cost matrix C ∈ RN×n, entropy coefficient γh
K←− exp(−C/γh), ν ←− 1n

n
while not converged do
µ←− 1N

N �Kν
ν ←− 1n

n �KTµ
end while
Π←− diag(µ)Kdiag(ν)
Output: Π

coupling. Specifically, the penalty ‖T‖HS (and equivalently, ‖Λ‖F ) is required so
as the overall optimization is well-posed (with unique solution for T in the space of
Hilbert-Schmidt operators). The entropic regularization term for Π serves to speed up
for the computation, while the powered penalty helps to induce a sparser representation
for the coupling, in addition to typically reducing the variance in its estimate from
empirical data. In the next section, the roles of these regularization terms will be
assessed via a simulation study.

• Beyond the augmented Lagrangian method and Sinkhorn algorithm there are a variety
of optimization approaches, e.g., the Alternating Direction Method of Multipliers
(ADMM) (Ghadimi et al., 2014) and the Hungarian algorithm (Kuhn, 1955), which
may be employed for solving the discretized optimal transport problem. Each method
exhibits specific advantages from a computational standpoint; for instance, ADMM
is adept at handling distributed computing contexts. A thorough investigation of the
variety of aforementioned algorithms and their properties within the context of the
functional optimal transport problem is of interest and a subject of future research.

Functional PCA: While the basis functions can be specified from a list of orthogonal basis
families such as the Hermite polynomials or via Mercer kernels, a more data-driven approach
is to estimate the basis from data using the functional PCA approach, as briefly introduced
in the previous subsection.

Let {yi(x)}Ni=1 denote the function values observed at design points x so that from
each function sample a vector yi of length M is obtained. Then the data are presented
by Y = [y1, . . . ,yN ]>. The covariance operator associated with the function samples is
approximated by matrix V = 1

NY>Y. The integrals can be approximated as
∫
f(x)dx ≈∑M

m=1wmf(xm) = w>y where w> = (w1, . . . , wM ) is the weight vector that characterizes
the numerical quadrature. Using W = diag(w) to denote the diagonal matrix of dimensions
M ×M whose elements in the diagonal are the elements of w, the eigen-equations for the
discrete representation of functional data are

VWβj(x) = λjβj(x); j = 1, . . . ,M.

Let νj(x) = W1/2βj(x), then the above equations become W1/2
(

1
NY>Y

)
W1/2νj(x) =

λjνj(x) for j = 1, . . . ,M. which can be solved by applying SVD to 1
NYW1/2 = USV>,

where U = (u1, . . . ,uN ) is an orthonormal matrix and {un}Nn=1 is a basis in RN . The
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corresponding eigenfunctions are represented by eigenvectors βj = W−1/2vj , j = 1, . . . ,M .
Therefore, we obtain an effective approximation of basis functions when the sample curves
are observed at regularly spaced design points.

5. Experiments

In this section we present a thorough simulation study to demonstrate the viability and
effectiveness of our method and to validate the theory presented above. We will also compare
our functional optimal transport method to other existing domain adaptation techniques
in the literature. Finally, we will describe an application of FOT to a real-world task of
multivariate robot-arm motion prediction.

5.1 Simulation studies on the synthetic continuous functional dataset

5.1.1 Verifying consistency and interpretation of the transport map

First, we present simulation studies to demonstrate that one can recover the "true" pushfor-
ward map via cross-validation. We explicitly constructed a ground-truth map T0 that has
finite intrinsic dimensions K∗1 = K∗2 = 15. Then we obtained the target curves by pushing
forward source curves via T0. The FOT algorithm is then applied to the data while K̂1 and
K̂2 gradually being increased. The results are illustrated in Fig. 2. They demonstrate the
effects of varying the number of basis eigenfunctions K̂ = (K̂1, K̂2). We observed that the
performance of the estimated map steadily improved as K̂ increased until it exceeded K∗.
As expected, further increasing the number of eigenfunctions did not reduce the learning
objective.

Next, we validate Lemma 5 by evaluating T̂K̂ from an infinite dimensional map that
transports sinusoidal functions. The Frobenius norm between the optimal T ∗K and estimated
T̂K , ‖T ∗K − T̂K‖F , decreases as K increases. In both simulations, we set sample sizes
n1 = n2 = 30. For hyperparameters, set γh = 20, η = 1. The results were found to be quite
robust to other values of these hyperparameters. Finally, we verify Theorem 8, by varying
the numbers of sample (n1, n2) in estimating the optimal transport (OT) problems between
two empirical measures. It is well-known that for any absolutely continuous measure µ on Rd,
we have EW1(µ̂n, µ) . n−1/d, where µ̂n is the empirical measure of µ with n samples (Dudley,
1969). Here, we provide quantitative results to investigate the convergence of estimation with
regard to sample size. Similar to our previous setting, we gradually increased the sample
size of both source and target (n1 = n2 = n). We set K1 = K2 = 30 and used the same
hyperparameters as before. We repeated the experiment 10 times for each sample size. As
shown in Fig. (2d), the Frobenius norm consistently decreases with increased sample sizes.

5.1.2 Map estimation

Synthetic data simulation: We evaluated our FOT method on a synthetic dataset in
which the source and target data samples were generated from a mixture of sinusoidal
functions. Each sample {yi(xi)}ni=1 is a realization evaluated from a (random) function
yi = Ak sin(ωkxi + φk) + mk where the amplitude Ak, angular frequency ωk, phase φk
and translation mk are random parameters generated from a probability distribution, i.e.,
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(a) As K̂ increases, TK̂#f1 moves toward f2 and W (TK̂#û, v̂) decreases until K̂ ≥ K∗.

(b) Estimate T ∗
K (c) Number of basis functions (d) Sample size

Figure 2: The experimental results that verify the convergence properties. The estimated
linear operator T̂K effectively recovers the groundtruth T ∗K as shown in Fig. (2b). The map
estimation error improves (decreases) with increased number of basis functions (Fig. (2c))
and sample curves n1, n2 (Fig. (2d)).

[Ak, ωk, φk,mk] ∼ P (θk), and θk represents the parameter vector associated with a mixture
component.
Baseline comparison: We compared FOT method to several existing map estimation
methods on the synthetic mixture of sinusoidal functions dataset. Sample paths were drawn
from sinusoidal functions with random parameters. Then, curves were evaluated on random
index sets. In Fig. 3, FOT was compared against the following baselines: (i) Transport
map of Gaussian processes (Mallasto and Feragen, 2017; Masarotto et al., 2019), where a
closed-form optimal transport map is available, (ii) Large-scale optimal transport (LSOT)
(Seguy et al., 2017), and (iii) Mapping estimation for discrete OT (DSOT) (Perrot et al.,
2016). For all discrete OT methods, which were not designed for functional data per se, the
functional data were treated as point clouds of high dimensional vectors.

We observed that FOT did a remarkably good job at transporting source sample curves
to match closely target samples. By contrast, GPOT only altered the oscillation of curves
but failed to capture the target distribution’s multi-modality. This failure is attributed to
the GPOT method’s Gaussian process (and thus unimodal distribution) assumption which
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clearly did not hold in this example. The poor performance of LSOT and DSOT can be
attributed to the fact these methods essentially ignored the smoothness of the sampled curves.
In other words, these multivariate adaptations were not suitable for handling functional data.

(a) data (b) GPOT (c) LSOT

(d) DSOT (e) FOT with diagonal Λ (f) FOT

Figure 3: Pushforward measures of functions obtained by various approaches on mixtures
of sinusoidal functions data: (a) Sample functions from source and target domain. The
resulting pushforward measures obtained by (b) GPOT (Mallasto and Feragen, 2017); (c)
LSOT (Ke, 2019); and (d) DSOT (Perrot et al., 2016); and (e)(f) our method FOT. In (e)
we parameterized the Λ as only a diagonal function. A full matrix Λ (f) produces a more
expressive pushforward.

For a quantitative comparison, we used the Wasserstein distance to measure how well the
pushforward measure of (the empirical distribution of) source samples matches the target
samples:

L = min
Π

1

nL

∑
l,k

d(T (f1l), f2k)Πlk. (30)

Here, d(x,y) := ‖x− y‖22, {T (f1i)}nl
i=1 and {f2i}nk

i=1 are mapped samples and target samples,
T (·) denotes the map given by different methods, nL the length of each sample function
and Π the probabilistic coupling. The experiments are labeled by ksource → ktarget, where
ksource and ktarget indicate the number of mixture components of the source and the target
distribution, respectively. More mixture components typically entail more complex data
distributions, and thus more complex transportation plan (more on this below). As shown
in Table 1, the pushforward map obtained by FOT performed the best in matching target
sample functions quantitatively using the Wasserstein distance based objective L.
Continuity/ Multimodality preserving properties: As shown in Fig. (4a), the map
learned by FOT does a good job at pushing forward out-of-sample curves that were not
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Method 1 → 1 1→2 2→1 2→2 2→3
GPOT 17.560 12.895 15.263 61.561 39.159
LSOT 133.434 94.229 117.832 929.108 663.461
DSOT 6.871 13.226 9.679 46.521 41.009
FOT 2.873 11.982 3.316 44.071 32.547

Table 1: Quantitative comparison on the mixture of sinusoidal functions data. The maps
obtained by FOT method achieved the best performance under the Wasserstein distance
objective.

(a) Out-of-sample curves. The rightmost and lower heatmap represents the coupling π and
reveals the multimodality.

(b) Varying design points (c) Distinct design point sets

Figure 4: FOT performance on out-of-sample curves.

observed during training. Moreover, the coupling π reveals the multi-modality in the data: as
the source distribution is unimodal but the target distribution is bimodal, there is a "splitting"
behavior in how the sampled curves from the source are distributed and transported to the
target. Finally, Fig. (4b) shows that FOT is very effective for functional data evaluated at
different design points. On the upper right panel of Fig. ( 4a), the estimated integral operator
T̂K is shown; note that it is close to an identity matrix while having some permutations
around the first elements. We show the estimated coupling π on the lower right panel. The
coupling clearly reveals the underlying cluster structure in the target function data.
Comparison to OT methods for finite-dimensional vectors: Although one can always
apply existing OT map estimation methods such as that of Alvarez-Melis et al. (2019); Perrot
et al. (2016); Grave et al. (2019) to functional data by simply discretizing continuous functions
into fixed-dimension vector measurements, we shall demonstrate the ineffectiveness of such
an approach due to its failure to properly account for the functional nature (e.g. smoothness)
of the data in the source and/or target domain (see Fig. 5). In particular, we present
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(a) Data (b) Data with noise (c) (Mallasto and Feragen, 2017)

(d) (Perrot et al., 2016) (e) (Perrot et al., 2016) (f) (Alvarez-Melis et al., 2019)

(g) (Grave et al., 2019) (h) FOT with η = 1 (i) FOT with η = 40

Figure 5: Panel (b) depicts functional data generated by adding non-continuous noise to
the smooth curves shown in panel (a). (c) depicts results obtained by applying the method
of (Mallasto and Feragen, 2017). (d) and (e) depict results obtained by applying the method
of (Perrot et al., 2016). (f) depicts results obtained by applying the method of (Alvarez-Melis
et al., 2019). (g) depicts results obtained by the method of (Grave et al., 2019). Panels (h)
and (i) depict results obtained by FOT using different regularization parameters.

experiments and comparisons with more baseline methods under the same settings considered
in Section 5.1. In these experiments we assume all the functional data are evaluated on
a set of fixed-size design points to apply conventional OT map estimation methods for
fixed-dimensional vectors directly. In addition, the observed continuous function data is
perturbed by non-continuous noise. Under this setting, all baseline OT formulations neglect
the smooth nature of functional data and overfit the signals contaminated with noises. Only
the pushforward of maps estimated with GPOT (Mallasto and Feragen, 2017) and our
methods successfully recover the smoothness of the target curves. This suggests the necessity
of treating data as sampled functions (rather than sampled vectors). Plot (h) and plot (i) of
Fig. 5 show the role played by parameter η in controlling the smoothness of the map.

Selection of basis functions: We investigate the selection of basis functions using the
FPCA approach introduced in Section 4.3. We generate the original data using Hermite
polynomials as basis functions. As illustrated in Fig. 6, knowing the ground-truth basis
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(a) functional data (b) Basis functions for data gen-
eration

(c) Result with given basis func-
tions

(d) Learned basis functions V̂ (e) Learned basis functions Û (f) Result with estimated basis

Figure 6: Estimate basis functions from data using FPCA. When the ground-truth basis
functions are provided, the estimated map can achieve perfect results (Fig. (6c)) with given
basis (Fig. (6b)). Using the estimated basis functions (Fig. (6d) and Fig. (6e)), the map
can still have satisfactory results (Fig. (6f)).

function when estimating the transport map leads to a consistent pushforward map. We
also display the estimated basis functions for both the source (Fig. 6d) and target (Fig.
(6e)) sample curves. Following the FPCA procedure described in Sec. 4.3, we assembled
the function values yi(x) into matrix Y, with each row representing a function sample
as a vector. Leveraging the shared index set, we applied Singular Value Decomposition
(SVD) to 1

NY, yielding USV> where the columns of U are the estimation of basis functions.
The estimated basis functions are ordered by the degree of oscillation. As we can see, the
estimated pushforward map does not match the pushforward curves perfectly but is still
satisfactory, as illustrated in Fig. (6f).

In numerous situations, the basis functions for complex multimodal distributions may
not be readily available; estimating a highly complex parametrized family of basis functions
effectively can be challenging. Under these conditions, employing a data-driven approach such
as FPCA for obtaining the most relevant basis functions can yield improved performance. The
flexibility and usefulness of the FPCA approach are illustrated in Fig. 7 which demonstrates
that our algorithm augmented with the FPCA-based basis functions can effectively adapt to
previously unobserved data distributions.
Effects of regularization: The final set of simulations is designed to evaluate the effects
of regularization terms in the FOT formulation. The results of this study are depicted in Fig.
8. We observe that the power regularizer finds sparser coupling distributions than entropic
regularization. This phenomenon is expected as the entropic penalty keeps the coupling
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(a) functional data (b) Basis functions for data gen-
eration

(c) Result with misspecified basis
functions

(d) Learned basis V̂ (e) Learned basis Û (f) Result with learned basis

Figure 7: Defining appropriate basis functions (Fig. (7b)) for optimal map estimations
itself is a challenging task. Employing FPCA (Fig. (7d) and Fig. (7e)) yields superior map
estimation outcomes (Fig. (7f)). In contrast, misspecified basis functions from randomly
selected basis function coefficients result in sub-optimal map pushforward samples (Fig.
(7c)).

strictly positive in its support. The lack of sparsity can be problematic, especially in the
case of iterative map estimation, where a sparse coupling distribution is crucial for learning
a meaningful and expressive transport map between domains of functions. It is worth noting
that, the estimated coupling represents the joint probability density matrix and it reveals
the clustering structure of data (cf. Fig. (4a)).

5.2 Optimal transport domain adaptation for robot arm’s multivariate
sequences of motion

Recent advances in robotics include many novel data-driven approaches such as motion pre-
diction (Jetchev and Toussaint, 2009), human-robot interaction (Liu et al., 2018), and others
(Tompkins et al., 2020; Xu et al., 2020). However, generalizing knowledge across different
automated tasks for a robot, and generalizing across robots, are considered challenging since
data collection in the real world is expensive and time-consuming. A variety of approaches
have been developed to tackle these problems, such as domain adaptation (Bousmalis et al.,
2018), transfer learning (Weiss et al., 2016), and so on (Tobin et al., 2017; Finn et al., 2017).

Optimal transport based domain adaptation: We propose to eliminate the het-
erogeneity in robot learning datasets by following the formulation of optimal transport based
domain adaptation (OTDA) (Courty et al., 2016). Specifically, the pipeline consists of the
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(a) Entropic (b) Power regularization γp = 15

(c) γp = 0 (d) γp = 4 (e) γp = 10 (f) Entropy

Figure 8: Panel (a) and (b) depict the pushforward samples and coupling matrix obtained
by entropic and power regularization, respectively. The entropic regularization leads to a
smooth coupling while the corresponding pushforward samples concentrate near the average
of the target samples, suggesting a rather poor transport map. Panels (b)–(f) show that the
coupling becomes sparser as we increase the power regularization coefficient γp. Panel (f)
confirms that the negative entropy of the coupling matrix increases with coefficient γp.

following three steps: 1) learn an optimal transport map, 2) apply the pushforward map on
the observed source samples towards the target domain, and 3) train a motion predictor on
the pushforwarded samples that lie in the target domain.

Although it might be possible to discretize and interpolate data to fixed-size vectors of
observed measurements, trajectories of robot motion are intrinsically continuous functions of
time of various lengths. Functional optimal transport provides a natural solution for this
challenging task over existing OT map estimation methods for discrete samples.

Typically, a robot motion dataset {fi}Ni=0 contains multiple trails fi for a specific task.
Although these trials are somewhat similar, they differ slightly due to various real-world
factors due to sensor and actuator noises, and human intervention. Each trail can be viewed
as a multidimensional nt length timeseries representing the joint or end effector location over
time fi := {(fi,1, ti,1), ..., (fi,nt , ti,nt)}. Each robot motion dataset is viewed as samples for a
distribution µ, via the empirical distribution µ̂ =

∑N
i=1 piδf̂i , where δf̂i is the Dirac measure

at f̂i, which is the embedded function of fi in the Hilbert space using basis functions, and pi
are probability masses associated to the i-th sample (

∑
i pi = 1). Given a source and target

robot-motion dataset Ds and Dt (with empirical measures µ̂s and µ̂t, respectively), we assume
that there are sufficient samples in the source {fs,i}Ns

i=1 but only limited samples in the target
{ft,j}Nt

j=1, where Ns � Nt. To obtain an ML model in the target domain, we want to leverage
the knowledge in the source by using a transport map that pushes forward all samples {fi}
to match the distributions. At this point, the transport map can be estimated using the
functional optimal transport formulation, by solving T ∗ = arg minT W2(T#µ̂s, µ̂t) + η‖T‖2F .
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Figure 9: The structure of the Baxter robot and the Sawyer robot used in MIME dataset
and Roboturk dataset. Their arms share a similar structure as they both have 7 joints and
one end effector. This allows us to perform domain adaptation between these two datasets.

(a) Source motion: "Roboturk-bins-Bread" by Sawyer robot.

(b) Target motion: "MIME Picking (left-hand)" by Baxter robot.

(c) The pushforward motion of the transport map and the target motion
look similar to each other but differ slightly.

Figure 10: Pushforward of robot arm motions: In each sub-figure, a robot-arm motion is
visualized as image clips, while the robot-arm joint angles are plotted as a multivariate time
series, the x-axis is time and are omitted for cleanliness.

Datasets: The MIME Dataset (Sharma et al., 2018) contains 8000+ motions across 20
tasks collected on a two-armed Baxter robot. The Roboturk Dataset (Mandlekar et al.,
2018) is collected by a Sawyer robot over 111 hours. As shown in Fig. (9), both robot
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Method LSTM ANP RANP MAML* TL* FOTLSTM FOTANP FOTRANP FOTMAML FOTTL

R1→M1 2.0217 1.3261 1.9874 0.0307 0.5743 0.0271 0.0963 0.0687 0.0165 0.0277
R1→M2 1.6821 1.0951 1.5681 0.0374 0.7083 0.0414 0.1642 0.1331 0.0191 0.0446
R2→M1 1.3963 0.6642 1.7256 0.0327 0.2491 0.0277 0.0951 0.0696 0.0202 0.0906
R2→M2 1.1952 0.6307 1.3659 0.0477 0.4020 0.0331 0.1620 0.1554 0.0167 0.0406

Table 2: MSE error results of different predictive models. R1: Roboturk-bins-bread, R2:
Roboturk-pegs-RoundNut, M1:MIME1-Pour-left, M2: MIME12-Picking-left.

arms have 7 joints with similar but slightly different configurations, which enable us to learn
domain adaptation between the two. We picked two tasks, Pouring (left arm) and Picking
(left arm), from MIME dataset and two tasks, (bins-Bread, pegs-RoundNut), from Roboturk
dataset. We considered each task as an individual domain.

Pushforward of robot motions: Our method successfully learns the transport map
that pushes forward samples from one task domain to another. The source dataset contains
motion records from task bins-full in the Roboturk dataset while the target includes motion
records from task Pour (left-arm) in the MIME dataset. We visualize the motion by displaying
the robot joint angles sequences in a physics-based robot simulation gym (Erickson et al.,
2020). Animated motions can be found here1. In Fig. 10, we show image clips of each move
along with a plot of time series of joint angles. We can see from the robot simulation that
the pushforward sequence in Fig. 10c matches with the target motion in Fig. 10b while
simultaneously preserving certain features of the source motion in Fig. 10a.

Motion prediction: For the Robot Arm Motion Prediction task, a motion trajectory
fi = (fi,1, ti,1), ..., (fi,l, ti,l) of length l consists of a set of vectors fi,j ∈ Rd with associated
timestamps ti,j , where the time series trajectories are governed by continuous functions of time
fS(t) : t ∈ R 7→ S ∈ Rd. Since the task is to predict the future lf points based on the past lp
points, ignoring the index of individual trajectories, we arrange the data to have the format
Xt = {(ft+1, t+1), ..., (ft+lp , t+ lp)}, Yt = {(ft+lp+1, t+ lp+1), ..., (ft+lp+lf , t+ lp+ lf )}. Our
task is learning a predictive model that minimizes the squared prediction error in the target
domain arg minθ

∑M
i=1(Fθ(X

t
i ) − Y t

i )2 where Y t
i is the true label from target domain and

Ŷ t
i = Fθ(X

t
i ) is the predictive label estimated by a model trained on source domain (Xs, Y s)

and a subset of target domain (Xtm, Y tm). It is worth noting that if the distribution of
the testing set differs from that of the target set, a predictive model trained solely on the
training set will experience a significant performance drop on the target set. To address this
issue, several paradigms have been proposed, including transfer learning, meta-learning, and
few-shot learning.

Methods: We considered 5 baselines for this task, including

(1) a conventional baseline approach we employ is a vanilla LSTM that is trained exclusively
on the source data samples. Despite the fact that LSTM models are recognized for their
ability to capture temporal dependencies, their performance may still be restricted due
to the distributional discrepancy;

(2) the Attentive Neural Process (ANP) (Kim et al., 2019), which is a deep Bayesian model
that learns a distribution of functions. ANP can be seen as models that do few-shot
learning since it looks for predictive distribution conditioning on context data;

1. More examples can be found here: https://sites.google.com/view/functional-optimal-transport.
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(3) the RANP model (Qin et al., 2019), which is an extension of the ANP models, which
incorporates the temporal dependency of data using an LSTM model. Similar to the
ANP, the RANP is also adept at few-shot learning tasks;

(4) the MAML model (Model-Agnostic Meta-Learning), which is a popular meta-learning
algorithm (Finn et al., 2017); It is designed to enable fast adaptation of a model’s
parameters to new tasks with limited data. To enable a fair comparison, we learn the
meta parameters on a small set of various tasks and perform limited t = 1 adaptation
step on the target domain;

(5) and finally, the conventional transfer learning (TL) (Weiss et al., 2016) method, where
we first pre-trained the model on the source domain and then fine-tuned it on the target
domain. To leverage our proposed FOT, we use the estimated map to pushforward all
source samples to match the target distribution, and then use these samples for the
training, adaptation, or the fine-tuning process for the above baseline methods.

Results: The results are given in Table 2. It is noted that the vanilla and few-shot
training approaches are having large errors, as expected, while MAML and transfer learning
have better generalization ability as they have the access to some target samples. However,
we have also observed that, somewhat surprisingly, utilizing pushforward samples from the
FOT transport map enhances the performance of LSTM, NP, and RANP to surpass the
baseline performance of both meta-learning and transfer learning approaches. Additionally,
even MAML and TL approaches can benefit from utilizing the mapped samples from the
FOT. This is because the pushforward data offer additional samples that adhere to the target
distribution, which helps mitigate the distributional gap due to the model misspecification.

All experiments were implemented with Numpy and PyTorch (matrix computation scaling)
using one GTX2080TI GPU and a Linux desktop with 32GB memory. For all simulations,
we set the optimization coefficients as ρk = 800× 1 ∈ RN×1, ρl = 800× 1 ∈ Rn×1, η = 0.001,
γh = 40, γp = −10, power p = 3. The learning rate for updating Λ is lrΛ = 4e − 4,
the learning rate for updating πlk is lrπ = 1e − 5. The maximum iteration step is set as
Tmax = 1000. In the experimental results on the robot-arm datasets, the hyperparameters
are set by γh = 30, γp = −30, and power p = 3. The same hyperparameters as in the
simulation experiments were employed. We found that our algorithm’s performance was
not sensitive to varying hyperparameters. Specifically, when hyperparameters are perturbed
around these values, the performance of the downstream domain adaptation experiments
remains stable.

6. Proofs

In this section, we provide proofs for theoretical results in Section 3 and Section 4. We first
define some notations regarding the proofs.

Notations. Fix Borel probability measures µ on H1 and ν on H2. We define the cost
function (without regularization term) to be Φ(T ) := W2(T#µ, ν) for T ∈ BHS(H1, H2).
For the ease of notation, as in the main text we write n for (n1, n2), K for (K1,K2), BHS

for BHS(H1, H2) and BK for its restriction on the space spanned by the first K1 ×K2 basis
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operators. ‖ · ‖HS and ‖ · ‖op are used to denote the Hilbert-Schmidt norm and operator
norm on operators, respectively. It is known that ‖T‖op ≤ ‖T‖HS for all operator T .

In this section we often deal with convergence of a sequence with multiple indices.
Specifically, we say a tuple m = (m1, . . . ,mp) → ∞ when m1 → ∞, . . . ,mp → ∞. By
saying that a sequence A(m1,m2, . . . ,mp) of index m = (m1, . . . ,mp) converge to a number
a as m → ∞, it is meant that for all ε > 0, there exists M1, . . . ,Mp such that for all
m1 > M1, . . . ,mp > Mp, we have

|A(m1, . . . ,mp)− a| < ε. (31)

We write (m1,m2, . . . ,mp) > (m′1,m
′
2, . . . ,m

′
p) if m1 > m′1, . . . ,mp > m′p.

We say a function f : BHS(H1, H2)→ R is coercive if

lim
‖T‖HS→∞

f(T ) =∞, (32)

and it is (weakly) lower semi-continuous if

f(T0) ≤ lim inf
k→∞

f(Tk), (33)

for all sequences Tk (weakly) converging to T0. Further details on convergence in a strong
and weak sense in Hilbert spaces can be found in standard texts on functional analysis, e.g.,
(Yosida, 1995).

Now we are going to prove the results presented in Section 3 of the main text. For ease
of the readers, we recall all statements before proving them.

Existence and uniqueness First, we verify some properties of the objective function J .
Lemma 3 The following statements hold.

(i) W2(T#µ, ν) is a Lipschitz continuous function of T ∈ BHS(H1, H2), which implies
that J : BHS → R+ is also continuous.

(ii) J is a strictly convex function.

(iii) There are constants C1, C2 > 0 such that J(T ) ≤ C1‖T‖2HS + C2 ∀T ∈ BHS.

(iv) lim‖T‖HS→∞ J(T ) =∞.

Proof [Proof of Lemma 3]

(i) We first show that the cost function (without regularization term) Φ(T ) = W2(T#µ, ν)
for T ∈ BHS(H1, H2) is Lipschitz continuous. Indeed, consider any T1, T2 ∈ BHS , by
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the triangle inequality applied to Wasserstein metric,

W2(T1#µ, ν)−W2(T2#µ, ν) ≤W2(T1#µ, T2#µ)

=

(
inf

π∈Π(µ,µ)

∫
H1×H1

‖T1f1 − T2f2‖2H2
dπ(f1, f2)

)1/2

≤
(∫

H1×H1

‖T1f1 − T2f2‖2H2
dπ′(f1, f2)

)1/2

=

(∫
H1

‖T1f1 − T2f1‖2H2
dµ(f1)

)1/2

≤
(∫

H1

‖T1 − T2‖2op‖f1‖2H1
dµ(f1)

)1/2

≤ ‖T1 − T2‖HS
(∫

H1

‖f1‖2H1
dµ(f1)

)1/2

= ‖T1 − T2‖HS(Ef∼µ‖f‖2H1
)1/2,

where π′ is the identity coupling. Hence, both Φ2(T ) and η‖T‖2HS are continuous,
which entails continuity of J as well.

(ii) If we can prove that Φ2(T ) is convex with respect to T , then the conclusion is immediate
from the strict convexity of η‖T‖2HS . We first observe thatW 2

2 (·, ν) is convex, as for any
measure ν1, ν2 on H2 and λ ∈ [0, 1], if γ1 is the optimal coupling of (ν1, ν) and γ2 is the
optimal coupling of (ν2, ν), then λγ1 +(1−λ)γ2 is a valid coupling of (λν1 +(1−λ)ν2, ν),
which yields

W 2
2 (λν1 + (1− λ)ν2, ν) ≤

∫
H1×H2

‖f − g‖2H2
d(λγ1 + (1− λ)γ2)(f, g)

= λW 2
2 (ν1, ν) + (1− λ)W 2

2 (ν2, ν).

Now the convexity of Φ2(T ) follows as for any T1, T2 ∈ BHS , λ ∈ [0, 1],

W 2
2 (((1− λ)T1 + λT2)#µ, ν) = W 2

2 ((1− λ)(T1#µ) + λ(T2#µ), ν)

≤ (1− λ)W 2
2 (T1#µ, ν) + λW 2

2 (T2#µ, ν).

(iii) This can be proved by an application of Cauchy-Schwarz inequality and the fact that
the operator norm is bounded above by the Hilbert-Schmidt norm. Let π be any
coupling of µ and ν,

J(T ) = W 2
2 (T#µ, ν) + η‖T‖2HS

≤
∫
H1×H2

‖Tf1 − f2‖2H2
dπ(f1, f2) + η‖T‖2HS

≤ 2

∫
H1×H2

(‖Tf1‖2H2
+ ‖f2‖2H2

)dπ(f1, f2) + η‖T‖2HS

≤ 2

(
‖T‖2HS

∫
H1

‖f1‖2H1
dµ(f1) +

∫
H2

‖f2‖2H2
dµ(f2)

)
+ η‖T‖2HS

= C1‖T‖2HS + C2,
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for all T ∈ B, where C1 = 2Ef1∼µ‖f1‖2H1
dµ(f) + η, C2 = 2Ef2∼ν‖f2‖2H2

dν(f).

(iv) This follows from the fact that Φ2(T ) ≥ 0 for all T and η‖T‖2 is coercive as in
equation (32).

We are ready to establish existence and uniqueness of the minimizer of J . The technique
being used is well-known in the theory of calculus of variations (e.g., cf. Theorem 5.25. in
(Demengel and Demengel, 2012)).
Theorem 4 There exists a unique minimizer T0 for the problem (6).
Proof [Proof of Theorem 4] As J(T ) ≥ 0 and is finite for all T , there exist L0 =
infT∈BHS

J(T ) ∈ [0,∞). Consider any sequence (Tk)
∞
k=1 such that J(Tk) → L0. We

see that this sequence is bounded, as otherwise, there exists a subsequence (Tkh)∞h=1 such
that ‖Tkh‖HS →∞. But this means L0 = lim J(Tkh) =∞ (due to the coercivity), which is
a contradiction. Now, because (Tk) is bounded, by Banach-Alaoglu theorem, there exists a
subsequence (Tkp)∞p=1 converges weakly to some T0.

Next, we will prove that J is weakly lower semi-continuous. Indeed, we can readily verify
that J is (weakly) lower semi-continuous if and only if the epigraph {(T, y) : y ≥ J(T )} is
(weakly) closed. Because J is convex and continuous, we have the epigraph is convex and
closed. Recall a theorem of Mazur (page 292 of Royden and Fitzpatrick (1988)), which states
that a convex, closed subset of a Banach space is weakly closed. This result implies that the
epigraph {(T, y) : y ≥ J(T )} is also weakly closed. Hence, J is weakly lower semi-continuous.
Thus,

J(T0) ≤ lim inf
p→∞

J(Tkp) = L0. (34)

Therefore the infimum of J is attained at some T0. The uniqueness of T0 follows from the
strict convexity of J .

Approximation analysis Next, we proceed to analyze the convergence of the minimizers
of finite dimensional approximations to the original problem (6). The proof is valid thanks
to the presence of the regularization term η‖T‖2HS .
Lemma 5 For each K = (K1,K2), there exists a unique minimizer TK of J over BK .
Moreover, TK → T0 in ‖ · ‖HS as K1,K2 →∞.
Proof [Proof of Lemma 5] Similar to the proof above, for every K = (K1,K2) there exists
uniquely a minimizer TK for J on BK as BK is closed and convex. Denote T0,K the projection
of T0 to BK . As K → ∞, we have T0,K → T0, which yields J(T0,K) → J(T0). From the
definition of minimizers, we have

J(T0,K) ≥ J(TK) ≥ J(T0), ∀K. (35)

Now let K →∞, we have limK→∞ J(TK) = J(T0) thanks to the Sandwich rule. Since J is
convex,

J(T0) + J(TK) ≥ 2J

(
1

2
(T0 + TK)

)
, (36)
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passing this through the limit, we also have

lim
K→∞

J

(
1

2
(T0 + TK)

)
= J(T0). (37)

Now using the parallelogram rule,

η

2
‖TK − T0‖2HS = η

(
‖TK‖2HS + ‖T0‖2HS − 2

∥∥∥∥1

2
(T0 + TK)

∥∥∥∥2

HS

)

=

(
J(TK) + J(T0)− 2J

(
1

2
(T0 + TK)

))
−
(

Φ2(TK) + Φ2(T0)− 2Φ2

(
1

2
(T0 + TK)

))
≤
(
J(TK) + J(T0)− 2J

(
1

2
(T0 + TK)

))
,

as Φ2 is convex. Let K →∞, we have the last expression goes to 0. Hence, ‖TK−T0‖HS → 0.

What is remarkable in the proof above is that it works for any sequence (Tm)∞m=1:
whenever we have J(Tm)→ J(T0) then we must have Tm → T0.

Uniform convergence and consistency analysis Now we turn our discussion to the
convergence of empirical minimizers. Using the technique above, there exists uniquely
minimizer T̂K,n for Ĵn over BK . We want to prove that T̂K,n

P−→ TK uniformly in K in a
suitable sense and then combine with the result above to have the convergence of T̂K,n to T0.
A standard technique in the analysis of M-estimator is to establish uniform convergence of
Ĵn to J in the space of T (Keener, 2010). Note that the spaces BHS and all BK ’s are not
bounded, so care must be taken to show that (T̂K,n)K,n will eventually reside in a bounded
subset and then uniform convergence is attained in that subset. The following auxiliary
result presents that idea.
Lemma 6

(i) For any fixed C0 > 0,

sup
‖T‖HS≤C0

|Ĵn(T )− J(T )| P−→ 0 (n→∞). (38)

(ii) Let T̂K,n be the unique minimizer of Ĵn over BK . There exists a constant D such that
P (supK ‖T̂K,n‖HS < D)→ 1 as n→∞.

Proof

(i) The proof proceeds in a few small steps.
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Step 1. By triangle inequality of Wasserstein distances,

|W2(T#µ, ν)−W2(T#µ̂n1 , ν̂n2)| ≤W2(T#µ̂n1 , T#µ) +W2(ν̂n2 , ν)

≤ ‖T‖opW2(µ̂n1 , µ) +W2(ν̂n2 , ν)

≤ ‖T‖HSW2(µ̂n1 , µ) +W2(ν̂n2 , ν). (39)

Therefore,

sup
‖T‖HS≤C0

|Φ̂n(T )− Φ(T )| ≤ C0W2(µ̂n1 , µ) +W2(ν̂n2 , ν) (40)

By Proposition 2.2.6. of Panaretos and Zemel (2020) and with our assumption of
bounded second moments of µ and ν, we have W2(µ̂n1 , µ) and W2(ν̂n2 , ν) converge
almost surely to 0 as n → ∞. As almost surely convergence implies convergence in
probability, we have

sup
‖T‖HS≤C0

|Φ̂n(T )− Φ(T )| P−→ 0, (41)

which means for all ε > 0,

P

(
sup

‖T‖HS≤C0

|Φ̂n(T )− Φ(T )| < ε

)
→ 1, (42)

Step 2. Combining sup‖T‖HS≤C0
|Φ̂n(T ) − Φ(T )| < ε with the fact that Φ2(T ) ≤

C1‖T‖HS + C2 implies that for all T such that ‖T‖HS ≤ C0, we have Φ2(T ) ≤
C1C0 + C2 =: C

|Ĵn(T )− J(T )| = |Φ̂2
n(T )− Φ2(T )|

= |Φ̂n(T )− Φ(T )||Φ̂n(T ) + Φ(T )|

≤ ε(2
√
C + ε).

Hence

P

(
sup

‖T‖HS≤C0

|Ĵn(T )− J(T )| < ε(2
√
C + ε)

)
≥ P

(
sup

‖T‖HS≤C0

|Φ̂n(T )− Φ(T )| < ε

)
→ 1.

(43)
Noticing that for all δ > 0, there exists an ε > 0 such that ε(2

√
C + ε) = δ, we arrive

at the convergence in probability to 0 of sup‖T‖HS≤C0
|Ĵn(T )− J(T )|.

(ii) We also organize the proof in a few steps.

Step 1. Denote Φ̂n(T ) = W2(T#µ̂n1 , ν̂n2). We first show that for any fixed C0,

sup
‖T‖HS≥C0

|Φ̂n(T )− Φ(T )|
‖T‖HS

P−→ 0 (n→∞). (44)

Indeed, from (39),

sup
‖T‖HS≥C0

|Φ̂n(T )− Φ(T )|
‖T‖HS

≤W2(µ̂n1 , µ) +
W2(ν̂n2 , ν)

C0
. (45)
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As above, we have W2(µ̂n1 , µ) and W2(ν̂n2 , ν) converge to 0 almost surely as n→∞.

Hence, sup‖T‖HS≥C0

|Φ̂n(T )− Φ(T )|
‖T‖HS

→ 0 almost surely, and therefore in probability.

Step 2. For any fixed C0 and δ,

P

(
sup

‖T‖HS≥C0

|Φ̂n(T )− Φ(T )|
‖T‖HS

< δ

)
→ 1 (n→∞). (46)

The event sup‖T‖HS≥C0

|Φ̂n(T )− Φ(T )|
‖T‖

< δ implies that for all T such that ‖T‖HS ≥

C0, from Lemma 3 we have

Ĵn(T ) ≤ (Φ(T ) + δ‖T‖HS)2 + η‖T‖2HS ≤ (
√
C1‖T‖2HS + C2 + δ‖T‖HS)2 + η‖T‖2HS .

Now for each K, we can choose a T̃K ∈ BK such that ‖T̃K‖HS = C0. Thus,

inf
T∈BK

Ĵn(T ) ≤ Ĵn(T̃K) ≤ (

√
C1‖T̃K‖2HS + C2 + δ‖T̃K‖HS)2 + η‖T̃K‖2HS

= (
√
C1C2

0 + C2 + δC0)2 + ηC2
0 =: C,

which is a constant.

On the other hand, choose D =
√
C/η, we have for all T such that ‖T‖HS > D

Ĵn(T ) ≥ η‖T‖2HS > C, (47)

which means infT∈BK :‖T‖HS>D Φ̂n(T ) > C for all K.

Combining two facts above, we have ‖T̂K,n‖HS ≤ D for all K.

Step 3. It follows from the previous step that

P

(
sup
K
‖T̂K,n‖HS ≤ D

)
≥ P

(
sup

‖T‖HS≥C0

|Φ̂n(T )− Φ(T )|
‖T‖HS

< δ

)
, (48)

which means this probability also goes to 1 as n→∞.

We are ready to tackle the consistency of our estimation procedure.
Theorem 7 There exists a unique minimizer T̂K,n of Ĵn over BK for all n and K. Moreover,
T̂K,n

P−→ T0 in ‖ · ‖HS as K1,K2, n1, n2 →∞.
Proof [Proof of Theorem 7] The proof proceeds in several smaller steps.

Step 1. Take any ε > 0. As TK → T0 when K →∞, there exist κ = (κ1, κ2) such that
‖TK − T0‖HS ≤ ε for all K1 > κ1,K2 > κ2. Let

Lε = inf
T∈BHS\B(T0,ε)

J(T ), (49)
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where B(T, ε) is the Hilbert-Schmidt open ball centered at T having radius ε. It can be
seen that Lε > J(T0), as otherwise, there exists a sequence (Tp)p 6∈ B(T, ε) such that
J(Tp)→ J(T0), which implies Tp → T0, a contradiction.

Step 2. Let δ = Lε − J(T0) > 0. By Lemma 5, we can choose κ large enough so that we
also have |J(TK)− J(T0)| < δ/2 ∀K1 > κ1,K2 > κ2. Let

LK,ε = inf
BK\B(TK ,2ε)

J(T ).

As B(T0, ε) ⊂ B(TK , 2ε) and BK ⊂ BHS , we have

LK,ε = inf
BK\B(TK ,2ε)

J(T ) ≥ inf
T∈BHS\B(T0,ε)

J(T ) = Lε. (50)

Therefore,
LK,ε − J(TK) ≥ Lε − J(T0)− δ/2 = δ/2. (51)

for all K > κ.
Step 3. Now, if we have

sup
‖T‖≤D

|Ĵn(T )− J(T )| ≤ δ/4, sup
K
|T̂K,n| ≤ D, (52)

where D is a constant as in Lemma 6, then

Ĵn(TK) ≤ J(TK) + δ/4, (53)

and
Ĵn(T ) ≥ J(T )− δ/4 ≥ J(TK) + δ/4, (54)

for all ‖T‖HS ≤ D and T ∈ BK \B(TK , 2ε), where the last inequality is due to Step 2.
Combining with |T̂K,n| ≤ D, we have T̂K,n must lie inside B(TK , 2ε) ∩ BK because

it is the minimizer of Ĵn over BK . Hence ‖T̂K,n − TK‖HS ≤ 2ε, which deduces that
‖T̂K,n − T0‖HS ≤ ‖T̂k,n − TK‖HS + ‖Tk − T0‖HS ≤ 2ε+ ε = 3ε.

Step 4. Continuing from the previous step, for all κ large enough, we have the following
inclusive relation of events

{ sup
‖T‖≤D

|Ĵn(T )− J(T )| ≤ δ/4} ∩ {sup
K
|T̂K,n| ≤ D} ⊂ { sup

K>κ
‖T̂K,n − T0‖HS ≤ 3ε} (55)

Using the inequality that for any event A,B, P (A ∩B) ≥ P (A) + P (B)− 1, we obtain

P ( sup
K>κ
‖T̂K,n − TK‖HS ≤ 3ε) ≥ P ( sup

‖T‖HS≤D
|Ĵn(T )− J(T )| ≤ δ/4) + P (sup

K
|T̂K,n| ≤ D)− 1,

(56)
which goes to 1 as n→∞ due to Lemma 6. Because this is true for all ε > 0, we have

T̂K,n
P−→ T0, (57)

as K,n→∞.
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Consistency when the functional data are observed only at design points Finally,
we are ready to prove Theorem 8, which is re-stated herein.
Theorem 8 (i) For every n1, n2,K1,K2 and sequences of design points in source and target
domains, the cost function

Ĵn,K,d(Λ) = min
π∈Π̂

n1,n2∑
l,k=1

πlkDlkd(Λ) + η‖Λ‖2F , (58)

where
Dlkd(Λ) = ‖Λald − bkd‖22,

in which ald = (〈f1,l, Ui〉d)K1
i=1 and bkd = (〈f2,k, Vj〉d)K2

i=1 ∀l, k, has unique minimizer Λn,K,d ∈
RK2×K1 that corresponds to operator Tn,K,d.

(ii) Suppose that for any natural index pair (i, j), there holds

〈f, Ui〉d → 〈f, Ui〉H1 , 〈g, Vj〉d → 〈g, Vj〉H2 , (59)

almost surely as d→∞, where f ∼ µ and g ∼ ν. Then for any sequence n1, n2,K1,K2 →∞
and d→∞ with a rate depends on n1, n2,K1,K2, we have Tn,K,d

P−→ T0 in ‖ · ‖HS. Here T0

denotes the minimizer of the population version of FOT given in Eq. (6).
Proof For each n1, n2,K1,K2 and sequences of design points, the existence and uniqueness
of Λn,K,d follows from Theorem 4. Thus, part (i) is immediate. To establish part (ii), we
rewrite the objective function (58) as

W 2
2 (T#µn,K,d, νn,K,d) + η‖T‖2HS , (60)

where

µn,K,d =
1

n1

n1∑
l=1

δfl,K,d
, fl,K,d =

K1∑
i=1

〈fl, Ui〉dUi, (fl)
n1
l=1

iid∼ µ,

and

νn,K,d =
1

n2

n2∑
k=1

δgk,K,d
, gk,K,d =

K2∑
i=1

〈gk, Vj〉dVj , (gk)
n2
k=1

iid∼ ν.

As a consequence of Lemma 6 and Theorem 7, the conclusion of the theorem can be achieved
if we can show that

W2(µn,K,d, µ)
P−→ 0, W2(νn,K,d, ν)

P−→ 0. (61)

It suffices to establish the convergence for µ, as the work for ν can be done in the same way.
Note that

W2(µn, µ)
a.s.−−→ 0, (62)

as n1 →∞, where µn = 1
n1

∑n1
l=1 δfl , so that we only need to show

W2(µn,K,d, µn)
P−→ 0 (as n→∞). (63)
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Consider the coupling that places mass
1

n1
on (fl, fl.K,d) for all l = 1, . . . , d1, then we

have

W 2
2 (µn,K,d, µn) ≤ 1

n1

n1∑
l=1

‖fl − fl,K,d‖2H1

=
1

n1

n1∑
l=1

 K1∑
i=1

(〈fl, Ui〉d − 〈fl, Ui〉H1)2 +
∞∑

i=K1+1

〈fl, Ui〉2H1

 . (64)

As n1,K1 →∞, by an application of Fubini’s theorem, we have

lim
n1,K1→∞

n1∑
l=1

K1∑
i=1

1

n1
〈fl, Ui〉2H1

= lim
n1→∞

n1∑
l=1

1

n1
‖fl‖2H1

= Ef∼µ‖f‖2H1
, (65)

almost surely. Hence,

lim
n1,K1→∞

n1∑
l=1

∞∑
i=K1+1

1

n1
〈fl, Ui〉2H1

= 0, (66)

almost surely. Now consider the first sum of the right-hand side of (64), for each l = 1, . . . , n1

and i = 1, . . . ,K1, we have from the assumption of the theorem that

(〈fl, Ui〉d − 〈fl, Ui〉H1)2 → 0, (67)

almost surely for fl ∼ µ as d→∞, and almost surely convergence implies convergence in
probability. So, for every δ, ε > 0, we can choose D = D(δ, ε,K1, n1) such that

P

(
K1∑
i=1

(〈fl, Ui〉d − 〈fl, Ui〉H1)2 > ε

)
≤ δ

n1
, ∀d > D. (68)

Hence,

P

(
1

n1

n1∑
l=1

K1∑
i=1

(〈fl, Ui〉d − 〈fl, Ui〉H1)2 > ε

)
≤ P

(
n1⋃
l=1

{
K1∑
i=1

(〈fl, Ui〉d − 〈fl, Ui〉H1)2 > ε

})

≤
n1∑
l=1

P

(
K1∑
i=1

(〈fl, Ui〉d − 〈fl, Ui〉H1)2 > ε

)
≤ δ,

for all d > D(δ, ε,K1, n1). It means that W2(µn,K,d, µn) converges to 0 in probability as
n1,K1 →∞ and the numbers of design points grow to infinity with a rate depending on n1

and K. Thus, the RHS of (64) vanishes in probability, so Eq. (63) is established, and the
rest of the proof follows similarly to the proofs of Lemma 6 and Theorem 7.
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7. Discussions and Future Work

We proposed a formulation of optimal transport for probability distributions on domains of
functions, where the stochastic map between functional domains can be represented by an
infinite dimensional Hilbert-Schmidt operator mapping a Hilbert space of functions to another.
We proposed a learning method for transport maps based on subspace approximations
of Hilbert-Schmidt operators, and implemented an efficient algorithm that involves joint
optimization of such operators and a suitable space of stochastic couplings. Theoretical
guarantees on the existence, uniqueness, and consistency of our estimator were achieved.
Through simulation studies, we validated our theory and demonstrated the effectiveness of
our method of approximation, and that of the learning algorithm, by taking into account
the functional nature of the data domains. The effectiveness of our approach was further
demonstrated in a couple of real-world domain adaptation applications involving complex
and realistic robot arm movements.

Work measure functional transport map
(Genevay et al., 2016) discrete, semi-discrete no n/a
(Seguy et al., 2017) continuous no neural network
(Alvarez-Melis et al., 2019;
Grave et al., 2019), (Meng
et al., 2019)

discrete no rigid transformation

(Perrot et al., 2016) discrete no linear & kernel
(Xie et al., 2019) empirical no GAN
(Makkuva et al., 2019) empirical no ICNN
(Mallasto and Feragen,
2017)

single Gaussian process yes n/a∗

This work measures on Hilbert spaces yes Hilbert-Schmidt operator

Table 3: Related works on optimal transport map estimation.

7.1 Related work

Optimal transport-based applications have made significant strides in the field of machine
learning (Arjovsky et al., 2017; Ho et al., 2017; Li et al., 2019; Chen et al., 2019; Alvarez-Melis
et al., 2019; Fan et al., 2020; Alvarez-Melis and Fusi, 2020; Fan et al., 2021; Korotin et al.,
2021; Fatras et al., 2021; Nguyen et al., 2022; Bunne et al., 2022b). A suite of OT based
approaches involve solving the Kantorovich problem through linear programming or the
Sinkhorn algorithm (Cuturi, 2013; Courty et al., 2016; Pooladian and Niles-Weed, 2021).
Typically, they look for an optimal coupling between empirical measures while the objectives
can be extended depending on the problems at hand, such as the ones that gave rise to
the Gromov-Wasserstein distance (Mémoli, 2011), Sliced Wasserstein (Nguyen et al., 2022),
partial minibatch OT (Fatras et al., 2021), outlier robustness criterion (Mukherjee et al.,
2020), Orlicz-Wasserstein distance (Guha et al., 2023), and so on. The results obtained
can be extended to vector spaces with high dimensions, but scaling the algorithms for larger
sample sizes is typically challenging. Also, managing continuous measures within vector
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spaces is complicated and the most significant difficulty lies in generalizing to out-of-sample
data that has not been seen before.

From an applied viewpoint, the problem of (Monge) map estimation has always been
of interest, because the Monge map represents the simplest form of the optimal coupling
distribution if such a map exists. The question of existence and almost sure uniqueness
of the Monge map was settled by Brenier (1987) in what is now known as the celebrated
Brenier theorem, a result which has been extended and generalized by many other authors
(see Chapter 6 of Ambrosio et al. (2005) and Chapters 9–11 of Villani (2008)). Brenier-
type theorems helped to rejuvenate the development of optimal transport, in theory and
subsequently in practice. In practice, early attempts at learning a transport map from data
include approaches that represent transport maps as linear transformation or kernel based
function classes (Perrot et al., 2016). A more ambitious approach was made in the work of
Seguy et al. (2017), who proposed to find the optimal transport map parameterized by a rich
neural network model, following the regularized Kantorovich dual formulation. Exploiting
the characterization of the Monge map as the gradient of a convex potential, various authors
have proposed to exploit computational convexity (Makkuva et al., 2019; Korotin et al.,
2021; Fan et al., 2020; Korotin et al., 2022; Bunne et al., 2022a) by leveraging input convex
neural networks (ICNNs) (Amos et al., 2017). A summary of map estimation work is given
in Table 3. While most of the aforementioned literature still centers at the situation where
the support of the distributions are subsets of finite dimensional vector spaces, the growing
implementation of machine learning algorithms in various real-world applications, such as
time series, have motivated the formulation of optimal transport problem in the domains of
functions.

As mentioned in the Introduction, most known results and techniques on optimal transport
between distributions on function spaces are related to Gaussian processes and Gaussian
measures on normed spaces (Mallasto and Feragen, 2017; Masarotto et al., 2019; Knott and
Smith, 1984; Pigoli et al., 2014). These results are natural generalization from those of the
multivariate Gaussian distributions (Dowson and Landau, 1982; Givens and Shortt, 1984).
Specifically, the 2-Wasserstein distance between Gaussian processes with certain covariance
coincides with the Procrustes distance between the two covariance operators, which can be
approximated arbitrarily well via finite-dimensional approximation (Masarotto et al., 2019).
Additional advances on optimal transport for Gaussian measures have been made by other
authors, e.g., (Takatsu et al., 2011; Agueh and Carlier, 2011; Álvarez-Esteban et al., 2016). In
particular, for centered Gaussian measures supported by Hilbert spaces, there exists a linear
subspace of the (source) Hilbert space where the optimal map is explicit and well-defined as
a linear operator. Unfortunately, such a linear map is unbounded so it cannot be extended
to the whole (source and target) domains. Such theoretical advances notwithstanding, in
practice, the Gaussian distribution assumption is clearly too restrictive in many domains
(recall our comparison to GPOT of Mallasto and Feragen (2017) in Section 5). Our work
may be viewed as a first step at addressing optimal transport in the domains of functions
that go beyond the Gaussian assumption, and with a particular focus on learning the explicit
transport map for sampled functional data.

The formulation presented in this paper can be viewed as a regularization approach
to the optimal coupling problem with respect to the source and target distributions on
Hilbert spaces of functions. The overall optimal coupling is therefore represented jointly by
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a compact linear operator T which transports functions in the source domain to functions
in the target domain, and by a stochastic coupling distribution Π. The compactness of
T and the sparseness of Π induced by suitable penalty techniques offer several theoretical
advantages (i.e., existence, uniqueness and consistency of the estimates), as well as practical
advantages (i.e., efficient computation and interpretability).

The primary limitation of our approach, as discussed in the Introduction, is in the
situation where the deterministic optimal transport map exists but is either an unbounded
linear operator or a nonlinear operator. Developing a theory and methods to accommodate
unbounded or nonlinear optimal transport map in the infinite dimensional setting will be
challenging. From a practical and data-driven perspective, one needs to balance the cost of
estimating a nonlinear map with the possibility that a single nonlinear map may not offer a
very accurate pushforward probability measure for the target domain. That is because in
infinite dimensional settings, it is more likely than not that such a deterministic map does
not exist, unless certain restrictions are in place.

7.2 Future work

Within our formulation of linear operator regularized optimal transport in the functional
domains, there are a number of interesting questions and approaches that are worthy of
further investigation.

• It is of interest to characterize the convergence behavior of the FOT estimator with
respect to the number of function samples, basis functions, and design points in the
infinite-dimensional setting. Very recently, several groups of researchers have started
to study rates of convergence of optimal transport map estimators. However, their
work focuses on finite-dimensional domain settings (e.g., (Hütter and Rigollet, 2021;
Manole et al., 2021; Gunsilius, 2021; Deb et al., 2021)). New ideas and more powerful
techniques will probably be required to address analogous questions in the functional
domains.

• There is a vast opportunity to expand the scope of real-world applications by bridging
functional data analysis techniques with the optimal transport formalism, where both
functional data analysis and optimal transport viewpoints play complementary roles
toward achieving effective solutions. For example, in domain adaptation tasks in
robotics, healthcare, and autonomous driving, data are intrinsically associated with
physical processes and functions. One may also be interested in learning a transport
map that pushes forward the samples across diverse yet related domains, such as
assembling in manufacturing. For these tasks, it would be critical to investigate the
choice of basis functions for a specific machine learning problem, which is further
related to functional PCA or representational learning.

• The proposed FOT framework should be useful toward tackling the domain general-
ization problem. A principled way is to pushforward the predictive function from a
source domain towards a target domain by directly working on the predictive func-
tion’s parameters. This idea can be generalized to prevalent deep learning methods
by considering the basis functions as deep feature extractors. Thus, an FOT based
approach may provide a more interpretable solution for domain generalization with
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high-dimensional data, such as those that arise in natural language processing and
computer vision.
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